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Abstract

In this report we present a hierarchical method that decomposes a system into a high level subsystem

which communicates with n ≥ 1 parallel low level subsystems through separate interfaces, which restrict

the interaction of the subsystems. We first define the setting for the serial case (n = 1), and then

generalise it for n ≥ 1. We present a definition for an interface, and define a set of interface consistency

properties that can be used to verify if a discrete-event system (DES) is nonblocking and controllable.

Each clause of the definition can be verified using a single subsystem; thus the complete system model

never needs to be constructed, offering significant savings in computational effort. Additionally, the

development of clean interfaces facilitates re-use of the component subsystems.
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Chapter 1

Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify that a composite system,

based on a cartesian product of subsystems, is (i) nonblocking and (ii) controllable. The main obstacle

to performing these tasks is the combinatorial explosion of the product state space. Although many

methods have been developed to deal with this problem (modular control [1, 13, 20, 25], decentralised

control [14, 22, 27], model aggregation methods [2, 3, 6, 24, 30], and multi-level hierarchy [5, 9, 15, 16,

23, 31]), large-scale systems are still problematic, particularly for verification of nonblocking.

To deal with the complexity of large scale systems, the software engineering community has long

advocated the decomposition of software into modules (components) that interact via well defined

interfaces (e.g., [18, 17, 19]). Recently the supervisory control community has begun to advocate a

similar approach [11, 8]. These approaches develop well defined interfaces between components to

provide the structure to allow local checks to guarantee global properties such as controllability [8] or

nonblocking [11].

In this report, we present an interface-based hierarchical method to verify if a system is nonblocking

and controllable. We describe the application of our method to bi-level systems where the system is split

into a high level subsystem which interacts with n ≥ 1 parallel low level subsystems via separate interface

DES, which regulates the subsystems’ interaction. The most significant feature that distinguishes the

work from [8] is the results regarding nonblocking.

It is worth noting that Zhang et al. have recently developed algorithms that use Integer Decision

Diagrams to verify centralized DES systems on the order of 1023 states [29, 28]. These results are

complementary to the hierarchical method illustrated in this report, as their approach can be used to

verify many of the required conditions, allowing HISC to scale to even larger systems.
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In the remainder of this report we first describe the setting for the serial case (n = 1), which was

introduced in [12]. We present a definition for an interface, and define a set of (local) consistency

properties that can be used to verify if a discrete-event system is globally nonblocking and controllable.

We then extend our definitions to the general case of n ≥ 1. We present two full examples to illustrate

our method, and then discuss the application of our method to a large manufacturing example with an

estimated closed-loop state space size of 7 × 1021 (see [10]).

1.1 Supervisory Control Theory Preliminaries

Ramadge-Wonham supervisory control (RW theory:[21], [26], and [25]) provides a theoretical framework

for the control of systems that are discrete in space and time. These systems are modelled as automata

that generate a formal language of discrete events. These systems are customarily referred to as discrete

event systems (DES). The DES are event-driven and may be non-deterministic1. The DES do not

model when or why an event occurs, just the possible strings of events that the plant can generate. The

events are considered to occur in an interleaving fashion. For a detailed discussion of Discrete-event

Systems, please refer to [25]. Below, we present a summary of the terminology that we will be using in

this report.

1.1.1 Generators

The DES automaton is represented as a 5-tuple as shown below.

G = (Y, Σ, δ, yo, Ym)

where Y is the state set (at most countable); Σ is a finite set of event labels (also referred to as the

alphabet); δ is the transition function; yo ∈ Y is the initial state and Ym ⊆ Y is the subset of marker

states. We will also use the notation ΣG as a shorthand for the event set that DES G is defined over.

This is an easy way to refer to the alphabet given in the 5-tuple definition of G, particularly in situations

when it is not explicitly stated.2 For DES G above, ΣG = Σ.

The transition function δ : Y x Σ → Y is a partial function and is only defined for a subset of Σ at

a given y ∈ Y . The notation δ(y, σ)! indicates that δ is defined for σ at state y.

1Capable of choosing between two possible next states by chance or unmodelled system dynamics.
2For example, in the case of the DES created by the synchronous product operator.
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We want to extend δ to operate on strings in Σ∗, where Σ∗ = Σ+ ∪ {ε} where ε is the empty string

and Σ+ is the set of all sequences of symbols σ1σ2σ3 . . . σk, k ≥ 1 and σi ∈ Σ, i = 1, 2, . . . , k. We now

recursively extend δ to the partial function δ : Y x Σ∗ → Y by applying the following rules for arbitrary

y ∈ Y , s ∈ Σ∗ and σ ∈ Σ:

δ(y, ε) = y

δ(y, sσ) = δ(δ(y, s), σ)

as long as y′ := δ(y, s)! and δ(y′, σ)!.

An example of a DES plant is given in Figure 1.1. Here, the plant is composed of two automata,

mach1 and mach2. The composite plant model is obtained by taking the synchronous product (defined

below) of mach1 and mach2. In the diagram, the entering arrow at state 0 of DES mach1 indicates

that this is the initial state. The exiting arrow indicates that this is a marked state. A transition or

event in a DES G is a triple (y, σ, y′) where y, y′ ∈ Y , σ ∈ Σ, and y′ = δ(y, σ). An example from DES

mach1 is the event (0, α1, 1). We say an event σ ∈ Σ is eligible in DES G at state y ∈ Y if δ(y, σ)!.

For example, event α1 is eligible at state I1 in DES mach1.

For DES G, the language generated, called the closed behaviour of G, is denoted by L(G), and is

defined as follows:

L(G) := {s ∈ Σ∗| δ(yo, s)!}

The marked behaviour of G, Lm(G), is defined as follows:

Lm(G) := {s ∈ Σ∗| δ(yo, s) ∈ Ym}

Clearly, ∅ ⊆ Lm(G) ⊆ L(G) and ε ∈ L(G) as long as G 6= EMPTY where EMPTY is the DES with

an empty state set.

Finally, the reachable state subset of DES G, denoted Yr, is defined to be:

Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}

A DES G is reachable if Yr = Y . We will always assume G is reachable as unreachable states don’t

affect L(G) or Lm(G), and an equivalent reachable DES can always be constructed.

3



mach1

I1 I2

W1 D1

a1

b1
b2

l1

m1

mach2

W2 D2

a2

l2

m2

for i = 1, 2

a i = machine starts jobi

b i = machine finishes jobi

l i = machine breaks downi

m i = machine is repairedi

BufferSup

a1 b1 b2

a1
b1

a2

a2

mach1

Closed Loop: sync (mach1, mach2,BufferSup)

mach2Buffer

Figure 1.1: Simple Factory Example
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1.1.2 Operations

In this section, we discuss some useful operations for languages and automata. We start with the cat

operator. The catenation of strings is defined as follows: cat : Σ∗ x Σ∗ → Σ∗ where:

cat(ε, s) = cat(s, ε) = s, s ∈ Σ∗

cat(s, t) = st s, t ∈ Σ+

This leads us to the prefix closure operator. A string t ∈ Σ∗ is a prefix of s ∈ Σ∗ if s = cat(t, u),

for some u ∈ Σ∗. The relation “t is a prefix of s” is expressed as t ≤ s. The prefix closure of a language

L ⊆ Σ∗ is defined as:

L = {t ∈ Σ∗ | t ≤ s for some s ∈ L}

We say L is closed if L = L. Clearly as the name indicates, L(G) - the closed behaviour of DES G, is

closed.

The natural projection is defined with respect to the subset of a larger alphabet. Let Σo ⊆ Σ∗. We

define the natural projection Po : Σ∗ → Σ∗
o as follows:

Po(ε) = ε

Po(σ) =







ε if σ 6∈ Σo

σ if σ ∈ Σo

Po(sσ) = Po(s) Po(σ) where s ∈ Σ∗, σ ∈ Σ

Clearly, the natural projection is concatenative (i.e. Po(ss
′) = Po(s)Po(s

′), where s, s′ ∈ Σ∗). Also

useful is the inverse image map of the natural projection and its extension to operate on sets, given

below for s ∈ Σ∗
o and L ⊆ Σ∗

o:

P−1
o (s) := {s′ ∈ Σ∗|Po(s

′) = s}

P−1
o (L) := ∪v∈LP−1

o (v)

This brings us to the synchronous product of two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 (Σ = Σ1 ∪ Σ2)

is defined using the natural projection. Let Pi be the natural projection of Σ∗ onto Σ∗
i , i = 1, 2. The

5



synchronous product of L1 and L2 is defined to be:

L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2)

where P−1
i , i = 1, 2 is the inverse image map of the natural projections Pi.

We can now define the ||s operator for DES. For DES G1 = (Y1, Σ1, δ1, yo1 , Ym1) and G2 =

(Y2, Σ2, δ2, yo2 , Ym2), the synchronous product is defined to be the reachable DES G = G1||sG2 =

(Y, Σ, δ, yo, Ym) with the properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2), Σ = Σ1 ∪ Σ2

where the natural projections Pi, i = 1, 2, are as defined above. The ||s operator is essentially the same

as the TCT sync operator (see [25]), except that the ||s operator requires that the alphabets of DES

Gi to be specified explicitly; the sync operator takes Σi to be the events that appear in Gi. Requiring

the alphabets to be explicitly specified, ensures that ||s is associative.

Finally, we define the eligibility operator. For a language L ⊆ Σ∗ and a string s ∈ Σ∗, the operator

EligL : Σ∗ → Pwr(Σ) is defined as below. The notation Pwr(Σ) represents the power set of Σ (the set

of all sets that are ⊆ Σ ).

EligL(s) := {σ |sσ ∈ L}

1.1.3 Nonblocking and Controllability

For DES, the two main properties we want to check are nonblocking and controllability.

Nonblocking: A DES G is said to be nonblocking if the following is true:3

Lm(G) = L(G)

Nonblocking means that every string in L(G) can be completed to a marked string. This means

that the DES can always return to a marked state. This is a method to check if the DES will deadlock.

To control the plant, we define a supervisor. Supervisors monitor the events generated by the plant,

and disable events according to some control law. The supervisors are represented as automata and

3An equivalent condition is that every reachable state of G is coreachable.

6



defined as below:

S = (X, ΣS , ξ, xo, Xm)

In [25], the closed loop behaviour of a plant G1 = (Y1, Σ1, δ1, yo1) under the control of supervisor S

is achieved using the meet operator as below (assuming that ΣS = Σ1):

Closedmeet(G1,S) = meet(G1,S)

From a practical point of view, using the meet operator can make specifying supervisors tedious and

error prone; particularly when the event set is large, and the supervisor is specified as several modular

supervisors that are then combined using the meet operator. As a supervisor must have the same event

set as the plant, any event that the supervisor is indifferent to (doesn’t care if it’s enabled or not) must

be selflooped (ie. as event α1 is at the initial state of DES BufferSup in Figure 1.1) at every state.

This creates a lot of clutter, and introduces the potential for error if a selfloop is missed.

Instead, we will use the synchronous product operator to specify the closed loop behaviour. When

we specify a supervisor, we need only include the events it’s concerned with in its event set. Particularly

when using a graphical editor to specify and display the supervisor, this simplifies things. We thus

define the closed loop behaviour of a plant G1 under the control of supervisor S as follows:

Closed(G1,S) = G1||sS

An oddity of using the synchronous product operator to specify the closed loop behaviour is that

an event could be in the supervisor, but not in the plant. This may seem unintuitive, but it is useful

for events that are not part of the original plant, but are artificially added to aid in the synchronization

of supervisors.4 One could create a new plant DES with such events selflooped at the initial state, but

this would make things more cluttered, and possibly increase memory usage in DES analysis software.

By using the synchronous product, the result is as if we created this new plant DES automatically.

We now introduce the concept of controllability. Controllability is a way to check if the behaviour

restrictions specified by a supervisor are achievable. For the alphabet of interest, we partition it into

two disjoint sets: Σu and Σc. These are the sets of uncontrollable and controllable events, respectively.

Controllable events are events that a supervisor can disable, and thus prevent from occurring. Uncon-

4An example would be when one supervisor needs to wait until the other reaches a particular state, but there doesn’t

exist already an event that would signal this uniquely.
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trollable events can’t be disabled. Informally, a supervisor is controllable for a given plant if the plant

can’t leave the behaviour specified by the supervisor by means of an uncontrollable event.

We now present a formal definition for controllability. We first give the more standard definition

with respect to the meet operator, again assuming that ΣS = Σ1.

Controllability (meet): A supervisor S is controllable for a plant G1 if:

L(S)Σu ∩ L(G1) ⊆ L(S)

We will now present the version with respect to the synchronous product operator. First we need

to define the event set Σ, the natural projections P1 and PS , and languages LG1 and LS as below:

Σ := Σ1 ∪ ΣS

P1 : Σ∗ → Σ∗
1

PS : Σ∗ → Σ∗
S

LG1 := P−1
1 L(G1)

LS := P−1
S L(S)

Controllability (||s): A supervisor S is controllable for a plant G1 if:

LSΣu ∩ LG1 ⊆ LS

In this report, whenever we refer to controllability, we will be referring to the version with respect

to synchronous product operator. We will actually use the following equivalent definition:

Alternative Controllability Definition (||s): A supervisor S is controllable for a plant G1 if:

(∀s ∈ LG1 ∩ LS) EligLG1
(s) ∩ Σu ⊆ EligLS

(s)

Modular supervisors are implemented by taking the conjunction of two or more supervisors. We

define the conjunction of two supervisors S1 and S2 (expressed as S1 ∧ S2) as follows:

S1 ∧ S2 = S1||sS2
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Returning to the example in Figure 1.1, our plant is G = mach1||smach2 and our supervisor is

S = BufferSup. Our event partition can be determined from the diagram by noting that transitions

with a bar across them (such as α1 and α2) indicate that these are controllable events. Finally, our closed

loop system is Closed(S,G) = (mach1||smach2)||sBufferSup = mach1||smach2||sBufferSup.

1.1.4 Related Propositions

In this section, we present some language propositions that will be used in later chapters. The propo-

sitions will refer to alphabets Σ1, Σ2, and Σ := Σ1 ∪ Σ2, languages L1, L
′
1 ⊆ Σ∗

1, and L2, L
′
2 ⊆ Σ∗

2,

and natural projections Pi : Σ∗ → Σ∗
i , where i = 1, 2. Finally, we apply these propositions to the

synchronous product of DES G1 = (Y1, Σ1, δ1, yo1 , Ym1) and G2 = (Y2, Σ2, δ2, yo2 , Ym2).

The first two propositions are useful for working with the languages of a DES created by the syn-

chronous product operator. The first proposition essentially says that the inverse natural projection of

a closed language is also closed. The second proposition essentially says that the set of prefix closed

subsets of Σ∗ are closed under intersection.

Proposition 1 If L1 is closed, then P−1
1 (L1) is closed.

Proof:

Assume L1 is closed. (1)

We will now show this implies that P−1
1 (L1) is closed.

This means showing that P−1
1 (L1) = P−1

1 (L1)

It is sufficient to show that P−1
1 (L1) ⊆ P−1

1 (L1) and P−1
1 (L1) ⊆ P−1

1 (L1). As P−1
1 (L1) ⊆ P−1

1 (L1) is

automatic, all that remains to show is P−1
1 (L1) ⊆ P−1

1 (L1).

Let s ∈ P−1
1 (L1) (2)

We will now show this implies that s ∈ P−1
1 (L1)

We first note that s ∈ P−1
1 (L1) implies that (∃s′ ∈ Σ∗) ss′ ∈ P−1

1 (L1)

⇒ P1(ss
′) = P1(s)P1(s

′) ∈ L1

⇒ P1(s) ∈ L1

⇒ P1(s) ∈ L1 by (1)

9



⇒ s ∈ P−1
1 (L1), as required.

We thus have P−1
1 (L1) ⊆ P−1

1 (L1), and thus P−1
1 (L1) = P−1

1 (L1).

We thus conclude that P−1
1 (L1) is closed.

QED

Proposition 2 If L1 and L2 are closed, then L1 ∩ L2 is closed.

Proof:

Assume L1 and L2 are closed. (1)

We will now show this implies that L1 ∩ L2 is closed.

This means showing that L1 ∩ L2 = L1 ∩ L2

It is sufficient to show that L1 ∩ L2 ⊆ L1 ∩ L2 and L1 ∩ L2 ⊆ L1 ∩ L2 . As L1 ∩ L2 ⊆ L1 ∩ L2 is
automatic, all that remains to show is L1 ∩ L2 ⊆ L1 ∩ L2.

Let s ∈ L1 ∩ L2 (2)

We will now show this implies that s ∈ L1 ∩ L2

By (2), we can conclude (∃s′ ∈ Σ∗) ss′ ∈ L1 ∩ L2

⇒ s ∈ L1 ∩ L2

⇒ s ∈ L1 ∩ L2, by (1)

We thus have L1 ∩ L2 ⊆ L1 ∩ L2, and thus L1 ∩ L2 = L1 ∩ L2, as required.

We thus conclude that L1 ∩ L2 is closed.

QED

We now present a corollary that combines the above two propositions to get a similar result for the

|| operator.

Corollary 1 If L1 and L2 are closed, then L1||L2 is closed.

Proof:

Assume L1 and L2 are closed. (1)
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We will now show this implies that L1||L2 is closed.

We first note that L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2)

From (1) and applying Proposition 1, we can conclude that languages P−1
1 (L1) and P−1

2 (L2) are
closed.

We can now apply Proposition 2 and conclude that P−1
1 (L1) ∩ P−1

2 (L2), as required.

QED

The next proposition says that the inverse natural projection respects subset ordering.

Proposition 3 If L1 ⊆ L′
1, then P−1

1 (L1) ⊆ P−1
1 (L′

1)

Proof:

Assume L1 ⊆ L′
1. (1)

We will now show this implies that P−1
1 (L1) ⊆ P−1

1 (L′
1).

Let s ∈ P−1
1 (L1) (2)

We will now show this implies that s ∈ P−1
1 (L′

1).

By (2), we have P1(s) ∈ L1

⇒ P1(s) ∈ L′
1, by (1).

⇒ s ∈ P−1
1 (L′

1), as required.

We can thus conclude P−1
1 (L1) ⊆ P−1

1 (L′
1)

QED

The last language proposition says that the synchronous product operator respects subset ordering.

This is useful for working with the languages of a DES created by the synchronous product operator.

Proposition 4 If L1 ⊆ L′
1 and L2 ⊆ L′

2, then L1||L2 ⊆ L′
1||L

′
2

Proof:

Assume L1 ⊆ L′
1 and L2 ⊆ L′

2. (1)
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We will now show this implies that L1||L2 ⊆ L′
1||L

′
2

Let s ∈ L1||L2 (2)

We will now show this implies that s ∈ L′
1||L

′
2

From (2), we have s ∈ P−1
1 (L1)∩P−1

2 (L2) (3)

From (1), we can apply Proposition 3 twice and conclude P−1
1 (L1) ⊆ P−1

1 (L′
1) and P−1

2 (L2) ⊆
P−1

2 (L′
2) (4)

Combining with (3), we can now conclude s ∈ P−1
1 (L′

1) ∩ P−1
2 (L′

2)

⇒ s ∈ L′
1||L

′
2 by the definition of the synchronous product operator. We thus have L1||L2 ⊆ L′

1||L
′
2, as

required.

QED

Next, we apply the above propositions to the synchronous product of DES.

Proposition 5 If G = G1||sG2, then language L(G) is closed and Lm(G) ⊆ L(G)

Proof:

Assume G = G1||sG2. (1)

We will now show this implies that language L(G) is closed and Lm(G) ⊆ L(G).

By definition of the ||s operator, we know that L(G) = L(G1)||L(G2) and that
Lm(G) = Lm(G1)||Lm(G2) (2)

We now note that languages L(G1), and L(G2) are closed by the definition of the closed behaviour of a
DES.

We can immediately apply Corollary 1 and conclude that L(G) is closed.

From the definition of the closed behaviour and the marked language of a DES, we can conclude that
Lm(G1) ⊆ L(G1) and Lm(G2) ⊆ L(G2).

We can now apply Proposition 4 and conclude:

Lm(G1)||Lm(G2) = Lm(G) ⊆ L(G) = L(G1)||L(G2)

QED

For our last proposition and its accompanying corollary, we need to introduce some different notation

to avoid confusion with later notation. We will be using alphabets Σa, Σb ⊆ Σ and natural projections
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Pk : Σ∗ → Σ∗
k, where k = a, b.

The following proposition provides a useful relationship for natural projections when the language

each is projecting onto has the given relationship. When we examine the parallel case, we will see many

instances of this relationship.

Proposition 6 If Σb ⊆ Σa then P−1
a · Pa · P

−1
b = P−1

b

Proof:

Assume Σb ⊆ Σa. (1)

We will now show this implies P−1
a · Pa · P

−1
b = P−1

b

Let s ∈ Σ∗
b . Sufficient to show P−1

b (s) = P−1
a · Pa · P

−1
b (s)

This means showing: I) P−1
b (s) ⊆ P−1

a · Pa · P
−1
b (s) and II) P−1

a · Pa · P
−1
b (s) ⊆ P−1

b (s)

I) Show P−1
b (s) ⊆ P−1

a · Pa · P
−1
b (s)

Let s′ ∈ P−1
b (s). Will show implies s′ ∈ P−1

a · Pa · P
−1
b (s).

⇒ Pa(s
′) ∈ Pa · P

−1
b (s)

⇒ P−1
a · Pa(s

′) ⊆ P−1
a · Pa · P

−1
b (s)

Clearly s′ ∈ P−1
a · Pa(s

′), as P−1
a · Pa(s

′) := {s′′ ∈ Σ∗ |Pa(s
′′) = Pa(s

′)}.

⇒ s′ ∈ P−1
a · Pa · P

−1
b (s), as required.

Case I complete.

II) Show P−1
a · Pa · P

−1
b (s) ⊆ P−1

b (s)

Let s′ ∈ P−1
a ·Pa ·P

−1
b (s) := ∪u∈Pa·P

−1
b

(s) {v ∈ Σ∗ |Pa(v) = u}. (2)

Will show implies s′ ∈ P−1
b (s). Sufficient to show Pb(s

′) = s.

From (2), we have Pa(s
′) ∈ Pa · P

−1
b (s)

⇒ (∃s′′ ∈ Σ∗) s.t. s′′ ∈ P−1
b (s) ∧ Pa(s

′′) = Pa(s
′) (3)

As s′′ ∈ P−1
b (s), we have Pb(s

′′) = s

Since Σb ⊆ Σa (from (1)), we can conclude: (∀t ∈ Σ∗) Pb(t) = Pb·Pa(t) (4)
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From this we can conclude Pb · Pa(s
′′) = Pb(s

′′) = s

From (3), we have Pa(s
′′) = Pa(s

′). We can thus conclude Pb · Pa(s
′) = Pb · Pa(s

′′) = s

From (4), we can conclude Pb(s
′) = Pb · Pa(s

′) = s

⇒ s′ ∈ P−1
b (s), as required.

Case II complete.

By Case I and Case II, we have P−1
b (s) = P−1

a · Pa · P
−1
b (s) and thus conclude P−1

a · Pa · P
−1
b = P−1

b

QED

The corollary below applies Proposition 6 to provide a useful result for strings. We will be using

this corollary extensively when we examine the parallel case.

Corollary 2 If Σb ⊆ Σa and Lb ⊆ Σ∗
b then (∀s ∈ Σ∗) Pa(s) ∈ Pa · P

−1
b (Lb) ⇒ s ∈ P−1

b (Lb)

Proof:

Assume Σb ⊆ Σa and Lb ⊆ Σ∗
b . (1)

Let s ∈ Σ∗ and Pa(s) ∈ Pa · P
−1
b (Lb). (2)

We will now show this implies that s ∈ P−1
b (Lb)

We start by noting that (2) implies that s ∈ P−1
a · Pa · P

−1
b (Lb)

From Proposition 6, we can conclude P−1
a · Pa · P

−1
b = P−1

b , by (1).

s ∈ P−1
b (Lb) follows automatically.

QED
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Chapter 2

Serial Case: Nonblocking

With the serial case of hierarchical interface-based supervisory control, what we are proposing is essen-

tially a master-slave system, where a high level subsystem sends a command to a low level subsystem,

which then performs the indicated task and sends back a reply. Figure 2.1 shows conceptually the

structure of the system.

Interface

High Level

Low Level

S
L

S
H

S
R

S
R

S
A

S
A

Figure 2.1: Interface Block Diagram.
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To allow the system to be designed/maintained/verified on a component-wise basis, we impose an

interface between the two subsystems that limits their interaction and knowledge of each other. The

goal is to be able to work with each subsystem individually, requiring no information about the other

subsystem beyond that provided by the interface.

To capture the restriction of the flow of information imposed by the interface, we split the alphabet

of the system (Σ) into four mutually disjoint alphabets: ΣH , ΣL, ΣR, and ΣA. The events in ΣH are

called high level events and the events in ΣL low level events as these events appear only in the high

level and low level models, respectively.

The alphabets ΣR and ΣA are called collectively interface events. These events are common to both

levels of the hierarchy and represent communication between the two subsystems. More specifically, the

events in ΣR are called request events and represent commands sent from the high level subsystem to the

low level subsystem. The events in ΣA are called answer events and represent the low level’s responses

to the request events (high-level commands). Figure 2.1 shows conceptually the flow of information in

our setting.

In the remainder of the chapter, we will first present a definition for an interface, followed by a set

of local consistency and nonblocking requirements that the interface and subsystems must satisfy in

order to guarantee global nonblocking. We then provide several supporting propositions, followed by

the serial nonblocking theorem.

2.1 Notation and Definitions

In this section, we present a definition for interface, and some notation that will be useful in the following

proofs.

2.1.1 Interface Definition

In this section we, will present two interface definitions: star interfaces and command-pair interfaces.

As we will see later, star interfaces are special case of the more general command-pair interfaces.

We start by describing a star interface as it has a regular structure and is thus easy to construct. To

define a star interface, the designer selects a set of request events, and then for each request event, the

designer defines a set of answer events. In essence, the designer defines a map Answer : ΣR → Pwr(ΣA).

For ρ ∈ ΣR, Answer(ρ) is the set of possible answers (referred to as the answer set) the low level

subsystem could provide after receiving request ρ. For consistency, we add the constraints given below.
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Point 1 states that the low level subsystem must provide at least one response for each request it

receives, and point 2 states that ΣA does not contain any unused events.

1. (∀ρ ∈ ΣR)Answer(ρ) 6= ∅

2. ΣA = ∪ρ∈ΣR
Answer(ρ)

In Figure 2.2, we see how a star interface, with n = |ΣR| (n ≥ 0), is expressed as a DES. The

required structure for a star interface is given by DES GI . Analysing DES GI , we see that the DES has

the following properties:

• The initial state is the only marked state.

• Request events are the only events defined at the initial state.

• Each request event starts at the initial state, and ends at state other than the initial state.

• Answer events are not defined at the initial state

• At least one answer event transition can always follow a request event transition.

r r r v S1 2 n R, ,  … ,

GI

Answer( )r1

Answer( )r2

r1

r2

0

1

2

A
n
sw

er(
)

r
n

rn

n

Figure 2.2: Interface Specification.

To allow for a minimal DES, we permit distinct request events to have the same next state. For

example, if request events ρ1 and ρ2 in Figure 2.2 had the same answer sets (i.e. Answer(ρ1) =
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Answer(ρ2)), then their next states can be merged. In our example, this would mean states 1 and 2 of

GI would be combined. Finally, we require that the event set of GI be set to ΣR ∪̇ΣA but we make no

restrictions on whether a request or answer event is controllable or uncontrollable.

We now define command-pair interfaces. Command-pair interfaces were designed as a generalisation

of star interfaces. Star interfaces were designed first as they were more intuitive, and then the key

properties were identified and collected into the command-pair interface definition. A key difference is

that the “star” shape is no longer required. A command-pair interface will still always have a request

event followed by an answer event, but it can now contain additional state information. For example,

in Figure 2.2 all possible request events are defined at the initial state. When an answer event has

occurred, it always returns the star interface to the initial state, and thus the same choice of potential

request events. With a command-pair interface we can have a DES structure as illustrated in Figure

2.3. Request events ρ1 and ρ2 might represent the regular behaviour of the system, while α3 and ρ3

represent breakdown and repair of the system. A command-pair interface allows the flexibility of only

having the repair event eligible after a breakdown.

G
I

r
1

r
2

r
3

a
1
,a

2

a
3

a
7

,a
5
,a

6a
4

0

1

2

3
4

Figure 2.3: Example Command-pair Interface.

For the remainder of this work, when we refer to an interface we will mean explicitly a command-pair

interface, and we will use the two synonymously. We define a command-pair interface as below:

Definition: A DES GI = (X, ΣI , ξ, xo, Xm) is a command-pair interface if the following conditions

are satisfied:
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(A) ΣI = ΣR ∪̇ΣA

(B) (∀s ∈ L(GI))(∀ρ ∈ ΣR) sρ ∈ L(GI) ⇒ s ∈ Lm(GI)

(C) (∀s ∈ Lm(GI))(∀σ ∈ ΣI) sσ ∈ L(GI) ⇒ σ 6∈ ΣA

(D) Lm(GI) = {ε} ∪ (Σ∗
I .ΣA ∩ L(GI))

(E) L(GI) ⊆ (ΣR.ΣA)∗

The first point, point A, says that GI ’s event set is restricted to request and answer events. It also

states that the two sets are disjoint. Point B then states that request event transitions are only defined

at marked states. Point C states that there are no answer events defined at marked states. Point D

says that the marked language of GI consists of the empty string, and strings that end in an answer

event. Finally, Point E says that in the language of GI , a request event always occurs first and then

request and answer events alternate.

We will now prove that star interfaces are a special case of command-pair interfaces. This will

allow us to prove our theorems for the more general command-pair interfaces, but use the simpler star

interfaces when they are sufficient.1

Proposition 7 If DES GI = (X, ΣI , ξ, xo, Xm) is a star interface, then GI is a command-pair inter-

face.

Proof:

Assume that GI is a star interface.

We will now show this implies it’s a command-pair interface by showing that GI satisfies points A-E
of the command-pair interface definition.

Point A: Show ΣI = ΣR ∪̇ΣA

This is automatic from the star interface definition.

Point B: Show (∀s ∈ L(GI))(∀ρ ∈ ΣR) sρ ∈ L(GI) ⇒ s ∈ Lm(GI)

The results follow immediately from observing Figure 2.2 and noting that request event transitions are
only defined at the initial state, which is marked.

Point C: Show (∀s ∈ Lm(GI))(∀σ ∈ ΣI) sσ ∈ L(GI) ⇒ σ 6∈ ΣA

1We will actually use star interfaces exclusively in our algorithms and examples as the command-pair interface definition

was only just developed and there wasn’t time to update our software and examples.
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The results follow immediately from observing Figure 2.2 and noting that answer event transitions are
not defined at the initial state, which is the only marked state.

Point D: Show Lm(GI) = {ε} ∪ (Σ∗
I .ΣA ∩ L(GI))

It is sufficient to show 1) Lm(GI) ⊆ {ε} ∪ (Σ∗
I .ΣA ∩ L(GI)) and 2) Lm(GI) ⊇ {ε} ∪ (Σ∗

I .ΣA ∩ L(GI))

Case 1) From Figure 2.2, we can see that Lm(GI) includes the empty string, as the initial state is
marked and that GI is not the EMPTY DES. We also see that the only transitions ending at the
initial state (the only marked state) are for answer events. The results follow immediately.

Case 2) From above, we have that Lm(GI) includes the empty string. From Figure 2.2, we can see that
every answer event transition ends at the initial state, which is marked. The results follow immediately.

By case 1 and 2, we thus have Lm(GI) = {ε} ∪ (Σ∗
I .ΣA ∩ L(GI))

Point E: Show L(GI) ⊆ (ΣR.ΣA)∗

From Figure 2.2, we can see that L(GI) contains the empty string (as GI is not the EMPTY DES), and
strings that start with a request event. We further see that request and answer events then alternate.
The results follow immediately.

QED

2.1.2 Terminology and Notation

We now present some terminology and notation that will be useful in simplifying proofs. For our setting,

we assume the high level subsystem is modelled by DES GH (defined over event set ΣH ∪ΣR ∪ΣA), the

low level subsystem by DES GL (defined over event set ΣL ∪ΣR ∪ΣA ), and the interface by DES GI .

Also, the term high level will mean the DES GH ||sGI , and the term low level the DES GL||sGI . The

overall structure of the system is displayed in Figure 2.4.

We next assume that the alphabet partition is specified by Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA and define the

flat system as below. By flat system we refer to the equivalent DES that would represent our system if

we ignored the interface structure.

G = GH ||sGL||sGI

As we will often be referring to different groupings of events, we define the following subsets:

ΣI := ΣR∪̇ΣA Interface Events

ΣIH := ΣH ∪̇ΣR∪̇ΣA Interface & High Level Events
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Figure 2.4: Two Tiered Structure of Serial System.

ΣIL := ΣL∪̇ΣR∪̇ΣA Interface & Low Level Events

To work with languages defined over subsets of Σ, we define the following natural projections:

PIH : Σ∗ → Σ∗
IH

PIL : Σ∗ → Σ∗
IL

PI : Σ∗ → Σ∗
I

As we want to express the languages of flat system in terms of their components, we need to define the

following languages:

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

L := P−1
IL (L(GL)), Lm := P−1

IL (Lm(GL)) ⊆ Σ∗

I := P−1
I (L(GI)), Im := P−1

I (Lm(GI)) ⊆ Σ∗
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We can now represent the closed behaviour of our flat system as follows:

L(G) := L(GH ||sGL||sGI)

= P−1
IH (L(GH)) ∩ P−1

IL (L(GL)) ∩ P−1
I (L(GI))

= H ∩ L ∩ I

Similarly, the marked language of our flat system is:

Lm(G) = Hm ∩ Lm ∩ Im

This allows us to present the proposition below which collects together several similar propositions.

As it will be common in the proofs in this report to show that membership in languages such as H are

dependent only on events in specific subsets (for H, events in subset ΣIH), this proposition will be very

useful.

Proposition 8

(a) (∀s, s′ ∈ Σ∗) s ∈ H and PIH(s) = PIH(s′) ⇒ s′ ∈ H

(b) (∀s, s′ ∈ Σ∗) s ∈ Hm and PIH(s) = PIH(s′) ⇒ s′ ∈ Hm

(c) (∀s, s′ ∈ Σ∗) s ∈ L and PIL(s) = PIL(s′) ⇒ s′ ∈ L

(d) (∀s, s′ ∈ Σ∗) s ∈ Lm and PIL(s) = PIL(s′) ⇒ s′ ∈ Lm

(e) (∀s, s′ ∈ Σ∗) s ∈ I and PI(s) = PI(s
′) ⇒ s′ ∈ I

(f) (∀s, s′ ∈ Σ∗) s ∈ Im and PI(s) = PI(s
′) ⇒ s′ ∈ Im

Proof:

Point a:

Let s, s′ ∈ Σ∗, s ∈ H and PIH(s) = PIH(s′) (1)

s ∈ H ⇒ s ∈ P−1
IH (L(GH)), by definition of H.

⇒ PIH(s) ∈ L(GH)

⇒ PIH(s′) ∈ L(GH), by (1).

⇒ s′ ∈ P−1
IH (L(GH)) = H, as required.
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Points b-f:

Identical to the proof of point a above, after substitution.

QED

2.2 Serial Interface Consistent and Nonblocking

In this section, we present the interface properties that our system must satisfy to ensure that it interacts

with the interface correctly as well as the nonblocking requirements each level must satisfy. Together

they provide a set of local conditions that can be evaluated using at most one level of our hierarchy at

a time.

Our first definition is the serial level-wise nonblocking definition. It requires that each level be

individually nonblocking.

Serial Level-wise Nonblocking: The system composed of DES GH , GL, and GI , is said to be serial

level-wise nonblocking if the following conditions are satisfied:

(I) Hm ∩ Im = H ∩ I Nonblocking at the high level

(II) Lm ∩ Im = L ∩ I Nonblocking at the low level

We now present the serial interface consistent definition. It defines the interface properties that our

system must satisfy to ensure that it interacts with the interface correctly. It limits the information

each level can have about the other, and what assumptions they can make about each other. As one

can see from Appendix A, these conditions can be evaluated using only “local” information - properties

of a given subsystem and its interface.

Serial Interface Consistent: The system composed of DES GH , GL and GI , is serial interface con-

sistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the following properties

are satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GL is ΣIL.

2. GI is a command-pair interface.
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High Level Properties

3. (∀s ∈ H ∩ I) EligI(s) ∩ ΣA ⊆ EligH(s) High level task completion agreement

Low Level Properties

4. (∀s ∈ L ∩ I) EligI(s) ∩ ΣR ⊆ EligL(s) Low level task request agreement

5. (∀s ∈ Σ∗.ΣR ∩ L ∩ I)

EligL∩I(sΣ∗
L) ∩ ΣA = EligI(s) ∩ ΣA Low level task completion agreement

where EligL∩I(sΣ∗
L
) := ∪l∈Σ∗

L
EligL∩I(sl)

6. (∀s ∈ L ∩ I)

s ∈ Im ⇒ (∃l ∈ Σ∗
L) sl ∈ Lm ∩ Im Low level marking agreement

We will now give a brief discussion of the meaning of each property.

Property 0: The first Property is inherent in the definition of the alphabet partition,

Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA. It states that the four alphabets are pairwise disjoint.

Property 1: This property asserts that the high and low levels can only share request and answer

events. This is an “information hiding” statement. It restricts the high level subsystem from

knowing (and directly affecting) internal details about the low level subsystem (ie to be able to

view/disable low level events) and vice versa.

Property 2: This property states that DES GI satisfies the definition of a command-pair interface.

Property 3: This property asserts that the high level subsystem (GH) must always accept an answer

event if the event is eligible in the interface. If the answer event is not eligible in the interface, the

high level subsystem is not required to accept it. This is equivalent to a controllability condition

where the interface is taken to be the plant, the high level subsystem the supervisor, and answer

events to be the uncontrollable events. In other words, the high level subsystem is forbidden to

assume more about when an answer event can occur than what is provide by the interface.

Property 4: This property asserts that the low level subsystem (GL) must always accept a request

event if the event is eligible in the interface. If the request event is not eligible in the interface,

the low level subsystem is not required to accept it. This is equivalent to a controllability condition

where the interface is taken to be the plant, the low level subsystem the supervisor, and request

24



events to be the uncontrollable events. In other words, the low level is forbidden to assume more

about when an request event can occur than what is provide by the interface.

Property 5: This property asserts that immediately after a request event (some ρ ∈ ΣR) has occurred

(and before it is followed by any low level events), there exists one or more paths via strings in Σ∗
L

to each answer event (ie all α ∈ Answer(ρ), assuming that we are dealing with a star interface)

that can follow the request event. A given path may only lead to one of the possible answer events,

but a path to each one must exist. However, as soon as a single low level event has occurred, one

or more answer events may be no longer reachable (ie the low level subsystem may no longer be

able to provide that particular answer event).

For example, assume our low level represents a machine that accepts the request events startJob

and startRepair. Request event startJob can be followed by answer events jobCompleted or

machineDown. Request event startRepair can be followed by answer event repairCompleted

(this information would be embodied in L(GI)). Now, let’s consider event startJob. Immediately

after request event startJob has occurred, there must be one or more low level event sequences,

accepted by the low level subsystem, that lead to answer events jobCompleted and machine-

Down. For example, sequence taskAComplete-taskBComplete would bring the low level

subsystem into a state that it would accept answer event jobCompleted but event machine-

Down would no longer be possible. Similarly, sequence taskAComplete-machineFailure would

bring the low level subsystem into a state that it would accept answer event machineDown but

event jobCompleted would no longer be possible. What’s important to note here is that both

answer events jobCompleted and machineDown were initially reachable after startJob oc-

curred. Which answer event was allowed to occur was determined afterwards solely by low level

events. Also, after one or more low level events had occurred, there was no guarantee that both

answer events were still reachable.

One could summarise the purpose of this condition as to guarantee “honest advertising.” If

the interface asserts that a given answer event can follow a given request event, this must always

be true at least immediately after the request event occurs, and then the low level subsystem is

allowed through the occurrence of low level events to decide which answer event actually occurs.

In our above example, our interface advertises that either answer event jobCompleted or ma-

chineDown can follow request event startJob. If the low level subsystem was in a down state

such that only machineDown was possible, and request event startJob occurred, this condition
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would be violated. If the high level could only reach a marked state by the eventual occurrence of

event jobCompleted, it would be deceived by the “false advertising” of the interface into believ-

ing that this could eventually be satisfied by repeatedly issuing startJob commands. Of course,

a human designer would see the fallacy of this, but an automatic synthesis algorithm would be

deceived.

Property 6: This property asserts that every string marked by the interface and accepted by the low

level subsystem, can be extended by a low level string to a string marked by the low level (both

GI and GL). In other words, once the low level subsystem has returned an answer event, it can

always return to a marked state via a low level string (ie some s ∈ Σ∗
L).

From the point of the view of the high level subsystem, this property says that if one can bring

the high level subsystem and the interface to a marked state, then one can bring the low level

subsystem to a marked state via a low level string which would be ignored by the high level (ie

they would stay in a marked state).

We are now ready to state the proposition below which establishes useful properties for often used

languages.

Proposition 9 If the system composed of DES GH , GL, and GI is serial interface consistent with

respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then the following is true:

(i) Languages H, L, and I are closed.

(ii) Hm ⊆ H, Lm ⊆ L, and Im ⊆ I

Proof: See page 32.

Now that we have presented the serial interface consistent definition, we present the serial interface

strict marking condition, which is a restriction of the serial interface consistent definition. As we will

see later, this restriction is useful as it implies Property 6 of the serial interface consistent definition,

but is less expensive to evaluate.

Serial Interface Strict Marking: The system composed of DES GH , GL and GI , is serial interface

strict marking with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if:

(∀s ∈ L ∩ I) s ∈ Im ⇒ s ∈ Lm ∩ Im
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The above statement could be summarised by saying that if we can bring the interface to a marked

state, we are guaranteed to also have brought the low level subsystem to a marked state. The above

statement is equivalent to Property 6 of the serial interface consistent definition above, with string l

restricted to the empty string.

We will now prove that we can use the serial interface strict marking condition to replace Property

6 of the serial interface consistent definition.

Proposition 10 If the system composed of DES GH , GL and GI , satisfies properties 1-5 of the serial

interface consistent definition and is serial interface strict marking with respect to the alphabet partition

Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then the system is serial interface consistent.

Proof:

Assume that the system satisfies properties 1-5 of the serial interface consistent definition and is serial
interface strict marking. (1)

We now show this implies the system is serial interface consistent.

From (1), we immediately have the system satisfying the first 5 properties of the serial interface con-
sistent definition.

All that remains is to show that the system satisfies Property 6 of the definition. This means showing:

(∀s ∈ L ∩ I)
s ∈ Im ⇒ (∃l ∈ Σ∗

L) sl ∈ Lm ∩ Im

Let s ∈ L ∩ I, and s ∈ Lm

We will now show this implies (∃l ∈ Σ∗
L) sl ∈ Lm ∩ Im

From (1), we have that the system is serial interface strict marking.

We can thus conclude: s ∈ Lm ∩ Im

We thus take l = ε and we have sl ∈ Lm ∩ Im, as required.

We thus have the system satisfying properties 1-6, and is thus serial interface consistent.

QED
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2.3 Serial Nonblocking Theorem and Propositions

We will now present Propositions 11-15, followed by our main result for this chapter, Theorem

1. The following propositions perform two tasks: they break down the main theorem into a more

manageable size, as well as provide useful results that will be re-used for the parallel case.

2.3.1 Low Level Nonblocking Proposition

Our first proposition is the low level nonblocking proposition. It asserts that a string s accepted by the

system, can always be extended to a string accepted by the system, and marked by the low level. In

other words, the low level is not dependent on high level events to reach a marked state.

Proposition 11 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and

serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

(∀s ∈ H ∩ L ∩ I)

(∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ Lm ∩ Im)

Proof: See page 33.

2.3.2 Low Level Linkage Proposition

Our next proposition is the low level linkage proposition. It asserts that a string s accepted by the

system and marked by the high level, implies that s can be extended by a low level string l such that sl

is marked by the system. In other words, if you can get the high level to a marked state, you can always

bring the low level to a marked state by a string containing events the high level is indifferent to.

Proposition 12 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and

serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

(∀s ∈ L ∩Hm ∩ Im) (∃l ∈ Σ∗
L) sl ∈ Hm ∩ Lm ∩ Im

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

Let s ∈ L ∩Hm ∩ Im (2)

We will now show that we can construct a string l ∈ Σ∗
L such that sl ∈ Hm ∩ Lm ∩ Im
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From (2), we have s ∈ L ∩ Im and thus s ∈ L ∩ I.

From (1), we can apply Point 6 of the serial interface consistent definition and conclude:

(∃l ∈ Σ∗
L) s.t. sl ∈ Lm ∩ Im (3)

As l ∈ Σ∗
L, we have PIH(s) = PIH(sl). From (2), we have s ∈ Hm. We can now apply Proposition 8,

point b, and conclude:

sl ∈ Hm

Combining with (3), have l ∈ Σ∗
L, and sl ∈ Hm ∩ Lm ∩ Im, as required.

QED

2.3.3 Event Agreement Propositions

We group the next three propositions together, as each builds upon the previous one.

One-step Event Agreement Proposition

Our first proposition is the one-step event agreement proposition. For this proposition, we are given a

string s accepted by the system and a string h of the form Σ∗
H .ΣR.Σ∗

H .ΣA. This means that h contains

exactly one request event and one answer event in the given order and that h may or may not contain

high level events before or directly after the request event. The proposition asserts that if string h

extends string s such that sh is acceptable to the high level, then a string u can be constructed such

that u has a high level image equal to h, and that su is acceptable to the system and marked by the

interface. In other words, we can use string h as a basis to construct string u by adding low level events

so that the low level subsystem will accept the request and answer event contained in h. As these events

are common to both levels, they must agree on their occurrence.

Proposition 13 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and

serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

(∀s ∈ H ∩ L ∩ I)(∀h ∈ Σ∗
H .ΣR.Σ∗

H .ΣA)

sh ∈ H ∩ I ⇒ (∃u ∈ Σ∗) s.t. (su ∈ H ∩ L ∩ Im) ∧ (PIH(u) = h)

Proof: See page 35.
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Inductive Event Agreement Proposition

Our next proposition is the inductive event agreement proposition. This proposition is different from

Proposition 13 as Proposition 13 only handled the case that the string h contains exactly one answer

event (i.e. only one command-pair), while this proposition allows h to contain one or more answer events

(i.e. multiple command-pairs). It uses Proposition 13 in an inductive proof to handle an arbitrary

number of answer events in string h.

Proposition 14 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and

serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

(∀s ∈ H ∩ L ∩ Im)(∀h ∈ Σ∗
IH .ΣA)

sh ∈ H ∩ I ⇒ (∃u ∈ Σ∗) (PIH(u) = h) ∧ (su ∈ H ∩ L ∩ Im)

Proof: See page 37.

General Event Agreement Proposition

The last proposition of the three is the general event agreement proposition. This proposition is more

general than Proposition 14 as it handles the case that string h doesn’t contain answer events or

doesn’t end in an answer event. It make use of Proposition 14 to handle the other cases.

Proposition 15 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and

serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

(∀s ∈ H ∩ L ∩ Im)(∀h ∈ Σ∗
IH)

sh ∈ Hm ∩ Im ⇒ (∃u ∈ Σ∗) s.t. (su ∈ Hm ∩ Lm ∩ Im) ∧ (PIH(u) = h) ∧ (PI(u) ∈ {ε} ∪ ΣR.Σ∗
I)

Proof: See page 40.

2.3.4 Serial Nonblocking Theorem

We now present our main result for this chapter, the serial interface nonblocking theorem. In essence

the theorem says that if the high level and low level are individually nonblocking, and the system is

serial interface consistent, then the nonblocking property will be preserved by the synchronous product

operation. As the serial level-wise nonblocking and serial interface consistent definitions can be evaluated

by examining only one level of our system at a time, we now have a means to verify nonblocking of our

system using local checks.
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Theorem 1 If the system composed of DES GH , GL, and GI is serial level-wise nonblocking and serial

interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

L(G) = Lm(G), where G = GH ||sGL||sGI

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

As Lm(G) ⊆ L(G) is automatic, it suffices to show L(G) ⊆ Lm(G)

Let s ∈ L(G) = H ∩ L ∩ I (2)

We will now show this implies s ∈ Lm(G)

It is sufficient to show: (∃u ∈ Σ∗) su ∈ Lm(G) = Hm ∩ Lm ∩ Im

Our first step is to show that we can construct a string l, accepted by the high level, that will bring the
low level to a marked state.

We can achieve this immediately by noting that s ∈ H∩L∩I and (1) allows us to exploit Proposition
11. We thus conclude:

(∃l ∈ Σ∗
IL) s.t. sl ∈ H ∩ Lm ∩ Im (3)

We will now show that we can extend string sl to a string in Hm ∩ Lm ∩ Im. To do this, we will use
Proposition 15. To apply the proposition, we must first construct a string h ∈ Σ∗

IH with the property
slh ∈ Hm ∩ Im

We first note that we have sl ∈ H ∩ I from (3). This allows us to apply Point I of the level-wise
nonblocking definition (nonblocking at the high level), and conclude:.

(∃h′ ∈ Σ∗) s.t. slh′ ∈ Hm ∩ Im (4)

We next note that:

PIH(slh′) = PIH(sl)PIH(h′)

= PIH(sl)PIH(PIH(h′)) as the natural projection is idempotent.

= PIH(slPIH(h′)) (5)

We can now apply Proposition 8, point b, and conclude slPIH(h′) ∈ Hm (6)

As ΣI ⊆ ΣIH , we can conclude PI(slh
′) = PI(slPIH(h′)) (by (5)).

We can now apply Proposition 8, point f, and conclude slPIH(h′) ∈ Im
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Combining with (6), we can conclude slPIH(h′) ∈ Hm ∩ Im

We thus take h = PIH(h′) and we have:

h ∈ Σ∗
IH and slh ∈ Hm ∩ Im (7)

We next note we have sl ∈ H ∩ L ∩ Im, by (3). We can now apply Proposition 15, taking sl to be
string s in that proposition, and conclude:

(∃u′ ∈ Σ∗) s.t. slu′ ∈ Hm ∩ Lm ∩ Im

We then take u = lu′ and we have su ∈ Hm ∩ Lm ∩ Im = Lm(G), as required.

QED

2.4 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter were not given

as the propositions were introduced. They are now presented in the following sections.

2.4.1 Proof of Proposition 9

Proof for Proposition 9 on page 26: If the system composed of DES GH , GL, and GI is serial interface

consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then the following is true:

(i) Languages H, L, and I are closed.

(ii) Hm ⊆ H, Lm ⊆ L, and Im ⊆ I

Proof:

Assume system is serial interface consistent. (1)

Will now show this implies that Points i and ii are satisfied.

We first note that by (1), the system is serial interface consistent. By Points 1 and 2 of this definition,
we can conclude:

L(GH), Lm(GH) ⊆ Σ∗
IH , L(GL), Lm(GL) ⊆ Σ∗

IL, and L(GI), Lm(GI) ⊆ Σ∗
I .

This tells us that languages H = P−1
IH (L(GH)), L = P−1

IL (L(GL)), I = P−1
I (L(GI)), Hm = P−1

IH (Lm(GH)),
Lm = P−1

IL (Lm(GL)), and Im = P−1
I (Lm(GI)) are defined.

Point i: Show that Languages H, L, and I are closed.
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We now note that languages L(GH), L(GL), and L(GI) are closed by the definition of the closed be-
haviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, L, and I are closed, as required.

Point ii: Show that Hm ⊆ H, Lm ⊆ L, and Im ⊆ I.

From the definition of the closed behaviour and the marked language of a DES, we can conclude that:

Lm(GH) ⊆ L(GH), Lm(GL) ⊆ L(GL), and Lm(GI) ⊆ L(GI).

Applying Proposition 3 repeatedly, we can conclude:

P−1
IH (Lm(GH)) = Hm ⊆ H = P−1

IH (L(GH))

P−1
IL (Lm(GL)) = Lm ⊆ L = P−1

IL (L(GL))

P−1
I (Lm(GI)) = Im ⊆ I = P−1

I (L(GI))

QED

2.4.2 Proof of Proposition 11

Proof for Proposition 11 on page 28: If the system composed of DES GH , GL, and GI is serial level-wise

nonblocking and serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA,

then

(∀s ∈ H ∩ L ∩ I)

(∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ Lm ∩ Im)

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

Let s ∈ H ∩ L ∩ I (2)

Will now show this implies (∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ Lm ∩ Im)

To do this, we will construct a suitable string l. We start by applying Point II of the serial level-wise
nonblocking definition (by (1)) to conclude:

(∃s′ ∈ Σ∗) ss′ ∈ Lm ∩ Im (3)
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As we require a string in Σ∗
IL, we take l′ = PIL(s′) ∈ Σ∗

IL. We will now show sl′ ∈ Lm ∩ Im

From the definition of the natural projection, we have PIL(PIL(s′)) = PIL(s′)

⇒ PIL(ss′) = PIL(s)PIL(s′) = PIL(s)PIL(PIL(s′)) = PIL(sPIL(s′)) = PIL(sl′), as the natural projec-
tion
is concatenative.

As ΣI ⊆ ΣIL, PI(s
′) = PI(PIL(s)). We can thus argue as above and conclude: PI(ss

′) = PI(sl
′)

We can now use (3), and apply Proposition 8, points d and f, and conclude:

sl′ ∈ Lm ∩ Im (4)

We now note that if sl′ ∈ H, we can take l = l′ and we have the desired result. We can thus, with no
loss in generality, assume:

sl′ 6∈ H (5)

We will now show this implies that string sl′ is not accepted by H due to a request event. We will then
use this fact to construct a suitable string l.

We first observe that s ∈ H, sl′ 6∈ H, and l′ ∈ Σ∗
IL implies:

(∃l′′ ∈ Σ∗
IL)(∃σ ∈ ΣIL) s.t. (l′′σ ≤ l′) ∧ (sl′′ ∈ H) ∧ (sl′′σ 6∈ H) (6)

We note the following points, which will be used later in the proof:

• sl′′ ∈ H ∩ L ∩ I by the facts sl′′ ∈ H, l′′ < l′, sl′ ∈ Lm ∩ Im, and the fact L and I are
closed languages. (7)

• sl′′σ ∈ I by (4), (6), and fact I is closed. (8)

We now show that (6) implies σ ∈ ΣR. We know:

• σ 6∈ ΣL as σ ∈ ΣL would imply PIH(sl′′σ) = PIH(sl′′) Since sl′′ ∈ H, Proposition 8, point a,
would then imply sl′′σ ∈ H, which would contradict (6).

• σ 6∈ ΣA as σ ∈ ΣA, sl′′σ ∈ I (by (8)) and point 3 of the serial interface consistent definition
would imply sl′′σ ∈ H, which would contradict (6).

As σ ∈ ΣIL = ΣR ∪̇ΣA ∪̇ΣL, we can thus conclude σ ∈ ΣR by process of elimination.

We now show that σ ∈ ΣR implies sl′′ ∈ Im. This will allow us to use Point 6 of the serial interface
consistent definition to extend sl′′ to a string marked by the low level.

From Point 2 of the serial interface consistent definition, we have that DES GI is a command-pair
interface.

As σ ∈ ΣR and sl′′σ ∈ I (from (9)), we can conclude: PI(sl
′′σ) = PI(sl

′′)σ ∈ L(GI)
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We can thus conclude by Point B of the command-pair interface definition that PI(sl
′′) ∈ Lm(GI)

⇒ sl′′ ∈ Im

From (7), we have sl′′ ∈ L∩I so we can now apply Point 6 of the serial interface consistent definition
and conclude:

(∃l′′′ ∈ Σ∗
L) s.t. sl′′l′′′ ∈ Lm ∩ Im

As l′′ ∈ Σ∗
IL from (6), we have l′′l′′′ ∈ Σ∗

IL

We take l = l′′l′′′ and immediately have sl ∈ Lm ∩ Im and l ∈ Σ∗
IL. All that remains is to show sl ∈ H

From (6), we have sl′′ ∈ H. As l′′′ ∈ Σ∗
L, we have PIH(sl′′) = PIH(sl′′l′′′) = PIH(sl)

We can thus apply Proposition 8, point a, and conclude sl ∈ H, as required.

QED

2.4.3 Proof of Proposition 13

Proof for Proposition 13 on page 29: If the system composed of DES GH , GL, and GI is serial level-wise

nonblocking and serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA,

then

(∀s ∈ H ∩ L ∩ I)(∀h ∈ Σ∗
H .ΣR.Σ∗

H .ΣA)

sh ∈ H ∩ I ⇒ (∃u ∈ Σ∗) s.t. (su ∈ H ∩ L ∩ Im) ∧ (PIH(u) = h)

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

Let s ∈ H ∩ L ∩ I, h ∈ Σ∗
H .ΣR.Σ∗

H .ΣA, and sh ∈ H ∩ I (2)

We will now show this implies we can construct a string u with the desired properties.

We first note that h ∈ Σ∗
H .ΣR.Σ∗

H .ΣA implies:
(∃h′ ∈ Σ∗

H)(ρ ∈ ΣR)(h′′ ∈ Σ∗
H)(α ∈ ΣA) s.t. h′ρh′′α = h (3)

We will now show that we can construct a string l ∈ Σ∗
L such that h′ρlh′′α ∈ H ∩ L ∩ Im. We will also

show that PIH(h′ρlh′′α) = h.
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Our approach will be to show that sh′ρ ∈ L∩ I and α ∈ EligI(sh′ρ). We will then use Point 5 of the
serial interface consistent definition to construct a suitable string l.

We next note that sh ∈ H ∩ I (by (2)), and that h′ρ ≤ h (by (3)). As H and I are closed languages,
we can now conclude:

sh′ρ ∈ H ∩ I (4)

As h′ ∈ Σ∗
H (by (3)), we have PIL(sh′) = PIL(s). As s ∈ L (by (2)), we can now apply Proposition

8, point c, and conclude:

sh′ ∈ L (5)

We now have sh′ ∈ L ∩ I and ρ ∈ EligI(sh′) (by (4)).

This allows us to apply Point 4 of the serial interface consistent definition (by (1)) and conclude:

ρ ∈ EligL(sh′) and thus sh′ρ ∈ L

⇒ sh′ρ ∈ L ∩ I, by (4).

As h′′ ∈ Σ∗
H by (3), we can conclude PI(sh

′ρh′′α) = PI(sh
′ρ)PI(h

′′)PI(α) = PI(sh
′ρα)

From (2) and (3), we have sh′ρh′′α ∈ I. We can now apply Proposition 8, point e, and conclude:

sh′ρα ∈ I

⇒ α ∈ EligI(sh′ρ).

We can now apply Point 5 of the interface consistency properties and conclude:

(∃l ∈ Σ∗
L) s.t. α ∈ EligL∩I(sh′ρl). (6)

⇒ sh′ρlα ∈ L ∩ I

As h′′inΣ∗
H by (3), we can conclude PIL(sh′ρlα) = PIL(sh′ρlh′′α) and PI(sh

′ρlα) = PI(sh
′ρlh′′α). We

can now apply Proposition 8, points c and e, and conclude:

sh′ρlh′′α ∈ L ∩ I (7)

We next note that DES GI is a command-pair interface by (1).

As α ∈ ΣA (by (3)), we can now conclude:

PI(sh
′ρlh′′α) ∈ Σ∗

I .ΣA ∩ L(GI)
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⇒ PI(sh
′ρlh′′α) ∈ Lm(GI) by point D of the command-pair interface definition.

⇒ sh′ρlh′′α ∈ Im (8)

From (2) and (3), we have sh′ρh′′α ∈ H. As l ∈ Σ∗
L (by (6)), we can conclude:

PIH(sh′ρh′′α) = PIH(sh′ρlh′′α). (9)

We can now apply Proposition 8, point a, and conclude:

sh′ρlh′′α ∈ H

Combining with (7), (8) and (9), we have sh′ρlh′′α ∈ H∩L∩Im and PIH(h′ρlh′′α) = PIH(h′ρh′′α) = h

We take u = h′ρlh′′α, and the proof is complete.

QED

2.4.4 Proof of Proposition 14

Proof for Proposition 14 on page 30: If the system composed of DES GH , GL, and GI is serial level-wise

nonblocking and serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA,

then

(∀s ∈ H ∩ L ∩ Im)(∀h ∈ Σ∗
IH .ΣA)

sh ∈ H ∩ I ⇒ (∃u ∈ Σ∗) (PIH(u) = h) ∧ (su ∈ H ∩ L ∩ Im)

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

Let s ∈ H ∩ L ∩ Im, h ∈ Σ∗
IH .ΣA, and sh ∈ H ∩ I (2)

We will now show this implies we can construct a string u with the desired properties.

Our approach will be to break string h into substrings containing pairs of request and answer events.
We will then construct u iteratively, using these substrings.

We first let n be the number of answer events in string h (n ≥ 1 as h ∈ Σ∗
IH .ΣA ). This implies:

(∃h1, h2, . . . , hn ∈ (ΣH∪ΣR)∗.ΣA) s.t. h1h2 . . . hn = h (3)
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We have thus broken h into n strings each containing one answer event at the end of the string.
From (2), we immediately have: sh1h2 . . . hn ∈ H ∩ I (4)

Using an inductive proof, we will now show:
(∃u0, u1, . . . , un ∈ Σ∗) s.t. (su0u1 . . . un ∈ H∩L∩Im) ∧ (PIH(u0, u1, . . . , un) = h0h1 . . . hn), where

h0 := ε

Claim to be proven:

For k ∈ {0, 1, . . . , n}, there exists u0, u1, . . . , uk ∈ Σ∗ such that the following are true: (5)

(a) PIH(u0u1 . . . uk) = h0h1 . . . hk

(b) su0u1 . . . uk ∈ H ∩ L ∩ Im

We will first prove the initial case (k = 0), and then the general case of k ∈ {1, . . . , n}. We can
then conclude by induction that the claim has been proven.

Initial Case: k = 0

We take u0 = ε and we immediately have PIH(u0) = ε = h0, and thus Property a of (5) is
satisfied.

We have su0 ∈ H∩L∩ Im as su0 = s and s ∈ H∩L∩ Im (by (2)), and thus Property b of (5)
is satisfied.

Initial case complete.

Inductive Step:

Let k ∈ {1, . . . , n}. Assume ∃u0, u1, . . . , uk−1 ∈ Σ∗ and that they satisfy Properties a and b of
(5) when k − 1 is substituted for k. (6)

We will show that this implies ∃uk ∈ Σ∗ that satisfies Properties a and b of (5).

Our approach will be to apply Proposition 13. To do this, our first step is to show that
su0u1 . . . uk−1hk ∈ H ∩ I

We first note that sh0h1 . . . hk ∈ H ∩ I by (4), and the facts that h0 = ε and H and I are closed
languages. (7)

From (6), we have PIH(u0u1 . . . uk−1) = h0h1 . . . hk−1. From (3) and fact h0 = ε, we have
PIH(h0h1 . . . hk) = h0h1 . . . hk. We can thus conclude:

PIH(su0u1 . . . uk−1hk) = PIH(s)PIH(u0u1 . . . uk−1)PIH(hk)

= PIH(s)h0h1 . . . hk−1PIH(hk)

= PIH(sh0h1 . . . hk) (8)

With (7), we can now apply Proposition 8, point a, and conclude su0u1 . . . uk−1hk ∈ H
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(9)

As ΣI ⊆ ΣIH , we can conclude by (8) that:

PI(su0u1 . . . uk−1hk) = PI(sh0h1 . . . hk)

With (7), we can now apply Proposition 8, point e, and conclude su0u1 . . . uk−1hk ∈ I

Combining with (9), we have su0u1 . . . uk−1hk ∈ H ∩ I (10)

We will now show that hk ∈ Σ∗
H .ΣR.Σ∗

H .ΣA. It is sufficient to show that PI(hk) ∈ ΣR.ΣA.

We first note that PI(su0u1 . . . uk−1) ∈ Lm(GI) as su0u1 . . . uk−1 ∈ Im, by (6). (11)

Similarly by (10), we have PI(su0u1 . . . uk−1hk) ∈ L(GI). (12)

We now note that hk ∈ (ΣH∪ΣR)∗.ΣA (by (3)) implies that PI(hk) ∈ Σ∗
R.ΣA

We next note that DES GI is a command-pair interface by (1).

From (11), we can conclude PI(su0u1 . . . uk−1) ∈ {ε} ∪ (Σ∗
I .ΣA ∩ L(GI)) by point D of the

command-pair interface definition. (13)

This implies that either PI(su0u1 . . . uk−1) = ε or PI(su0u1 . . . uk−1) ends in an answer event.

In either case, point E of the command-pair interface definition implies that PI(su0u1 . . . uk−1) can
only be extended to a string in L(GI) by a request event. (14)

From (12), we have PI(su0u1 . . . uk−1hk) = PI(su0u1 . . . uk−1)PI(hk) ∈ L(GI)

⇒ PI(hk) ∈ ΣR.Σ∗
R.ΣA since PI(hk) ∈ Σ∗

R.ΣA and therefore must contain an answer event. By
(14), we know that the answer event must be preceded by at least one request event.

From point E of the command-pair interface definition, we know that, in L(GI), a request event
must be followed by an answer event, before another request event can occur.
⇒ PI(hk) ∈ ΣR.ΣA

⇒ hk ∈ Σ∗
H .ΣR.Σ∗

H .ΣA

We may now apply Proposition 13 by taking su0u1 . . . uk−1 to be string s, and hk to be string
h in that proposition. We thus conclude:

(∃u′ ∈ Σ∗) s.t. (su0u1 . . . uk−1u
′ ∈ H ∩ L ∩ Im) ∧ (PIH(u′) = hk)

We can also conclude PIH(u0u1 . . . uk−1u
′) = h0h1 . . . hk by (6) and the fact PIH is concatenative.

We now take uk = u′ and we have uk ∈ Σ∗ and we have it satisfying Properties a and b of (5).
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Inductive step complete.

We have now proven the initial case and the inductive step. We now conclude that the Claim is
true, by induction.

We thus take k = n and have u0, u1, . . . , un ∈ Σ∗, su0u1 . . . un ∈ H ∩ L ∩ Im, and PIH(u0u1 . . . un) =
h0h1 . . . hn = h

We thus take u = u0u1 . . . un, and the proof is complete.

QED

2.4.5 Proof of Proposition 15

Proof for Proposition 15 on page 30: If the system composed of DES GH , GL, and GI is serial level-wise

nonblocking and serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA,

then

(∀s ∈ H ∩ L ∩ Im)(∀h ∈ Σ∗
IH)

sh ∈ Hm ∩ Im ⇒ (∃u ∈ Σ∗) s.t. (su ∈ Hm ∩ Lm ∩ Im) ∧ (PIH(u) = h) ∧ (PI(u) ∈ {ε} ∪ ΣR.Σ∗
I)

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

Let s ∈ H ∩ L ∩ Im, h ∈ Σ∗
IH , and sh ∈ Hm ∩ Im (2)

We will now show this implies we can construct a string u with the desired properties.

We have two cases to examine:
I) h ∈ Σ∗

H (string h does not contain any interface events )
II) h 6∈ Σ∗

H (string h contains one or more interface events )

Case I) h ∈ Σ∗
H

From (2), we have s ∈ L. As h ∈ Σ∗
H , we can conclude PIL(s) = PIL(sh)

We can thus apply Proposition 8, point c, and conclude sh ∈ L

Combining with (2), we thus have sh ∈ L ∩Hm ∩ Im

We can now apply Proposition 12 and conclude:
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(∃l ∈ Σ∗
L) shl ∈ Hm ∩ Lm ∩ Im

We take u = hl and we immediately have su ∈ Hm ∩ Lm ∩ Im, PIH(u) = h, and PI(u) = ε ∈
{ε} ∪ ΣR.Σ∗

I

Case I complete.

Case II) h 6∈ Σ∗
H

This implies PI(h) 6= ε (3)

As string h contains one or more interface events, events the two levels share, we must construct
a string so that they will both accept the interface events, and arrive in a marked state together.

Our approach will be first to apply Proposition 14 to enable us to construct a string u such
that su ∈ L ∩Hm ∩ Im. We will then use Proposition 12 to show that su ∈ Hm ∩ Lm ∩ Im.

Our first step will to be to construct a string h′ ≤ h, h′ ∈ Σ∗
IH .ΣA, so that we can apply Propo-

sition 14 .

To construct a suitable h′, we will start by showing that PI(h) ∈ ΣR.Σ∗
I .ΣA

We first note that DES GI is a command-pair interface by (1).

From (2), we have s ∈ Im

⇒ PI(s) ∈ Lm(GI)

⇒ PI(s) ∈ {ε}∪(Σ∗
I .ΣA∩L(GI)) by point D of the command-pair interface definition. (4)

This implies that either PI(s) = ε or PI(s) ends in an answer event.

In either case, point E of the definition implies that PI(s) can only be extended to a string in
L(GI) by a request event. (5)

Now, from (2) we also have sh ∈ Im.

⇒ PI(sh) = PI(s)PI(h) ∈ Lm(GI)

As PI(h) 6= ε (from (3)), we can conclude by (5) that PI(h) ∈ ΣR.Σ∗
I (6)

As PI(s)PI(h) ∈ Lm(GI), we can conclude by point D of the command-pair interface definition
that PI(s)PI(h) ∈ Σ∗

I .ΣA

Combining with (6), we can conclude PI(h) ∈ ΣR.Σ∗
I .ΣA (7)

⇒ h ∈ P−1
I (ΣR.Σ∗

I .ΣA)
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⇒ h ∈ Σ∗
H .ΣR.Σ∗

IH .ΣA.Σ∗
H as h ∈ Σ∗

IH (8)

⇒ (∃h′ ∈ Σ∗
IH .ΣA)(h′′ ∈ Σ∗

H) s.t. h′h′′ = h (9)

We can now conclude sh′ ∈ H ∩ I as sh ∈ Hm ∩ Im, by (2) and the fact that H and I are closed
languages.

We can now apply Proposition 14 by taking h′ to be string h in that proposition. We can now
conclude:

(∃u′ ∈ Σ∗) s.t. (PIH(u′) = h′) ∧ (su′ ∈ H ∩ L ∩ I) (10)

We note for future use that PIH(u′) = h′ and the fact that ΣI ⊆ ΣIH implies that PI(u
′) = PI(h

′).
From (8), we have h ∈ Σ∗

H .ΣR.Σ∗
IH .ΣA.Σ∗

H . (11)

We can thus conclude by (9) that PI(u
′) ∈ ΣR.Σ∗

I (12)

We will now show that su′h′′ ∈ L ∩Hm ∩ Im so that we can apply Proposition 12 .

From (10), we have su′ ∈ L. From (9), we have h′′ ∈ Σ∗
H . We can thus conclude:

PIL(su′h′′) = PIL(su′)

We can now apply Proposition 8, point c, and conclude su′h′′ ∈ L (13)

From (2), we have sh ∈ Hm ∩ Im. From (9), we can conclude:

sh′h′′ ∈ Hm ∩ Im (14)

As PIH(u′) = h′ (from (10)), we have:

PIH(sh′h′′) = PIH(s)PIH(h′)PIH(h′′) = PIH(s)PIH(u′)PIH(h′′) = PIH(su′h′′).

We can now apply Proposition 8, point b, and conclude su′h′′ ∈ Hm (15)

From (11), we have PI(u
′) = PI(h

′). We can argue as above and conclude PI(sh
′h′′) = PI(su

′h′′)

We can now apply Proposition 8, point f, and conclude su′h′′ ∈ Im

Combining with (13) and(15), we can conclude:

su′h′′ ∈ L ∩Hm ∩ Im

We can now apply Proposition 12 by taking su′h′′ to be string s in that proposition. We thus
conclude:

(∃l ∈ Σ∗
L) s.t. su′h′′l ∈ Hm ∩ Lm ∩ Im (16)
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We thus take u = u′h′′l and we have PIH(u) = PIH(u′h′′l) = h′h′′ε = h and su ∈ Hm ∩ Lm ∩ Im.

From (12), we have PI(u
′) ∈ ΣR.Σ∗

I . We thus have:

PI(u) = PI(u
′h′′l) = PI(u

′) ∈ ΣR.Σ∗
I , as h′′ ∈ Σ∗

H (by (9)) and l ∈ Σ∗
L (by (16))

Case II is now complete.

By Cases I and II, we now have constructed a string u ∈ Σ∗ such that PI(u) ∈ {ε}∪ΣR.Σ∗
I , PIH(u) = h

and su ∈ Hm ∩ Lm ∩ Im, as required.

QED
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Chapter 3

Serial Case: Controllability

Now that we have discussed nonblocking in the serial interface setting, we now consider controllability. In

the remainder of this chapter, we will define our setting and notation and then present some supporting

propositions, followed by the serial controllability theorem.

3.1 Definitions and Notation

We now present some definitions and notation that will be useful in simplifying proofs. When we dis-

cussed nonblocking, we were only concerned with the high and low level subsystems, ignoring distinctions

between plants and supervisors. For controllability, we need to split the subsystems into their plant and

supervisor components. We will do so as shown in Figure 3.1. We define the high level plant to be DES

GH , and the high level supervisor to be SH (both defined over event set ΣIH). Similarly, the low level

plant and supervisor are GL and SL (defined over event set ΣIL). To be consistent with our definitions

in Chapter 2, we define the following identities for the high and low level subsystems as follows:

GH := GH ||sSH GL := GL||sSL

We now have two ways to describe our system for the serial case, depending on the level of detail

required. We will call the original method described in Chapter 2 in terms of an interface and high

and low subsystems, the serial subsystem based form. This form is useful as it simplifies nonblocking

definitions and proofs. We call the above method, given in terms of an interface and plants and supervi-

sors, the serial general form as the serial subsystem based form can be recovered by applying the above
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High level

Low level

GI

G = ( , )L Lsync G S
L

S
L

GL

G = ( , )H Hsync G S
H

S
H

GH

Figure 3.1: Plant and Supervisor Subplant Decomposition

identities for GH and GL. When we refer terms applicable to both forms (e.g. the high level), we will

simply state the term, allowing the type of the system to make our meaning clear.

Our next step is to define the flat supervisor and plant for our system. By flat supervisor and plant,

we refer to the equivalent DES supervisor and plant that would represent our system if we ignored the

interface structure. The are defined as follows:

Plant := GH ||sGL Sup := SH ||sSL||sGI

In the above definition, we have taken the interface, GI , as a supervisor. This is to recognise the

fact that GI is a specification of services that the low level is to provide to the high level. As such, low
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level supervisors or usually required to implement these services. By treating GI as a supervisor, we

can verify to make sure that the desired pattern of request and answer events is achievable.

We next want to express the languages of Plant and Sup in terms of their components. To do this,

we need to first define the following useful languages:

H := P−1
IH L(GH), HS := P−1

IH L(SH), ⊆ Σ∗

L := P−1
IL L(GL), LS := P−1

IL L(SL), ⊆ Σ∗

We can now express the languages of Plant and Sup as follows:

L(Plant) = H ∩ L L(Sup) = HS ∩ LS ∩ I

This allows us to present the proposition below that collects together several similar propositions.

As it will be common in the proofs in this report to show that membership in languages such as H are

dependent only on events in specific subsets (for H, events in subset ΣIH), this proposition will be very

useful.

Proposition 16

(a) (∀s, s′ ∈ Σ∗) s ∈ H and PIH(s) = PIH(s′) ⇒ s′ ∈ H

(b) (∀s, s′ ∈ Σ∗) s ∈ HS and PIH(s) = PIH(s′) ⇒ s′ ∈ HS

(c) (∀s, s′ ∈ Σ∗) s ∈ L and PIL(s) = PIL(s′) ⇒ s′ ∈ L

(d) (∀s, s′ ∈ Σ∗) s ∈ LS and PIL(s) = PIL(s′) ⇒ s′ ∈ LS

Proof:

Points a-d:

Identical to the proof of point a of Proposition 8, after substitution.

QED
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3.2 Serial Level-wise Controllability

The goal in this chapter is to develop a means of verifying that our system’s flat supervisor is controllable

for the flat plant that uses only local checks. To do this, we will use the serial level-wise controllable

definition.

Serial Level-wise Controllable: The system composed of plant components GH , GL, supervisors

SH , SL, and interface GI , is said to be serial level-wise controllable with respect to the alphabet

partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the following conditions are satisfied:

(I) The alphabet of GH and SH is ΣIH , the alphabet of GL and SL is ΣIL, and

the alphabet of GI is ΣI

(II) (∀s ∈ L ∩ LS ∩ I) EligL(s) ∩ Σu ⊆ EligLS∩I(s) Controllability at the low level

(III) (∀s ∈ H ∩ I ∩ HS) EligH∩I(s) ∩ Σu ⊆ EligHS
(s) Controllability at the high level

To summarise the definition, Point I simply states that the plants, supervisors, and interface have the

indicated event sets. This is in essence restricting the control actions allowable by the supervisors to

their specified alphabets. For example, this implies that SH is forbidden to disable any low level events.

The next point states that the interface and SL are together controllable for the low level plant

GL. In other words, we are treating the low level as a self contained system and performing a standard

controllability test for the modular supervisor SL ∧ GI with respect to the plant GL.

The last point states that supervisor SH is controllable for the high level plant GH , when it is already

under the control of the interface. In other words, we are treating the high level as a self contained

system and performing a standard controllability test for supervisor SH with respect to the composite

plant GH ||sGI . By treating the interface as a plant at the high level, we allow the high level supervisor,

SH , to be more flexible as the interface may have more information about when interface events are

eligible than the high level plant.

We are now ready to state the proposition below which establishes useful properties for often used

languages.

Proposition 17 If the system composed of plant components GH , GL, supervisors SH , SL, and interface

GI , is serial level-wise controllable with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

languages H, HS , L, LS , I, L(Plant), and L(Sup) are closed.

Proof: See page 50.
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3.3 Theorem and Propositions

We are now ready to present our main results for this chapter. We will first present two supporting

propositions, followed by our serial case controllability theorem.

3.3.1 Low level Controllability Proposition

Our first proposition asserts that if the system is serial level-wise controllable, then GI and SL are

together controllable for the system’s flat plant.

Proposition 18 If the system composed of plant components GH , GL, supervisors SH , SL, and interface

GI , is serial level-wise controllable with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ LS ∩ I) EligL(Plant)(s) ∩ Σu ⊆ EligLS∩I(s)

where Plant = GH ||sGL

Proof: See page 51.

3.3.2 High Level Controllability Proposition

The last proposition asserts that if the system is serial level-wise controllable, then SH is controllable

for our flat plant when it is already under the control of the interface.

Proposition 19 If the system composed of plant components GH , GL, supervisors SH , SL, and interface

GI , is serial level-wise controllable with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ I ∩ HS) EligL(Plant)∩I(s) ∩ Σu ⊆ EligHS
(s)

where Plant = GH ||sGL

Proof: See page 52.

3.3.3 Serial Controllability Theorem

We now present our main result for this chapter, the serial controllability theorem. In essence, this

theorem asserts that if the system is serial level-wise controllable, then controllability can be checked
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for each level separately in order to determine that the system’s flat supervisor is controllable for the

system’s flat plant. As the serial level-wise controllable definition can be evaluated by examining only

one level of our system at a time, we now have a means to verify controllability of our system using

local checks.

Theorem 2 If the system composed of plant components GH , GL, supervisors SH , SL, and interface

GI , is serial level-wise controllable with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

where Plant = GH ||sGL and Sup = SH ||sSL||sGI .

Proof:

Assume system is serial level-wise controllable (1)

Let s ∈ L(Plant)∩L(Sup) and σ ∈ EligL(Plant)(s)∩Σu (2)

Will now show this implies σ ∈ EligL(Sup)(s)

From (2), we have s ∈ L(Plant)∩L(Sup) = H∩L∩HS∩LS∩I (3)

We also have sσ ∈ L(Plant) = H ∩ L (4)

As L(Sup) = HS ∩ LS ∩ I, it is sufficient to show that sσ ∈ HS ∩ LS ∩ I

From (3), we have s ∈ H ∩ L ∩ LS ∩ I = L(Plant) ∩ LS ∩ I

From (2), we have σ ∈ EligL(Plant)(s) ∩ Σu. We can thus conclude by Proposition 18 that σ ∈
EligLS∩I(s)

⇒ sσ ∈ LS ∩ I (5)

All that remains is to show that sσ ∈ HS

Using (4) and (5), we have sσ ∈ H ∩ L ∩ I

⇒ sσ ∈ L(Plant) ∩ I

⇒ σ ∈ EligL(Plant)∩I(s) ∩ Σu

From (5), we have s ∈ L(Plant) ∩ I ∩ HS
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We can thus conclude by Proposition 19 that σ ∈ EligHS
(s)

⇒ sσ ∈ HS

Combining with (5), we have sσ ∈ HS ∩ LS ∩ I, as required.

QED

3.3.4 Software Tool

To aid in investigating hierarchical interface-based supervisory control, we have developed software rou-

tines to verify that a system satisfies the conditions below. The routines were developed by Leduc

during his collaboration with Siemens Corporate Research. The routines are an experimental add-on to

Siemen’s Valid software program.

• DES GI satisfies the star interface definition.

• Serial level-wise nonblocking

• Serial level-wise controllable

• Serial interface consistent, using the serial interface strict marking condition to check for Prop-

erty 6.

3.4 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter were not given

as the propositions were introduced. They are now presented in the following sections.

3.4.1 Proof of Proposition 17

Proof for Proposition 17 on page 47: If the system composed of plant components GH , GL, super-

visors SH , SL, and interface GI , is serial level-wise controllable with respect to the alphabet partition

Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then languages H, HS , L, LS , I, L(Plant), and L(Sup) are closed.

Proof:

Assume system is serial level-wise controllable. (1)
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Will now show this implies that the indicated languages are closed.

We first note that by (1), the system is serial level-wise controllable. By Point 1 of this definition, we
can conclude:

L(GH), L(SH) ⊆ Σ∗
IH , L(GL), L(SL) ⊆ Σ∗

IL, and L(GI) ⊆ Σ∗
I .

This tells us that languages H = P−1
IH (L(GH)), HS = P−1

IH L(SH), L = P−1
IL (L(GL)), LS = P−1

IL L(SL),
I = P−1

I (L(GI)) are defined.

We will start by showing that languages H, HS , L, LS , and I are closed.

We now note that languages L(GH), L(SH), L(GL), L(SL), and L(GI) are closed by the definition of
the closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, HS , L, LS , and I are closed, as
required. (2)

We will now show that languages L(Plant), and L(Sup) are closed.

We now note that L(Plant) = H ∩ L and L(Sup) = HS ∩ LS ∩ I.

Combining with (2), we can now apply Proposition 2 repeatedly and conclude that L(Plant), and
L(Sup) are closed, as required.

QED

3.4.2 Proof of Proposition 18

Proof for Proposition 18 on page 48: If the system composed of plant components GH , GL, super-

visors SH , SL, and interface GI , is serial level-wise controllable with respect to the alphabet partition

Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ LS ∩ I) EligL(Plant)(s) ∩ Σu ⊆ EligLS∩I(s)

where Plant = GH ||sGL

Proof:

Assume system is serial level-wise controllable (1)

Let s ∈ L(Plant) ∩ LS ∩ I and σ ∈ EligL(Plant)(s) ∩ Σu (2)
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Will now show this implies σ ∈ EligLS∩I(s)

From (2), we have s, sσ ∈ L(Plant) = H ∩ L

Also using (2), we can now conclude s ∈ L ∩ LS ∩ I and σ ∈ EligL(s) ∩ Σu

Using (1), we can conclude by Point II of the serial level-wise controllable definition that σ ∈
EligLS∩I(s), as required.

QED

3.4.3 Proof of Proposition 19

Proof for Proposition 19 on page 48: If the system composed of plant components GH , GL, supervisors

SH , SL, and interface GI , is serial level-wise controllable with respect to the alphabet partition Σ :=

ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ I ∩ HS) EligL(Plant)∩I(s) ∩ Σu ⊆ EligHS
(s)

Proof:

Assume system is serial level-wise controllable (1)

Let s ∈ L(Plant) ∩ I ∩ HS and σ ∈ EligL(Plant)∩I(s)∩Σu (2)

Will now show this implies σ ∈ EligHS
(s)

From (2), we have s, sσ ∈ L(Plant) ∩ I = H ∩ L ∩ I

Also using (2), we can now conclude s ∈ H ∩ I ∩ HS and σ ∈ EligH∩I ∩ Σu

Using (1), we can conclude by Point III of the serial level-wise controllable definition that σ ∈
EligHS

(s), as required.

QED
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Chapter 4

Simple Manufacturing Example

We now present a simple manufacturing example to illustrate the method for the serial case. The

example presented was inspired in part by the examples given in Wang [23], and in Brandin [4]. Table

4.1 defines abbreviations used for the event labels.

Abbrev. Meaning Abbrev. Meaning

pt part (item) str start
cmpl complete attch attach
fin finish ent enter
rlse release lv leave
pol polish recog recognize
arr arrive

Table 4.1: Abbreviations Used in Event Labels

In the following sections, we will describe our problem setting, and then present the original plant

components. We will then assign them to a particular level of our hierarchy, augmenting if necessary

the low level plant models so that they work better with an interface. We will then define the interface,

supervisors, and finally we will present the complete system. We will conclude by demonstrating that

the flat system is nonblocking and that the flat supervisor is controllable for the flat plant.

4.1 Description of Manufacturing Unit

As shown in Figure 4.1, the manufacturing unit is composed of three cells connected by a conveyor belt.

In front of each cell, is a part acquisition unit that automatically stops a part and holds it until it is

given a release command. Parts enter the system at the far left and exit at the far right. After the item

exits the conveyor system, it goes to a packaging machine.
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Cell 2: Attach Part

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Cell 3: Attach Case

start_case

A
ttch

_
case

compl_case

Cell 1: Polish Part

start_pol

dip_acid,

polish

str_
rlse

compl_pol

Source Sink
part_ent part_arr1 part_lv1

str_exitfin_exit

part_arr2

partLvExit

part_lv2part_arr3 recog_A

recog_B

part_lv3

Path Flow Model

Packaging System

take_item

p
ack

ag
e

allow_exit

Figure 4.1: Block Diagram of Plant

The diagram shows a flat view of the plant (the supervisors will be added later). We see the plant

models for cell one (polishes part), cell two (attaches part of type A or type B to the assembly of what’s

being built), cell three (attach case to assembly), and the path flow model that show how parts enter

the system, travel around the belt, and finally leave the system. Of note in the path flow model are the

events recog A, and recog B. The acquisition unit in front of cell two is capable of recognising if a part

is of type A or type B. On the far right, we see the model for the packaging system.

4.1.1 Defining Infrastructure

The first step in the process is to decide which plant models belong to the high level subsystem, and

which to the low level subsystem. The division we have chosen can be seen in Figure 4.2.
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Attach Part to Assembly

Attach Case to Assembly

start_case

A
ttch

_
case

compl_case

Packaging System

take_item

p
ack

ag
e

allow_exit

Polish Part

start_pol

dip_acid,

polish

str_
rlse

compl_pol

High Level Plant Subsystem

Low Level Plant Subsystem

part_ent part_arr1 part_lv1

str_exitfin_exit

part_arr2

partLvExit

part_lv2part_arr3 recog_A

recog_B

part_lv3

Path Flow Model

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Figure 4.2: Original Plant

We now note that the model for cell two is not well suited to being accessed through an interface.

It requires that the decision to attach part A or part B be made after event take pt occurs. To make

this functionality available to the upper level, we augment the model by adding the DES Define New

Events shown in Figure 4.3. The new request events (attch ptA and attch ptB) will provide the high

level with an easy selection method while the new finish events (finA attch and finB attch) will inform

the high level of the completion of their respective tasks.

We are now ready to define our interface. Figure 4.4 shows the interface DES, GI . From the diagram,

we can see which events are request events and which events are answer events.
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Attach Part to Assembly Define New Request and
Answer Events

attch_ptA, attch_ptB,

finA_attch, finB_attch

Original Model Model Augmentation

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Figure 4.3: Augmenting Lower Plant

finA_attch

finB_attch

attc
h_ptA

attch_ptB

st
ar

t_
ca

se co
m

p
l_

case

start_
p

o
l

co
m

p
l_

p
o

l

G
I

Figure 4.4: Interface Definition

We next define the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA as follows:

ΣR = {start pol, attch ptA, attch ptB, start case}

ΣA = {comp pol, finA attch, finB attch, compl case}

ΣH = {part ent, part arr1, part lv1, partLvExit,

str exit, fin exit, part arr2, recog A, recog B,

part lv2, part arr3, part lv3, take item,

allow exit, package}

ΣL = {take pt, str ptA, str ptB, compl A, compl B,

ret pt, dip acid, polish, str rlse, attch case}
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4.2 Designing Supervisors

Now that we have defined our interface, we are ready to design the low level supervisors that will provide

the functionality for the request events, and give meaning to the answer events. The idea is for the low

level to offer well-defined “services” to the high level.

We start with cell one. Here we want the sequence dip acid-polish to be repeated twice, after a

start pol event occurs. The supervisor is shown in Figure 4.5, and is labelled Polishing Sequence.

For cell two, we have to provide supervisors so that the cell reacts appropriately when events attch ptA

and attch ptB occur. We also must guarantee that answer events finA attch and finB attch only occur

when they have the appropriate meaning. The DES Affix Part in Figure 4.5 shows how this is done.

Finally, we do nothing for cell three as it is so simple, its functionality being already present.

start_pol

Control Polishing Sequence

dip_acid

dip_acidpolish

p
o
lish

str_
rlse

For Polish PartFor Attach Part

Affix Part Type A or Type B
take_pt

attch
_
p
tA

finA_attch take_pt

str_
p
tB

attch_ptB

fin
B

_
attch

str_ptA

cm
p
l_

A

ret_pt

cmpl_Bret_pt

Figure 4.5: Supervisors to Support Interface

Now that the low level functionality is taken care of, we will design high level supervisors that use

the interface. Figure 4.6 shows a supervisor (Sequence Tasks) that allows a part to visit each cell,

executes the appropriate command for the cell and part type, and then allows the part to leave the

conveyor system. The figure also shows a supervisor (Exit Buffer) that implements a two item buffer

for the packaging system. Finally, we note that the above supervisors were designed by hand, but we

could have also employed synthesis methods.
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Sequence Tasks

attch_ptA

attch_ptB

finA_attch

finB_attch

part_ent part_arr1

part_arr1

p
art_

lv
1

p
art_

lv
1

str_exit

fin_exit

p
artL

v
E

x
it,

p
art_

arr2

part_lv2

p
art_

arr3

recog_A

recog_B

part_lv3

start_pol compl_pol

start_case compl_case

Exit Buffer

take_itemtake_item

str_exitstr_exit

fin_exit fin_exit

Figure 4.6: High Level Supervisors

4.3 The Final System

With the system components defined, it is time to put them together. Figure 4.7 shows our high level

subsystem, plant, and supervisor, DES GH , GH , and SH . We also have our low level subsystem, plant,

and supervisor, DES GL, GL, and SL. They are defined to be the synchronous product of the indicated

automata.

We now want to determine whether the flat system is nonblocking. For this, we used our software

tool to verify that the system is serial interface consistent, and serial level-wise nonblocking. We can

thus conclude by Theorem 1 that the flat system is nonblocking.

Next, we want to show that the flat supervisor is controllable for the flat plant. For this, we used

our software tool to verify that the system is serial level-wise controllable. We can thus conclude by

Theorem 2 that the flat supervisor is controllable for the flat plant.

4.4 Concurrency of Subsystems

Before concluding this example, we comment on the inherent concurrency of the high and low levels.

Unlike state expansion methods such as Wang [23] and Gohari [9] that expand a high level state into a

group of low level states, the interface method is based on the synchronous product, limiting information

flow, and a set of consistency rules. In general, there is no one-to-one association between a high level

state and a set of low level states. This allows the high level to remain active while the low level is

active, and thus operate concurrently. In the cited state expansion methods, the high level state would

remain fixed while the low level becomes active.
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This concurrency can be seen in the current example, by noting that once the event fin exit has

occurred, the string shown below is then possible.

part ent part arr1 start pol dip acid take item polish

The string clearly shows how the high level event take item can occur in the middle of a sequence of

low level events, thus demonstrating that both levels are active.

Figure 4.7: Complete System Definition
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Chapter 5

Parallel Case: Nonblocking

In Chapter 2, we described our method for verifying nonblocking for the serial case where the number

of low levels (n) is restricted to one. Such a system is also referred to as a serial interface system. We

now extend our work to the more general setting where we have n ≥ 1 low levels and we will refer to

such a system as a parallel interface system. Figure 5.1 shows conceptually the structure and flow of

information of a parallel interface system. In this new setting, we still have a single high level, but this

time it is interacting with n ≥ 1 autonomous low levels,1 communicating with each low level in parallel

through a separate interface. We will refer to the number of low levels, n, as the degree of the parallel

system.

5.1 Definitions and Notation

We now introduce some terminology and notation that will be useful in simplifying proofs. For an nth

degree parallel system, we assume the high level subsystem is modelled by DES GH (defined over event

set ∪̇j∈{1,...,n}[ΣRj
∪̇ ΣAj

] ∪̇ ΣH), the jth low level subsystem is modelled by DES GLj
(defined over

event set ΣLj
∪̇ΣRj

∪̇ΣAj
), the jth interface by DES GIj

(defined over event set ΣRj
∪̇ΣAj

), and that

the overall system has the structure shown in Figure 5.2. Furthermore, we will refer to the j th low level

to mean GLj
||sGIj

.

As in the serial case, in order to capture the restriction of the flow of information imposed by the

interface, we partition the alphabet of the system into analogous pairwise disjoint alphabets, as below.

For the remainder of this chapter. We define j to be j ∈ {1, . . . , n}.

1By autonomous, we mean the event set of each low level is pairwise disjoint from the events sets of the other low levels.
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ΣH : These are events that exist only at the high level.

ΣRj
: The set of request events for the jth interface.

ΣAj
: The set of answer events for the jth interface.

ΣLj
: The set of events that exist only at the jth low level.

High Level S
H

Interface 1 Interface n

S
R1

S
R1

S
A1

S
A1

S
Rn

S
Rn

S
An

S
An

S
L1

Low Level nLow Level 1

S
Ln

Figure 5.1: Parallel Interface Block Diagram.

We now assume that the alphabet partition is specified by Σ := ∪̇j∈{1,...,n}(ΣLj
∪̇ ΣRj

∪̇ ΣAj
) ∪̇ ΣH

and that the flat system is taken to be:

G = GH ||sGL1 ||s . . . ||sGLn ||sGI1 ||s . . . ||sGIn

We now introduce some useful event sets that we will be referring to often. They are defined as
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Figure 5.2: Two Tiered Structure of Parallel System

below:

ΣIj
:= ΣRj

∪ΣAj
Interface Events for the jth Interface

ΣIH := ∪k∈{1,...,n}ΣIk
∪ ΣH Interface and High Level Events

ΣILj
:= ΣLj

∪ΣIj
jth Set of Interface and Low Level Events

ΣIL := ∪k∈{1,...,n}ΣILk
Set of all Interface and Low Level Events

To be able to work with different languages defined over the above subsets, we define the following

natural projections:

PIH : Σ∗ → Σ∗
IH

PILj
: Σ∗ → Σ∗

ILj

PIj
: Σ∗ → Σ∗

Ij

As we want to express the languages of flat system in terms of their components, we need to define the
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following languages:

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

We can now represent the closed behaviour of our flat system as follows:

L(G) := L(GH ||sGL1 ||s . . . ||sGLn ||sGI1 ||s . . . ||sGIn)

=P−1
IH (L(GH)) ∩ [∩k∈{1,...,n}(P

−1
ILk

(L(GLk
)) ∩ P−1

Ik
(L(GIk

)))]

= H ∩ [∩k∈{1,...,n}(Lk ∩ Ik)]

Similarly, the flat marked language of system is:

Lm(G) = Hm ∩ [∩k∈{1,...,n}(Lmk
∩ Imk

)]

This allows us to present the proposition below that collects together several similar propositions.

As it will be common in the proofs in this report to show that membership in languages such as H is

dependent only on events in specific subsets (for H, events in subset ΣIH), this proposition will be very

useful.

Proposition 20

(a) (∀s, s′ ∈ Σ∗) s ∈ H and PIH(s) = PIH(s′) ⇒ s′ ∈ H

(b) (∀s, s′ ∈ Σ∗) s ∈ Hm and PIH(s) = PIH(s′) ⇒ s′ ∈ Hm

(c) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ Lk and PILk
(s) = PILk

(s′) ⇒ s′ ∈ Lk

(d) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ Lmk
and PILk

(s) = PILk
(s′) ⇒ s′ ∈ Lmk

(e) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ Ik and PIk
(s) = PIk

(s′) ⇒ s′ ∈ Ik

(f) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ Imk
and PIk

(s) = PIk
(s′) ⇒ s′ ∈ Imk

Proof:

Points a-b:
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Identical to the proof of point a of Proposition 8, after substitution.

Points c-f:

Let k ∈ {1, . . . , n}, then identical to the proof of point a of Proposition 8, after substitution.

QED

5.2 Serial System Extraction: Subsystem Form

We now present a key definition for parallel interface systems. As the event set of each low level is

mutually exclusive from the event sets of the other low levels, we can consider the parallel interface

system as n serial interface systems by choosing one low level and ignoring the others. This will allow

us to reuse our existing definitions and results for serial interface systems.

We are now ready to introduce the concept of serial system extractions for an nth degree (n ≥ 1)

parallel interface system. For j ∈ {1, . . . , n}, the jth serial system extraction is essentially the original

parallel system with the 1st, . . . , (j − 1)th, (j + 1)th, . . . , nth low levels removed. Figure 5.3 shows this

conceptually.

jth Serial System Extraction: Subsystem Form For the nth degree (n ≥ 1) parallel interface

system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn , with alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH ,

the jth serial system extraction, denoted by system(j), is composed of the following elements:

GH(j) := GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn

GL(j) := GLj

GI(j) := GIj

ΣH(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
∪̇ΣH

ΣL(j) := ΣLj

ΣR(j) := ΣRj

ΣA(j) := ΣAj
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Σ(j) := ΣH(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

= Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

Figure 5.3: The Serial System Extraction

In the above definition, we defined serial system extractions in terms of a parallel subsystem based

form system. As we did for the serial case, we will define in Chapter 6 a general form for parallel

systems. We will also provide a corresponding general form definition for serial system extractions. We

will simply refer to the jth serial system extraction, as the type of the parallel system will make clear

which definition is intended.

5.3 Interface Properties

We now present some important definitions that are analogous to equivalent definitions for the serial

case. We then present some related propositions.

5.3.1 Parallel Interface Definitions

In this section we present a set of properties that are equivalent to their serial interface counterparts.

They all involve interpreting the parallel system as n serial systems by using the serial system extraction

definition.
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Interface Consistent: The nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn , is interface consistent with respect to alphabet partition Σ := ∪̇k∈{1,...,n}

(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial interface consistent.

Interface Strict Marking: The nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn ,, is interface strict marking with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial interface strict

marking.

Level-wise Nonblocking: The nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn , is level-wise nonblocking with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial level-wise nonblock-

ing.

5.3.2 Related Propositions

Now that we have the above definitions, we can present several related propositions that establish

properties about the parallel system that will be useful in later proofs.

Our first proposition uses the interface consistent definition to establish the event set that the DES

which make up an nth degree (n ≥ 1) parallel interface system are defined over. This is useful for

defining the languages of a DES created by the synchronous product of one or more of these DES.

Proposition 21 If the nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn, is interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then DES GH is defined over event set ΣIH , DES GIj

is

defined over event set ΣIj
, and DES GLj

is defined over event set ΣILj
, where j ∈ {1, . . . , n}.
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Proof: See page 71.

We are now ready to state the proposition below which establishes useful properties for often used

languages.

Proposition 22 If the nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn, is interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then, for all j ∈ {1, . . . , n}, the following is true:

(i) Languages H, Lj, and Ij are closed.

(ii) Hm ⊆ H, Lmj
⊆ Lj, and Imj

⊆ Ij

Proof: See page 73.

We now present a proposition that will aid in the use of serial system extractions in proofs. The

proposition interprets terminology for the jth serial system extraction (a serial interface system) in

terms of the original parallel system.

Before we can present the proposition, we need to first define (for use in the proposition) a new

natural projection, Pj , to map strings from Σ∗ (the event set of the given parallel system) to strings

from Σ(j)∗ (the event set of the jth extracted system of the given parallel system). It is defined as

follows:

Pj : Σ∗ → Σ(j)∗

Proposition 23 If the nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn, is interface consistent with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
)

∪̇ ΣH , then for the jth serial system extraction, system(j), the following is true:

(i) The flat system is: G(j) = GH ||sGLj
||sGI1 ||s . . . ||sGIn

(ii) The following event sets are: ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

(iii) The following inverse natural projections are: PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

,

and PI(j)
−1 = Pj · P

−1
Ij

(iv) The event set of GH(j) is ΣIH(j), the event set of GL(j) is ΣIL(j), and the event set of GI(j)

is ΣI(j).
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(v) The following languages are:

H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

Hm(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Imk
)]

L(j) = Pj (Lj)

Lm(j) = Pj (Lmj
)

I(j) = Pj (Ij)

Im(j) = Pj (Imj
)

(vi) Languages H(j), L(j), and I(j) are closed.

(vii) Hm(j) ⊆ H(j), Lm(j) ⊆ L(j), and Im(j) ⊆ I(j)

Proof: See page 74.

We close this section by noting that after examining the definition of the jth serial system extraction

and the above proposition, we see that for n = 1, a parallel interface system reduces to a single serial

interface system. We thus see that a serial interface system is a special case of parallel interface systems.

We will now talk of parallel interface systems and their definitions as the general case for bi-level interface

systems.

5.4 Parallel Nonblocking Theorem and Propositions

We will now present Propositions 24-26, followed by our main result for this chapter, Theorem 3.

The following propositions are analogous to their serial case counterparts.

Parallel Low Level Nonblocking Proposition

Our first proposition is analogous to Proposition 11 for the serial case. It asserts that a string s

accepted by the system, can always be extended to a string accepted by the system, and marked by the

all low levels. In other words, the low levels are not dependent on high level events to reach a marked

state.
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Proposition 24 If the nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])

(∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ [∩j∈{1,2,...,n}(Lmj

∩ Imj
)])

Proof: See page 78.

5.4.1 Event Agreement Propositions

We group the last two propositions together as Proposition 26 builds upon Proposition 25. The first

proposition asserts that any string accepted by the system can always be extended by a string marked

by the high level. The reader should note that this string is not necessarily accepted by any low levels.

Proposition 25 If the nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])

(∃h ∈ Σ∗
IH) (sh ∈ Hm ∩ [∩j∈{1,...,n}Imj

])

Proof: See page 81.

Our last proposition is analogous to Proposition 15 for the serial case. It asserts that if string h

extends string s such that sh is acceptable to the high level, then a string u can be constructed such

that u has a high level image equal to h, and that su is marked by the system. In other words, we can

use string h as a basis to construct string u by adding low level events so that each low level subsystem

will accept the request and answer event contained in h. As these events are common to both levels,

they must agree on their occurrence.

Proposition 26 If the nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)])(∀h ∈ Σ∗
IH)

(sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]) ⇒ (∃u ∈ Σ∗) s.t. (su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)]
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Proof: See page 83.

5.4.2 Parallel Nonblocking Theorem

We are now ready to present our nonblocking theorem for parallel interface systems. It states that,

to verify if a parallel system is nonblocking, it is sufficient to check that each of its serial system

extractions is serial level-wise nonblocking and serial interface consistent. As the level-wise nonblocking

and interface consistent definitions can be evaluated by examining only one level (the high level or one

of the low levels) of our system at a time, we now have a means to verify nonblocking of our parallel

system using local checks.

Theorem 3 If the nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to the alphabet

partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

L(G) = Lm(G), where G = GH ||sGL1 ||s . . . ||sGLn ||sGI1 ||s . . . ||sGIn

Proof:

Assume system is level-wise nonblocking and interface consistent. (1)

As Lm(G) ⊆ L(G) is automatic, it suffices to show L(G) ⊆ Lm(G)

Let s ∈ L(G) = H ∩ [∩w∈{1,...,n}(Lw ∩ Iw)] (2)

We will now show this implies s ∈ Lm(G)

It is sufficient to show: (∃u ∈ Σ∗) su ∈ Lm(G) = Hm ∩ [∩w∈{1,...,n}(Lmw ∩ Imw)]

Our first step is to show that we can construct a low level string, accepted by the high level, and that
will bring all n low levels to a marked state. We can achieve this immediately by applying Proposition
24 and conclude:

(∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)]) (3)

Our next step will be to show that we can construct a string u′ ∈ Σ∗ such that slu′ ∈ Hm ∩
[∩j∈{1,...,n}(Lmj

∩ Imj
)].

To achieve this, we will apply Proposition 26. Before we can apply the proposition, we must first
construct a suitable h ∈ Σ∗

IH .

We first note that (3) implies that sl ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)]). We can now apply Proposition
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25, taking sl to be string s in that proposition, and conclude:

(∃h ∈ Σ∗
IH) (slh ∈ Hm ∩ [∩j∈{1,...,n}Imj

]) (4)

Combining with (3), we can now apply Proposition 26, taking sl to be string s in that proposition,
and conclude:

(∃u′ ∈ Σ∗) s.t. (slu′ ∈ Hm ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)]

We take string u = lu′ and we have su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)] = Lm(G), as required.

QED

5.5 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter were not given

as the propositions were introduced. They are now presented in the following sections.

5.5.1 Proof of Proposition 21

Proof for Proposition 21 on page 66: If nth degree (n ≥ 1) parallel interface system composed of DES

GH ,

GL1 , . . . , GLn , GI1 , . . . , GIn, is interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ΣRk

∪̇ΣAk
) ∪̇ ΣH then DES GH is defined over event set ΣIH , DES GIj

is defined

over event set ΣIj
, and DES GLj

is defined over event set ΣILj
, where j ∈ {1, . . . , n}.

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is interface consistent with respect to the al-
phabet partition. (1)

We will now show this implies that DES GH is defined over event set ΣIH , DES GIj
is defined over

event set ΣIj
, and that DES GLj

is defined over event set ΣILj
, where j ∈ {1, . . . , n}.

We first note that (1) implies that (∀j ∈ {1, . . . , n}) the jth serial system extraction, labelled system(j),
of the system is serial interface consistent.

This allows us to conclude that: (∀j ∈ {1, . . . , n}) GH(j) is defined over ΣIH(j), GL(j) is defined over
ΣIL(j), and that GI(j) is defined over ΣI(j)

71



From (1), we can now apply Proposition 23, point ii and conclude:2

ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

We can now conclude that: (∀j ∈ {1, . . . , n}) GH(j) is defined over ΣIH , GL(j) is defined over ΣILj
,

and that GI(j) is defined over ΣIj
. (2)

This implies: (∀j ∈ {1, . . . , n}) DES GLj
= GL(j) is defined over ΣILj

and that GIj
= GI(j) is defined

over ΣIj
. (3)

All that remains is to show that GH is defined over alphabet ΣIH . To do this, we first need to prove
the following claim.

Claim: ΣGH
⊆ ΣIH and (∀j ∈ {1, . . . , n}) ΣGH

⊇ (ΣH ∪ ΣIj
)

Let j ∈ {1, . . . , n}. We will now show this implies ΣGH
⊆ ΣIH and ΣGH

⊇ (ΣH ∪ ΣIj
).

We start by noting GH(j) := GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn . By the definition of the ||s
operator, we know ΣGH(j) = ΣGH

∪ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣGIk
]. This implies that ΣGH

⊆ ΣGH(j).
As ΣGH(j) = ΣIH (from (2)), we immediately have ΣGH

⊆ ΣIH .

From (3), we have ΣGH(j) = ΣGH
∪ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

].

We now note that ΣIj
⊆ ΣIH but ΣIj

∩ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
] = ∅ because of our event partition.

This implies: ΣIj
⊆ ΣGH

We next note that ΣH ⊆ ΣIH but ΣH ∩ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
] = ∅ because of our event partition.

This implies: ΣH ⊆ ΣGH

We thus have ΣGH
⊇ (ΣH ∪ ΣIj

) as required.

Claim proven.

From the claim, we have ΣGH
⊆ ΣIH . To show that ΣGH

= ΣIH we now only have to show ΣGH
⊇ ΣIH .

From the claim, we also have (∀j ∈ {1, . . . , n}) ΣGH
⊇ (ΣH ∪ ΣIj

).

This implies ΣGH
⊇ ΣH ∪ [∪k∈{1, ..., n}ΣIk

] = ΣIH . We thus have ΣGH
= ΣIH .

We can now conclude that DES GH is defined over ΣIH , as required.

QED

2Proposition 23, point iv requires the proposition we are currently proving, but point ii of Proposition 23 is

independent of point iv and does not.
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5.5.2 Proof of Proposition 22

Proof for Proposition 22 on page 67: If the nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn , is interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then, for all j ∈ {1, . . . , n}, the following is true:

(i) Languages H, Lj , and Ij are closed.

(ii) Hm ⊆ H, Lmj
⊆ Lj , and Imj

⊆ Ij

Proof:

Assume system is interface consistent and let j ∈ {1, . . . , n}. (1)

Will now show this implies that Points i and ii are satisfied.

We first not that by (1), the system is interface consistent. This allows us to apply Proposition 21
and conclude:

L(GH), Lm(GH) ⊆ Σ∗
IH , L(GLj

), Lm(GLj
) ⊆ Σ∗

ILj
, and L(GIj

), Lm(GIj
) ⊆ Σ∗

Ij
.

This tells us that languages H = P−1
IH (L(GH)), Lj = P−1

IL (L(GLj
)), Ij = P−1

I (L(GIj
)), Hm =

P−1
IH (Lm(GH)), Lmj

= P−1
IL (Lm(GLj

)), and Imj
= P−1

I (Lm(GIj
)) are defined.

Point i: Show that Languages H, Lj , and Ij are closed.

We now note that languages L(GH), L(GLj
), and L(GIj

) are closed by the definition of the closed
behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, Lj , and Ij are closed, as required.

Point ii: Show that Hm ⊆ H, Lmj
⊆ Lj , and Imj

⊆ Ij .

From the definition of the closed behaviour and the marked language of a DES, we can conclude that:

Lm(GH) ⊆ L(GH), Lm(GLj
) ⊆ L(GLj

), and Lm(GIj
) ⊆ L(GIj

).

Applying Proposition 3 repeatedly, we can conclude:

P−1
IH (Lm(GH)) = Hm ⊆ H = P−1

IH (L(GH))

P−1
IL (Lm(GLj

)) = Lmj
⊆ Lj = P−1

IL (L(GLj
))

P−1
I (Lm(GIj

)) = Imj
⊆ Ij = P−1

I (L(GIj
))

QED
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5.5.3 Proof of Proposition 23

Proof for Proposition 23 on page 67: If the nth degree (n ≥ 1) parallel interface system composed

of DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is interface consistent with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then for the jth serial system extraction, system(j), the

following is true:

(i) The flat system is: G(j) = GH ||sGLj
||sGI1 ||s . . . ||sGIn

(ii) The following event sets are: ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

(iii) The following inverse natural projections are: PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

, and

PI(j)
−1 = Pj · P

−1
Ij

(iv) The event set of GH(j) is ΣIH(j), the event set of GL(j) is ΣIL(j), and the event set of GI(j) is

ΣI(j).

(v) The following languages are:

H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

Hm(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Imk
)]

L(j) = Pj (Lj)

Lm(j) = Pj (Lmj
)

I(j) = Pj (Ij)

Im(j) = Pj (Imj
)

(vi) Languages H(j), L(j), and I(j) are closed.

(vii) Hm(j) ⊆ H(j), Lm(j) ⊆ L(j), and Im(j) ⊆ I(j)

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is interface consistent with respect to the al-
phabet partition. (1)

Let system(j) be the jth serial system extraction of our parallel system. (2)

We will now show this implies system(j) satisfies points i-vii.
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Point i: Show that G(j) = GH ||sGLj
||sGI1 ||s . . . ||sGIn

By definition, the flat system for a serial interface system is defined as follows:

G(j) = GH(j)||sGL(j)||sGI(j)

Substituting in for DES GH(j), GL(j), and GI(j)) (by (2)) gives as required:

G(j) = GH ||sGLj
||sGI1 ||s . . . ||sGIn

Point ii: Show that ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

ΣI(j) := ΣR(j) ∪̇ΣA(j), by definition.

= ΣRj
∪̇ΣAj

, by (2).

= ΣIj

ΣIH(j) := ΣH(j)∪̇ΣR(j)∪̇ΣA(j), by definition.

= ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
∪̇ΣH ∪̇ΣRj

∪̇ΣAj
, by (2).

= ΣIH

ΣIL(j) := ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j), by definition.

= ΣLj
∪̇ΣRj

∪̇ΣAj
, by (2).

= ΣILj

Point iii: Show that PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

, and ΣI(j) = Pj · P
−1
Ij

By definition, the following natural projections for a serial interface system are defined as follows:

PIH(j) : Σ(j)∗ → ΣIH(j)∗

PIL(j) : Σ(j)∗ → ΣIL(j)∗

PI(j) : Σ(j)∗ → ΣI(j)
∗

Substituting from point ii, gives:

PIH(j) : Σ(j)∗ → Σ∗
IH (3)

PIL(j) : Σ(j)∗ → Σ∗
ILj

PI(j) : Σ(j)∗ → Σ∗
Ij

We first examine PIH(j). We first note that the following natural projections are defined as
PIH : Σ∗ → Σ∗

IH and Pj : Σ∗ → Σ(j)∗. As ΣIH = ΣIH(j) ⊆ Σ(j) and Σ(j) ⊆ Σ (by (2) and
point ii), we can see by (3) and the definition of the natural projection that the diagram in Figure 5.4
commutes. Similarly, we can see that the diagram in Figure 5.5 commutes.3

3To make the commutative diagram work, we extended the natural projections in the natural way to operate on subsets

instead of strings.
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Figure 5.4: Commutative Diagram Figure 5.5: Commutative Diagram for Inverse Function

We thus have P−1
IH = P−1

j · PIH(j)−1

⇒ Pj · P
−1
IH = Pj · P

−1
j · PIH(j)−1

⇒ Pj · P
−1
IH = PIH(j)−1

⇒ PIH(j)−1 = Pj · P
−1
IH

Similarly, as ΣILj
= ΣIL(j) ⊆ Σ(j) (by (2) and point ii) and the following natural projection is defined

as PILj
: Σ∗ → Σ∗

ILj
, we can conclude:

PIL(j)−1 = Pj · P
−1
ILj

Similarly, as ΣIj
= ΣI(j) ⊆ Σ(j) (by (2) and point ii) and the following natural projection is defined

as PIj
: Σ∗ → Σ∗

Ij
, we can conclude:

PI(j)
−1 = Pj · P

−1
Ij

Point iv: Show that the event set of GH(j) is ΣIH(j), the event set of GL(j) is ΣIL(j), and the event
set of GI(j) is ΣI(j).

From (1), we have that the system is interface consistent. This implies that system(j) is serial interface
consistent. The result follows immediately.

Point v:
First, we must show that H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

By definition, the language H(j) for a serial interface system is defined as follows:

H(j) = PIH(j)−1(L(GH(j)))

Substituting using (2) and point iii, we get:
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H(j) = Pj · P
−1
IH (L(GH ||sGI1 ||s . . . ||sGI(j−1)

||sGI(j+1)
||s . . . ||sGIn)) (4)

We next note that, by (1), we can apply Proposition 21 and conclude that DES GH is defined over
event set ΣIH , DES GIi

is defined over event set ΣIi
, and DES GLi

is defined over event set ΣILi
, where

i ∈ {1, . . . , n}. (5)

This tells us that DES GH(j) is defined over ΣIH .

To evaluate L(GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn), we need a natural projection PI|IHk
:

Σ∗
IH → Σ∗

Ik
, for k ∈ {1, . . . , (j − 1), (j + 1), . . . , n}.

After noting that ΣIk
⊆ ΣIH and ΣIH ⊆ Σ, we can apply the same logic as in point iii and conclude:

P−1
I|IHk

= PIH · P−1
Ik

We can now evaluate L(GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn) and conclude:

L(GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn) = L(GH)∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}PIH ·P−1
Ik

(L(GIk
))]

Substituting into (4) gives:

H(j) = Pj · P
−1
IH (L(GH) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}PIH · P−1

Ik
(L(GIk

))])

⇒ H(j) = Pj · P
−1
IH (L(GH)) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj · P

−1
IH · PIH · P−1

Ik
(L(GIk

))] (6)

As ΣIk
⊆ ΣIH , we can now apply Proposition 6 by taking Σa = ΣIH , and Σb = ΣIk

(k ∈
{1, . . . , (j − 1), (j + 1), . . . , n) and thus conclude:

P−1
IH · PIH · P−1

Ik
= P−1

Ik

Substituting into (6) gives:

H(j) = Pj · P
−1
IH (L(GH)) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj · P

−1
Ik

(L(GIk
))]

⇒ H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

Next, we must show that Hm(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Imk
)]

Proof is identical to proof for H(j), after relabelling.

The proofs for the remaining languages for point iv are straightforward, and are presented together
below.

L(j) := PIL(j)−1(L(GL(j))), by definition.

= Pj · P
−1
ILj

(L(GLj
)), by (2) and point iii.

= Pj (Lj)

Lm(j) := PIL(j)−1(Lm(GL(j))), by definition.
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= Pj · P
−1
ILj

(Lm(GLj
)), by (2) and point iii.

= Pj (Lmj
)

I(j) := PI(j)
−1(L(GI(j))), by definition.

= Pj · P
−1
Ij

(L(GIj
)), by (2) and point iii.

= Pj (Ij)

Im(j) := PI(j)
−1(Lm(GI(j))), by definition.

= Pj · P
−1
Ij

(Lm(GIj
)), by (2) and point iii.

= Pj (Imj
)

Points vi-vii: Show that languages H(j), L(j), and I(j) are closed and that Hm(j) ⊆ H(j), Lm(j) ⊆
L(j), and Im(j) ⊆ I(j)

From (2), we know that GH(j) = GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn

We can now apply Proposition 5 and conclude that language L(GH(j)) is closed, and Lm(GH(j)) ⊆
L(GH(j))

We next note that languages L(GL(j)), and L(GI(j)) are closed as GL(j) = GLj
and GI(j) = GIj

(by
(2)), and by the definition of the closed behaviour of a DES.

From the definition of the closed behaviour and the marked language of a DES, we can conclude that:

Lm(GL(j)) ⊆ L(GL(j)), and Lm(GI(j)) ⊆ L(GI(j)).

We now apply Proposition 1 repeatedly and conclude that H(j) = PIH(j)−1(L(GH(j))), L(j) =
PIL(j)−1(L(GL(j))), and I(j) = PI(j)

−1(L(GI(j))) are closed.

We next apply Proposition 3 repeatedly, and conclude:

PIH(j)−1(Lm(GH(j))) = Hm(j) ⊆ H(j) = PIH(j)−1(L(GH(j)))

PIL(j)−1(Lm(GL(j))) = Lm(j) ⊆ L(j) = PIL(j)−1(L(GL(j)))

PI(j)
−1(Lm(GI(j))) = Im(j) ⊆ I(j) = PI(j)

−1(L(GI(j)))

QED

5.5.4 Proof of Proposition 24

Proof for Proposition 24 on page 68: If the nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to

the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])

(∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)])
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Proof:

Assume system is level-wise nonblocking and interface consistent. (1)

Let s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)] (2)

We will now show this implies: (∃l ∈ Σ∗
IL) s.t. (sl ∈ H ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)])

To do this, we will use an inductive proof. We define Σ∗
IL0

= Σ∗, Lm0 = Im0 = Σ∗ and Ln+1 = In+1 =
Σ∗. Here we are using the fact that intersection with Σ∗ is the identity operator as all other languages
are subsets of Σ∗. This is to handle the boundary cases of k = 0 and k = n in order to avoid intersection
with ∅.

Claim to be proven:

For k ∈ {0, 1, . . . , n}, there exist strings li ∈ Σ∗
ILi

, i ∈ {0, 1, . . . , k} , such that:

sl0l1 . . . lk ∈ H ∩ [∩v∈{0,1,...,k}(Lmv ∩ Imv)] ∩ [∩w∈{k+1,...,n+1}(Lw ∩ Iw)] (3)

We will first prove the initial case k = 0, and then the general case of k ∈ {1, . . . , n}. We can then
conclude by induction that the claim has been proven.

Initial Case: k = 0

We take l0 = ε ∈ Σ∗
IL0

= Σ∗
IL. We immediately have sl0 = s ∈ H ∩ [∩k∈{1,...,n}(Lk ∩ Ik)] (by (2))

We have automatically sl0 ∈ (Ln+1 ∩ In+1) = Σ∗

Initial case complete.

Inductive Step:

Let k ∈ {1, . . . , n}. Assume there exist strings li ∈ Σ∗
ILi

, i ∈ {0, 1, . . . , k − 1} , and that they
satisfy (3) when k − 1 is substituted for k.

⇒ sl0l1 . . . lk−1 ∈ H ∩ [∩v∈{0,1,...,(k−1)}(Lmv ∩ Imv)] ∩ [∩w∈{k,...,n+1}(Lw ∩ Iw) (4)

We will show this implies that we can construct string lk ∈ Σ∗
ILk

, such that sl0l1 . . . lk ∈ H ∩
[∩v∈{0,1,...,k}(Lmv ∩ Imv)] ∩ [∩w∈{k+1,...,n+1}(Lw ∩ Iw)]

Our approach will be to apply Proposition 11 to system(k), the kth serial extraction system of
our parallel system.

We first note that (4) implies sl0l1 . . . lk−1 ∈ H ∩ [∩w∈{1,...,n}(Lw ∩ Iw)]

⇒ Pk(sl0l1 . . . lk−1) ∈ Pk(H) ∩ Pk(Lk) ∩ [∩w∈{1,...,n}Pk(Iw)] = H(k) ∩ L(k) ∩ I(k) by Proposi-
tion 23
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We can now apply Proposition 11 to system (k) by taking Pk(sl0l1 . . . lk−1) to be string s in
that proposition. We thus conclude:

(∃lk ∈ Σ∗
ILk

) s.t. Pk(sl0l1 . . . lk−1)lk ∈ H(k) ∩ Lm(k) ∩ Im(k)

We now note that Pk(lk) = lk as ΣILk
⊆ Σ(k). We can thus conclude:

Pk(sl0l1 . . . lk−1lk) ∈ H(k) ∩ Lm(k) ∩ Im(k) (5)

We will now show that this implies:

sl0l1 . . . lk−1lk ∈ H ∩ [∩w∈{1,...,k−1,k+1,...,n}Iw] ∩ Lmk
∩ Imk

Substituting into (5) for H(k), Lm(k), and Im(k) (by Proposition 23), we have:

Pk(sl0l1 . . . lk−1lk) ∈ Pk · P−1
IH (L(GH)) ∩ [∩w∈{1,...,k−1,k+1,...,n}Pk · P−1

Iw
(L(GIw))]

∩Pk·P
−1
ILk

(Lm(GLk
))∩Pk·P

−1
Ik

(Lm(GIk
)) (6)

From Proposition 23, we have ΣIH ⊆ Σ(k). We can now apply Corollary 2 by taking
Σa = Σ(k), Σb = ΣIH , and Lb = L(GH) and thus conclude:

sl0l1 . . . lk−1lk ∈ P−1
IH (L(GH)) = H (7)

Similarly, we have ΣIw ⊆ Σ(k) for w ∈ {1, . . . , k − 1, k + 1, . . . , n}. We can now apply Corollary
2 by taking Σa = Σ(k), Σb = ΣIw , and Lb = L(GIw) and thus conclude:

sl0l1 . . . lk−1lk ∈ P−1
Iw

(L(GIw)) = Iw (8)

Similarly, we have ΣILk
⊆ Σ(k). We can now apply Corollary 2 by taking Σa = Σ(k), Σb = ΣILk

,
and Lb = Lm(GLk

) and thus conclude:

sl0l1 . . . lk−1lk ∈ P−1
ILk

(Lm(GLk
)) = Lmk

(9)

Similarly, we have ΣIk
⊆ Σ(k). We can now apply Corollary 2 by taking Σa = Σ(k), Σb = ΣIk

,
and Lb = Lm(GIk

) and thus conclude:

sl0l1 . . . lk−1lk ∈ P−1
ILk

(Lm(GIk
)) = Imk

Combining with (7) - (9), we thus have:

sl0l1 . . . lk−1lk ∈ H ∩ [∩w∈{1,...,k−1,k+1,...,n}Iw] ∩ Lmk
∩ Imk

(10)

We also have automatically sl0l1 . . . lk−1lk ∈ (Ln+1∩In+1) = Σ∗ (11)

We will now show that sl0l1 . . . lk−1lk ∈ H∩ [∩v∈{0,1,...,k}(Lmv ∩Imv)]∩ [∩w∈{k+1,...,n+1}(Lw ∩Iw)]

This means showing: sl0l1 . . . lk−1lk ∈ ∩v∈{0,1,...,k−1}(Lmv ∩ Imv) ∩ [∩w∈{k+1,...,n}Lw]
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As Lm0 = Im0 = Σ∗, sl0l1 . . . lk−1lk ∈ Lm0 ∩ Im0 is automatic. (12)

We next note that by (4), we have sl0l1 . . . lk−1 ∈ H∩[∩v∈{0,1,...,(k−1)}(Lmv∩Imv)]∩[∩w∈{k+1,...,n}Lw]

From (1) we have ΣILk
∩ ΣILv = ∅, for v ∈ {1, . . . , (k − 1)}. As lk ∈ ΣILk

, we have PILv(lk) = ε.
This implies PILv(sl0l1 . . . lk−1lk) = PILv(sl0l1 . . . lk−1). We can now apply Proposition 27,
point d, and conclude:

sl0l1 . . . lk−1lk ∈ Lmv (13)

Similarly we have PIv(sl0l1 . . . lk−1lk) = PIv(sl0l1 . . . lk−1), for v ∈ {1, . . . , (k − 1)}. We can now
apply Proposition 27, point f, and conclude:

sl0l1 . . . lk−1lk ∈ Imv (14)

Similarly we have PILw(sl0l1 . . . lk−1lk) = PILw(sl0l1 . . . lk−1), for w ∈ {k + 1, . . . , n}. We can now
apply Proposition 27, point c, and conclude:

sl0l1 . . . lk−1lk ∈ Lw

Combining with (12) - (14), we have:

sl0l1 . . . lk−1lk ∈ ∩v∈{0,1,...,k−1}(Lmv ∩ Imv) ∩ [∩w∈{k+1,...,n}Lw]

Combining with (10) and (11), we have:

sl0l1 . . . lk−1lk ∈ H ∩ [∩v∈{0,1,...,k}(Lmv ∩ Imv)] ∩ [∩w∈{k+1,...,n+1}(Lw ∩ Iw)], as required.

Inductive step complete.

We have now proven the Initial case and the Inductive step. We now conclude that the Claim is
true, by induction.

Taking k = n and using fact that l0 = ε, we thus can conclude there exists strings li ∈ Σ∗
ILi

, i ∈
{1, . . . , n}, such that: sl1 . . . ln ∈ H ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)]

We thus take l = l1 . . . ln and we have l ∈ Σ∗
IL and sl ∈ H ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)], as required.

QED

5.5.5 Proof of Proposition 25

Proof for Proposition 25 on page 69: If the nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to

the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then
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(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])

(∃h ∈ Σ∗
IH) (sh ∈ Hm ∩ [∩j∈{1,...,n}Imj

])

Proof:

Assume system is level-wise nonblocking and interface consistent. (1)

Let s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)] (2)

We will now show this implies:

(∃h ∈ Σ∗
IH) (sh ∈ Hm ∩ [∩j∈{1,...,n}Imj

])

We will start by examining the 1st serial extraction system of the parallel system. We will show that
we can construct a string h ∈ Σ∗

IH with the property that P1(s)h ∈ Hm(1) ∩ Im(1).

We first note that from (2), we have s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)]

From Proposition 23, we thus have:
P1(s) ∈ P1(H) ∩ [∩j∈{2,...,n}P1(Ij)] ∩ P1(L1) ∩ P1(I1) = H(1) ∩ L(1) ∩ I(1) (3)

We start be noting that system(1) is serial level-wise nonblocking, as the parallel system is level-wise
nonblocking (by (1)). Combining with (3), we can thus apply Point I of the serial level-wise nonblocking
definition and conclude:

(∃h′ ∈ Σ(1)∗) s.t. P1(s)h
′ ∈ Hm(1) ∩ Im(1)

We next note that:

PIH(1) (P1(s)h
′) = PIH(1)(P1(s))PIH(1)(h′)

= PIH(1)(P1(s))PIH(1)(PIH(1)(h′)) as the natural projection

is idempotent.

= PIH(1)(P1(s)PIH(1)(h′)) (4)

We can now apply Proposition 8, point b, and conclude:

P1(s)PIH(1)(h′) ∈ Hm(1) (5)

As ΣI(1) ⊆ ΣIH(1), we can conclude by (4) that PI(1)(P1(s)h
′) = PI(1)(P1(s)PIH(1)(h′))

We can now apply Proposition 8, point f, and conclude:

P1(s)PIH(1)(h′) ∈ Im(1) (6)
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We next note that as Σ(1) ⊆ Σ and ΣIH = ΣIH(1) (by Proposition 23), we can conclude PIH(h′) =
PIH(1)(h′).

Combining with (5) and (6), we can conclude:

P1(s)PIH(h′) ∈ Hm(1) ∩ Im(1)

We then take h = PIH(h′) and we have:

h ∈ Σ∗
IH and P1(s)h ∈ Hm(1) ∩ Im(1) (7)

We will now show that this implies: sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]

From (7), substituting for Hm(1) and Im(1) (by Proposition 23) and noting P1(h) = h as h ∈ ΣIH ⊆
Σ(1), we can conclude that:

P1(sh) ∈ P1 · P
−1
IH (Lm(GH)) ∩ [∩j∈{2,...,n}P1 · P

−1
Ij

(Lm(GIj
))] ∩ P1 · P

−1
I1

(Lm(GI1))

From Proposition 23, we have ΣIH ⊆ Σ(1). We can now apply Corollary 2 by taking Σa = Σ(1),
Σb = ΣIH , and Lb = Lm(GH) and thus conclude:

sh ∈ P−1
IH (Lm(GH)) = Hm (8)

Similarly, we have ΣIj
⊆ Σ(1) for j ∈ {1, . . . , n}. We can now apply Corollary 2 by taking Σa = Σ(1),

Σb = ΣIj
, and Lb = Lm(GIj

) and thus conclude:

sh ∈ P−1
Ij

(Lm(GIj
)) = Imj

Combining with (8), we have:

sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]

Combining with (7), we thus have h ∈ Σ∗
IH with the required property that (sh ∈ Hm ∩ [∩j∈{1,...,n}Imj

])

QED

5.5.6 Proof of Proposition 26

Proof for Proposition 26 on page 69: If the nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn, is level-wise nonblocking and interface consistent with respect to

the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)])(∀h ∈ Σ∗
IH)

(sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]) ⇒ (∃u ∈ Σ∗) s.t. (su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)]
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Proof:

Assume system is level-wise nonblocking and interface consistent. (1)

Let s ∈ H ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)], h ∈ Σ∗
IH , and sh ∈ Hm ∩ [∩j∈{1,...,n}Imj

] (2)

We will now show this implies (∃u ∈ Σ∗) s.t. (su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)]

To do this, we will use string h and apply Proposition 15 iteratively, to construct n strings labelled
ui ∈ Σ(i)∗, i ∈ {1, . . . , n}, with the properties sui ∈ Hm ∩ [∩j∈{1,...,n}Imj

] ∩ Lmi
(i.e. string ui takes

the high level and the ith low level system to a marked state) and PIH(ui) = h (string h is the high level
image of each string ui). We will then use these n strings to construct the desired string u.

Iterative step:

For each i ∈ {1, . . . , n}, construct ui as follows:

To apply Proposition 15 to system(i), the ith serial extraction system of our parallel system,
we must first show that h ∈ Σ∗

IH (auto from (2)), Pi(s) ∈ Hm(i) ∩ Im(i), and that Pi(s) ∈
H(i) ∩ L(i) ∩ Im(i).

From (2), we have sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]

As Pi(h) = h since h ∈ Σ∗
IH ⊆ Σ(i) (by Proposition 23), we can conclude:

Pi(sh) = Pi(s)h ∈ Pi(Hm) ∩ [∩j∈{1,...,i−1,i+1,...,n}Pi(Imj
)] ∩ Pi(Imi

)

⇒ Pi(s)h ∈ Hm(i) ∩ Im(i) (by Proposition 23) (3)

Our last step before we can apply Proposition 15 is to show that Pi(s) ∈ H(i) ∩ L(i) ∩ Im(i).

From (2), we have s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)] (4)

From Proposition 23, we thus have:
Pi(s) ∈ Pi(H)∩ [∩j∈{1,...,i−1,i+1,...,n}Pi(Ij)] ∩ Pi(Li) ∩ Pi(Ii) = H(i)∩L(i)∩I(i) (5)

We have Pi(s) ∈ H(i) ∩ L(i) from (15), so all that remains is to show that Pi(s) ∈ Im(i).

From (2), we have s ∈ Imi
. This implies Pi(s) ∈ Pi(Imi

) = Im(i)

Combining with (2) (3), and (5), we now apply Proposition 15 by taking Pi(s) to be string s

in that proposition and conclude:

(∃ui ∈ Σ(i)∗) s.t. Pi(s)ui ∈ (Hm(i) ∩ Lm(i) ∩ Im(i)) ∧ (PIH(i)(ui) = h) (6)

We next note that as Σ(i) ⊆ Σ and ΣIH = ΣIH(i) (by Proposition 23), we can conclude
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PIH(ui) = PIH(i)(ui) = h. (7)

We now note that ui ∈ Σ(i)∗ implies that Pi(ui) = ui. Combining with (6) and substituting for
Hm(i), Lm(i) (using Proposition 23), and Im(i), we have:

Pi(sui) ∈ Pi·P
−1
IH (Lm(GH)) ∩ [∩j∈{1,...,n}Pi·P

−1
Ij

(Lm(GIj
))] ∩ Pi·P

−1
ILi

(Lm(GLi
)) (8)

From Proposition 23, we have ΣIH ⊆ Σ(i). We can now apply Corollary 2 by taking Σa = Σ(i),
Σb = ΣIH , and Lb = Lm(GH) and thus conclude:

sui ∈ P−1
IH (Lm(GH)) = Hm (9)

Similarly, we have ΣIj
⊆ Σ(i) for j ∈ {1, . . . , n}. We can now apply Corollary 2 by taking

Σa = Σ(i), Σb = ΣIj
, and Lb = Lm(GIj

) and thus conclude:

sui ∈ P−1
Ij

(Lm(GIj
)) = Imj

(10)

Similarly, we have ΣILi
⊆ Σ(i). We can now apply Corollary 2 by taking Σa = Σ(i), Σb = ΣILi

,
and Lb = Lm(GLi

) and thus conclude:

sui ∈ P−1
ILi

(Lm(GLi
)) = Lmi

Combining with (9) and (10), we have:

sui ∈ Hm ∩ [∩j∈{1,...,n}Imj
] ∩ Lmi

, as required.

Iterative step complete.

Now that we have completed the iterative step, we have shown the following:

(∀i ∈ {1, . . . , n})(∃ui ∈ Σ(i)∗) (sui ∈ Hm ∩ [∩j∈{1,...,n}Imj
] ∩ Lmi

) ∧ (PIH(ui) = h) (11)

We will now use this information to construct a string u ∈ Σ∗ with the property:
su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj

∩ Imj
)]

We take u to be any string in set ∩i∈{1,...,n}P
−1
i (ui) (12)

We know that the set is non-empty for the following reasons:

• For each i ∈ {1, . . . , n}, we have ui ∈ Σ(i)∗ where:
Σ(i) := ΣIH ∪̇ ΣLi

= Σ − (∪̇j∈{1,...,i−1,i+1,...,n}ΣLj
).

• The only events strings ui have in common are σ ∈ ΣIH .

• All strings ui agree on common events as PIH(ui) = h

From (12), we have (∀i ∈ {1, . . . , n})Pi(u) = ui. As ΣIH ⊆ Σ(i) (by Proposition 23) and h ∈ Σ∗
IH

(by (22)), we can conclude:
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PIH(u) = PIH(ui) = h = PIH(h). (13)

From (2), we have: sh ∈ Hm ∩ [∩j∈{1,...,n}Imj
]

We can now apply Proposition 27, point b, and conclude:

su ∈ Hm (14)

As ΣIj
⊆ ΣIH for j ∈ {1, . . . , n}, we can conclude by (13) that PIj

(u) = PIj
(h). We can now apply

Proposition 27, point f, and conclude:

su ∈ Imj

Combining with (14), we can conclude:

su ∈ Hm ∩ [∩j∈{1,...,n}Imj
] (15)

All that remains is to show su ∈ ∩j∈{1,...,n}Lmj

From (11), we have suj ∈ Lmj
for j ∈ {1, . . . , n}. From (12), we have Pj(u) = uj = Pj(uj) as

uj ∈ Σ(j)∗. As ΣILj
⊆ Σ(j) (by Proposition 23), we can conclude PILj

(u) = PILj
(uj). We can now

apply Proposition 27, point d, and conclude:

su ∈ Lmj

Combining with (15), we have: su ∈ Hm ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)] = Lm(G)

QED
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Chapter 6

Parallel Case: Controllability

Now that we have discussed nonblocking in the parallel interface setting, we now consider controllabil-

ity. In the remainder of this chapter, we will define our setting and notation and then present some

supporting propositions, followed by the serial controllability theorem.

6.1 Definitions and Notation

We now present some definitions and notation that will be useful in simplifying proofs. As in the serial

case, we need to decompose the nth degree (n ≥ 1) parallel interface system into its plant and supervisor

components. For the remainder of this section, the index j is defined to be j ∈ {1, . . . , n}.

We now define the high level plant to to be GH , and the high level supervisor to be SH (both defined

over ΣIH). Similarly, the jth low level plant and supervisor are GLj
and SLj

(defined over ΣILj
). To

be consistent with our definitions in Chapter 5, we define the following identities for the high level

subsystem and jth low level subsystem as follows:

GH := GH ||sSH GLj
:= GLj

||sSLj

We now have two ways to describe our system for the parallel case, depending on the level of

detail required. We will call the original method described in Chapter 5 in terms of an interface

and high and low subsystems, the parallel subsystem based form. This form is useful as it simplifies

nonblocking definitions and proofs. We call the above method, given in terms of an interface and plants

and supervisors, the parallel general form as the parallel subsystem based form can be recovered by

applying the above identities. When we refer terms applicable to both forms (e.g. the high level), we
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will simply state the term, allowing the type of the system to make our meaning clear.

Our next step is to define the flat supervisor and plant for our system.

Plant := GH ||sGL1 ||s . . . ||sGLn Sup := SH ||sSL1 ||s . . . ||sSLn ||sGI1 ||s . . . ||sGIn

We next want to express the languages of Plant and Sup in terms of their components. To do this, we

need to first define the following useful languages::

H := P−1
IH L(GH), HS := P−1

IH L(SH), ⊆ Σ∗

Lj := P−1
ILj

L(GLj
), LSj

:= P−1
ILj

L(SLj
), ⊆ Σ∗

We can now express the languages of Plant and Sup as follows:

L(Plant) = H ∩ [∩k∈{1,...,n}Lk] L(Sup) = HS ∩ [∩k∈{1,...,n}(LSk
∩ Ik)]

This allows us to present the proposition below that collects together several similar propositions.

As it will be common in the proofs in this report to show that membership in languages such as H are

dependent only on events in specific subsets (for H, events in subset ΣIH), this proposition will be very

useful.

Proposition 27

(a) (∀s, s′ ∈ Σ∗) s ∈ H and PIH(s) = PIH(s′) ⇒ s′ ∈ H

(b) (∀s, s′ ∈ Σ∗) s ∈ HS and PIH(s) = PIH(s′) ⇒ s′ ∈ HS

(c) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ Lk and PILk
(s) = PILk

(s′) ⇒ s′ ∈ Lk

(d) (∀k ∈ {1, . . . , n})(∀s, s′ ∈ Σ∗) s ∈ LSk
and PILk

(s) = PILk
(s′) ⇒ s′ ∈ LSk

Proof:

Points a-b:

Identical to the proof of point a of Proposition 8, after substitution.

Points c-d:

Let k ∈ {1, . . . , n}, then identical to the proof of point a of Proposition 8, after substitution.

QED
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6.2 Serial System Extraction: General Form

We now extend the definition of the jth serial system extraction, defined in Section 5.2, to operate on

the general form of an nth degree (n ≥ 1) parallel interface system. The subsystem form of the definition

can be recovered by using the identities GH(j) = GH(j)||sSH(j), GL(j) = GL(j)||sSL(j). Normally, we

will simply refer to the jth serial system extraction, as the type of the parallel system will make clear

which definition is intended.

jth Serial System Extraction: General Form For the nth degree (n ≥ 1) parallel interface system

composed of DES GH , GL1 , . . . , GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn , with alphabet partition Σ :=

∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , the jth serial system extraction, denoted by system(j), is

composed of the following elements:

GH(j) := GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn

SH(j) := SH

GL(j) := GLj

SL(j) := SLj

GI(j) := GIj

ΣH(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
∪̇ΣH

ΣL(j) := ΣLj

ΣR(j) := ΣRj

ΣA(j) := ΣAj

Σ(j) := ΣH(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

= Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

6.3 Controllability Properties

The goal in this chapter is to develop a means of verifying that our system’s flat supervisor is controllable

for the flat plant that uses only local checks. To achieve this, we will extend the serial level-wise
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controllability definition to the parallel system case by using the serial system extraction definition.

Level-wise Controllable: The nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 ,

. . . ,GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn , is level-wise controllable with respect to alphabet parti-

tion Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial level-wise control-

lability.

Now that we have the above definitions, we can present several related propositions that establish

properties about the parallel system that will be useful in later proofs.

Our first proposition uses the level-wise controllable definition to establish the event set that the

DES that make up an nth degree (n ≥ 1) parallel interface system are defined over. This is useful for

defining the languages of a DES created by the synchronous product of one or more of these DES.

Proposition 28 If nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn , SH ,

SL1 , . . . ,SLn , GI1 , . . . , GIn, is level-wise controllable with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then DES GH and SH are defined over event set ΣIH ,

DES GIj
is defined over event set ΣIj

, and DES GLj
and SLj

are defined over event set ΣILj
, where

j ∈ {1, . . . , n}.

Proof: See page 94

We are now ready to state the proposition below which establishes useful properties for often used

languages.

Proposition 29 If nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . , GLn , SH ,

SL1 , . . . ,SLn , GI1 , . . . , GIn, is level-wise controllable with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then, for all j ∈ {1, . . . , n}, languages H, HS , Lj, LSj

, Ij,

L(Plant), and L(Sup) are closed.

Proof: See page 96.

We now present a proposition that will aid in the use of the general form of serial system extractions

in proofs. The proposition will interpret terminology for the jth serial system extraction (a serial

interface system) in terms of the original parallel system.
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Before we can present the proposition, we need to first define (for use in the proposition) a new

natural projection, Pj , to map strings from Σ∗ (the event set of a given parallel system) to strings from

Σ(j)∗ (the event set of the jth extracted system of the given parallel system). It is as defined as follows:

Pj : Σ∗ → Σ(j)∗

Proposition 30 If the nth degree (n ≥ 1) parallel interface system composed of DES GH , GL1 , . . . ,

GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn, is level-wise controllable with respect to the alphabet partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then for the jth serial system extraction, system(j), the

following is true:

(i) The flat plant is Plant(j) = GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn ||sGLj
and the flat

supervisor is Sup(j) = SH ||sSLj
||sGIj

(ii) The following event sets are: ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

(iii) The following inverse natural projections are: PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

,

and PI(j)
−1 = Pj · P

−1
Ij

(iv) The alphabet of GH(j) and SH(j) is ΣIH(j), the alphabet of GL(j) and SL(j) is ΣIL(j), and

the alphabet of GI(j) is ΣI(j)

(v) The following languages are:

H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

HS(j) = Pj (HS)

L(j) = Pj (Lj)

LS(j) = Pj (LSj
)

I(j) = Pj (Ij)

L(Plant(j)) := Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)] ∩ Pj (Lj)

L(Sup(j)) := Pj(HS) ∩ Pj (LSj
) ∩ Pj (Ij)

(vi) Languages H(j), HS(j), L(j), LS(j), I(j), L(Plant)(j), and L(Sup)(j) are closed.
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Proof: See page 97.

We close this section by noting that after examining the definition of the jth serial system extraction:

general form and the above proposition, we see that for n = 1, a general form parallel interface system

reduces to a single general form serial interface system. We thus see that a serial interface system is

a special case of a parallel interface systems. We will now talk of parallel interface systems and their

definitions as the general case for bi-level interface systems.

6.4 Theorem and Propositions

We are now ready to present our main results for this chapter. We will first present two support-

ing propositions, followed by our parallel case controllability theorem. The following propositions are

analogous to the serial controllability propositions.

6.4.1 Parallel Low level Controllability Proposition

We start with the parallel low level controllability proposition. It asserts that if the system is level-wise

controllable, then each pair of low level supervisor and interface is controllable for the flat plant.

Proposition 31 If the nth degree (n ≥ 1) parallel interface system composed of plant components

GH , GL1 , . . . ,GLn, supervisors SH , SL1 , . . . ,SLn, and interfaces GI1 , . . . , GIn, is level-wise controllable

with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀j ∈ {1, . . . , n}) (∀s ∈ L(Plant) ∩ LSj
∩ Ij) EligL(Plant)(s) ∩ Σu ⊆ EligLSj

∩Ij
(s)

where Plant := GH ||sGL1 ||s . . . ||sGLn is the system’s flat plant.

Proof: See page 99.

6.4.2 Parallel High level Controllability Proposition

We now present the parallel high level controllability proposition. It asserts that if the system is level-

wise controllable, then SH is controllable for flat plant when the flat Plant is already under the control

of the interfaces.
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Proposition 32 If the nth degree (n ≥ 1) parallel interface system composed of plant components

GH , GL1 , . . . ,GLn, supervisors SH , SL1 , . . . ,SLn, and interfaces GI1 , . . . , GIn, is level-wise controllable

with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ L(Plant) ∩ HS ∩ [∩k∈{1,...,n}Ik]) EligL(Plant)∩[∩k∈{1,...,n}Ik](s) ∩ Σu ⊆ EligHS
(s)

where Plant := GH ||sGL1 ||s . . . ||sGLn is the system’s flat plant.

Proof: See page 101.

6.4.3 Parallel Controllability Theorem

We now present our main result for this chapter, the parallel controllability theorem. It states that, to

verify if a parallel system is controllable, it is sufficient to check that each of its serial system extractions

is serial level-wise controllable. As the level-wise controllable definition can be evaluated by examining

only one level of our system at a time (the high level or one of the low levels), we now have a means to

verify controllability of our system using local checks.

Theorem 4 If the nth degree (n ≥ 1) parallel interface system composed of plant components GH ,

GL1 , . . . ,GLn, supervisors SH , SL1 , . . . ,SLn, and interfaces GI1 , . . . , GIn, is level-wise controllable with

respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

where Plant := GH ||sGL1 ||s . . . ||sGLn is the system’s flat plant, and Sup := SH ||sSL1 ||s . . . ||sSLn ||s

GI1 ||s . . . ||sGIn is the system’s flat supervisor.

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is level-wise controllable. (1)

Let s ∈ L(Plant) ∩ L(Sup), and σ ∈ EligL(Plant)(s) ∩ Σu (2)

We will now show this implies σ ∈ EligL(Sup)(s). It’s sufficient to show sσ ∈ L(Sup) = HS ∩
[∩k∈{1,...,n}(LSk

∩ Ik)]
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We first note that s, sσ ∈ H ∩ [∩k∈{1,...,n}Lk] = L(Plant) and s ∈ HS ∩ [∩k∈{1,...,n}(LSk
∩ Ik)] by (2).

(3)

We next note that, by (1), we can apply Proposition 31 and conclude:

sσ ∈ ∩k∈{1,...,n}(LSk
∩ Ik) (4)

All that remains is to show that sσ ∈ HS

From (3), we have s ∈ L(Plant) ∩ HS ∩ [∩k∈{1,...,n}Ik]

From (3) and(4), we have sσ ∈ L(Plant) ∩ [∩k∈{1,...,n}Ik]

⇒ σ ∈ EligL(Plant)∩[∩k∈{1,...,n}Ik](s) ∩ Σu

We can now apply Proposition 32, and conclude σ ∈ EligHS
(s)

⇒ sσ ∈ HS

From (4), we can now conclude sσ ∈ HS ∩ [∩k∈{1,...,n}(LSk
∩ Ik)], as required

QED

6.5 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter were not given

as the propositions were introduced. They are now presented in the following sections.

6.5.1 Proof of Proposition 28

Proof for Proposition 28 on page 90: If nth degree (n ≥ 1) parallel interface system composed of DES

GH , GL1 , . . . , GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn, is level-wise controllable with respect to the alphabet

partition

Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ΣRk

∪̇ΣAk
) ∪̇ ΣH then DES GH and SH are defined over event set ΣIH , DES GIj

is

defined over event set ΣIj
, and DES GLj

and SLj
are defined over event set ΣILj

, where j ∈ {1, . . . , n}.

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is level-wise controllable with respect to the
alphabet partition. (1)

We will now show this implies that DES GH and SH are defined over event set ΣIH , DES GIj
is defined
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over event set ΣIj
, and DES GLj

and SLj
are defined over event set ΣILj

, where j ∈ {1, . . . , n}.

We first note that (1) implies that (∀j ∈ {1, . . . , n}) the jth serial system extraction, labelled system(j),
of the system is serial level-wise controllable.

This allows us to conclude that: (∀j ∈ {1, . . . , n}) DES GH(j) and SH(j) are defined over ΣIH(j),
GL(j) and SL(j) are defined over ΣIL(j), and that GI(j) is defined over ΣI(j).

From (1), we can now apply Proposition 30, point ii and conclude:1

ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

We can now conclude that: (∀j ∈ {1, . . . , n}) DES GH(j) and SH(j) are defined over ΣIH , GL(j) and
SL(j) are defined over ΣILj

, and that GI(j) is defined over ΣIj
. (2)

This implies: (∀j ∈ {1, . . . , n}) DES SH = SH(j) is defined over ΣIH , GLj
= GL(j) and SLj

= SL(j) are
defined over ΣILj

and that GIj
= GI(j) is defined over ΣIj

. (3)

All that remains is to show that DES GH is defined over alphabet ΣIH . To do this, we first need to
prove the following claim.

Claim: ΣGH
⊆ ΣIH and (∀j ∈ {1, . . . , n}) ΣGH

⊇ (ΣH ∪ ΣIj
)

Let j ∈ {1, . . . , n}. We will now show this implies ΣGH
⊆ ΣIH and ΣGH

⊇ (ΣH ∪ ΣIj
).

We start by noting GH(j) := GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn . By the definition of the ||s
operator, we know ΣGH(j) = ΣGH

∪ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣGIk
]. This implies that ΣGH

⊆ ΣGH(j). As
ΣGH(j) = ΣIH (from (2)), we immediately have ΣGH

⊆ ΣIH .

From (3), we have ΣGH(j) = ΣGH
∪ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk

].

We now note that ΣIj
⊆ ΣIH but ΣIj

∩ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
] = ∅ because of our event partition.

This implies: ΣIj
⊆ ΣGH

We next note that ΣH ⊆ ΣIH but ΣH ∩ [∪k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
] = ∅ because of our event partition.

This implies: ΣH ⊆ ΣGH

We thus have ΣGH
⊇ (ΣH ∪ ΣIj

) as required.

Claim proven.

From the claim, we have ΣGH
⊆ ΣIH . To show that ΣGH

= ΣIH we now only have to show ΣGH
⊇ ΣIH .

1Proposition 30, point iv requires the proposition we are currently proving, but point ii of Proposition 30 is

independent of point iv and does not.
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From the claim, we also have (∀j ∈ {1, . . . , n}) ΣGH
⊇ (ΣH ∪ ΣIj

).

This implies ΣGH
⊇ ΣH ∪ [∪k∈{1, ..., n}ΣIk

] = ΣIH . We thus have ΣGH
= ΣIH .

We can now conclude that DES GH is defined over ΣIH , as required.

QED

6.5.2 Proof of Proposition 29

Proof for Proposition 29 on page 90: If nth degree (n ≥ 1) parallel interface system composed of

DES GH , GL1 , . . . , GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn , is level-wise controllable with respect to the

alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH then, for all j ∈ {1, . . . , n}, languages H,

HS , Lj , LSj
, Ij , L(Plant), and L(Sup) are closed.

Proof:

Assume system is level-wise controllable. Let j ∈ {1, . . . , n}. (1)

Will now show this implies that the indicated languages are closed.

We first note that by (1), the system is level-wise controllable. This allows us to apply Proposition
28 and conclude:

L(GH), L(SH) ⊆ Σ∗
IH , L(GLj

), L(SLj
) ⊆ Σ∗

ILj
, and L(GIj

) ⊆ Σ∗
Ij

.

This tells us that languages H = P−1
IH (L(GH)), HS = P−1

IH L(SH), Lj = P−1
IL (L(GLj

)), LSj
= P−1

IL L(SLj
),

Ij = P−1
I (L(GIj

)) are defined.

We will start by showing that languages H, HS , Lj , LSj
, and Ij are closed.

We now note that languages L(GH), L(SH), L(GLj
), L(SLj

), and L(GIj
) are closed by the definition of

the closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, HS , Lj , LSj
, and Ij are closed, as

required. (2)

We will now show that languages L(Plant), and L(Sup) are closed.

We next note that L(Plant) = H ∩ [∩k∈{1,...,n}Lk] and L(Sup) = HS ∩ [∩k∈{1,...,n}(LSk
∩ Ik)].

Combining with (2), we can now apply Proposition 2 repeatedly and conclude that L(Plant), and
L(Sup) are closed, as required.
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QED

6.5.3 Proof of Proposition 30

Proof for Proposition 30 on page 91: If the nth degree (n ≥ 1) parallel interface system composed

of DES GH , GL1 , . . . , GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn, is level-wise controllable with respect to the

alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH , then for the jth serial system extraction,

system(j), the following is true:

(i) The flat plant is Plant(j) = GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn ||sGLj
and the flat super-

visor is Sup(j) = SH ||sSLj
||sGIj

(ii) The following event sets are: ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

(iii) The following inverse natural projections are: PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

, and

PI(j)
−1 = Pj · P

−1
Ij

(iv) The alphabet of GH(j) and SH(j) is ΣIH(j), the alphabet of GL(j) and SL(j) is ΣIL(j), and

the alphabet of GI(j) is ΣI(j)

(v) The following languages are:

H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

HS(j) = Pj (HS)

L(j) = Pj (Lj)

LS(j) = Pj (LSj
)

I(j) = Pj (Ij)

L(Plant(j)) := Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)] ∩ Pj (Lj)

L(Sup(j)) := Pj(HS) ∩ Pj (LSj
) ∩ Pj (Ij)

(vi) Languages H(j), HS(j), L(j), LS(j), I(j), L(Plant)(j), and L(Sup)(j) are closed.

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is level-wise controllable with respect to the
alphabet partition. (1)
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Let system(j) be the jth serial system extraction of our parallel system. (2)

We will now show this implies system(j) satisfies points i-vi.

Point i: Show that the flat plant is Plant(j) = GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn ||sGLj
and

the flat supervisor is Sup(j) = SH ||sSLj
||sGIj

Plant(j) := GH(j)||sGL(j), by definition.

= GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn ||sGLj
, by (2).

Sup(j) := SH(j)||sSL(j)||sGI(j), by definition.

= SH ||sSLj
||sGIj

, by (2).

Point ii: Show that the following event sets are: ΣI(j) = ΣIj
, ΣIH(j) = ΣIH , and ΣIL(j) = ΣILj

Proof is identical to the proof of point ii of Proposition 23.

Point iii: Show that PIH(j)−1 = Pj · P
−1
IH , PIL(j)−1 = Pj · P

−1
ILj

, and ΣI(j) = Pj · P
−1
Ij

Proof is identical to the proof of point iii of Proposition 23.

Point iv: Show that the alphabet of GH(j) and SH(j) is ΣIH(j), the alphabet of GL(j) and SL(j) is
ΣIL(j), and
the alphabet of GI(j) is ΣI(j)

From (1), we have that the system is level-wise controllable. This implies that system(j) is serial level-
wise controllable. The result follows immediately.

Point v:

First, we must show that H(j) = Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)]

Proof is identical to the proof for H(j) of point v of Proposition 23 after relabelling and substituting
Proposition 28 for Proposition 21. (3)

The proofs for the remaining languages for point v are straightforward, and are presented together
below.

HS(j) := PIH(j)−1L(SH(j)), by definition.

= Pj · P
−1
IH (L(SH)), by (2) and point iii.

= Pj(HS) (4)

L(j) := PIL(j)−1(L(GL(j))), by definition.

= Pj · P
−1
ILj

(L(GLj
)), by (2) and point iii.

= Pj (Lj) (5)

LS(j) := PIL(j)−1(L(SL(j))), by definition.
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= Pj · P
−1
ILj

(L(SLj
)), by (2) and point iii.

= Pj (LSj
) (6)

I(j) := PI(j)
−1(L(GI(j))), by definition.

= Pj · P
−1
Ij

(L(GIj
)), by (2) and point iii.

= Pj (Ij) (7)

L(Plant(j)) := H(j) ∩ L(j), by definition.

= Pj (H) ∩ [∩k∈{1, ..., (j−1), (j+1), ..., n}Pj (Ik)] ∩ Pj (Lj), by (3) and (5).

L(Sup(j)) := HS(j) ∩ LS(j) ∩ I(j), by definition.

= Pj(HS) ∩ Pj (LSj
) ∩ Pj (Ij), by (4), (6), and (7).

Point vi: Show that the languages H(j), HS(j), L(j), LS(j), I(j), L(Plant)(j), and L(Sup)(j) are
closed.

From (2), we know that GH(j) = GH ||sGI1 ||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn , Plant = GH ||sGI1

||s . . . ||sGI(j−1)
||sGI(j+1)

||s . . . ||sGIn ||sGLj
, and Sup = SH ||sSLj

||sGIj
.

We can now apply Proposition 5 and conclude that languages L(GH(j)), L(Plant), and L(Sup) is
closed.

We next note that languages SH(j), GL(j), SL(j), and GI(j) are closed as SH(j) = SH , GL(j) = GLj
,

SL(j) = SLj
, and GI(j) = GIj

(by (2)), and by the definition of the closed behaviour of a DES.

We now apply Proposition 1 repeatedly and conclude that H(j) = PIH(j)−1L(GH(j)), HS(j) =
PIH(j)−1L(SH(j)), L(j) = PIL(j)−1L(GL(j)), LS(j) = PIL(j)−1L(SL(j)), and I(j) = PI(j)

−1L(GI(j))
are closed.

QED

6.5.4 Proof of Proposition 31

Proof for Proposition 31 on page 92: If the nth degree (n ≥ 1) parallel interface system composed of

plant components GH , GL1 , . . . ,GLn, supervisors SH , SL1 , . . . ,SLn, and interfaces GI1 , . . . , GIn, is level-

wise controllable with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH ,

then

(∀j ∈ {1, . . . , n}) (∀s ∈ L(Plant) ∩ LSj
∩ Ij) EligL(Plant)(s) ∩ Σu ⊆ EligLSj

∩Ij
(s)

where Plant := GH ||sGL1 ||s . . . ||sGLn is the system’s flat plant.

Proof:
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Assume that the nth degree (n ≥ 1) parallel interface system is level-wise controllable. (1)

Let j ∈ {1, . . . , n}, s ∈ L(Plant) ∩ LSj
∩ Ij , and σ ∈ EligL(Plant)(s) ∩ Σu (2)

We will now show that this implies σ ∈ EligLSj
∩Ij

(s)

It’s sufficient to show that sσ ∈ LSj
∩ Ij

We first note that s, sσ ∈ H ∩ [∩k∈{1,...,n}Lk] = L(Plant) by (2). (3)

We have two cases: I) σ 6∈ ΣILj
and II) σ ∈ ΣILj

case I)

Assume σ 6∈ ΣILj
. This implies: PILj

(σ) = ε, where ε is the empty string.

⇒ PILj
(sσ) = PILj

(s)PILj
(σ) = PILj

(s), as the natural projection is concatenative. Similarly, we have
PIj

(sσ) = PIj
(s) as σ 6∈ ΣIj

since ΣIj
⊆ ΣILj

(4)

From (2), we have s ∈ HS ∩ [∩k∈{1,...,n}(LSk
∩ Ik)] = L(Sup)

As s ∈ LSj
and PILj

(sσ) = PILj
(s), we can apply Proposition 27, point c, and conclude sσ ∈ LSj

Similarly, we can apply Proposition 20, point e,and conclude sσ ∈ Ij

We thus have sσ ∈ LSj
∩ Ij

Case I complete.

case II)

Assume σ ∈ ΣILj
.

We now examine system(j), the jth serial system extraction of our parallel system.

We first note that we have σ ∈ ΣIL(j) as ΣIL(j) = ΣILj
by Proposition 30.

⇒ σ ∈ Σ(j) ⊇ ΣIL(j)

⇒ Pj(σ) = σ. See Section 6.3 for the definition of the natural projection Pj .

⇒ Pj(sσ) = Pj(s)σ

From (1), we can conclude that system(j) is serial level-wise controllable. (5)

We will use point II of this definition to show that Pj(s)σ ∈ LS(j) ∩ I(j)
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To do this, we first need to show that Pj(s), Pj(s)σ ∈ L(j).

As s, sσ ∈ H ∩ [∩k∈{1,...,n}Lk] by (3), we have s, sσ ∈ Lj

⇒ Pj(s) ∈ PjLj and Pj(sσ) = Pj(s)σ ∈ PjLj

⇒ Pj(s), Pj(s)σ ∈ L(j), by Proposition 30.

As we have σ ∈ Σu from (2), we can conclude σ ∈ EligL(j)(Pj(s)) ∩ Σu

We now only need to show Pj(s) ∈ LS(j) ∩ I(j)

From (2), we have s ∈ L(Sup) and thus s ∈ LSj
∩ Ij .

⇒ Pj(s) ∈ PjLSj
∩ PjIj

⇒ Pj(s) ∈ LS(j) ∩ I(j), by Proposition 30.

We now have Pj(s) ∈ L(j) ∩ LS(j) ∩ I(j) and σ ∈ EligL(j)(Pj(s)) ∩ Σu and can conclude by point II
of the serial level-wise controllable definition that:

σ ∈ EligLS(j)∩I(j)(Pj(s)) and thus Pj(s)σ = Pj(sσ) ∈ LS(j) ∩ I(j)

Substituting in for LS(j) and I(j) (by Proposition 30) gives: Pj(sσ) ∈ PjP
−1
ILj

L(SLj
)∩PjP

−1
Ij

L(GIj
)

We note that since ΣIL(j) = ΣILj
and ΣI(j) = ΣIj

we have ΣILj
⊆ Σ(j) and ΣIj

⊆ Σ(j). We can thus
apply Corollary 2 twice, taking first Σa = Σ(j), Σb = ΣILj

, and Lb = L(SLj
) and then Σa = Σ(j),

Σb = ΣIj
, and Lb = L(GIj

). We can thus conclude:

sσ ∈ P−1
ILj

L(SLj
) ∩ P−1

Ij
L(GIj

) = LSj
∩ Ij

Case II complete.

By Cases I and II, we have sσ ∈ LSj
∩ Ij , as required.

QED

6.5.5 Proof of Proposition 32

Proof for Proposition 32 on page 93: If the nth degree (n ≥ 1) parallel interface system composed of

plant components GH , GL1 , . . . ,GLn, supervisors SH , SL1 , . . . ,SLn, and interfaces GI1 , . . . , GIn, is level-

wise controllable with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}(ΣLk
∪̇ ΣRk

∪̇ ΣAk
) ∪̇ ΣH ,
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then

(∀s ∈ L(Plant) ∩ HS ∩ [∩k∈{1,...,n}Ik]) EligL(Plant)∩[∩k∈{1,...,n}Ik](s) ∩ Σu ⊆ EligHS
(s)

where Plant := GH ||sGL1 ||s . . . ||sGLn is the system’s flat plant.

Proof:

Assume that the nth degree (n ≥ 1) parallel interface system is level-wise controllable. (1)

Let s ∈ L(Plant) ∩ HS ∩ [∩k∈{1,...,n}Ik], and σ ∈ EligL(Plant)∩[∩k∈{1,...,n}Ik](s) ∩ Σu (2)

We will now show that this implies σ ∈ EligHS
(s)

It’s sufficient to show that sσ ∈ HS

We first note that s, sσ ∈ H∩ [∩k∈{1,...,n}(Lk∩Ik)] = L(Plant)∩[∩k∈{1,...,n}Ik] by (2). (3)

By examining the definition of Σ(j) for some j ∈ {1, . . . , n} (see definition of jth serial system extrac-
tion: general form on page 89), we see that Σ = ∪k∈{1,...,n}Σ(k)

⇒ (∃j ∈ {1, . . . , n}) σ ∈ Σ(j) (4)

We use this j and note that by (1), we can conclude that system(j), the jth serial system extraction of our
parallel system, is serial level-wise controllable. (5)

We will use point III of the serial level-wise controllable definition to show that Pj(s)σ ∈ HS(j). See
Section 6.3 for the definition of the natural projection Pj .

We first need to show that Pj(s) ∈ H(j) ∩ I(j) ∩ HS(j) and σ ∈ EligH(j)∩I(j)(s) ∩ Σu

From (2) and (3), we have s ∈ H ∩ HS ∩ [∩k∈{1,...,n}Ik]

⇒ Pj(s) ∈ Pj(H) ∩ Pj(HS) ∩ [∩k∈{1,...,n}Pj(Ik)]

⇒ Pj(s) ∈ H(j) ∩ I(j) ∩ HS(j), by Proposition 30.

Similarly, from (3) we can conclude Pj(sσ) ∈ H(j) ∩ I(j)

We next note that σ ∈ Σ(j) (from (4)) implies that Pj(sσ) = Pj(s)σ.

⇒ σ ∈ EligH(j)∩I(j)(Pj(s)) ∩ Σu

We can now conclude by point III of the serial level-wise controllable definition that:
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σ ∈ EligHS(j)(Pj(s)) and thus Pj(s)σ = Pj(sσ) ∈ HS(j)

⇒ Pj(sσ) ∈ Pj(HS), by Proposition 30.

⇒ Pj(sσ) ∈ PjP
−1
IH L(SH)

As ΣIH = ΣIH(j) by Proposition 30, we have ΣIH ⊆ Σ(j). We can thus apply Corollary 2 by taking
Σa = Σ(j), Σb = ΣIH , and Lb = L(SH) and thus conclude:

sσ ∈ P−1
IH L(SH) = HS , as required.

QED
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Chapter 7

Parallel Manufacturing Example

To illustrate the parallel case, we will look at the simple manufacturing system shown in Figure 7.1. The

system is composed of three manufacturing units running in parallel, a testing unit, material feedback,

a packaging unit, plus three buffers to insure a proper flow of material.

For the manufacturing units (indexed by j = I, II, III), we will reuse the systems developed in

Chapter 4 with the packaging unit removed and treating the system as a flat model (i.e. ignoring for

now the system’s own interface structure). Figure 7.2 shows the plant models for each manufacturing

unit.

For the source, sink, test unit, and packaging unit, we introduced new plant models. They are shown

in Figure 7.3. For the three buffers, they will be implemented as supervisors.

7.1 Design Details

For this example, we want to design a parallel case interface system with the structure shown in Figure

7.4. We will treat the three independent manufacturing units as our low levels. Our first step is to

define which plant model exists at which level. This is shown in Figure 7.5.

We now need to define interfaces between the high level and each of the three low levels. Normally,

each interface would be quite different, but since each low level is an instance of the same manufacturing

unit, it makes sense that the interfaces are also all of the same form. Figure 7.6 shows the interface to

low level j. For the remainder of this chapter, we will take j = I, II, III.
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Figure 7.1: Block Diagram of Parallel Plant
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Figure 7.2: Plant Models for Manufacturing Unit j
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Figure 7.3: New Plant Models

We can now define the alphabet partition Σ := [∪̇k∈{I,II,III}(ΣLk
∪̇ΣRk

∪̇ΣAk
)] ∪̇ ΣH as below:

ΣH = {take item, package, allow exit, new part, part f obuff, part passes, part fails,

ret inbuff, deposit part}

ΣRj
= {part ent-j}

ΣAj
= {fin exit-j}

ΣLj
= {start pol-j, attch ptA-j, attch ptB-j, start case-j, comp pol-j, finA attch-j, finB attch-j,

compl case-j, part arr1-j, part lv1-j, partLvExit-j, str exit-j, part arr2-j, recog A-j, recog B-j,

part lv2-j, part arr3-j, part lv3-j, take pt-j, str ptA-j, str ptB-j, compl A-j, compl B-j,

ret pt-j, dip acid-j, polish-j, str rlse-j, attch case-j}
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Figure 7.4: Desired Interface Structure

Our next step is to design new supervisors for our low levels. As we are reusing the manufacturing

unit designed in Chapter 4, we already have a system that is designed to accept a new part, process it

appropriately, and then allow the part to leave the unit; thus we can simply reuse supervisors from that

chapter. They are shown in Figure 7.7 for low level j.

For the high level, we need to design supervisors to implement the input buffer, the output buffer,

and the package buffer. Each buffer should have four slots and should never underflow or overflow. The

corresponding supervisors are shown in Figure 7.8. Finally, we note that the above supervisors were

designed by hand, but we could have also employed synthesis methods.

7.2 The Final System

Now that we have defined the individual components of the system, it is time to put everything together.

We start by examining the jth low level subsystem. This is shown in Figure 7.9, where we have labelled

which DES belong to the jth low level subsystem, the jth low level plant, and the jth low level supervisor

(each formed by the synchronous product of the indicated DES). We can now assemble the complete

parallel system shown in Figure 7.10, minus DES Ensure matFb which we will introduce in Section

7.3. In addition to the low level subsystems, Figure 7.10 shows which DES belong to the high level
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Figure 7.5: Plant Models for Parallel System

subsystem, high level plant, and the high level supervisor (each formed by the synchronous product of

the indicated DES).

We now define the flat system, the flat plant, and the flat supervisor as follows:

G = GH ||sGLI
||sGLII

||sGLIII
||sGII

||sGIII
||sGIIII

Plant := GH ||sGLI
||sGLII

||sGLIII

Sup := SH ||sSLI
||sSLII

||sSLIII
||sGII

||sGIII
||sGIIII

7.3 Evaluating Properties

Our next step is to verify that the flat system is nonblocking and that the flat supervisor is controllable

for the flat plant. To achieve this, we will show that the system is level-wise nonblocking and controllable,

and interface consistent. Our first step is to show that sets ΣH , ΣRj
, ΣAj

, and ΣLj
are pairwise disjoint.

This can be seen by inspection of their definitions.
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Figure 7.7: Supervisors for Low Level j

As we have a parallel system of degree n = 3, we must verify that the j th serial system extrac-

tion: subsystem form are serial level-wise nonblocking, and serial interface consistent, and that the j th

serial system extraction: general form is serial level-wise controllable. We start by defining the serial

extraction systems: system(I), system(II), and system(III). System(I) is defined below, with the DES

definitions shown in Figure 7.11, minus DES Ensure matFb which we will introduce later in section.

The remaining systems are left as an exercise.

Parallel Subsystem Based Form:

GH(I) := GH ||sGIII
||sGIIII

GL(I) := GLI
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GI(I) := GII

ΣH(I) := [∪̇k∈{II,III}ΣIk
)] ∪̇ΣH

ΣL(I) := ΣLI

ΣR(I) := ΣRI

ΣA(I) := ΣAI

Σ(I) := ΣH(I) ∪̇ΣL(I) ∪̇ΣR(I) ∪̇ΣA(I)

Parallel General Form:

GH(I) := GH ||sGIII
||sGIIII

SH(I)) := SH

GL(I) := GLI

SL(I) := SLI
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Figure 7.8: Supervisors for High Level
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Figure 7.10: Complete Parallel System
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Figure 7.11: Serial Extraction System I
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The reader should note that the interfaces and the three low level subsystems, plants, and super-

visors are identical up to event relabelling, and thus isomorphic. This means that the serial level-wise

nonblocking and controllability, and serial interface consistency verifications for them will be identical.

We thus need to only evaluate one low level, and the results will apply to all three.

We now apply our software tool to the serial extraction systems and we find that the high level is

blocking. The reason for this is that the supervisor for the input buffer does not take into account

material feedback. This can be seen by analysing the sequence of events shown in Figure 7.12, and

seeing how it leads DES Test Unit, in buff, and out buff to a blocking state.1 To properly handle

new_part new_partnew_part new_part

new_part

new_partnew_part

part_f_obufffin_exit-II fin_exit-Ifin_exit-III

part_ent-III part_ent-Ipart_ent-II

part_fails

Figure 7.12: Deadlock Sequence

material feedback, we add the supervisor shown in Figure 7.13. This supervisor would be added to

the flat high level supervisor, as shown in Figure 7.10. Figure 7.11 shows the new system(I). We now

apply our research tool to the serial extraction systems and we find that each system is serial level-wise

nonblocking and controllable, and serial interface consistent. We can thus conclude by Theorems 3 and

4, that the flat system is nonblocking and that the flat supervisor is controllable for the flat plant.

Ensure_matFb
new_part new_part new_part new_part

part_passes part_passes part_passes part_passes

Figure 7.13: Material Feedback Supervisor

1The material feedback oversight was left in purposely to show that the interface structure alone does not guarantee

nonblocking.
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7.4 Comparison to Standard Method

The above computation was run on a 750MHz Athlon system, with 512MB of RAM, 2GB of swap, and

running Redhat Linux 6.2. The high level consisted of 3120 states and each low level of 35 states. The

computation took 0.15s to run and required 5MB of memory.

A standard nonblocking verification was done on the flat system which consists of 5,702,550 states.

The computation ran for 40 minutes, required 850MB of memory, and found the system to be nonblock-

ing.2 In short, the standard method took 16438 times longer, and required 170 times more memory.

From this example, we can see that the interface method not only can offer a significant reduction

in verification time and required resources, but that it also greatly improves the re-usability of the

system. For example, a system designer would only need to design supervisors for the manufacturing

unit once, and could then use them in each instantiation. Treating the manufacturing system as a low

level subsystem, we only have to verify the subsystem once even though we use it in multiple places. In

addition, we can change the low level subsystem without affecting the high level as long as the interface

remains the same, and the low level remains serial nonblocking, controllable, and interface consistent.3

This offers a potentially great savings in design and verification time.

7.5 AIP Example

We present a full example application of the theory based on the automated manufacturing system

of the Atelier Inter-établissement de Productique (AIP) [4, 7] in the report [10]. The AIP system is

broken down into a high level and seven low levels corresponding to the three assembly stations and four

transport Units. In total, the example contains 181 DES, with an estimated closed-loop state space of

7 × 1021.

The analysis in [10] finds the system to be interface consistent, level-wise nonblocking, and level-wise

controllable. Thus we can conclude by Theorems 3 and 4, that the flat system is nonblocking and that

the system’s flat supervisor is controllable for the flat plant. For further details of the application, we

refer the reader to [10].

2A controllability check was also run using standard methods and the flat supervisor was found to be controllable for

the flat plant.
3More correctly, the low level continues to satisfy its portion of these properties.
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Chapter 8

Conclusions

Hierarchical interface-based supervisory control offers an effective method to model systems with a

natural client-server architecture. The method offers an intuitive way to model and design the system.

Using multiple low level subsystems allows the subsystems to be independently modelled and verified,

but still allowing a high degree of concurrent operation. As each requirement can be verified using

only one subsystem, the entire plant model never needs to be constructed or traversed (in computer

memory), offering potentially significant savings in computation.

It is clear from the definitions in Chapters 2, 3, 5, and 6 that once we have defined our interface and

event partition, evaluating our high and low level subsystems for compliance can be done independently

of each other. This means we can evaluate one high (low) level subsystem and use it with any low (high)

level subsystem that satisfies the low (high) level portion of our definitions for the given interface and

event partition. This provides us with the infrastructure required for component reuse.

In this report, we present two complete examples that illustrate the method, and then we discuss

a large example based on the automated manufacturing system of the Atelier Inter-établissement de

Productique (AIP) which we describe in detail in [10]. As the example contains 181 DES with an esti-

mated closed-loop state space of 7×1021, it demonstrates that Hierarchical Interface-based Supervisory

Control can be applied to interesting systems of realistic complexity that were previously far beyond

the means of previous monolithic, modular, or hierarchical supervisor design techniques.
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Appendix A

Localization of Nonblocking Conditions

In this appendix we derive equivalent conditions for the serial interface consistency of Section 2.2. that

only involve “local” information - properties of the component and its interface. The result is that these

conditions can now be verified at the component level for arbitrary systems satisfying the alphabet

partitioning criteria, Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA.

Recall definitions from Section 2.1.2

As we will often be referring to different groupings of events, we define the following subsets:

ΣI := ΣR∪̇ΣA Interface Events

ΣIH := ΣH ∪̇ΣR∪̇ΣA Interface & High Level Events

ΣIL := ΣL∪̇ΣR∪̇ΣA Interface & Low Level Events

PIH : Σ∗ → Σ∗
IH

PIL : Σ∗ → Σ∗
IL

PI : Σ∗ → Σ∗
I

and the following useful languages:

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

L := P−1
IL (L(GL)), Lm := P−1

IL (Lm(GL)) ⊆ Σ∗
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I := P−1
I (L(GI)), Im := P−1

I (Lm(GI)) ⊆ Σ∗

We begin with a simple result to aid in the development of the equivalent definitions.

Proposition 33 With the symbols as defined above,

PIH(P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI))) = PIH(P−1
IH (L(GH))ΣA) ∩ PIH(P−1

I (L(GI)))

and

PIL(P−1
IL (L(GL))ΣR ∩ P−1

I (L(GI))) = PIL(P−1
IL (L(GL))ΣR) ∩ PIL(P−1

I (L(GI)))

Proof:

Below we provide a proof of only the first equality. The proof of the second is identical with the

appropriate substitutions.

(⊆) Follows immediately from the fact that for L1, L2 ⊆ Σ∗, we have PIH(L1 ∩ L2) ⊆ PIH(L1) ∩

PIH(L2).

Taking L1 to be P−1
IH (L(GH))ΣA and L2 to be P−1

I (L(GI)), we have the desired result.

(⊇) Suppose s ∈ PIH(P−1
IH (L(GH))ΣA) ∩ PIH(P−1

I (L(GI)))

If s ∈ PIH(P−1
I (L(GI))) then s ∈ P−1

I (L(GI)) since ΣI ⊆ ΣIH .

Also, if s ∈ PIH(P−1
IH (L(GH))ΣA) then s ∈ PIH(P−1

IH (L(GH)))ΣA since ΣA ⊆ ΣIH .

Thus s = s′α for some s′ ∈ PIH(P−1
IH (L(GH))) and α ∈ ΣA. But then it also follows that s′ ∈

P−1
IH (L(GH)) since PIH(s′) = s′. So s ∈ P−1

IH (L(GH))ΣA.

Therefore

s ∈ P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI))

and PIH(s) = PIH(s′α) = PIH(s′)PIH(α) = s′α = s, so

s ∈ PIH(P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI)))

as required.

QED

As a finally preliminary we need to define restrictions of a pair of projection functions. Because

ΣI ⊆ ΣI ∪ ΣH = ΣIH , we can restrict PI : Σ∗ → ΣI∗, the natural projection from Σ∗ to Σ∗
I , to ΣIH ,

denoted PI |Σ
∗
IH : Σ∗

IH → Σ∗
I . This function takes strings over ΣIH and returns a string over ΣI in the
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obvious way by deleting all occurrences of events from ΣIH − ΣI in a string. Similarly we can define

PI |Σ
∗
IL : Σ∗

IL → Σ∗
I .

We now turn our attention to the High Level Task Completion Agreement Property

3. (∀s ∈ H ∩ I) EligI(s) ∩ ΣA ⊆ EligH(s) High level task completion agreement

and the Low level task request agreement Property.

4. (∀s ∈ L ∩ I) EligI(s) ∩ ΣR ⊆ EligL(s) Low level task request agreement

of the serial interface consistent definition.

The following theorem provides equivalent definitions for these two properties that are formulated

solely in terms of events that are local to a level.

Theorem 5

(i) (∀s ∈ H ∩ I) EligI(s) ∩ ΣA ⊆ EligH(s) iff L(GH)ΣA ∩ PI |Σ
∗
IH

−1(L(GI)) ⊆ L(GH)

(ii) (∀s ∈ L ∩ I) EligI(s) ∩ ΣR ⊆ EligL(s) iff L(GL)ΣR ∩ PI |Σ
∗
IL

−1(L(GI)) ⊆ L(GL)

Proof:

Once again we will only provide proof of the high level result since the proof of the low level result

can be obtained by the obvious substitutions.

Condition 3 above can be reformulated in the more standard notation of [25] as:

(H ∩ I)ΣA ∩ I ⊆ H

Due to the fact that I is prefix closed, (H ∩ I)ΣA ∩ I = HΣA ∩ I. Thus we can simplify the above to:

HΣA ∩ I ⊆ H

Replacing H and I by their definitions we obtain

P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI)) ⊆ P−1
IH (L(GH)) (A.1)

We will use this equivalent formulation in place of the left hand side of (i) of the theorem in the remainder

of the proof.

(⇒) Applying PIH to both sides of (A.1) we obtain

PIH(P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI))) ⊆ PIH(P−1
IH (L(GH))) (A.2)
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By Proposition 33, we can distribute PIH over the intersection on the left side of (A.2) to obtain:

PIH(P−1
IH (L(GH))ΣA) ∩ PIH(P−1

I (L(GI))) ⊆ PIH(P−1
IH (L(GH)))

We can then use the fact because ΣA ⊆ ΣIH we have PIH(P−1
IH (L(GH))ΣA) = PIH(P−1

IH (L(GH)))ΣA =

L(GH)ΣA so the above simplifies to:

L(GH)ΣA ∩ PIH(P−1
I (L(GI))) ⊆ L(GH)

Then it follows that PIH ◦ P−1
I = (PI |Σ

∗
IH)−1 this simplifies to:

L(GH)ΣA ∩ PI |ΣIH
−1(L(GI)) ⊆ L(GH) (A.3)

(⇐) Suppose (A.3) holds. We can reverse the preceding argument to obtain (A.2). By Proposition 3,

subset inclusion is preserved under inverse projection so applying P−1
IH to both sides of (A.2) we obtain:

P−1
IH · PIH(P−1

IH (L(GH))ΣA ∩ P−1
I (L(GI))) ⊆ P−1

IH · PIH(P−1
IH (L(GH)))

We then have

P−1
IH (L(GH))ΣA ∩ P−1

I (L(GI)) ⊆ P−1
IH · PIH(P−1

IH (L(GH))ΣA ∩ P−1
I (L(GI)))

⊆ P−1
IH · PIH(P−1

IH (L(GH)))

= P−1
IH (L(GH))

where the first inequality follow from the fact that for any L ⊆ Σ∗, L ⊆ P−1
IH · PIH(L) and the final

equality follows from Proposition 6.

QED

Part (i) of Theorem 5 is just stating that language generated by the high level subsystem is control-

lable with respect to the interface when answer events are treated as uncontrollable. Similarly, part

(ii) of Theorem 5 states that the language generated by the low level subsystem is controllable with re-

spect to the interface when request events are treated as uncontrollable. We thus see that the interface

consistency definitions require that the interface can control communications between the components.

The two remaining conditions of the serial interface consistent definition are:
5. (∀s ∈ Σ∗.ΣR ∩ L ∩ I)
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EligL∩I(sΣ∗
L) ∩ ΣA = EligI(s) ∩ ΣA Low level task completion agreement

where EligL∩I(sΣ∗
L
) := ∪l∈Σ∗

L
EligL∩I(sl)

6. (∀s ∈ L ∩ I)

s ∈ Im ⇒ (∃l ∈ Σ∗
L) sl ∈ Lm ∩ Im Low level marking agreement

Using the fact that PIL(L ∩ I) = L(GL||sGI) it follows directly from the definitions that these two

properties can be reformulated locally as:

5′. (∀s ∈ Σ∗
IL.ΣR ∩ L(GL||sGI))

EligL(GL||sGI)(sΣ
∗
L) ∩ ΣA = EligL(GI)(PI(s)) ∩ ΣA Low level task completion agreement

where EligL(GL||sGI)(sΣ
∗
L
) := ∪l∈Σ∗

L
EligL(GL||sGI)(sl)

6′. (∀s ∈ L(GL||sGI))

PI(s) ∈ Lm(GI) ⇒ (∃l ∈ Σ∗
L) sl ∈ Lm(GL||sGI) Low level marking agreement.

121



Bibliography

[1] N. Alsop. Formal Techniques for the Procedural Control of Industrial Processes. PhD thesis, Depart-

ment of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology

and Medicine, London, 1996.

[2] Rajeev Alur and Thomas A. Henzinger. Local liveness for compositional modelling of fair reactive

systems. In Proc. of seventh Int. Conf. on Computer-aided Verification, Lecture Notes in Computer

Science, pages 166–179, 1995.

[3] Adnan Aziz, Vigyan Singhal, and Gitanjali M. Swamy. Minimizing interacting finite state machines:

A compositional approach to language containment. In Proc. of IEEE Int. Conf. on Computer

Design: VLSI in Computers and Processors, pages 255–261, Cambridge, Massachusetts, Oct 1994.

[4] Bertil Brandin and François Charbonnier. The supervisory control of the automated manufacturing

system of the AIP. In Proc. Rensselaer’s 1994 Fourth International Conference on Computer

Integrated Manufacturing and Automation Technology, pages 319–324, Troy, Oct 1994.

[5] Y. Brave and M. Heymann. Control of discrete event systems modeled as hierarchical state ma-

chines. IEEE Trans. on Automatic Control, 38(12):1803–1819, Dec 1993.

[6] P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite machine. Systems Control Letters,

25:257–263, July 1995.

[7] F. Charbonnier. Commande par supervision des systèmes à événements discrets: application à
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