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Abstract— Hierarchical Interface-based Supervisory Control
(HISC) decomposes a discrete-event system (DES) into a high-
level subsystem which communicates withn ≥ 1 low-level
subsystems, through separate interfaces which restrict the in-
teraction of the subsystems. It provides a set of local conditions
that can be used to verify global conditions such as nonblocking
and controllability. The current HISC verification and synthesis
algorithms are based upon explicit state and transition listings
which limit the size of a given level to about10

7 states when
1GB of memory is used.

In this paper, we extend the HISC approach by introducing a
set of predicate based fixed point operators that allow us to do
a per level synthesis to construct for each level a maximally
permissive supervisor that satisfies the corresponding HISC
conditions. We prove that these fixpoint operators compute
the required level-wise supremal languages. We then present
algorithms that implement the fixpoint operators. Based on
these algorithms, a symbolic implementation is briefly discussed
which can be implemented using Binary Decision Diagrams.

We also discuss a method to implement our synthesized
supervisors in a more compact manner.

A large manufacturing system example (worst case state
space on the order of10

30) extended from the AIP example
is briefly discussed. The example showed that we can now
handle a given level with a statespace as large as10

15 states,
using less than 160MB of memory. This represents a significant
improvement in the size of systems that can be handled by the
HISC approach. A software tool for synthesis and verification
of HISC systems using our approach was also developed.

I. I NTRODUCTION

In the area of Discrete-Event Systems (DES), two common
tasks are to verify that a composite system, based on a
cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is
the combinatorial explosion of the product state space.

The Hierarchical Interface-based Supervisory
Control(HISC) framework was proposed by Leducet al.
in [7]–[11] to alleviate the state explosion problem. The
HISC approach decomposes a system into ahigh-level
subsystemwhich communicates withn ≥ 1 parallel low-
level subsystemsthrough separate interfaces that restrict
the interaction of the subsystems. This structure permits
the derivation of a set of local consistency properties that
can be used to verify if a discrete-event system is globally
nonblocking and controllable. Each of these consistency
properties can be verified using a single subsystem and its
interface(s); thus the complete system model never needs

to be stored in memory or traversed, offering potentially
significant savings in computational resources.

In [4], Dai and Leduc introduced a HISC based syn-
thesis method that replaced each level’s supervisor with a
corresponding specification DES, and then does a per level
synthesis to construct for each level a maximally permissive
supervisor that satisfies the corresponding HISC conditions.
However, both the HISC synthesis and verification method
are based upon explicit state and transition listings which
limit the size of a given level to about107 states when 1GB
of memory is used.

As each subsystem in HISC is typically modeled as a
group of plant DES and a group of specification/supervisor
DES, each subsystem-wide state can be represented as a
vector, where each element of the vector is the state of a
component DES. Therefore, we can use Binary Decision
Diagrams (BDD: [2], [6]) to represent the state space and
transitions for each subsystem, and develop algorithms based
on BDD representations to verify or synthesize supervisors
for our HISC system. As we will see, by using BDD
representation and algorithms we will be able to handle much
larger subsystems, allowing HISC to be applied to even larger
systems.

Using IDD (Integer Decision Diagram, an extension of
BDD) to verify and synthesize flat DES have previously been
investigated by Zhang et al [18], while Vahidi et al [15] have
investigated applying BDD to flat systems.

Ma et al [12], [13] presented a top-down multi-level design
model called State Tree Structures (STS), which was initiated
in [16] by using the idea of state charts [5]. Ma used BDD
based algorithms that allowed him to model and synthesize a
state-based supervisor for a system with an estimated state-
space on the order of1024.

In this paper, we first discuss DES and predicate prelim-
inaries, and then introduce the HISC approach in Sections
III-IV. As the HISC method has already been explained and
justified in detail in [10], [11], and [8], we will only discuss
it briefly here. For a small illustrative HISC example, please
see [10].

For the remainder of the paper we will be presenting our
new results from [14], beginning with the predicate based
fixed point operators we developed. They allow us to do a
per level synthesis to construct for each level a maximally
permissive supervisor that satisfies the corresponding HISC



conditions. We prove that these fixpoint operators compute
the required level-wise supremal languages.

We then present algorithms that implement the fixpoint
operators. We also briefly discuss a predicate based HISC
verification method derived from the synthesis method.
Based on these algorithms, a symbolic implementation is
briefly discussed which can be implemented using Binary
Decision Diagrams.

We next discuss a method to implement our synthesized
supervisors in a more compact manner. Finally, we discuss
a large manufacturing example (estimated worst case state-
space on the order of1030) extended from the AIP example
in [7], [8]. The example demonstrates the improved scalabil-
ity that our symbolic approach offers.

II. PRELIMINARIES

Supervisory control theory provides a framework for the
control of discrete-event systems (DES), systems that are
discrete in space and time. For a detailed exposition of DES,
see [17]. Below, we present a summary of the terminology
that we use in this paper.

A. DES

Let Σ be a finite set of distinct symbols (events), andΣ∗

be the set of all finite sequences of events, includingǫ, the
empty string.Let L ⊆ Σ∗ be a languageover Σ. A string
t ∈ Σ∗ is a prefix ofs ∈ Σ∗ (written t ≤ s) if s = tu, for
someu ∈ Σ∗. The prefix closureof languageL (denoted
L) is defined asL = {t ∈ Σ∗ | t ≤ s for somes ∈ L}. Let
Pwr(Σ) denote the power set ofΣ (i.e. all possible subsets
of Σ).

A DES automaton is represented as a 5-tupleG =
(Y,Σ, δ, yo, Ym) whereY is the state set,Σ is the event set,
the partial functionδ : Y × Σ→ Y is the transition function,
yo is the initial state, andYm is the set of marker states. The
functionδ is extended toδ : Y ×Σ∗ → Y in the natural way.
The notationδ(y, s)! means thatδ is defined fors ∈ Σ∗ at
statey. For DESG, the language generated is denoted by
L(G), and is defined to beL(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behaviorof G, is defined asLm(G) := {s ∈
L(G)| δ(yo, s) ∈ Ym}.

The reachable state subset of DESG, denotedYr, is: Yr :=
{y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}. A DES G is reachable
if Yr = Y . The coreachable state subset, denoted byYcr,
is Ycr := {y ∈ Y | (∃s ∈ Σ∗) δ(y, s) ∈ Ym}. A DES is
coreachableif Ycr = Y . We say the DES istrim if it is
both reachable and coreachable. We will always assume that
a DES has a finite state and event set and is deterministic.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗
1
, andL2 ⊆ Σ∗

2
. For i = 1, 2,

s ∈ Σ∗, and σ ∈ Σ, we define thenatural projectionPi :
Σ∗ → Σ∗

i according to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The synchronous product of languagesL1 andL2, denoted
L1||L2, is defined to be:

L1||L2 = P−1

1
(L1) ∩ P−1

2
(L2)

where P−1

i : Pwr(Σ∗
i ) → Pwr(Σ∗) is the inverse image

function of Pi.
The synchronous product of DESG1 =

(Y1,Σ1, δ1, yo1
, Ym1

) and G2 = (Y2, Σ2, δ2, yo2
, Ym2

),
denotedG1||G2, is defined to be a reachable DESG with
and event setΣ = Σ1 ∪ Σ2 and properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2)

A DES G is said to benonblockingif Lm(G) = L(G).
This is equivalent to saying that every reachable state is also
coreachable. We say that DESG represents a languageK ⊆
Σ∗ if G is nonblocking andLm(G) = K. We thus have
L(G) = K.

For G1 and G2, if Σ1 = Σ2 we can define theproduct
of the two DES as:

G1 ×G2 := (Q1 ×Q2,Σ, δ1 × δ2, (q10
, q20

), Q1m
×Q2m

),

where δ1 × δ2 : Q1 × Q2 × Σ → Q1 × Q2 is given
by (δ1 × δ2)((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ)), whenever
δ1(q1, σ)! andδ2(q2, σ)!.

B. Predicates and Predicate Transformers

We only give a brief introduction here. Please refer to [14]
for more details.

Let G = (Q,Σ, δ, q0, Qm) be a DES. Apredicate P

defined onQ is a functionP : Q→ {1, 0}. P is identified by
a corresponding state subsetQP := {q ∈ Q|P (q) = 1} ⊆ Q.

If q ∈ QP , we write q |= P and sayq satisfiesP . We
write Pred(Q) for the set of all predicates defined onQ.
For predicatesP1 andP2, we defineP1 − P2 = P1 ∧ ¬P2.

The two special predicatestrue and false are identified
by Q and∅, respectively. The predicatePm is identified by
Qm. If Q is understood, forQ1 ⊆ Q, denote the predicate
identified byQ1 aspr(Q1).

A predicate transformeris a functionf : Pred(Q) →
Pred(Q). We now introduce several predicate transformers
for P ∈ Pred(Q) which will be used later on. See [14] for
more formal definitions.

• The reachability predicateR(G, P ) is defined to hold
precisely on those states that can be reached inG from
q0 via states satisfyingP.

• The coreachability predicateCR(G, P ) is defined to
hold precisely on those states that can reach a marker
state inG via states satisfyingP.

• With G and Σ′ ⊆ Σ fixed, TR(G, P,Σ′) is defined
to hold precisely on those states that can reach a state
satisfying P in G only via transitions with events in
Σ′.

• With DES G, P ′ ∈ Pred(Q) and Σ′ ⊆ Σ fixed,
CR(G, P ′,Σ′, P ) is defined to hold precisely on those
states that can reach a state satisfyingP ′ in G via states
satisfyingP and transitions with events inΣ′.



Finally, for P ∈ Pred(Q) we define L(G, P ) to be
the closed languageinduced by P as L(G, P ) := {w ∈
Σ∗|(∀v ≤ w)δ(q0, v) |= P}. Similarly, we defineLm(G, P )
to be the marked language induced byP as Lm(G, P ) :=
{w ∈ L(G, P )|δ(q0, w) ∈ Qm}.

III. HISC OVERVIEW

An HISC system currently is a two-level system which
includes onehigh-level subsystemand n ≥ 1 low-level
subsystems. The high-level subsystem communicates with
each low-level subsystem through a separateinterface.We
will also refer to the high-level or a given low-level as a
module.

In order to restrict the information flow at the interface,
the system alphabet is partitioned into pairwise disjoint
alphabets:

Σ := ΣH ∪̇
˙⋃

k∈{1,...,n}

[ΣLk
∪̇ΣRk

∪̇ΣAk
] (1)

The events inΣH are high-level eventsand the events
in ΣL low-level eventsas these events appear only in the
high-level and low-level subsystems, respectively. As the
interfaceis only concerned with communication between the
two subsystems, it only contains events that are common to
both levels of the hierarchy,ΣR∪̇ΣA, which are collectively
known as the set ofinterface events, denotedΣI . The events
in ΣR, calledrequest events, represent commands sent from
the high-level subsystem to the low-level subsystem. The
events inΣA are answer eventsand represent the low-level
subsystem’s responses to the request events.

In the remainder of this paper,j is always an index with
range{1, . . . , n}. The high-level subsystem is modeled by
DES GH , which is the product ofthe high-level plantGp

H

and the high-level supervisorSH (both are defined over
event setΣH ∪̇(∪̇k∈{1,...,n}[ΣRk

∪̇ΣAk
])). The jth low-level

subsystem is modeled by DESGLj
, which is the product of

thejth low-level plant Gp
Lj

andthejth low-level supervisor
SLj

(both are defined over event setΣLj
∪̇ΣRj

∪̇ΣAj
), and

the jth interface is modeled byGIj
(defined over event

set ΣRj
∪̇ΣAj

). The overall system structure is shown in
Figure 1.

For controllability, the event setΣ is also partitioned as
Σ = Σc∪̇Σu, whereΣc is the controllable event set andΣu

is the uncontrollable event set.
We refer to DESGH := GH ‖ GI1

‖ . . . ‖ GIn
as the

high-leveland DESGLj
:= GIj

‖ GLj
as thejth low-level.

For convenience, the following event sets are also defined:

ΣIj
:= ΣRj

∪̇ΣAj
ΣA :=∪̇k∈{1,...,n}ΣAk

ΣIH := (∪̇k∈{1,...,n}ΣIk
)∪̇ΣH ΣILj

:=ΣLj
∪̇ΣIj

ΣIL := ∪̇k∈{1,...,n}ΣILk
Σhu :=ΣIH ∩ Σu

Σhc := ΣIH ∩ Σc Σluj
:=ΣILj

∩ Σu

Σlcj
:= ΣILj

∩ Σc

The interface DES ensures that communication occurs
between levels in a serial fashion. A request from the high-
level is followed by an answer from the low-level before the

Fig. 1. HISC system structure

next request is issued to the low-level subsystem. To enforce
such a mechanism, the interface DES is required to be a
command-pair interfaceas defined below.

Definition 1: For the nth degree interface system com-
posed of plant componentsGp

H ,G
p
L1

, . . . ,G
p
Ln

, supervisors
SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
, the jth

interface DESGIj
= (Xj ,ΣRj

∪̇ΣAj
, ξj , x0j

,Xjm
) is a

command-pair interfaceif:
(A) L(GIj

) ⊆ (ΣRj
.ΣAj

)∗

(B) Lm(GIj
) = (ΣRj

.ΣAj
)∗ ∩ L(GIj

)
An HISC system is actually a structuredflat system. The

flat plant is defined asPLANT := G
p
H ‖ G

p
L1
‖ · · · ‖ G

p
Ln

and theflat supervisoris defined asSUP := SH ‖ SL1
‖

· · · ‖ SLn
‖ GI1

‖ · · · ‖ GIn
.

Therefore, bothPLANT andSUP are defined over event
setΣ. The whole flat system is the product of the flat super-
visor and the flat plant:SYSTEM := SUP×PLANT

We want to ensureSYSTEM satisfies:
1) L(SYSTEM)Σu ∩ L(PLANT) ⊆ L(SYSTEM)
2) Lm(SYSTEM) = L(SYSTEM)

IV. L OCAL CONDITIONS

We now present a set of local properties that will allow
us to verify the global properties of controllability and
nonblocking. The conditions here are based on [8] and [9].
Please refer to them for a more detailed discussion.

To make our discussion of synthesis simpler later, we wish
to express our high-level and low-level as product DES. To
do this, we need to extend1 the event sets of the interfaces.

Definition 2: For the nth degree interface system that
respects the alphabet partition given by (1) and is com-
posed of plant componentsGp

H ,G
p
L1

, . . . ,G
p
Ln

, supervi-
sors SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
, for

1The selfloop operator here is as defined in TCT [17] and simply adds
selfloop transitions for each symbol in the indicated event set, at every state
in the DES.



all j ∈ {1, . . . , n}, define:Gh
Ij

:= selfloop(GIj
,ΣIH −

ΣIj
), Gl

Ij
:= selfloop(GIj

,ΣLj
) and Gh

I := Gh
I1
× · · · ×

Gh
In

.

We now present the properties that the system must satisfy
to ensure that it interacts with the interfaces correctly. This
definition is a bit different from the one presented in [8], but
equivalent as we will show. We use it as it makes our proofs
easier.

Definition 3: The nth degree interface system com-
posed of plant componentsGp

H ,G
p
L1

, . . . ,G
p
Ln

, supervisors
SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
is interface

consistentwith respect to the alphabet partition given by (1),
if for all j ∈ {1, . . . , n}, the following conditions are
satisfied:

• Multi-level Properties

1) The event set ofGp
H and SH is ΣIH , and the event

set ofGp
Lj

and SLj
is ΣILj

.

2) GIj
is a command-pair interface.

• High-level Properties

3. L(GH)ΣAj
∩ L(Gh

Ij
) ⊆ L(GH)

• Low-level Properties

4. L(GLj
)ΣRj

∩ L(Gl
Ij

) ⊆ L(GLj
)

5. (∀s ∈ L(GLj
))(∀ρ ∈ ΣRj

)(∀α ∈ ΣAj
)

sρα ∈ L(Gl
Ij

)⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ L(GLj
)

6. (∀s ∈ L(GLj
)) s ∈ Lm(Gl

Ij
) ⇒ (∃l ∈ Σ∗

Lj
) sl ∈

Lm(GLj
)

Proposition 1: Definition 3 is equivalent to theinterface
consistencydefinition from [8].

Proof: See proof in [14].
The next definition ensures that each module is locally

nonblocking.
Definition 4: The nth degree interface system com-

posed of plant componentsGp
H ,G

p
L1

, . . . ,G
p
Ln

, supervisors
SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
is said to be

level-wise nonblockingwith respect to the alphabet partition
given by (1), if the following two conditions are satisfied:

1) Lm(GH) = L(GH)
2) (∀j ∈ {1, . . . , n}) Lm(GLj

) = L(GLj
)

Theorem 1 (From [8]): If the nth degree interface system
composed of plant componentsGp

H ,G
p
L1

, . . . ,G
p
Ln

, super-
visors SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
, is

level-wise nonblocking and interface consistent with respect
to the alphabet partition given by (1), then

Lm(SYSTEM) = L(SYSTEM)
We next give the controllability requirements for each

module.
Definition 5: The nth degree interface system com-

posed of plant componentsGp
H ,G

p
L1

, . . . ,G
p
Ln

, supervisors
SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
is said to be

level-wise controllablewith respect to the alphabet partition
given by (1), if for all j ∈ {1, . . . , n} the following two
conditions are satisfied:

1) The alphabet ofGp
H and SH is ΣIH , the alphabet of

G
p
Lj

and SLj
is ΣILj

, and the alphabet ofGIj
is ΣIj

2) L(GLj
)Σluj

∩ L(Gp
Lj

) ⊆ L(GLj
)

3) L(GH)Σhu ∩ L(Gp
H ×Gh

I ) ⊆ L(GH)
Theorem 2 (From [8]): If the nth degree interface system

composed of plant componentsGp
H ,G

p
L1

, . . . ,G
p
Ln

, super-
visors SH ,SL1

, . . . ,SLn
, and interfacesGI1

, . . . ,GIn
, is

level-wise controllable with respect to the alphabet partition
given by (1), then

L(SYSTEM)Σu ∩ L(PLANT) ⊆ L(SYSTEM)

V. SYNTHESIS OFHISC

In [7], [8], [10], [11], the supervisors in an HISC system
were designed by hand, and then the system was checked to
see if it was interface consistent, level-wise controllable and
nonblocking. If not, it was modified by the designer until it
was. However, for a complicated system it is very desirable to
synthesize the supervisors from specifications. In this section,
we will discuss how to construct supervisors whose marked
languages are supremal controllable sublanguages of a set of
per module specifications that satisfies the HISC conditions
for the given high or low-level. We say such supervisors are
locally maximally permissiblefor their level. We will then
give predicate based algorithms. The algorithms can easily
be implemented by using BDD.

In the previous section, we specified that anth degree
interface system is composed of plants, supervisors and
interfaces. For synthesis, we will assume that our interface
system is composed of plants, specifications and interfaces.
Essentially, we will replace the high-level supervisorSH by
a specification DESEH (defined overΣIH ), and for allj ∈
{1, . . . , n}, we will replace thejth low-level supervisorSLj

by a specification DESELj
(defined overΣILj

). We will
refer to such a system as anth degree specification interface
system,and call the original system with supervisors anth

degree supervisor interface system.We will refer to a system
as anth degree interface systemwhen we do not wish to
make a distinction.

For clarity, we now interpret some definitions used in
the previous section in terms of anth degree specification
interface system.

GH := EH ×G
p
H GLj

:=ELj
×G

p
Lj

GH := EH ×G
p
H ×Gh

Ij
GLj

:=ELj
×G

p
Lj
×Gl

Ij

We now give the starting point for the synthesis process.
These are conditions the system must meet as a minimum,
and correspond to parts of the interface consistency and level-
wise controllability definitions that can not be corrected (if
the system fails to satisfy these conditions) in the synthesis
process that we will present.

Definition 6: The nth degree interface specification
system composed of plant componentsG

p
H ,G

p
L1

, . . . ,G
p
Ln

,
specifications EH , EL1

, . . . , ELn
, and interfaces

GI1
, . . . ,GIn, is HISC-valid with respects to the alphabet

partition given by (1), if for allj ∈ {1, . . . , n}, the following
conditions are satisfied:

1) The alphabet ofGp
H and EH is ΣIH .

2) The alphabet ofGp
Lj

and ELj
is ΣILj

.



3) GIj
is a command-pair interface.

Let Φ be anth degree HISC-valid specification interface
system that respects the alphabet partition given by (1) and
is composed of plant componentsG

p
H ,G

p
L1

, . . . ,G
p
Ln

, spec-
ificationsEH ,EL1

, . . . ,ELn
, and interfacesGI1

, . . . ,GIn.

As the predicate algorithms will operate on the states of
the DES, we give the tuple definitions for the following DES
for later reference:

GH := (QH ,ΣIH , δH , qH0
, QHm

)

G
p
H := (YH ,ΣIH , ηH , yH0

, YHm
)

EH := (ZH ,ΣIH , ζH , zH0
, ZHm

)

Gh
Ij

:= (Xh
j ,ΣIH , ξh

j , xh
j0

,Xh
jm

)

Gh
I := (Xh,ΣIH , ξh, xh

0
,Xh

m)

GLj
:= (QLj

,ΣILj
, δLj

, qLj0 , QLjm
)

G
p
Lj

:= (YLj
,ΣILj

, ηLj
, yLj0 , YLjm

)

ELj
:= (ZLj

,ΣILj
, ζLj

, zLj0 , ZLjm
)

Gl
Ij

:= (X l
j ,ΣILj

, ξl
j , x

l
j0

,X l
jm

).

So, GH = (ZH × YH ×Xh,ΣIH , ζH × ηH×

ξh, (zH0
, yH0

, xh
0
), ZHm

× YHm
×Xh

m)

GLj
= (ZLj

× YLj
×X l

j ,ΣILj
, ζLj

× ηLj
×

ξl
j , (zLj0 , yLj0 , x

l
j0

), ZLjm
× YLjm

×X l
jm

)

Gh
I = (Xh

1
× · · · ×Xh

n ,ΣIH , ξh
1
× · · · ×

ξh
n, (xh

10
, · · · , xh

n0
),Xh

1m
× · · · ×Xh

nm
)

A. High-level Supervisor Synthesis

In this section, we show how to synthesize a locally
maximally permissible high-level supervisor for the system
Φ. Below are the properties the marked language of our high-
level supervisor must satisfy for HISC. They correspond to
point 3 of Defn. 3 and point 3 of Defn. 5.

Definition 7: For systemΦ, let K ⊆ Σ∗
IH . K is high-

level interface controllable(HIC) with respect toΦ if for all
j ∈ {1, . . . , n},

1) KΣhu ∩ L(Gp
H ×Gh

I ) ⊆ K

2) KΣAj
∩ L(Gh

Ij
) ⊆ K

Clearly, the empty language∅ is HIC with respect toΦ.
For an arbitrary languageE ⊆ Σ∗

IH , we define the set of
all sublanguages ofE that are HIC with respect toΦ as

CH(E) := {K ⊆ E|K is HIC with respect toΦ.}

Proposition 2: For systemΦ, CH(E) is nonempty and is
closed under arbitrary unions. In particular,CH(E) contains
a (unique) supremal element, denotedsup CH(E).

Proof: See proof in [14].
For systemΦ, if we computesup CH(Lm(GH)), then a

DES representing this sublanguage is a locally maximally
permissible high-level supervisor. As the supervisor would
be nonblocking, our new system would thus also satisfy point
1 of Defn. 4.

To computesup CH(Lm(GH)), we want to define a suit-
able fixpoint operator. For functionf : X → X where
X is an arbitrary set, an elementx ∈ X is a fixpoint

of f if x = f(x). We will also use the notationfk(x),
k ∈ {0, 1, . . .}, to meank applications off in a row with
f0(x) := x.

If we were defining a function that would operate on a
languageK ∈ Pwr(Σ∗

IH), we would want it to evaluate:
Lm(GH)∩ sup CH(K). However, we need a predicate based
operator that we can apply to the states of our system.

Let Pred(QH) be the set of all predicates onQH , the
state set ofGH . For anyq ∈ QH , asGH := EH ×G

p
H ×

Gh
Ij

there must exist uniquez ∈ ZH , y ∈ YH and x ∈

Xh such thatq = (z, y, x). For statex ∈ Xh, there must
also exist uniquex1 ∈ Xh

1
, . . . , xn ∈ Xh

n such thatx =
(x1, . . . , xn). For P ∈ Pred(QH), we now show how to
computesup CH(L(GH , P )).

Definition 8: For systemΦ, define the functionPHIC :
Pred(QH)→ Pred(QH) for P ∈ Pred(QH) as:

PHIC(P ) := ¬TR(GH ,¬P ∨ pr(BadH),Σhu ∪ ΣA),

where BadH := {q ∈ QH | ((∃σu ∈ Σhu) (ηH ×
ξh((y, x), σu)! & ζH(z, σu) 6 !)) or ((∃j ∈ {1, . . . , n})(∃σaj

∈

ΣAj
) (ξh

j (xj , σaj
)! & ζH × ηH × ξh

1
× · · · × ξh

j−1
× ξh

j+1
× · · · ×

ξh
n((z, y, x1, . . . , xj−1, xj+1, . . . , xn), σaj

) 6 !))}
We show in [14] for arbitraryP ∈ Pred(QH), that

sup CH(L(GH , P )) = L(GH ,PHIC(P )).
We now provide a predicate based method to compute

Lm(GH) ∩ L(GH ,PHIC(P )).
Proposition 3: For systemΦ, the following holds:

(∀P ∈ Pred(QH))
Lm(GH) ∩ L(GH , P ) = Lm(GH , CR(GH , P ))

Proof: See proof in [14].

The Algorithm to Compute sup CH(Lm(GH))

We now put everything together for the high-level and
construct our algorithm.

Definition 9: For systemΦ, define the functionΓH :
Pred(QH)→ Pred(QH) according to

(∀P ∈ Pred(QH)) ΓH(P ) := CR(GH ,PHIC(P ))
Theorem 3:For systemΦ, the following two points hold:

1) There existsk ∈ {0, 1, 2, . . .} such thatk ≤ |QH | and
Γk

H(true) is the greatest fixpoint of the functionΓH .
2) sup CH(Lm(GH)) = Lm(GH ,Γk

H(true)).
Proof: See proof in [14].

We can thus take our high-level supervisor to beSH de-
fined over event setΣIH , with L(SH) = L(GH , Γk

H(true))
and Lm(SH) = Lm(GH ,Γk

H(true)), where k is from
Theorem 3. The supervisorSH can be built by remov-
ing states fromGH that do not satisfyΓk

H(true). It can
then be made trim by removing states that do not satisfy
R(GH ,Γk

H(true)). The algorithm to computeΓk
H(true) is

given below.

B. Low-level Supervisor Synthesis

In this section, we show how to synthesize a locally max-
imally permissiblejth low-level supervisor for the system
Φ. We first only discuss part of the conditions (ones similar
to the high-level conditions) that the marked language of



our jth low-level supervisor must satisfy for HISC. They
correspond to point 4 of Defn. 3 and point 2 of Defn. 5.

Definition 10: LetK ⊆ Σ∗
ILj

. K is jth low-level P4 inter-
face controllable (LPCj) with respect toΦ if the following
conditions are satisfied:

1) KΣluj
∩ L(Gp

Lj
) ⊆ K

2) KΣRj
∩ L(Gl

Ij
) ⊆ K

Clearly, the empty language∅ is LPCj with respect toΦ.

Algorithm 1 Computing the greatest fixpoint ofΓH

1: PbadH
← pr(BadH);

2: P1 ← true;
3: repeat
4: P2 ← P1;
5: P1 ← CR(GH ,¬TR(GH ,¬P2 ∨PbadH

,Σhu ∪ΣA));
6: until P1 = P2

7: returnP1;

For an arbitrary languageE ⊆ Σ∗
ILj

, we define the set of
all sublanguages ofE that areLPCj with respect toΦ as

LPCj(E) := {K ⊆ E |K is LPCj with respect toΦ.}

Proposition 4: For systemΦ, LPCj(E) is nonempty and
is closed under arbitrary unions. In particular,LPCj(E) con-
tains a (unique) supremal element, denotedsupLPCj(E).

Proof: See proof in [14].
Let Pred(QLj

) be the set of all predicates onQLj
, the

state set ofGLj
. For anyq ∈ QLj

, asGLj
= SLj

×GLj
×

Gl
Ij

, there must existz ∈ ZLj
, y ∈ YLj

and x ∈ X l
j such

that q = (z, y, x).
Definition 11: For systemΦ, define the functionPLPCj :

Pred(QLj
)→ Pred(QLj

) for P ∈ Pred(QLj
) as:

PLPCj(P ) := ¬TR(GLj
,¬P ∨ pr(BadLj

),Σluj
∪ ΣRj

),

where BadLj
= {q ∈ QLj

|((∃σu ∈ Σluj
) ηLj

(y, σu)!&
ζLj
×ξl

j((z, x), σu) 6 !) or ((∃σrj
∈ ΣRj

) ξl
j(x, σrj

)! & ζLj
×

ηLj
((z, y), σrj

) 6 !)}
We show in [14] for arbitraryP ∈ Pred(QLj

), that
supLPCj(L(GLj

, P )) = L(GLj
,PLPCj(P )).

We now add the remaining low-level conditions, namely
points 5 and 6 of Defn. 3.

Definition 12: LetK ⊆ Σ∗
ILj

. K is jth low-level inter-
face controllable (LICj) with respect toΦ if the following
conditions are satisfied:

1) K is jth low-level P4 interface controllable.
2) (∀s ∈ K)(∀ρ ∈ ΣRj

)(∀α ∈ ΣAj
)

sρα ∈ L(Gl
Ij

)⇒ (∃l ∈ Σ∗
Lj

) sρlα ∈ K

3) (∀s ∈ K) s ∈ Lm(Gl
Ij

)⇒ (∃l ∈ Σ∗
Lj

) sl ∈ K

Clearly, the empty language∅ is LICj with respect toΦ.

For an arbitrary languageE ⊆ Σ∗
ILj

, we define the set of
all sublanguages ofE that areLICj with respect toΦ as

CLj
(E) := {K ⊆ E|K is LICj with respect toΦ }

Proposition 5: For systemΦ, CLj
(E) is nonempty and is

closed under arbitrary unions. In particular,CLj
(E) contains

a (unique) supremal element, denotedsup CLj
(E).

Proof: See proof in [14].
For systemΦ, if we computesup CLj

(Lm(GLj
)) then

a DES representing this sublanguage is a locally maxi-
mally permissiblejth low-level supervisor. As the supervisor
would be nonblocking, our new system would thus satisfy
point 2 of Defn. 4 for this value ofj.

To compute sup CLj
(Lm(GLj

)), we need to define a
suitable predicate based fixpoint operator. For a given pred-
icate P ∈ Pred(QLj

), we already know how to compute
supLPCj(L(GLj

, P )). We now need to to develop operators
to handle points 5-6 of Defn. 3. As we want to intersect the
resulting language withLm(GLj

), we can achieve this in a
similar manner to what was used in Proposition 3.

Definition 13: For systemΦ, define the functionΓp5j
:

Pred(QLj
)→ Pred(QLj

) for P ∈ Pred(QLj
) as:

Γp5j
(P ) := P − pr({q ∈ QLj

|(∃ρ ∈ ΣRj
)(∃α ∈ ΣAj

)
ξl
j(x, ρα)! & δLj

(q, ρ) |= ¬ CR(GLj
, Pα,ΣLj

, P )}),
wherePα := pr({q′ ∈ QLj

|δLj
(q′, α) |= P}).

Algorithm 2 shows how to computeΓp5j
(P ) for arbitrary

P ∈ Pred(QLj
).

Algorithm 2 Γp5j
(P )

1: Pbad5 ← false;
2: for eachα ∈ ΣAj

do
3: Pα ← pr({q′ ∈ QLj

| δLj
(q′, α) |= P});

4: PCRα
← CR(GLj

, Pα,ΣLj
, P );

5: for eachρ ∈ ΣRj
do

6: Pbad5 ← Pbad5 ∨ pr({q ∈ QLj
|ξl

j(x, ρα)!
&δLj

(q, ρ) |= ¬PCRα
});

7: end for
8: end for
9: returnP − Pbad5;

Definition 14: For systemΦ, define the functionΓp6j
:

Pred(QLj
)→ Pred(QLj

) for P ∈ Pred(QLj
) as:

Γp6j
(P ) := P − (PXjm

− CR(GLj
, PLjm

,ΣLj
, P )),

where PXjm
:= pr({q ∈ QLj

|x ∈ X l
jm
}), PLjm

:=
pr(QLjm

), q = (z, y, x) andX l
jm

andQLjm
are the marker

state sets ofGl
Ij

and GLj
respectively.

The Algorithm to Compute sup CLj
(Lm(GLj

))

We now put everything together for thejth Low-level and
construct our algorithm.

Definition 15: For systemΦ, define the functionΓLj
:

Pred(QLj
)→ Pred(QLj

) for P ∈ Pred(QLj
) as:

ΓLj
(P ) := CR(GLj

,Γp6j
(Γp5j

(PLPCj(P ))))
Theorem 4:For systemΦ, the following two points hold:

1) There existsk ∈ {0, 1, 2, . . .} such thatk ≤ |QLj
| and

Γk
Lj

(true) is the greatest fixpoint of the functionΓLj
.

2) sup CLj
(Lm(GLj

)) = Lm(GLj
,Γk

Lj
(true))

Proof: See proof in [14].
We can thus take ourjth low-level supervisor to be

SLj
defined over event setΣILj

, with Lm(SLj
) =

Lm(GLj
,Γk

Lj
(true)) and L(SLj

) = L(GLj
,Γk

Lj
(true)),



where k is from Theorem 4. The supervisorSLj
can be

constructed by removing states fromGLj
that do not satisfy

Γk
Lj

(true). It can then be made trim by removing states that
do not satisfyR(GLj

,Γk
Lj

(true)). The algorithm to compute
Γk

Lj
(true) is given below.

Algorithm 3 Computing the greatest fixpoint ofΓLj

1: PbadLj
← pr(BadLj

);
2: P1 ← true;
3: repeat
4: P2 ← P1;
5: P1 ← ¬TR(GLj

,¬P1 ∨ PbadLj
,Σluj

∪ ΣRj
);

6: P1 ← Γp5j
(P1);

7: P1 ← P1 − (PXjm
− CR(GLj

, PLjm
,ΣLj

, P1));
8: P1 ← CR(GLj

, P1);
9: until P1 = P2

10: returnP1;

Line 5 computesPLPCj(P1). Line 7 computesΓp6j
(P1).

Line 8 calculates the coreachable states underP1.

VI. V ERIFICATION OF HISC

We have also developed a method to verify anth de-
gree supervisor interface system, based on the synthesis
algorithms we have presented. The method treats all the
supervisors as their corresponding specifications and then
applies the synthesis algorithm to the system (assuming
that it is HISC-valid). If there are noreachablestates that
must be removed fromGH , or GLj

(j ∈ {1, . . . , n}) after
the first pass, then the system is interface consistent, level-
wise nonblocking, and level-wise controllable. We note that
typically the verification process is faster and uses less
memory than synthesis, meaning that we can usually verify
larger systems than we can apply synthesis to. We refer the
reader to [14] for the algorithm details.

VII. SYMBOLIC COMPUTATION FORHISC SYNTHESIS

AND VERIFICATION

The efficiency of our HISC synthesis and verification
is dominated by the computation of the four predicate
transformers:R,CR, TR and CR. We have developed a
method to use logic formulas to represent state subsets and
transitions in a system, and then used these formulas to
compute the predicate transformers discussed above as well
as other miscellaneous conditions needed to verify/synthesize
an HISC system. We have also developed a method of
using Reduced Ordered Binary Decision Diagram [2], [6]
to implement the above logic formula based algorithms. The
BDD software package we used isBuDDy 2.4developed by
Jørn Lind-Nielsen. To achieve this, we drew heavily on the
work of Ma [13]. Please refer to [14] for details.

VIII. C ONTROLLER IMPLEMENTATION

For systemΦ defined in Section V, we showed that we
could synthesize locally maximally permissible supervisors
for each level, namelySH and SLj

(j ∈ {1, . . . , n}).

However, these automata-based supervisors could easily be
very large (SH , in the AIP example in the next section, has
a state space on the order of1015), making them difficult to
implement as controllers directly. We now briefly discuss an
alternate implementation method that will typically be more
practical.

For the systemΦ, let PH be the resulting predicate
from Algorithm 1, andPLj

be the resulting predicate from
Algorithm 3. Let Q be the statespace of the synchronous
product of all the DES in systemΦ. This means that a state
q ∈ Q can be represented as a tuple

q := (zH , yH , zL1
, . . . , zLn

, yL1
, . . . , yLn

, x1, . . . , xn). (2)

From the synthesis algorithms, we know thatSH can be
obtained by trimming off states that do not satisfyPH from
the high-levelGH , andSLj

can be obtained by trimming off
states that do not satisfyPLj

from the jth low-level GLj
.

We show in [14] that we can express the appropriate control
action for each stateq ∈ Q as a per event predicate local to
a particular level.

Definition 16: For eachσ ∈ Σc∩(ΣH∪ΣR1
∪· · ·∪ΣRn

),
define the predicatefHσ ∈ Pred(QH) for eachq ∈ Q as

fHσ(zH , yH , x1, . . . , xn) :=

(

1, δH((zH , yH , x1, . . . , xn), σ) |= PH

0, otherwise
(3)

For eachj ∈ {1, . . . , n}, σ ∈ Σc ∩ (ΣLj
∪ ΣAj

), define
the predicatefLjσ

∈ Pred(QLj
) for eachq ∈ Q as

fLjσ(zLj
, yLj

, xj) :=

(

1, δLj
((zLj

, yLj
, xj), σ) |= PLj

0, otherwise
(4)

For instance, forq ∈ Q and σ ∈ Σc ∩ (ΣLj
∪ ΣAj

), if
fLjσ(zLj

, yLj
, xj) = 1, thenσ should be enabled at stateq.

Each predicate can be represented as a BDD, and typically
the BDD is much smaller than the corresponding automata
supervisors. To obtain the state informationq, we could have
an observer for each component of systemΦ (ie. for G

p
H ,

EH etc.). As each component is typically the synchronous
product of other DES, the size of the observer for each DES
needed is likely to be quite small. For examples, see the AIP
example in [14].

Figure 2 shows the structure of our implementation, with
kH , k1, . . . kn ∈ {0, 1, . . .}. The top box represents our
observers which provide the state information for our predi-
cates. The enablement information is then sent to the plant.

IX. T HE AIP EXAMPLE

To demonstrate the utility of our method, we applied it to
a large manufacturing system, the Atelier Inter-établissement
de Productique (AIP) as described in [1], [3]. The AIP
system includes a central loop (CL) conveyor, four external
loop (EL) conveyors, 4 transport units (TU) (each moves
pallets between CL and a specific EL), an assembly station
(AS) at EL1, 2 and 3, and an Input/Output (I/O) station
at EL4 (allows pallets to enter/leave system). We will only
briefly introduce this example. Please see [14] for complete
details.

In [7], [8], Leduc et al modelled the AIP as an HISC
system. Using their algorithms based upon explicit state and



Fig. 2. Control diagram

transition listings, it took 254.7 seconds and 659MB to verify
that the high level, with3.3× 106 states, satisfied the HISC
conditions. Using our BDD based algorithms, it took us 2
seconds and an estimated 30MB.

We then extended the AIP example of [7], [8] by mod-
elling how pallets move around the system. For example, a
pallet can’t reach an assembly station until it is transported
from the central loop to the section of the external loop
leading to the station. We also enforced capacity restrictions
on each loop section as follows: maximum four pallets at a
time in a given section of the CL, and five pallets at a time
for a section of an EL. This was not originally modelled
by Leduc et al as it made the high level too large for their
software to handle.

To verify the system, we needed to add an additional
supervisor that restricted the number of pallets in the system
(excluding EL4) to 15, to prevent the system from blocking.
The system was verified on a 2.8 GHz Pentium 4 CPU, with
512MB memory, running Fedora Core 2. It used less than
160MB of RAM, took 25.7 minutes to verify that the high-
level HISC conditions were satisfied and less than 1 second
to verify that the low-level HISC conditions were satisfied
for each low-level. The reachable state space for the high-
level was5.16 × 1013, and the total estimated worst case
reachable statespace size was7.04×1028. A flat verification
with our BDD tool quickly used up all available RAM, and
had failed to complete after 24 hours.

We then removed the “15 pallets in system” supervisor,
and performed a HISC synthesis. Our BDD tool used less
than 160MB of RAM, took 128 minutes to synthesize a
high-level supervisor, and less than 1 second to synthesize
each low-level supervisor. The reachable state space for the
high-level was1.14 × 1015, and the total estimated worst
case reachable state space was1.51 × 1030. This is a clear
improvement over previous HISC algorithms from [4], [10],
[11].

X. CONCLUSIONS

In this paper, we have developed a predicate based syn-
thesis and verification method for systems modelled using
Hierarchical Interface-based Supervisory Control. Combined

with symbolic methods implemented using binary decision
diagrams, we are now able to handle HISC systems with
individual levels significantly larger than methods based
upon explicit state and transition listings. In the AIP ex-
ample investigated, we saw an increase of eight orders of
magnitude. This allows us to handle much larger systems.
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