Symbolic Synthesis and Verification of Hierarchical Inteddmased
Supervisory Control

Raoguang Song and Ryan J. Leduc

Dept. of Computing and Software, McMaster University
email: songr,leduc@mcmaster.ca

Abstract— Hierarchical Interface-based Supervisory Control

(HISC) decomposes a discrete-event system (DES) into a high-

level subsystem which communicates withn > 1 low-level
subsystems, through separate interfaces which restrict the in-
teraction of the subsystems. It provides a set of local conditions
that can be used to verify global conditions such as nonblocking
and controllability. The current HISC verification and synthesis
algorithms are based upon explicit state and transition listings
which limit the size of a given level to about10” states when
1GB of memory is used.

In this paper, we extend the HISC approach by introducing a
set of predicate based fixed point operators that allow us to do
a per level synthesis to construct for each level a maximally
permissive supervisor that satisfies the corresponding HISC
conditions. We prove that these fixpoint operators compute
the required level-wise supremal languages. We then present
algorithms that implement the fixpoint operators. Based on
these algorithms, a symbolic implementation is briefly discussed
which can be implemented using Binary Decision Diagrams.

We also discuss a method to implement our synthesized
supervisors in a more compact manner.

A large manufacturing system example (worst case state
space on the order 0f103°) extended from the AIP example
is briefly discussed. The example showed that we can now
handle a given level with a statespace as large d9'® states,
using less than 160MB of memory. This represents a significant
improvement in the size of systems that can be handled by the
HISC approach. A software tool for synthesis and verification
of HISC systems using our approach was also developed.

I. INTRODUCTION

to be stored in memory or traversed, offering potentially
significant savings in computational resources.

In [4], Dai and Leduc introduced a HISC based syn-
thesis method that replaced each level's supervisor with a
corresponding specification DES, and then does a per level
synthesis to construct for each level a maximally perméssiv
supervisor that satisfies the corresponding HISC condition
However, both the HISC synthesis and verification method
are based upon explicit state and transition listings which
limit the size of a given level to aboud” states when 1GB
of memory is used.

As each subsystem in HISC is typically modeled as a
group of plant DES and a group of specification/supervisor
DES, each subsystem-wide state can be represented as a
vector, where each element of the vector is the state of a
component DES. Therefore, we can use Binary Decision
Diagrams (BDD: [2], [6]) to represent the state space and
transitions for each subsystem, and develop algorithmecdbas
on BDD representations to verify or synthesize supervisors
for our HISC system. As we will see, by using BDD
representation and algorithms we will be able to handle much
larger subsystems, allowing HISC to be applied to even targe
systems.

Using IDD (Integer Decision Diagram, an extension of
BDD) to verify and synthesize flat DES have previously been
investigated by Zhang et al [18], while Vahidi et al [15] have
investigated applying BDD to flat systems.

In the area of Discrete-Event Systems (DES), two common Ma et al [12], [13] presented a top-down multi-level design
tasks are to verify that a composite system, based onnaodel called State Tree Structures (STS), which was ieitiat
cartesian product of subsystems, is (i) nonblocking and (iin [16] by using the idea of state charts [5]. Ma used BDD
controllable. The main obstacle to performing these tasks based algorithms that allowed him to model and synthesize a

the combinatorial explosion of the product state space.
The Hierarchical Interface-based
Control(HISC) framework was proposed by Ledet al.

state-based supervisor for a system with an estimated state

Supervisonspace on the order af0?*.

In this paper, we first discuss DES and predicate prelim-

in [7]-[11] to alleviate the state explosion problem. Thednaries, and then introduce the HISC approach in Sections

HISC approach decomposes a system intdhigh-level
subsystenwhich communicates witle > 1 parallel low-

[I-1V. As the HISC method has already been explained and
justified in detail in [10], [11], and [8], we will only discgs

level subsystemshrough separate interfaces that restrictt briefly here. For a small illustrative HISC example, pleas
the interaction of the subsystems. This structure permitee [10].

the derivation of a set of local consistency properties that For the remainder of the paper we will be presenting our
can be used to verify if a discrete-event system is globallgew results from [14], beginning with the predicate based
nonblocking and controllable. Each of these consistendixed point operators we developed. They allow us to do a
properties can be verified using a single subsystem and per level synthesis to construct for each level a maximally
interface(s); thus the complete system model never neepdermissive supervisor that satisfies the correspondingCHIS

conditions. We prove that these fixpoint operators compute The synchronous product of languagesand L., denoted
the required level-wise supremal languages. L1|| L, is defined to be:
We then present algorithms that implement the fixpoint
operators. We also briefly discuss a predicate based HISC LillLy = P (Ly) 0 By (La)
verification method derived from the synthesis methodwhere P! : Pwr(Z) — Pwr(X*) is the inverse image
Based on these algorithms, a symbolic implementation fsinction of P;.
briefly discussed which can be implemented using Binary The synchronous product of DESG; =
Decision Diagrams. (Y1,%1,01, Y0y, Ymy) @nd Go = (Y2, 22,02, Yoy, Yins),
We next discuss a method to implement our synthesizetenotedG, ||G,, is defined to be a reachable DES with
supervisors in a more compact manner. Finally, we discussd event set = ¥, U 35 and properties:
a large manufacturing example (estimated worst case state-
space on the order df0*°) extended from the AIP example Lin(G) = Lin(G)[|Lm(G2), L(G) = L(G1)|IL(G2)
in [7], [8]. The example demonstrates the improved scalabil A DES G is said to benonblockingif L,,(G) = L(G).

ity that our symbolic approach offers. This is equivalent to saying that every reachable statesis al
coreachable. We say that DES represents a languadée C
[I. PRELIMINARIES ¥* if G is nonblocking andL,,(G) = K. We thus have
LG)=K

Supervisory control theory provides a framework for the For G; and G, if ¥; = ¥, we can define the@roduct
control of discrete-event systems (DES), systems that ag the two DES as:
discrete in space and time. For a detailed exposition of DES
see [17]. Below, we present a summary of the termmolog?’l X Gz = (Q1 X Q2, 5,81 X 82, (410, 420), Q1. X @2,,);

that we use in this paper. where §; x ds : Q1 X Q2 x ¥ — Qq x Qs is given
by (51 X 62)((Q17Q2)7U) = (51(Q17U)752(QQ50))7 whenever
A. DES 01(q1,0)! andda(ga, o).

Let 3 be a finite set of distinct symboleyent}, andX* B Ppredicates and Predicate Transformers
be the set of all finite sequences of events, includinthe
empty string.Let L C ¥* be alanguageover X. A string
t € ¥* is a prefix ofs € ¥* (written ¢ < s) if s = tu, for
somewu € X*. The prefix closureof languageL (denoted -) ; ot o
I) is defined as = {t € =* | ¢ < s for somes € L}. Let defined onQ is a functionP : Q — {1,0}. P is identified by

Pwr(X) denote the power set & (i.e. all possible subsets & corresponding state subsgp := {q € Q|P(q) =1} € Q.
of ¥). If ¢ € Qp, we write ¢ = P and sayq satisfiesP. We

write Pred(Q) for the set of all predicates defined @n
For predicates?, and P,, we defineP, — P, = Py A —Ps.

The two special predicatesue and false are identified
by @ and, respectively. The predicatg,, is identified by
Q.. If Q is understood, fo); C @, denote the predicate
identified by @, aspr(Q).

A predlcate transformeiis a function f : Pred(Q) —
red(Q). We now introduce several predicate transformers
for P € Pred(Q) which will be used later on. See [14] for

We only give a brief introduction here. Please refer to [14]
for more details.
Let G = (Q,%,0,q0,Q@m) be a DES. Apredicate P

A DES automaton is represented as a 5-tufide =
(Y, X, 6,v,, Vi) WhereY is the state sef is the event set,
the partial functior : Y x ¥ — Y is the transition function,
1o IS the initial state, and’,, is the set of marker states. The
function/ is extended t@ : Y x ¥* — Y in the natural way.
The notationd(y, s)! means thab is defined fors € ¥* at
statey. For DES G, the language generated is denoted b3f3
L(G), and is defined to b&.(G) := {s € Z*| §(yo,s)
The marked behavioof G, is defined ad.,,(G) := { E

L(G)| 8(yo,8) € Yo} more formal definitions.
The reachable state subset of DESdenoted’,, is: Y, := « The reachability predicateR(G, P) is defined to hold
{y € Y| (35 € £%)6(yo,s) = y}. A DES G is reachable precisely on those states that can be reached from
if Y, = Y. The coreachable state subset, denotedvhy qo Via states satisfying?. _ ,
is V., == {y € Y| (3s € £*)d(y,s) € Y,,}. A DES is » The coreachability predicateC' R(G, P) is defined to
coreachableif Y., = Y. We say the DES igrim if it is hold precisely on those states that can reach a marker

both reachable and coreachable. We will always assume that State inG via states satisfying. o
a DES has a finite state and event set and is deterministic. * With G and X' ¢ ¥ fixed, TR(G, P,5) is defined

Let X = ¥, US,, L1 C X%, and Ly C 3. Fori = 1,2, to holq preci;ely on tho;e state.s.that can reach a state
s € ¥, ando € ¥, we define thenatural projection P; : satisfying P in G only via transitions with events in
¥* — ¥¥ according to: Z/;)
_ o With DES G, P’ € Pred(Q) and ¥ C X fixed,
P() = ¢ Plo)= { eif o g, CR(G,P', ¥, P) is defined to hold precisely on those
’ oif o€l states that can reach a state satisfyi#idn G via states

Pi(soc) = Pi(s)Pi(o) satisfying P and transitions with events B’

Finally, for P € Pred(Q) we define L(G, P) to be : HIGH - LEVEL
the closed Ianguagmduced by P as L(G,P) = {w € High-level Subsystem(G,,)
¥*(Vo < w)d(qo,v) = P}. Similarly, we defineL,, (G, P) ¢’ S
to be the marked language induced Byas L, (G, P) := p ngé 8 -
{w € L(G, P)[6(a0,w) € Qu}. ¢ 3
1. HISC OVERVIEW S e — . e =

An HISC system currently is a two-level system which :
includes onehigh-level subsystenand n > 1 low-level w
subsystemsThe high-level subsystem communicates with !
each low-level subsystem through a sepainterface. We : 5 -

|
|
|
|
|
will also refer to the high-level or a given low-level as a | ‘=7 1‘ ,,,,,,,,,,,,,,,
‘ \
|
|
|
|
|
|

|

i

1
module. i Low-level Subsystem 1 (G,,)| : Low-level Subsystemn(G,,,)}
In order to restrict the information flow at the interface, || ¢’ A e S :
the system alphabet is partitioned into pairwise disjoint | “8'139(3@ i i/ 1’8@%@0 i
alphabets: ! i ! s |
. ! —i ! !
Y= NyU0 U 2L, U8R, US4,] 1) |._._LOW-LEVEL1 i L. LOW-LEVELn |

ke{l,...,n} .
Fig. 1. HISC system structure

The events inXy are high-level eventsand the events
in X1 low-level eventsas these events appear only in the
high-level and low-level subsystems, respectively. As theext request is issued to the low-level subsystem. To eaforc
interfaceis only concerned with communication between thesuch a mechanism, the interface DES is required to be a
two subsystems, it only contains events that are common e@mmand-pair interfacas defined below.
both levels of the hierarchy; zUS 4, which are collectively ~ Definition 1: For then" degree interface system com-

known as the set dhterface eventsdenoteds;. The events posed of plant componen@?;, GY ,..., G} , supervisors
in X, calledrequest eventgepresent commands sent fromSg,Sz,,--.,Sz,, and interfacesGy,,..., Gy, , the j
the high-level subsystem to the low-level subsystem. Thaterface DESG;, = (X;,Xg,U%4,,;,20,,X;,,) is a
events inX 4 are answer eventand represent the low-level command-pair interfacé:
subsystem’s responses to the request events. (A) L(Gp,) C (XR;.Ea,)*

In the remainder of this papey,is always an index with (B) L,, (G1,) = (g, ZA)*NL(Gy,)
range{1,...,n}. The high-level subsystem is modeled by An HISC system is actually a structurdat systemThe
DES Gy, wh|ch is the product ofhe high-level plantG}; flat plantis defined aPLANT := G®, | G T GE
and the high-level supervisoSy (both are defined over and theflat supervisoris defined a§UP = sH I SL1 H

event setS yU(Ukeqi,....n} [, UX4,])). The i low-level ... ||S, |- || Gr,.

subsystem is modeled by DES;,;, which is the product of Therefore, bottPLANT and SUP are defined over event
the j* low-level plant G/ _ andthejth low-level supervisor setX.. The whole flat system is the product of the flat super-
Sz, (both are defined over event sgf UZR UEA), and visor and the flat plantSYSTEM := SUP x PLANT

the jt" interface is modeled byG 1, (deflned over event We want to ensur&YSTEM satisfies:

set ZRjUEAj). The overall system structure is shown in 1) L(SYSTEM)X, N L(PLANT) C L(SYSTEM)

Figure 1. 2) L,,(SYSTEM) = L(SYSTEM)
For controllability, the event seX is also partitioned as

¥ = ¥.U%,, WhereX, is the controllable event set ar, IV. L OCAL CONDITIONS

is the uncontrollable event set. We now present a set of local properties that will allow
We refer to DESGy := Gy | G, || --- || Gy, as the us to verify the global properties of controllability and

high-leveland DESG, := G, || G1, as thej'” low-level ~ nonblocking. The conditions here are based on [8] and [9].
For convenience, the following event sets are also definedPlease refer to them for a more detailed discussion.
To make our discussion of synthesis simpler later, we wish

X = Z.R].UEAj . X4 ::Uke{_1~~-»n}2Ak to express our high-level and low-level as product DES. To

Yra = (Ukeqr,..n} 2n,)U8r Yrr, =Xp,U%p, do this, we need to extehdhe event sets of the interfaces.

Srroi=Ugeqt,. .} 5L, She =g N3 Definition 2: For the n'" degree interface system that

S =S N5, S =% NY respects the alphabet partition given by (1) and is com-
! posed of plant componen&?;, G} ,..., G} , supervi-

Yie; = Brr,; N e sors Sy,Sr,,...,S.,, and interfacesGy,,...,Gy,, for

The interface DES ensures that communication occurs, _ L _
The selfloop operator here is as defined in TCT [17] and simply adds

betW‘?e“ levels in a serial fashion. A request from the h'grl;'elﬂoop transitions for each symbol in the indicated evehtateevery state
level is followed by an answer from the low-level before than the DES.

all J € {1, . ,n}, define:G?j = selﬂoop(GIj, Yrg — 2) L(ng)Eluj N L(GZI;) - L(gL7)

%1,), Gy := selfloop(Gy,.Sr,) and G} := G}, x - x 3) L(Gr)Shu N L(GY, x GY) C L(Gr)

Gh . Theorem 2 (From [8]):If the n*" degree interface system
We now present the properties that the system must satisfpmposed of plant componen®&?},, G ,..., G’ , super-

to ensure that it interacts with the interfaces correctlyisT visors Sy, Sr,,...,Sz,,, and interfacesGy,, ..., Gy, , is

definition is a bit different from the one presented in [8]t bulevel-wise controllable with respect to the alphabet piarti

equivalent as we will show. We use it as it makes our proofgiven by (1), then

easier.
N . L(SYSTEM)X, N L(PLANT) C L(SYSTEM
Definition 3: The n** degree interface system com- (SYS)2 N L) L)
posed of plant componen@’;, G ..., G} , supervisors V. SYNTHESIS OFHISC
S#,8L,,...,8L,, and interfacesGy,, ..., Gy, is interface In [7], [8], [10], [11], the supervisors in an HISC system
F:on5|stenW|th respect to the alphabet partmon given by (1)'Were designed by hand, and then the system was checked to
i f.O:C. e:j". j € {1,...,n}, the following conditions are see if it was interface consistent, level-wise controkadhd
satisfie B . nonblocking. If not, it was modified by the designer until it
« Multi-level Properties was. However, for a complicated system it is very desirable t
1) The event set d&%, and Sy is X;, and the event synthesize the supervisors from specifications. In thi@ec
set ofGij andSy, is Xyr;. we will discuss how to construct supervisors whose marked
2) Gy, is a command-pair interface. languages are supremal controllable sublanguages of & set o
« High-level Properties per mod_ule sp_ecifications that satisfies the HISC c_onditions
3. L(Gu)Sa, N L(GZ‘) C L(Gy) for the given high or low-level. We say such supervisors are

locally maximally permissibldor their level. We will then
give predicate based algorithms. The algorithms can easily
be implemented by using BDD.

o Low-level Properties
4. L(Gr,)¥R, N L(Gﬁj) C L(Gr,)

5. (Vs € L(Gr,))(Vp € Xg,)(Va € Za) In the previous section, we specified that&" degree
spa € L(GL) = (3l e X7) spla € L(Gr,) interface system is composed of plants, supervisors and
6. (Vs € L(Gr;)) s¢€ Lm(Gle) = (A eXy)sle interfaces. For synthesis, we will assume that our interfac
Lin(GL;) system is composed of plants, specifications and interfaces
Proposition 1: Definition 3 is equivalent to thénterface Essentially, we will replace the high-level supervisy; by
consistencydefinition from [8]. a specification DEEy (defined overX;y), and for allj €
Proof: See proof in [14]. m {1,....n}, we will replace thej"" low-level supervisoS,,
The next definition ensures that each module is locallpy @ specification DESE;,; (defined overy; ;). We will
nonblocking. refer to such a system as&* degree specification interface
Definition 4: The n'* degree interface system com-Systemand call the original system with supervisors:&
posed of plant componen@?;, G¥ ..., G? | supervisors degree supervisor interface systewve will refer to a system
S#,Sr.,...,S.. ,andinterfaceG,, ..., G, issaidtobe as an'™ degree interface systemhen we do not wish to

level-wise nonblockingvith respect to the alphabet partition make a distinction. . _
given by (1), if the following two conditions are satisfied: ~ For clarity, we now interpret some definitions used in

1) Tn(Gn) = L(Gx) the previous section in terms of&" degree specification

2) (Vi€ {1,...,n}) 7Lm(ng) — L(GL,) interface system.

Theorem 1 (From [8]): If the n'" degree interface system Gp := Ep x GY, G, =Ep, x ng
composed of plant componen&?;, G} ..., G} | super- G = By x GE, x G’}, G, =E, x GZL),. « Girj

visors Sy, Sr,,...,Sr,, and interfacesGy,,..., Gy, , iS
level-wise nonblocking and interface consistent with exsp
to the alphabet partition given by (1), then

We now give the start'ing point for the synthesis pfocess.
These are conditions the system must meet as a minimum,
and correspond to parts of the interface consistency amdlev

L,,(SYSTEM) = L(SYSTEM) wise controllability definitions that can not be correctéd (

We next give the controllability requirements for eachthe system fails to satisfy these conditions) in the syrighes
module. process that we will present.

Definition 5: The n'" degree interface system com- Definition 6: The n'* degree interface specification
posed of plant componen&’;, G} ..., G}, , supervisors system composed of plant compone@ty, G ..., G} ,
S#,SL,,--.,SL,,andinterfaceszy, , ..., Gy, issaidto be specifications Ey, Er,,..., E; , and interfaces
level-wise controllablavith respect to the alphabet partition G, ,..., Gy, is HISC-valid with respects to the alphabet
given by (1), if for allj € {1,...,n} the following two partition given by (1), if for all; € {1,...,n}, the following
conditions are satisfied: conditions are satisfied:

1) The alphabet ofG};, and Sy is X;y, the alphabet of 1) The alphabet ofz%, andEy is X;y.
G’ij andSy; is Xz, and the alphabet oG, is Xj, 2) The alphabet oGij andEg, is Xz, .

3) G, is a command-pair interface. of fif » = f(x). We will also use the notatiorf*(z),
Let @ be an'" degree HISC-valid specification interfacek € {0,1,...}, to meank applications off in a row with
system that respects the alphabet partition given by (1) and(x) := x.
is composed of plant compone%,Gil, .. .,G’zn, spec- If we were defining a function that would operate on a
ificationsEg,E,,...,Er,, and interfacesz;,,...,G;,. languageK € Pwr(X3,), we would want it to evaluate:
As the predicate algorithms will operate on the states af,,(Gx)Nsup Cx(K). However, we need a predicate based
the DES, we give the tuple definitions for the following DESoperator that we can apply to the states of our system.

for later reference: Let Pred(Qm) be the set of all predicates afy, the
. state set olGy. For anyq € Qu, asGy := Eg x G, x
gf = (Qu, X1n, 01, g, Q) G/ there must exist unique € Zy,y € Yy andz €
Gy = Yo, S 0 Yo, Y, X" such thatg = (z,y,z). For stater € X", there must
Ey = (Zy,X10,CH, 20y, ZH,,) also exist uniquer; € XJ....,z, € X! such thatr =
Gh .— (X’f Yo, € et xh) (z1,...,2n). FOr P € Pred(Qg), we now show how to
I; - o IH S Yo P,
Gl i (XP, Sy 6" alt, X1 computesup Cr (L(Gr, P)).
= P SIH S T0) Am Definition 8: For system®, define the functiorPHIC :
G, = (Qr;sXrL;,0L;, 9150 QLjn) Pred(Qp) — Pred(Qy) for P € Pred(Qy) as:
P . . .
GLj = (YLj;EILjanLjvyL]oaYL]m) PHIC(P) = —'TR(gH,—'P \/pr(BadH),Zhu U EA)7
Er, = (Z1,,%1L,;,CL,+%Ljo» LLjn
Gl — EXZ = .gl ")J;z) i) where Bady = {¢ € Qu| (30w € Zpa) (N %
I = By ST S5 Lo A g) & ((y,z),00)! & Cu(z,00))) or (Eje{l,...,n})(30q, €
So, Gu=(ZuxYy x X", Sy, Cy X np < Ba;) (€ (x),00;)! & Cr X nmm X EF X o X ER gl X x
fhﬂ (ZHoﬂyHoyiL'g),ZHm X YHm X X:,LL) gz((z’yyxlw"7wj*17xj+1>"'73371):0'&]') /))}
We show in [14] for arbitraryP € Pred(Qpg), that
Gr, = (Z1, x Yy, x X, %1, (1, x i, %
L, z (Z1, L; z 5210, GLy XL, z supCx (L(Gw, P)) = L(Gy, PHIC(P)).
&5 (ZLjor YLjor Tjo)s DL X Yij X X)) We now provide a predicate based method to compute
Gh=(XPx - . x XM 2Dy, €0 x - x L (Gy) N L(G g, PHIC(P)).
i (96}11,7 cexh) X o X Proposition 3: For system®, the following holds:
0 " " (VP € Pred(Qu))
A. High-level Supervisor Synthesis Lon(Gu)NL(GH,P)=Ln(Gu,CR(GH, P))
In this section, we show how to synthesize a locally ~ Proof: See proof in [14]. L
maximally permissible high-level supervisor for the syste The Algorithm to Compute sup Cr (L (G 1))

®. Below are the properties the marked language of our high-
level supervisor must satisfy for HISC. They correspond to We now put everything together for the high-level and

point 3 of Defn. 3 and point 3 of Defn. 5. construct our algorithm.
Definition 7: For system®, let K C X7,. K is high- Definition 9: For system®, define the functionl'y
level interface controllabl@lIC) with respect to® if for all Pred(Qu) — Pred(Qm) according to
jed{l,...,n} (VP € Pred(Qu)) Ty(P):=CR(Gy,PHC(P))
1) KX, NL(GY, x Gh) C K Theorem 3:For system®, the following two points hold:
2) FZAJ NLGh)CK 1) There exists: € {0,1,2,...} such thatt < |Qx| and
Clearly, the empty languagkis HIC with respect to®. T} (true) is the greatest fixpoint of the functidny;.
For an arbitrary languag& C %% ,,, we define the set of 2) supCu(Lin(Gn)) = Lin (G, T (true)).
all sublanguages of that are HIC with respect t& as Proof: See proof in [14]. [|
)) We can thus take our high-level supervisor to$e de-
Ca(E) := {K C E|K is HIC with respect tob.} fined over event set;, with L(Sy) = L(Gw, T% (true))

Proposition 2: For system®, Cy; (E) is nonempty and is @nd Ln,(Sk) = L (Gu, T (true)), where k is from
closed under arbitrary unions. In particuldy, (E) contains Theorem 3. The supervisd8; can be built by remov-
a (unique) Suprema| element, denoteqbcH(E)_ Ing states fromGy that do not SatiSfyF];_I(tT'UG). It can
Proof: See proof in [14]. m then be made trim by removing states that do not satisfy
For system®, if we computesup Cx(Lm (G)), then a R(Gm, U (true)). The algorithm to comput&’; (true) is
DES representing this sublanguage is a locally maximaligiven below.
permissible high-level supervisor. As the supervisor woul i i
be nonblocking, our new system would thus also satisfy poirt: -OW-level Supervisor Synthesis
1 of Defn. 4. In this section, we show how to synthesize a locally max-
To computesup Cx (L., (Gx)), we want to define a suit- imally permissible;” low-level supervisor for the system
able fixpoint operator. For functiorf : X — X where ®. We first only discuss part of the conditions (ones similar
X is an arbitrary set, an element € X is a fixpoint to the high-level conditions) that the marked language of

our j* low-level supervisor must satisfy for HISC. They
correspond to point 4 of Defn. 3 and point 2 of Defn. 5.
Definition 10: Letik C X}, . K is ;' low-level P4 inter-
face controllable (PC;) with respect to® if the following
conditions are satisfied:
1) leuj ﬂL(GP) C K
2) KXp, N L(GY,) CK
Clearly, the empty languagkis LPC; with respect to®.

Algorithm 1 Computing the greatest fixpoint @fy
Pyagy < pr(Badp);
P, — true;
repeat

Py — P

P — CR(GH, " TR(GHu, P2V Poudy, XhuUX4));
until P, = P,
return Py;

=

NoahswN

For an arbitrary languag& C Z[L , we define the set of
all sublanguages of that areLPC; with respect to® as

LPC;(E):={K C E |K is LPC; with respect to®.}

Proposition 4: For system®, LPC;(E) is nonempty and
is closed under arbitrary unions. In particul&f?C;(E) con-
tains a (unique) supremal element, denated LPC;(E).

Proof: See proof in [14]. []

Let Pred(Qr,;) be the set of all predicates afy,, the
state set oQL]..' Foranyq € Qr,,asGr, = S, x GLJ. X
Gﬁj, there must exist € Z;,,y € Yz, andz € X! such
thatq = (2,9, x).

Definition 11: For systen®, define the functio®LPC; :
Pred(Qr,) — Pred(Qr,) for P € Pred(Qr,) as

PLPC](P) = —tTR(ng,—‘P \/pr(BadLv),Eluj U ERJ),

WhereBadLj - {q € QL |((E|Uu S Elu) nL, (yvgu)'&
CL]‘ x{lg-((z,x),au) }) o ((EIJT € ER)5 (l Or;)! &CL_,» X

e, ((2,9),0r,) 1}
We show in [14] for arbitraryP € Pred(Qr;), that

sup LPC;(L(Gr;, P)) = L(Gr,, PLPC;(P)).

We now add the remaining low- Ievel conditions, namelstate sets oGl

points 5 and 6 of Defn. 3.

Definition 12: LetK C X7, . K is j'* low-level inter-
face controllable I(IC;) with respect to® if the following
conditions are satisfied:

1) K is j*" low-level P4 interface controllable.

2) (Vs € K)(Vp € Sg,)(Va € S4,)

spa € L(GY) = (3l e X}) spla € K

3) (VseK) se Lm(Gl) = (31 €y)sle K

Clearly, the empty Ianguagkls LIC; W|th respect to®.

For an arbitrary languag®& C XL, we define the set of
all sublanguages of that areLIC; with respect to® as

Cr,(E):={K C E|K is LIC; with respect to® }

Proposition 5: For system®, Cy, (E) is nonempty and is
closed under arbitrary unions. In paruculdf, (E) contains
a (unique) supremal element, denoteghCy,; ().

Proof: See proof in [14]. |

For system®, if we computesupCr; (L, (Gr,)) then
a DES representing this sublanguage is a locally maxi-
mally permissiblej*” low-level supervisor. As the supervisor
would be nonblocking, our new system would thus satisfy
point 2 of Defn. 4 for this value of.

To computesupCr; (L (Gr,)), we need to define a
suitable predicate based fixpoint operator. For a given-pred
icate P € Pred(Qr,), we already know how to compute
sup LPC;(L(Gr,, P)). We now need to to develop operators
to handle points 5-6 of Defn. 3. As we want to intersect the
resulting language withL,,,(G1,), we can achieve this in a
similar manner to what was used in Proposition 3.

Definition 13: For system®, define the functior’,s; :
Pred(Qr,) — Pred(Qr;) for P € Pred(Qr,) as

Lps, (P):=P —pr({g € Qr;|(3p € Xg,;)(Ba € X4,)

fé(xv pa)l & 5L_7‘ (a,p) E — CR(ng s Pas EL]‘?P)})*
where P, := pr({¢’ € Qr,101,(¢',) = P}).

Algorithm 2 shows how to computg,s; (P) for arbitrary

P € Pred(Qr,).

Algorithm 2 T'p5,(P)
1. Pyags «— false;
2: for eacha € ¥4, do
s Po—pr({d €Qu, | 61,(d,0) | P}
Per, « CR(GL,, Pa, X1, P);
for eachp € Xg, do
Pyazs — Poaas V pr({g € Qu,l€i(z, pa)!
&op,(q,p) E ~FPer,});
7: end for
8: end for
9: return P — Pyuqs;

o a A

Definition 14: For system®, define the functior’s; :
Pred(Qr,) — Pred(Qr,) for P € Pred(Qr,) as

Fp6j (P) =P - (Pij - CR(ng;PijaZLj7P))a
where Px, = pr({g € Qulz € X} }), P, =
pr(Qr,,), ¢ = (zy,2) and X! andQr, are the marker

and G, respectively.

The Algorlthm to Compute supCr, (Lm(GrL;))

We now put everything together for th€" Low-level and
construct our algorithm.

Definition 15: For system®, define the functiol'; :
Pred(Qr,) — Pred(Qr;) for P € Pred(Qr,) as

I, (P):= CR(GL,, Ups, (I'ps, (PLPC;(P))))
Theorem 4:For system®, the following two points hold:
1) There exists: € {0,1,2,...} such thatk < |Qr,| and

r ,(true) is the greatest fixpoint of the functidny, ;.
2) supCr, (Ln(G1,)) = Lin(Gr,, T, (true))
Proof: See proof in [14]. []
We can thus take ouf” low-level supervisor to be
Sr, defined over event set;r,, with L, (Sr;)
Lm(ng,F’zj(true)) and L(Sz,) = L(ng7F’Zj(true)),

where k is from Theorem 4. The supervis@., can be However, these automata-based supervisors could easily be
constructed by removing states fray,; that do not satisfy very large 85, in the AIP example in the next section, has
I'% (true). It can then be made trim by removing states thaa state space on the order f'>), making them difficult to
4o not satisfyR(G 1, I'} . (true)). The algorithm to compute implement as controllers directly. We now briefly discuss an
T% (true) is given below. alternate implementation method that will typically be mor

! practical.

For the system®. let Py be the resulting predicate

from Algorithm 1, andP;,; be the resulting predicate from

Algorithm 3 Computing the greatest fixpoint &fz,

1 Pyaq,, < pr(Bady,); Algorithm 3. Let Q be the statespace of the synchronous
2. Py — true, product of all the DES in syster®. This means that a state
3: repeat q € @ can be represented as a tuple

4: Py — Pi;

5: Pl<—_\TR(ng7_\P1\/PbadLj’ElujUERJ_); q:= (ZH,YH, ZLys s 2Ly s YLys s YL,y Tly e oy Tn). (2)

6: Py Dps, (Pr); From the synthesis algorithms, we know tigy; can be

7 PP —(Px; —CR(GL; Pr,, 2L, P1)); obtained by trimming off states that do not satigty from

8 P —CR(GL,, P); the high-levelg;, andSy,, can be obtained by trimming off

9 until Py = P, states that do not satisf,, from the j** low-level G .

10: return Py; We show in [14] that we can express the appropriate control

action for each state € () as a per event predicate local to
Line 5 computesPLPC;(P;). Line 7 computed',¢, (P1). a particular level.

Line 8 calculates the coreachable states urieler Definition 16: For eachr € ¥.N (X UXR,U---UXg,),
define the predicat¢y, € Pred(Qg) for eachq € Q as

V1. VERIFICATION OFHISC
1, éu((zH,ym,21,...,2n),0) = Py

We have also developed a method to verifynd de- fHo(zH:ym: 1,00 an) = {0, otherwise
gree supervisor interface system, based on the synthesis
algorithms we have presented. The method treats all the ¢
supervisors as their corresponding specifications and thgﬁe predicatefy,
applies the synthesis algorithm to the system (assuming 1, 6r,((21.,yL.,2;),0) = PL,
that it is HISC-valid). If there are neeachablestates that /Lo (305:U2,:%i) = 0" Giorvice S
must be removed frongy, or G, (j € {1,...,n}) after For instance, fog € Q ando € S. N (Sz, UTy,), if
the first pass, then the system is interface consistentl,—lequjU(zLj,ij,;L-j) =1, theno should be enabled at staje
wise nonblocking, and level-wise controllable. We notet thaEach predicate can be represented as a BDD, and typically
typically the verification process is faster and uses lespie BDD is much smaller than the corresponding automata
memory than synthesis, meaning that we can usually veriBupervisors. To obtain the state informatigrwe could have
larger systems than we can apply synthesis to. We refer tla@ observer for each component of systé@n(ie. for G%,,
reader to [14] for the algorithm details. Eg etc.). As each component is typically the synchronous
product of other DES, the size of the observer for each DES
needed is likely to be quite small. For examples, see the AIP
example in [14].

The efficiency of our HISC synthesis and verification Figure 2 shows the structure of our implementation, with
is dominated by the computation of the four predicaté,k,,...k, € {0,1,...}. The top box represents our
transformers:R,CR,TR and CR. We have developed a observers which provide the state information for our predi
method to use logic formulas to represent state subsets acmtes. The enablement information is then sent to the plant.
transitions in a system, and then used these formulas to
compute the predicate transformers discussed above as well IX. THE AIP EXAMPLE
as other miscellaneous conditions needed to verify/sygithe To demonstrate the utility of our method, we applied it to
an HISC system. We have also developed a method aflarge manufacturing system, the Atelier Inktablissement
using Reduced Ordered Binary Decision Diagram [2], [6He Productique (AIP) as described in [1], [3]. The AIP
to implement the above logic formula based algorithms. Theystem includes a central loop (CL) conveyor, four external
BDD software package we usedBsiDDy 2.4developed by loop (EL) conveyors, 4 transport units (TU) (each moves
Jsrn Lind-Nielsen. To achieve this, we drew heavily on thepallets between CL and a specific EL), an assembly station
work of Ma [13]. Please refer to [14] for details. (AS) at EL1, 2 and 3, and an Input/Output (I/O) station
at EL4 (allows pallets to enter/leave system). We will only
briefly introduce this example. Please see [14] for complete

For system® defined in Section V, we showed that wedetails.
could synthesize locally maximally permissible supengso In [7], [8], Leduc et al modelled the AIP as an HISC
for each level, namelySy and S, (j € {1,...,n}). system. Using their algorithms based upon explicit staté an

®3)
For eachj € {1,...,n}, 0 € X.N (XL, UXy,), define
€ Pred(Qr,) for eachq € Q as

VIl. SymBoLIC COMPUTATION FORHISC SYNTHESIS
AND VERIFICATION

VIIl. CONTROLLERIMPLEMENTATION

EH 4 EL/ s ELn’ S
Gir G, =Gy, 3
G, -G,
[q
) |Gy %) Gl X,)
’ ' ' PLANT
fH(ﬁ fH(fk" 6‘1(71.1 fLI(Tl-k, vor fl‘"(;-l) fL"({-k,‘§
‘ (1]
>
enabled events
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ovlabies oo [2]
Fig. 2. Control diagram (3]
transition listings, it took 254.7 seconds and 659MB tofyeri [4]
that the high level, witl8.3 x 10° states, satisfied the HISC
conditions. Using our BDD based algorithms, it took us 2
seconds and an estimated 30MB. (5]
We then extended the AIP example of [7], [8] by mod- [6]

elling how pallets move around the system. For example, a
pallet can't reach an assembly station until it is transgmbrt [7]
from the central loop to the section of the external loop
leading to the station. We also enforced capacity resbriti

on each loop section as follows: maximum four pallets at 8]
time in a given section of the CL, and five pallets at a time
for a section of an EL. This was not originally modelled
by Leduc et al as it made the high level too large for their
software to handle. [

To verify the system, we needed to add an additional
supervisor that restricted the number of pallets in theesyst
(excluding EL4) to 15, to prevent the system from blocking!*®!
The system was verified on a 2.8 GHz Pentium 4 CPU, with
512MB memory, running Fedora Core 2. It used less thalii]
160MB of RAM, took 25.7 minutes to verify that the high-
level HISC conditions were satisfied and less than 1 secong;
to verify that the low-level HISC conditions were satisfied
for each low-level. The reachable state space for the higlﬁ—s]
level was5.16 x 103, and the total estimated worst case
reachable statespace size Wat x 1028. A flat verification
with our BDD tool quickly used up all available RAM, and
had failed to complete after 24 hours.

We then removed the “15 pallets in system” supervisor,
and performed a HISC synthesis. Our BDD tool used ledd®
than 160MB of RAM, took 128 minutes to synthesize a
high-level supervisor, and less than 1 second to synthesize
each low-level supervisor. The reachable state space ¢or tHS
high-level was1.14 x 10'5, and the total estimated worst
case reachable state space wad x 103°. This is a clear [17]
improvement over previous HISC algorithms from [4], [10],
[11].

[14]

(18]
X. CONCLUSIONS
In this paper, we have developed a predicate based syn-
thesis and verification method for systems modelled using
Hierarchical Interface-based Supervisory Control. Comabi

with symbolic methods implemented using binary decision
diagrams, we are now able to handle HISC systems with
individual levels significantly larger than methods based
upon explicit state and transition listings. In the AIP ex-
ample investigated, we saw an increase of eight orders of
magnitude. This allows us to handle much larger systems.

REFERENCES

Bertil Brandin and Frangois Charbonnier. The supesgscontrol of
the automated manufacturing system of the AIP. Pimc. Rensse-
laer's 1994 Fourth International Conference on Computetegrated
Manufacturing and Automation Technologages 319-324, Troy, Oct
1994.

R. E. Bryant. Graph-Based algorithm for boolean funetimanipula-
tion. IEEE Transactions on Computer35(8):677—691, Aug. 1986.

F. Charbonnier. Commande par supervision des esyst a
évenements discrets: applicatiom un site exprimental I'Altelier
Inter-etablissement de Productique. Technical report, Labagatoi
d’Automatique de Grenoble, Grenoble, France, 1994.

Pengcheng Dai. Synthesis method for hierarchical iaterfbased
supervisory control. Master's thesis, Dept. of Computingd an
Software, McMaster University, Hamilton, Ont, 2006. [ONLEN
http://www.cas.mcmaster.¢déduc/#studtheses.

D. Harel. A visual formalism for complex systemsScience of
Computer Programming8:231-274, Jun. 1987.

M. Huth and M. Ryan.Logic in Computer Science: Modelling and
Reasoning about SystenSambridge University Press, Nov. 1999.
R. J. Leduc. Hierarchical Interface-based Supervisory Control
PhD thesis, Department of Electrical and Computer Engingerin
University of Toronto, Toronto, Ont., 2002. [ONLINE] Avable:
http://www.cas.mcmaster.¢déduc.

R.J. Leduc, M. Lawford, and P. Dai. Hierarchical inteabased
supervisory control of a flexible manufacturing system. Técdin
Report No. 32, SQRL, Dept. of Computing and Software, McMaste
University, Hamilton, ON, Canada, Dec. 2005. [ONLINE] Awdile:
http://lwww.cas.mcmaster.ca/sqrl/sgeports.html.

9] R.J. Leduc, W.M. Wonham, and M. Lawford. Hierarchicalerface-

based supervisory control: Bi-level systems. Technicabreplo.
0103, Systems Control Group, University of Toronto, Toron@N,
Canada, Nov. 2001.

Ryan J. Leduc, Bertil A. Brandin, Mark Lawford, and W.Mlonham.
Hierarchical interface-based supervisory control, parSérial case.
IEEE Trans. Automatic Contrpb0(9):1322-1335, Sept. 2005.

Ryan J. Leduc, Mark Lawford, and W.M. Wonham. Hierarehic
interface-based supervisory control, part |l: ParalledecéEEE Trans.
Automatic Contrgl 50(9):1336-1348, Sept. 2005.

C. Ma and W. Murray Wonham. Control of state tree struesurin
Proc. 11th Mediterranean Conference on Control and Autdonat
June 2003. Paper T4-005 (6pp.).

Chuan Ma.Nonblocking Supervisory Control of State Tree Structures
PhD thesis, Department of Electrical and Computer Engingerin
University of Toronto, Toronto, Ont., 2004.

Raoguang Song. Symbolic synthesis and verification efahnchi-
cal interface-based supervisory control. Master's theBispt. of
Computing and Software, McMaster University, Hamilton, G2106.
[ONLINE] http:/iwww.cas.mcmaster.caeduc/#studtheses.

] Arash Vahidi, Bengt Lennartson, and Martin Fabian. dfint analysis

of large discrete-event systems with binary decision diagtdnProc.
of the 44th IEEE Conference on Decision and Control and Eeaop
Control Conference 20Q0%ages 2751-2756, Seville, Spain, 2005.

] Bing Wang. Top-down design for RW supervisory contrbeadry.

Master’s thesis, Department of Electrical and Computer Eswying,
University of Toronto, Toronto, Ont, 1995.

W. M. Wonham. Supervisory Control of Discrete-Event Systems
Dept. of Electrical and Computer Engineering, UniversityTofonto,

Jul. 2005. Monograph and TCT software can be downloaded at
http://www.control.toronto.edu/DES/.

Z.H. Zhang and W. Murray Wonham. STCT: an efficient algori for
supervisory control design. IRroc. of SCODES 200Ppages 82-93,
INRIA, Paris, July 2001.

