PLC Implementation of a DES Supervisor
for a Manufacturing Testbed

R. J. Leduc and W. M. Wonham

Systems Control Group
Department of Electrical and Computer Engineering
University of Toronto

Toronto, Ont., M5S 1A4
email: leduc@control.toronto.edu, wonham®@control.toronto.edu

Abstract - We describe an implementation of Ramadge-Wonham (RW) dis-
crete-event supervisors for a manufacturing testbed. Testbed modeling and
supervisor design are discussed. Modular control architecture is adopted.
Component supervisors are represented as equivalent clocked Moore syn-
chronous state machines (CMSSM), which finally are implemented on PLCs.

1 Introduction

In this paper we address the conversion of a theoretical discrete event system (DES)
supervisor, designed using RW supervisory control theory ([8], [12]), to a physical im-
plementation on programmable logic controllers (PLCs:[6], [9]). This has been shown
to be feasible by Brandin ([2], [3]) for specific applications; here we propose a general
approach. A PLC based testbed that physically simulates a manufacturing workcell was
built for illustration.

We describe the modeling of the testbed, and the design of its controllers. An imple-
mentation method for DES supervisors using clocked Moore synchronous state machines
(CMSSM:[11]) is proposed. A formal model for CMSSM is defined and it is shown that a
CMSSM contains equivalent control information. Finally, implementation of a CMSSM
on a PLC is discussed.

2 Description of Testbed

The testbed is designed to simulate a manufacturing workcell, in particular, problems of
routing and collision. The configuration of the testbed (Fig. 1) is similar to a portion of
the product routing design of the Motorola Fusion Factory [10].

The testbed is composed primarily of model railroad components. The tracks are laid
out to resemble a set of three interacting work units. The two trains simulate Automated
Guided Vehicles (AGVs) that convey material to and from the manufacturing units.
Each unit has a small electric crane to simulate robots loading and unloading the AGVs.

Trains Cranes

fori=12 forj=1,2,3
en traini st load]

Trainl train_i 8 crane j 3
/ \/ \ o~——"1 0 M 1
umv_trainl fin_loag|

ABRLC Crane2 Crane3 Sensors Switches
fork=0,1,... ,27 forl=4,.,7 form=38
tl,_atk,

1 ntak 2 ak turn_|,

\ / sensor_k sw_| Q/ str ™

‘@% o =@
MPU 1 A SIS) 0
/ 2 \ nt_atk turnR_m
Cranel MPU 2
Train2 k 3 /
k / cplL_m

Figure 1: Layout of Testbed Figure 2: Fundamental Plant Models

The system contains six remote track switches to control the paths of the trains, plus 26
sensors that detect the presence and identity of each train.

The testbed is controlled by two embedded MC68332 processors and an Allen-
Bradley PLC. The microprocessors control the trains and cranes directly, and also have
a discrete interface for communication with the PLLC. The PLC is responsible for control
of the overall system.

3 DES Models and Supervisors

In this section we discuss the models used for the testbed, the desired control specifica-
tions, and the supervisors that enforce these specifications.

3.1 Plant Model

The plant model for the testbed consists of the following basic elements: trains, cranes,
sensors and switches. They are shown in Fig. 2. These models are augmented by
additional specifications that define how the elements interact with one another. In total,
there are 108 modular specifications.

The interaction models show the interdependencies of the basic models. The first
series of models (Fig. 3) shows how the sensors depend on train movement. If all trains
are stationary, then every sensor is disabled. The next series of models represents the
sensors’ interdependencies. With respect to the starting position of a particular train,
sensors can only be reached in a particular order, dictated by their physical location on
the testbed.

The following series of models detail the sensors’ dependency on the switches. De-
pending on the current location of the trains, certain sensors are inaccessible if the switch
prevents the train’s approach. An example of this model is given in Fig. 4.

traini_sensor

fori=1,2 /
t2_at27
X X X
o en_trai ni @ v @ w]—SNGIZE =
@@/—\. str_swé
0 . 1 2 turn_swé
umv_traini
umv_traini 0 a7
Sir_sw6
X={nt_ao,..., nt_atl6, nt atl9,. .., nt_at27} ly
5 turn_sw6

Y ={traini_ao, ..., traini_atl6, traini_atl9, ..., traini_27}

Figure 3: Sensor Dependencies on Trains Figure 4: Sensor Dependency for Switch 6

The final series of models is slightly different from the previous series. This series,
the switch request handlers, manages how the controllers interact with the switches. The
handlers disable the switches’ activation events until they are specifically requested.

3.2 Control Specifications

The testbed’s safety and operation specifications are as follows: prevent trains from col-
liding, ensure switches are set correctly while a train is traversing them, enforce specified
routes, and synchronize trains to permit loading by cranes.

3.3 DES Supervisors

After the plant model was developed, 29 modular supervisors were designed to enforce
the given control specifications. The controllers work as follows. The routing controllers
track the progress of each train and activate track switches when necessary.

A crane controller monitors its immediate sensor for a train. When a train arrives,
it is stopped, loaded and then released. The crane controller for crane 1 is shown in Fig.
5.

The final class of supervisors are the collision protection controllers. Each track
section has its own controller that permits only one train to occupy that portion of the
track at any time. Fig. 6 shows an example controller. Note that Fig. 5 and Fig. 6 are
complete definitions of the indicated supervisors except for the omission of unimportant
self-looped events.

3.4 Discussion of Design Results

After the testbed was modeled, it became apparent that centralized control would be
infeasible due to the large size of the composite model (on the order of 10'® states).
By use of Theorem 2 in [4], we were able to verify controllability for the testbed’s 29
modular supervisors. The cited theorem identifies a reduced plant model that can be

Ssup_cprot_23 24

en_trainl, en_trainl, -
. en train2 en_train2 en_train
en_traind, st_loadl, - tl_at23

2 at22
en train2 en train2
t1 atl3 P 1
_/
%

2
t1_at26 |

t1_at26
~_ - :
0 1 en_trainl, .
fin_loadl en_train2 en_train2
t2_at23 t1_at22

st_loadl, — @ — @

t2_at13 en_trainl 3 4

@ t2_at26
fin_loadl 2 t2_at26

Figure 5: Supervisor for Crane 1 Figure 6: Collision Protection Supervisor

used to verify controllability for a given supervisor. Nonblocking of the testbed has not
yet been verified computationally owing to the strong interaction among its component
sub-plants.

4 PLC Implementation

Our proposed implementation technique is to translate supervisors into CMSSM, and
then to express the boolean logic defining a CMSSM in Relay Ladder Logic for execution
on the PLC.

4.1 Synchronous State Machines

A clocked synchronous state machine is a standard way to implement control functions
in digital hardware. The state machine only changes states on the rising (falling) edge of
a clock pulse. A Moore machine is such that the output is a function only of the present
state.

In a CMSSM, all variables represent a binary digit, and the next state vector is
determined by a boolean logic equation in the input variables and the current state
variables.

4.2 Formal Model

To prove that a CMSSM is an equivalent control representation, we first present a formal
model.
Let the CMSSM be represented by the 7-tuple

H = (I, Z;Qaﬂa (I)a QR@S;T)

Here I represents inputs to the state machine; Z represents outputs from the state ma-
chine; () represents the state vector; {2 is the next state function; ® is the state to output
map; @ res represents the initial or reset state, and 7' is the period of the clock pulse that
drives the state machine.

In detail, let the states of the CMSSM be represented by:
Q=19,q0, - --- .91, ¢g€{0,1}, 5=0,1, ... I —1;
the input by:
I =ig,%1, ... ,ip], 35, €{0,1}, 7=0,1, ... ;0 —1;
and the output by:
Z=z0,21, - 21, 2 €{0,1}, j=0,1, ... ,;r—1

Since inputs, outputs, and states only change on the rising (falling) edge of the clock
pulse, they each form a discrete series. Let k represent the index for the series, where
k = 0 corresponds to when the state machine starts, k = 1 to the state machine 1.7
seconds later, and so on. Thus, the state variables form a series:

Q(k), k= O, 1,2,3, ... where Q(k) = [qO(k),ql(k), ce ,ql_l(k')].

with Q(0) = Qges- The input and output vectors form similar series.

The new input, I(k+ 1) is simply the sampled value of the input at the (k+1)" clock
pulse. The CMSSM doesn’t model how the input changes, but simply makes decisions
based on its last state and the new input.

The next value of () is determined by the next state function, €2, defined as follows:

Q: QxI—-Q; Qk+1)=QQ(k),I(k+1))
The current output is determined by the output map, ®, defined as follows:

o:Q—~Z;, Z(k+1)=2(Q(k+1))

4.3 Translation Method

In this section, we define a translation method to convert a deterministic DES supervisor
into a CMSSM. We present both a centralized and modular implementation. First, we
state a few definitions.

Let the plant model be defined as: G = (Y, X, 1, Yy, Vi), ¥ =%, U,
Let Si, S, ..., S, be n supervisors for GG, with

Sj = (inzvé-jaXOj;ij),]: 1,2, .. n

Let S = meet(S1, S, ... ,S) = (X, %,€, Xo, Xim)

4.3.1 Centralized Implementation

For the centralized implementation, the CMSSM will be defined with respect to the
composite supervisor, S.

Define the state size of @ to satisfy 2! >| X |. Define an arbitrary injective map,
A: X — Q. The initial state is defined to be Qres = A(Xo).

Define the state size of I to be v =| 3 |. Define an arbitrary bijective map, v: ¥ —
{io, 1, -.. ,iy_1}. Then define an injective map, I' : ¥ — I where:

I'(c)=[0---010---0] for 0 € ¥ and y(o) =1,
J

Define the state size of Z to be r =| X, |. Define an arbitrary bijective map,
0: X, — {Z(),Zl, - :Z'r—l}-

The interpretation of the input variables (ig, i1 etc.) is that the CMSSM senses
the occurrence of an event ¢ when its corresponding input (o) is true (=1). The
interpretation of the output variables (zg, z; etc.) is that a controllable event, o € X, is
enabled when its corresponding output §(o) is true. Otherwise, the event is disabled.

The next state function, 2, is defined in accordance with the supervisor. For z € X
and o € X,

if &(z,0)! then Q(A(z),[(0)) = A(&(z,0)) else QA(z),T(0)) = (=)

All remaining values of 2 are assigned arbitrarily.
The output map, ®, is similarly based on the supervisor. For x € X and o € X,

if &(z,0)! then §(o) =1 for the state A\(z). Thus, ®(A\(z)) =[---1---] for (o) = 2;

otherwise (o) =0 and ®(\(z)) =[--0 -] for §(0) =sz

4.3.2 Modular Implementation

For simplicity, we define the modular implementation for the case of two modular DES
supervisors, S; and S;. The definition can easily be extended to n supervisors.

First, the two supervisors are converted to centralized CMSSM as above. But, instead
of actually controlling the system’s outputs, they generate ‘local’ outputs. Thus we have
the following controllers:

Hl = (Ia Zl:Qleu@laQReslaT) and H2 = (Iu Z27Q27QQ7©27QR6827T)

The Composite Controller, H,,,q4, is then implemented by taking the conjunction of the
two modular controllers’ outputs.
We then define the following maps:

i) (=GAGE Xix Xy) = G(X)AG(X2)

i) Q=0 x Y (Q1x Q) = N(Q1)x N(Qe)

iii) q) = @1 A (I)Q (Q1 X QQ) = (I)l(Ql) A @Q(Qg)

Thus, the controller is defined: H,q = (I, Z1 A Zo, Q1 X Q2,Q, @, Qres, X QResy, T)

4.4 Control Equivalence

For our purposes, we are only interested in whether a CMSSM will enforce the same
control action as the original DES supervisor. The effects of transmission delay and
concurrent events are not considered. For a discussion on these subjects, refer to [1], [5]
and [7]. To aid in the following discussion, some definitions are useful.

Definition: A DES supervisor and a CMSSM are control equivalent if they both take
the same control action based on any sequence of events generated by the plant.

Define (: X — Z, to map the control action specified in the supervisor at a given
state to the same representation used by the CMSSM.

4.4.1 Centralized Equivalence

For centralized equivalence we have the following:

Theorem 1 If S is controllable for plant G then the centralized implementation, H, is
control equivalent to S.

To prove Theorem 1, it is sufficient to show that Fig. 7 commutes. It is clear from
the definitions of A\, I', 2, ®, and (that this is in fact the case.

3
X X % X (X1 X X Xzég X1 x X2
\ C\
A r z A1 A2 r .
¢/
Q ¢ Q
Q x | Q Q1 X Qe x |———————= @1 x Q2

Figure 7: Control Equivalence Diagram Figure 8: Modular Control Equivalence
Diagram

4.4.2 Modular Equivalence

For modular equivalence, we present the following theorem:

Theorem 2 If S| and Sy are controllable for plant G' then the modular implementation,
H,,04, s control equivalent to S1 N Ss.

To prove Theorem 2, it is sufficient to show that Fig. 8 commutes, namely whenever
the upper path through the diagram is defined, then so is the lower, and yields the same
results. This follows directly from the definitions of the relevant maps. This result can
easily be extended to n supervisors.

4.5 Implementation Details

In this section we discuss the implementation of the synchronous state machine’s mapping
functions, and the execution algorithm used to implement the CMSSM.

For the state machine, both the next state function (€2) and the output map (®) are
implemented in a modular manner. The next state function is implemented as [boolean
logic functions. Thus,

QUQ(K), I(k +1)) = [wo(Q(K), I(k + 1)), ... ,wi1(Q(K), I(k +1))]

Similarly, the output map is implemented as r boolean logic functions. Thus,

O(Q(k+1)) = [¢o(QE + 1)), ..., ¢r1(Q(E +1))]

The execution algorithm used to implement the CMSSM is as follows:

1. Initialize state machine by setting Q(0) = Qges, Z(0) = P(Qres)and k = 0.

2. Wait for next clock pulse (k + 1). Sample inputs and set I(k + 1) to these values.
3. Compute Q(k+1) = Q(Q(k), I(k+1)) and Z(k+1) = &(Q(k + 1).

4. Set k = k+ 1 and then go to step 2.

4.6 PLC Interpretation

A programmable logic controller is similar to a microcomputer, but specialized for control
purposes. The PLC was chosen for the physical implementation of the synchronous state
machine because of its robustness, and its wide use in industry.

The CMSSM will be implemented on the PLC in the form of a relay ladder logic
(RLL) program. A RLL program is made up of several steps called rungs. A rung is
composed of a logical evaluation statement and an output assignment statement. If the
logic evaluates to true, then the output is energized. The basic components of a rung are
shown in Fig. 9.

X X Y z
4‘ }7 Test if variable _| [\ Logical AND Energize Output variable 4()7
TRUE if preceding logic TRUE

X X0 X1

v Test if variabl Example Relay Ladder \ ‘
IT variabie Logic run
A‘w— FALSE v LOGICAL OR J g %2 —{)*

Figure 9: Components of Relay Ladder Logic

The execution algorithm given in Section 4.5 will be translated into a RLL program.
The code will have five main parts: initialize variables, evaluate next state logic, assign
temporary outputs, set new states to be current states, and combine temporary outputs
to generate system outputs.

4.7 PLC Controllers

The 29 DES supervisors were implemented using the modular method outlined in Section
4.3.2. As an example, we illustrate the implementation of supervisor sup_cranel (Fig. 5).
The CMSSM representation is shown in Fig. 10. The reset state, next state function, and
the local output map are defined below. Fig. 11 shows the equivalent Relay Ladder Logic
for computing the next state of the state variables. The formulas below only show inputs
that are relevant to deciding the next state, and only those outputs that the controller
actually disables.

QaRes = [Oa O]

wi(Qa(k), Ia(k +1)) = [~qai(k) N —qao(k) N t2_at13(k+1)] V [ga1(k)
A = £1d1(k+1)]

wo(Qa(k), Ia(k +1)) = [~qai(k) N —qae(k) N t1_atl3(k+1)] V [gao(k)
A = f1d1(k+1)]

$o(Qa(k + 1)) = —qai(k + 1) ¢1(Qa(k +1)) = —qao(k + 1)
do(Qa(k +1)) = qar(k+1) V qag(k+1)

tl_atl3d A — t2_atl3 m_‘ f1d1

qa1 qag qa1 q@o

tl atl3 0 1
Reset 0o 0 —
za2 za1 2ag Zaz zai zao
o 1 1 qa1 qao t2_at13 qainew
1 1 0 f 1d1 /\} /\} I /)7
| | | \
f 1d1 qai f_ldl
| | /\/l
! |
qay qao t1_at13 qapgnew
zaz = en_t1lA gai qao | | N /
1 0
za1 = en_t2A | | | \
zag = s_1d1A zay zai za
0
Ia = [t1_at13,t2_at13,f1d1] 1 o0 1 qao0 f_ldl

Figure 10: CMSSM for sup_cranel Figure 11: RLL for Next State Equations

4.8 Discussion of Implementation Results

Each DES supervisor has been implemented as a synchronous state machine on the
Allen-Bradley PLC. An interrupt-driven, discrete interface has also been implemented
on each of the embedded MC68332 processors for communicating with the PLC. All PLC
controllers have been tested and are operational.

5 Conclusion

In conclusion, we have designed and built a PLC based testbed for investigating the
implementation of DES supervisors. The system was modeled and several RW modular
supervisors were designed and verified for controllability.

A method to implement DES supervisors as clocked Moore synchronous state ma-
chines has been presented and shown to be an equivalent representation. Also, a method
to implement supervisors modularly has been defined and shown to be equivalent to
implementing a centralized supervisor.

Finally, all 29 DES supervisors have been translated into CMSSM and implemented
on a PLC.

References

[1] S. Balemi. Input/output discrete event processes and communication delays. Dis-
crete Event Dynamic Systems: Theory and Applications, 4(1):41-85, 1994.

[2] B. A. Brandin. Real-Time Supervisory Control of Automated Manufacturing Sys-
tems. Ph.D thesis, Department of Electrical Engineering, University of Toronto,
1993.

[3] B.A. Brandin, W.M. Wonham, and B. Benhabib. Discrete-event systems supervis-
ory control applied to the management of manufacturing workcells. In 7th Inter-

national Conference on Computer Aided Manufacturing Engineering, pp. 527-536,
Cookeville, Elsevier, 1991.

[4] R.J. Leduc and W.M. Wonham. Discrete event systems modeling and control of
a manufacturing testbed. In Canadian Conference on Electrical and Computer
Engineering, volume 2, pp. 793-796, Sept 1995.

[5] Yong Li. Supervisory Control of Real-Time Discrete-Event Systems. M.A.Sc thesis,
Department of Electrical Engineering, University of Toronto, Toronto, ONT, 1986.

[6] G. Michel. Programmable Logic Controllers- Architecture and Applications. Wiley,
1990.

[7] T.- M. Pai. Real-Time Implementation of Discrete-Event Controllers. M.A.Sc thesis,
Department of Electrical Engineering, University of Toronto, Toronto, ON'T, 1990.

[8] P. Ramadge and W. Wonham. Supervisory control of a class of discrete-event
processes. SIAM J. Control And Optimization, 25(1):206-230, 1987.

[9] J. Stenerson. Fundamentals of Programmable Logic Controllers, Sensors, and Com-
munications. Prentice Hall, 1993.

[10] R. Strobel and A. Johnson. Pocket pagers in lots of one. IEEE Spectrum, pp. 29-32,
Sept 1993.

[11] J. Wakerley. Digital Design Principles. Prentice-Hall, 1990.

[12] W. Wonham and P. Ramadge. On the supremal controllable sublanguage of a given
language. SIAM J. Control and Optimization, 25(3):637-659, 1987.

