Hierarchical Interface-Based
Non-blocking Verification

R.J. LeducT, B.A. Brandin*, and W.M. Wonham!

tDepartment of Electrical and Computer Engineering

University of Toronto

tSiemens Corporate Research

email: leduc@control.toronto.edu, bertil.brandin@mchp.siemens.de, wonham@control.toronto.edu

Abstract - In this paper we present a hierarchi-
cal method that breaks up o plant into two subsys-
tems, and restricts the interaction of the subsystems
by means of an interface. We present a definition for
an interface, and define a set of interface consistency
properties that can be used to verify if a discrete-event
system (DES) is non-blocking. Each clause of the def-
inition can be verified using only one of the two sub-
systems; thus the complete system model never needs
to be constructed.

1 Introduction

In the area of Discrete-Event Systems (DES), a com-
mon task is to verify that a system (based on a carte-
sian product of subsystems) is non-blocking. The
main obstacle to this task is the combinatorial ex-
plosion of the product state space. Although many
methods have been developed to deal with this prob-
lem (modular control ([1], [9], and [17]), decentralised
control ([11] and [14]), model aggregation methods
(21, [3], [6], [8], [16], and [18]), and multi-level hi-
erarchy ([5], [7], [12], [13], [15], and [19])), large-scale
systems are still problematic.

In this paper, we present an interface-based hier-
archical method to verify if a system is non-blocking.
The method splits the given system into two subsys-
tems, and defines an interface DES to regulate how
the two subsystems interact. We then present a set of
consistency requirements that the interface and sub-
systems must satisfy. We then state our main result,
followed by a small example to illustrate it. We close
by discussing application of the method to a large ex-
ample (750 million reachable states).

2 Introduction to Method

With hierarchical interface-based non-blocking verifi-
cation, what we are proposing is essentially a master-
slave system, where a high level subsystem sends a
command to a low level subsystem, which then per-
forms the indicated task and sends back a reply. Fig-
ure 1 shows conceptually the structure of the system.

High Level Ly

L

ng ﬁZA

‘ Interface ‘

AN

Low Level

L1

Figure 1: Interface
Block Diagram.

Interface

Figure 2:
Specification.

To capture the restriction of the flow of information
imposed by the interface, the alphabet of the plant
(X) is split into four disjoint alphabets: Yy, X1, 3k,
and ¥ 4. The events in Xy are called high level events
and the events in X;, low level events as these events
appear only in the high level and low level models,
respectively.

The alphabets ¥p and ¥ 4 are called collectively
interface events. These events are common to both
levels of the hierarchy and represent communication
between the two subsystems. More specifically, the
events in Y are called request events and represent

commands sent from the high level subsystem to the
low level subsystem. Finally, the events in ¥4 are
answer events and represent the low level’s responses
to the request events (high-level commands). Figure
1 shows conceptually the flow of information in our
setting.

3 Interface Definition

To define an interface, the designer selects a set of re-
quest events, and then for each request event, the de-
signer defines a set of answer events. In essence, the
designer defines a map Answer : ¥ — Pwr(Z4).
For p € ¥R, Answer(p) is the set of possible answers
the low level subplant could provide after receiving
request p. For consistency, we add the constraints
that the low level subsystem must provide at least
one response for each request it receives, and that ¥4
does not contain any unused events. Finally, Figure
2 shows how an interface is expressed as a DES. The
required structure for an interface is given by DES
Gr.

4 Terminology and Definitions

For our setting, we assume the high level subsys-
tem is modelled by DES G (defined over event set
YpUXRUX,), the low level subsystem by DES Gp,
(defined over event set X, UXgUX4), and the in-
terface by DES Gy. Also, the high level will mean
sync(Gy,Gr),! and the low level sync(Gr,Gy). The
overall structure of the system is displayed in Figure
3.

We next assume that the alphabet partition is spec-
ified by ¥ := g UX UXgUX 4 and take the overall
system (hereafter referred to as system) to be:

G =sync(Gw, G, G1)

To simplify the notation in proofs, we introduce
some terminology. As we will often be referring to
different groupings of events, we define the following
subsets:

Y= YrUX A Interface Events
Srg = YgUXgrUX 4 Interface & High Level Events
Y= SpUXgpUS4 Interface & Low Level Events

To work with languages defined over subsets of X,
we define the following natural projections:

PIHZE*—) Z}H

IThe operation sync is the synchronous product operation
from CTCT [17].

High level

Gy
Cell 3: Cell 2:
Attach Case Attach Part

Source
Low level

G, Cell 1:

Polish Part Packaging
System
¥ sink

Figure 3: Two Tiered Figure 4: Block Diagram
Structure of the Sys- of Plant
tem.

PIL DI E?L
Pr:s o

and the following useful languages:

H =P (L(Gr)), Hm =P (Ln(Gux)) C¥*
L:= P (L(GL)), Lm:=P; (Lm(Gr)) CZ*
T:= Py (L(Gr)), Im:=P;'(Lm(Gr)) CX*

We can now represent the language of system in
terms of its components:

L(G) := L(syne(Gm,Gr,Gr))
P (L(Gw)) N Pr (L(GL)) N Py (L(Gr)

HNLNT

Similarly, the marked language of system is:

Ln(G)=Hm N Ly NI,

5 Interface Consistency Prop-
erties

We now present the interface properties that the sys-
tem must satisfy to ensure that it interacts with the
interface correctly.

Serial Interface Consistent: The system com-
posed of DES G, G and Gy, is serial interface
consistent with respect to the alphabet parti-
tion ¥ = LYgUXLUXgrUX,, if the following
properties are satisfied:

Multi-level Properties

1. The event set of Gy is Xy, and the
event set of G, is 1.

2. Gy is an interface for the alphabet par-
tition ¥ := EHUELUERUEA

High Level Properties
3. (Vs € HNZ) Elig;(s) N X4 C Eligy,(s)
Low Level Properties

4. (Vs € LNT) Eligz(s) N g C Elig/(s)

5. (Vs e Z*TrNLNI)
Elig, 7(sX3)NX4 = Eligs(s) N X4

where Elig,7(sX7) 1= Ujexs Elig,7(sl)

6. (Vse LNI)
s€l,=>03lexy)sle LinNT,

These properties mean the following:

Property 0: The first Property is inherent in the
definition of the alphabet partition,
Y :=YrgUX;UXgrUX4. It states that the four
alphabets are pairwise disjoint.

Property 1: This property asserts that the high and
low levels can only share request and answer
events.

Property 2: This property states that DES Gy is a
proper interface of the form defined in Section 3
for the specified alphabet partition.

Property 3: This property asserts that answer
events must be eligible in the high level subsys-
tem (G), if the event is eligible in the interface.

Property 4: This property asserts that request
events must be eligible in the low level subsystem
(GL), if the event is eligible in the interface.

Property 5: This property asserts that after a re-
quest event has occurred, there exists a path via
strings in Y7, to each answer event that can follow
the request event.

Property 6: This property asserts that every string
marked by the interface and accepted by the low
level subsystem, can be extended by a low level
string to a string marked by the low level (both
GI and GL)

6 Level-wise Non-blocking

In this section, we define the non-blocking require-
ments each level must satisfy.

Definition: The system composed of DES Gy, G,
and G, is said to be serial level-wise non-blocking
if the following conditions are satisfied:

(I) HmNZyp =HNZ Non-blocking at the high
level

(II) L, NZy =LNZ Non-blocking at the low
level

7 Non-blocking Theorem

We now present our main result, the serial interface
non-blocking theorem.

Theorem 1 If the system composed of DES Gg,
Gr, and Gy is serial level-wise non-blocking and
serial interface consistent with respect to the alphabet
partition ¥ :=Xg UYL UXpUX 4, then

L(G) = L, (G), where G =sync(Gg, G, Gr)
Proof: See Leduc [10].

8 Simple Manufacturing Exam-
ple

In this section, we present a simple manufacturing
example to illustrate the hierarchical interface-based
non-blocking verification method. The example pre-
sented was inspired in part by the examples given in
Wang [15], and in Brandin [4]. Table 1 defines abbre-
viations used for the event labels.

| Abbrev. [Meaning |

Abbrev. | Meaning ||

pt part (item) || str start
cmpl complete attch attach
fin finish ent enter

rlse release lv leave

pol polish recog recognize
arr arrive

Table 1: Abbreviations Used in Event Labels

8.1 Description of Manufacturing Unit

As shown in Figure 4, the manufacturing unit is com-
posed of three cells connected by a conveyor belt. In

front of each cell, is a part acquisition unit that au-
tomatically stops a part and holds it until it is given
a release command. Parts enter the system at the far
left and exit at the bottom right. After the item exits
the conveyor system, it goes to a packaging machine.

The associated plant models can be seen in Figure 5,
namely Attach Case to Assembly, Polish Part,
Attach Part to Assembly, Packaging System,
and Path Flow Model. Of note in the path flow
model are the events recog_A, and recog_B. The acqui-
sition unit in front of cell two is capable of recognising
whether a part is of type A or type B.

8.2 Partitioning the System

The first step in the process is to decide which plant
models belong to the high level subsystem, and which
to the low level subsystem. The division we have cho-
sen can be seen in Figure 5.

8.3 Augmenting the Low Level Sub-
system

We now note that the model for cell two is not well
suited to be accessed through an interface. It requires
that the decision to attach part A or part B be made
after event take_pt occurs. To make this functionality
available to the upper level, we augment the model
by adding the DES Define New Events shown in
Figure 5. The new request events (attch_ptA and
attch_ptB) will provide the high level with an easy se-
lection method while the new finish events (finA_attch
and finB_attch) will inform the high level of the com-
pletion of their respective tasks.

8.4 Defining the Interface

We now have the basic building blocks to create an in-
terface. Figure 5 shows the interface DES, G;. From
the diagram, we can see the request events and the
answer events.

We define the alphabet partition ¥ :=
YU, USrUX 4 as follows:

Yr = {start_pol, attch_ptA, attch_ptB, start_case}
Ya = {comp_pol, finA_attch, finB_attch, compl_case}
g = {part_ent, part_arrl, part_lvl, partLvExit,

str_exit, fin_exit, part_arr2, recog-A, recog_B,
part_lv2, part_arr3, part_lvs, take_item,
allow_ezit, package}

Y1 = {take_pt, str_ptA, str_ptB, compl_A, compl_B,
ret_pt, dip_acid, polish, str_rise, attch_case}

8.5 Designing Low Level Supervisors

Now that we have defined our interface, we design the
low level supervisors that will provide the functional-
ity for the request events, and give meaning to the
answer events. The idea is for the low level to offer
well-defined “services” to the high level.

We start with cell one. Here we want the sequence
dip_acid-polish to be repeated twice, after a start_pol
event occurs. The supervisor is shown in Figure 5,
and is labelled Polishing Sequence. For cell two,
we have to provide supervisors so that the cell reacts
appropriately when events attch_ptA and attch_ptB
occur. We also must guarantee that answer events
finA _attch and finB_attch only occur when they have
the appropriate meaning. The DES Affix Part in
Figure 5 shows how this is done. Finally, we do noth-
ing for cell three as it is so simple, its functionality
being already present.

8.6 Designing High Level Supervisors

Now that the low level functionality is taken care of,
we will design high level supervisors that use the inter-
face. Figure 5 shows a supervisor (Sequence Tasks)
that allows a part to visit each cell, executes the ap-
propriate command for the cell and the part type, and
then allows the part to leave the conveyor system. The
figure also shows a supervisor (Exit Buffer) that im-
plements a two item buffer for the packaging system.

8.7 The Final System

With the system components defined, it is time to put
them together. Figure 5 shows the complete system.
We have labelled which parts correspond to the DES
Gg and Gy, the high and low level subsystems.

We now wish to determine whether the system
(G = sync(Gu,GL,Gr)) is non-blocking. For this,
we have verified that the system is serial interface
consistent, and serial level-wise non-blocking. We can
thus conclude by Theorem 1 that the system is in-
deed non-blocking.

8.8 Concurrency of Subsystems

Before concluding this example, we comment on the
inherent concurrency of the high and low levels. Un-
like state expansion methods such as Bing [15] and
Gohari [7] that expand a high level state into a group
of low level states, the interface method is based on the
synchronous product, limiting information flow, and a
set of consistency rules. In general, there is no one-to-
one association between a high level state and a set of
low level states. This allows the high level to remain

active while the low level is active, and thus operate
concurrently. In the cited state expansion methods,
the high level state would remain fixed while the low
level becomes active.

This concurrency can be seen in the current ex-
ample, by noting that once the event fin_exit has oc-
curred, the string shown below is then possible.

part_ent part_arrvl start_pol dip_acid take_item polish

The string clearly shows how the high level event
take_item can occur in the middle of a sequence of low
level events, thus demonstrating that both levels are
active.

9 Car Door Locking Controller

We have also applied our method to a large car door
locking example? which is composed of 54 DES, and
has a composite model of approximately 750 million
reachable states. The system was found to be se-
rial interface consistent, and to be serial level-wise
non-blocking,hence non-blocking by Theorem 1. The
computation was run on an AMD K6 300 Linux work-
station with 256MB of RAM, and 1.5GB of swap
space. The computation took 19 minutes, and used
91MB of memory. A standard non-blocking verifica-
tion was also attempted on the monolithic system. It
ran for 38 minutes and consumed 1.7GB of memory
before running out of memory.

10 Conclusions

Hierarchical interface-based non-blocking verification
offers an effective method to model systems with a
natural client-server architecture. The method offers
an intuitive way to model and design the system. As
each requirement can be verified using only one of the
two subsystems, the entire plant model never needs to
be stored (in computer memory), offering potentially
significant savings in computation.

References

[1] N. Alsop. Formal Techniques for the Procedural Con-
trol of Industrial Processes. PhD thesis, Depart-
ment of Chemical Engineering and Chemical Tech-
nology, Imperial College of Science, Technology and
Medicine, London, 1996.

2Unfortunately, the details of this example can’t be released
at this time for proprietary reasons.

[2] Rajeev Alur and Thomas A. Henzinger. Local live-
ness for compositional modelling of fair reactive sys-
tems. In Proc. of seventh Int. Conf. on Computer-
aided Verification, Lecture Notes in Computer Sci-
ence, pages 166-179, 1995.

[3] Adnan Aziz, Vigyan Singhal, and Gitanjali M.
Swamy. Minimizing interacting finite state machines:
A compositional approach to language containment.
In Proc. of IEEE Int. Conf. on Computer Design:
VLSI in Computers and Processors, pages 255—261,
Cambridge, Massachusetts, Oct 1994.

[4] Bertil Brandin and Frangois Charbonnier. The super-
visory control of the automated manufacturing sys-
tem of the AIP. In Proc. Rensselaer’s 1994 Fourth In-
ternational Conference on Computer Integrated Man-
ufacturing and Automation Technology, pages 319-
324, Troy, Oct 1994.

[6] Y. Brave and M. Heymann. Control of discrete
event systems modeled as hierarchical state machines.
IEEE Trans. on Automatic Control, 38(12):1803—
1819, Dec 1993.

[6] P.E. Caines and Y.J. Wei. The hierarchical lattices
of a finite machine. Systems Control Letters, 25:257—
263, July 1995.

[7] Peyman Gohari-Moghadam. A linguistic framework
for controlled hierarchical DES. Master’s thesis, De-
partment of Electrical and Computer Engineering,
University of Toronto, Toronto, Ont, 1998.

[8] Susanne Graf and Bernhard Steffen. Compositional
minimization of finite state systems. In Proc. of
the 1990 Workshop on Computer-Aided Verfication,
pages 186-196, June 1990.

[9] Ryan Leduc. PLC implementation of a DES supervi-
sor for a manufacturing testbed: An implementation
perspective. Master’s thesis, Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, Ont, 1996.

[10] Ryan. Leduc. Interfaced-Based Hierarchical Supervi-
sory Control. PhD thesis, Department of Electrical
and Computer Engineering, University of Toronto,
Toronto, Ont, in preparation.

[11] F. Lin and W.M. Wonham. Decentralized control
and coordination of discrete-event systems with par-
tial observations. In Proc. 27th IEEE Conf. Decision
Contr., pages 1125-1130, Dec 1988.

[12] Hong Liu, Jun-Cheol Park, and Raymond E. Miller.
On hybrid synthesis for hierarchical structured petri
nets. Technical report, Department of Computer
Science, University of Maryland, College Park, MD,
1996.

[13] Chuan Ma. A computational approach to top-down
hierarchical supervisory control of DES. Master’s
thesis, Department of Electrical and Computer En-
gineering, University of Toronto, Toronto, Ont, 1999.

[14] Karen Rudie and W.M. Wonham. Think globally,

[15]

[16]

act locally: decentralized supervisory control. IEEE
Trans. on Automatic Control, 37(11):1692-1708, Nov
1992. Reprinted in F.A. Sadjadi (Ed.), Selected Pa-
pers on Sensor and Data Fusion, 1996; ISBN 0-8194-
2265-7.

Bing Wang. Top-down design for RW supervi-
sory control theory. Master’s thesis, Department of
Electrical and Computer Engineering, University of
Toronto, Toronto, Ont, 1995.

K.C. Wong. Discrete-Event Control Architecture:
An Algebraic Approach. PhD thesis, Department of
Electrical and Computer Engineering, University of
Toronto, Toronto, Ont, 1994.

[17] W.M. Wonham. Notes on Control of Discrete-
Event Systems. Department of Electrical and Com-
puter Engineering, University of Toronto, 1999.
Notes and CTCT software can be downloaded at
http://odin.control.toronto.edu/DES/.

H. Zhong and W.M. Wonham. On the consistency
of hierarchical supervision in discrete-event systems.
IEEE Trans. on Automatic Control, 35(10):1125—
1134, Oct 1990.

Meng Chu Zhou, David T. Wang, and Israel Mayk.
Using petri nets for object-oriented design of com-
mand and control systems. International Journal of
Intelligent Control and Systems, 2(2):287-300, 1998.

Sequence Tasks
G fin_exit
H Path Flow Model
fin_exit str_exit Mt part_arrl start_pol compl_pol
_ < .
attch_ptA =
part_ent part_arrl part_lvl . finA_attch =
— - - partLvExit part_Iv2]
23
part_Iv3 E attch_ptB ’ \E E
Part_arr3 part_1v2 recog_A Gatt_ar2 ! 8 finB_attch recog B e ;_5.
v start_case compl_case part_Iv3 part_arr] g
recog B I
. <
str_exit -
Packaging System Exit Buffer
take item str_exit str_exit
2 fin_exit fin_exit
(o)
g 0}
aq
(¢}
take_item take_item
allow_exit
G, ¢
@ g Nad
R
5 e
High Level Subsystem g
finA_attch
o attch_ptB
Low Level Subsystem
|
E finB_attch
@ Compl_case
GL Attach Part to Assembly Polish Part UiP-acid Attach Case to Assembly
olish
str_ptA cmpl_A P start_case
take_pt start_pol >
©w 5
= [
str_ptB = =
g o
compl_pol compl_case
ret_pt
Polishing Sequence Define New Affix Part
. . Events str_ptA take_pt
start_pol dip_acid o
Atich ptA, § g
attch_ptB, =3 =
3 finA_attch, \> Lg
polish dip,_acid = finB_attch finA_attch 2> attch_ptB take_pt
g =
4—)@ g &
& e
Iy &
g

Figure 5: Complete System Definition

