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Abstract - In this paper we present a hierarchical
method that decomposes a system into two subsystems,
and restricts the interaction of the subsystems by means
of an interface. We present a definition for an inter-
face, and define a set of interface consistency proper-
ties that can be used to verify if a discrete-event system
(DES) is nonblocking and controllable. Fach clause
of the definition can be verified using only one of the
two subsystems; thus the complete system model never
needs to be constructed, offering significant savings in
computational effort. Additionally, the development of
clean interfaces facilitates re-use of the component sub-
systems.

1 Introduction

In the area of Discrete-Event Systems (DES), two com-
mon tasks are to verify that a composite system, based
on a cartesian product of subsystems, is (i) nonblocking
and (ii) controllable. The main obstacle to performing
these tasks is the combinatorial explosion of the prod-
uct state space. Although many methods have been
developed to deal with this problem (modular control
[1, 8, 17, 21], decentralised control [11, 18, 22], model
aggregation methods [2, 3, 5, 20, 23], and multi-level
hierarchy [4, 7, 12, 13, 19, 24]), large-scale systems are
still problematic, particularly for verification of non-
blocking.

To deal with the complexity of large scale systems, the
software engineering community has long advocated
the decomposition of software into modules (compo-
nents) that interact via well defined interfaces (e.g.,
[14, 15, 16]). Recently the supervisory control commu-
nity has begun to advocate a similar approach [9, 10, 6].
These approaches develop well defined interfaces be-
tween components to provide the structure to allow
local checks to guarantee global properties such as con-
trollability [6] or nonblocking [9].

In this paper, we present an interface-based hierarchi-

cal method to verify if a system is nonblocking and
controllable, extending the work in [9]. While in gen-
eral the method can decompose the system into mul-
tiple “parallel” subsystems (see [10]), for the purposes
of the present paper we restrict ourselves to the special
case where the system is split into two subsystems that
interact via an interface DES that regulates the sub-
systems’ interaction. The most significant feature that
distinguishes the work from [6] is the results regarding
nonblocking.

In the remainder of the paper we first describe the gen-
eral setting and provide the preliminary definitions. We
then present a set of (local) consistency requirements
that the interface and subsystems must satisfy to guar-
antee global nonblocking. Next, we examine controlla-
bility in this setting and provide a small illustrative
example. We close by discussing the application of
the method to a large industrial example (750 million
reachable states).

2 Setting and Preliminaries

With hierarchical interface-based supervisory control,
what we are proposing is essentially a master-slave sys-
tem, where a high level subsystem sends a command to
a low level subsystem, which then performs the indi-
cated task and sends back a reply. Figure 1 shows
conceptually the structure and information flow of the
system. We call this the serial case as communication
occurs in a serial fashion between the two subsystems.

To capture the restriction of the flow of information
imposed by the interface, the alphabet of the plant (X)
is split into four disjoint alphabets: X g, X1, X, and
Y. 4. The events in Xg are called high level events and
the events in X7, low level events as these events appear
only in the high level and low level models, respectively.

The alphabets ¥ and X 4 are called collectively inter-
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face events. These events are common to both levels
of the hierarchy and represent communication between
the two subsystems. The events in X g, called request
events, represent commands sent from the high level
subsystem to the low level subsystem. The events in
34 are answer events and represent the low level’s re-
sponses to the request events (high-level commands).

Finally, we will be using the eligibility operator in our
definitions. For a language L C ¥* and a string s € X*,
the operator Elig; : ¥* — Pwr(X) is defined as follows:

Elig; (s) :== {0 € X|so € L}

2.1 Interface Definitions and Notation

To define an interface, the designer selects a set of re-
quest events, and then for each request event, the de-
signer defines a set of answer events. In essence, the
designer defines a map Answer : g — Pwr(X4). For
p € Xg, Answer(p) is the set of possible answers the
low level subplant could provide after receiving request
p. For consistency, we add the constraints that the low
level subsystem must provide at least one response for
each request it receives, and that ¥4 does not contain
any unused events. Figure 2 shows how an interface
is expressed as a DES. The required structure for an
interface is given by DES GJ.

For our setting, we assume the high level subsys-
tem is modelled by DES Gg (defined over event set
YSgUXRUX,), the low level subsystem by DES G|,
(defined over event set ¥, UXgUX.4 ), and the inter-
face by DES G; (defined over ¥ U ¥4). Also, the
high level will mean sync(Gy,Gy),! and the low level
sync(Gr,G). The overall structure of the system is
displayed in Figure 3.

We next assume that the alphabet partition is specified

IThe operation sync is the synchronous product operation
from CTCT [21].
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by ¥ := ¥y UX UXgUX 4 and take the flat system to
be:
G = sync(Gu, G, Gr)

To simplify the notation in proofs, we introduce some
terminology. As we will often be referring to different
groupings of events, we define the following subsets:
1= YrUX 4
S = YgUXRUX A Interface & High Level Events
YL Y UXRUX 4 Interface & Low Level Events

Interface Events

Il

To work with languages defined over subsets of X, we
define the following natural projections:
P]H D E);H
Py ¥ — E}L
Pr:¥—> 33

and the following useful languages:
H =P (L(GR)),  Hm = Py (Lm(
L:= PN (L(GL)), Lm =P (Lm(G
T:= P[_I(L(GI))a I = PI_I(Lm(GI)) cxr

>
S 3
NN
Y

3 Interface Consistency and Nonblocking

We now present the interface properties that the sys-
tem must satisfy to ensure that it interacts with the
interface correctly.

Serial Interface Consistent: The system composed
of DES Gy, Gr and Gy, is serial interface con-
sistent with respect to the alphabet partition
Y = YgUX, UXgUXy, if the following prop-
erties are satisfied:



Multi-level Properties

1. The event set of Gy is Xrm, and the
event set of G is Xrr.
2. (Gt is an interface for the alphabet par-
tition ¥ := EHUELUZRUEA
High Level Properties
3. HE¥ANT CH
Low Level Properties

4. LYRNICL
5. (Vse E*XpNLNI)
Elig, ~7(s¥3)NE4 = Eligz(s) N X4

where Elig ~7(sX7) := Uiex; Elig,nz(sl)
6. (VseLnNI)
SE€ELy=> 3B eX])sl€ LnNTy

These properties mean the following:

1: This property asserts that the high and low levels
can only share request and answer events.

2: This property states that DES G is a proper in-
terface of the form defined in Section 2.1 for the
specified alphabet partition.

3: This property asserts that answer events must be
eligible in the high level subsystem (Gg), if the
event is eligible in the interface.

4: This property asserts that request events must be
eligible in the low level subsystem (Gp), if the
event is eligible in the interface.

5: This property asserts that immediately after a re-
quest event has occurred, there exists a path via
strings in X} to each answer event that can fol-
low the request event. These paths may vanish
after low level events occur.

6: This property asserts that every string marked by
the interface and accepted by the low level sub-
system, can be extended by a low level string to
a string marked by the low level.

3.1 Level-wise Nonblocking
In this section, we define the nonblocking requirements
each level must satisfy.

Definition: The system composed of DES Gy, Gr,
and (7, is said to be serial level-wise nonblocking
if the following conditions are satisfied:

(I) Hp NZy, =HNI  nonblocking at the high
level

I L,NnZ,=LNT
level

nonblocking at the low

We now present our main result, the serial interface
nonblocking theorem.

Theorem 1 If the system composed of DES Gg,
Gr, and Gy 1is serial level-wise nonblocking and
serial interface consistent with respect to the alphabet
partition ¥ := g UXL USr U4, then

L(G) = Lw(G), where G = synce(Gu, Gr, Gr)

Proof: See [10].
4 Controllability

Now that we have discussed nonblocking in the serial
interface setting, we consider controllability.

4.1 Definitions

For nonblocking we were only concerned with the high
and low level subsystems, ignoring distinctions between
plants and supervisors. For controllability, we need
to split the subsystems into their plant and supervisor
components. We will do so as shown in Figure 5.

ﬁ%
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Figure 5: Plant and Supervisor Subplant Decomposition

We define the high level plant to to be Gy, and the high
level supervisor to be Sy (both defined over event set
Yrg). Similarly, the low level plant and supervisor are
Gr, and Sy, (defined over event set Xr1,). We define the
high and low level subsystems as follows:

G = sync(Gu, Su) G, :=sync(Gr, St)

The reader should note that the definition of a serial
interface system that we present here in terms of plant
and supervisor components, is the general form of such
systems. The form we defined in Section 2.1 (in terms
of high and low level subsystems) is a special case of the
general form, achieved by applying the above identities



for Gy and G,. We will refer to the original form, used
to simplify nonblocking definitions and proofs, as the
serial subsystem based form.

We can now define our flat supervisor and plant:

Plant := sync(Gn, Gr.) Sup := sync(Su, Si, Gr)

As we want to express the languages of Plant and Sup
in terms of their components, we define the following
terminology:

H:= PI}}L(QHL
L:= PI_LIL(gL)7
Note that H=H, L =L, Hs = Hs , and Ls = Ls.

Hs := P;L(Sy), CX*
Ls:= P;;'L(S1), C%*

4.2 Level-wise Controllability

We now define the controllability requirements for each
level. We adopt the standard partition ¥ = X, U,
splitting our alphabet into uncontrollable and control-
lable events.

Serial Level-wise Controllable: The system com-
posed of plant components Gy, G, supervisors
Sy, Sp, and interface Gy, is said to be serial
level-wise controllable with respect to the alpha-
bet partition ¥ := Xy U X USgUX 4, if the fol-
lowing conditions are satisfied:

(I) The alphabet of Gy and Sy is Xy, the al-
phabet of G;, and Sy, is Xy, and
the alphabet of Gy is Xj

(II) (LsNZ)S,NLC (LsN7I)
(IlT) HsX, N (HNT) C Hg

To summarise the definition, Point I states that the
plants, supervisors, and interface have the indicated
event sets. Point II states that the interface and Sp,
are together controllable for the low level plant Gr.
Point III states that supervisor Sy is controllable for
the high level plant Gg, when it is already under the
control of the interface.

4.3 Serial Controllability Theorem

In this section, we present our theorem for verifying
controllability in this setting. In essence, this theorem
asserts that if the system is serial level-wise control-
lable, then controllability can be checked for each level
separately in order to determine that the system’s flat
supervisor is controllable for the system’s flat plant.

Theorem 2 If the system composed of plant compo-
nents Ggr, Gr, supervisors Sg, S, and interface Gy,
is serial level-wise controllable with respect to the al-
phabet partition ¥ := Xy UX, USgrUX 4, then:

L(Sup)Eu n L(Plant) g L(Sup)

Proof: See [10].

5 Simple Manufacturing Example

In this section, we present a simple manufacturing ex-
ample to illustrate the hierarchical interface-based su-
pervisory control.

5.1 Description of Manufacturing Unit

As shown in Figure 4, the manufacturing unit is com-
posed of three cells connected by a conveyor belt. In
front of each cell, is a part acquisition unit that auto-
matically stops a part and holds it until it is given a
release command. Parts enter the system at the far left
and exit at the bottom right. After the item exits the
conveyor system, it goes to a packaging machine.

The associated plant models can be seen in Figure 5.2,
namely Attach Case to Assembly, Polish Part,
Attach Part to Assembly, Packaging System,
and Path Flow Model.

5.2 Defining Infrastructure

The first step in design is to decide which plant mod-
els belong to the high level subsystem, and which to
the low level subsystem. The division we have cho-
sen can be seen in Figure 5.2. We have added plant
model Define New Events which introduces events
attch_ptA, attch_ptB, finA_attch, and finB_attch. These
events provide a more versatile means to interact with
cell 2.

We define our interface to be the DES Gy shown in
Figure 5.2. We define the alphabet partition ¥ :=
YU, UZrUX 4 as follows:

Yr = {start_pol, atich_ptA, attch_ptB, start_case}

Ya = {comp_pol, finA_attch, finB_attch, compl_case}

Yu = {part_ent, part_arrl, part_lvl, partLvEzit, str_ezit,
fin_exit, part_arr2, recog_A, recog_B, part_lv2,
part_arrd, part_lv8, take_item, allow_exit, package}

Y. = {take_pt, str_ptA, str_ptB, compl_A, compl_B,
ret_pt, dip_acid, polish, str_rlse, attch_case}

Our uncontrollable/controllable event partition can be

seen immediately from Figure 5.2, after noting that
controllable transitions are denoted by a slash across
their arrow.

5.3 Designing Supervisors

Now that we have defined our interface, we design the
low level supervisors that will provide the functionality
for the request events, and give meaning to the answer
events. The idea is for the low level to offer well-defined
“services” to the high level.

For cell one, we want the sequence dip_acid-polish to
be repeated twice, after a start_pol event occurs. The



supervisor is shown in Figure 5.2, and is labelled Pol-
ishing Sequence. For cell two, we have to provide
supervisors so that the cell reacts appropriately when
events attch_ptA and attch_ptB occur. We also must
guarantee that answer events finA_attch and finB_attch
only occur when they have the appropriate meaning.
The DES Affix Part in Figure 5.2 shows how this is
done.

We now design high level supervisors that use the inter-
face. Figure 5.2 shows a supervisor (Sequence Tasks)
that allows a part to visit each cell, executes the appro-
priate command for the cell and the part type, and then
allows the part to leave the conveyor system. The figure
also shows a supervisor (Exit Buffer) that implements
a two item buffer for the packaging system. Finally, we
note that the above supervisors were designed by hand,
but we could have also employed synthesis methods.

5.4 The Final System

We our now ready to define our system components.
Figure 5.2 shows our high level subsystem, plant, and
supervisor, DES Gg, G, and Sg. We also have our
low level subsystem, plant, and supervisor, DES G,
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Gr, and Sp. They are defined to be the synchronous
product of the indicated automata.

Examining our system, we found it to be serial inter-
face consistent, serial level-wise nonblocking, and serial
level-wise controllable. We can thus conclude by The-
orem 1 that the flat system is nonblocking, and by
Theorem 2 that the flat supervisor is controllable for
the flat plant.

5.5 Concurrency of Subsystems

Before concluding this example, we comment on the
inherent concurrency of the high and low levels. Unlike
state expansion methods such as Wang [19] and Go-
hari [7] that expand a high level state into a group of
low level states, the interface method is based on the
synchronous product, limiting information flow, and a
set of consistency rules. This allows the high level to
remain active while the low level is active, and thus op-
erate concurrently.? In the cited state expansion meth-
ods, the high level state would remain fixed while the
low level becomes active.

str_ptB

N a/,[‘//
take_pt

Attch_case

attch_ptB

attch_ptA

finB_attch

compl_case
Affix Part

start_case
take_pt
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str_ptA

dip_acid,
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Polish Part
dip_acid
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o
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take_pt
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Define New Events
attch_ptA, attch_ptB

%)q

2Examine the behaviour of event fin_ezit to see this.



6 Conclusions

We have also applied our method to a large car door
locking example® which is composed of 54 DES, and
has a composite model of approximately 750 million
reachable states. The system was found to be serial in-
terface consistent, serial level-wise nonblocking, serial
level-wise controllable, hence nonblocking and control-
lable by Theorem 1 and Theorem 2. The compu-
tation was run on an AMD K6 300 Linux workstation
with 256 MB of RAM, and 1.5GB of swap space. It
took 19 minutes, and used 91MB of memory. A stan-
dard nonblocking verification was also attempted on
the monolithic system. It ran for 38 minutes and con-
sumed 1.7GB of memory before running out of memory.

Hierarchical interface-based supervisory control offers
an effective method to model systems with a natural
client-server architecture. The method offers an intu-
itive way to model and design the system. As each
requirement can be verified using only one of the two
subsystems, the entire plant model never needs to be
constructed or traversed (in computer memory), offer-
ing potentially significant savings in computation.

It is clear from the definitions in Sections 3, 3.1, and
4.2, that once we have defined our interface and event
partition, evaluating our high and low level subsys-
tems for compliance can be done independently of each
other. This means we can evaluate one high (low) level
subsystem and use it with any low (high) level subsys-
tem that satisfies the low (high) level portion of our
definitions for the given interface and event partition.
This provides us with the infrastructure required for
component reuse.
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