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Abstract—In this paper we extend our previous re-

sults in which we presented a hierarchical method that

decomposed a system into a high level subsystem which

communicated with n ≥ 1 parallel low level subsystems

through separate interfaces. This method offered po-

tentially significant computational savings as the com-

plete system model never needed to be constructed.

We introduce a new interface structure called

command-pair interfaces which is capable of represent-

ing state information about the low levels, and ex-

tend the previous results to include the more general

command-pair interfaces. We then illustrate the new

approach by re-visiting a large manufacturing exam-

ple. Finally, we present a complexity analysis showing

that the algorithm’s time complexity is O(m2), where

m = n+ 1 is the total number of subsystems.

I. Introduction

In the area of Discrete-Event Systems (DES), two com-
mon tasks are to verify that a composite system, based
on a cartesian product of subsystems, is (i) nonblock-
ing and (ii) controllable. The main obstacle to per-
forming these tasks is the combinatorial explosion of the
product statespace. Although many methods have been
developed to deal with this problem (modular control
[1, 25, 33, 36, 39], decentralized control [3, 28, 35], vec-
tor DES/Petri Nets [8, 9, 27, 31, 43], model aggregation
methods [6, 7, 10, 16, 18, 32, 38, 40, 42], and multi-level
hierarchy [4, 14, 29, 37]), large-scale systems are still prob-
lematic, particularly for verification of nonblocking.
One exception is the recent work of Zhang [41] who have

recently developed algorithms that use Integer Decision Di-
agrams to verify centralized DES systems on the order of
1023 states. This builds upon the work by the model check-
ing/temporal logic community [2, 12, 11, 5, 19, 30]. How-
ever, Zhang’s work is a more efficient way to represent DES
and verify properties, not a hierarchical method.
To deal with the complexity of large scale systems, the

software engineering community has long advocated the de-
composition of software into modules (components) that
interact via well defined interfaces (e.g., [17]). Recently
the supervisory control community has begun to advocate
a similar approach [13, 21, 22, 24]. These approaches de-
velop well defined interfaces between components to pro-
vide the structure to allow local checks to guarantee global

properties such as controllability [13, 22, 24] or nonblocking
[21, 22, 24].
In this paper, we extend the work of [21, 22, 24]

which introduced a hierarchical method, called hierarchi-
cal interface-based supervisory control (HISC), that decom-
poses a system into a high level subsystem which commu-
nicates with n ≥ 1 parallel low level subsystems through
separate interfaces. We do this by introducing a new type
of interface called command-pair interfaces that is similar,
but is able to represent state information about the low
levels.
We illustrate the use of command-pair interfaces by re-

visiting a large manufacturing example [20] with an esti-
mated closed-loop statespace size of 7 × 1021. Finally, we
present a complexity analysis for the method.

II. Serial Case and Command-pair Interfaces

Before we introduce command-pair interfaces, we must
first introduce the setting that they are defined in. We
will do this by discussing the serial case of HISC. In the
serial case, we are restricting ourselves to only one low level
(n = 1). In this setting, we have a master-slave system,
where a high level subsystem sends a command to a low
level subsystem, which then performs the indicated task
and sends back a reply. Figure 1 shows conceptually the
structure and information flow of the system. We call this
the serial case as communication occurs in a serial fashion
between the two subsystems.

Interface

High Level

Low Level

S
L

S
H

S
R

S
R

S
A

S
A

Fig. 1. Interface Block
Diagram.

r r r v S1 2 n R, ,  … ,

GI

Answer( )r1

Answer( )r2

r1

r2

0

1

2

A
n
sw

er(
)

r
n

rn

n

Fig. 2. Interface Specification.

To capture the restriction of the flow of information im-



posed by the interface, the alphabet of the plant (Σ) is split
into four disjoint alphabets: ΣH , ΣL, ΣR, and ΣA. The
events in ΣH are called high level events and the events in
ΣL low level events as these events appear only in the high
level and low level models, respectively.
The alphabets ΣR and ΣA are called collectively interface

events. These events are common to both levels of the hier-
archy and represent communication between the two sub-
systems. The events in ΣR, called request events, represent
commands sent from the high level subsystem to the low
level subsystem. The events in ΣA are answer events and
represent the low level’s responses to the request events.
In [21], Leduc et al. introduced the concept of star

interfaces.1 This interface structure was useful as it has
a regular structure and is thus easy to construct. To define
a star interface, the designer selects a set of request events,
and then for each request event, the designer defines a set
of answer events that can follow it. In essence, the designer
defines a map Answer : ΣR → Pwr(ΣA). We add the con-
straints that the low level subsystem must provide at least
one response for each request it receives, and that ΣA does
not contain any unused events. Figure 2, shows how a star
interface, with n = |ΣR| (n ≥ 0), is expressed as a DES.
The required structure for a star interface is given by DES
GI .
Command-pair interfaces are similar to star interfaces,

the key difference being that the “star” shape is no longer
required. A command-pair interface still has a request event
followed by an answer event, but it can now contain addi-
tional state information. With a command-pair interface
we can have a DES structure as in Figure 3. Request events
ρ1 and ρ2 might represent the regular behaviour of the sys-
tem, while α3 and ρ3 represent breakdown and repair of the
system.

G
I

r
1

r
2

r
3

a
1
,a

2

a
3

a
7

,a
5
,a

6a
4

0

1

2

3
4

Fig. 3. Example Command-pair
Interface.
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Definition: A DES GI = (X, ΣI , ξ, xo, Xm) is a
command-pair interface if the following conditions are
satisfied:

(A) ΣI = ΣR ∪̇ΣA

(B) (∀s ∈ L(GI))(∀ρ ∈ ΣR) sρ ∈ L(GI)⇒ s ∈ Lm(GI)

1Leduc et al. referred to star interfaces as “interfaces.” We are
introducing the term star interfaces to make it easier to refer to this
type of interface structure.

(C) (∀s ∈ Lm(GI))(∀σ ∈ ΣI) sσ ∈ L(GI)⇒ σ 6∈ ΣA

(D) Lm(GI) = {ε} ∪ (Σ∗
I .ΣA ∩ L(GI))

(E) L(GI) ⊆ (ΣR.ΣA)∗

Finally, we show that star interfaces are a special case of
command-pair interfaces.

Proposition 1 If DES GI = (X, ΣI , ξ, xo, Xm) is a star in-
terface, then GI is a command-pair interface.

Proof: See proof in [26].

A. Definitions and Notation

For our setting, we assume the high level subsys-
tem is modelled by DES GH (defined over event set
ΣH ∪ΣR ∪ΣA), the low level subsystem by DES GL (de-
fined over event set ΣL ∪ΣR ∪ΣA ), and the interface by
DES GI (defined over ΣR ∪ ΣA). Also, the high level will
mean sync(GH , GI), and the low level sync(GL, GI).

2 The
overall structure of the system is displayed in Figure 4.
To simplify the notation in proofs, we introduce the fol-

lowing event sets, natural projections, and useful languages:

ΣI := ΣR∪̇ΣA, PIH : Σ∗ → Σ∗
IH

ΣIH := ΣH ∪̇ΣR∪̇ΣA, PIL : Σ∗ → Σ∗
IL

ΣIL := ΣL∪̇ΣR∪̇ΣA, PI : Σ∗ → Σ∗
I

H := P
−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

L := P
−1
IL (L(GL)), Lm := P−1

IL (Lm(GL)) ⊆ Σ∗

I := P
−1
I (L(GI)), Im := P−1

I (Lm(GI)) ⊆ Σ∗

Whereas the representation of the system as given in Fig-
ure 4 is useful for verifying nonblocking as it simplifies the
notation, it ignores the distinctions between plants and su-
pervisors. For controllability, we need to split the subsys-
tems into their plant and supervisor components. We will
do so as shown in Figure 5.
We next define the high level plant to to be GH , and the

high level supervisor to be SH (both defined over event set
ΣIH). Similarly, the low level plant and supervisor are GL

and SL (defined over event set ΣIL). To be consistent with
the previous form, we define the following identities for the
high and low level subsystems as below.

GH := sync(GH ,SH) GL := sync(GL,SL)

We can now define our flat supervisor and plant as well
as some useful languages as follows:

Plant := sync(GH , GL) Sup := sync(SH , SL, GI)

H := P
−1
IHL(GH), HS := P−1

IHL(SH), ⊆ Σ∗

L := P
−1
IL L(GL), LS := P−1

IL L(SL), ⊆ Σ∗

Finally, we will be using the eligibility operator in our
definitions. For a language L ⊆ Σ∗ and a string s ∈ Σ∗,
the operator EligL : Σ∗ → Pwr(Σ) is defined as follows:

EligL(s) := {σ ∈ Σ|sσ ∈ L}

2The operation sync is the synchronous product operation from
CTCT [39].



B. Serial Interface Properties and Theorems

We now present the interface requirements that the sys-
tem must satisfy to ensure that it interacts with the inter-
face correctly. We then define the nonblocking and control-
lability requirements each level must satisfy. Refer to [26]
for a more detailed explanation of the requirements. The
only difference between the definitions and theorems in this
paper and the ones in [21, 22] is that the definitions and
theorems now all refer to command-pair interfaces.3
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Fig. 5. Plant and Supervisor
Subplant Decomposition

Fig. 6. Parallel Interface Block
Diagram.

Serial Interface Consistent: The system composed of DES
GH , GL and GI , is serial interface consistent with respect
to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the
following properties are satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of
GL is ΣIL.

2. GI is a command-pair interface for the alphabet
partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA

High Level Properties

3. HΣA ∩ I ⊆ H

Low Level Properties

4. LΣR ∩ I ⊆ L

5. (∀s ∈ Σ∗.ΣR ∩ L ∩ I) [EligL∩I(sΣ
∗
L) ∩ ΣA =

EligI(s) ∩ ΣA]
where EligL∩I(sΣ

∗
L) := ∪l∈Σ∗

L
EligL∩I(sl)

6. (∀s ∈ L∩ I) [s ∈ Im ⇒ (∃l ∈ Σ∗
L) sl ∈ Lm ∩ Im]

Serial Level-wise Nonblocking: The system composed of
DES GH , GL, and GI , is said to be serial level-wise non-
blocking if the following conditions are satisfied:

(I) Hm ∩ Im = H ∩ I nonblocking at the high level

(II) Lm ∩ Im = L ∩ I nonblocking at the low level

We now define the controllability requirements for each
level. We adopt the standard partition Σ = Σu ∪̇Σc,
splitting our alphabet into uncontrollable and controllable
events.

3Note, the controllability results in this paper are automatic from
[21, 22] as they don’t rely on the specific structure of the star interface,
just its event set. They are included for completeness.

Serial Level-wise Controllable: The system composed of
plant components GH , GL, supervisors SH , SL, and inter-
face GI , is said to be serial level-wise controllable with re-
spect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if
the following conditions are satisfied:

(I) The alphabet of GH and SH is ΣIH , the alphabet of
GL and SL is ΣIL, and the alphabet of GI is ΣI

(II) (LS ∩ I)Σu ∩ L ⊆ LS ∩ I

(III) HSΣu ∩ (H ∩ I) ⊆ HS .

We now present our main results for this section, the
serial interface nonblocking theorem and the serial control-
lability theorem.

Theorem 1 If the system composed of DES GH , GL, and GI is
serial level-wise nonblocking and serial interface consistent with
respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then

L(G) = Lm(G), where G = sync(GH , GL, GI)

Proof: See proof in [26].

Theorem 2 If the system composed of plant components GH ,
GL, supervisors SH , SL, and interface GI , is serial level-
wise controllable with respect to the alphabet partition Σ :=
ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s)∩Σu ⊆ EligL(Sup)(s)

Proof: See proof in [26].

III. Parallel Case

In Section II., we described the serial case for the HISC
method where the number of low levels (n) is restricted
to one. We now describe the more general setting where
we have n ≥ 1 low levels. Figure 6 shows conceptually
the structure and flow of information of such a system. In
this new setting, we still have a single high level, but this
time it is interacting with n ≥ 1 independent low levels,
communicating with each low level in parallel through a
separate interface. We will refer to the number of low levels,
n, as the degree of the system.
As in the serial case, in order to capture the restriction of

the flow of information imposed by the interface, we parti-
tion the alphabet of the system into the following analogous
pairwise disjoint alphabets: ΣH , ΣRj

, ΣAj
, and ΣLj

, with
j = 1, . . . , n.

For an nth degree parallel system, we assume the high
level subsystem is modelled by DES GH (defined over event
set ∪̇j∈{1,...,n}[ΣRj

∪̇ΣAj
] ∪̇ ΣH). For j ∈ {1, . . . , n}, the jth

low level subsystem is modelled by DES GLj
(defined over

event set ΣLj
∪̇ΣRj

∪̇ΣAj
), the jth interface by DES GIj

(defined over event set ΣRj
∪̇ΣAj

), and that the overall sys-
tem has the structure shown in Figure 7. Furthermore, we
will refer to the jth low level to mean sync(GLj

, GIj
) and

we will assume that the alphabet partition is specified by
Σ := ∪̇j∈{1,...,n}[ΣLj

∪̇ΣRj
∪̇ΣAj

] ∪̇ ΣH and that the flat sys-
tem is taken to be:

G = sync(GH , GL1 , . . . , GLn , GI1 , . . . , GIn)

In order to simplify the notation in proofs, we now in-
troduce the following event sets, natural projections, and
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useful languages. For the remainder of this section, the
index j is defined to have range {1, . . . , n}.

ΣIj
:= ΣRj

∪ΣAj
, PIH : Σ∗ → Σ∗

IH

ΣIH := ∪j∈{1,...,n}ΣIj
∪ ΣH , PILj

: Σ∗ → Σ∗
ILj

ΣILj
:= ΣLj

∪ΣIj
, PIj

: Σ∗ → Σ∗
Ij

H := P
−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P
−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P
−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

As in the serial case, we need to be able to decompose the

nth degree (n ≥ 1) parallel interface system into its plant
and supervisor components.
We now define the high level plant to to be GH , and the

high level supervisor to be SH (both defined over ΣIH).

Similarly, the jth low level plant and supervisor are GLj

and SLj
(defined over ΣILj

). We now define the high level

subsystem and the jth low level subsystem as follows:

GH := sync(GH , SH) GLj
:= sync(GLj

, SLj
)

We can now define our flat supervisor and plant as well
as some useful languages as follows:

Plant := sync(GH , GL1 , . . . ,GLn)

Sup := sync(SH , SL1 , . . . ,SLn , GI1 , . . . , GIn)

H := P
−1
IHL(GH), HS := P

−1
IHL(SH), ⊆ Σ∗

Lj := P
−1
ILj

L(GLj
), LSj

:= P
−1
ILj

L(SLj
), ⊆ Σ∗

A. Serial System Extraction

As the event set of each low level is mutually exclusive
from the event sets of the other low levels, we can consider
the parallel interface system as n serial interface systems
by choosing one low level and ignoring the others. This
will allow us to reuse our existing definitions and results
for serial interface systems.
In this section, we introduce the concept of serial system

extractions for an nth degree (n ≥ 1) parallel interface sys-
tem, shown conceptually in Figure 8 in terms of subsystems.
Below we give the general form of the definition. The paral-
lel subsystem form of the definition can be obtained by us-
ing the identities GH = sync(GH , SH), GL = sync(GL, SL),
and GLj

= sync(GLj
, SLj

).

jth Serial System Extraction: For the nth degree (n ≥ 1)
parallel interface system composed of DES GH , GL1 , . . . ,

GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn , with alphabet parti-
tion Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , the jth serial

system extraction, denoted by system(j), is composed of
the following elements:

GH(j) := sync(GH , GI1 , . . . , GI(j−1) , GI(j+1) , . . . , GIn)

SH(j) := SH , GL(j) := GLj
, SL(j) := SLj

, GI(j) := GIj

ΣH(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
∪̇ΣH

ΣL(j) := ΣLj
, ΣR(j) := ΣRj

, ΣA(j) := ΣAj

Σ(j) := ΣH(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

B. Parallel Case Definitions and Theorems

In this section we present a set of properties that are
equivalent to their serial interface counterparts.

Fig. 8. The Serial System Extraction

Interface Consistent: The nth degree (n ≥ 1) parallel
interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn , is interface consistent with respect to alpha-
bet partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of
the system is serial interface consistent.

Level-wise Nonblocking: The nth degree (n ≥ 1)parallel
interface system composed of DES GH , GL1 , . . . , GLn ,

GI1 , . . . , GIn , is level-wise nonblocking with respect to the
alphabet partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH ,
if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of
the system is serial level-wise nonblocking.

Level-wise Controllable: The nth degree (n ≥ 1) par-
allel interface system composed of DES GH , GL1 , . . . ,

GLn , SH , SL1 , . . . ,SLn , GI1 , . . . , GIn , is level-wise con-
trollable with respect to alphabet partition Σ :=
∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of
the system is serial level-wise controllable.

We now present our nonblocking theorem and controlla-
bility theorem for parallel interface systems.

Theorem 3 If the nth degree (n ≥ 1) parallel interface system
composed of DES GH , GL1 , . . . , GLn , GI1 , . . . , GIn , is level-wise
nonblocking and interface consistent with respect to the alphabet
partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , then
L(G) = Lm(G),

where G = sync(GH , GL1, . . . , GLn, GI1, . . . , GIn)

Proof: See proof in [26].



Theorem 4 If the nth degree (n ≥ 1) parallel interface sys-
tem composed of plant components GH , GL1 , . . . ,GLn , supervi-
sors SH , SL1 , . . . ,SLn , and interfaces GI1 , . . . , GIn , is level-
wise controllable with respect to the alphabet partition Σ :=
∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , then

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s)∩Σu ⊆ EligL(Sup)(s)

Proof: See proof in [26].

IV. Application to the AIP

We now revisit an application to a large manufactur-
ing system, the Atelier Inter-établissement de Productique
(AIP) discussed in [20], to illustrate the use of command-
pair interfaces. The AIP, shown in Figure 9, is a highly au-
tomated manufacturing system consisting of a central loop
(CL) and four external loops (EL), three assembly stations
(AS), an input/output (I/O) station, and four inter-loop
transfer units (TU). The I/O station is where the pallets
enter and leave the system. Pallets can be of type 1 or of
type 2, and it is assumed that the type of the pallet entering
is random.

Fig. 9. The Atelier Inter-établissement de Productique

A. Assembly Stations

Each assembly station consists of a robot to perform as-
sembly tasks, an extractor to transfer the pallet from the
conveyor to the robot, and sensors, and a read/write (R/W)
device to access the pallet’s electronic label.
Although the assembly stations are similar, they differ

with respect to functionality and reliability. Station 1 is
capable of performing task1A and task1B, while station 2
can perform task2A and task2B. Station 3 can perform all
four tasks, function as a pallet repair station, and substitute
for the other stations when they are down.

B. Transport Units

The transport units are used to transfer pallets between
the central loop, and the external loops. Each one consists

of a transport drawer, sensors, a R/W device, as well as
pallet gates and pallet stops, to control access from the
given loop.

C. Using Command-pair Interfaces

In [20], the AIP was modelled using only star interfaces.
The system was designed as a 7th degree parallel interface
system, with the low levels representing the three assembly
stations, and four transfer units. For full design details,
refer to [26].
The design of the low level for assembly station 1 was

poorly suited to being modelled by star interfaces. This can
be seen by examining its star interface, shown in Figure 10.
We see that the AS1 has two request events, ProcPallet.AS1
and DoRpr.AS1. Clearly, it only makes sense to do a re-
pair, after the answer event ASDwn.k has occurred. Also, it
doesn’t make sense to try to process a pallet while the AS
is down. With command-pair interfaces, modelling this is
easily accomplished as in Figure 10.
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Fig. 10. Interfaces for Assembly Station 1

In particular, representing the assembly station as a star
interface is difficult because of Point 5 of the serial in-
terface consistent definition. This point says that after a
request event has occurred (such as ProcPallet.AS1), then all
answer events that the interface says can follow the event
(ie. for star interface, events at state 1) must be possible
after at most a sequence of low level events. However once
the station is down, the physical events ProcCpl.AS1 and
ProcErr.AS1 can’t occur until it has been repaired. How
this was resolved in [20] can be seen in Figure 11 where
events RobDwn.AS1, RtasksCpl.AS1, RobUp.AS1, and Assm-

bErrA/B.AS1 roughly correspond to the station’s answer
events and ProcType1/2.AS1 and DoRpr.AS1 roughly cor-
respond to the request events. We see that if the robot is
down (state s11) and a request to process a pallet is made,
all answer events are possible but which one occurs is ran-
domly selected and has no physical meaning. This ugly
kludge is unnecessary if command-pair interfaces are used.

V. Complexity Analysis

To aid in investigating HISC, we have developed software
routines to verify that a system satisfies the conditions: se-
rial level-wise nonblocking and controllable, and serial in-
terface consistent. The routines were developed by Leduc
during his collaboration with Siemens Corporate Research
and they use the algorithms described in [26].



Analyzing the steps required to verify the above condi-
tions, we see that they consist of verifying system properties
(ie. is GI a command-pair interface), high level properties
and low level properties. We next note that we can treat the
high level as a low level for our analysis as the conditions to
be checked are equivalent. By grouping the system proper-
ties with the low level properties, means verifying two “low
levels” (components) can be used as an upper bound for
verifying the system.
As we can not perform an analytic analysis as the only

sourcecode available is copyrighted by Siemens and cannot
be released, we follow the advice of Goodrich et al. [15] and
use experimental algorithm analysis to estimate the worse
case time complexity for per component analysis. This is
sufficient as the per component complexity only contributes
a constant term to the complexity of evaluating a system.

Fig. 11. DoRobotTasks.AS1

To perform this analysis, we will assume that the running
time for one component is of the form t(x) = bxc with x the
state size of our component and for some constants b > 0

and c > 0. We then use the power test discussed in [15] to
experimentally determine the worst case running time to
be t(x) = (8.56× 10−9)x3 which makes the algorithm O(x3)

(chapter 6 of [26]).
We next consider verifying an nth degree parallel inter-

face system. To do this, we must check that 3n + 1 event
sets are pairwise disjoint and check that n serial extraction
systems are serial level-wise nonblocking and controllable,
and serial interface consistent. We let m = n + 1 be the
number of components to be verified. We also assume that
the statespace x of each component and the cardinality of

the system’s event set (Σ) are bounded with upper bounds
N ≥ 0 and NΣ ≥ 0, respectively. We further assume that
the cardinality of event sets ΣH , ΣL1 , . . . ,ΣLn , ΣR1 , . . . ,ΣRn

and ΣA1 , . . . ,ΣAn is each bounded by NΣ′ ≥ 0.

It can be shown that verifying 3n+1 event sets are pair-
wise disjoint can be performed by 9

2
m2 − 15

2
m + 3 empty

intersection tests which are each O(N 2
Σ′) [34]. The whole

process is thus O( 9
2
m2N2

Σ′ −
15
2
mN2

Σ′ + 3N2
Σ′) = O(m2).

To verify the n serial extraction systems, we must per-
form the per component analysis 2n times givingO(2n·x3) =

O(2mN3− 2N3) = O(m) as N is a constant. Combining the
two steps, we have O(m2 +m) = O(m2). This is only prac-
tical as long as N isn’t too large.

We next compare the HISC method to verifying non-
blocking of flat system. Based on the work of Rudie [34],
it can be shown that the monolithic approach is O(N 2m)

and thus our scales significantly better. Table I illustrates
this for terms T1 = N2m, and T2 = 2mN3− 2N3+ 9

2
m2N2

Σ′ −
15
2
mN2

Σ′ + 3N2
Σ′ . We see that even for m = 2 (serial sys-

tem) and N = 106, our approach is six orders of magnitude
better. To put this into perspective, if our algorithm ran
for one hour, the monolithic algorithm would require 114
years!

m = 2 m = 9

N NΣ′ T1 T2 T1 T2

103 102 1012 2 × 109 1054 1.60 × 1010

106 102 1024 2 × 1018 10108 1.60 × 1019

TABLE I

Parallel Algorithm Comparison

The cost for this increase in computational efficiency is
a more restrictive architecture. As similar interface-based
approaches are common in both hardware and software, we
are confident that our method will be widely applicable.

UPDATE: The analysis presented here relies on the
assumption that the statespace of each component is
bounded by the constant N . As long as this assump-
tion is reasonable, the analysis is correct. For the DES
GH , GL1 , . . . , GLn

, GI1 , . . . , GIn
, this assumption is reason-

able.

However, when analyzing the conditions interface consis-
tent, level-wise nonblocking, and level-wise controllable, we
must construct serial extraction systems (see Section A.) to
analyze the corresponding serial conditions. For example,
to verify that the parallel interface system is interface con-
sistent, we must verify that all n serial system extractions
(subsystem form) are serial interface consistent. To verify
the latter condition, we must use the component GH(j) :=
GH ||sGI1 ||s . . . ||sGI(j−1) ||sGI(j+1) ||s . . . ||sGIn

with the se-
rial algorithms we developed in [26]. Unlike the DES GH ,
component GH(j) grows proportionally to n, thus the as-
sumption that GH(j) is bounded by N is questionable. In
this view, the above analysis is a bit too optimistic and
is thus more in line with an average or best case analysis.
This does not mean that the approach does not have great
potential to scale. For a good scalability discussion, see
[23].



VI. Conclusions

HISC offers an effective method to model systems with
a natural client-server architecture. Command-pair inter-
faces extends the modelling flexibility for interfaces by al-
lowing the representation of low level state information,
thus enabling many new systems to be modelled as low
levels.
As each requirement can be verified using only one sub-

system, the entire plant model never needs to be con-
structed or traversed, offering potentially significant sav-
ings in computation. We have shown this concretely by
proving that the time complexity for analyzing a system by
our method is O(m2), as compared to a monolithic analysis
which is O(N2m).
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