
Hierarchical Interface-based

Supervisory Control: Command-pair Interfaces

R.J. Leduc

Dept. of Computing and Software, McMaster University
email: leduc@mcmaster.ca

Version 1.1,

June 15, 2004

Abstract

In this paper we extend our previous results in which we presented a hierarchi-
cal method that decomposed a system into a high level subsystem which commu-
nicated with n ≥ 1 parallel low level subsystems through separate interfaces. This
method offered significant computational savings as the complete system model
never needed to be constructed.

We introduce a new interface structure called command-pair interfaces which
extends the previous approach (star interfaces) to now be able to represent state
information about the low levels. We show that star interfaces are a special case,
and extend the results for star interfaces to include the more general command-pair
interfaces.

We illustrate the new approach by re-visiting a large manufacturing example
that was designed using only star interfaces. Finally, we present a complexity
analysis showing that the algorithm’s time complexity is O(m2), where m = n+ 1
is the total number of subsystems.

1 Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify that a
composite system, based on a cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is the combinatorial explosion
of the product statespace. Although many methods have been developed to deal with this
problem (modular control [1, 17, 31, 46, 52, 56], decentralized control [5, 34, 49, 50, 55, 58],
vector DES/Petri Nets [11, 12, 33, 39, 62, 63], model aggregation methods [2, 4, 9, 10, 13,
19, 22, 24, 44, 45, 51, 54, 57, 61], and multi-level hierarchy [6, 20, 35, 36, 53]), large-scale
systems are still problematic, particularly for verification of nonblocking.

One exception is the recent work of Zhang et al. [59, 60] who have recently developed
algorithms that use Integer Decision Diagrams (an extension of Binary Decision Diagrams
(BDD:[7])) to verify centralized DES systems on the order of 1023 states. This builds
upon the work by the model checking/temporal logic community [3, 16, 14, 15, 8, 25, 37,
38, 40, 47] who have successfully used BDDs to handle systems of similar size. However,

1

Zhang’s work doesn’t represent a hierarchical approach, but a more efficient way to
represent DES and verify properties. This means it should be possible to use it to
compliment a hierarchical method for even better scalability.

To deal with the complexity of large scale systems, the software engineering com-
munity has long advocated the decomposition of software into modules (components)
that interact via well defined interfaces (e.g., [23, 42, 41, 43]). Recently the supervisory
control community has begun to advocate a similar approach [18, 27, 28, 30]. These
approaches develop well defined interfaces between components to provide the structure
to allow local checks to guarantee global properties such as controllability [18, 28, 30] or
nonblocking [27, 28, 30].

In this paper, we extend the work of [27, 28, 30] which introduced a hierarchical
method, called hierarchical interface-based supervisory control (HISC), that decomposes
a system into a high level subsystem which communicates with n ≥ 1 parallel low level
subsystems through separate interfaces. This method presented a set of interface consis-
tency properties that can be used to verify if a discrete-event system (DES) is nonblocking
and controllable. As each clause of the definition can be verified using a single subsystem,
the complete system model never needed to be constructed, offering significant savings
in computational effort.

One limitation of the method was the definition of its interface structure, which we
will refer to as star interfaces. This structure was too restrictive as it was not able to
represent state information about the low levels. We introduce a new type of interface
called command-pair interfaces that is similar, but can contain state information. We
show that star interfaces are a special case, and extend the results for star interfaces to
include the more general command-pair interfaces.

We illustrate the use of command-pair interfaces by re-visiting a large manufacturing
example [26] with an estimated closed-loop statespace size of 7× 1021 that was designed
using only star interfaces. Finally, we present a complexity analysis for the method
and show that the algorithm’s time complexity for evaluating a system is O(m2), where
m = n+ 1 is the total number of subsystems.

2 Serial Case and Command-pair Interfaces

Before we discuss star interfaces and introduce command-pair interfaces, we must first
introduce the setting that they are defined in. We will do this by discussing the serial
case of HISC. In the serial case, we are restricting ourselves to only one low level (n = 1).
In this setting, we have a master-slave system, where a high level subsystem sends a
command to a low level subsystem, which then performs the indicated task and sends
back a reply. Figure 1 shows conceptually the structure and information flow of the
system. We call this the serial case as communication occurs in a serial fashion between
the two subsystems.

To capture the restriction of the flow of information imposed by the interface, the
alphabet of the plant (Σ) is split into four disjoint alphabets: ΣH , ΣL, ΣR, and ΣA. The
events in ΣH are called high level events and the events in ΣL low level events as these
events appear only in the high level and low level models, respectively.

The alphabets ΣR and ΣA are called collectively interface events. These events are
common to both levels of the hierarchy and represent communication between the two
subsystems. The events in ΣR, called request events, represent commands sent from the

2

Interface

High Level

Low Level

S
L

S
H

S
R

S
R

S
A

S
A

Figure 1: Interface
Block Diagram.

r r r v S1 2 n R, , … ,

GI

Answer()r1

Answer()r2

r1

r2

0

1

2

A
n
sw

er(
)

r
n

rn

n

Figure 2: Interface Specifi-
cation.

G
I

r
1

r
2

r
3

a
1
,a

2

a
3

a
7

,a
5
,a

6a
4

0

1

2

3
4

Figure 3: Example
Command-pair Interface.

high level subsystem to the low level subsystem. The events in ΣA are answer events and
represent the low level’s responses to the request events.

In [27], Leduc et al. introduced the concept of star interfaces.1 This interface struc-
ture was useful as it has a regular structure and is thus easy to construct. To define
a star interface, the designer selects a set of request events, and then for each request
event, the designer defines a set of answer events. In essence, the designer defines a map
Answer : ΣR → Pwr(ΣA). For ρ ∈ ΣR, Answer(ρ) is the set of possible answers (re-
ferred to as the answer set) the low level subsystem could provide after receiving request
ρ. For consistency, the constraints that the low level subsystem must provide at least one
response for each request it receives, and that ΣA does not contain any unused events
are added. Figure 2, shows how a star interface, with n = |ΣR| (n ≥ 0), is expressed as a
DES. The required structure for a star interface is given by DES GI . It is also required
that the event set of GI be set to ΣR ∪̇ΣA but no restrictions on whether a request or
answer event is controllable or uncontrollable are made.

We now introduce command-pair interfaces. Command-pair interfaces are similar
to star interfaces, the key difference being that the “star” shape is no longer required.
A command-pair interface still has a request event followed by an answer event, but
it can now contain additional state information. For example, in Figure 2 all possible
request events are defined at the initial state. When an answer event has occurred, it
always returns the star interface to the initial state, and thus the same choice of potential
request events. With a command-pair interface we can have a DES structure as in Figure
3. Request events ρ1 and ρ2 might represent the regular behaviour of the system, while α3
and ρ3 represent breakdown and repair of the system. A command-pair interface allows
the flexibility of only having the repair event eligible after a breakdown.

Definition: A DES GI = (X, ΣI , ξ, xo, Xm) is a command-pair interface if the follow-
ing conditions are satisfied:

(A) ΣI = ΣR ∪̇ΣA

(B) (∀s ∈ L(GI))(∀ρ ∈ ΣR) sρ ∈ L(GI)⇒ s ∈ Lm(GI)

1Leduc et al. referred to star interfaces as “interfaces.” We are introducing the term star interfaces
to make it easier to refer to this type of interface structure.

3

(C) (∀s ∈ Lm(GI))(∀σ ∈ ΣI) sσ ∈ L(GI)⇒ σ 6∈ ΣA

(D) Lm(GI) = {ε} ∪ (Σ∗
I .ΣA ∩ L(GI))

(E) L(GI) ⊆ (ΣR.ΣA)∗

The first point says that GI ’s event set is restricted to request and answer events and
that the two sets are disjoint. Point B states that request event transitions are only
defined at marked states. Point C states that there are no answer events defined at
marked states. Point D says that the marked language of GI consists of the empty
string, and strings that end in an answer event. Finally, Point E says that in the
language of GI , a request event always occurs first and then request and answer events
alternate.

Finally, we show that star interfaces are a special case of command-pair interfaces.

Proposition 1 If DES GI = (X, ΣI , ξ, xo, Xm) is a star interface, then GI is a command-
pair interface.

Proof: See proof in [32].

2.1 Definitions and Notation

For our setting, we assume the high level subsystem is modelled by DES GH (defined
over event set ΣH ∪ΣR ∪ΣA), the low level subsystem by DES GL (defined over event
set ΣL ∪ΣR ∪ΣA), and the interface by DES GI (defined over ΣR ∪ΣA). Also, the high
level will mean sync(GH , GI), and the low level sync(GL, GI).

2 The overall structure of
the system is displayed in Figure 4.

To simplify the notation in proofs, we introduce the following event sets, natural
projections, and useful languages:

ΣI := ΣR∪̇ΣA

ΣIH := ΣH∪̇ΣR∪̇ΣA

ΣIL := ΣL∪̇ΣR∪̇ΣA

PIH : Σ∗ → Σ∗
IH

PIL : Σ∗ → Σ∗
IL

PI : Σ∗ → Σ∗
I

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

L := P−1
IL (L(GL)), Lm := P−1

IL (Lm(GL)) ⊆ Σ∗

I := P−1
I (L(GI)), Im := P−1

I (Lm(GI)) ⊆ Σ∗

Whereas the representation of the system as given in Figure 4 (called the serial
subsystem based form) is useful for verifying nonblocking as it simplifies the notation, it
ignores the distinctions between plants and supervisors. For controllability, we need to
split the subsystems into their plant and supervisor components. We will do so as shown
in Figure 5.

We next define the high level plant to to be GH , and the high level supervisor to be
SH (both defined over event set ΣIH). Similarly, the low level plant and supervisor are

2The operation sync is the synchronous product operation from CTCT [56].

4

GL and SL (defined over event set ΣIL). To be consistent with the serial subsystem based
form, we define the following identities for the high and low level subsystems as below.
We will refer to this new representation as the serial system general form as the original
representation can be recovered from applying these identities.

GH := sync(GH ,SH) GL := sync(GL,SL)

We can now define our flat supervisor and plant as well as some useful languages as
follows:

Plant := sync(GH , GL) Sup := sync(SH , SL, GI)

H := P−1
IHL(GH), HS := P−1

IHL(SH), ⊆ Σ∗

L := P−1
IL L(GL), LS := P−1

IL L(SL), ⊆ Σ∗

G
H

High level

G
L

G
I

G
I

Low level

Figure 4: Two Tiered Structure of the Sys-
tem.

High level

Low level

G = (,)L Lsync G S
L

GL S
L

GI

G = (,)H Hsync G S
H

GH S
H

Figure 5: Plant and Supervisor Subplant
Decomposition

Finally, we will be using the eligibility operator in our definitions. For a language
L ⊆ Σ∗ and a string s ∈ Σ∗, the operator EligL : Σ∗ → Pwr(Σ) is defined as follows:

EligL(s) := {σ ∈ Σ|sσ ∈ L}

2.2 Serial Interface Properties and Theorems

We now present the interface requirements that the system must satisfy to ensure that it
interacts with the interface correctly. We then define the nonblocking and controllability
requirements each level must satisfy. Refer to [32] for a more detailed explanation of the
requirements. The only difference between these definitions and the ones in [27, 28] is
that the definitions now all refer to command-pair interfaces instead of assuming star
interfaces. We are abusing notation by not changing the definition’s names to reflect
this since a command-pair interface is also a star interface and would thus satisfy the
previous version of the definitions.

5

Serial Interface Consistent: The system composed of DES GH , GL and GI , is serial
interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA,
if the following properties are satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GL is ΣIL.

2. GI is a command-pair interface for the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA

High Level Properties

3. HΣA ∩ I ⊆ H

Low Level Properties

4. LΣR ∩ I ⊆ L

5. (∀s ∈ Σ∗.ΣR ∩ L ∩ I) [EligL∩I(sΣ
∗
L) ∩ ΣA = EligI(s) ∩ ΣA]

where EligL∩I(sΣ
∗
L) := ∪l∈Σ∗

L
EligL∩I(sl)

6. (∀s ∈ L ∩ I) [s ∈ Im ⇒ (∃l ∈ Σ∗
L) sl ∈ Lm ∩ Im]

Serial Level-wise Nonblocking: The system composed of DES GH , GL, and GI , is
said to be serial level-wise nonblocking if the following conditions are satisfied:

(I) Hm ∩ Im = H ∩ I nonblocking at the high level

(II) Lm ∩ Im = L ∩ I nonblocking at the low level

We now define the controllability requirements for each level. We adopt the standard
partition Σ = Σu ∪̇Σc, splitting our alphabet into uncontrollable and controllable events.

Serial Level-wise Controllable: The system composed of plant components GH , GL,
supervisors SH , SL, and interface GI , is said to be serial level-wise controllable
with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, if the following
conditions are satisfied:

(I) The alphabet of GH and SH is ΣIH , the alphabet of GL and SL is ΣIL, and
the alphabet of GI is ΣI

(II) (LS ∩ I)Σu ∩ L ⊆ LS ∩ I

(III) HSΣu ∩ (H ∩ I) ⊆ HS .

We now present our main results for this chapter, the serial interface nonblocking
theorem and the serial controllability theorem. As the serial level-wise nonblocking, se-
rial level-wise Controllable, and serial interface consistent definitions can be evaluated
by examining only one level of our system at a time, we now have a means to verify
nonblocking of our system using local checks. The difference between these theorems
and the ones in [27, 28] is that they now use the command-pair interface definitions.3

3Note, the controllability results here, and later for the parallel case, are automatic from [27, 28] as
they don’t rely on the specific structure of the star interface, just its event set. They are included for
completeness.

6

Theorem 1 If the system composed of DES GH , GL, and GI is serial level-wise non-
blocking and serial interface consistent with respect to the alphabet partition Σ := ΣH ∪̇ΣL ∪̇ΣR

∪̇ΣA, then

L(G) = Lm(G), where G = sync(GH , GL, GI)

Proof: See proof in [32].

Theorem 2 If the system composed of plant components GH , GL, supervisors SH , SL,
and interface GI , is serial level-wise controllable with respect to the alphabet partition
Σ := ΣH ∪̇ΣL ∪̇ΣR ∪̇ΣA, then:

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

where Plant = sync(GH ,GL) and Sup = sync(SH ,SL, GI).

Proof: See proof in [32].

3 Parallel Case

In Section 2, we described the serial case for the HISC method where the number of
low levels (n) is restricted to one. We now describe the more general setting where we
have n ≥ 1 low levels. Figure 6 shows conceptually the structure and flow of information
of such a system. In this new setting, we still have a single high level, but this time it
is interacting with n ≥ 1 independent low levels, communicating with each low level in
parallel through a separate interface. We will refer to the number of low levels, n, as the
degree of the system.

Figure 6: Parallel Interface Block Dia-
gram.

High level

Low Level 1

G
L1

G
H

G
I1

Low Level n

G
Ln

G
In

Figure 7: Two Tiered Structure of Parallel
System

As in the serial case, in order to capture the restriction of the flow of information
imposed by the interface, we partition the alphabet of the system into the following
analogous pairwise disjoint alphabets: ΣH , ΣRj

, ΣAj
, and ΣLj

, with j = 1, . . . , n.
For an nth degree parallel system, we assume the high level subsystem is modelled by

DES GH (defined over event set ∪̇j∈{1,...,n}[ΣRj
∪̇ΣAj

] ∪̇ ΣH). For j ∈ {1, . . . , n}, the jth

7

low level subsystem is modelled by DES GLj
(defined over event set ΣLj

∪̇ΣRj
∪̇ΣAj

),
the jth interface by DES GIj

(defined over event set ΣRj
∪̇ΣAj

), and that the overall
system has the structure shown in Figure 7. Furthermore, we will refer to the j th low
level to mean sync(GLj

, GIj
) and we will assume that the alphabet partition is specified

by Σ := ∪̇j∈{1,...,n}[ΣLj
∪̇ΣRj

∪̇ΣAj
] ∪̇ ΣH and that the flat system is taken to be:

G = sync(GH , GL1 , . . . , GLn
, GI1 , . . . , GIn

)

In order to simplify the notation in proofs, we now introduce the following event sets,
natural projections, and useful languages. For the remainder of this section, the index j

is defined to have range {1, . . . , n}.

ΣIj
:= ΣRj

∪ΣAj

ΣIH := ∪j∈{1,...,n}ΣIj
∪ ΣH

ΣILj
:= ΣLj

∪ΣIj

PIH : Σ∗ → Σ∗
IH

PILj
: Σ∗ → Σ∗

ILj

PIj
: Σ∗ → Σ∗

Ij

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

3.1 General Form

As in the serial case, we need to be able to decompose the nth degree (n ≥ 1) parallel
interface system into its plant and supervisor components.

We now define the high level plant to to be GH , and the high level supervisor to be

SH (both defined over ΣIH). Similarly, the jth low level plant and supervisor are GLj

and SLj
(defined over ΣILj

). We now define the high level subsystem and the jth low level
subsystem as follows:

GH := sync(GH , SH) GLj
:= sync(GLj

, SLj
)

The reader should note that the definition of a parallel interface system that we present
here in terms of plant and supervisor components, is the general form of such systems. We
will refer to the original form shown in Figure 7, used to simplify nonblocking definitions
and proofs, as the parallel subsystem based form.

We can now define our flat supervisor and plant as well as some useful languages as
follows:

Plant := sync(GH , GL1 , . . . ,GLn
) Sup := sync(SH , SL1 , . . . ,SLn

, GI1 , . . . , GIn
)

H := P−1
IHL(GH), HS := P−1

IHL(SH), ⊆ Σ∗

Lj := P−1
ILj

L(GLj
), LSj

:= P−1
ILj

L(SLj
), ⊆ Σ∗

8

3.2 Serial System Extraction

As the event set of each low level is mutually exclusive from the event sets of the other
low levels, we can consider the parallel interface system as n serial interface systems by
choosing one low level and ignoring the others. This will allow us to reuse our existing
definitions and results for serial interface systems.

In this section, we introduce the concept of serial system extractions for an nth

degree (n ≥ 1) parallel interface system, shown conceptually in Figure 8 in terms of
subsystems. Below we give the general form of the definition. The parallel subsystem
form of the definition can be obtained by using the identities GH = sync(GH , SH),
GL = sync(GL, SL), and GLj

= sync(GLj
, SLj

).

Figure 8: The Serial System Extraction

jth Serial System Extraction: For the nth degree (n ≥ 1) parallel interface system
composed of DES GH , GL1 , . . . , GLn

, SH , SL1 , . . . ,SLn
, GI1 , . . . , GIn

, with alphabet
partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , the jth serial system extraction,
denoted by system(j), is composed of the following elements:

GH(j) := sync(GH , GI1 , . . . , GI(j−1) , GI(j+1) , . . . , GIn
)

SH(j) := SH , GL(j) := GLj
, SL(j) := SLj

, GI(j) := GIj

ΣH(j) := ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣIk
∪̇ΣH

ΣL(j) := ΣLj
, ΣR(j) := ΣRj

, ΣA(j) := ΣAj

Σ(j) := ΣH(j) ∪̇ΣL(j) ∪̇ΣR(j) ∪̇ΣA(j)

= Σ − ∪̇k∈{1, ..., (j−1), (j+1), ..., n}ΣLk

3.3 Parallel Case Definitions and Theorems

In this section we present a set of properties that are equivalent to their serial interface
counterparts. The only difference between these definitions and the ones in [27, 28] is
that they now use command-pair interfaces instead of assuming star interfaces.

Interface Consistent: The nth degree (n ≥ 1) parallel interface system composed of
DES GH , GL1 , . . . , GLn

, GI1 , . . . , GIn
, is interface consistent with respect to alpha-

bet partition Σ := ∪̇k∈{1,...,n}[ΣLk
∪̇ΣRk

∪̇ΣAk
] ∪̇ ΣH , if:

9

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial
interface consistent.

Level-wise Nonblocking: The nth degree (n ≥ 1)parallel interface system composed
of DES GH , GL1 , . . . , GLn

, GI1 , . . . , GIn
, is level-wise nonblocking with respect to

the alphabet partition Σ := ∪̇k∈{1,...,n}[ΣLk
∪̇ΣRk

∪̇ΣAk
] ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial
level-wise nonblocking.

We now extend serial level-wise controllability to the parallel case. We adopt the stan-
dard partition Σ = Σu ∪̇Σc, splitting our alphabet into uncontrollable and controllable
events.

Level-wise Controllable: The nth degree (n ≥ 1) parallel interface system composed
of DES GH , GL1 , . . . , GLn

, SH , SL1 , . . . ,SLn
, GI1 , . . . , GIn

, is level-wise controllable
with respect to alphabet partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , if:

(∀j ∈ {1, . . . , n}) The jth serial system extraction of the system is serial
level-wise controllable.

We now present our nonblocking theorem for parallel interface systems. It states
that, to verify if a parallel system is nonblocking, it is sufficient to check that each of its
serial system extractions is serial level-wise nonblocking and serial interface consistent.
The difference between these theorems and the ones in [27, 28] is that they now use the
command-pair interface definitions.

Theorem 3 If the nth degree (n ≥ 1) parallel interface system composed of DES GH ,

GL1 , . . . , GLn
, GI1 , . . . , GIn

, is level-wise nonblocking and interface consistent with respect
to the alphabet partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

] ∪̇ ΣH , then

L(G) = Lm(G), where G = sync(GH , GL1, . . . , GLn, GI1, . . . , GIn)

Proof: See proof in [32].

Next, we present our controllability theorem for parallel interface systems. It states
that, to verify if a parallel system is controllable, it is sufficient to check that each of its
serial system extractions is serial level-wise controllable.

Theorem 4 If the nth degree (n ≥ 1) parallel interface system composed of plant com-
ponents GH , GL1 , . . . ,GLn

, supervisors SH , SL1 , . . . ,SLn
, and interfaces GI1 , . . . , GIn

, is
level-wise controllable with respect to the alphabet partition Σ := ∪̇k∈{1,...,n}[ΣLk

∪̇ΣRk
∪̇ΣAk

]
∪̇ ΣH , then

(∀s ∈ L(Plant) ∩ L(Sup)) EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

where Plant := sync(GH , GL1 , . . . ,GLn
) is the system’s flat plant, and

Sup := sync(SH , SL1 , . . . ,SLn
, GI1 , . . . , GIn

) is the system’s flat supervisor.

Proof: See proof in [32].

10

4 Application to the AIP

We now revisit an application to a large manufacturing system, the Atelier Inter-établissement
de Productique (AIP) discussed in [26], to illustrate the use of command-pair interfaces.
The AIP, shown in Figure 9, is a highly automated manufacturing system consisting
of a central loop (CL) and four external loops (EL), three assembly stations (AS), an
input/output (I/O) station, and four inter-loop transfer units (TU). The I/O station is
where the pallets enter and leave the system. Pallets can be of type 1 or of type 2, and
it is assumed that the type of the pallet entering is random.

4.1 Assembly Stations

The structure of the assembly stations is shown in Figure 10. Each station consists of a
robot to perform assembly tasks, an extractor to transfer the pallet from the conveyor loop
to the robot, sensors to determine the location of the extractor, and a raising platform
to present the pallet to the robot. The station also contains pallet sensors to detect a
pallet at the pallet gate, the pallet stop, and to detect when a pallet has left the station.
Finally, the assembly station contains a read/write (R/W) device to read and write to
the pallet’s electronic label. The pallet label contains information about the pallet type,
error status, and assembly status (which tasks have been performed).

Whereas the assembly stations contain the same basic components, they differ with
respect to functionality. Station 1 is capable of performing two separate tasks denoted
task1A and task1B, while station 2 can perform tasks task2A and task2B. Station 3
can perform all four of these tasks as well as functioning as a repair station allowing an
operator to repair a damaged pallet. The assembly stations also differ with respect to
reliability. Stations 1 and 2 can break down and must be repaired, while station 3 is of
higher quality and is assumed never to break down. Station 3 is used to substitute for
the other stations when they are down.

4.2 Transport Units

The structure of the four identical transport units is shown in Figure 11. The transport
units are used to transfer pallets between the central loop, and the external loops. Each
one consists of a transport drawer which physically conveys the pallet between the two
loops, plus sensors to determine the drawer’s location. At each loop, the unit contains a
pallet gate and a pallet stop, to control access to the unit from the given loop. The unit
also contains multiple pallet sensors to detect when a pallet is at a gate, drawer, or has
left the unit. Also, each unit contains a R/W device located before the central loop gate.

4.3 Using Command-pair Interfaces

In [26], the AIP was modelled using only star interfaces. The system was designed as a
7th degree parallel interface system as shown in Figure 12, with the low levels representing
the three assembly stations, and four transfer units. For full design details, refer to [32].

The design of the low level for assembly station 1 was poorly suited to being modelled
by star interfaces. This can be seen by examining its star interface, shown in Figure 13.
We see that the AS1 has two request events, ProcPallet.AS1 and DoRpr.AS1. Clearly, it
only makes sense to do a repair, after the answer event ASDwn.k has occurred. Also, it

11

Figure 9: The Atelier Inter-établissement de Productique

Figure 10: Assembly Station of External
Loop X = 1, 2, 3.

Figure 11: Transport Unit for External Loop
X = 1, 2, 3, 4

AS 2 AS 3 TU 1 TU 2 TU 3 TU 4AS 1

High level

G
I1

G
I2

G
I3

G
I4

G
I5

G
I6

G
I7

Figure 12: Structure of Parallel System

12

doesn’t make sense to try to process a pallet while the AS is down. With star interfaces,
all request events are always possible because of the “star” structure, so we couldn’t
model this. With command-pair interfaces, this is easily accomplished as in Figure 13.

GI
GI

00
11

2

2

3

ProcPallet.AS1ProcPallet.AS1

DoRpr.AS1

Command-Pair InterfaceStar Interface

D
o
R

p
r.A

S
1

R
obU

p.A
S

1

R
o
b
U

p
.A

S
1

A
S

D
w

n
.A

S
1

ProcCpl.AS1,
ProcErr.AS1

ProcCpl.AS1,
ProcErr.AS1,
ASDwn.AS1

Figure 13: Interfaces for Assembly Station 1

In particular, representing the assembly station as a star interface is difficult because
of Point 5 of the serial interface consistent definition. This point says that after a request
event has occurred (such as ProcPallet.AS1), then all answer events that the interface
says can follow the event (ie. for star interface, events at state 1) must be possible after
at most a sequence of low level events. However once the station is down, the physical
events ProcCplAS1 and ProcErrAS1 can’t occur until it has been repaired. How this
was resolved in [26] can be seen in Figure 14 where events RobDwn.AS1, RtasksCpl.AS1,
RobUp.AS1, and AssmbErrA/B.AS1 roughly correspond to the station’s answer events
and ProcType1/2.AS1 and DoRpr.AS1 roughly correspond to the request events. We see
that the answer events have the correct physical meaning most of the time, but if the
robot is down (state s11) and a request to process a pallet is made, all answer events are
possible and which one occurs is randomly selected and has no physical meaning. This
allows Point 5 to be satisfied and as long as the high level is careful to never try to
process a pallet while AS1 is down, this situation will never be encountered. This ugly
kludge is unnecessary if command-pair interfaces are used.

To finish converting the AIP example to use command-pair interfaces, we need to
make some additional changes. As assembly station 2 is identical upto relabelling, we
need to modify it as well. To present the changes to the two assembly stations, we will
describe them collectively as low level subsystem w, where w = 1, 2. We also define the
companion index k = AS1,AS2, which takes its values relative to w (eg. k = AS1 when
w = 1).

The first changes are to the interface for low level w, shown in Figure 15. This is
identical to the interface shown in Figure 13, but generalized to include the interface for
station 2. The next required change is to supervisor Intf-k-Robot.k, shown in Figure
16, who defines the tasks that the robot can perform. It is changed to the DES in Figure
18.

The last required change is to supervisors DoRobotTasks.AS1 and DoRobot-

Tasks.AS2, shown in Figures 14 and 20, who control the operation of the robots. They
make sure that the assembly tasks are performed in the correct order for a given type
of pallet, they report on the success of the assembly operation, and they handle repairs

13

Figure 14: DoRobotTasks.AS1

when the robot breaks down. They are changed to the DES in Figures 19, and 21, where
states 14 and 15 have been deleted.

Figure 15: Interface to Low Level w-cp. Figure 16: Intf-k-Robot.k

We now apply our research tool to the seven serial extraction systems (the two we
modified and the five original systems from [26]) and we find that they are all serial
level-wise non-blocking, serial level-wise controllable, and serial interface consistent. We

14

Figure 17: Interface to Low Level w. Figure 18: Intf-k-Robot.k-cp

Figure 19: DoRobotTasks.AS1-cp

15

Figure 20: DoRobotTasks.AS2

Figure 21: DoRobotTasks.AS2-cp

16

can thus conclude that the system is level-wise non-blocking, level-wise controllable, and
interface consistent. This allows us to conclude by Theorems 3 and 4, that the flat
system is nonblocking and that the system’s flat supervisor is controllable for the flat
plant.

5 Complexity Analysis

To aid in investigating hierarchical interface-based supervisory control, we have devel-
oped software routines to verify that a system satisfies the conditions serial level-wise
nonblocking and controllable, and serial interface consistent. The routines were devel-
oped by Leduc during his collaboration with Siemens Corporate Research and they use
the algorithms described in [32].

Analyzing the steps required to verify the above conditions, we see that they consist
of verifying system properties (ie. is GI a command-pair interfaces), high level properties
(ie. does GH satisfy Point 3 of the serial interface consistent definition) and low level
properties (ie. does GL satisfy Point 4 of the serial interface consistent definition).
We next note that all the properties to be verified for the high level have an equivalent
property for the low level and thus we can treat the high level as a low level for our analysis.
If we group the verification of the system properties with the low level properties, verifying
two “low levels” (components) can be used as an upper bound for verifying the system.

The next logical step would be to perform an analytic analysis of the worst case
time complexity for evaluating a “low level.” Unfortunately, to do this we would require
program sourcecode to provide details of the data structures used and how they are
accessed. The only sourcecode available is copyrighted by Siemens and cannot be released.
Instead, we follow the advice of Goodrich et al. [21] and use experimental algorithm
analysis to estimate the worse case time complexity for per component analysis. As we
will see, this is sufficient as the per component complexity only contributes a constant
term to the overall complexity of evaluating a system.

To perform this analysis, we will assume that the running time for one component is of
the form t(x) = bxc with x the state size of our component and for some constants b > 0
and c > 0. We then use the power test discussed in [21] to experimentally determine the
worst case running time to be t(x) = (8.56× 10−9)x3 which makes the algorithm O(x3).
See Chapter 6 of [32] for details on this process.

We next consider verifying an nth degree parallel interface system. To do this, we
must check that 3n+1 event sets are pairwise disjoint and check that n serial extraction
systems are serial level-wise nonblocking and controllable, and serial interface consistent.
We let m = n+ 1 be the number of components to be verified. We also assume that the
statespace (x) of each component and the cardinality of the system’s event set (Σ) are
bounded with upper bounds N ≥ 0 and NΣ ≥ 0, respectively. We further assume that
the cardinality of event sets ΣH , ΣL1 , . . . ,ΣLn

, ΣR1 , . . . ,ΣRn
and ΣA1 , . . . ,ΣAn

is each
bounded by NΣ′ ≥ 0 (ie. |ΣH | ≤ NΣ′).

It can be shown that verifying 3n+1 event sets are pairwise disjoint can be performed
by 9

2
m2− 15

2
m+3 empty intersection tests which are each (from [48]) O(N 2

Σ′). The whole
process is thus O(9

2
m2N2

Σ′ −
15
2
mN2

Σ′ + 3N 2
Σ′) = O(m2).

To verify the n serial extraction systems, we must perform the per component analysis
2n times. As the per component analysis is O(x3) = O(N 3), the system analysis is thus
O(2n · N 3) = O(2mN 3 − 2N 3) = O(m) as N is a constant. Combining the two steps,

17

we find that verifying a nth degree parallel interface system is O(m2 +m) = O(m2). In
practice, the 2mN 3 is much larger than the 9

2
m2N2

Σ′ term and thus the algorithm behaves
as if it is O(m). Of course, this only remains practical as long as N isn’t so large that it
contributes a prohibitively large constant term.

We next compare the HIS method to verifying non-blocking of the the synchronous
product of our m components. Based on the work of Rudie [48], it can be shown (see
[32] for details) that the monolithic algorithm is O(N 2m) and thus our algorithm scales
significantly better. To illustrate this, let’s examine the two algorithms for a few values of
N , NΣ′ , and m. Table 1 shows the results for terms T1 = N2m, and T2 = 2mN 3− 2N 3+
9
2
m2N2

Σ′ −
15
2
mN2

Σ′ +3N 2
Σ′ . We see that even for m = 2 (serial system) and N = 106, our

approach is six orders of magnitude better. To put this into perspective, if our algorithm
ran for one hour, the monolithic algorithm would require 114 years!

m = 2 m = 9

N NΣ′ T1 T2 T1 T2

103 102 1012 2× 109 1054 1.60× 1010

106 102 1024 2× 1018 10108 1.60× 1019

Table 1: Parallel Algorithm Comparison

Of course, there is a cost for this increase in computational efficiency. The trade-
off is a more restrictive architecture. The interface approach restricts knowledge about
internal details of components, and only allows supervisors to disable local events and
interface events. As similar interface-based approaches are common in both hardware
and software, we are confident that our method will be widely applicable.

UPDATE: The analysis presented here relies on the assumption that the states-
pace of each component is bounded by the constant N . As long as this assumption is
reasonable, the analysis is correct. For the DES GH , GL1 , . . . , GLn

, GI1 , . . . , GIn
, this

assumption is reasonable.
However, when analyzing the conditions interface consistent, level-wise nonblocking,

and level-wise controllable, we must construct serial extraction systems (see Section 3.2)
to analyze the corresponding serial conditions. For example, to verify that the parallel
interface system is interface consistent, we must verify that all n serial system extrac-
tions (subsystem form) are serial interface consistent. To verify the latter condition, we
must use the component GH(j) := GH ||sGI1||s . . . ||sGI(j−1) ||sGI(j+1) ||s . . . ||sGIn

with the
serial algorithms we developed in [32]. Unlike the DES GH , component GH(j) grows
proportionally to n, thus the assumption that GH(j) is bounded by N is questionable.
In this view, the above analysis is a bit too optimistic and is thus more in line with an
average or best case analysis. This does not mean that the approach does not have great
potential to scale. For a good scalability discussion, see [29].

6 Conclusions

Hierarchical interface-based supervisory control offers an effective method to model sys-
tems with a natural client-server architecture. By introducing command-pair interfaces,
we have extended the modelling flexibility for interfaces by allowing the representation
of low level state information, enabling many new systems to be easily cast as low levels.

18

From examining the definitions in Sections 2, and 3, it’s clear that each requirement
can be verified using only one subsystem. This means that the entire plant model never
needs to be constructed or traversed (in computer memory), offering potentially signif-
icant savings in computation. We have shown this concretely by proving that the time
complexity for analyzing a system by our method is O(m2) (m = n + 1 is the total
number of subsystems), as compared to a monolithic analysis which is O(N 2m) (N ≥ 0
is an upper bound for the statespace of the subsystems).

References

[1] N. Alsop. Formal Techniques for the Procedural Control of Industrial Processes. PhD
thesis, Department of Chemical Engineering and Chemical Technology, Imperial College
of Science, Technology and Medicine, London, 1996.

[2] Rajeev Alur and Thomas A. Henzinger. Local liveness for compositional modelling of fair
reactive systems. In Proc. of seventh Int. Conf. on Computer-aided Verification, Lecture
Notes in Computer Science, pages 166–179, 1995.

[3] A. Arnold. Finite Transition Systems. Prentice Hall, 1994.

[4] Adnan Aziz, Vigyan Singhal, and Gitanjali M. Swamy. Minimizing interacting finite state
machines: A compositional approach to language containment. In Proc. of IEEE Int. Conf.
on Computer Design: VLSI in Computers and Processors, pages 255–261, Cambridge,
Massachusetts, Oct 1994.

[5] George Barrett and Stephane Lafortune. Decentralized supervisory control with commu-
nicating controllers. IEEE Trans. Automatic Control, 45(9):1620–1638, 2000.

[6] Y. Brave and M. Heymann. Control of discrete event systems modeled as hierarchical state
machines. IEEE Trans. on Automatic Control, 38(12):1803–1819, Dec 1993.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., C-35(8), 1986.

[8] J.R. Burch, Edmund M. Clarke, and K.L. McMillan. Symbolic model checking: 1020 states
and beyond. Information and Computation, 98:142–170, 1992.

[9] P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite machine. Systems Control
Letters, 25:257–263, July 1995.

[10] Haoxun Chen and Hans-Michael Hanisch. Model aggregation for hierarchical control syn-
thesis of discrete event systems. In Proc. 39th Conf. Decision Contr., pages 418–423,
Sydney, Australia, December 2000.

[11] S.-L. Chen. Existence and design of supervisors for vector discrete event systems. Master’s
thesis, Department of Electrical Engineering, University of Toronto, Toronto, Ont, 1992.

[12] S.-L. Chen. Control of Discrete-Event Systems of Vector and Mixed Structural Type.
PhD thesis, Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Ont, 1996.

[13] Yi-Liang Chen and Feng Lin. Hierarchical modeling and abstraction of discrete event
systems using finite state machines with parameters. In Proc. 40th Conf. Decision Contr.,
pages 4110–4115, Orlando, USA, December 2001.

19

[14] Edmund M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Programming Lan-
guages and Systems, 8(2):244–263, April 1986.

[15] Edmund M. Clarke, O. Grümberg, and K. Hamaguchi. Another look at LTL model check-
ing. In Proc. of 6th Conf. on Computer Aided Verification, number 818 in LNCS, pages
415–427. Springer-Verlag, 1994.

[16] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2001.

[17] M. Courvoisier, M.Combacau, and A. de Bonneval. Control and monitoring of large discrete
event systems: a generic approach. In Proc. of ISIE 93, pages 571–576, Budapest, 1993.

[18] E. W. Endsley, M. R. Lucas, and D. M. Tilbury. Modular design and verification of
logic control for reconfigurable machining systems. Submitted to Discrete Event Dynamic
Systems: Theory and Applications.

[19] Jose M. Eyzell and Jose E.R. Cury. Exploiting symmetry in the synthesis of supervisors
for discrete event systems. In Proc. of American Control Conference, pages 244–248,
Philadelphia, USA, June 1998.

[20] Peyman Gohari-Moghadam. A linguistic framework for controlled hierarchical DES. Mas-
ter’s thesis, Department of Electrical and Computer Engineering, University of Toronto,
Toronto, Ont, 1998.

[21] Michael T. Goodrich and Roberto Tamassia. Algorithm Design. Wiley, 2001.

[22] O. Grümberg and D.E. Long. Model checking and modular verification. In Proc. of
CONCOUR’91, number 527 in LNCS, pages 361–375. Springer-Verlag, 1991.

[23] Daniel M. Hoffman and David M. Weiss, editors. Software Fundamentals. Collected Papers
by David L. Parnas. Addison Wesley, 2001.

[24] Paul Hubbard and Peter E. Caines. Trace-DC hierarchical supervisory control with appli-
cations to transfer-lines. In Proc. 37th Conf. Decision Contr., pages 3293–3298, Tampa,
Florida USA, December 1998.

[25] Mark Lawford. Model Reduction of Discrete Real-Time Systems. PhD thesis, Department
of Electrical and Computer Engineering, University of Toronto, Toronto, Ont, 1997.

[26] R. Leduc, M. Lawford, and W. Murray Wonham. Hierarchical interface-based supervisory
control: AIP example. In Proc. of 39th Annual Allerton Conference on Comm., Contr.,
and Comp., pages 396–405, Oct 2001.

[27] R.J. Leduc, B.A. Brandin, and W. Murray Wonham. Hierarchical interface-based non-
blocking verification. In Proceedings of the Canadian Conference on Electrical and Com-
puter Engineering, pages 1–6, May 2000.

[28] R.J. Leduc, B.A. Brandin, W. Murray Wonham, and M. Lawford. Hierarchical interface-
based supervisory control: Serial case. In Proc. of 40th Conf. Decision Contr., pages
4116–4121, Orlando, USA, December 2001.

[29] R.J. Leduc, M. Lawford, andW. MurrayWonham. Hierarchical interface-based supervisory
control, part II: Parallel case. Submitted to IEEE Trans. Automatic Control, Aug, 2003. An
earlier version is available as Software Quality Research Laboratory Report No. 13, Dept.

20

of Computing and Software, McMaster University, Hamilton, ON. [ONLINE] Available:
http://www.cas.mcmaster.ca/sqrl/sqrl reports.html.

[30] R.J. Leduc, W. MurrayWonham, and M. Lawford. Hierarchical interface-based supervisory
control: Parallel case. In Proc. of 39th Annual Allerton Conference on Comm., Contr.,
and Comp., pages 386–395, Oct 2001.

[31] Ryan Leduc. PLC implementation of a DES supervisor for a manufacturing testbed:
An implementation perspective. Master’s thesis, Department of Electrical and Computer
Engineering, University of Toronto, Toronto, Ont, 1996.

[32] Ryan Leduc. Hierarchical Interface-based Supervisory Control. PhD thesis, Department of
Electrical and Computer Engineering, University of Toronto, Toronto, Ont, 2002.

[33] Y. Li. Control of Vector Discrete-Event Systems. PhD thesis, Department of Electrical
Engineering, University of Toronto, Toronto, Ont, 1991.

[34] F. Lin and W. Murray Wonham. Decentralized control and coordination of discrete-event
systems with partial observations. In Proc. 27th IEEE Conf. Decision Contr., pages 1125–
1130, Dec 1988.

[35] Hong Liu, Jun-Cheol Park, and Raymond E. Miller. On hybrid synthesis for hierarchical
structured petri nets. Technical report, Department of Computer Science, University of
Maryland, College Park, MD, 1996.

[36] Chuan Ma. A computational approach to top-down hierarchical supervisory control of
DES. Master’s thesis, Department of Electrical and Computer Engineering, University of
Toronto, Toronto, Ont, 1999.

[37] E.M. Clarke M.C. Brown and O. Grümberg. Characterizing kripke structures in temporal
logic. In G. Levi H. Erhig, R. Kowalski and U. Montanari, editors, TAPSOFT’87, vol. I,
number 249 in LNCS, pages 256–270. Springer-Verlag, 1987.

[38] K.L. McMillan. Symbolic Model Checking. Kluwer, 1992.

[39] John O. Moody and Panos J. Antsaklis. Supervisory Control of Discrete Event Systems
using Petri Nets. Kluwer Academic Publishers, 1998.

[40] J.S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press/ Wiley,
Taunton, UK, 1989.

[41] D. L. Parnas. Use of abstract interfaces in the development of software for embedded
computer systems. NRL Report 8047, Naval Research Laboratory, 1977.

[42] David L. Parnas. On the criteria to be used in decomposing systems into modules. Com-
munications of the ACM, December:1053–1058, December 1972.

[43] David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular structure of
complex systems. IEEE Transactions on Software Engineering, SE-11(3):259–66, March
1985.

[44] Ken Qian Pu. Modeling and control of discrete-event systems with hierarchical abstraction.
Master’s thesis, Dept. of Electrical and Computer Engineering, University of Toronto,
Toronto, Ont, 2000.

21

[45] Robin G. Qiu and Sanjay B. Joshi. A structured adaptive supervisory control methodology
for modeling the control of a discrete event manufacturing system. IEEE Trans. Systems,
Man, and Cybernetics, Part A, 29(6):573–586, 1999.

[46] M.H. de Queiroz and J.E.R. Cury. Modular supervisory control of large scale discrete event
systems. In Proceedings of WODES 2000, pages 103–110, Ghent, Belgium, Aug 2000.

[47] C. Costas R. Alur and D. Dill. Model-checking for real-time systems. In Proc. of 5th IEEE
Symp. Logic in Computer Science, pages 414–425, 1990.

[48] K. Rudie. Software for the control of discrete-event systems: A complexity study. Master’s
thesis, Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ont,
1988.

[49] Karen Rudie and Jan C. Willems. The computational complexity of decentralized discrete-
event control problems. IEEE Trans. Automatic Control, 440(7):1313–1319, 1995.

[50] Karen Rudie and W. Murray Wonham. Think globally, act locally: decentralized supervi-
sory control. IEEE Trans. on Automatic Control, 37(11):1692–1708, Nov 1992. Reprinted
in F.A. Sadjadi (Ed.), Selected Papers on Sensor and Data Fusion, 1996; ISBN 0-8194-
2265-7.

[51] Gang Shen and Peter E. Caines. Hierarchically accelerated dynamic programming for
finite-state machines. IEEE Trans. Automatic Control, 47(2):271–283, 2002.

[52] G. Stremersch and R.K. Boel. Decomposition of the supervisory control problem for
Petri nets under preservation of maximal permissiveness. IEEE Trans. Automatic Control,
46(9):1490–1496, 2001.

[53] Bing Wang. Top-down design for RW supervisory control theory. Master’s thesis, De-
partment of Electrical and Computer Engineering, University of Toronto, Toronto, Ont,
1995.

[54] K.C. Wong. Discrete-Event Control Architecture: An Algebraic Approach. PhD thesis,
Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ont,
1994.

[55] K.C. Wong and J.H. van Schuppen. Decentralized supervisory control of discrete event
systems with communication. In Proc. of WODES 1996, pages 284–289, Edinburgh, UK,
Aug 1996.

[56] W. Murray Wonham. Notes on Control of Discrete-Event Systems. Department of Elec-
trical and Computer Engineering, University of Toronto, 1999. Notes and CTCT software
can be downloaded at http://odin.control.toronto.edu/DES/.

[57] Weimin Wu, Hongye Su, Jian Chu, and Haifeng Zhai. Hierarchical control of DES based
on colored petri nets. In Proc. of IEEE Systems, Man, and Cybernetics, volume 3, pages
1571–1576, 2001.

[58] T. Yoo and S. Lafortune. A general architecture for decentralized supervisory control of
discrete-event systems. In Proc. of WODES 2000, pages 111–118, Ghent, Belgium, Aug
2000.

[59] Z.H. Zhang. Smart TCT: an efficient algorithm for supervisory control design. Master’s
thesis, Dept. of Electrical and Computer Engineering, University of Toronto, Toronto, Ont,
2001.

22

[60] Z.H. Zhang and W. Murray Wonham. STCT: an efficient algorithm for supervisory control
design. In Proc. of SCODES 2001, INRIA, Paris, July 2001.

[61] H. Zhong and W. Murray Wonham. On the consistency of hierarchical supervision in
discrete-event systems. IEEE Trans. on Automatic Control, 35(10):1125–1134, Oct 1990.

[62] Meng Chu Zhou, David T. Wang, and Israel Mayk. Using petri nets for object-oriented
design of command and control systems. International Journal of Intelligent Control and
Systems, 2(2):287–300, 1998.

[63] MengChu Zhou and Frank DiCesare. Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. Kluwer Academic Publishers, 1993.

23

