Hierarchical Interface-based Supervisory Control

Version 1.3.2

Ryan James Leduc

A thesis submitted in conformity with the requirements
for the Degree of Doctor of Philosophy,
Graduate Department of Electrical and Computer Engineering,

University of Toronto

(© Copyright by Ryan James Leduc 2002, 2003

Title: Hierarchical Interface-based Supervisory Control
Name: Ryan James Leduc

Degree: Doctor of Philosophy

Year of Convocation: 2002

Department: Electrical and Computer Engineering, University of Toronto

Abstract

In this thesis we present a hierarchical method that decomposes a system into a high level
subsystem which communicates with n > 1 parallel low level subsystems through separate
interfaces, which restrict the interaction of the subsystems. We first define the setting for
the serial case (n = 1), and then generalise it for n > 1. We present a definition for an
interface, and define a set of interface consistency properties that can be used to verify if a
discrete-event system (DES) is nonblocking and controllable. Each clause of the definition
can be verified using a single subsystem; thus the complete system model never needs
to be constructed, offering significant savings in computational effort. Additionally, the
development of clean interfaces facilitates re-use of the component subsystems.

We next provide a set of algorithms for evaluating these properties, and show that the
algorithm’s time complexity for evaluating a system is O(m?), where m = n+1 is the total
number of subsystems.

Finally, we present the application of the method to a model of the Atelier Inter-
établissement de Productique (AIP), a large (7 x 10%! possible states), highly automated,

manufacturing system.

ii

Acknowledgments

I would like to gratefully thank Prof W.M. Wonham for his guidance, support, and
patience; for believing in this project and making it possible.

I would like to gratefully acknowledge the support of all my friends and family. Without
their help, support and interest, I would never have made it through this project sane. I
would like to especially thank Sherif Abdelwahed, Chris Derventzis, Peyman Gohari, Dr.
Alireza Langari, Dr. Mark Lawford, Steven Postma, and Dr. Kai Wong, for their support
and many interesting discussions.

I’d also like to thank Dr. Bertil Brandin for giving me the opportunity to be a guest
scientist at Siemens Corporate Research in Munich Germany where the initial ideas for this
thesis were developed, in discussions with Dr. Brandin. Thanks to Dr. Robi Malik for his

early review of the material, and his helpful suggestions.

iii

Contents

1 Introduction

1.1 Digital Logic Circuits

1.2 Software Programs L

1.3 Thesis Overview o o v e e e

1.4 Literature Review

2 Discrete-Event Systems Preliminaries

2.1 Generators

2.2 Operations L

2.3 Nomnblocking and Controllability

2.4 Nonconflicting Discussion L L.

2.5 Verifying General Properties.

2.6 Related Propositions oo o

3 Serial Case: Nonblocking

3.1 Notation and Definitions

3.1.1
3.1.2

Interface Definition

Terminology and Notation

3.2 Serial Interface Consistent and Nonblocking

3.3 Serial Nonblocking Propositions and Theorem

3.3.1
3.3.2
3.3.3
3.3.4

Low Level Nonblocking Proposition
Low Level Linkage Proposition
Event Agreement Propositions

Serial Nonblocking Theorem

3.4 Proofs of Selected Propositions oL

iv

[U

Qo

11
13
15
16
17

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5

Proof of Proposition 9 o oL
Proof of Proposition 11
Proof of Proposition 13 L.
Proof of Proposition 14 oL
Proof of Proposition 15 oL

4 Serial Case: Controllability

4.1 Definitions and Notation oo
4.2 Serial Level-wise Controllability
4.3 Propositions and Theorem L L0
4.3.1 Low level Controllability Proposition
4.3.2 High Level Controllability Proposition
4.3.3 Serial Controllability Theorem
4.3.4 Software Tool
4.4 Proofs of Selected Propositions,
4.4.1 Proof of Proposition 17
4.4.2 Proof of Proposition 18 o oL
4.4.3 Proof of Proposition 19 L.

5 Simple Manufacturing Example

5.1 Description of Manufacturing Unit

5.1.1 Defining Infrastructure Lo
5.2 Designing Supervisors
5.3 The Final System
5.4 Concurrency of Subsystems L 0oL
5.5 Design of Supervisors in Thesis

6 Serial Case Algorithms

6.1 Preliminary Definitions o oL
6.2 Evaluating Star Interfaces oo
6.3 Evaluating Serial Interface Consistent
6.3.1 Point O
6.3.2 Point 1

54
o4
o7
o8
o8
o8
99
60
60
61
62
62

64
64
66
68
69
69
70

6.3.3 Point 2 75

6.3.4 Point 3 75
6.3.0 Point 4 75
6.3.6 Pointsband 6 75
6.4 Evaluating Serial Level-wise Nonblocking 85
6.5 Evaluating Serial Level-wise Controllability 86
6.5.1 Point L. 86
6.5.2 Point IT 86
6.5.3 Point ITT. o 86
6.6 Complexity Analysis 86
6.6.1 Analyzing Per Component Algorithm 88
6.6.2 Analyzing Per System Algorithm 89
6.6.3 Comparison to Monolithic Algorithm 90
6.6.4 Quality of Complexity Analysis 92
Parallel Case: Nonblocking 93
7.1 Definitions and Notation L. 93
7.2 Serial System Extraction: Subsystem Form 97
7.3 Interface Properties. 98
7.3.1 Parallel Interface Definitions 98
7.3.2 Related Propositions oL 99
7.4 Parallel Nonblocking Theorem and Propositions 101
7.4.1 Event Agreement Propositions 102
7.4.2 Parallel Nonblocking Theorem 103
7.5 Proofs of Selected Propositions 104
7.5.1 Proof of Proposition 21 104
7.5.2 Proof of Proposition 22 o 0oL 106
7.5.3 Proof of Proposition 23 107
7.5.4 Proof of Proposition 24 0oL 112
7.5.5 Proof of Proposition 25 oL 115
7.5.6 Proof of Proposition 26 117

vi

8 Parallel Case: Controllability

8.1
8.2
8.3
8.4

8.5

Definitions and Notation Lo oo
Serial System Extraction: General Form
Controllability Properties
Theorem and Propositions oL
8.4.1 Parallel Low level Controllability Proposition
8.4.2 Parallel High level Controllability Proposition
8.4.3 Parallel Controllability Theorem
Proofs of Selected Propositions oo
8.5.1 Proof of Proposition 28
8.5.2 Proof of Proposition 29 0oL
8.5.3 Proof of Proposition 30 oL
8.5.4 Proof of Proposition 31
8.5.5 Proof of Proposition 32

9 Parallel Manufacturing Example

9.1
9.2
9.3
9.4
9.5

Design Detailso
The Final System Lo
Evaluating Properties oo
Comparison to Standard Method
Applying the HISC Method

10 Parallel Case Algorithms

10.1
10.2
10.3
10.4
10.5
10.6

Preliminary Definitions
Evaluating Interface Consistent Definition
Evaluating Level-wise Nonblocking Definition
Evaluating Level-wise Controllable Definition
Software Tool
Complexity Analysis
10.6.1 Analysing Event Set Disjoint Properties
10.6.2 Analysing Serial Extraction System Properties
10.6.3 Analysing Per System Algorithm
10.6.4 Comparing to Monolithic Algorithm

vii

121
121
123
124
126
126
127
127
128
129
130
131
134
136

138
138
142
143
149
150

11 ATP Example

11.1 Overview of the AIP
11.1.1 Assembly Stations
11.1.2 Transport Units

11.2 Control Specifications

11.3 System Structure oL oL

12 The AIP High Level

12.1 Plant Component

12.2 Supervisor Component

13 AIP Low Levels 1 and 2 (AS1 and AS2)

13.1 Plant Component

13.2 Supervisor Component

14 ATIP Low Level 3 (AS3)

14.1 Plant Component

14.2 Supervisor Component

15 AIP Low Levels 4 and 5 (TU1 and TU2)

15.1 Plant Component

15.2 Supervisor Component

16 AIP Low Level 6 (TU3)

16.1 Plant Component,

16.2 Supervisor Component

17 AIP Low Level 7 (TU4)

17.1 Plant Component

17.2 Supervisor Component

18 AIP Results and Discussion

18.1 Evaluating Properties
18.2 Discussion of Results

18.3 Star and Command-pair Interface Comparison

viii

159
159
159
161
161
163

168
168
170

175
176
179

186
187
191

198
199
200

208
209
210

217
218
218

18.4 Systems with Dynamic Architecture

19 Conclusions and Future Work
19.1 Future Work e

19.2 Conclusions e

X

List of Tables

5.1 Abbreviations Used in Event Labels 64
6.1 Experimental Data 89
6.2 Serial Algorithm Comparison, 92
10.1 Parallel Algorithm Comparison 158

List of Figures

1.1

21
2.2

3.1
3.2
3.3
3.4

4.1

5.1
5.2
5.3
5.4
9.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Digital Hardware Interface Example 2
Simple Factory Example 10
Nonconflict Example 16
Interface Block Diagram. 24
Interface Specification.o 26
Example Command-pair Interface. 27
Two Tiered Structure of Serial System. 30
Plant and Supervisor Subplant Decomposition 55
Block Diagram of Plant L oo 65
Original Plant 66
Augmenting Low Level Plant L. 67
Interface Definitiono 67
Supervisors to Support Interface 68
High Level Supervisors o 69
Complete System Definition oL 71
Interface for Algorithm Example 81
DES Machinel 81
Signaling DES 82
Output Buffer 82
Input Buffero 82
DES Listing for sync.Des 84
Timing Data for Experimental Analysis 90

X1

7.1
7.2
7.3
7.4
7.5

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13

11.1
11.2
11.3
11.4

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8

Parallel Interface Block Diagram. 94

Two Tiered Structure of Parallel System 95
The Serial System Extraction 98
Commutative Diagram L L 109
Commutative Diagram for Inverse Function 109
Block Diagram of Parallel Plant 139
Plant Models for Manufacturing Unit 5 140
New Plant Models 140
Desired Interface Structure 141
Plant Models for Parallel System 142
Interface Model for Low Level j 142
Supervisors for Low Level j o 143
Supervisors for High Level o 145
Low Level Subsystem j 146
Complete Parallel System L L. 147
Serial Extraction System I 148
Deadlock Sequence 149
Material Feedback Supervisor 149
The Atelier Inter-établissement de Productique 160
Assembly Station of External Loop X =1,2,3. 161
Transport Unit for External Loop X =1,2,3,4 162
Structure of Parallel System 0L 163
High Level o o 168
ASStoreUpState.k 169
PalletArvGateSenEL 2.AS3 169
QueryPallet At TUD 169
ManageTUL. 171
ManageTU2. e 171
ManageTU3. o 172
ManageTU4. o e 172

xii

12.9 OFProtELL. o 173

12.100FProtEL2. 173
12.11DetWhichStnUp. 174
12.12HndlComEventsAS. 174
13.1 Low Level w. o 175
13.2 Interface to Low Level w. 177
13.3 ASNewEvents.k 177
13.4 CapGateEL 2.k 177
13.5 DepGateNExtrSen.j 177
13.6 Extractor.] L 177
13.7 PalletArvGateSenEL 2.k oL 178
13.8 PalletGateEL 2. o 178
13.9 PalletStopEL_2.j L 178
13.10RobotNewEvents.k Lo 178
13.11PSenAtExtractor.j 178
13.12QueryPalletTyp.k o o 178
13.13RWDevice. AST 179
13.14RWDevice.AS2 e e 179
13.15Robot. AST e 180
13.16Robot. AS2 180
13.17HndlPallet. AST 181
13.18HndIPallet. AS2 182
13.19HndIPalletLvAS.k 183
13.200perateGateEL 2.k 183
13.21Intf-k-Robot.k o o 183
13.22DoRobotTasks. AST 184
13.23DoRobotTasks. AS2 L 185
14.1 Low Level 3 o . 186
14.2 Interface to Low Level 3. 186
14.3 ASNewEvents.AS3 188
14.4 CapGateEL_2.AS3 188

xiii

14.5 RWDevice.AS3 188

14.6 RepPalletNewEvents o o 189
14.7 PalletMainto 189
14.8 QueryErrNewEvents.t, with t =AS3 189
14.9 ChkErr.t, with t =AS3 189
14.10RobotNewEvents.AS3 189
14.11DetOpNProcNewEvents 190
14.12QueryTypNCpl.AS3, with t = AS3 190
14.13Robot. AS3 191
14.14HndIPLvAS.AS3 192
14.150perateGateEL_2.AS3 192
14.16HndlPallet. AS3 193
14.17Intf-AS3-RepairPallet 194
14.18Intf-RepairPallet-QuerryErrors.AS3, with t =AS3 194
14.19DoMaintence Lo e 194
14.20DoChkErr.t, with £ = AS3 195
14.21Intf-AS3-DetOpNProc 195
14.22DetNProc Lo 196
14.23Intf-DetOpNProc-Robot. AS3 196
14.24DoRobotTasks. AS3 197
15.1 Low Level v o o o o 198
15.2 Interface to Low Levelv. 199
15.3 TUNewEvents.q o e 199
15.4 CapGateCL.q 201
15.5 CapGateEL_1.d 201
15.6 CapTUDrwToExit.di oo 201
15.7 CapTUDrwToGateCL.d 201
15.8 CapTUDrwToGateEL_14, 201
15.9 CheckOpNeededNewEvents.r 201
15.10PalletGateCL.i o 201
15.11PalletGateEL_1.0 201

Xiv

15.12PalletStopCL.d o o 201

15.13PalletStopEL_1.d oL 201
15.14QueryDrwloc.d L Lo 202
15.15TUDrawer.d L e 202
15.16RWDeviced o L 202
15.17HndlComEvents.q Lo 202
15.18Intf-r-CheckOpNeeded.r 202
15.19HndlLibPallet.i Lo 203
15.20HndITrnsfELToCLA . . o . o 0 0o 00 o o 204
15.21HndlTrnsfToEL.r o 206
15.22DetlfOpNeeded. TUL o o o 207
15.23DetlfOpNeeded. TU2 o oo 207
16.1 Low Level 6 o . o . o 208
16.2 Interface to Low Level 6. 209
16.3 TUNewEvents. TU3 e 209
16.4 CapGateCL.TU3 e 210
16.5 HndlComEvents. TU3 210
16.6 CheckDwnOpNeededNewEvts 212
16.7 HndlSelCheck. TU3 212
16.8 Intf-TU3-CheckDwnOpNeeded 212
16.9 HndlComEvents_ ChkDwn 212
16.10HndITrnsfToEL. TU3 e 213
16.11HndIStn1Dwn o Lo 214
16.12HndIStn2Dwn 215
16.13HndlBothStnDwn L 216
171 Low Level 7« . o o o e 217
17.2 QTasksCpl o o 217
17.3 QCorrectType o L 218
17.4 HndlTrnsfToEL.TU4 e 220
18.1 Interfaces for Assembly Station 1 223

XV

Chapter 1

Introduction

In the area of Discrete-Event Systems (DES), two common tasks are to verify that a com-
posite system, based on a cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is the combinatorial explosion of
the product state space. Although many methods have been developed to deal with this
problem, large-scale systems are still problematic, particularly for verification of nonblock-

ing.

1.1 Digital Logic Circuits

For inspiration, we first turn to digital logic circuits [56]. Complexity is routinely managed
by engineers who design microcomputer processors, containing millions of transistors, for
today’s personal computers. These circuits are hierarchical in nature, and are designed by
using the concept of interfaces to limit the interaction between different levels of the hier-
archy. A complex system is designed by first creating basic components, with an interface
that encapsulates the behaviour of the component, provides an abstract model of the com-
ponent’s operation, and provides a well defined method of interacting with the component.
These components are combined together to create a new, more complex, component, with
its own interface. At each step in the process, a component is treated as a black box, and
the designer only utilizes the component’s interface. At no time is the designer allowed to
interact with the inner workings of a component or to “look below” the interface. This
keeps the level of complexity at each level manageable.

To illustrate the utility of interfaces for reducing complexity, we look at a simple example.

Figure 1.1 demonstrates many of the principal issues involved. On the left of the diagram,
the low level model and the interface representation of a 2 input, 2-bit multiplexer (mux) are
shown. The low level model shows a great deal of detail (internal structure, internal signals)
that is not needed to operate the circuit. The circuit is then encapsulated by specifying an
interface. Only the events shown in the interface model can be seen or directly controlled.
Internal signals are completely hidden by the interface. The designer is not permitted to
interact with any signals not contained within the interface block, and thus the block is
completely portable and reusable. Also, the internal implementation could be changed, but

would not affect users of the interface.

Low Level Model I nterface Composite M odel
EN—M T2 L]
S K—" EN »EN-1—>
EnDS S >S1 —>
1A T4
1y 1A >1A-1—>
1B | >1Y -1 1Y
5 1B »1B-1 >
2A
& 2A >2A-1—>
- 2Y >2Y -1 2Y
T7 2B »2B-1 —>
Interface M odel]
>EN-2—>
EN—> L »>52 —>
S ——
: : 3A +—>1A-2 >
1A — >y ¢ 1Y -2—»3Y
_/ — »1v 3B ——>1B-2 >
1B —>|— :
: : 4\ +—>2A-2 >
A — >l : »2Y -2 4Y
e el oy 4B +——>2B2 >
2B —>f— —
2 Input, 2-bit MUX 2 Input, 4-bit Multiplexor

Figure 1.1: Digital Hardware Interface Example

Now that an interface has been designed, it is used as a building block to create more

complex circuits. The right half of Figure 1.1 shows a 2-input, 4-bit mux designed using
the interface model of the 2-bit mux. Because the circuit is encapsulated, it can be safely
reused. The high level model allows the circuit to be quickly, and easily designed. Also,
note how the original interface events in the 2-bit mux (enable, selection and data signals)
were all carefully chosen to encapsulate the functionality of the circuit. Low level signals
are conspicuously absent.

Next, we note how all levels of the hierarchy are inherently concurrent. Signals at the
high level can be changing while signals on one or both of the low levels (the 2 input,
2-bit mux blocks) are changing. The circuit would not be as useful if the high level froze
while the low level circuits were operating, or if it could not interact with each low level
independently.

Although it is true that the 4-bit mux could be designed using the low level model, and
would be more efficient in terms of timing delay and number of gates used, it would require
significantly more resources (manipulates 15 blocks as opposed to 2). For large circuits,
using low level models would not be practical or efficient as the level of detail would be
prohibitive. As can be seen by this example, an interface is an effective means to reduce

complexity.

1.2 Software Programs

We now consider software programs, and we see similar ideas at work. To deal with the
complexity of large scale systems, the software engineering community has long advocated
the decomposition of software into modules (components) that interact via well defined
interfaces (e.g., [26, 44, 43, 45]). This approach is referred to as “information hiding” and
a well known application is object oriented programming languages [6, 64].

This approach has many advantages. Some of the more important ones are:
1. It limits complexity by hiding unnecessary detail behind interfaces.

2. The method promotes independent development as once the interface to a module is
defined, the module and the modules that call it can be designed separately, relying

only on the interface specification to ensure interoperability.

3. By encapsulating the behaviour of a module, the interface decouples modules from

each other. As a module is not permitted to know the inner details or interact with
the internals of the modules it uses, we can change the implementation of these mod-
ules without affecting the module(s) that uses it. This provides a high degree of

changeability.

4. The interface provides us with a concise, and meaningful definition of the module. In
contrast to DES approaches such as hierarchical supervisory control [16, 58, 67], an
interface (which can be thought of as an abstract model for the module) is carefully
designed before the module (low level) is written. The module is then designed so
that it accurately implements the interface. In hierarchical supervisory control, the

low level is designed first, and then the abstract model is constructed from it.

5. It provides a high degree of comprehensibility. Because information is localized in
modules and unnecessary details are hidden by the interface, it is much easier to
understand a given module; one only needs to understand the details of the module,

and the definitions of the interfaces of the modules it uses.

6. The method provides us with a well defined hierarchical structure. We have a hier-
archical structure if we can define a relation between the modules that is a partial
ordering. The relation that is usually used is “uses.” Module A is at a higher level
than module B if module A “uses” module B. This structure is important as it guar-
antees that we can remove the upper levels of our hierarchy, and what is left can be

reused in another application.

1.3 Thesis Overview

Our goal in this thesis is to develop an approach similar to information hiding for DES,
and that has the above properties. The method will develop well defined interfaces between
components to provide the structure to allow local checks to guarantee global properties
such as controllability or nonblocking. However, rather than use the relation “uses” to
define our hierarchy, we will instead use the relation “gives work to” (ie. component A is
at a higher level than component B if component A “gives work to” component B.) as this
relation is more commonly used with interacting, processes (components).

We next note that the supervisory control community has recently begun to advocate

an approach along these lines [30, 21]. These approaches develop interfaces between com-
ponents to provide the structure to guarantee global properties such as controllability [21]
or nonblocking [30] (an early paper based on this thesis).

In this thesis, we present an interface-based hierarchical method, referred to as hierar-
chical interface-based supervisory control (HISC), to verify if a system is nonblocking and
controllable.! 'We describe the application of our method to bi-level systems where the
system is split into a high level subsystem which interacts with n > 1 parallel low level
subsystems via separate interface DES, which regulates the subsystems’ interaction.

In the remainder of this thesis, we first describe the setting for the serial case (ie. n =1
and thus only one low level). We present a definition for an interface, and define a set of
(local) consistency properties that can be used to verify if a discrete-event system is globally
nonblocking and controllable. We then discuss a small example to illustrate the approach.
Finally, we provide algorithms to verify the serial case properties, and perform a complexity
analysis.

We then extend our definitions to the general case of n > 1 low level subsystems, referred
to as the parallel case. We then extend our earlier example to illustrate this setting. Finally,
we provide algorithms to verify the parallel case properties, and perform a complexity
analysis.

We next present the application of the HISC method to a model of the Atelier Inter-
établissement de Productique (AIP), a large (7 x 10%! possible states), highly automated,
manufacturing system. We first describe the model of the AIP system, then our interfaced
based supervisor design, and finally we verify that the system satisfies the interface require-
ments to show that the system is globally nonblocking and controllable. We close with a

discussion of future work, and conclusions.

1.4 Literature Review

In this work, our goal is to develop a scalable method that can handle the combinatorial
explosion of the product statespace. We will now review some of the previous approaches
to solving this problem.

One of the earliest and most useful methods is modular control [20, 48, 55, 60]. This

!Part of this information is also available in the research papers [29, 31, 33].

method involves designing multiple supervisors as opposed to a centralized supervisor, each
supervisor implementing a portion of the control specification. Although [1, 34] achieved
excellent results for verifying controllability, verifying nonblocking was still a problem.

Another approach is Vector DES [60, 14, 15, 35] and Petri Nets [41, 68, 69]. This is a
state based method that makes use of the algebraic regularity inherent in certain systems.
It is used when the important details of the system can be expressed as a vector of integers,
and events add or subtract these totals. Unfortunately, this method is primarily useful for
systems with a high degree of regularity that lends itself to a vector representation.

The next approach is decentralized control [5, 36, 52, 53, 59, 63]. In this method, local
supervisors were designed with only partial observations of the plant. These supervisors
were designed as a group to implement a global specification. While this is a great way of
designing distributed controllers, it still requires the computation of the composite plant
and thus offers no computational savings over a centralized approach.

A very promising approach is the development of a multi-level hierarchy. [8, 23, 37,
38, 57]. In order to aid in classification, we make a distinction between structural multi-
level hierarchies with explicit mechanisms (modeling constructs) to facilitate hierarchy (e.g.
[8, 23, 37, 38, 57]) as opposed to aggregate (bottom up) multi-level hierarchies which we
will discuss later. In structural multi-level hierarchies, plants and supervisors are modelled
as multi-level structures similar to automata, except certain states at a given level can be
expanded into a more detailed lower level model. Although [57] allowed a system to be
represented hierarchically using cartesian products (AND superstates) or disjoint unions
(OR superstates), AND states had to be converted to OR states using the synchronous
product before computations could be effectively performed. Similarly, [23] was restricted
to using only OR states. Both approaches could verify controllability, but did not address
nonblocking.

The next approach of interest is the model aggregation methods [2, 4, 11, 13, 16, 22, 25,
27, 46, 47, 54, 58, 62, 67]. In these approaches, aggregate models are derived from low level
models by using either state-based or language-based aggregation methods. Although this
approach can be effective in constructing high level models with reduced statespaces, they

have some drawbacks:

e In hierarchical methods such as [67, 58, 46], there is no direct connection between

control actions at the high level, and at lower levels. To create an implementation,

a control action at the high-level may need to be “interpreted” as equivalent control

action(s) at the low level.

e Aggregate models must be constructed sequentially from the bottom up, starting from
the lowest level; thus a given level can’t be constructed and verified in parallel with

the levels below it, making a distributed design process difficult.

e The DES methods provide necessary and sufficient conditions for checking control-
lability, and in many cases nonblocking, using the aggregate models. While this is
desirable, it causes the individual levels to be tightly coupled; a change made to the
lowest level may require that all aggregate models and results have to be re-evaluated.
In contrast, the sufficient conditions of interface based supervisory control that we de-
velop allow us to design and verify levels independently, ensuring that a change to
one level of the hierarchy will not impact the others. This independence comes at the

cost of possible false negatives forcing an overly conservative design.

The last approach we discuss is the recent work of Zhang et al [65, 66] who have recently
developed algorithms that use Integer Decision Diagrams (an extension of Binary Decision
Diagrams (BDD:[9])) to verify centralized DES systems on the order of 10?3 states. This
builds upon the work by the model checking/temporal logic community [3, 19, 17, 18, 10, 28,
39, 40, 42, 49] who have successfully used BDDs to handle systems of similar size. This work
doesn’t represent a hierarchical approach, but a more efficient way to represent DES and
verify properties. This means it should be possible to use it to compliment a hierarchical

method.

Chapter 2

Discrete-Event Systems

Preliminaries

Ramadge-Wonham supervisory control (RW theory:[50], [61], and [60]) provides a theoreti-
cal framework for the control of systems that are discrete in space and time. These systems
are modelled as automata that generate a formal language of discrete events. These systems
are customarily referred to as discrete event systems (DES). The DES are event-driven and
may be non-deterministic'. The DES do not model when or why an event occurs, just the
possible strings of events that the plant can generate. The events are considered to occur in
an interleaving fashion. For a detailed discussion of Discrete-event Systems, please refer to

[60]. Below, we present a summary of the terminology that we will be using in this thesis.

2.1 Generators

The DES automaton is represented as a 5-tuple as shown below.
G=(Y,%,9,%,Ym)

where Y is the state set (at most countable); ¥ is a finite set of event labels (also referred
to as the alphabet); § is the transition function; y, € Y is the initial state and Y, C Y is
the subset of marker states. We will also use the notation X as a shorthand for the event

set that DES G is defined over. This is an easy way to refer to the alphabet given in the

LCapable of choosing between two possible next states by chance or unmodelled system dynamics.

5-tuple definition of G, particularly in situations when it is not explicitly stated.? For DES
G above, ¥g = X.

The transition function § : Y x3 — Y is a partial function and is only defined for a
subset of ¥ at a given y € Y. The notation 6(y, o)! indicates that 0 is defined for o at state
V.

We want to extend § to operate on strings in ¥*, where ©* = X+ U {¢} where € is the
empty string and X7 is the set of all sequences of symbols o10903...0%, k> 1 and 0; € 3,
i =1,2,..., k. We now recursively extend § to the partial function § : Yx¥* — Y by
applying the following rules for arbitrary y € Y, s € ¥* and 0 € X:

6(y,s0) = 6(0(y,s),0)

as long as 3 := d(y, s)! and §(y/, 0)!.

An example of a DES plant is given in Figure 2.1. Here, the plant is composed of
two automata, machl and mach2. The composite plant model is obtained by taking the
synchronous product (defined below) of machl and mach2. In the diagram, the entering
arrow at state 0 of DES machl indicates that this is the initial state. The exiting arrow
indicates that this is a marked state. A transition or event in a DES G is a triple (y, 0,v’)
where v,y € Y, 0 € ¥, and ¢ = §(y,0). An example from DES machl is the event
(0,c1,1). We say an event o € X is eligible in DES G at state y € Y if d(y,o0)!. For
example, event a; is eligible at state I1 in DES machl.

For DES G, the language generated, called the closed behaviour of G, is denoted by
L(G), and is defined as follows:

L(G) = {s € 2| 8(yo,)1}

The marked behaviour of G, L,,(G), is defined as follows:

L (G):={s € X" (yo,5) € Yin}

Clearly,) C L,,(G) C L(G) and € € L(G) as long as G # EMPTY where EMPTY is

2For example, in the case of the DES created by the synchronous product operator.

machl fori=1,2
Il o, = machine i starts job
o .= machine i finishes job
1
s A, =machine i breaks down
8 /L, =machine i is repaired
1
Wi A, g
oy -
—>»| machl —— | mach2 [—>
o, 8
BufferSup !
<«

X 2
Closed Loop: sync (machl, mach2,BufferSup)

Figure 2.1: Simple Factory Example

the DES with an empty state set.
Next, the reachable state subset of DES G, denoted Y., is defined to be:

Y, :={y Y| (3s €X*) (o, s) =y}

A DES G isreachableif Y, = Y. We will always assume G is reachable as unreachable states
don’t affect L(G) or L,,(G), and an equivalent reachable DES can always be constructed.
Moving on, the coreachable state subset of DES G, denoted Y., is defined to be:

Yoo :={y€Y| (3se€X")d(y,s) € i}

A DES G is coreachable if Y., = Y. If a DES is both reachable and coreachable, we say
the DES is trim.

Finally, we discuss the nonconflicting property. In the definition below, the bar over the

languages is the prefix closure operator discussed in Section 2.2. We say two languages

10

L1 C¥* and Lo C X* are nonconflicting if:
LiNLy=LiNLy

We say that DES G; and G are nonconflicting if their marked languages, L,,(G1) and

m(G2), are nonconflicting.

2.2 Operations

In this section, we discuss some useful operations for languages and automata. We start
with the cat operator. The catenation of strings is defined as follows: cat : ¥* x X* — ¥
where:

cat(e,s) = cat(s,e) =s, seX”
cat(s,t) = st s,t € X"

This leads us to the prefix closure operator. A string ¢t € ¥* is a prefix of s € X* if
s = cat(t,u), for some u € ¥*. The relation “t is a prefix of s” is expressed as t < s. The

prefix closure of a language L C ¥* is defined as:
L={te¥*|t<sforsomese L}

We say L is closed if L = L. Clearly as the name indicates, L(G) - the closed behaviour of
DES G, is closed.
The natural projection is defined with respect to the subset of a larger alphabet. Let

Y, C ¥*. We define the natural projection P, : ¥* — X* as follows:

Pole) = €
eif o g,
Po(o) =
cifocel,
Po(so) = Py(s) Po(0) where s € ¥*,0 € &

Clearly, the natural projection is catenative (i.e. P,(ss") = P,(s)Py(s), where s,s" €).

11

Also useful is the inverse image map of the natural projection, given below for set L C X7:

PyYL) = Usep {s € % P,(8)) = s}

o

This brings us to the synchronous product of two languages L; C X7 and Lo C 33
(X = ¥1UXy), defined using the natural projection. Let P; be the natural projection of ¥*
onto X7, i = 1,2. The synchronous product of L and Ls is defined to be:

Ly||Ly = P7H(Ly) NPy (L)

where P~ 1 =1,2, is the inverse image map of the natural projections P;.

We can now define the ||s operator for DES. For DES Gy = (Y1,%1,01, Yoy, Ym,) and
Go = (Y2, ¥2,02,%0y, Ym,), the synchronous product is defined to be a reachable DES
G = G1l|]|sG2 = (Y, X, 0,y,, Yy,) with the properties:

Lim(G) = Lm(G1)[|[Lm(G2), L(G) = L(G1)[[L(Gg), ¥ =%1U%

where the natural projections P;, ¢ = 1,2, are as defined above. The ||s operator is
essentially the same as the CTCT sync operator (see [60]), except that the ||s operator
requires that the alphabets of DES G; be specified explicitly; the sync operator takes XJ; to
be the events that appear in G;. Requiring the alphabets to be explicitly specified, ensures
that ||s is associative.

A special case of the synchronous product operator is the meet operator. It is equivalent
to the ||s when both DES have the same event set. For DES G; and Go with ¥; = X5,
then G = meet(G1, Go) is a reachable DES with the properties:

Ln(G) = Lm(G1) N Lin(Gg), L(G)=L(G1)NL(Gg)

Finally, we define the eligibility operator. For a language L C ¥* and a string s € ¥*,
the operator Elig;, : ¥* — Pwr(X) is defined as below. The notation Pwr(X) represents the

power set of ¥ (the set containing all sets that are C X).

Elig; (s) :={oc € ¥|soc € L}

12

2.3 Nonblocking and Controllability

For DES, the two main properties we want to check are nonblocking and controllability.

Nonblocking: A DES G is said to be nonblocking if the following is true:3

Nonblocking means that every string in L(G) can be completed to a marked string.
This means that the DES can always return to a marked state. This is a method to check
if the DES will deadlock.

To control the plant, we define a supervisor. Supervisors monitor the events generated by
the plant, and disable events according to some control law. The supervisors are represented

as automata and defined as below:

S = (X7 ES)€7xonm)

In [60], the closed loop behaviour of a plant G; = (Y1, X1, d1, ¥,) under the control of

supervisor S is achieved using the meet operator as below (assuming that ¥g = ¥4):

Closedmeet(G1,S) = meet(G, S)

From a practical point of view, using the meet operator can make specifying supervisors
tedious and error prone; particularly when the event set is large, and the supervisor is
specified as several modular supervisors that are then combined using the meet operator.
As a supervisor must have the same event set as the plant, any event that the supervisor
is indifferent to (doesn’t care if it’s enabled or not) must be selflooped (ie. as event a; is
at the initial state of DES BufferSup in Figure 2.1) at every state. This creates a lot of
clutter, and introduces the potential for error if a selfloop is missed.

Instead, we will use the synchronous product operator to specify the closed loop be-
haviour. When we specify a supervisor, we need only include the events it’s concerned
with in its event set. Particularly when using a graphical editor to specify and display the

supervisor, this simplifies things. We thus define the closed loop behaviour of a plant Gy

3An equivalent condition is that every reachable state of G is coreachable.

13

under the control of supervisor S as follows:

Closed(G1,S) = G1]sS

An oddity of using the synchronous product operator to specify the closed loop behaviour
is that an event could be in the supervisor, but not in the plant. This may seem unintuitive,
but it is useful for events that are not part of the original plant, but are artificially added
to aid in the synchronization of supervisors.* One could create a new plant DES with such
events selflooped at the initial state, but this would make things more cluttered, and possibly
increase memory usage in DES analysis software. By using the synchronous product, the
result is as if we created this new plant DES automatically.

We now introduce the concept of controllability. Controllability is a way to check if the
behaviour restrictions specified by a supervisor are achievable. For the alphabet of interest,
we partition it into two disjoint sets: X, and Y.. These are the sets of uncontrollable
and controllable events, respectively. Controllable events are events that a supervisor
can disable, and thus prevent from occurring. Uncontrollable events can’t be disabled.
Informally, a supervisor is controllable for a given plant if the plant can’t leave the behaviour
specified by the supervisor by means of an uncontrollable event.

We now present a formal definition for controllability. We first give the more standard

definition with respect to the meet operator, again assuming that g = 3.

Controllability (meet): A supervisor S is controllable for a plant G if:

L(S)Xu N L(Gy1) € L(S)

We will now present the version with respect to the synchronous product operator. First
we need to define the event set X, the natural projections P; and Ps, and languages Lg,

and Lg as below:

Yi=3X1UXg

P Y — Y]

4An example would be when one supervisor needs to wait until the other reaches a particular state, but
there doesn’t exist already an event that would signal this uniquely.

14

Pg : ¥* — X%
La, = P['L(Gq)

Lg := Pg'L(S)
Controllability (||s): A supervisor S is controllable for a plant G if:

Lg>, N LG1 CLg

In this thesis, whenever we refer to controllability, we will be referring to the version
with respect to synchronous product operator. We will actually use the following equivalent

definition:

Alternative Controllability Definition (||s): A supervisor S is controllable for a plant
G1 if:
(Vs € La, N Lg) Eligy . (s) N ¥, C Eligy(s)

Modular supervisors are implemented by taking the conjunction of two or more super-
visors. We define the conjunction of two supervisors Sq and Sgo (expressed as S1 A So) as
follows:

S1 ASg =81|[sS2

Returning to the example in Figure 2.1, our plant is G = machl||;mach2 and our
supervisor is S = BufferSup. Our event partition can be determined from the dia-
gram by noting that transitions with a bar across them (such as a; and a9) indicate
that these are controllable events. Finally, our closed loop system is Closed(S,G) =

(machl||smach2)||;BufferSup = machl||;mach2||;BufferSup.

2.4 Nonconflicting Discussion

For our interface-based hierarchical method, we will want each component to be able to
operate concurrently with every other component. To achieve this, we will use the syn-
chronous product as our means to combine components. We thus need to develop a set of
conditions that can be evaluated on a per component basis that will ensure that if we check

nonblocking on a per component basis, we will be guaranteed that when we synchronize the

15

components together, the result will be nonblocking.

One might naturally think that the concept of nonconflicting might be used. Noncon-
flicting can be used as a basis of a check to insure that if two trim DES are nonconflicting,
then their synchronous product is nonblocking. However, the work involved in verifying that
two DES are nonconflicting is about the same as constructing the synchronous product of
the two DES, and checking that it’s nonblocking. Also, this is a pair-wise check. If we
change one of the DES, we would have to reverify that the two DES are still nonconflicting.
We desire a component-wise check such that m > 2 components can be verified separately,
such that if we change one component, we only have to recheck the conditions for that
component.

Next, we note that if a set of DES are pair-wise nonconflicting, it is not guaranteed
that the synchronous product of the group is nonblocking. For example, consider the three
trim DES in Figure 2.2. Each DES is nonconflicting with the other two DES, but the

synchronous product of all three is not nonblocking.

G« A G A G A
ol e et e et e
v, v, o, W
Figure 2.2: Nonconflict Example

It is the author’s intuition that the concept of nonconflicting is too strong for our
application as it is a necessary and sufficient condition for nonblocking. In other words, it
probably requires too much information to be evaluated, and will thus tie the levels of a
hierarchy too close together to offer significant savings. We require a sufficient condition

that will give us more flexibility in the information that our abstraction can discard.

2.5 Verifying General Properties

In this work, we focus on verifying the controllable and nonblocking properties. These can
in turn be used to verify more general properties about a system. For instance we can verify

some properties unique to a system by using non-blocking. Say we wanted to determine

16

for a given system if an event « is always followed by two 3 events. We could add a DES
where only the initial state is marked, and event « takes the DES to an unmarked state.
The DES only returns to the initial state after the string 53 occurs. If the resulting system
is nonblocking, then we know the property is satisfied.

We can use controllability to determine if a system is failsafe, and to test for fault toler-
ance. To test if a system is failsafe, we can explicitly model failure events as uncontrollable
events, and then specify a supervisor that forbids “undesirable” events (events we don’t
want to be able to occur after a failure) from occurring when a specific failure event occurs.
The failure events should not appear in other supervisors in the system, and the “undesir-
able” events should be uncontrollable. If the supervisor is controllable, then the system is
failsafe for these failures.

Fault tolerance can be tested in a similar manner. Again, we explicitly model fail-
ure events and require that supervisors don’t contain these events. If the supervisors are

controllable, then the system is fault tolerant with respect to these failures.

2.6 Related Propositions

In this section, we present some propositions that will be used in later chapters. The
propositions will refer to alphabets 31, ¥o, and ¥ := ¥; U Xy, languages L;, L] C ¥, and
Ly, LY, C X%, and natural projections P; : ¥* — ¥, where ¢ = 1,2. Finally, we apply these
propositions to the synchronous product of DES G = (Y1, X1, 1, Yo, , Y,) and Go = (Y3,
32,02, Yoy, Yims)-

The first two propositions are useful for working with the languages of a DES created
by the synchronous product operator. The first proposition essentially says that the inverse
natural projection of a closed language is also closed. The second proposition essentially

says that the set of prefix closed subsets of ¥* are closed under intersection.
Proposition 1 If Ly is closed, then P, '(Ly) is closed.

Proof:

Assume L is closed. (1)
We will now show this implies that P, '(L) is closed.

This means showing that P; ! (L) = P (L)

17

It is sufficient to show that Py '(Ly) € Py '(Ly) and Py Y(Ly) € Py Y(Ly). As PrY(Ly) C
P Y(Ly) is automatic, all that remains to show is P; ! (L) € Py (Ly).

Let s € m (2)
We will now show this implies that s € Py *(L1)

We first note that s € m implies that (3s' € ©*) ss’ € Py (L)

= Pi(ss') = Pi(s)Pi(s) € Ly

= Pi(s) € Ly

= Pi(s) € L1 by (1)

= s € P Y(Ly), as required.

We thus have m C P Y(Ly), and thus P; (L) = W

We thus conclude that P;(Ly) is closed.

QED

Proposition 2 If Ly and Lo are closed, then L1 N Ly is closed.

Proof:
Assume L; and Ly are closed. (1)
We will now show this implies that L1 N Lo is closed.

This means showing that L1 N Lo = L1 N Lo

It is sufficient to show that L1NLy C Ly NLyand L1 N Lo C L1NLy . AsLiNLy C L1 N Lo
is automatic, all that remains to show is L1 N Ly C L1 N Lo.

Let s € L1 N Ly (2)
We will now show this implies that s € Ly N Lo

By (2), we can conclude (3¢ € ¥*)ss’ € L1 N Loy

= s € E N fg

= s € L1 N Ly, by (1)

18

We thus have Ly N Ly C Ly N Ly, and thus Ly N Ly = L1 N Lo, as required.
We thus conclude that Ly N Lo is closed.
QED

We now present a corollary that combines the above two propositions to get a similar

result for the || operator.

Corollary 1 If Ly and Ly are closed, then L1|| Ly is closed.

Proof:

Assume L; and Ly are closed. (1)
We will now show this implies that Li||Ls is closed.

We first note that L;||[Ly = P7(L1) NPy (L)

From (1) and applying Proposition 1, we can conclude that languages P{'(L;) and
P, (Ly) are closed.

We can now apply Proposition 2 and conclude that Pfl(Ll) NPy Y(Ly), as required.

QED

The next proposition says that the inverse natural projection respects subset ordering.
Proposition 3 If Ly C L, then P (L1) C P (L))
Proof:
Assume Ly C L. (D)
We will now show this implies that P, *(L1) C Py (L}).
Let s € Pfl(Ll) (2)
We will now show this implies that s € P *(L}).
By (2), we have P;(s) € Ly
= Pi(s) € L}, by (1).
= s € P (L)), as required.

19

We can thus conclude P;*(Ly) € Py (L))
QED
The last language proposition says that the synchronous product operator respects sub-

set ordering. This is useful for working with the languages of a DES created by the syn-

chronous product operator.

Proposition 4 If Ly C L} and Ly C LY, then Ly||L2 C L}||L}

Proof:

Assume Ly C L} and Ly C L. (1)
We will now show this implies that L1||Le C L}||L}

Let s € L1||La (2)
We will now show this implies that s € L} ||L}

From (2), we have s € P, '(L1)NPy *(La) (3)

From (1), we can apply Proposition 3 twice and conclude P;*(L;) € P;*(L}) and
Py (L2) C Py (Lh) (4)

Combining with (3), we can now conclude s € P, *(L}) N Py (L)

= s € LY||L} by the definition of the synchronous product operator. We thus have
L1||Le C L}||LY, as required.

QED

Next, we apply the above propositions to the synchronous product of DES.
Proposition 5 If G = G1||sG2, then language L(G) is closed and Ly, (G) C L(G)
Proof:
Assume G = G1||sGa. (1)
We will now show this implies that language L(G) is closed and L,,(G) C L(G).

By definition of the || operator, we know that L(G) = L(Gq)||L(Gg) and that
Lin(G) = Lin(G1)[|Lm(G2) (2)

20

We now note that languages L(G1), and L(G2) are closed by the definition of the closed
behavior of a DES.

We can immediately apply Corollary 1 and conclude that L(G) is closed.

From the definition of the closed behavior and the marked language of a DES, we can con-
clude that L,,(G1) € L(Gq) and L,,(Gg) C L(G9g).

We can now apply Proposition 4 and conclude:
Lin(G|ILm(Gg) = Lin(G) € L(G) = L(G1)||L(G2)

QED

For our last proposition and its accompanying corollary, we need to introduce some
different notation to avoid confusion with later notation. We will be using alphabets
Y4, 2y € ¥ and natural projections Py : ¥* — X7, where k = a, b.

The following proposition provides a useful relationship for natural projections when the
language each is projecting onto has the given relationship. When we examine the parallel

case, we will see many instances of this relationship.
Proposition 6 If %, C %, then P;1-P,- Pyl = P!

Proof:

Assume ¥ C X,. (1)
We will now show this implies P, ! - P, - bel =b, !

Let s € ¥j. Sufficient to show bel(s) =Pl P, bel(s)

This means showing: I) bel(s) cpPl.-p,. bel(s) and IT) P, - P, - bel(s) - P{l(s)
I) Show P, '(s) C Pyt Py - Py i(s)

Let s’ € P, '(s). Will show implies s’ € P;1- P, - Pyl (s).

= P,(s') € P,- Py !(s)

= P;l.P(s)C Pyt P, P l(s)

Clearly s' € P, 1. P,(s'), as P, 1 - Py(s') :={s" € % | P,(s") = P,(s')}.

= s' € P;1. P, P, !(s), as required.

21

Case I complete.

IT) Show P, 1P, - Py (s) C Py l(s)

Let s' € Py L-P,-Py ' (s) i= Uuer,-p 1 (s) {v e X | Py(v) = u}. (2)
Will show implies s’ € P, '(s). Sufficient to show Py(s) = s.

From (2), we have P,(s') € P, - P, *(s)

= (38" € 2*) s.t. 5" € Py t(s) A (Pu(s") = Pa(s)) (3)
As " € Py l(s), we have Py(s") = s

Since ¥, C X, (from (1)), we can conclude: (Yt € X*) Py(t) = Py - P,(t) (4)
From this we can conclude P, - P,(s") = Py(s") = s

From (3), we have P,(s") = P,(s"). We can thus conclude P, - Py(s') = Py - P,(s") = s
From (4), we can conclude Py(s') = Py - P,(s') = s

= s' € P, !(s), as required.

Case II complete.

By Case I and Case II, we have Pb_l(s) = Pa_l‘Pa-Pb_l(s) and thus conclude P, 1 P,-Py ! =
Pt

QED
The corollary below applies Proposition 6 to provide a useful result for strings. We

will be using this corollary extensively when we examine the parallel case.

Corollary 2 If 5, C %, and Ly, C 5} then (Vs € £*) Pu(s) € Py - Py Y (Ly) = s € Py Y (Ly)

Proof:
Assume X, C ¥, and Ly, C Xj. (1)
Let s € * and Py(s) € Py- Py (Ly). (2)

We will now show this implies that s € P, ' (L)
We start by noting that (2) implies that s € P, P, - Py (Ly)
From Proposition 6, we can conclude P, 1 P, - P, ' = Pb_l, by (1).

22

se P (L) follows automatically.

QED

23

Chapter 3

Serial Case: Nonblocking

With the serial case of hierarchical interface-based supervisory control, what we are propos-
ing is essentially a master-slave system, where a high level subsystem sends a command to a
low level subsystem, which then performs the indicated task and sends back a reply. Figure

3.1 shows conceptually the structure of the system.

High Level 2,
O O

-

A 'L,
Interface
) Zx '3,
Low Level
] |]

o

Figure 3.1: Interface Block Diagram.

24

To allow the system to be designed/maintained/verified on a component-wise basis, we
impose an interface between the two subsystems that limits their interaction and knowledge
of each other. The goal is to be able to work with each subsystem individually, requiring
no information about the other subsystem beyond that provided by the interface.

To capture the restriction of the flow of information imposed by the interface, we split
the alphabet of the system (X) into four mutually disjoint alphabets: Xp, X1, X, and 3 4.
The events in >y are called high level events and the events in X;, low level events as these
events appear only in the high level and low level models, respectively.

The alphabets Xz and Y 4 are called collectively interface events. These events are
common to both levels of the hierarchy and represent communication between the two
subsystems. More specifically, the events in Y i are called request events and represent
commands sent from the high level subsystem to the low level subsystem. The events in
> 4 are called answer events and represent the low level’s responses to the request events
(high-level commands). Figure 3.1 shows conceptually the flow of information in our setting.

In the remainder of the chapter, we will first present a definition for an interface, followed
by a set of local consistency and nonblocking requirements that the interface and subsystems
must satisfy in order to guarantee global nonblocking. We then provide several supporting

propositions, followed by the serial nonblocking theorem.

3.1 Notation and Definitions

In this section, we present a definition for interface, and some notation that will be useful

in the following proofs.

3.1.1 Interface Definition

In this section we, will present two interface definitions: star interfaces and command-
pair interfaces. As we will see later, star interfaces are a special case of the more general
command-pair interfaces.

We start by describing a star interface as it has a regular structure and is thus easy to
construct. To define a star interface, the designer selects a set of request events, and then
for each request event, the designer defines a set of answer events. In essence, the designer

defines a map Answer : ¥p — Pwr(X4). For p € ¥i, Answer(p) is the set of possible

25

answers (referred to as the answer set) the low level subsystem could provide after receiving
request p. For consistency, we add the constraints given below. Point 1 states that the low
level subsystem must provide at least one response for each request it receives, and point

2 states that ¥4 does not contain any unused events.
1. (Vp € i) Answer(p) # ()
2. ¥4 = UpexAnswer(p)

In Figure 3.2, we see how a star interface, with n = |Xg| (n > 0), is expressed as a DES.
The required structure for a star interface is given by DES G;. Analysing DES G, we see
that the DES has the following properties:

e The initial state is the only marked state.

Request events are the only events defined at the initial state.

Each request event starts at the initial state, and ends at a state other than the initial
state.

Answer events are not defined at the initial state

At least one answer event transition can always follow a request event transition.

D1 Pas e s Pr© 2

Answer(p,)

«—>Q@ @
0 Answer(p,) 2
v °
S
S\ P
c
i\

Figure 3.2: Interface Specification.

26

To allow for a minimal DES, we permit distinct request events to have the same next
state. For example, if request events p; and ps in Figure 3.2 had the same answer sets (i.e.
Answer(p;) = Answer(pz)), then their next states can be merged. In our example, this
would mean states 1 and 2 of Gy would be combined. Finally, we require that the event set
of Gt be set to X g UX 4 but we place no restrictions on whether a request or answer event
is controllable or uncontrollable.

We now define command-pair interfaces. Command-pair interfaces were designed as
a generalisation of star interfaces. Star interfaces were designed first as they were more
intuitive, and then the key properties were identified and collected into the command-pair
interface definition. A key difference is that the “star” shape is no longer required. A
command-pair interface will still always has a request event followed by an answer event,
but it can now contain additional state information. For example, in Figure 3.2 all possible
request events are defined at the initial state. When an answer event has occurred, it always
returns the star interface to the initial state, and thus the same choice of potential request
events. With a command-pair interface we can have a DES structure as illustrated in Figure
3.3. Request events p; and ps might represent the regular behaviour of the system, while
as and ps represent breakdown and repair of the system. A command-pair interface allows

the flexibility of only having the repair event eligible after a breakdown.

/“’O<2

47 57
O<3

Figure 3.3: Example Command-pair Interface.

For the remainder of this work, when we refer to an interface we will mean explicitly a

27

command-pair interface, and we will use the two synonymously. We define a command-pair

interface as below:

Definition: A DES G; = (X, Xy, &, o, X;) is a command-pair interface if the following

conditions are satisfied:

(A) Xy =3rUX4

(B) (Vs € L(G1))(Vp € ER) sp € L(G1) = s € Lin(G)
(C) (Vs € Lin(Gp)) (Vo € Xp) so € L(Gy) = 0 € X4
(D) L(Gr) = {e} U (X7.24 N L(G)))

(E) L(Gy) C (Xp.Xa)*

The first point, point A, says that Gj’s event set is restricted to request and answer
events. It also states that the two sets are disjoint. Point B then states that request event
transitions are only defined at marked states. Point C states that there are no answer
events defined at marked states. Point D says that the marked language of G consists of
the empty string, and strings that end in an answer event. Finally, Point E says that in
the language of Gy, a request event always occurs first and then request and answer events
alternate.

We will now prove that star interfaces are a special case of command-pair interfaces.

This will allow us to prove our theorems for the more general command-pair interfaces, but

use the simpler star interfaces when they are sufficient.!

Proposition 7 If DES G = (X, Xy, &, xo, X) is a star interface, then G is a command-

pair interface.

Proof:
Assume that Gy is a star interface.

We will now show this implies it’s a command-pair interface by showing that G satisfies
points A-E of the command-pair interface definition.

Point A: Show ¥; = XprUX4

"We will actually use star interfaces exclusively in our algorithms and examples as the command-pair
interface definition was only just developed and there wasn’t time to update our software and examples.

28

This is automatic from the star interface definition.
Point B: Show (Vs € L(Gy))(Vp € £R) sp € L(Gr) = s € Li,(Gr)

The results follow immediately from observing Figure 3.2 and noting that request event
transitions are only defined at the initial state, which is marked.

Point C: Show (Vs € L,,,(G1))(Vo € £1) so € L(Gy) = 0 € X4

The results follow immediately from observing Figure 3.2 and noting that answer event
transitions are not defined at the initial state, which is the only marked state.

Point D: Show L,,(G1) = {e} U(X7.34NL(Gy))

It is sufficient to show 1) L,,,(Gr) € {e} U (X}7.X4 N L(Gy)) and 2) L,,(Gr) 2 {e} U
(37.24 N L(GY))

Case 1) From Figure 3.2, we can see that L,,(G) includes the empty string, as the initial
state is marked and that G is not the EMPTY DES. We also see that the only transitions
ending at the initial state (the only marked state) are for answer events. The results follow
immediately.

Case 2) From above, we have that L,,(G) includes the empty string. From Figure 3.2, we
can see that every answer event transition ends at the initial state, which is marked. The
results follow immediately.

By case 1 and 2, we thus have L,,(Gr) = {e} U (X7.X4 N L(Gr))
Point E: Show L(Gy) C (X¥g.X4)*

From Figure 3.2, we can see that L(G) contains the empty string (as G is not the EMPTY
DES), and strings that start with a request event. We further see that request and answer
events then alternate. The results follow immediately.

QED

3.1.2 Terminology and Notation

We now present some terminology and notation that will be useful in simplifying proofs. For
our setting, we assume the high level subsystem is modelled by DES G (defined over event
set X UXrUX), the low level subsystem by DES G, (defined over event set X7 UXpUX 4
), and the interface by DES G;. Also, the term high level will mean the DES G||sG, and
the term low level the DES Gp||sG;. The overall structure of the system is displayed in
Figure 3.4.

29

High level
G,

Low level \
G,

Figure 3.4: Two Tiered Structure of Serial System.

We next assume that the alphabet partition is specified by ¥ := X5 U, UX g UX 4 and
define the flat system as below. By flat system we refer to the equivalent DES that would

represent our system if we ignored the interface structure.
G = GullsGLllsGr

As we will often be referring to different groupings of events, we define the following

subsets:

Y= YrUY A4 Interface Fvents
Yig = YpUXRUX A Interface & High Level Events

Y= YpUXRUN A Interface & Low Level Events

To work with languages defined over subsets of X, we define the following natural projec-

30

tions:

PIH . Z* — E?H
Prp, ¥ — X5,

Pr:¥— X3

As we want to express the languages of flat system in terms of their components, we need

to define the following languages:

= Pi(L(Gr)), M= P(Lm(Gr)) CX*
L

H =
£:= P LGL). L= P (Ln(Gr) C %
A =

= Py YL(Gr)), Tm:
We can now represent the closed behaviour of our flat system as follows:

L(G) = L(GullsGLllsG1)

= Py(L(Gr)) N P (L(GL) N Py Y(L(Gr))
= HNLNZT

Similarly, the marked language of our flat system is:
Ln(G)=Hm N Ly NIy

This allows us to present the proposition below which collects together several similar
propositions. As it will be common in the proofs in this report to show that membership

in languages such as H are dependent only on events in specific subsets (for H, events in

subset YX;p), this proposition will be very useful.

Proposition 8

(a) (Vs,s' € ¥*) s € H and Prg(s) = Piu(s') = s € H
(b) (Vs,s' € ¥*) s € Hy, and Pry(s) = Pru(s') = ' € Hi,

(c) (Vs,s € ¥*) se€ L and Pr(s) = Prp(s) = s € L

31

(d) (Vs,s' € ¥*) s € Ly, and Prr(s) = Pip(s') = s € L,
(e) (Vs,s €X*)seT and Pi(s)=P(s)=s €T
(f) (Vs,s' € ¥*) s € I, and Pi(s) = Pi(s') = s € Iy,

Proof:

Point a:

Let s,s' € ¥*, s € H and Prp(s) = Pru(s) (1)
s € H=>s € P;(L(Gpy)), by definition of H.

= Pru(s) € L(GH)

= Pru(s’) € L(Gg), by (1).

= s' € P (L(Gy)) = H, as required.

Points b-f:

Identical to the proof of point a above, after substitution.

QED

3.2 Serial Interface Consistent and Nonblocking

In this section, we present the interface properties that our system must satisfy to ensure
that it interacts with the interface correctly as well as the nonblocking requirements each
level must satisfy. Together they provide a set of local conditions that can be evaluated
using at most one level of our hierarchy at a time.

Our first definition is the serial level-wise nonblocking definition. It requires that each

level be individually nonblocking.

Serial Level-wise Nonblocking: The system composed of DES Gy, G, and Gy, is said

to be serial level-wise nonblocking if the following conditions are satisfied:

(I) HnNZy =HNI Nonblocking at the high level

(II) £,,NZ,, =LNZI Nonblocking at the low level

We now present the serial interface consistent definition. It defines the interface prop-

erties that our system must satisfy to ensure that it interacts with the interface correctly.

32

It limits the information each level can have about the other, and what assumptions they

can make about each other.

Serial Interface Consistent: The system composed of DES Gy, G and Gy, is serial
interface consistent with respect to the alphabet partition ¥ := Xy UX, UXgUX 4,

if the following properties are satisfied:

Multi-level Properties

1. The event set of Gy is Xy, and the event set of G, is Xyy,.

2. Gy is a command-pair interface.

High Level Properties

3. (Vs € HNZ) Eligz(s) N X4 C Eligy(s) High level task completion agreement

Low Level Properties

4. (Vs € LNTI) Eligz(s) N Xr C Elig,(s) Low level task request agreement
5. (Vs € 2. XrNLNT)

Elig,~7(sX7) N X4 = Eligz(s) N X4 Low level task completion agree-

ment
where Elig,~7(s37) := Uiex: Elig7(sl)
6. (Vse LNI)

s€l, = 3leX})sleLly,Ny, Lowlevel marking agreement
We will now give a brief discussion of the meaning of each property.

Property 0: The first Property is inherent in the definition of the alphabet partition,

Y=Yy UX,UXrUX 4. It states that the four alphabets are pairwise disjoint.

Property 1: This property asserts that the high and low levels can only share request and
answer events. This is an “information hiding” statement. It restricts the high level
subsystem from knowing (and directly affecting) internal details about the low level

subsystem (ie to be able to view/disable low level events) and vice versa.

Property 2: This property states that DES G satisfies the definition of a command-pair

interface.

33

Property 3: This property asserts that the high level subsystem (G) must always accept
an answer event if the event is eligible in the interface. If the answer event is not
eligible in the interface, the high level subsystem is not required to accept it. This is
equivalent to a controllability condition where the interface is taken to be the plant,
the high level subsystem the supervisor, and answer events to be the uncontrollable
events. In other words, the high level subsystem is forbidden to assume more about

when an answer event can occur than what is provided by the interface.

Property 4: This property asserts that the low level subsystem (G1) must always accept
a request event if the event is eligible in the interface. If the request event is not
eligible in the interface, the low level subsystem is not required to accept it. This is
equivalent to a controllability condition where the interface is taken to be the plant,
the low level subsystem the supervisor, and request events to be the uncontrollable
events. In other words, the low level subsystem is forbidden to assume more about

when an request event can occur than what is provided by the interface.

Property 5: This property asserts that immediately after a request event (some p € Xg)
has occurred (and before it is followed by any low level events), there exists one or
more paths via strings in ¥} to each answer event (ie all « € Answer(p), assuming
that we are dealing with a star interface) that can follow the request event. A given
path may only lead to one of the possible answer events, but a path to each one must
exist. However, as soon as a single low level event has occurred, one or more answer
events may no longer be reachable (ie the low level may no longer be able to provide

that particular answer event).

For example, assume our low level represents a machine that accepts the request
events startJob and startRepair. Request event startJob can be followed by an-
swer events jobCompleted or machineDown. Request event startRepair can be
followed by answer event repairCompleted (this information would be embodied
in L(Gr)). Immediately after request event startJob has occurred, there must be
one or more low level event sequences, accepted by the low level subsystem, that
lead to answer events jobCompleted and machineDown. For example, sequence
taskAComplete taskBComplete would bring the low level subsystem into a state

in which it would accept answer event jobCompleted but event machineDown

34

would no longer be possible. Similarly, sequence task AComplete machineFailure
would bring the low level subsystem into a state that it would accept answer event
machineDown but event jobCompleted would no longer be possible. What’s im-
portant to note here is that both answer events jobCompleted and machineDown
were initially reachable after startJob occurred. Which answer event was allowed to
occur was determined afterwards solely by low level events. Also, after one or more
low level events had occurred, there was no guarantee that both answer events were

still reachable.

One could summarize the purpose of this condition as to guarantee “honest adver-
tising.” If the interface asserts that a given answer event can follow a given request
event, this must always be true at least immediately after the request event occurs,
and then the low level subsystem is allowed through the occurrence of low level events
to decide which answer event actually occurs. In our above example, our interface
advertises that either answer event jobCompleted or machineDown can follow re-
quest event startJob. If the low level subsystem was in a down state such that only
machineDown was possible, and request event startJob occurred, this condition
would be violated. If the high level could only reach a marked state by the eventual
occurrence of event jobCompleted, it would be deceived by the “false advertising”
of the interface into believing that this could eventually be satisfied by repeatedly
issuing startJob commands. Of course, a human designer would see the fallacy of

this, but an automatic synthesis algorithm would be deceived.

Property 6: This property asserts that every string marked by the interface and accepted
by the low level subsystem, can be extended by a low level string to a string marked
by the low level (both Gy and G1). In other words, once the low level subsystem has
returned an answer event, it can always return to a marked state via a low level string

(ie some s € 37).

From the point of the view of the high level subsystem, this property says that if
one can bring the high level subsystem and the interface to a marked state, then one
can bring the low level subsystem to a marked state via a low level string which would

be ignored by the high level (ie they would stay in a marked state).
We are now ready to state the proposition below which establishes useful properties for

35

often used languages.

Proposition 9 If the system composed of DES Gy, G, and G is serial interface consis-
tent with respect to the alphabet partition ¥ := Ny UYL, USgrUX 4, then the following is

true:
(i) Languages H, L, and T are closed.
(ii) Hm CH, Ly, CL, and Z,,, CT

Proof: See page 42.

Now that we have presented the serial interface consistent definition, we present the
serial interface strict marking condition, which is a restriction of the serial interface con-
sistent definition. As we will see later, this restriction is useful as it implies Property 6 of

the serial interface consistent definition, but is less expensive to evaluate.

Serial Interface Strict Marking: The system composed of DES Gy, Gr, and Gy, is se-
rial interface strict marking with respect to the alphabet partition ¥ := X5 UX UX g
UXy, if:

(Vse LNT)s€Ly= s€ LNy

The above statement could be summarized by saying that if we can bring the interface
to a marked state, we are guaranteed to also have brought the low level subsystem to a
marked state. The above statement is equivalent to Property 6 of the serial interface
consistent definition above, with string [restricted to the empty string.

We will now prove that we can use the serial interface strict marking condition to replace

Property 6 of the serial interface consistent definition.

Proposition 10 If the system composed of DES Gg, G and Gy, satisfies properties
1-5 of the serial interface consistent definition and is serial interface strict marking with
respect to the alphabet partition ¥ := Xy UX, UXrUX 4, then the system is serial interface

consistent.

Proof:

Assume that the system satisfies properties 1-5 of the serial interface consistent definition

36

and is serial interface strict marking.
We now show this implies the system is serial interface consistent.

From (1), we immediately have the system satisfying the first 5 properties of the serial
interface consistent definition.

All that remains is to show that the system satisfies Property 6 of the definition. This
means showing;:

(Vse LNIT)
s€l;y=3leX})sle LNy

Let se LNT,and s € L,

We will now show this implies (3 € ¥7) sl € L, NIy,

From (1), we have that the system is serial interface strict marking.

We can thus conclude: s € £,,, N Z,,

We thus take [= € and we have sl € L, N Z,,, as required.

We thus have the system satisfying properties 1-6, and is thus serial interface consistent.

QED

3.3 Serial Nonblocking Propositions and Theorem

We will now present Propositions 11-15, followed by our main result for this chapter,
Theorem 1. The following propositions perform two tasks: they break down the main
theorem into a more manageable size, as well as provide useful results that will be re-used

for the parallel case.

3.3.1 Low Level Nonblocking Proposition

Our first proposition is the low level nonblocking proposition. It asserts that a string s
accepted by the system, can always be extended to a string accepted by the system, and
marked by the low level. In other words, the low level is not dependent on high level events

to reach a marked state.

Proposition 11 If the system composed of DES Gy, Gr, and Gy is serial level-wise

37

nonblocking and serial interface consistent with respect to the alphabet partition > =

YrUXL UZRUZA, then

(Vse HNLNIT)
(Fexi;) st (sleHN Ly NIy)

Proof: See page 43.

3.3.2 Low Level Linkage Proposition

Our next proposition is the low level linkage proposition. 1t asserts that a string s accepted
by the system and marked by the high level, implies that s can be extended by a low level
string [such that s/ is marked by the system. In other words, if you can get the high level to
a marked state, you can always bring the low level to a marked state by a string containing

events the high level is indifferent to.

Proposition 12 If the system composed of DES Gy, Gr, and Gy is serial level-wise
nonblocking and serial interface consistent with respect to the alphabet partition ¥ :=

EHUEL UERUEA, then

(Vs € LN Hpm NT) (3 € X%) 81 € Hpy N Lon NIy

Proof:
Assume system is serial level-wise nonblocking and serial interface consistent. (1)
Let s € LN Hm NIy, (2)

We will now show that we can construct a string [€ X7 such that sl € H,, N L,, N Z,,

From (2), we have s € LNZ,, and thus s € LNZ.

From (1), we can apply Point 6 of the serial interface consistent definition and conclude:
(FeX})st. sle LN, (3)

As | € X%, we have Pry(s) = Prg(sl). From (2), we have s € H,,. We can now apply
Proposition 8, point b, and conclude:

sl € Hp,

Combining with (3), have [€ X7, and sl € H,, N Ly, N Ly, as required.

38

QED

3.3.3 Event Agreement Propositions

We group the next three propositions together, as each builds upon the previous one.

One-step Event Agreement Proposition

Our first proposition is the one-step event agreement proposition. For this proposition, we
are given a string s accepted by the system and a string h of the form ¥73;.Xg.X};.X 4. This
means that h contains exactly one request event and one answer event in the given order
and that h may or may not contain high level events before or directly after the request
event. The proposition asserts that if string h extends string s such that sh is acceptable
to the high level, then a string w can be constructed such that u has a high level image
equal to h, and that su is acceptable to the system and marked by the interface. In other
words, we can use string h as a basis to construct string v by adding low level events so
that the low level subsystem will accept the request and answer event contained in h. As

these events are common to both levels, they must agree on their occurrence.

Proposition 13 If the system composed of DES Gy, G, and Gy is serial level-wise
nonblocking and serial interface consistent with respect to the alphabet partition ¥ :=

EHUEL UERL.JZA, then

(Vs € HNLNT)(Vh € £ Sp.S5.54)
she HNZT = (Jue ¥*) s.t. (su e HNLNZy) A (Pra(u) = h)

Proof: See page 45.

Inductive Event Agreement Proposition

Our next proposition is the inductive event agreement proposition. This proposition is
different from Proposition 13 as Proposition 13 only handled the case that the string
h contains exactly one answer event (i.e. only one command-pair), while this proposition
allows h to contain one or more answer events (i.e. multiple command-pairs). It uses
Proposition 13 in an inductive proof to handle an arbitrary number of answer events in

string h.

39

Proposition 14 If the system composed of DES Gg, Gr, and Gy is serial level-wise
nonblocking and serial interface consistent with respect to the alphabet partition ¥ :=

YUY UXRrUX 4, then

(Vs e HNLNTy,)(Vh € 55.24)
she HNZI = (Jue) (Prg(u) =h)A(su e HNLNZLy)

Proof: See page 47.

General Event Agreement Proposition

The last proposition of the three is the general event agreement proposition. This propo-
sition is more general than Proposition 14 as it handles the case that string h doesn’t
contain answer events or doesn’t end in an answer event. It makes use of Proposition 14

to handle the other cases.

Proposition 15 If the system composed of DES Gy, Gr, and Gy is serial level-wise
nonblocking and serial interface consistent with respect to the alphabet partition > =

YrUX L, UNRrUX 4, then

(Vs e HNLNZ,)(Yh € E5y)
sh € Hp NZpy, = (Fu € %) s.t. (su € Hyy N Loy N Iy) A (Pr(u) = h) A (Pr(u) €
{e} UXR.EY)

Proof: See page 50.

3.3.4 Serial Nonblocking Theorem

We now present our main result for this chapter, the serial interface nonblocking theorem. In
essence the theorem says that if the high level and low level are individually nonblocking, and
the system is serial interface consistent, then the nonblocking property will be preserved by
the synchronous product operation. As the serial level-wise nonblocking and serial interface
consistent definitions can be evaluated by examining only one level of our system at a time,

we now have a means to verify nonblocking of our system using local checks.

Theorem 1 If the system composed of DES G, G, and G is serial level-wise nonblock-
ing and serial interface consistent with respect to the alphabet partition ¥ := Xy U UXg

UX 4, then

40

L(G) = Zm(G)f where G = GHHSGLHSGI
Proof:

Assume system is serial level-wise nonblocking and serial interface consistent.

As L,,(G) C L(G) is automatic, it suffices to show L(G) C L,,(G)

Let s€ L(G) =HNLNT (2)

We will now show this implies s € L,,(G)

It is sufficient to show: (Ju € ¥*) su € Ly (G) = Hp N Loy N L,

(1)

Our first step is to show that we can construct a string [, accepted by the high level, that

will bring the low level to a marked state.

We can achieve this immediately by noting that s € HN L NZ and (1) allows us to exploit

Proposition 11. We thus conclude:

(HNeXi)st. sle HN Ly NIy,

(3)

We will now show that we can extend string sl to a string in H,, N L,, N Z,,. To do this,
we will use Proposition 15. To apply the proposition, we must first construct a string

h € X7y with the property slh € Hy, N1y,

We first note that we have sl € HNZ from (3). This allows us to apply Point I of the

level-wise nonblocking definition (nonblocking at the high level), and conclude:.

(3 € 5% s.t. slW € Hyp NI

We next note that:

)

P[H(Slh/) = P[H(SZ)P[H(h
(Prg(h')) as the natural projection is idempotent.

= P[H(SZ)P[H
= P[H(SZP]HUL/))

We can now apply Proposition 8, point b, and conclude sl Py (h') € Hy,
As X5 C ¥y, we can conclude Py(slh') = Pr(slPrg(h')) (by (5)).

We can now apply Proposition 8, point f, and conclude slP;y(h') € Z,,
Combining with (6), we can conclude slPrg(h') € Hy NI,

We thus take h = Prg(h') and we have:

41

(4)

(6)

h € ¥}y and slh € Hy, N1y, (7

We next note we have sl € HNLNZ,,, by (3). We can now apply Proposition 15, taking
sl to be string s in that proposition, and conclude:

(T € ¥*) s.t. slu' € Hyy N Ly NIy
We then take u = lu' and we have su € H,, N Ly, N Ly, = Ly (G), as required.

QED

3.4 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter
were not given as the propositions were introduced. They will now be presented in the

following sections.

3.4.1 Proof of Proposition 9

Proof for Proposition 9 on page 36: If the system composed of DES Gy, G, and Gy is
serial interface consistent with respect to the alphabet partition ¥ := X5 UX, UXgUX 4,

then the following is true:
(i) Languages H, £, and T are closed.
(i) Hn CH, Ly CL,and Z,,, CT
Proof:
Assume system is serial interface consistent. (1)
Will now show this implies that Points i and ii are satisfied.

We first note that by (1), the system is serial interface consistent. By Points 1 and 2 of
this definition, we can conclude:

L(GH),Lm(GH) g E?H’ L(GL),Lm(GL) g E?L’ and L(G[),Lm(G]) g E?.

This tells us that languages H = P;; (L(Gy)), £ = P/ (L(GL)), T = Py (L(G))), Hm =
P (Lin(Gw)), Lo = P;H(Lin(GL)), and T, = P; ' (L, (G)) are defined.

Point i: Show that Languages H, £, and Z are closed.

42

We now note that languages L(Gg), L(GL), and L(Gy) are closed by the definition of the
closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, £, and Z are closed, as
required.

Point ii: Show that H,, CH, £,, C L, and Z,,, C T.

From the definition of the closed behaviour and the marked language of a DES, we can
conclude that:

Lm(GH) g L(GH), Lm(GL) g L(GL), and Lm(G[) g L(G[).

Applying Proposition 3 repeatedly, we can conclude:

H = P (L(Gn))
L="rp
T = PN (L(Gr))

P (Lin(Gr)) = Hum
PN (Lm(GL)) = Lim
P (Lim(Gr)) = I

IN 1N 1N
=
@
=

QED

3.4.2 Proof of Proposition 11

Proof for Proposition 11 on page 37: If the system composed of DES Gy, G, and Gy
1s serial level-wise nonblocking and serial interface consistent with respect to the alphabet

partition ¥ = Xy UX, UL rUX 4, then

(VseHNLNT)
(FeXy) st (sle HN Ly NIy)

Proof:
Assume system is serial level-wise nonblocking and serial interface consistent. (1)
Let se HNLNT (2)

Will now show this implies (3 € £7;) s.t. (sl e HN Ly, NZLy,)

To do this, we will construct a suitable string [. We start by applying Point II of the serial
level-wise nonblocking definition (by (1)) to conclude:

43

(3s' € ¥*) ss’ € Ly, NIy, (3)
As we require a string in 3}, , we take I’ = Prp(s') € ¥%,. We will now show sl’ € £,, N T,
From the definition of the natural projection, we have Prp(Prp(s")) = Prp(s')

= Prp(ss’) = Pip(s)Prr(s’) = Pro(s)Prp(Prn(s’)) = Prp(sPrp(s’)) = Prp(sl'), as the
natural projection
is catenative.

As ¥ C Xyp, Pi(s") = Pr(Prp(s)). We can thus argue as above and conclude: Pr(ss’) =
P[(Sl/)

We can now use (3), and apply Proposition 8, points d and f, and conclude:
sl € Loy, NIy, (4)

We now note that if sl’ € H, we can take [= I’ and we have the desired result. We can
thus, with no loss in generality, assume:

sl ¢ H (5)

We will now show this implies that string sl’ is not accepted by H due to a request event.
We will then use this fact to construct a suitable string (.

We first observe that s € H, sl’ € H, and I’ € ¥}, implies:
(A" e,)Fo € Zrp) st ("o <UYN(sl" e H)A(sl"o ¢ H) (6)

We note the following points, which will be used later in the proof:

e sl e HNLNTZ by the facts si” € H, 1" <, sl' € L,, NI, and the fact £ and Z are
closed languages. (7

e sl”oc €T by (4), (6), and fact Z is closed. (8)
We now show that (6) implies 0 € X r. We know:

e 0 ¢ as o € X, would imply Py (sl”o) = Pry(sl”) Since sl” € H, Proposition 8,
point a, would then imply sl”o € H, which would contradict (6).

e 0 Z Y as0 € Xy, sl”o €T (by (8)) and point 3 of the serial interface consistent
definition would imply sl”¢ € H, which would contradict (6).

Aso e X, =YrUX 4 UX,, we can thus conclude o € X i by process of elimination.

We now show that o € ¥ implies sl” € Z,,,. This will allow us to use Point 6 of the serial
interface consistent definition to extend sl” to a string marked by the low level.

From Point 2 of the serial interface consistent definition, we have that DES Gy is a
command-pair interface.

44

As o € g and sl”"0 € T (from (9)), we can conclude: Pr(sl”o) = Pr(sl")o € L(Gr)

We can thus conclude by Point B of the command-pair interface definition that Pr(sl”) €
L (Gy)

= sl" e,
From (7), we have sl” € £NZ so we can now apply Point 6 of the serial interface consistent
definition and conclude:

(AN e) st sl e Loy NIy,

As 1" € X3, from (6), we have I"l" € ¥,

We take | = I"I"" and immediately have sl € £,,, NZ,, and | € ¥7,. All that remains is to
show sl € 'H

From (6), we have sl” € H. As 1" € ¥% | we have Pry(sl”) = Pry(sl"l"") = Prp(sl)

We can thus apply Proposition 8, point a, and conclude sl € H, as required.

QED

3.4.3 Proof of Proposition 13

Proof for Proposition 13 on page 39: If the system composed of DES Gy, Gy, and Gy
1s serial level-wise nonblocking and serial interface consistent with respect to the alphabet

partition ¥ =Xy UX L, USr U4, then

(Vs € HNLNT)(Vh € £ Sp.S%.54)
she HNZT = (Fue ¥*) s.t. (su e HNLNZy) A (Pra(u) = h)

Proof:
Assume system is serial level-wise nonblocking and serial interface consistent. (1)
Let sc HNLNZI, he Xy XpY).Xa, and she HNZT (2)

We will now show this implies we can construct a string u with the desired properties.

We first note that h € ¥3;.3X 5.2} 4 implies:
(30 e Z5)(p e Zr)(W € %)) (a € Ey4) s.t. Wph"a=h (3)

45

We will now show that we can construct a string [€ ¥} such that h'plh"a € HN LN L,,.
We will also show that Prg(h/plh”a) = h.

Our approach will be to show that sh/p € LNZ and « € Eligz(sh’'p). We will then use
Point 5 of the serial interface consistent definition to construct a suitable string I.

We next note that sh € HNZ (by (2)), and that A'p < h (by (3)). As H and Z are closed
languages, we can now conclude:

sh'pe HNT (4)

As W' € %, (by (3)), we have Prr(sh') = Prr(s). As s € £ (by (2)), we can now apply
Proposition 8, point c, and conclude:

sh! € L (5)
We now have sh/ € LNZ and p € Elig7(sh’) (by (4)).

This allows us to apply Point 4 of the serial interface consistent definition (by (1)) and
conclude:

p € Elig,(sh') and thus sh/p € L
= sh/p € LNT, by (4).
As b € ¥%; by (8), we can conclude Pr(sh/ph” o) = Pr(sh/p)Pr(h")Pr(a) = Pr(sh/pc)

From (2) and (3), we have sh/ph”«a € Z. We can now apply Proposition 8, point e, and
conclude:

sh/pa €T
= « € Eligz(sh/p).
We can now apply Point 5 of the interface consistency properties and conclude:

(3 € X7) s.t. a € Eligp~7(sh/pl). (6)
= sh/pla e LNT

As B € X% by (3), we can conclude Prp(sh/pla)) = Prp(sh/plh”a) and Pr(sh/pla) =
Pr(sh’plh”). We can now apply Proposition 8, points ¢ and e, and conclude:

sh/plh"a € LNT (7)

We next note that DES Gy is a command-pair interface by (1).

46

As a € ¥4 (by (3)), we can now conclude:
Pr(sh'plh" o)) € £5.84 N L(Gy)
= Pi(sh’plh’a) € L,,(Gy) by point D of the command-pair interface definition.
= sh/plh"a € T, (8)
From (2) and (3), we have sh/ph”"a € H. Asl e X} (by (6)), we can conclude:
Pry(sh/ph”) = Pr(sh'plh o). (9)
We can now apply Proposition 8, point a, and conclude:
sh/plh'a € H
Combining with (7), (8) and (9), we have sh/plh”"a € HN L NZ,, and Prg(h'plh" o) =
Pry(hph'a) =h
We take u = h/plh” o, and the proof is complete.

QED

3.4.4 Proof of Proposition 14

Proof for Proposition 14 on page 40: If the system composed of DES G, Gy, and Gy
1s serial level-wise nonblocking and serial interface consistent with respect to the alphabet

partition ¥ =Xy UX, USr U4, then

(Vs e HNLNTy,)(Vh € Z554.22)
she HNZ = (Ju € ¥*) (Prug(u) =h) A (su e HNLNTI,)

Proof:
Assume system is serial level-wise nonblocking and serial interface consistent. (1)
Let s€e HNLNIy, h € X75.X4, and sh € HNT (2)

We will now show this implies we can construct a string u with the desired properties.

Our approach will be to break string h into substrings containing pairs of request and answer
events. We will then construct u iteratively, using these substrings.

47

We first let n be the number of answer events in string h (n > 1 as h € £7,;.X4). This
implies:

(Elhl,hg,...,hn € (EHUZR)*.EA) s.t. hihy...h, = h (3)

We have thus broken h into n strings each containing one answer event at the end of the
string.
From (2), we immediately have: shihy...h, € HNZ (4)

Using an inductive proof, we will now show:
(Fuo,ui, ..., up € %) st (suouq ... up € HOLNZy) A (Pra(uouy - .. up) = hoht ... hy),
where hg := ¢

Claim to be proven:

For k € {0,1,...,n}, there exists ug, u1,...,ur € X* such that the following are true:

(5)
(a) P]H(’U,(]U1 .. uk) = hohl e hk
(b) supuy...up € HNLNZLy,

We will first prove the initial case (k = 0), and then the general case of k € {1,...,n}.
We can then conclude by induction that the claim has been proven.

Initial Case: £k =0

We take ug = € and we immediately have Pry(ug) = € = hg, and thus Property a of
(5) is satisfied.

We have sug € HNLNZ,, as sug = s and s € HNLNZ,, (by (2)), and thus Property
b of (5) is satisfied.

Initial case complete.

Inductive Step:

Let k € {1,...,n}. Assume Jug,uy,...,ux_1 € X* and that they satisfy Properties a
and b of (5) when k—1 is substituted for k. (6)

We will show that this implies Juy, € ¥* that satisfies Properties a and b of (5).
Our approach will be to apply Proposition 13. To do this, our first step is to show
that

supuq ... Up—1hy € HNT

We first note that shohi...hy € HNZ by (4), and the facts that hy = € and ‘H and

T are closed
languages. (7

48

From (6), we have Prg(uouy ... ug—1) = hoh1 ... hg—1. From (3) and fact hg = €, we
have Prg(hohy ... hg) = hohi ... hg. We can thus conclude:

Pry(suouy ... ug—1hg) = Pra(s)Prg(uouy ... ug—1)Prg(hy)
= P]H(S)hohl ~--hk—1PIH(hk)
= P[H(Shghl - hk) (8)

With (7), we can now apply Proposition 8, point a, and conclude suguy . .. ug_1hg €
H (9)

As ¥ C ¥y, we can conclude by (8) that:
P](SUOUl c. uk,lhk) = P](Shghl e hk)

With (7), we can now apply Proposition 8, point e, and conclude sugu; ... ug_1hy €
z

Combining with (9), we have suguy . ..ug_1hy € HNZ (10)

We will now show that hy € X},.Xr.37,.X4. It is sufficient to show that Pr(hy) €
SRYA.

We first note that Pr(suqui...ur—1) € Ln(Gp) as sugui...up—1 € Iy, by (6).

(11)

Similarly by (10), we have Pr(suous ...ug—1hg) € L(Gy). (12)
We now note that hy, € (EgUXR)*.34 (by (3)) implies that Pr(hy) € ¥3.X4
We next note that DES Gy is a command-pair interface by (1).

From (11), we can conclude Pr(suquy ... up—1) € {e}U(X]7.XaNL(G)) by point D of
the command-pair interface definition. (13)

This implies that either Pr(suouy ... ux—1) = € or Pr(suguy ... uk—1) ends in an answer
event.

In either case, point E of the command-pair interface definition implies that Pr(sugu; .
can only be extended to a string in L(Gy) by a request event. (14)

From (12), we have P1(3u0u1 R uk_lhk) = P](SUoul R uk_l)P[(hk) € L(G[)
= Pr(hi) € ¥p.X53.X4 since Pr(hy) € ¥5.X4 and therefore must contain an answer

event. By (14), we know that the answer event must be preceded by at least one
request event.

49

.. Uk—l)

From point E of the command-pair interface definition, we know that, in L(Gy), a
request event must be followed by an answer event, before another request event can
occur.

= P[(hk) € XR.2A

= hy € X XR.2-2A

We may now apply Proposition 13 by taking sugu; ...ug_1 to be string s, and hy
to be string h in that proposition. We thus conclude:

(T € %) s.t. (supuq ... up—1v' € HNLNLy) A (Pra(u') = hy)

We can also conclude Pry(uouy ...ug_1u’) = hohy...hg by (6) and the fact Pry is
catenative.

We now take up = v’ and we have up € ¥* and we have it satisfying Properties a
and b of (5).

Inductive step complete.

We have now proven the initial case and the inductive step. We now conclude that the
Claim is true, by induction.

We thus take k& = n and have ug,uq,...,u, € X%, sugui...u, € H N L N Z,, and
Pri(uouy ...up) = hohy ... hy, =h

We thus take © = uguq ... u,, and the proof is complete.

QED

3.4.5 Proof of Proposition 15

Proof for Proposition 15 on page 40: If the system composed of DES G, G, and Gy
1s serial level-wise nonblocking and serial interface consistent with respect to the alphabet

partition ¥ =Xy UX, UNrUX 4, then

(Vs e HNLNZ,)(Yh € E5y)
sh € Hp NZy = (3u €) s.t. (su € Hpy N Loy NZy) A (Pra(u) = h) A (Pr(u) €
{e} UXR.EY)

Proof:

Assume system is serial level-wise nonblocking and serial interface consistent. (1)

50

Let se HNLNZpy, h € X7y, and sh € Hy, NIy, (2)
We will now show this implies we can construct a string u with the desired properties.
We have two cases to examine:

I) heXj (string h does not contain any interface events)
IT) h ¢ %, (string h contains one or more interface events)

Case I) h e X%
From (2), we have s € £. As h € ¥%;, we can conclude Prp,(s) = Prr(sh)
We can thus apply Proposition 8, point c, and conclude sh € £
Combining with (2), we thus have sh € LN H,,, N Z,,
We can now apply Proposition 12 and conclude:
Flexy)shle Hp N Ly NIy,

We take u = hl and we immediately have su € H,, N Ly, N Zy,, Prg(u) = h, and
Pr(u) =€ € {e} UXR.E}

Case I complete.

Case II) h ¢ ¥}
This implies Pr(h) # € (3)
As string h contains one or more interface events, events the two levels share, we must
construct a string so that they will both accept the interface events, and arrive in a
marked state together.
Our approach will be first to apply Proposition 14 to enable us to construct a
string w such that su € LN H,;, NZy,. We will then use Proposition 12 to show
that su € H,, N Ly, N Ly,

Our first step will to be to construct a string A’ < h, b’ € 33,24, so that we can
apply Proposition 14 .

To construct a suitable b/, we will start by showing that Pr(h) € Xp.X5.X4
We first note that DES Gy is a command-pair interface by (1).
From (2), we have s € Z,,

= Pr(s) € Ly (Gy)

o1

= Pr(s) € {e} U(X].X4 N L(G)) by point D of the command-pair interface defini-
tion. (4)

This implies that either Pr(s) = € or Pr(s) ends in an answer event.

In either case, point E of the definition implies that Pr(s) can only be extended to a
string in L(G7) by a request event. (5)

Now, from (2) we also have sh € Z,,.
= P](Sh) = P](S)P[(h) S Lm(G[)
As Pr(h) # € (from (3)), we can conclude by (5) that P;(h) € .3} (6)

As Pr(s)Pr(h) € L,,(Gr), we can conclude by point D of the command-pair interface
definition that Pr(s)Pr(h) € £7.X4

Combining with (6), we can conclude P;(h) € ¥p.37.354 (7)
= he P/ (ZRX554)

= h e SN, DAY as h € Xy, (8)

= (I € T3 Sa) (" € $5) st KR =h (9)

We can now conclude sh’ € HNZ as sh € Hy, NIy, by (2) and the fact that H and
7 are closed languages.

We can now apply Proposition 14 by taking A’ to be string h in that proposition.
We can now conclude:

(Fu € &%) st (Prg(v)=h) A (s e HNLNT) (10)
We note for future use that Pry(u’) = h’' and the fact that ¥; C X;p implies that
Pr(v') = Pr(R'). From (8), we have h € X%, Xp. X5 ;.2 4.7, (11)
We can thus conclude by (9) that Pr(v') € . X} (12)

We will now show that su’h” € LN H,, NI, so that we can apply Proposition
12 .

From (10), we have su’ € £. From (9), we have h” € ¥%,. We can thus conclude:
P]L(Sulh//> = P]L(Su/)
We can now apply Proposition 8, point c, and conclude su’h” € L (13)

From (2), we have sh € H,, N Z,,. From (9), we can conclude:

52

SR € My O Ton (14)
As Prg(u') = k' (from (10)), we have:

Pry(sh'h") = Prg(s)Prg (W) Prg(h') = Prg(s)Prg(u)Prg(h") = Pry(su'h”).
We can now apply Proposition 8, point b, and conclude su'h” € H,, (15)

From (11), we have Pr(u') = Pr(h'). We can argue as above and conclude P;(sh’'h") =
Pr(su’'h)

We can now apply Proposition 8, point f, and conclude su'h” € Z,,
Combining with (13) and(15), we can conclude:
su'h e LOHy, NI,
We can now apply Proposition 12 by taking su’h” to be string s in that proposition.
We thus conclude:

(e xy) st suhl € Hp N Ly NIy, (16)

We thus take v = «'h”l and we have Prg(u) = Prg(u/h"l) = h'h’e¢ = h and
su € Hpy N Ly, N Lp,.

From (12), we have Pr(u') € ¥g.X5. We thus have:
Pr(u) = Pr(v'h"l) = Pr(u') € £p.3%, as ' € &3, (by (9)) and [€ X} (by (16))

Case II is now complete.

By Cases I and II, we now have constructed a string u € ¥* such that Pr(u) € {e}UXR.27,
Prg(u) = h and su € Hy, N Ly, NIy, as required.

QED

53

Chapter 4

Serial Case: Controllability

Now that we have discussed nonblocking in the serial interface setting, we now consider
controllability. In the remainder of this chapter, we will define our setting and notation and

then present some supporting propositions, followed by the serial controllability theorem.

4.1 Definitions and Notation

We now present some definitions and notation that will be useful in simplifying proofs.
When we discussed nonblocking, we were only concerned with the high and low level sub-
systems, ignoring distinctions between plants and supervisors. For controllability, we need
to split the subsystems into their plant and supervisor components. We will do so as shown
in Figure 4.1. We define the high level plant to be DES G, and the high level supervisor to
be Sy (both defined over event set Xp). Similarly, the low level plant and supervisor are
Gr, and Sy, (defined over event set ¥;7). To be consistent with our definitions in Chapter

3, we define the following identities for the high and low level subsystems as follows:

Gu = Gul|sSu Gr = Grl||sSL

We now have two ways to describe our system for the serial case, depending on the level
of detail required. We will call the original method described in Chapter 3 in terms of
an interface and high and low subsystems, the serial subsystem based form. This form is
useful as it simplifies nonblocking definitions and proofs. We call the above method, given

in terms of an interface and plants and supervisors, the serial general form as the serial

54

GH: ‘ZHS(JI-;

High level

Low level

A

G, = 4.

Figure 4.1: Plant and Supervisor Subplant Decomposition

subsystem based form can be recovered by applying the above identities for Gy and Gp.
When we refer terms applicable to both forms (e.g. the high level), we will simply state the
term, allowing the type of the system to make our meaning clear.

Our next step is to define the flat supervisor and plant for our system. By flat supervisor
and plant, we refer to the equivalent DES supervisor and plant that would represent our

system if we ignored the interface structure. They are defined as follows:

Plant := Gy ||sGr, Sup := Sul|sSLl[sG1

In the above definition, we have taken the interface, G;, as a supervisor. This is to

95

recognise the fact that Gy is a specification of services that the low level is to provide to the
high level. As such, low level supervisors are usually required to implement these services.
By treating GGy as a supervisor, we can verify to make sure that the desired pattern of
request and answer events is achievable.

We next want to express the languages of Plant and Sup in terms of their components.

To do this, we need to first define the following useful languages:

H:= P, L(Gy), Hs:=P, L(Sy), CX*

L:=P;'L(G,), Ls:=P;L(S,), C¥

We can now express the languages of Plant and Sup as follows:
L(Plant) =HNL L(Sup)=HsNLsNZ

This allows us to present the proposition below that collects together several similar
propositions. As it will be common in the proofs in this report to show that membership in
languages such as H is dependent only on events in specific subsets (for H, events in subset

Y1), this proposition will be very useful.

Proposition 16
(a) (Vs,s' € ¥*) s € H and Pry(s) = Prg(s’) = s € H
(

(b) (Vs,s' € ¥*) s € Hs and Pry(s) = Prg(s’) = s’ € Hg

)
)
(c) (Vs,s' € ¥*) s €L and Prp(s) = Pri(s') = s’ € L
(d) (Vs,s' € ¥*) s € Ls and Pip(s) = Prp(s') = s’ € Lg
Proof:
Points a-d:
Identical to the proof of point a of Proposition 8, after substitution.

QED

56

4.2 Serial Level-wise Controllability

The goal in this chapter is to develop a means of verifying, using only local checks, that our
system’s flat supervisor is controllable for the flat plant. To do this, we will use the serial

level-wise controllable definition.

Serial Level-wise Controllable: The system composed of plant components Gy, Gr,, su-
pervisors Sy, Sr, and interface Gy, is said to be serial level-wise controllable with
respect to the alphabet partition ¥ := X5 U X UX g UX 4, if the following conditions

are satisfied:

(I) The alphabet of Gy and Sy is Xrg, the alphabet of G;, and Sy, is X7, and
the alphabet of Gy is Xj

(I) (vs €e LNLsNZ) Eligy(s) ¥, C Eligy~z(s) Controllability at the low

level

(ITI) (Vs e HNZNHs) Eligynz(s) N Xy C Eligg (s) Controllability at the high

level

To summarise the definition, Point I simply states that the plants, supervisors, and in-
terface have the indicated event sets. This is in essence restricting the control actions
allowable by the supervisors to their specified alphabets. For example, this implies that Sy
is forbidden to disable any low level events.

The next point states that the interface and Sy, are together controllable for the low
level plant Gr,. In other words, we are treating the low level as a self contained system and
performing a standard controllability test for the modular supervisor Sy A G with respect
to the plant Gy,.

The last point states that supervisor Sg is controllable for the high level plant Gz, when
it is already under the control of the interface. In other words, we are treating the high level
as a self contained system and performing a standard controllability test for supervisor Sgy
with respect to the composite plant Gi||sGr. By treating the interface as a plant at the
high level, we allow the high level supervisor, Sg, to be more flexible as the interface may
have more information about when interface events are eligible than the high level plant.

We are now ready to state the proposition below which establishes useful properties for

often used languages.

57

Proposition 17 If the system composed of plant components G, Gr, supervisors Sp,
S1, and interface Gy, is serial level-wise controllable with respect to the alphabet partition
Y= Xy UXLUXRUX Y, then languages H, Hs, L, Ls, Z, L(Plant), and L(Sup) are

closed.

Proof: See page 61.

4.3 Propositions and Theorem

We are now ready to present our main results for this chapter. We will first present two

supporting propositions, followed by our serial case controllability theorem.

4.3.1 Low level Controllability Proposition

Our first proposition asserts that if the system is serial level-wise controllable, then G and

S, are together controllable for the system’s flat plant.

Proposition 18 If the system composed of plant components G, Gr, supervisors S,
S1, and interface Gy, is serial level-wise controllable with respect to the alphabet partition

Y= ZHUZL UZROZA, then:

(Vs € L(Plant) "\Ls NZ) Eligy,piant)(s) N Xu € Eligy,gnz(s)

where Plant = Gy||sGr,

Proof: See page 62.

4.3.2 High Level Controllability Proposition

The last proposition asserts that if the system is serial level-wise controllable, then Sy is

controllable for our flat plant when it is already under the control of the interface.

Proposition 19 If the system composed of plant components Gr, Gr, supervisors Sp,
S1, and interface Gy, is serial level-wise controllable with respect to the alphabet partition

Y= EHUEL UERUEA, then:

58

(Vs € L(Plant) NZNHs) Eligy,prant)nz(s) N Zu C Eligy g (s)

where Plant = Gy||sGr,

Proof: See page 62.

4.3.3 Serial Controllability Theorem

We now present our main result for this chapter, the serial controllability theorem. In
essence, this theorem asserts that if the system is serial level-wise controllable, then con-
trollability can be checked for each level separately in order to determine that the system’s
flat supervisoris controllable for the system’s flat plant. As the serial level-wise controllable
definition can be evaluated by examining only one level of our system at a time, we now

have a means to verify controllability of our system using local checks.

Theorem 2 If the system composed of plant components Gy, Gr,, supervisors Sgr, St,, and
interface Gy, is serial level-wise controllable with respect to the alphabet partition ¥ :=
YrUX L USRrUX 4, then:

(Vs € L(Plant) N L(Sup)) Eligrpiant)(s) N Xu C Eligrsup)(s)

where Plant = G||sGr, and Sup = Sy||sSL||sGr.

Proof:
Assume system is serial level-wise controllable (1)
Let s € L(Plant)NL(Sup) and o € Eligy,prant)(s)N%u (2)

Will now show this implies o € Elig,gup)(s)

From (2), we have s € L(Plant)NL(Sup) = HONLNHsNLsNZ (3)
We also have so € L(Plant) = HNL (4)
As L(Sup) = Hs N Ls NZ, it is sufficient to show that sc € HsNLsNZ

From (3), we have se HNLNLsNZ = L(Plant)NLsNZ

From (2), we have o € Eligypjant)(s) N Xu. We can thus conclude by Proposition 18

59

that o € Eligy, ;~7(s)

=soc€eLsnNT (5)
All that remains is to show that so € Hg

Using (4) and (5), we have sc e HNLNZ

= so € L(Plant) N T

= 0 € Eligyplant)nz(s) N Zu

From (5), we have s € L(Plant) NZ N Hg

We can thus conclude by Proposition 19 that o € Eligg (s)

= so € Hg

Combining with (5), we have so € Hs N Ls NZ, as required.

QED

4.3.4 Software Tool

To aid in investigating hierarchical interface-based supervisory control, we have developed
software routines to verify that a system satisfies the conditions below. The routines were
developed by Leduc during his collaboration with Siemens Corporate Research and they
use the algorithms presented in Chapter 6. The routines are an experimental add-on to

Siemen’s Valid software program.

e DES G satisfies the star interface definition.
e Serial level-wise nonblocking
o Serial level-wise controllable

e Serial interface consistent, using the serial interface strict marking condition to check

for Property 6.

4.4 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter

were not given as the propositions were introduced. They will now be presented in the

60

following sections.

4.4.1 Proof of Proposition 17

Proof for Proposition 17 on page 58: If the system composed of plant components Gy,
Gr, supervisors Sy, St,, and interface Gy, is serial level-wise controllable with respect to the
alphabet partition ¥ := Xy UX UXgrUX,, then languages H, Hg, L, Ls, Z, L(Plant),

and L(Sup) are closed.

Proof:
Assume system is serial level-wise controllable. (1)
Will now show this implies that the indicated languages are closed.

We first note that by (1), the system is serial level-wise controllable. By Point 1 of this
definition, we can conclude:

L(Gn), L(Su) € ¥ip, L(GL), L(SL) € X7, and L(Gr) € X7

This tells us that languages H = P;;;(L(Gn)), Hs = P;;L(Su), L = P;;*(L(GL)),
Ls = P;;'L(S1), T = P; '(L(Gy)) are defined.

We will start by showing that languages H, Hgs, L, Ls, and Z are closed.

We now note that languages L(Gr), L(Swu), L(Gr), L(SL), and L(G) are closed by the
definition of the closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, Hg, L, Lg, and Z are
closed, as required. (2)

We will now show that languages L(Plant), and L(Sup) are closed.
We now note that L(Plant) = HNL and L(Sup) = HsNLsNZ.

Combining with (2), we can now apply Proposition 2 repeatedly and conclude that
L(Plant), and L(Sup) are closed, as required.

QED

61

4.4.2 Proof of Proposition 18

Proof for Proposition 18 on page 58: If the system composed of plant components Gy,
G, supervisors Sy, Sr, and interface Gy, is serial level-wise controllable with respect to
the alphabet partition ¥ := Xy UX, UL g U4, then:

(Vs € L(Plant) "\ Ls NZ) Eligy,piant)(s) N 2w € Eligy,gnz(s)

where Plant = Gr||sGr,

Proof:
Assume system is serial level-wise controllable (1)
Let s € L(Plant) N Ls N7 and o € Eligy(piant)(s) N X (2)

Will now show this implies o € Eligy, ~7(s)
From (2), we have s,so0 € L(Plant) = HNL
Also using (2), we can now conclude s € LNLsNZ and o € Elig,(s) N X,

Using (1), we can conclude by Point II of the serial level-wise controllable definition that
o € Eligy, .7(s), as required.

QED

4.4.3 Proof of Proposition 19

Proof for Proposition 19 on page 58: If the system composed of plant components Gy,
G, supervisors Sy, Sr,, and interface Gy, is serial level-wise controllable with respect to

the alphabet partition ¥ := Xy UX, UL g U4, then:

(VS € L(Plant) NZnN HS) El/l;gL(Plant)ﬂI(S) N Eu - ElZgHS (S)

Proof:
Assume system is serial level-wise controllable (1)
Let s € L(Plant) NZ N Hgs and o € Eligy (prant)nz(s) N Xu (2)

62

Will now show this implies o € Eligg(s)
From (2), we have s,s0 € L(Plant)NZ=HNLNZ
Also using (2), we can now conclude s € HNZ NHg and o € Eligg~7 N Xy,

Using (1), we can conclude by Point III of the serial level-wise controllable definition that
o € Eligg(s), as required.

QED

63

Chapter 5

Simple Manufacturing Example

We now present a simple manufacturing example to illustrate the method for the serial case.
The example presented was inspired in part by the examples given in Wang [57], and in

Brandin [7]. Table 5.1 defines abbreviations used for the event labels.

H Abbrev. ‘ Meaning H Abbrev. ‘ Meaning H

pt part (item) || str start
cmpl complete attch attach
fin finish ent enter

rlse release v leave

pol polish recog recognize
arr arrive

Table 5.1: Abbreviations Used in Event Labels

In the following sections, we will describe our problem setting, and then present the
original plant components. We will then assign them to a particular level of our hierarchy,
augmenting if necessary the low level plant models so that they work better with an interface.
We will then define the interface, supervisors, and finally we will present the complete
system. We will conclude by demonstrating that the flat system is nonblocking and that

the flat supervisor is controllable for the flat plant.

5.1 Description of Manufacturing Unit

As shown in Figure 5.1, the manufacturing unit is composed of three cells connected by a
conveyor belt. In front of each cell, is a part acquisition unit that automatically stops a

part and holds it until it is given a release command. Parts enter the system at the far left

64

and exit at the far right. After the item exits the conveyor system, it goes to a packaging

machine.

Cell 2: Attach Part
str_ptA

Cell 3: Attach Case
cmpl_A

start_case take_pt

str_ptB

9sed YNy

compl_case ret_pt

Path Flow Model

fin_exit str_exit Packaging System
= — take_item

o<

<>
<>

A

Source »0 _| Sink

afeyoed

rt_ent t_arrl rt_Ivl
part_ent _ part_arr part_lv partLvExit

t Iv3
Part a3 part [v2 _fecog A Part_arr2

recog_B

Y

allow_exit

Cell 1: Polish Part

dip_acid,
polish

start_pol

compl_pol

Figure 5.1: Block Diagram of Plant

AS[1 ns

The diagram shows a flat view of the plant (the supervisors will be added later). We see
the plant models for cell one (polishes part), cell two (attaches part of type A or type B to
the assembly of what’s being built), cell three (attach case to assembly), and the path flow
model that show how parts enter the system, travel around the belt, and finally leave the
system. Of note in the path flow model are the events recog_A, and recog_B. The acquisition
unit in front of cell two is capable of recognising if a part is of type A or type B. On the far

right, we see the model for the packaging system.

65

5.1.1 Defining Infrastructure

The first step in the process is to decide which plant models belong to the high level sub-
system, and which to the low level subsystem. The division we have chosen can be seen in

Figure 5.2.

High Level Plant Subsystem

Path Flow Model Packaging System

fin exit str_exit take item
— <l

<

=l
8
<]
rt_ent 1 rt lvl g
pa _en part_arr part_lv partLvExit UE
part_1v3
part_arr3 part Iv2 recog_A part_arr2 allow_exit
recog B
Low Level Plant Subsystem
Attach Part to Assembly Polish Part dip_acid,
str_ptA cmpl A polish
take_pt start_pol
=
o
&
compl_pol
ret_pt
Attach Case to Assembly
start_case
=
3
=
s
&
compl_case

Figure 5.2: Original Plant

We now note that the model for cell two is not well suited to being accessed through
an interface. It requires that the decision to attach part A or part B be made after event
take_pt occurs. To make this functionality available to the upper level, we augment the

model by adding the DES Define New Events shown in Figure 5.3. The new request

66

events (attch_ptA and attch_ptB) will provide the high level with an easy selection method
while the new finish events (finA_attch and finB_attch) will inform the high level of the

completion of their respective tasks.

Original Model Model Augmentation

Attach Part to Assembly Define New Request and

Answer Events

str_ptA cmpl_A

attch ptA, attch ptB,
finA_attch, finB_attch

e

take pt

str_ptB

ret_pt

Figure 5.3: Augmenting Low Level Plant

We are now ready to define our interface. Figure 5.4 shows the interface DES, G;. From

the diagram, we can see which events are request events and which events are answer events.

G,
8
g
g “8_ N g\P’
Lg /&JZ>
finA_attch
<«

start_case

ased [dwod

Figure 5.4: Interface Definition

We next define the alphabet partition ¥ := X7 UX; UL g UX 4 as follows:

Yr = {start_pol, attch_ptA, attch_ptB, start_case}

Y4 = {comp_pol, finA_atich, finB_attch, compl_case}

67

Yy = {part_ent, part_arri, part-lvl, partLvExit,
str_exit, fin_exit, part_arr2, recog_A, recog_B,
part_lw2, part_arr3, part_lv3, take_item,
allow_exit, package}

Y. = {take_pt, str_ptA, str_ptB, compl_A, compl_B,

ret_pt, dip_acid, polish, str_rlse, attch_case}

5.2 Designing Supervisors

Now that we have defined our interface, we are ready to design the low level supervisors
that will provide the functionality for the request events, and give meaning to the answer
events. The idea is for the low level to offer well-defined “services” to the high level.

We start with cell one. Here we want the sequence dip_acid-polish to be repeated twice,
after a start_pol event occurs. The supervisor is shown in Figure 5.5, and is labelled Pol-
ishing Sequence. For cell two, we have to provide supervisors so that the cell reacts
appropriately when events attch_ptA and attch_ptB occur. We also must guarantee that an-
swer events finA_attch and finB_attch only occur when they have the appropriate meaning.
The DES Affix Part in Figure 5.5 shows how this is done. Finally, we do nothing for cell

three as it is so simple, its functionality being already present.

For Attach Part For Polish Part

Affix Part Type A or Type B Control Polishing Sequence
str_ptA take_pt

start_pol dip_acid

vy [duo
wid yone

finA_attch

attch ptB take pt

ystjod

yope gquij
qd ns

Figure 5.5: Supervisors to Support Interface

Now that the low level functionality is taken care of, we will design high level supervisors

68

that use the interface. Figure 5.6 shows a supervisor (Sequence Tasks) that allows a part
to visit each cell, executes the appropriate command for the cell and part type, and then
allows the part to leave the conveyor system. The figure also shows a supervisor (Exit
Buffer) that implements a two item buffer for the packaging system. Finally, we note that

the above supervisors were designed by hand, but we could have also employed synthesis

methods.

Sequence Tasks
fin_exit

! Epart_ent part_arrl start pol compl_pol
o—»0

/ 2 Exit Buffer
= . .
finA attch attch ptA I” str_exit str_exit
— =
part_1v2 g % fin_exit fin_exit
"% attch_ptB Ig F:)
=1
e finB_attch recog B SES
= B - take item take item
< start case compl_case part lv3 part_arrl g - -
O—>ﬁ)i
. =
str_exit -

Figure 5.6: High Level Supervisors

5.3 The Final System

With the system components defined, it is time to put them together. Figure 5.7 shows our
high level subsystem, plant, and supervisor, DES G, Gy, and Sy. We also have our low
level subsystem, plant, and supervisor, DES G, Gr, and S;. They are defined to be the
synchronous product of the indicated automata.

We now want to determine whether the flat system is nonblocking. For this, we used
our software tool to verify that the system is serial interface consistent, and serial level-wise
nonblocking. We can thus conclude by Theorem 1 that the flat system is nonblocking.

Next, we want to show that the flat supervisor is controllable for the flat plant. For this,
we used our software tool to verify that the system is serial level-wise controllable. We can

thus conclude by Theorem 2 that the flat supervisor is controllable for the flat plant.

5.4 Concurrency of Subsystems

Before concluding this example, we comment on the inherent concurrency of the high and

low levels. Unlike state expansion methods such as Wang [57] and Gohari [23] that expand

69

a high level state into a group of low level states, the interface method is based on the
synchronous product, limiting information flow, and a set of consistency rules. In general,
there is no one-to-one association between a high level state and a set of low level states.
This allows the high level to remain active while the low level is active, and thus operate
concurrently. In the cited state expansion methods, the high level state would remain fixed

while the low level becomes active.
This concurrency can be seen in the current example, by noting that once the event

fin_exit has occurred, the string shown below is then possible.

part_ent part_arrl start_pol dip_acid take_item polish

The string clearly shows how the high level event take_item can occur in the middle of a

sequence of low level events, thus demonstrating that both levels are active.

5.5 Design of Supervisors in Thesis

For the examples in this thesis, all supervisors are designed for their level as modular
supervisors. The supervisors are designed by hand to meet the given specifications, and
then verified that they are locally controllable and they don’t cause the local plant to block
(ie. for the serial case, they satisfy their portion of the serial level-wise nonblocking and
serial level-wise controllable definitions). If they are not, they are modified until they are
controllable and nonblocking. If a subsystem fails to satisfy its portion of the interface
properties, then it is modified until it does satisfy them. The details of this process for

specific examples will not be given for reasons of brevity; only the final results are presented.

70

G Sequence Tasks
H (/E fin_exit

Path Flow Model
H fin exit str_exit
— <
-

part_ent part_arrl start_pol

attch_ptA

finA_attch

art_ent art_arrl art_lvl art_Iv2
par part par partLvExit i

attch_ptB
part_Iv3

finB_attch

part_arr3 recog A

part_Iv2 part_arr2

compl_case part_Iv3

start_case

compl_pol

part_arrl

recog A

PR RN
‘pxgAed

recog_B

. B
Packaging System fecoe] str_exit
take_item Exit Buffer
2 str_exit str_exit
3
0 fin_exit fin_exit
(]
allow_exit

take_item take_item

High Level Subsystem
Low Level Subsystem

start_case

5807 (dwion

yone guiy

Attach Part to Assembl, . dip_acid G
é Y Polish Part pglish " Attach Case to Assembly L
str_ptA cmpl_A P
start_case
take_pt start_pol N
[
2 g
5 5
I
str_ptB = g
« o
compl_pol
ret_pt L compl_case
Define New Events
attch_ptA, atich piB, ({ Polishing Sequence Affix Part
finA_attch, finB_attch A str_ptA take_pt
- o start_pol dip_acid
4-)0 : :
<= =
2> 2
polish dip_acid S finA_attch > attch_ptB take_pt

ad ns

Figure 5.7: Complete System Definition

71

Chapter 6

Serial Case Algorithms

In this chapter, we provide evaluation methods for definitions star interface, serial level-
wise nonblocking, serial level-wise controllable, and serial interface consistent. Our purpose
here is to provide enough details that the definitions can be evaluated, but skipping over
aspects that are straightforward or have been investigated elsewhere (e.g. controllability
algorithms). We will be discussing a naive “proof of concept” algorithm (horribly inefficient
but easy to construct based on existing algorithms), and we will leave the investigation of
detailed efficient algorithms for later work. The reason for this is partly time constraints but
primarily because the strength of our method doesn’t depend on the individual algorithms
but on the ability to decompose our system into subsystems and perform local checks. For
serial interface systems, breaking the system into two subsystems allows the “combinatorial
explosion” to work for us. Finally, we present a complexity analysis for verifying a serial

interface system.

6.1 Preliminary Definitions

Before we can define our algorithms, we need to more formally define the DES to be
evaluated. For a serial subsystem based system, we need to define the DES below. We
will not need specific definitions for a serial general form system. We will assume that
we will be given Gy, G, Gg, Sy, Gr, Si, X, X1, YR, 2A, %u, 2¢, and the map

Answer : ¥p — Pwr(X4) (see definition on page 25), but will have to construct Gy.

72

Also, we assume that all DES are deterministic and have finite state and event sets.

Gg = (Yu,Xcy, 61, yu,, Yd,,)
Gr = (Y1,%a,, 01, Yr.» YIL,,)
GI = (Xa EG]? 57 Lo, Xm)

We next define our system’s event set as
Y=Yy US,USRrUX

We now define a useful operator. In Section 2.1, we defined the transition function ¢ :
Y x¥* =Y for a given DES G = (Y, X, 4, Yo, Yin). In this chapter, we will need to use the

inverse transition function 71 : Y xX* — Pwr (V). For s € ¥* and y € Y we have:
0 My, s) =1{y € Y[d(y',5) =y}

6.2 Evaluating Star Interfaces

Our approach for evaluating star interfaces is to construct our star interface, Gy, correct
by design. We start by defining X, = Xr U X 4 and specifying that the state set X is a
subset of V' = {0,1,...}.

We next define the initial state to be z, = 0, and the marked states to be X, = {z,}.

We now define the one step transition function & : X x ¥g, — X and the state set X
iteratively. We start by initializing £’ to be undefined for all (z,0) € X x X¢,, and the
state set to be X = {z,}. We also define the variable count and initialize it to be count =
1.

We now evaluate:

for p in Xp
x' = count ; // assign ©' next unused state

73

count := count + 1;
X =X U{z'};
&' (o, p) =2 // define transition for p to state in X 4

// Set answer event transitions to return to initial state.
for a in Answer(p)

(2, a) =y
end for

end for

We have now defined the state set X. We define the partial function £ : X x X, — X by

extending the one step transition function £’ in the standard way.

All that remains is to verify the two points below. As this is straightforward, we will not

present a specific algorithm.
1. (Vp € Xg) Answer(p) # ()

2. YA = Upexn, Answer(p)

6.3 Evaluating Serial Interface Consistent

We now evaluate the serial interface consistent definition. This requires evaluating Points
1-6 of the definition, as well as the implied Point 0 (X = X5 UX, UXrUX,). We will

evaluate Points 5 and 6 simultaneously as their evaluations fit together nicely.

6.3.1 Point O

In the serial interface consistent definition, the event set is defined to be ¥ := Xy UX, UX g
UX 4. This contains two implicit assumptions. The first is that ¥ = X U X, UXg U X 4.
From the definitions in Section 6.1, this is automatic.

The second implicit assumption is that the four event sets are pairwise disjoint. This
means checking the three points below. As this is straightforward, we won’t present a

specific algorithm.

74

1. ERQZA:@
2.3%gN¥;, =0

3. (BrRUZA)N(ZgUXL) =0

6.3.2 Point 1

To check Point 1 of the interface properties, we simply check that the ¢, = X;5 and
that EGL =7

6.3.3 Point 2

To verify that G is a command-pair interface, we will check that G satisfies the more
restrictive (see Proposition 7) star interface definition. To check that G is a star interface,
we will use the method described in Section 6.2. The reason we are only checking the star
interface definition is that the command-pair interface was only just devised, and time

didn’t permit developing an algorithm for it and including it in our software tool.

6.3.4 Point 3

This property can be evaluated using normal controllability algorithms, after defining a few
parameters. We define ThePlant = G, TheSpec = Gy, ¥, = Y4, and X, = X — Y 4.
We then check that TheSpec is controllable for ThePlant using algorithms like CTCT’s

condat function (see [60]).

6.3.5 Point 4

This property can be evaluated using normal controllability algorithms, after defining a few
parameters. We define ThePlant = G, TheSpec = G, ¥, = YR, and X, = ¥ — Y.
We then check that TheSpec is controllable for ThePlant using algorithms like CTCT’s

condat function (see [60]).

6.3.6 Points 5 and 6

We now present an algorithm for verifying Point 5 and Points 6 simultaneously. To verify

Point 6, we will first attempt to verify that the system satisfies the more restrictive (see

75

Proposition 10) serial interface strict marking condition and if that fails, the actual Point
6 property.

Before we can present the algorithm, we need to construct a DES to represent the low
level. As we wish to avoid repeating existing algorithms, we will assume we already have
the DES G, = GL||sGr = (YL C YL x X, ¥¢,,, 011, YI1L,, YiL,,)- This can be created
by using the CTCT sync operator (see [60]). We also assume that the inverse transition
function 51_L1 was defined as part of the sync algorithm. Our algorithm will start from this
point.

We will present our algorithm in two parts. Part I of the algorithm will verify if Point
5 and the serial interface strict marking definition are satisfied. If the system is not serial
interface strict marking, a list of states from DES Gj; whose X component is marked
by G, but the Yy component is not marked by Gp, is created. This list, equivalent to
Yio N [(Yr —Yz,,) x X;n] will be used as a starting point for Part IT of the algorithm.

Before we present Parts I and IT of the algorithm in the sections below, we first need

to define some variables that they will require.

Yek_mi: This is the set of states of Gy that are in Y7, N [(Yr — Yz,,) X X;n]. These states

represent strings that cause the system to not be serial interface strict marking.

Yrna: This is the set of states of Gyf, reached in a given phase of the algorithm. Its exact

meaning will be dependent on the point in the algorithm it is being used.

Ypena: This is the list of states of Gz that are pending. They are the set of states the
algorithm has found, but not yet processed. Its exact meaning will be dependent on

the point in the algorithm it is being used.

Y- fnd: This set represent answer events in Answer(p) for some p € ¥ i that have not yet
been reached by the search while evaluating Point 5.

Part I: Check Point 5 and Serial Interface Strict Marking Definition

The first part of our algorithm checks each state of the low level to see if its X component
is marked by Gj. These states represent the only places where request events are defined as
well as strings marked by G. If a given state y € Y7y, is marked by G, the state is checked

to see if it is also marked by Gyr. If state y is in Y;s,,, then the state’s Y7, component is

76

marked by G, (i.e. a string leading to this state must be in £, N Z,,). If state y is not
marked by Gy, then this means the system is not serial interface strict marking. This
state is added to list Y.; ;. to be checked in Part II.

Our next step is to check that we can find a path from each request event (leaving state
y) to each answer event that can follow that request event. If this test fails, then Point 5
is not satisfied and we stop immediately.

After we have checked every state, we then check if list Y, i % is empty. If it is, then
every state in Gj;, marked by G is also, marked by G, and thus the system is serial
interface strict marking. If the list is non-empty, it is passed to Part II and we check to
see if Point 6 of the serial interface consistent definition is satisfied.

We now present the algorithm for Part I. We start by initializing variable Y,k % to be

Yok mk = 0.

// Check each state in Gy,
for y in Y;p
if (y € Y x X,,,) then // Process state if marked by interface (Gr)
if (y € Yr,,) then
// If reach here, then system is not serial interface strict marking
Yer mk = Yok mk U{y};
end if
// Process each request event. This part checks Point 5
for p in Xg
if (071(y, p)!) then
// Search starts after request event occurs
Yina == {01.(y,p) };
Ypena = {01.(y,)} ;
// List of answer events that we must be able to reach after p has occurred
Y- fnd := Answer(p) ;
// Loop until no more states to process or found all o € Answer(p)
while (Ypenq # 0 and X ¢,q # 0) do
select y' € Yjend ;

YZnend = Y;)end - {yl};

77

// Determine next states
for ¢ in X,
if (671.(y',0)!) then
y" =61y, 0);
// Terminate branches ending in answer events
if (0 € ¥4) then
if (0 € ¥-fnq) then
// Found new event in Answer(p). Remove from list
Yafnd = Xfnd —{0};
end if
else if ((0 € £1) A (¥ & Yna)) then
// Mark state as found and as pending to be explored
Yind == Yena U{y"};
Viend = Ypena U {4/}
end if
if (X_fnq =0) then
// Have found path to all events in Answer(p) so exit loop
exit for loop;
end if
end if
end for
end while
// Determine if we exited while loop because we reached all required events,
// or ran out of states to examine
if (X fna # 0) then
return “point 5 fails”;
end if
end if
end for
end if

end for

78

// If reach here, then Point 5 holds
if (Yeg_mir = 0) then
return “points 5 and 6 pass”;

end if

// If reached here, Point 5 holds, but the system is not serial interface strict marking.
// We need to evaluate Part II of the algorithm

Part II: Check Point 6 of Serial Interface Consistent Definition

The second part of our algorithm is evaluated if Part I determines that the system is not
serial interface strict marking. Part II does a reverse reachability check (i.e. uses the
inverse transition function) using only events o € ¥. It starts at the states marked by Gy,
(i.e. states representing strings in £,,NZ,,) and does a reverse traversal to try to find a path
to each state in Yqx_nk, the state set constructed during Part I of the algorithm. This state
set represents states in Y7 N [(Yr — Y7,,) X Xi,]. If each state in Yi;_i is reachable from
a state in Y7z, using only o € ¥, then Point 6 of serial interface consistent definition is

satisfied.

We now present the algorithm for Part II.

Yina == 0;
// Loop through each marked state in Gy,
for y.,, in Y71,
// Check that we haven’t already processed this state
// while processing another marked state
if (ym & Yyna) then
Yind = Yina U {ym};
Yoend := {Ym};
while (Yjeng # 0) do
select y € Yeng;
Ypend := Ypend — {u};

for o in X, // Do reverse reachability search only using o € ¥y,

79

if (6;}(y,0) # 0) then
// Determine set of next states
Y =071 (y,0);
fory inY
if (v & Y¢nq) then
// Add state to list to be ezamined
Yina = Yina U{y'};
Yoend .= Ypena U {¥'};
if (v € Yek_mi) then
// State is one we are trying to reach. Remove from list
Yor_mk = Yeb_mk — {¥'};
if (Yer_mi = 0) then
// We have reached all required states so Point 6 has been
// satisfied. We know Point 5 is satisfied from Part 1
return “points 5 and 6 pass” ;
end if
end if
end if
end for
end if
end for
end while
end if

end for

// If we reach here, then we were unable to reach one of the states marked by G (the
interface),
// but not marked by G, (ie. a state in Yei_mi)

return “point 6 fails” ;

80

Simple Illustrative Example

As the algorithm in this section is the only truly new algorithm,' we present here a small
example to illustrate it. In the DES diagrams that follow, uncontrollable events are shown
in italics; all other events are controllable. Initial states can be recognized by a thick outline,
and marked states are filled.

We present here a simple low level to be examined. Our interface is shown in Figure
6.1. The request event start2jb signals that two items have been put into the input buffer.
The answer event finish2jb signals that the two items have been processed by Machinel
(Figure 6.2) and are in the output buffer, ready to be picked up. DES Signal (Figure 6.3)
allows the event sig2done to occur to mark internally that two items have been processed.
This is done so that the system will not be serial interface strict marking, and we will thus
have to evaluate Part II of the algorithm. A better example would have been to have
two machines using the same input/output buffers. We could then have had the situation
that one machine breaks down and the other alone processes the two parts. We would then
have the interface in a marked state, and one machine in the down state and thus not in
a marked state. We would then have to evaluate Part II of the algorithm. This example

was not used as it would have been too large to do easily by hand.

idle

start.

repair. 1

startZjb Finlsh. 1
Itro finish2jb It working break.? devwr 1
Figure 6.1: Interface for Algorithm Example Figure 6.2: DES Machinel

Next, the input buffer supervisor (Figure 6.5) ensures that Machinel is idle until
start2jb occurs, and then is idle again after the two items are successfully processed. If

event break.1 occurs, it’s assumed that the part is undamaged and is replaced immediately

1The other conditions can be checked using existing algorithms in new ways.

81

start.d start.d

- finish.1 finish. i
Finish 1 . Finish. 1 Q
50 51 52 DEB1
sig2done finish2jb
Figure 6.3: Signaling DES Figure 6.4: Output Buffer
start.1 start.|
startZjh

IBD B2 preqk.

finish2jh

Figure 6.5: Input Buffer

82

OBz

into the input buffer. The machine will then try to process the item again as soon as it’s
repaired.

Finally, the output buffer supervisor (Figure 6.4) ensures that Machinel doesn’t try
to process more than 2 items per cycle, and allows event finish2jb to occur only after two
items have been successfully processed.

Figure 6.6 shows the definition of DES sync.des which is the synchronous product of
the DES in Figures 6.1 to 6.5. We will take sync.des to be our DES Gj;. Examining
the listing, we see that it is composed of a list of the component DES that make up the
synchronous product (and a list of their state labels), followed by the marked states of
sync.des, the initial state, the set of controllable events, uncontrollable events, and finally
a list of transitions in the form event : start state — end state. We next note that states
of sync.des are given as tuples of the states of the component DES. Finally, our set of
states for G, Yrr, can be constructed by listing all of the states that appear in the list of

transitions.
Analyzing Part I

We now start by evaluating Part I of the algorithm. We set Yo ,x := 0 and select
y = (idle,s0,0B0, Itf0,IB0) (the initial state) from Yrr. As state [tf0 is marked by the
interface, we check that y ¢ Y77, . From the listing, (idle,s0,0B0,Itf0,IB0) is marked by
sync.des, so we don’t add y to Yox k-

We now process all request events defined at y. This is only event start2jb which takes
us to state y' = (idle,s0,0B0,1tf1,IB1). We now need to find a string that takes us to event
finish2jb, the only answer event that can follow start2jb. Analyzing the set of transitions,
we see that string
start.1 finish.1 start.1 finish.1 takes us to state (idle,s2,OB2,1tf1,IB3) at which event fin-
ish2jb is defined. We have thus found a path to all answer events that can follow start2;b,
so we return to the top of the algorithm, and select another y in Yjy.

Examining the states in the list of transitions, we see that the only state left that contains
a state component marked by the interface is state (idle,s2,0B0,1tf0,IB0). As these other
states would not satisfy y € Y1, x X,,, we can safely ignore them.

We thus take y = (idle,s2,0B0,1tf0,IB0), and evaluate it. From the listing, we see that
y & Yrr,, so we set Yor_mi := {(idle,s2,0B0,1tf0,IB0)}. This means the system is not serial

83

sync. des

@es sync {
@t at eConmponent s {
interface {
Itf1
1tf0

}
| _Inbuff {
1 B3
| B2
| B1
| BO

| _outbuff {
082
oB1
080

| _mach. 1 {
down
wor ki ng
idle

| _signal {
s2
sl
sO

}

}
@rar kedSt ates {
(idle,s0,0B0,1tfO0,IBO)

}
@nitial {
(idle,s0,0B0,1tfO0,IBO)

}

@ontrol |l able {
start. 1
repair.1
finish2jb
start2jb

@ncontrol | abl e {
si g2done
finish. 1
break. 1

}

@ransitions {
[start.1] (idle,s0O,0BO,Itf1,1B1) -> (working,s0,0B0,Itf1,1B2)
[start.1] (idle,s1,0B1,1tf1,1B2) -> (working,s1,0B1,1tf1,IB3)
[start.1] (idle,s2,0B0,1tf1,1B1) -> (working,s2,0B0,Itf1,IB2)
[repair.1] (down,sO,0BO,Itf1,1Bl) -> (idle,s0,0BO,Itf1,I1Bl)
[repair.1] (down,s1,0B1,1tf1,1B2) -> (idle,s1, OB, 1tf1,1B2)
[repair.1] (down,s2,0B0,Itf1,1B1l) -> (idle,s2,0B0,Itf1,1Bl)
[finish2jb] (idle s2,0B2,1tf1,1B3) -> (idle, s2,080,1tf0,|BO)
[finish2jb] (idle s0O,0B2,1tf1,1B3) -> (idle,s0,0B0,I1tf0,|BO)
[start2jb] (idle, s0,0B0,Itf0,1B0) -> (idle,s0,0B0,Itf1,I|B1)
[start2jb] (idle, s2,0B0,1tf0,1B0) -> (idle,s2,0B0,1tf1,1Bl)
[si g2done] (idle,s2,0B2,1tf1,1B3) -> (idle, s0, 0B2,1tf1,|B3)
[si g2done] (idle,s2,0B0,1tf0,1B0) -> (idle,s0,0B0,ItfO0,I|BO)
[sig2done] (idle,s2,0B0,1tf1,1B1) -> (idle,s0,0B0,Itf1,1Bl)
[sig2done] (working,s2,08B0,1tf1,1B2) -> (working,s0,0B0,Itf1,IB2)
[si g2done] (down,s2,0BO,I1tf1,1B1) -> (down,s0O,OBO,Itf1,IBl)
[finish.1] (working,s0,0B0,1tf1,1B2) -> (idle,s1,0B1,I1tf1,1B2)
[finish.1] (working,s1,0B1,1tf1,I1B3) -> (idle,s2,0B2,1tf1,1B3)
[break. 1] (working,s0,0B0,1tf1,1B2) -> (down,sO,0BO,|tf1,IBl)
[break.1] (working,s1,0B1,1tf1,1B3) -> (down,sl,0B1,I1tf1,1B2)
[break. 1] (working,s2,0B0,1tf1,1B2) -> (down,s2,0B0,|tf1,IBl)

Figure 6.6: DES Listing for sync.Des

84

interface strict marking.

We now process all request events defined at y. This is only event start2jb which takes
us to state y' = (idle,s2,0B0,Itf1,IB1). We now need to find a string that takes us to event
finish2jb, the only answer event that can follow start2jb. Analyzing the set of transitions,
we see that string
sig2done start.1 finish. 1 start.1 finish. 1 takes us to state (idle,s2,OB2,Itf1,IB3) at which event
finish2jb is defined. We have thus found a path to all answer events that can follow start2;b,
so we return to the top of the algorithm, to select another y in Y.

We have now evaluated all y in Yjr, so we exit the top-most loop. We thus have
determined that Point 5 of the serial interface consistent definition is satisfied. We then
note that Y. i # 0 so we must evaluate Part II of the algorithm to determine if our

system satisfies Point 6 of the serial interface consistent definition.
Analyzing Part II

From the listing, we see that there is only one marked state in Y77, so we set
Ym = (idle,s0,0B0,1tf0,IB0). We now must find a low level string (no interface events) that
takes the only state in Yo i := {(idle,s2,0B0,1tf0,IB0)} to y,,. Examining the list of
transitions, we see immediately that string sig2done takes (idle,s2,OB0,1tf0,1B0) to state
Ym = (idle,s0,0B0,1tf0,IB0). This tells us that (idle,s2, OB0O,Itf0,1B0) € (51_L1 (Ym, sig2done).

We can now remove state (idle,s2, OB0,1tf0,IB0) from Y j_1, and we thus have Yoi_ni =
(). This means that our system satisfies Point 6 of the serial interface consistent definition so
we exit the algorithm. We have now applied Part I and IT of the algorithm, and successfully

verified that the system satisfies Point 5 and 6 of the serial interface consistent definition.

6.4 Evaluating Serial Level-wise Nonblocking

We now discuss evaluating the serial level-wise nonblocking definition. To do this we need to
evaluate Point I and Point II of the definition. For Point I, we simply need to evaluate
that DES Gp||sGr is nonblocking. This can be evaluated by using algorithms like the
nonconflict function of CTCT (see [60]). Similarly for Point II, we can verify that DES

Gr||sGr is nonblocking by using the nonconflict function of CTCT.

85

6.5 Evaluating Serial Level-wise Controllability

We next discuss evaluating the serial level-wise controllable definition. To do this we need
to evaluate Points I-III of the definition as discussed in the following sections. The serial
level-wise controllable definition also has the implied condition ¥ = YUY, UNzUX 4.

This can be evaluated as in Section 6.3.1.

6.5.1 Point I

To check the first point, we simply check that the Yg,, = Xy, X¥s, = X1, Xg, = X711,
¥s, = X1, and that ¥g, = X7. As this is straightforward, we will not present a specific

algorithm.

6.5.2 Point II

This property can be evaluated using normal controllability algorithms, after defining a
few parameters. We define ThePlant = Gy, TheSpec = Si||sGr, ¥y = Xy N X1z, and
e = XeNXrr. We then check that TheSpec is controllable for ThePlant using algorithms
like CTCT’s condat function (see [60]). DES Sp||sG; can be constructed using CTCT’s

sync function.

6.5.3 Point III

This property can be evaluated using normal controllability algorithms, after defining a
few parameters. We define ThePlant = Gy||;G, TheSpec = Sg, ¥, = X, N X1y, and
Y. = X.NXrg. We then check that TheSpec is controllable for ThePlant using algorithms
like CTCT’s condat function (see [60]). DES Gg||sGr can be constructed using CTCT’s

sync function.

6.6 Complexity Analysis

From the above sections, we see that to verify that a serial interface system satisfies the
serial level-wise nonblocking, serial level-wise controllable, and serial interface consistent

definitions, we must perform the following tasks:
System Properties:

86

1) Construct event sets Xy = XpUX A UXy and Xjp = XpUX 4 U],
2) Verify that Gy is a star interface.

3) Verify that sets X, X1, X g, and Y4 are pairwise disjoint. This means evaluating:

SyNnSe = 0, ae{L,R, A}
SN = 0, be{R, A}
0

YXrNXy =

High Level Properties:

4) Verify that ¥g,, = Xy and Xs,, = Xrp.

5) Verify Point 3 of the serial interface consistent definition. This requires one controlla-
bility evaluation (after suitably defining the supervisor, plant and uncontrollable events).
6) Verify Point I of the serial level-wise nonblocking definition. This requires one nonblock-
ing evaluation.

7) Verify Point III of the serial level-wise controllable definition. This requires one con-

trollability evaluation.

Low Level Properties:

8) Verify that ¥g, = ¥z and Xs5, = X

9) Verify Point 4 of the serial interface consistent definition. This requires one controlla-
bility evaluation (after suitably defining the supervisor, plant and uncontrollable events).
10) Verify Points 5, and 6 of the serial interface consistent definition. This can be accom-
plished using the algorithms in Section 6.3.6.

11) Verify Point II of the serial level-wise nonblocking definition. This requires one non-
blocking evaluation.

12) Verify Point II of the serial level-wise controllable definition. This requires one con-

trollability evaluation.

We now note that the algorithms required for verifying the high level properties (tasks
4-7) are contained in the algorithms used to verify the low level properties (specifically tasks
8-9, and 11-12). This means that the time complexity of evaluating the low level provides

an upper bound for evaluating the high level. We can thus evaluate the time complexity for

87

the low level and use it as a general per component complexity estimate.

6.6.1 Analyzing Per Component Algorithm

The next logical step is to perform an analytic analysis of the worst case time complexity of
the algorithms required to verify the above properties. Unfortunately, we do not have the
proper resources. To do an analytic analysis of the above algorithms would require program
sourcecode, at a minimum, to provide details of the data structures used and how they are
accessed. The only sourcecode available is copyrighted by Siemens and cannot be released.

Instead, we follow the advice of Goodrich et al. [24] and use experimental algorithm
analysis to estimate the worse case time complexity for per component analysis. As we will
see, this is sufficient as the per component complexity only contributes a constant term to
the overall complexity of evaluating a serial system.

To perform this analysis, we will use the power test discussed in [24]. With this method,
we will take z to be the state size of our component and y = ¢(z) to be our running time.
We assume that t(x) is of the form bz® for some constants b > 0 and ¢ > 0. If we take
Yy =logy(y) and 2’ = logy(z), we would then have y' = cx’ 4 logy(b). We see immediately
that if we plot the (2’,y’) determined experimentally, we can do a simple line fit and
determine the values of b and ¢ from the line’s y-intercept and slope, respectively. Should
the data pairs grow significantly, we can confidently conclude that ¢(x) is super-polynomial.
Goodrich et al. claim that this test is at best accurate to the range [¢ — 0.5, ¢ + 0.5].

To keep things simple, we want to be able to express our runtime on a per component
basis. To do this, we will represent our per component time as the time to perform the
low level properties (tasks 8-12) as well as the system properties (tasks 1-3). This will
be a conservative estimate as the system properties only need to be performed once per
system, and there are fewer tasks to perform if the component happens to be the high level.
However, we can now represent our running time for a serial system as simply performing
the per component evaluation twice.

We now use the examples from Chapters 9, and 11 to construct seven low levels of
varying sizes to evaluate. We then evaluated these low levels (ie. performed tasks 1-3, and
8-12) using our software tool that we discussed in Section 4.3.4. We ran the software 4
times per low level, and recorded the runtime in seconds. We then took the average value.

The result is shown in Table 6.1.

88

| State Size (x) [2’ =logy(x) | Average Runtime (y) | 3’ =logy(y) |

68 6.087 0.0407 -4.618
98 6.615 0.0497 -4.331
203 7.665 0.0900 -3.473
204 7.672 0.0792 -3.659
41,651 15.346 10.8212 3.436

291,614 18.154 431.7915 8.754

1,170,600 20.159 1284.3450 10.327

Table 6.1: Experimental Data

We next plotted the (2,%') pairs and performed a line fit. The results are shown in
Figure 6.7. Of interest are the two slopes represented by lines Y7 and Y5. Line Y5 appears
to represent the average runtime of the per component algorithms, while line Y; has the
steepest slope and is thus our best estimate of the worst case running time of our algorithm.
We thus have t(z) = (8.56 x 107?)2% as our worst case estimate. From above, we know
that this estimate for ¢ is at best in the range [1.96 — 0.5,1.96 + 0.5] = [1.46 , 2.46]. As
we wish to be very conservative, we will take ¢ = 3. We thus have t(z) = (8.56 x 1079)a3.
We thus conclude, based on our experimental data, that our per component algorithm
(including system properties and irrespective of whether the component represents a high

level or a low level) is O(z?).

6.6.2 Analyzing Per System Algorithm

We now need to determine the complexity on a per system basis. For our purposes, we let
m be the number of components to be verified, and we assume that the statespace and of
each component and the cardinality of the system’s event set (X) are bounded, with upper
bounds N and Ny, respectively (ie. x < N and |X| < Ny). We now note that to verify that
a serial interface system is serial level-wise nonblocking, serial level-wise controllable, and
serial interface consistent, we simply need to apply the per component algorithm m times.
This means that the time complexity for verifying a system is thus O(ma3). Since our
statespace is bounded by N, we can replace by N and we thus have that 23 = N3, which
is now a constant term. This implies that our system is actually O(m). In other words, as
we add more components, we are simply repeating the work of analyzing one component.

Of course, this only remains practical as long as N isn’t so large that it contributes a

89

15 I I T T T T T

— Data s
— - Y1=(1.96)X1 + (-26.8) /
— - Y2=(0.8)X2 + (-5.8) 7

Log2(time), time in seconds

-10 I I I I I I I
6 8 10 12 14 16 18 20 22

Log2(states)

Figure 6.7: Timing Data for Experimental Analysis

prohibitively large constant term.

6.6.3 Comparison to Monolithic Algorithm

We now compare the complexity of our approach to a standard verification on a monolithic
system (ie. the flat system). As our method can tell us if a system is nonblocking and
the supervisors controllable, we should compare it to a nonblocking and controllability
verification on the flat plant. To keep things simple, we will only consider the complexity
of a nonblocking verification. This will be a conservative estimate, as the complexity of a
nonblocking and controllability analysis would be additive.

We now turn to the work of Rudie to determine the time complexity for a monolithic

90

nonblocking analysis. In [51], Rudie presented an algorithm for constructing a trim? DES
that was O(z + e), where z is the state size of the original DES, and e was the num-
ber of transitions it contained. In this algorithm, Rudie constructed sets Accessinit and
CoaccessMarked? which represent the reachable and coreachable states, respectively, of the
original DES. Clearly, if and only if Accessinit = CoaccessMarked2 would the original DES
be nonblocking. It’s easy to show that if the sets are stored as arrays, then set equality can
be checked in O(]Accessinit|| CoaccessMarked2|). As both sets are bounded by z, we can
conclude that checking the equality is O(z?). This implies that verifying that the DES is
nonblocking is O(x + e + 22). As we are only considering deterministic DES, we know that
e < Nxx. We thus have that the algorithm is O(z + Ny +22) = O((1+ Ny)z +2?), which
reduces to O(z?). However, this algorithm will be operating on the synchronous product
of our m components (ie. the flat system). This means that x < N™. Substituting this in,
we thus see that our monolithic algorithm is O((N™)2?) = O(N?™).

Comparing the complexity of our algorithm to the monolithic algorithm above, we
see that our interface-based method scales significantly better at O(m) than the other
at O(N?™). To illustrate this, let’s examine the two for a few values of N and m, shown
in Table 6.2. For m = 1, the degenerative case, we see the monolithic algorithm outstrips
our approach as expected.? For m = 2, the serial case, we see that our method scales
significantly better than the monolithic approach. For N = 105, our method is six orders of
magnitude better. To put this into perspective, if our algorithm ran for one hour, the mono-
lithic algorithm would require 114 years! Finally for m = 9, we see that if we allow more
than one low level, the potential gain is incredible. For N = 10°, the running time of our
approach is only multiplied by nine (relative to the time for m = 1), while the monolithic
algorithm increases from 10'2 to 10'%. Our approach would be 90 orders of magnitude
better!

Of course, their is a cost for this increase in computational efficiency. As the saying goes,
“there is no such thing as a free lunch.” The trade-off is a more restrictive architecture.

The interface approach restricts knowledge about internal details of components, and only

2A DES is trim if it is reachable and coreachable.

3The degenerative case is equivalent to having a normal high level with ¥; = Sr = ¥4 = 0, and DES
Gr, and Sr, only containing an initial state, which is marked. In actuality, the interface specific conditions
are trivially satisfied in this case, and the required checks are only that the high level is nonblocking and
controllable which is equivalent to the monolithic algorithm.

91

m=1 m =2 m=9

N N2 | mN3 | N?™ | mN3 N2 | mN3
10 102 [10° 102 [2x10% [108 [9x103
103 [10 | 10° 102 [2x 107 | 10°* |9 x 10°
106 [102 [10™® || 10%* [2x 10" | 108 | 9 x 108
1029 || 10% | 1059 | 1080 | 2 x 1050 || 10360 | 9 x 1090

Table 6.2: Serial Algorithm Comparison

allows supervisors to disable local events and interface events. However, if the interface is
well designed, the restrictions should only have the effect of removing unnecessary clutter.
In other words, most of the options/choices removed by the restrictions placed on the
system’s design by the interface would have been unused anyway. As similar interface-
based approaches are common in both hardware and software, we are confident that are

method will be widely applicable.

6.6.4 Quality of Complexity Analysis

In Section 6.6.1 above, we determined that our per component algorithm is O(2?) and our
per system algorithm is O(m). This raises the question “How accurate are these results?”
Well, our experimental complexity analysis for our per component algorithm is only as
good as the example systems are representative of the worse case running time for the
algorithm. Unfortunately, it is no easy task determining how “representative” a system is.
To compensate for this, we chose the steepest slope to calculate our exponent ¢, as well as
increased it by one. This should be a reasonable estimate. Also, examining the algorithm
in Section 6.3.6 (the only new algorithm), we see that it is very similar to a nonblocking
analysis; thus, it makes sense that their worse case complexity be close.

In any case, even if our per component algorithm complexity estimate is a bit off, we
showed that it only contributes a constant term to the overall algorithm for evaluating a
serial interface system. This means that the difference can be compensated for by using a

faster computer.

92

Chapter 7

Parallel Case: Nonblocking

In Chapter 3, we described our method for verifying nonblocking for the serial case where
the number of low levels (n) is restricted to one. Such a system is also referred to as a
serial interface system. We now extend our work to the more general setting where we have
n > 1 low levels and we will refer to such a system as a parallel interface system. Figure 7.1
shows conceptually the structure and flow of information of a parallel interface system. In
this new setting, we still have a single high level, but this time it is interacting with n > 1
autonomous low levels,! communicating with each low level in parallel through a separate

interface. We will refer to the number of low levels, n, as the degree of the parallel system.

7.1 Definitions and Notation

We now introduce some terminology and notation that will be useful in simplifying proofs.
For an n'" degree parallel system, we assume the high level subsystem is modelled by DES
G (defined over event set Ugeqr, 1 [Sr, U Xa,] U Zg), the j% low level subsystem is
modelled by DES G, (defined over event set Xz, UXgr UXy,), the j interface by DES
G, (defined over event set Xz, UX 4;), and that the overall system has the structure shown
in Figure 7.2. Furthermore, we will refer to the jth’ low level to mean GLszGIj.

As in the serial case, in order to capture the restriction of the flow of information imposed
by the interface, we partition the alphabet of the system into analogous pairwise disjoint

alphabets, as below. For the remainder of this chapter, we define j to be j € {1,...,n}.

!By autonomous, we mean the event set of each low level is pairwise disjoint from the events sets of the
other low levels.

93

Y g: These are events that exist only at the high level.

Yr;: The set of request events for the jth interface.

Y 4;: The set of answer events for the jth interface.

Yr,;+ The set of events that exist only at the jth low level.

High Level 2y

A A
2 Rli > K 2 Rni > "

Interface , Interface
Zm TZAI e 0o o0 0 ZRn TZA"
v v
Low Level , Low Level

L L

ELI an

Figure 7.1: Parallel Interface Block Diagram.

We now assume that the alphabet partition is specified by ¥ := Uje{l,...,n}(ELj U YR,
UXy4,) UXp and that the flat system is taken to be:

G= GHHSGL1HS~--HSGLTLHSGHHS---HSGLL

We now introduce some useful event sets that we will be referring to often. They are

94

High level

G, G

<« <
Low Level | Low Level

GLI GLn

Figure 7.2: Two Tiered Structure of Parallel System

defined as below:

Yy = Xpg;UXa; Interface Events for the jth Interface
Y¥im = Uke(l,...n}2r, U ZH Interface and High Level Events
Y, = X, UXp jth Set of Interface and Low Level Events
Y = Upeqr,..n} 21L, Set of all Interface and Low Level Events

To be able to work with different languages defined over the above subsets, we define the

following natural projections:

P[H : Z* — E?H
Prp; i ¥ — E?Lj

Pr ¥ — EZ_
As we want to express the languages of flat system in terms of their components, we need

95

to define the following languages:

H = P (L(Gr)),

M = Pr(Lin(Gr)) CX*
Lj =Py (L(GL)), Lmy =P (Lm(Gr) €
Imj :

J

I; == P (L(Gy,)), = Pgl(Lm(GIj)) cx*

We can now represent the closed behaviour of our flat system as follows:

L@ = LGullCrlls-- G lCrlls- - I1.Gr,)
=P HL(GH)) N [Pheqr,.my (PR (L(GL)) 0 P (LG,)))

= H N [Meq,...n}(Lr N Iy)]
Similarly, the flat marked language of system is:
Lm(G) =Hm N [ﬁke{l,...,n}(ﬁmk N Imk)]

This allows us to present the proposition below that collects together several similar
propositions. As it will be common in the proofs in this report to show that membership in
languages such as H is dependent only on events in specific subsets (for H, events in subset

Y1), this proposition will be very useful.

Proposition 20
(a) (Vs,s' € ¥*) s € H and Prgy(s) = Prg(s’) = s € H
(b) (Vs,s' € ¥*) s € Hy and Pry(s) = Prg(s') = s’ € Hi
(¢c) Vke{l,...,n})(Vs, s € ¥*) s € Ly, and Py, (s) = Prr, (s') = s’ € Ly,
(e) (Vk e {1,

(d) (Vke{l,...,n})(Vs,s € £*) s € Ly, and Prr, (s) = Prp, (') = ' € Lo,
o))
(f) (Vk e {1,...,n})

)
,n})(Vs, s € %) s € Iy and Pr,(s) = P (s') = s € I,
)

(
(Vs,s' € ¥*) s € I, and P, (s) = P (s') = s € Iy,

,n}
Proof:

Points a-b:

96

Identical to the proof of point a of Proposition 8, after substitution.
Points c-f:

Let k € {1,...,n}, then identical to the proof of point a of Proposition 8, after substi-
tution.

QED

7.2 Serial System Extraction: Subsystem Form

We now present a key definition for parallel interface systems. As the event set of each low
level is mutually exclusive from the event sets of the other low levels, we can consider the
parallel interface system as n serial interface systems by choosing one low level and ignoring
the others. This will allow us to reuse our existing definitions and results for serial interface
systems.

We are now ready to introduce the concept of serial system extractions for an nth degree
(n > 1) parallel interface system. For j € {1,...,n}, the jth serial system extraction is
essentially the original parallel system with the 1St, N 1)th, (j+ 1)th, .. ,nth low

levels removed. Figure 7.3 shows this conceptually.

jth Serial System Extraction: Subsystem Form For the nth degree (n > 1) parallel
interface system composed of DES Gy,
Gr,,.--,GL,,Gr,...,Gr,, with alphabet partition ¥ := Ugeqr (31, U g,
UXa,)UXy, the jth serial system extraction, denoted by system(j), is composed of

the following elements:

Gu(j) = GullsGnlls---NIsGr,;_IsGrnlls - |1sGr,
Gr(j) = G,

Gr(j) = Gy

Yu(d) = Uket, o (-1), (G +1), an} 20 U S H

() = Xp,

Xr(j) = Zg

97

Ya(j) = Xu

2(j) = Za()UEL() UBR(j)UZa(j)

1" Serial System Extraction n" Serial System Extraction
G, (1) Gy (n)
GH % GI2 g Gln g GH 6 Gll g Gl(n-!) g
G,(1) G, (n)
High level(1) G, ° ¢ High level(n) G,
Low Level(1) % Low Level(n) %
G.(1) G, (n)
GLI f GLn f

Figure 7.3: The Serial System Extraction

In the above definition, we defined serial system extractions in terms of a parallel sub-
system based system. As we did for the serial case, we will define in Chapter 8 a general
form for parallel systems. We will also provide a corresponding general form definition for

h

serial system extractions. We will simply refer to the j th serial system extraction, as the

type of the parallel system will make clear which definition is intended.
7.3 Interface Properties

We now present some important definitions that are analogous to equivalent definitions for

the serial case. We then present some related propositions.

7.3.1 Parallel Interface Definitions

In this section we present a set of properties that are equivalent to their serial interface

counterparts. They all involve interpreting the parallel system as n serial systems by using

98

the serial system extraction definition.

Interface Consistent: The nth degree (n > 1) parallel interface system composed of DES
GH7
Gr,,...,Gr,.Gr,,...,G,, is interface consistent with respect to alphabet partition

¥ = Ukeqr,..n}(Br, UXR, UXa,) U Xy, if:

(Vje{l,...,n}) The jth serial system extraction of the system is serial interface

consistent.

Interface Strict Marking: The nth degree (n > 1) parallel interface system composed
of DES Gy,
Gr,,...,GL,.Gr,,...,G,,,, is interface strict marking with respect to the alphabet
partition

Y= Uke{l,...,n}(ZLk U ZRk U EAk) U ZH, if:

(Vje{l,...,n}) The jth serial system extraction of the system is serial interface

strict marking.

Level-wise Nonblocking: The nth degree (n > 1) parallel interface system composed of
DES Gy,
Gr,,...,Gr,,Gr,,...,G,, is level-wise nonblocking with respect to the alphabet par-
tition

Y= Upeqt,..n}(Er, UBg, UXa,) U Xy, if:

(V5 €{1,...,n}) The jth serial system extraction of the system is serial level-wise

nonblocking.

7.3.2 Related Propositions

Now that we have the above definitions, we can present several related propositions that
establish properties about the parallel system that will be useful in later proofs.
Our first proposition uses the interface consistent definition to establish the event set

that the DES which make up an nth degree (n > 1) parallel interface system are defined

99

over. This is useful for defining the languages of a DES created by the synchronous product

of one or more of these DES.

Proposition 21 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,...,GL,,Gr,,...,G,, is interface consistent with respect to the alphabet partition

¥ = Ukeqr,..n} (31, U Bg, U ¥4,) U Xy then DES Gy is defined over event set Yy,
DES GIJ. is defined over event set EIJ., and DES GL]. is defined over event set EILj, where

jed{l,...,n}.

Proof: See page 104.

We are now ready to state the proposition below which establishes useful properties for

often used languages.

Proposition 22 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,-..,Gr,,Gr,...,Gy,, ts interface consistent with respect to the alphabet partition

Y= Upeqn,.n} (B, UXR, UXa,) Uy then, for all j € {1,...,n}, the following is true:
(i) Languages H, L;, and Z; are closed.
(i) Hm C€H, Ly, € Ly, and Ip,; C I;

Proof: See page 106.

We now present a proposition that will aid in the use of serial system extractions in

h serial system extraction (a serial

proofs. The proposition interprets terminology for the jt
interface system) in terms of the original parallel system.

Before we can present the proposition, we need to first define (for use in the proposition)
a new natural projection, Pj, to map strings from ¥* (the event set of the given parallel
system) to strings from X(j)* (the event set of the jth extracted system of the given parallel

system). It is defined as follows:

P ¥ — X(j)"

Proposition 23 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,...,GL,, Gr,,...,Gy,, is interface consistent with respect to the alphabet partition
Y o= Ukeqr,.n}(Br, U Zg, U X4,) U Xpg, then for the jth serial system extraction,

system(j), the following is true:

100

(i) The flat system is: G(j) = Ggl|sGr,|[sGnlls---|[sG1,
(ii) The following event sets are: Xj(j) = X1, Yiu(j) =2, and Z11.(j) = 1L,

(iii) The following inverse natural projections are: Pry(j)~' = P;- Pr, Pip(j) ™' =

Py~ Prl, and Pr(j) = P;- P!

(iv) The event set of G (j) is Xrr(j), the event set of Gr(j) is X11.(j), and the event
set of G1(j) is X1(j).

(v) The indicated languages satisfy the following statements:

H(G) = Pj(H) N [Mkeq, ... G-1), (G+1), .. n} Pi (Zk)]
Him(j) = Pi(Hm) NV [Okeqn, ., G=1), G4+1), oo nd B (Zing)]
L) = Pi(Ly)

Ln(i) = Pi(Lmy)

(5) = Fi(L)

In(j) = Pi(@m,)

(vi) Languages H(j), L(j), and Z(j) are closed.
(vii) Hm(5) € H(5)s Lm(5) € L), and In(5) € Z(5)

Proof: See page 107.

h serial

We close this section by noting that after examining the definition of the j ¢
system extraction and the above proposition, we see that for n = 1, a parallel interface
system reduces to a single serial interface system. We thus see that a serial interface

system is a special case of parallel interface systems. We will now speak of parallel interface

systems and their definitions as the general case for bi-level interface systems.

7.4 Parallel Nonblocking Theorem and Propositions

We will now present Propositions 24-26, followed by our main result for this chapter,

Theorem 3. The following propositions are analogous to their serial case counterparts.

101

Parallel Low Level Nonblocking Proposition

Our first proposition is analogous to Proposition 11 for the serial case. It asserts that
a string s accepted by the system, can always be extended to a string accepted by the
system, and marked by all low levels. In other words, the low levels are not dependent on

high level events to reach a marked state.

Proposition 24 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,...,GL,, Gr,,...,Gy,, is level-wise nonblocking and interface consistent with respect

to the alphabet partition ¥ := Upeqr, oy (XL, UXg, UXa,) U Xy, then

(Vs € H N [Njeqr,..ny (L5 N Z5)])
(E'l S E?L) s.t. (Sl S H N [ﬂje{l,l...,n}(ﬁm]‘ ﬂIm])])

Proof: See page 112.

7.4.1 Event Agreement Propositions

We group the last two propositions together as Proposition 26 builds upon Proposition
25. The first proposition asserts that any string accepted by the system can always be
extended by a string marked by the high level. The reader should note that this string is

not necessarily accepted by any low levels.

Proposition 25 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,-..,Gr,, Gr,,...,Gr,, is level-wise nonblocking and interface consistent with respect

to the alphabet partition ¥ := Upep, oy (Br, U Xpg, UXa,) UXy, then

(Vs € H N [Njeqr,..ny (L5 N Z5)])
(Bh e X5y) (sh € Hu N [Nieqr,.nyTm,))

Proof: See page 115.

Our last proposition is analogous to Proposition 15 for the serial case. It asserts
that if string h extends string s such that sh is acceptable to the high level, then a string
u can be constructed such that u has a high level image equal to h, and that su is marked
by the system. In other words, we can use string h as a basis to construct string u by

adding low level events so that each low level subsystem will accept the request and answer

102

event contained in h. As these events are common to both levels, they must agree on their

occurrence.

Proposition 26 If the nth degree (n > 1) parallel interface system composed of DES Gy,
Gr,,...,GL,, Gr,,...,Gy,, is level-wise nonblocking and interface consistent with respect

to the alphabet partition ¥ := Upeqy, . oy (Br, U Xpg, UXa,) UZg, then

(Sh € Hpy N [ij{l,...,n}Imj]) = (HU S Z*) S.t. (S’LL € Hpm N [mjé{l,...,n}(ﬁmj ﬂIm])]) VAN
(Prr(u) = h)

Proof: See page 117.

7.4.2 Parallel Nonblocking Theorem

We are now ready to present our nonblocking theorem for parallel interface systems. It states
that, to verify if a parallel system is nonblocking, it is sufficient to check that each of its
serial system extractions is serial level-wise nonblocking and serial interface consistent. As
the level-wise nonblocking and interface consistent definitions can be evaluated by examining
only one level (the high level or one of the low levels) of our system at a time, we now have

a means of verifying nonblocking of our parallel system using local checks.

Theorem 3 If the nth degree (n > 1) parallel interface system composed of DES G,
Gr,,...,GL,,Gr,,...,Gy,, is level-wise nonblocking and interface consistent with respect

to the alphabet partition ¥ := Upeqy,. 03 (Br, U Xg, UXa,) U Xy, then

L(G) = Li,(G), where G = Ggl|sGrylls---||sGr,|1sGrlls---1sGr,
Proof:

Assume system is level-wise nonblocking and interface consistent. (1)

As L, (G) C L(G) is automatic, it suffices to show L(G) C L, (G)

Let s € L(G) = H N [Nyeqr,...ny (Low N Ly)] (2)

We will now show this implies s € L,,(G)

It is sufficient to show: (Ju € X*) su € Lin(G) = Him N [Nweq,..n} (Lmw O Tiny,)]

103

Our first step is to show that we can construct a low level string, accepted by the high level,
and that will bring all n low levels to a marked state. We can achieve this immediately by
applying Proposition 24 and conclude:

BleXiy) st (sleH N [Njeq,..n} (Lm; N Im,)]) (3)

Our next step will be to show that we can construct a string v/ € ¥* such that slu’ €
Hpy N [mje{l,...,n}(ﬁmj ﬂImj)].

To achieve this, we will apply Proposition 26. Before we can apply the proposition, we
must first construct a suitable h € X7

We first note that (3) implies that sl € H N [Njeq1,..n1 (L5 N Z;)]). We can now apply
Proposition 25, taking sl to be string s in that proposition, and conclude:

(3h € S5y) (sth € Hon N [Nieqr,..myTm,]) (4)

Combining with (3), we can now apply Proposition 26, taking sl to be string s in that
proposition, and conclude:

(Fu' € %) s.t. (slu’ € Hin N [Njeqa,.. 0} (Lin; N T,)]

We take string u = [u’ and we have su € Hy N [Njeqr,..n) (Lim; N Zw,)] = Lin(G), as
required.

QED

7.5 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter
were not given as the propositions were introduced. They will now be presented in the

following sections.

7.5.1 Proof of Proposition 21

Proof for Proposition 21 on page 100: If nth degree (n > 1) parallel interface system
composed of DES G,

Gr,,...,GL,,Gr,,...,G,, is interface consistent with respect to the alphabet partition

¥ = Upeqt,..n} (B, UER,UX4,) U Xg then DES Gy is defined over event set ¥y, DES
GIJ. is defined over event set ¥, and DES GL]. is defined over event set YrrL;, where

jed{l,...,n}.

104

Proof:

Assume that the nth degree (n > 1) parallel interface system is interface consistent with re-
spect to the alphabet partition.

We will now show this implies that DES G is defined over event set X7, DES G, is defined
over event set ¥y, and that DES G, is defined over event set Xy, where j € {1,...,n}.

We first note that (1) implies that (V5 € {1,...,n}) the jth serial system extraction,
labelled system(j), of the system is serial interface consistent.

This allows us to conclude that: (Vj € {1,...,n}) Gg(j) is defined over X;p(j), GL(j) is
defined over ¥;7.(j), and that G;(j) is defined over ¥;(j)

From (1), we can now apply Proposition 23, point ii and conclude:?
Y1) =21, Xru(j) = Xru, and ¥71(j) = 11,

We can now conclude that: (V5 € {1,...,n}) Gg(j) is defined over X;p, GL(j) is defined
over ¥yy,;, and that G (j) is defined over ¥, . (2)

This implies: (Vj € {1,...,n}) DES G, = G(j) is defined over ¥, and that G, = G1(j)
is defined
over Y. (3)

All that remains is to show that Gy is defined over alphabet X;g. To do this, we first need
to prove the following claim.

Claim: EGH C Y7y and (Vj S {1,. . ,n}) EGH D) (ZH UZ[j)
Let j € {1,...,n}. We will now show this implies ¥, € ¥;g and Xg, 2 (X5 UXy,).

We start by noting Gu(j) :== GullsGrlls---sGr,_,|[sGr, oy lls - - -1IsGr,- By the defini-
tion of the |5 operator, we know Y¢, ;) = Xg, U [Uke{l,...,(j—l),(j—s—l),...,n}Esz]- This im-

plies that X, C Xg, (j)- As Eg,) = Xrm (from (2)), we immediately have Y, C Xrp.
From (3), we have EGH(j) = EG’H U [Uke{Lm’(j_1)7(j+1)7m7n}zjk}.

We now note that X7, C Xy but Xr, N [Upeqa, .. (j-1), (j+1),...,n} 21,) = @ because of our

.y y -

event partition.

This implies: X I; C Yoy

2Proposition 23, point iv requires the proposition we are currently proving, but point ii of Propo-
sition 23 is independent of point iv and does not.

105

We next note that Xy C X7y but Xg 0 [Ukeqr, ..., (=1, j+1),..,n}21,] = 0 because of our
event partition.

This implies: ¥z C Yg,,
We thus have ¥, 2 (X UXp;) as required.
Claim proven.

From the claim, we have ¥q,, C ¥;g. To show that ¥, = Xz we now only have to show
Yay 2 XiH-

From the claim, we also have (Vj € {1,...,n}) Yg, 2 (¥g UX],).
This implies Xg,, 2 ¥ U [Upequ, .. ny21,] = Xra. We thus have Xg, = Xrp.
We can now conclude that DES G is defined over Xy, as required.

QED

7.5.2 Proof of Proposition 22

Proof for Proposition 22 on page 100: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,..., Gr,,Gr,,...,Gr,, is interface consistent with respect to
the alphabet partition

¥ = Upeqr,..n} (B, UXR, UXa,) Uy then, for all j € {1,...,n}, the following is true:

(i) Languages H, £L;, and Z; are closed.

(ii) Hm CH, Lin; € L), and Z,,,, C T
Proof:
Assume system is interface consistent and let j € {1,...,n}. (1)
Will now show this implies that Points i and ii are satisfied.

We first note that by (1), the system is interface consistent. This allows us to apply
Proposition 21 and conclude:

L(GH),Lm(GH) g ETH, L(GLj),Lm(GLj) g 27Lj’ and L(G[j),Lm(G]j) g EZ.

This tells us that languages H = PI_}}(L(GH)), L; = Ple(L(GLj) , Iy = Pl_l(L(G]j)),
Hy = Pr (Lin(Gr)), Lm; = Ple(Lm(GLj)), and Z,,, = P (L (1;)) are defined.

106

Point i: Show that Languages H, £;, and Z; are closed.

We now note that languages L(Gy), L(GL,), and L(G;) are closed by the definition of the
closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, £;, and Z; are closed,
as required.

Point ii: Show that H,, CH, L, CL , and Z,, CZ

From the definition of the closed behaviour and the marked language of a DES, we can
conclude that:

m(Gr) € L(Gpg), Lm(GL].) - L(GL].), and Lm(G]].) - L(G]j).
Applying Proposition 3 repeatedly, we can conclude:

PIH((GH)) Hum
P (Lin(GL,)) = L,
P[((GI)) m]

H = P (L(Gr))
Lj = P (L(GL,))
= PN (L(GY,))

N 1NN

J
QED

7.5.3 Proof of Proposition 23

Proof for Proposition 23 on page 100: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,...,Gr,, Gr,,...,Gr,, s interface consistent with respect to
the alphabet partition ¥ := Upeqr . 3 (Br, U Br, U X4,) U g, then for the jth serial

system extraction, system(j), the following is true:
(i) The flat system is: G(j) = GullsGL,||sGnlls - ||sG1,
(i) The following event sets are: 1(j) = X1, Xru(j) = Xrm, and Xr1.(j) = Si1

(iii) The following inverse natural projections are: — Pry(j)~' = Pj - Py, Pr(j)™t =

P Pr, and Pr(j)~' = P - P}

(iv) The event set of Gu(j) is Xru(j), the event set of GL(j) is X11.(j), and the event set
of G1(j) is ¥1(4)-

(v) The indicated languages satisfy the following statements:

H(G) = Pj(H) 0 [Mkeqr, .., G=1), G+1),...ny Fi (Ti)]

107

Hm(j) = Py (Hm) N [Nken, .., -1), G+1), .. n3 L5 Tmy)]
L) = Pi(Ly)
Ln(j) = Pj(Lm;)
() = FB(I)
In(j) = Pj(Tm,)

(vi) Languages H(j), L(j), and Z(j) are closed.
(vii) Hm(j) € H(J), Lm(4) € L(J), and T, (§) S Z(j)
Proof:

Assume that the nth degree (n > 1) parallel interface system is interface consistent with
respect to the alphabet partition. (1)

Let system(j) be the jth serial system extraction of our parallel system. (2)
We will now show this implies system(j) satisfies points i-vii.
Point i: Show that G(j) = Gul|sGr,|sGnlls---|lsGr,
By definition, the flat system for a serial interface system is defined as follows:
G(j) = GaIsGr(h)IsGr(4)
Substituting in for DES Gy (j), GL(j), and G1(j)) (by (2)) gives as required:
G(j) = GullsGr,|sGnlls - - -|sGr,

Point ii: Show that E[(]) = E[j, ZIH(J) = E]H, and E[L(j) = EILJ-

Y1(j) = Xr(j)UXa(j), by definition.
= ZRjUEAj, by (2).
- 3,
() = Er()US(G)ISAG), by defimition
= U1, .., (=1), (j+1), ..} 21, UXE UZR, UX 4, by (2).
= XrH
Y(4) = Bp())UXr()UXA(4), by definition.
= %, USR US4, by (2).
= Xrr.

J

108

Point iii: Show that Pry(j)~' = Pj - Pr;7, Prr(j) ' = P; - P;LIJ_, and ¥;(j) = P; -Pgl

By definition, the following natural projections for a serial interface system are defined as
follows:

Pru(j) - 20)" — Xm()"
Pro(3) - 2()" — Xr()”
Pr(j) - 2()" — Z1()"

Substituting from point ii, gives:

Piu(j): () — iy (3)
Prp(j) : ()" — X,
Pi(j): ()" — X,

We first examine Prg(j). We first note that the following natural projections are de-
fined as Prg : ¥* — Xjy and P : ¥ — X(j)*. As Xrg = Yrg(j) C £(j) and X(j) C X
(by (2) and point ii), we can see by (3) and the definition of the natural projection that
the diagram in Figure 7.4 commutes. Similarly, we can see that the diagram in Figure 7.5
commutes.>

-1

P P,
> () Pwr(X)«—— Pwr(2(j))

PIH(j)) PIHG)-1
P, P,

Y Pwr(2,,)

Figure 7.4: Commutative Diagram Figure 7.5: Commutative Diagram for Inverse Function

We thus have P;,; = Pj_l - Pra(j)~"
= P;- P =P;- Pj_1 - Pry(j) !

= Pj- Pr;; = Pru(j)~!

= Pru(j)™' = Pj- Py

Similarly, as X1, = ¥71(j) € X(j) (by (2) and point ii) and the following natural projec-
tion is defined as Prp; X — X7 L;» We can conclude:

3To make the commutative diagram work, we extended the natural projections in the natural way to
operate on subsets instead of strings.

109

Pr(j)~ =B - P

Similarly, as >;, = X;(j) € ¥(j) (by (2) and point ii) and the following natural projection
is defined as Pr; : 3" — Zz, we can conclude:

Pi(j)~t=F;- Pt

Point iv: Show that the event set of G (j) is X1m(j), the event set of Gr(j) is Xr1(j),
and the event set of Gy(j) is X1(j).

From (1), we have that the system is interface consistent. This implies that system(j) is
serial interface consistent. The result follows immediately.

Point v:
First, we must show that H(j) = P; (H) N [Mreqr, ..., 1), G+1), ... n} i (Zk)]

By definition, the language H(j) for a serial interface system is defined as follows:
M) = Pru(i) " (L(Gu(5)))
Substituting using (2) and point iii, we get:
H(j) = By - Py (L(GrlsGrlls - 1sGry_y l1sGriyiylls - 115G 1) (4)

We next note that, by (1), we can apply Proposition 21 and conclude that DES Gy is
defined over event set Xry, DES Gy, is defined over event set X, and DES G, is defined
over event set Xz, where ¢ € {1,...,n}. (5)

This tells us that DES Gg(7) is defined over Xyg.

To evaluate L(Gul[sGrlls- - [sGr,_y)|sGrunlls - - [lsGr,), we need a natural projection
PI|]Hk :E}H—>E}k7fork6{1, ey (j—]_), (]+1), ,n}

After noting that X7, C X7z and X7z C X, we can apply the same logic as in point iii
and conclude:

= Py - Pt

—1
PI|IHk K

We can now evaluate L(GullsGrlls - - [lsGr;_y [|sGrplls - - - [sG1,) and conclude:

L(GullsGrlls - NsGr,;_ lIsGroplls - - 1sGr,) = L(Ga) N [Meqa, ..., G-1), G+1), o n} Pro -
P (L(Gp))]

Substituting into (4) gives:

H(j) = Pj - Prg(L(Gr) N [Miequ, ..., -1, 41, s n} Prar - P (L(G1)])

110

= H(j) = Pi-Prg (L(G)N[Mker, .. (-1, (541, oy P Pryg-Proc-Pr (LG 1)) (6)

As ¥, C ¥rg, we can now apply Proposition 6 by taking ¥, = X7y, and ¥ = Xy,
(ke{l,...,(5—1),(j+1), ..., n) and thus conclude:

Py PPt =Pt
Substituting into (6) gives:
H(G) = Py - Prgg (LG) N [Nk, oo 1), G,y By - P (LG
= H(j) = P; () N [Mkeq, .., G-1), G+1), ... n} P (Z)]
Next, we must show that Hp,(j) = Pj (Hm) N [Nkeqa, ., =1, G+1), ..., n} P (T,)]
Proof is identical to proof for H(j), after relabelling.

The proofs for the remaining languages for point iv are straightforward, and are presented
together below.

L(j) = Pr(j) "(L(GL(j))), by definition.
= P 1 (L(GL;)), by (2) and point iii.
= Pi(L))
Ln(j) = Pi(§) " (Lm(GL(5))), by definition.
= P PI_J(Lm(GL)), by (2) and point iii.
= Pj(Lm;)
Z(4) Pr(4)" M (L(G1(5))), by definition.
= P;- P '(L(Gy)), by (2) and point iii.
= F(I)
Tn(j) = Pr(j) " (Lm(G1(5))), by definition.
= Pj- P! (Ln(Gr,)), by (2) and point iii.
= P (Im;)

Points vi-vii: Show that languages H(j), £(j), and Z(j) are closed and that H,,(j) C H(j),
Lm(j) € L), and Lpn(j) € Z(j)

From (2), we know that Gu(j) = GullsGrlls- .- [|sGr,_,)|[sGr,ulls - [sGr,

We can now apply Proposition 5 and conclude that language L(Gg(j)) is closed, and
Lin(GH(j)) € L(GH(j))

We next note that languages L(GL(j)), and L(G(j)) are closed as Gr(j) = Gr; and
G1(j) = G, (by (2)), and by the definition of the closed behaviour of a DES.

111

From the definition of the closed behaviour and the marked language of a DES, we can
conclude that:

Lin(GL(5)) € L(GL())), and Li(G1(5)) € L(G1(j))-

We now apply Proposition 1 repeatedly and conclude that H(j) = Py (5) " (L(Gy(5))),
L(j) = Pro(3) " (L(GL(5))), and Z(j) = Pr(j) " (L(G1(j))) are closed.

We next apply Proposition 3 repeatedly, and conclude:

Pru(j) M Lm(Gu(h) = Hm(j) < H(G) = Pu(i)” 1((Gu(j)))
Pr() " (Lm(GL(1) = Lm(j) S L) = Pr(i) " (L(GL())))
Pi(j) M (Lm(Gr(5) = Tm(j) < Z() = Pr(5) (L(G1())))

QED

7.5.4 Proof of Proposition 24

Proof for Proposition 24 on page 102: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,..., Gr,.,Gr1,,...,Gg,, s level-wise nonblocking and interface
consistent with respect to the alphabet partition ¥ := Upeqr, . ny (X1, U Bg, U Xa,) U X,
then
(Vs € H N [Njeq,...np (L5 N I))))

(A exyy) st (sleH N [Njeq,..ny(Lm; Vm,)])

Proof:
Assume system is level-wise nonblocking and interface consistent. (1)
Let se H N [ﬂjE{l,,n}(ﬁj N IJ)] (2)

We will now show this implies: (31 € X7;) s.t. (sl € H N [Njeqr,. 0} (Lmy; N ZLin;)])

To do this, we will use an inductive proof. We define X7, = X%, Ly, = I, = X" and
Lp+1 = Int1 = X*. Here we are using the fact that intersection with ¥* is the identity
operator as all other languages are subsets of ¥*. This is to handle the boundary cases of
k =0 and k = n in order to avoid intersection with (.

Claim to be proven:
For k € {0,1,...,n}, there exist strings I; € ¥7; , i € {0,1,...,k} , such that:

Sloll s lk € Hm[ﬂve{o,l,...,k} (Emv mImv)]m[mwe{kJrl,...,nJrl}(ﬁwmz.w)] (3)

112

We will first prove the initial case k = 0, and then the general case of k € {1,...,n}.
We can then conclude by induction that the claim has been proven.

Initial Case: k=0

We take lp = € € X7 = X*. We immediately have slo = s € H N [Njeq1,.. 03 (£50Z5)]

(by (2))
We have automatically slp € (L N Zmy N Lnt1 N Zpt1) = EF

Initial case complete.

Inductive Step:

Let k € {1,...,n}. Assume there exist strings l; € X7, 4 € {0,1,...,k -1} , and
that they satisfy (3) when k — 1 is substituted for k.

= sloly ... lk—1 € HO[Myego1,....(k—1)} (Lo Ly)N [Nwe k... 13 (LN L) (4)

We will show this implies that we can construct string I, € Z?Lk, such that slgly ...l €
HO [Nweqo,1,...k) (L 0 Ty)] N [Nwefksi,..nt 1y (Lw N Zw)]

Our approach will be to apply Proposition 11 to system(k), the k" serial extraction
system of our parallel system.

We first note that (4) implies sloly ... l—1 € H N [Nye(i,....n} (Low N Zw)]

= Pk(sloll .. .lkfl) S Pk('H) N Pk(ﬁk) N [mwe{l,...,n}Pk<Iw)] = H(k‘) N E(k) N I(k)
by Proposition 23

We can now apply Proposition 11 to system (k) by taking Pg(sloly ...lx—1) to be
string s in that proposition. We thus conclude:

(3lx € X371,) ste P(sloly .. l—1)li, € H(k) N Lo (k) N L (k)
We now note that Py (lx) =l as Xz, C 3(k). We can thus conclude:

Pr(sloly .. lg—1lk) € H(k) N Ly (k) NI (k) (5)
We will now show that this implies:

sloly + - lk—1l € H O [Nweq, b—1h+1, 03 Zw] 0 Ly O iy,
Substituting into (5) for H(k), L, (k), and Z,,,(k) (by Proposition 23), we have:

Py(sloly .. . lk—1ly) € Py P (L(Gr)) N [Nwet,.. k—1p+41,...01 P - Pr N (L(G1,,))]
N PP (Lm(Gr,)) N Pe- Py (Lin(Gry.) (6)

113

From Proposition 23, we have ¥y C X(k). We can now apply Corollary 2 by
taking ¥, = X(k), ¥y = ¥rg, and Ly, = L(Gy) and thus conclude:

sloly ... L1l € PI_I_}(L(GH)) =H (7)

Similarly, we have X7, C (k) for w € {1,...,k—1,k+1,...,n}. We can now apply
Corollary 2 by taking ¥, = 3(k), ¥, = Xy, and Ly = L(Gy,) and thus conclude:

sloly - .- llk € P (L(G1,)) = T (8)

Similarly, we have ¥;7, C ¥(k). We can now apply Corollary 2 by taking ¥, = X(k),
Yy =Xr1,, and Ly = L,,(Gr,) and thus conclude:

sloly - - lk1lk € Py (Lm(Gr,)) = Lo, (9)

Similarly, we have ¥, C ¥(k). We can now apply Corollary 2 by taking ¥, = X(k),
Yy =Xy, and Ly = L, (G,) and thus conclude:

sloly - - lk1lk € P (Lm(G1,) = I,
Combining with (7) - (9), we thus have:
sloly -+ l—1l € H N [Nuequ,.. k=1,k+1,..03Zw] 0 Ly, O i, (10)
We also have automatically sloly ... lx_1lx € (Lns1 NZpy1) = XF (11)
We will now show that

sloly - lk—1lk € H O [Nyeqo1,... k) (Lmy N Zm,)] O [Nwefit1,...mnt1} (Lw N Zw)]

This means showing: slply ... lx_1l; € mve{0,17...,k—1}(£mv N Imv) N [mwe{k+1,...7n}£w]
As Ly =Ty = X7, sloly .. . lg—1lx € Ly NIy, is automatic. (12)

We next note that by (4), we have sloly ... lk—1 € H N [Nyego1,...,k=1)} (Lrmy N Zim,)] N
[mwe{kJrl,.A.,n}»Cw]

From (1) we have X7, N X, =0, forv e {1,...,(k—1)}. Asly € Xz, we have

Prp,(lg) = €. This implies Prp,(sloly ... lk—1lx) = Prr,(sloly ... lp—1). We can now
apply Proposition 20, point d, and conclude:

sloly ... lp_1ly € Emv (13)

Simﬂarly we have P[U (Sloll - lk—llk) = P[v (Sloll . lk—l); for v € {1, e (k — 1)}
We can now apply Proposition 20, point f, and conclude:

sloly ... lp_1l € Imv (14)

114

Similarly we have PILw (Sloll e lk—llk) = P]Lw (Sloll v lk—l)a for w € {k’ + 1, ey n}
We can now apply Proposition 20, point c, and conclude:

sloly .. lg—1li € Ly
Combining with (12) - (14), we have:

sloly - . lg—1lk € Nyeqo,1,... k=13 (L N Ty) N [Nwe fht1,...n} L)
Combining with (10) and (11), we have:

sloly - - lk—1lk € H N [Noego1,...k} (Lmy 0 Ty)] N [Nkt 1,...mt1} (Lw N Tw)], as
required.

Inductive step complete.

We have now proven the Initial case and the Inductive step. We now conclude that the
Claim is true, by induction.

Taking k = n and using fact that lp = €, we thus can conclude there exists strings l; € X7/ ,
i €{1,...,n}, such that: sly...l, € H N [Njeq,...n} (Lm; N ZTm,)]

We thus take [= Iy ...l, and we have | € X7, and sl € H N [Njcqr,. n}(Lm; N ZTm,)], as
required.

QED

7.5.5 Proof of Proposition 25

Proof for Proposition 25 on page 102: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,..., Gr,, G1,,...,GTr,, is level-wise nonblocking and interface
consistent with respect to the alphabet partition ¥ := Ugeqr, (8L, UXR, UXa,) U Xy,
then

(Vs € H N [Njeqr,..my (L5 N Z5)])
(Bh e X5y) (sh € Hu N [Nieqr,.nyTm,))

Proof:
Assume system is level-wise nonblocking and interface consistent. (1)
Let s € H N [Njeqn,...n} (L5 N Z;)] (2)

115

We will now show this implies:
(Hh € Z?H) (Sh € Hm N [m]‘e{17.._7n}_’[mj])

We will start by examining the 1! serial extraction system of the parallel system. We will
show that we can construct a string h € X}, with the property that Pi(s)h € H,,(1) N
Zm(1).

We first note that from (2), we have s € H N [Njcqi,. 03 (£5 NZ)]

From Proposition 23, we thus have:
Py(s) € PL(M)N[Njeqa,...np PL(Z;)] O PL(L1y N P(Zy) = H()NL(L)NZ(1) (3)

We start be noting that system(1) is serial level-wise nonblocking, as the parallel system
is level-wise nonblocking (by (1)). Combining with (3), we can thus apply Point I of the
serial level-wise nonblocking definition and conclude:

(31 € X(1)*) s.t. Pi(s)h € Hp(1) N Zn(1)
We next note that:

Pry (1) (Pi(s)l) Pra(1)(Pi(s)) Pra(1)(1)
= Prg(1)(Pi(s))Prg(1)(Prg(1)(h)) as the natural projection
is idempotent.

= Pr(1)(Pi(s)Pra(1)(1)) (4)

We can now apply Proposition 8, point b, and conclude:

Py(s)Pra(1)(h') € Hm(1) (5)
As ¥1(1) € Xrg(1), we can conclude by (4) that Pr(1)(Pi(s)h') = Pr(1)(Pi(s)Prg(1)(R))
We can now apply Proposition 8, point f, and conclude:

Py(s)Pra(1)(1) € Im(1) (6)

We next note that as 3(1) C ¥ and X7y = Xrg(1) (by Proposition 23), we can conclude
Pra (W) = Pra(1)(R).

Combining with (5) and (6), we can conclude:
Pl(S)P[H(h/) S Hm(l) ﬂIm(l)
We then take h = Pry(h') and we have:

h € ¥}, and Pi(s)h € Hp(1) N (1) (7

116

We will now show that this implies: sh € Hy N [Njeq1,..) Zm;]

From (7), substituting for H,,(1) and Z,,(1) (by Proposition 23) and noting P;(h) = h
as h € Xrg € ¥(1), we can conclude that:

Py(sh) € P Py (Lin(Gr)) 0 [Njeg2,..ny Pt - Pgl(Lm(Glj))] N Py P (Ln(Gr))

From Proposition 23, we have X7y C ¥(1). We can now apply Corollary 2 by taking
Yo =%(1), ¥y =Xsy, and Ly = L,,(Gg) and thus conclude:

sh € Prt(Li(Gr)) = Hm (8)

Similarly, we have ;. C ¥(1) for j € {1,...,n}. We can now apply Corollary 2 by taking
Yo =%(1), ¥y = Xy, and Ly = L, (Gy;) and thus conclude:

~1
sh € P (Lin(G1;)) = i,
Combining with (8), we have:
sh € Hp N [mje{l,...,n}zmj]

Combining with (7), we thus have h € ¥}, with the required property that (sh € H,, N
(Nieqr,..nyTm;1)

QED

7.5.6 Proof of Proposition 26

Proof for Proposition 26 on page 103: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,..., Gr,, G1,,...,G7I,, 15 level-wise nonblocking and interface
consistent with respect to the alphabet partition ¥ := Upcqr 3y (Xr, U Xpg, UXa,) UXg,
then

(Sh € Hpm N [ij{l,...,n}Imj]) = (HU S Z*) S.t. (SU € Hp N [ﬂje{17._.7n}(£mj ﬂIm])]) VAN
(Prr(u) = h)

Proof:
Assume system is level-wise nonblocking and interface consistent. (1)
Lets € HN [ij{l,...,n}(‘ij ﬁImj)], h S E;H’ and sh € Hm N [ﬂje{lyi_.vn}fmj] (2)

117

We will now show this implies (3u € X*) s.t. (su € Hpm N [Njeqr,.. 0} (Limy N Ziny)]) A
(Pra(u) = h)

To do this, we will use string h and apply Proposition 15 iteratively, to construct n strings
labelled u; € X(i)*, i € {1,...,n}, with the properties su; € Hpm N [Njeqi,...n3Zm;] N L,
(i.e. string u; takes the high level and the i*" low level system to a marked state) and

Pr(u;) = h (string h is the high level image of each string u;). We will then use these n
strings to construct the desired string wu.

Iterative step:
For each i € {1,...,n}, construct u; as follows:
To apply Proposition 15 to system(i), the it" serial extraction system of our parallel
system, we must first show that h € ¥}, (auto from (2)), P;(s) € Hm(i) N I (i),
and that P;(s) € H(i) N L(i) N L, (7).
From (2), we have sh € Hy 0 [Njeqr,.. 03 Zm,]
As P;j(h) = h since h € ¥}, C X(i) (by Proposition 23), we can conclude:
Pi(sh) = Pi(s)h € P;(Hm) N [Njeqr,....i-1,i+1,...0} Pi(Zm;)] O Pi(Zim,)

= P;(s)h € Hp,(i) N Z, (i) (by Proposition 23) (3)

Our last step before we can apply Proposition 15 is to show that P;(s) € H(i) N
L(i) N L, (7).

From (2), we have s € H N [Njcqu,... 0} (£50Z;)] (4)
From Proposition 23, we thus have:
Pi(s) € Bi(H) N [Njeq,.i-1,it1,...np Pi(Z5)] N Pi(Ly 0 Pi(Zs) = H(i) N L() NZ(i) (5)

We have P;(s) € H(i) N L(i) from (5), so all that remains is to show that P;(s) €
T (4).

From (2), we have s € Z,,,,. This implies P;(s) € Pi(Zmn,) = Zmn(7)

Combining with (2) (3), and (5), we now apply Proposition 15 by taking P;(s) to
be string s in that proposition and conclude:

(Fui € 2()*) s.t. Pi(s)ws € (Mon(i) O Lon(i) O Tm(@)) A (Pra(i)(wi) =h) (6)

We next note that as (i) C ¥ and X7y = ¥15(7) (by Proposition 23), we can con-
clude P[H(ul) = P[H(Z)(ul) = h. (7)

We now note that w; € ¥(¢)* implies that P;(u;) = w;. Combining with (6) and

118

substituting for H,, (i), L, () (using Proposition 23), and Z,,(i), we have:
Py(sui) € P Pry (Li(Gw)) 0 [Njeqr, B P (Lin(G1))) N By P (Lin(GL,)) (8)

From Proposition 23, we have X7y C ¥(i). We can now apply Corollary 2 by
taking ¥, = (i), Xy = X7, and Ly = L,,,(Gg) and thus conclude:

su; € PI};(Lm(GH)) =Hp (9)

Similarly, we have ¥, C %(7) for j € {1,...,n}. We can now apply Corollary 2 by
taking ¥, = ¥(i), ¥y = Xp;, and Ly = L, (Gy,) and thus conclude:

su; € PI;l(Lm(G]].)) =TI, (10)

Similarly, we have ¥, C ¥(7). We can now apply Corollary 2 by taking ¥, = (i),
¥y =211, and Ly = Ly, (Gr,) and thus conclude:

Su; € P]_L12<Lm(GLL)) = Emi
Combining with (9) and (10), we have:
su; € Him N0 [Njeqr,...nm1Zm;] N L, as required.

Iterative step complete.

Now that we have completed the iterative step, we have shown the following:
(Vie{l,...,n})(Fu; € 2()*) (su; € Hy N [ﬂj€{17..,,n}fmj] N Lpy,) N (Pra(ui) =h) (11)

We will now use this information to construct a string u € ¥* with the property:
(su € Hm N [Njeqr,.n} Loy VImy)]) A (Pra(u) = h)

We take u to be any string in set ﬂi€{17_“7n}Pfl(ui) (12)

We know that the set is non-empty for the following reasons:

e For each i € {1,...,n}, we have u; € X(i)* where:
Y(i) =S U B, =X — (Ujeqr,.im1,it1,..n} 2L,)-

e The only events strings u; have in common are ¢ € X;g.
e All strings u; agree on common events as Pry(u;) = h

From (12), we have (Vi € {1,...,n})P;(u) = u;. As Xy C 3(i) (by Proposition 23) and
h € ¥}y (by (2)), we can conclude:

P[H(u) = P[H(ui) =h= P]H(h) (13)

From (2), we have: sh € Hy N [Njeqr,... 3 Zm;]

119

We can now apply Proposition 20, point b, and conclude:
su € Hp (14)

As ¥, € Xy for j € {1,...,n}, we can conclude by (13) that Py, (u) = Pr;(h). We can
now apply Proposition 20, point f, and conclude:

su € Imj
Combining with (14), we can conclude:
su € Hm N [Njequ,....n3 Lm;] (15)
All that remains is to show su € Njcq1,. nyLm;
From (11), we have su; € Ly, for j € {1,...,n}. From (12), we have P;(u) = u; = P;(u;)
as uj € X(j)*. As Xy, € X(j) (by Proposition 23), we can conclude Py, (u) = Py, (uj).
We can now apply Proposition 20, point d, and conclude:
su € Emj
Combining with (15), we have: su € Hp N [Njeqa,....n} (Lim; NI,)]
From (13), we have P;y(u) = h, as required.

QED

120

Chapter 8

Parallel Case: Controllability

Now that we have discussed nonblocking in the parallel interface setting, we now consider
controllability. In the remainder of this chapter, we will define our setting and notation and

then present some supporting propositions, followed by the serial controllability theorem.

8.1 Definitions and Notation

We now present some definitions and notation that will be useful in simplifying proofs. As
in the serial case, we need to decompose the nth degree (n > 1) parallel interface system
into its plant and supervisor components. For the remainder of this section, the index j is
defined to be j € {1,...,n}.

We now define the high level plant to to be Gy, and the high level supervisor to be
Sy (both defined over ¥p). Similarly, the jth low level plant and supervisor are Gr,; and
Si, (defined over ¥jy,;). To be consistent with our definitions in Chapter 7, we define the

following identities for the high level subsystem and jth low level subsystem as follows:
Gy = GullsSu Gr, = G1,|lsSL;

We now have two ways to describe our system for the parallel case, depending on the
level of detail required. We will call the original method described in Chapter 7 in terms of
an interface and high and low subsystems, the parallel subsystem based form. This form is
useful as it simplifies nonblocking definitions and proofs. We call the above method, given

in terms of an interface and plants and supervisors, the parallel general form as the parallel

121

subsystem based form can be recovered by applying the above identities. When we refer to
terms applicable to both forms (e.g. the high level), we will simply state the term, allowing
the type of the system to make our meaning clear.

Our next step is to define the flat supervisor and plant for our system.
Plant := Gy ||sGr, s - - - |[sGL., Sup = SullsSpills - - sSLallsGrlls - - - sGr,

We next want to express the languages of Plant and Sup in terms of their components.

To do this, we need to first define the following useful languages::

H:= P L(Gn), Hs:=PL(Sy), C¥*

L;:= PI_Lle(ng), Ls, := PI_Lle(SLj), cy*

We can now express the languages of Plant and Sup as follows:
L(Plant) = H N [Nge(a,.. 0y Ll L(Sup) =Hs N [Nkea,. 0y (Ls, N k)]

This allows us to present the proposition below that collects together several similar
propositions. As it will be common in the proofs in this report to show that membership
in languages such as H are dependent only on events in specific subsets (for H, events in

subset YX;p), this proposition will be very useful.

Proposition 27
(a) (Vs,s' € ¥*) se€ H and Pry(s) = Prg(s’) = s € H
(b) (Vs,s' € ¥*) s € Hs and Pry(s) = Piy(s’) = s € Hg
(¢c) (Vke{l,...,n})(Vs,s' € *) s € Ly and P, (s) = Prp, (') = s’ € Ly,
(d) (Vke{1,...,n})(V¥s,s’ € £*) s € Ls, and Prr,(s) = Prr,(s') = ¢’ € Lg,
Proof:
Points a-b:

Identical to the proof of point a of Proposition 8, after substitution.

Points c-d:

122

Let k € {1,...,n}, then identical to the proof of point a of Proposition 8, after substi-
tution.

QED

8.2 Serial System Extraction: General Form

We now extend the definition of the jth serial system extraction, defined in Section 7.2, to
operate on the general form of an nth degree (n > 1) parallel interface system. The subsys-
tem form of the definition can be recovered by using the identities Gy (j) = Gu (4)||sSu(4),

h

Gr(j) = Gr(h)||sSc(j). Normally, we will simply refer to the jt serial system extraction,

as the type of the parallel system will make clear which definition is intended.

jth Serial System Extraction: General Form For the nth degree (n > 1) parallel in-

terface system composed of DES Gy, Gr,,..., G1,,, Su, St,,---,S81,,, Gr,,...,G1,,

system extraction, denoted by system(j), is composed of the following elements:

Gu(d) = GullsGnlls---|sGr,;_,[IsGrnlls - - - |1sGr,
Su(j) = Su

Gr(j) = G,

Si(j) = S,

Gi(j) = Gy

Ya(d) = Ukeft,., (=1), G+1), .on} 21, U ZH

() = X,

Yr(j) = Zg

Taj) = Za

(j) = Zu()UBL()UER(G)UXA()

= X — Ukef1,...(j-1), (j+1), ..n} SLs

123

8.3 Controllability Properties

The goal in this chapter is to develop a means of verifying that our system’s flat supervisor
is controllable for the flat plant that uses only local checks. To achieve this, we will extend
the serial level-wise controllability definition to the parallel system case by using the serial

system extraction definition.

Level-wise Controllable: The nth degree (n > 1) parallel interface system composed of
DES Gu, G1,,---,91,,, Su, S,»-..,SL,,, G1,,...,Gr,, is level-wise controllable with

respect to alphabet partition ¥ := Upeqr oy (Xz, U Xg, UXa,) U Xy, if:

(Vje{l,...,n}) The jth serial system extraction of the system is serial level-wise

controllability.

Now that we have the above definitions, we can present several related propositions that
establish properties about the parallel system that will be useful in later proofs.

Our first proposition uses the level-wise controllable definition to establish the event set
that the DES that make up an nth degree (n > 1) parallel interface system are defined over.
This is useful for defining the languages of a DES created by the synchronous product of

one or more of these DES.

Proposition 28 If nth degree (n > 1) parallel interface system composed of DES Gy,
6r,,---,91,, S, Sry»---,S1,,, Gr,,-..,Gr,, is level-wise controllable with respect to the
alphabet partition ¥ := Upeqr, . 3} (Xr, U YR, U X4,) U Xg then DES Gy and Sy are
defined over event set Xy, DES G[]. is defined over event set X, and DES QL]. and SLj

are defined over event set Xy, where j € {1,...,n}.

Proof: See page 129

We are now ready to state the proposition below which establishes useful properties for

often used languages.

Proposition 29 If nth degree (n > 1) parallel interface system composed of DES Gy,
6r,,.---,91,, S, Sr,»--.,SL,,, G1,,...,Gr,, is level-wise controllable with respect to the
alphabet partition ¥ := Upeqr .} (Xr, U Xg, U Ba,) U Xg then, for all j € {1,...,n},
languages H, Hs, Lj, Ls,, Z;, L(Plant), and L(Sup) are closed.

124

Proof: See page 130.

We now present a proposition that will aid in the use of the general form of serial system

h serial system

extractions in proofs. The proposition will interpret terminology for the j ¢
extraction (a serial interface system) in terms of the original parallel system.

Before we can present the proposition, we need to first define (for use in the proposition)
anew natural projection, P;, to map strings from X* (the event set of a given parallel system)
to strings from X(7)* (the event set of the jth extracted system of the given parallel system).
It is as defined as follows:

P

5 18" — X))

Proposition 30 If the nth degree (n > 1) parallel interface system composed of DES
6w, 91,5---, 91, Su, Sry» ---,SL,,, Gr,5- .., G, , 1s level-wise controllable with respect to
the alphabet partition ¥ := Upeqr . 3 (Br, U Br, U X4,) U g, then for the jth serial

system extraction, system(j), the following is true:

(i) Theflat plant is Plant(j) = Gul|sGr|ls- - - [|sGr;_, lIsGr i lls - - - 1sGr.|[sGL, and

the flat supervisor is Sup(j) = Sg||sSr;||sG1;
(i) The following event sets are: X;(j) = Xp;, ¥ (j) = Erm, and Xrr(j) = X1,

(iii) The following inverse natural projections are: Pry(j)~' = P;- PI}}, Pip(j)~t =

P;- Py, and Pr(j)~' = ;- P}

(iv) The alphabet of Gy (j) and Sy (j) is X (), the alphabet of Gr.(j) and Si(j) is
Yr(j), and
the alphabet of G1(j) is X1(j)

(v) The indicated languages satisfy the following statements:

H(j) = P (H)N[Mrequ, ..., (i-1), G+1), .,n} i (Zi))]
Hs(j) = Pj(Hs)
L(j) = F;(Ly)
Ls(j) = P;(Ls;)

125

I(j) = P;())
L(Plant(j)) = P;j(H) N [Npequ, .., (=1), G+1), ..., n} P (Zr)] N Py (L)
)

L(Sup(j)) = Pj(Hs)N Pj(Ls;) N P;(Z;)

(vi) Languages H(j), Hs(j), L(j), Ls(j), Z(j), L(Plant)(j), and L(Sup)(j) are

closed.

Proof: See page 131.

h

We close this section by noting that after examining the definition of the j th serial
system extraction: general form and the above proposition, we see that for n = 1, a general
form parallel interface system reduces to a single general form serial interface system. We
thus see that a serial interface system is a special case of a parallel interface system. We will

now talk of parallel interface systems and their definitions as the general case for bi-level

interface systems.

8.4 Theorem and Propositions

We are now ready to present our main results for this chapter. We will first present two
supporting propositions, followed by our parallel case controllability theorem. The following

propositions are analogous to the serial controllability propositions.

8.4.1 Parallel Low level Controllability Proposition

We start with the parallel low level controllability proposition. It asserts that if the system
is level-wise controllable, then each pair of low level supervisor and interface is controllable

for the flat plant.

Proposition 31 If the nth degree (n > 1) parallel interface system composed of plant

components Gy, Gr,,-..,9L, , supervisors Sy, Sr,,--.,SL,, and interfaces Gp,, ..., Gy, , s

n’

level-wise controllable with respect to the alphabet partition ¥ = Uke{17...7n}(ELk U g,
UXa,)UXg, then

(VJ € {17 ey TL}) (VS € L(Plant) N LSJ OIJ) EligL(Plant) (s)ﬂzu - EligLSj nZ; (S)

126

where Plant := Gy ||sGr,||s - - - ||sGL,, is the system’s flat plant.

Proof: See page 134.

8.4.2 Parallel High level Controllability Proposition

We now present the parallel high level controllability proposition. It asserts that if the
system is level-wise controllable, then Sy is controllable for flat plant when the flat Plant is

already under the control of the interfaces.

Proposition 32 If the nth degree (n > 1) parallel interface system composed of plant
components Gy, Gr,, .. .,9L, , supervisors Sy, Sr,,-..,SL,, and interfaces Gy, ...,Gr, , s
level-wise controllable with respect to the alphabet partition ¥ = Upeqr, . o3 (XL, U Xp,
UXa,)UXy, then

.....

where Plant := Gy ||sGr,||s - - . ||sGL,, is the system’s flat plant.

Proof: See page 136.

8.4.3 Parallel Controllability Theorem

We now present our main result for this chapter, the parallel controllability theorem. It
states that, to verify if a parallel system is controllable, it is sufficient to check that each of
its serial system extractions is serial level-wise controllable. As the level-wise controllable
definition can be evaluated by examining only one level of our system at a time (the high
level or one of the low levels), we now have a means to verify controllability of our system

using local checks.

Theorem 4 If the nth degree (n > 1) parallel interface system composed of plant compo-
nents Gu, Gr,,-..,9L,, supervisors Sy, Sr,,...,SL, , and interfaces Gy, ...,Gr,, is level-

wise controllable with respect to the alphabet partition ¥ := Upeqy (XL, U Xg, UX4,)

127

UXy, then

(Vs € L(Plant) N L(Sup)) Eligypiant)(s) N Xu € Eligy,sup)(5)
where Plant = Gy ||sGr,||s-.-|s9L, s the system’s flat plant, and Sup := Su||sSL,
l|s - ||sSealls Grills---||sGr, is the system’s flat supervisor.

Proof:

Assume that the nth degree (n > 1) parallel interface system is level-wise controllable.

(1)
Let s € L(Plant) N L(Sup), and o € Elig;piant)(s) N Xy (2)

We will now show this implies o € Eligygup(s). It’s sufficient to show so € L(Sup) =
Hs N [Niequ,...ny(Ls, N Zi)]

We first note that s,s0 € H N [Nyeqy,. ny L] = L(Plant) and s € Hs N [Npeqa,... 0y (Ls, N
Zi)] by (2). (3)

We next note that, by (1), we can apply Proposition 31 and conclude:
50 € Nieqa,...n}y (Ls, NZy) (4)
All that remains is to show that so € Hg
From (3), we have s € L(Plant) N Hs N [Mieq1,... n1 Zk]
From (3) and(4), we have so € L(Plant) N [Npeq1,... 01 Zk]
We can now apply Proposition 32, and conclude o € Eliggy(s)
= so € Hg
From (4), we can now conclude so € Hs N [Ngeq1,... n} (Ls, NZg)], as required

QED

8.5 Proofs of Selected Propositions

In order to make this work more readable, the proofs of some propositions in this chapter

were not given as the propositions were introduced. They will now be presented in the

128

following sections.

8.5.1 Proof of Proposition 28

Proof for Proposition 28 on page 124: If nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,-.., G1,,, Su, Sty» ---,SL,,, G1,»--.,Gr,, is level-wise control-
lable with respect to the alphabet partition

¥ = Upeqr,.n} (B0, UXR,UE4,) U Xg then DES Gy and Sy are defined over event set
Yru, DES G’Ij is defined over event set X, and DES ng and SLj are defined over event
set ¥yr;, where j € {1,...,n}.

Proof:

Assume that the nth degree (n > 1) parallel interface system is level-wise controllable with
respect to the alphabet partition. (1)

We will now show this implies that DES Gy and Sy are defined over event set X7y, DES
Gy, is defined over event set ¥, and DES Gy, and Sy, are defined over event set ¥z,
where j € {1,...,n}.

We first note that (1) implies that (V5 € {1,...,n}) the jth serial system extraction,
labelled system(j), of the system is serial level-wise controllable.

This allows us to conclude that: (Vj € {1,...,n}) DES Gg(j) and Si(j) are defined over
Y1u(j), G(j) and Sr(j) are defined over X7 (j), and that G(j) is defined over X;(j).

From (1), we can now apply Proposition 30, point ii and conclude:!
Y1) =25, 2 (j) = Xru, and X7.(j) = 11,

We can now conclude that: (V5 € {1,...,n}) DES Gu(j) and Si(j) are defined over X,
Gr(j) and Sr(j) are defined over ¥, ;, and that G7(j) is defined over ;- (2)

This implies: (Vj € {1,...,n}) DES Sy = Sy(j) is defined over Xy, G, = Gr(j) and
Sr,; = S.(j) are defined over ¥y, and that G, = G(j) is defined over ¥y, (3)

All that remains is to show that DES G is defined over alphabet X ;5. To do this, we first
need to prove the following claim.

Claim: EgH C ¥y and (Vj € {1,... ,n}) EQH D) (EH UE[J.)

Let j € {1,...,n}. We will now show this implies ¥g, C ¥y and Xg, 2 (¥x UX[,).

!Proposition 30, point iv requires the proposition we are currently proving, but point ii of Propo-
sition 30 is independent of point iv and does not.

129

We start by noting Gu (j) := GullsGrlls- - - [|sGr,_y [IsGr 4 lls - - - [sGr,- By the definition
of the ||s operator, we know EQH(j) =Yg, U [Uke{l,...,(j—l),(j-i—l),...,n}Zsz]' This implies
that Xg, C Yg, ;). As Xg,(j) = Xrg (from (2)), we immediately have Yg, C ¥rp.

From (3), we have Xg,, ;) = Xg,; U [Ure(1, .., (j-1), G+1),...n} 21)-

We now note that X7, C X7y but Xr, N [Upeqr, .. (j-1), (j+1),....,n} 21,) = @ because of our
event partition.

This implies: Xj, C Yg,

We next note that Xy C ¥7g but Xy N [Ukeqr, . (j-1), G+1),..,n} 21,] = 0 because of our
event partition.

This implies: Xy C Yg,
We thus have Yg,, 2 (¥y UX},) as required.
Claim proven.

From the claim, we have ¥g,, C ¥X;y. To show that Yg,, = ¥;5 we now only have to show
X6y 2 XIH-

From the claim, we also have (Vj € {1,...,n}) ¥g, 2 (X5 UXy,).
This implies ¥g,, 2 Xy U [Uke{l,...,n}sz] = Xrn. We thus have Xg,, = Xrp.
We can now conclude that DES Gy is defined over Yjj, as required.

QED

8.5.2 Proof of Proposition 29

Proof for Proposition 29 on page 124: If nth degree (n > 1) parallel interface system
composed of DES Gy, G1,,..., Gr,,, Su, St --.,S1,,, G1,,--.,Gr,, is level-wise control-
lable with respect to the alphabet partition ¥ := Upeqq, . 03 (2r, U Xpg, U Xa,) U Xy then,
for all j € {1,...,n}, languages H, Hs, Lj, Ls;, Z;, L(Plant), and L(Sup) are closed.

Proof:
Assume system is level-wise controllable. Let j € {1,...,n}. (1)

Will now show this implies that the indicated languages are closed.

130

We first note that by (1), the system is level-wise controllable. This allows us to apply
Proposition 28 and conclude:

L(Gr), L(Sn) € Sy, L(GL). L(S1,) € 55y, and L(G1,) € 5.

This tells us that languages H = P;;;(L(Gr)), Hs = P;yL(Sy), Lj = P (L(Gr,)),
Ls, = PI_LlL(SLj), I; = Pl_l(L(Glj)) are properly defined.

We will start by showing that languages H, Hgs, Lj, Ls;, and Z; are closed.

We now note that languages L(Gn), L(Sk), L(Gr,), L(SL,), and L(G;) are closed by the
definition of the closed behaviour of a DES.

We can now apply Proposition 1 repeatedly and conclude that H, Hg, L;, Ls;, and Z; are
closed, as required. (2)

We will now show that languages L(Plant), and L(Sup) are closed.

We next note that L(Plant) = H N [Nyeqy
Tr)].

n}Lk] and L(Sup) =Hgs N [ﬁke{l,...,n}(LSk N

Combining with (2), we can now apply Proposition 2 repeatedly and conclude that
L(Plant), and L(Sup) are closed, as required.

QED

8.5.3 Proof of Proposition 30

Proof for Proposition 30 on page 125: If the nth degree (n > 1) parallel interface system
composed of DES Gy, Gr,,-.., G1,., Su, Sv,» ---,SL,,, G, --.,G1,, is level-wise control-
lable with respect to the alphabet partition ¥ := Upeqy, . o3 (X1, U Xg, U Xa,) U Bg, then

for the j th serial system extraction, system(j), the following is true:

(i) The flat plant is Plant(j) = GullsGrls ... [[sG1,, 115Gy lls -+ - 1sGr, 159z, and

the flat supervisor is Sup(j) = Sg||sSr;||sG1;
(i) The following event sets are: Xy(j) = Xp;, i (j) = Xin, and Xr1(j) = Xy,

(iii) The following inverse natural projections are: Pry(j)™' = P; - PI}}, Pip(5)~t =

P;- Pp., and Py(j)' = P - P!

(iv) The alphabet of G (j) and Sy (j) is Xrr(j), the alphabet of Gr(j) and Sp.(7) is X11.(7),

and

131

the alphabet of G1(j) is X1(j)

(v) The indicated languages satisfy the following statements:

H(j) = Pi(H)N[keq, ..., G-1), G+1), 3 s (Zi)]

Hs(j) = P;(Hs)

L(j) = P;(L)

Ls(j) = Pj(Ls))

() = PB(I)
L(Plant(j)) = P;j(H)N[Nreqr, .., (j-1), G+1),....n} i (Te)] N Py (L)
L(Sup(j)) = P;(Hs)NP;(Ls,)NP;(Z;)

(vi) Languages H(j), Hs(j), L(j), Ls(j), Z(j), L(Plant)(j), and L(Sup)(j) are closed.

Proof:

Assume that the nth degree (n > 1) parallel interface system is level-wise controllable with
respect to the alphabet partition. (1)

Let system(j) be the jth serial system extraction of our parallel system. (2)
We will now show this implies system(j) satisfies points i-vi.

Point i: Show that the flat plantis Plant(j) = Gul|sGrls - [|sGr,;_y [[sGr1jpplls - - - |1sG1,
||sGL, and the flat supervisor is Sup(j) = Syl|sSr,||sG1;

Plant(j) = Gu(y)||sGr(j), by definition.
= GnullsGrlls-- - [lsGr,) llsGrgpplls - lsGrallsGr;, by (2)-
Sup(j) = Su()|lsSL()||sG1(j), by definition.

= SHHSSLJ-HSGIja by (2)

Point ii: Show that the following event sets are: X(j) = Xj;, ¥ru(j) = ¥rm, and
Yrp(d) = 2,

Proof is identical to the proof of point ii of Proposition 23.

. ses, . _1 o . _1 o . 71 . — . 71
Point iii: Show that P;y(j)~' = P; - Pry, Prn(j)~" = P Prp., and 21(j) = P P
Proof is identical to the proof of point iii of Proposition 23.

Point iv: Show that the alphabet of Gy (j) and Sy (j) is Xru(j), the alphabet of Gr,(j)

132

and Sr,(j) is X7.(j), and
the alphabet of G(j) is ¥(j)

From (1), we have that the system is level-wise controllable. This implies that system(j) is
serial level-wise controllable. The result follows immediately.

Point v:
First, we must show that H(]) = P] (H) N [mke{l,...,(j—l),(j—i—l),..‘,n}Pj (Zk)]

Proof is identical to the proof for H(j) of point v of Proposition 23 after relabelling and
substituting Proposition 28 for Proposition 21. (3)

The proofs for the remaining languages for point v are straightforward, and are presented
together below.

Hs(j) = Pra(j) 'L(Sg(4)), by definition.
= P;-P;;(L(Sn)), by (2) and point iii.
= FPj(Hs) (4)
L(j) = Prr(j)"(L(GL(j))), by definition.
= Pj- P (L(G1,)), by (2) and point iii.
= Pj(Ly) (5)
Ls(j) := Prp(5) Y(L(SL(5))), by definition.
= P Plej(L(SL].)), by (2) and point iii.
= Pj(Ls,) (6)
() = Pr(5)"YL(G1(4))), by definition.
= P;- P '(L(Gy)), by (2) and point iii.
= Pi(Ty) (7)
L(Plant(j)) = H(j)NL(j), by definition.
= Py (H) N [Meequ, .., (-1), G+1), .. n} Ps (Zk)] N Pj (Ly), by (3) and (5).
L(Sup(j)) = Hs(j)NLs(j)NZ(j), by definition.
= Pj(Hs) N P;(Ls;) N P;(Z;), by (4), (6), and (7).

Point vi: Show that the languages H(j), Hs(j), L(j), Ls(j), Z(j), L(Plant)(j), and
L(Sup)(j) are closed.

From (2), we know that Gy (j) = Gul|sGrlls--- ||sGI(j_1)||sGI(j+1)HS ...||sGr1,, Plant =
GullsGn s - |sGr,_y l1sGrplls - - [[sGrllsGr,» and Sup = Su|[sSt,|[sG;-

We can now apply Proposition 5 and conclude that languages L(Gg (7)), L(Plant), and
L(Sup) is closed.

We next note that languages Sy (j), Gr(j), S(j), and G1(j) are closed as Sy (j) = Su,

133

Gr(j) = Gr;, St(j) = Si,, and G[(j) = G1; (by (2)), and by the definition of the closed
behaviour of a DES.

We now apply Proposition 1 repeatedly and conclude that H(j) = Pry(5) " L(Gu(5)),
Hs(j) = Pru(j) ' L(Su(j)), L(j) = Pro(5)'L(GL(j)), Ls(j) = Pro() ' L(SL(j)), and
Z(j) = Pr(j)"*L(G1(5)) are closed.

QED

8.5.4 Proof of Proposition 31

Proof for Proposition 31 on page 126: If the nth degree (n > 1) parallel interface system
composed of plant components Gg, Gr,,...,9L,, supervisors Sy, Sr,,...,SL,, and inter-
faces Gp,,...,Gr,, is level-wise controllable with respect to the alphabet partition ¥ =

Ok‘e{l,...,n}(sz U YR, U Ya,) U Xp, then
(Vje{l,...,n}) (Vs € L(Plant) N Ls; N Z;) Eligyprant)(s)NZu C EligLSijj(s)

where Plant := Gy||sGr,||s - --||sGrL, is the system’s flat plant.

Proof:

Assume that the nth degree (n > 1) parallel interface system is level-wise controllable. (1)
Let j € {1,...,n}, s € L(Plant) N Ls; NZ;, and o € Eligy,piant) () N Xu. (2)
We will now show that this implies o € Eligy, 5,0 (s).

It’s sufficient to show that so € ng NZ;j.

We first note that s,s0 € H N [Ngeqr,.. 0y L] = L(Plant) by (2). (3)
We have two cases: I) o & ¥y, and IT) 0 € Xy, .

case I)

Assume o & X Lj- This implies: Pr L; (o) = €, where € is the empty string.

= Prp,(s0) = Prp;(s)Prr;(0) = Prr;(s), as the natural projection is catenative. Similarly,
we have P, (so) = Py, (s) as o & ¥y, since Xy, C ¥y, (4)

From (2), we have s € Ls, NZ;.

134

As s € Ls; and Pyp;(s0) = Pr.(s), we can apply Proposition 27, point c, and conclude
so € LS]..

Similarly, we can apply Proposition 20, point e,and conclude so € Z;.
We thus have so € ng NZj.

Case I complete.

case II)

Assume o € Yz,

We now examine system(j), the jth serial system extraction of our parallel system.
We first note that we have o € Xy7(j) as ¥;1(j) = X1, by Proposition 30.
= o€ X(J)22r.()

= Pj(0) = 0. See Section 8.3 for the definition of the natural projection P;.
= Pj(so) = Pj(s)o

From (1), we can conclude that system(3j) is serial level-wise controllable.

We will use point II of this definition to show that Pj(s)o € Ls(j) NZ(j).
To do this, we first need to show that P;(s), Pj(s)o € L(j).

As s,50 € H N [Mieqr,...ny k) by (3), we have s, so € L;.

= Pj(s) € PjL; and Pj(so) = Pj(s)o € P;L;

= Pj(s), Pj(s)o € L(j), by Proposition 30.

As we have o € %, from (2), we can conclude o € Eligy,;y(P;(s)) N Xy

We now only need to show Pj(s) € Ls(j) N Z(j).

From (2), we have s € L(Sup) and thus s € Ls, N Z;.

— Pj(s) € PjLs, N P;T;

= Pj(s) € Ls(j) NZ(j), by Proposition 30.

We now have P;(s) € L(j) N Ls(j) NZ(j) and o € Eligy,;)(P;(s)) N X, and can conclude
by point II of the serial level-wise controllable definition that:

135

o € Eligy,g(j)nz(;)(Pj(s)) and thus Pj(s)o = Pj(so) € Ls(j) N Z(j)

Substituting in for Ls(j) and Z(j) (by Proposition 30) gives: Pj(so) € PjPI_Lle(SLJ.) N
PP L(G)
J

We note that since ¥17,(j) = ¥, and X;(j) = X, we have Xj7, C X(j) and X7, € X(j).
We can thus apply Corollary 2 twice, taking first 3, = X(j), Xp = 1L, and Ly = L(SLJ.)
and then ¥, = %(j), ¥y = Xy;, and Ly = L(G[;). We can thus conclude:

so € P L(St,;) N P L(Gy,) = Ls, NI,
Case II complete.

By Cases I and II, we have so € Ls; NZ;, as required.

QED

8.5.5 Proof of Proposition 32

Proof for Proposition 32 on page 127: If the nth degree (n > 1) parallel interface system
composed of plant components Gy, Gr,,...,9L,, supervisors Sy, Sr,,...,SL,, and inter-
faces Gp,,...,Gr,, is level-wise controllable with respect to the alphabet partition ¥ =

L.che{l,...,n}(ELk UXg, UXa,) Uy, then

.....

where Plant := Gy||sGr,||s - --||sGrL, is the system’s flat plant.

Proof:
Assume that the nth degree (n > 1) parallel interface system is level-wise controllable. (1)

Let s € L(Plant)"HsN[Nkeq1,...nZk], and o € Eligy (Prant)niny.c n}zk}(s)ﬂzu (2)

,,,,,

We will now show that this implies o € Eligg ()
It’s sufficient to show that so € Hg
We first note that:

s, sc €e HN [ﬁke{l,‘..,n} (L NZy)] = L(Plant) N [ﬂke{lmn}Ik] by (2). (3)

By examining the definition of ¥(j) for some j € {1,...,n} (see definition of jth serial

136

system extraction: general form on page 123), we see that X = Upcqy, . n} 2 (k)
= (Fje{l,...,n}) o € £(j) (4)

We use this j and note that by (1), we can conclude that system(j), the jth serial system
extraction of our parallel system, is serial level-wise controllable. (5)

We will use point III of the serial level-wise controllable definition to show that Pj(s)o €
Hs(j). See Section 8.3 for the definition of the natural projection P;.

We first need to show that P;(s) € H(j) NZ(j) N Hs(j) and o € Eligg(j)nz()(s) Ny

From (2) and (3), we have s € HN Hs N [Npeqi,.. n)1 Zk]

= Pj(s) € P;(H) N P;(Hs) N [Nkeqa,...ny 5 (Zk)]

= Pj(s) € H(j) NZ(j) NHs(j), by Proposition 30.

Similarly, from (8) we can conclude P;(so) € H(j) NZ(j)

We next note that o € ¥(j) (from (4)) implies that P;(so) = Pj(s)o.

= o0 € Eliggjnz(j) (Pi(s)) Ny

We can now conclude by point III of the serial level-wise controllable definition that:
o € Eligy(;)(Pj(s)) and thus Pj(s)o = Pj(so) € Hs(j)

= Pj(so) € Pj(Hgs), by Proposition 30.

= Py(s0) € PP L(Sh)

As ¥Xrg = X1 (j) by Proposition 30, we have X5 C ¥(j). We can thus apply Corollary
2 by taking ¥, = X(j), Xp = X1m, and Ly, = L(Sy) and thus conclude:

so € PjyL(Sy) = Hg, as required.

QED

137

Chapter 9

Parallel Manufacturing Example

To illustrate the parallel case, we will look at the simple manufacturing system shown in
Figure 9.1. The system is composed of three manufacturing units running in parallel, a
testing unit, material feedback, a packaging unit, plus three buffers to insure a proper flow
of material.

For the manufacturing units (indexed by j = I, 11, III), we will reuse the systems devel-
oped in Chapter 5 with the packaging unit removed and treating the system as a flat model
(i.e. ignoring for now the system’s own interface structure). Figure 9.2 shows the plant
models for each manufacturing unit.

For the source, sink, test unit, and packaging unit, we introduced new plant models.

They are shown in Figure 9.3. For the three buffers, they will be implemented as supervisors.

9.1 Design Details

For this example, we want to design a parallel case interface system with the structure
shown in Figure 9.4. We will treat the three independent manufacturing units as our low
levels. Our first step is to define which plant model exists at which level. This is shown in
Figure 9.5.

We now need to define interfaces between the high level and each of the three low levels.

Normally, each interface would be quite different, but since each low level is an instance

138

manufacturing unit [

4 slot
input
buffer

Path Flow Model-

manufacturing unit I11

v

4 slot
output
buffer

test
unit

4 slot
package
buffer

—>

packaging
unit

Figure 9.1: Block Diagram of Parallel Plant

139

Path Flow Model-j Define New Events-j

fin_exit-j str_exit-j
<

attch_ptA-j, attch_ptB-j,
finA_attch-j, finB_attch-j

partLVExit-j S i

part_1v2-j A Part_arr2-j

part_ent-j part arrl-j part_Ivl-j

part_Iv3-j
part_arr3-j

recog_B-j

dip_acid-j, Attach Case to Assembly-j
polish-j

Attach Part to Assembly-j
str_ptA-j

Polish Part-j

cmpl_A-j start_case-j

take pt-j .
start_pol-j >

z &

I 8

7 &

& &

- compl_pol-j . compl_case-j
ret_pt-j
Figure 9.2: Plant Models for Manufacturing Unit j
Packaging System Source Sink Test Unit

take item new_part allow exit part f obuff part_passes

S LG

a3eyoed

ret_inbuff

deposit_part

allow_exit

Figure 9.3: New Plant Models

of the same manufacturing unit, it makes sense that the interfaces are also all of the same
form. Figure 9.6 shows the interface to low level j. For the remainder of this chapter, we
will take j = I, 11, I11.

We can now define the alphabet partition ¥ := [Upcqrmun (X0, UXR,UX4,)] U Xy as

below:

Yy = {take_item, package, allow_exit, new_part, part_f obuff, part_passes, part_fails,
ret_inbuff, deposit_part}

Yr, = {part_ent-j}

Y4, = {fin_ewit-j}

Y1, = ({start_pol-j, attch_ptA-j, attch_ptB-j, start_case-j, comp_pol-j, finA_attch-j, finB_attch-j,

compl_case-j, part_arrl-j, part_lvl-j, partLoEzit-j, str_exit-j, part_arr2-j, recog-A-j, recog_B-j,

part_w2-j, part_arr3-j, part_lv3-j, take_pt-j, str_ptA-j, str_ptB-j, compl_A-j, compl_B-j,

140

High level

Low Level, |} - Low Level, Low Level ,

G, G,, Gy,

Figure 9.4: Desired Interface Structure

ret_pt-j, dip_acid-j, polish-j, str_rlse-j, attch_case-j}

Our next step is to design new supervisors for our low levels. As we are reusing the
manufacturing unit designed in Chapter 5, we already have a system that is designed to
accept a new part, process it appropriately, and then allow the part to leave the unit; thus
we can simply reuse supervisors from that chapter. They are shown in Figure 9.7 for low
level j.

For the high level, we need to design supervisors to implement the input buffer, the
output buffer, and the package buffer. Each buffer should have four slots and should never
underflow or overflow. The corresponding supervisors are shown in Figure 9.8. Finally, we
note that the above supervisors were designed by hand, but we could have also employed

synthesis methods.

141

High level

Packaging System Source Sink Test Unit
part_f obuff part_passes

take item new_part allow_exit

S0

a8eyoed

ret_inbuff

allow_exit deposit_part
Low Level Low Level ,, Low Level
- Path Flow Vl‘nd‘el-‘i ‘ Path Flow M:ld‘el-‘i Define New Events-j i Path Flow Model-j Define New Events-j

e B Tecoe B
Assembly-j . o dip_acid, c Assembly-j . o dip_acidd, Attac 5 . . dip_acid,
Attach Part to Assembly-j Polish Partj 9,25 Attach Part to Assembly-j Polish Partj - Attach Part to Assembly-j Polish Partj .53
P gl A polishj P gl A polish L el A polish-j
take pt start_pol-i_ | start_poli_ start_pol-{_
Z s
compl_pol-j A compl_pol-j \& compl_pol-j Yi
e e pt e
Attach Case to Assembly-j Attach Case to Assembly-j Attach Case to Assembly-j
strt_case-j stat_case-j start_case-j
E iﬁ. j t. |
z z
compl_ compl_case) compl_case-)

Figure 9.5: Plant Models for Parallel System

9.2 The Final System

Now that we have defined the individual components of the system, it is time to put every-
thing together. We start by examining the j** low level subsystem. This is shown in Figure
9.9, where we have labelled which DES belong to the j** low level subsystem, the 7" low
level plant, and the j** low level supervisor (each formed by the synchronous product of
the indicated DES). We can now assemble the complete parallel system shown in Figure

9.10, minus DES Ensure_matFb which we will introduce in Section 9.3. In addition to

G .
part_ent-j

fin_exit-j

Figure 9.6: Interface Model for Low Level j

142

Sequence Tasks-j

G fin_exit-j
T (Gisd) . _
part_ent-j part_arrl-j start_pol-j compl_pol-j
g <—>Q/—>o—>o -
: k=4
: . ER
I finA_attch-j attch ptA-j recog_A-j = A &
-] <
<> art_lv2-j Lo
part_Iv2-j B &
E ST
5\ g finB_attch-j recog_B-j
k-1 = .
: 2 Stanicase_jcompl_case-_] part_Iv3-j part_arrl-j g
e
. =
str_exit-) o
Polishing Sequence-j Affix Part-j
str_ptA-j take_pt-j
start_pol-j dip_acid-j

[y [dud

[-wid yope

polish-j dip_acid-j

[-osp1 s
fystjod

finA_attch-j

attch_ptB-j take_pt-j

ret_pt-j cmpl_B-j

[-gqpd ns

[-qone” quyy

Figure 9.7: Supervisors for Low Level j

the low level subsystems, Figure 9.10 shows which DES belong to the high level subsystem,

high level plant, and the high level supervisor (each formed by the synchronous product of
the indicated DES).

We now define the flat system, the flat plant, and the flat supervisor as follows:

Plant = gH’ lsgLI ‘ |sgLH ’ ‘sgLIH
Sup = SHHSSLI‘|58LIIHSSLIII‘|SGIIH8GIIIHSGIIII

9.3 Evaluating Properties

Our next step is to verify that the flat system is nonblocking and that the flat supervisor
is controllable for the flat plant. To achieve this, we will show that the system is level-
wise nonblocking and controllable, and interface consistent. Our first step is to show that
sets Xy, XR;, X4;, and X, are pairwise disjoint. This can be seen by inspection of their
definitions.

As we have a parallel system of degree n = 3, we must verify that the j** serial system

extraction: subsystem form are serial level-wise nonblocking, and serial interface consistent,

143

and that the j** serial system extraction: general form is serial level-wise controllable. We
start by defining the serial extraction systems: system(I), system(II), and system(III).
System(I) is defined below, with the DES definitions shown in Figure 9.11, minus DES
Ensure_matFb which we will introduce later in the section. The remaining systems are

left as an exercise.

Parallel Subsystem Based Form:

GL I = GLI
G[I = G[

I

= [UkeqimXr,)|UEH

() = Ep
Sp(I) = Ip
Su() = ¥4

= Sp(D)USLI)US(NUSA)

Parallel General Form:

Gu(l) = GullsGryllsGry
Su(l)) = Sm

GgLl) = G

ScI) = S

The reader should note that the interfaces and the three low level subsystems, plants,
and supervisors are identical up to event relabelling, and thus isomorphic. This means
that the serial level-wise nonblocking and controllability, and serial interface consistency
verifications for them will be identical. We thus need to evaluate only one low level, and
the results will apply to all three.

We now apply our software tool to the serial extraction systems and we find that the high
level is blocking. The reason for this is that the supervisor for the input buffer does not take
into account material feedback. This can be seen by analysing the sequence of events shown

in Figure 9.12, and seeing how it leads DES Test Unit, in_buff, and out_buff to a blocking

144

in buff ret_inbuff, ret_inbuff, ret_inbuff, ret_inbuff,

new_part new_part new_part new_part
>Q »>Q »>Q >
part_ent-I, part_ent-I, part_ent-I, part_ent-1I,
part_ent-II, part_ent-II, part_ent-II, part_ent-II,
part_ent-III part_ent-III part_ent-III part_ent-III
part_ent-I, part_ent-1,
part_ent-II, part_ent-II,
part_ent-III part_ent-III
fin_exit-I, fin_exit-1, fin_exit-I, fin_exit-I,
fin_exit-11, fin_exit-I1, fin_exit-1I1, fin_exit-II,
out_buff fin_exit-I11 fin_exit-I11 fin_exit-I11 fin_exit-I11
» »® » @ »

part_f obuff part_f obuff part_f obuff part_f obuff
package
buffer deposit_part deposit_part deposit_part deposit_part
»Q > »Q >
take_item take item take item take_item

Figure 9.8: Supervisors for High Level

state.! We see seven new_part events occur, but only three part_ent-{I, II, IIl } events. This
means in_buff is now full, preventing any ret_inbuff events from occurring. We next note
that one part_f obuff event has occurred, but three fin_exit-{I, II, III } events. This means
out_buff is in the third state from the left. This state disables events part_ent-{I, II, III }.
These events can’t be re-enabled until an event part_f obuff. However, a part_f obuff can’t
occur until event ret_inbuff occurs, but this is prevented by in_buff as mentioned above,
since the buffer is full. The buffer can only be emptied by events part_ent-{1, II, III } which
are disabled by out_buff. The problem is that the input buffer didn’t ensure there was
space to receive a part rejected by the test unit. It allowed the buffer to be filled with new
parts.

To properly handle material feedback, we add the supervisor shown in Figure 9.13. This
supervisor would be added to the high level supervisor, as shown in Figure 9.10. Figure 9.11

shows the new system(I). The new supervisor prevents deadlock by ensuring that there can

'The material feedback oversight was left in purposely to show that the interface structure alone does
not guarantee nonblocking.

145

Path Flow MOdelf J» Attach Part to Assembly-j
fin_exit-j str_exit-j -
O« str_ptA- cmpl_A-j

take pt-j

part_ent-j part arrl-j part_lvl-j

partLvEXit-j

str_ptB-j

part_arr2-j
recog_B-j ret_pt-j
Define New Events-j . . dip acid-j, Attach Case to Assembly-j
Polish Part-j polish-i

attch_ptA-j, attch_ptB-j, start_case-j

finA_attch-j, finB_attch-j

oo

start_pol-j

JsL YONY

JS[I IS

!'_
!‘_

compl_pol-j

compl_case-j

Polishing Sequence-j R Sequence Tasks-j
n_exit-]

start_pol-j dip_acid-j ' -
part_ent-j part_arrl-j start_pol-j compl_pol-j
o—»0

B
& E 4 2 g%
= polish-j dip_acid-j a finA_attch{ attch_ptA-j recog A = = E
& - <8 m
)-8
2 attch_ptB-j L
2
‘g finB_attch-j recog_B-j
2 star17021se—J'compl—case'J part_lv3-j part_arrl-j E
I
- =
str_exit-j e
Affix Part-j GI(j " .
. s g
str_ptA-j take_pt-j g
g 5
S =
g g s
ksl = =
‘; Lg' finA_attch-j
ol finA_attch-j > attch_ptB-j take pt-j nA_atend
. attch_ptB-j

-

start_case

yone guy
~gqd ns

ret_pt-j

[-aseo” [dwoo

R
h

l[_

Figure 9.9: Low Level Subsystem j

146

High level Subsystem

(ZZ Packaging System Source Sink Test Unit
take_item new_part allow exit part_f obuff part_passes
L O »O0—
=} 8
; *’C 4—»& &
& =
@ \ &
e)
ret_inbuff
allow_exit deposit_part
(4; in buff ret_inbuff, ret_inbuff, ret_inbuff, ret_inbuff,
- new_part new_part new_part new_part

KA R R

out_buff

fin_exit-IIT

part_ent-I, part_ent-1, part_ent-1, part_ent-I,

part_ent-II, part_ent-II, part_ent-II, part_ent-II,

part_ent-I11 part_ent-I11 part_ent-III part_ent-I11
part_ent-I, part_ent-I,
part_ent-II, part_ent-II,
part_ent-IIT part_ent-III

fin_exit-I, fin_exit-1, fin_exit-I, fin_exit-I,

fin_exit-II, fin_exit-I1I, fin_exit-I1I, fin_exit-II,

fin_exit-I11 fin_exit-111

fin_exit-1IT

part_f obuff part_f obuff part_f obuff part_f obuff
package
buffer deposit_part deposit_part deposit_part deposit_part
take_item take_item take_item take_item
Ensure_matFb
new_part new_part new_part new_part
part_passes part_passes part_passes part_passes

Low Level Subsystem ,

GI_I part_ent-1

GI_" part_ent-1I

fin_exit-I fin_exit-1I

Low Level Subsystem ,,

Gl_m part_ent-I11

fin_exit-IIT

Low Level Subsystem ,,

G, j=1 G, j=1I

Gru, j =11

Polish Partj

sat_pob

Gin o

dip_acids
polish

Polish Part-j

sart_pol

Figure 9.10: Complete Parallel System

147

G, (D
Packaging System Source Sink Test Unit
take_item NeW_Part uiioy exit part_f_obuff pﬂﬂJﬂSCeS‘ Gy part_ent-1Il G, part_entIl
»>0—
32 (1 E
< [-
13 4—& £ fin_exit-IIT fin exit-IT
i} y = L
@ - >
ret_inbuff
allow_exit deposit_part
Lﬁ (I) in buff ret_inbuff, ret_inbuff, ret_inbuff, ret_inbuff,

- new_part new_part new_part new_part
part_ent-I, part_ent-1, part_ent-I, part_ent-I,
part_ent-II, part_ent-I1I, part_ent-II, part_ent-1II,
part_ent-I1T part_ent-11T part_ent-IIT part_ent-I11

part_ent-I, part_ent-I,
part_ent-II, part_ent-II,
part_ent-IIT part_ent-III
fin_exit-I, fin_exit-1, fin_exit-1, fin_exit-1,
t buff fin_exit-11, fin_exit-1I, fin_exit-11, fin_exit-11,
out_bu fin_exit-I11 fin_exit-I11 fin_exit-I11 fin_exit-ITI
part_f_obuff part_f obuff part_f obuff part_f obuff
package
buffer deposit_part deposit_part deposit_part deposit_part
take_item take_item take_item take_item
Ensure_matFb
new_part new_part new_part new_part
part_passes part_passes part_passes part_passes

High level Subsystem (I)

Low Level Subsystem (I)

G (D, j=1I

4 @

fin_exitsj

Define New Events-j

Path Flow Model-j
sr_exit

Attach Part to Assembly-j

dip_acid,

Polish Part-j 7100

start_pol
>

A

compl_pol-

Polishing Sequence-j

Figure 9.11: Serial Extraction System I

148

G (D
GI-I

part_ent-I

pL S

fin_exit-1

Figure 9.12: Deadlock Sequence

be at most four parts in the system between the input buffer and the test unit. After four
new_part events occur, the event is disabled until a part passes the tester (event part_passes)
and thus can’t be returned to the input buffer.

We now apply our research tool to the serial extraction systems and we find that each
system is serial level-wise nonblocking and controllable, and serial interface consistent. We
can thus conclude by Theorems 3 and 4, that the flat system is nonblocking and that the

flat supervisor is controllable for the flat plant.

Ensure_matFb

new_part new_part new_part new_part
part_passes part_passes part_passes part_passes

Figure 9.13: Material Feedback Supervisor

9.4 Comparison to Standard Method

The above computation was run on a 750MHz Athlon system, with 512MB of RAM, 2GB
of swap, and running Redhat Linux 6.2. The high level consisted of 3120 states and each
low level of 35 states. The computation took 0.15s to run and required 5MB of memory.
A standard nonblocking verification was done on the flat system which consists of
5,702,550 states. The computation ran for 40 minutes, required 850MB of memory, and
found the system to be nonblocking.? In short, the standard method took 16438 times

longer, and required 170 times more memory.

2A controllability check was also run using standard methods and the flat supervisor was found to be
controllable for the flat plant.

149

From this example, we can see that the interface method not only can offer a significant
reduction in verification time and required resources, but that it also greatly improves
the re-usability of the system. For example, a system designer would only need to design
supervisors for the manufacturing unit once, and could then use them in each instantiation.
Treating the manufacturing system as a low level subsystem, we only have to verify the
subsystem once even though we use it in multiple places. In addition, we can change the
low level subsystem without affecting the high level as long as the interface remains the
same, and the low level remains serial nonblocking, controllable, and interface consistent.

This offers a potentially great savings in design and verification time.

9.5 Applying the HISC Method

The important thing to remember about applying the HISC method to a system, is that it
is intended as a verification and design method. In other words, the idea is to design your
system and plant models with the HISC method in mind, as opposed to taking an existing
design and modifying it to fit the HISC architecture. By designing from the beginning for
the HISC method, one will be able to achieve the many benefits listed in Section 1.2. One
can still modify an existing design, of course.

In this chapter, and in Chapter 5 we have presented detailed tutorials on how to design
for the HISC method so we will not present a set of rules here. Instead, we will speak in
more general terms.

The first step in designing for this method, is to decide what system behavior belongs
on the high level, and which part of the system behavior belongs in the n > 1 low levels.
In general, a system’s behavior is of three types: local, interface, and interacting. Local
behavior is behavior that is relevant and self-contained to/in a specific part (component)
of the system. This usually deals with the internal state and operations of the component.
For instance, the internal behavior of a given machine in a manufacturing unit would be an
example of local behavior. Say the machine can perform tasks A and B. How the machine
performs these tasks, and the internal state of the machine would be the local behavior of
the machine. Once the machine starts a task, it’s oblivious to the rest of the system until

the task is complete, and thus this behavior is clearly self-contained. In other words, local

3More correctly, the low level continues to satisfy its portion of these properties.

150

behavior often answers the question as to “how” the component operates and performs its
tasks. This behavior will belong to a specific low level.

This brings us to interface behavior. Interface behavior answers the question “what” can
the component do and contains status information about the performance of the interface
tasks. In other words, the interface behavior (represented by the interface DES) is the link
between the local and interacting behavior. For the machine above, the interface behavior
would tell us that the machine can perform two tasks, and what the possible results are of
performing these tasks (ie. for task A, was it completed successfully or not).

The third type of behavior, interacting, contains information that is global, and thus not

“when” does a component

specific to any one component. It usually answers the question
perform a specific task and thus “interact” with the rest of the system. Interacting behavior
only cares that the task is started, and results of performing the task so that it can decide
what to do next. In other words, interacting behavior is concerned about global operating
decisions that are then translated into local behavior. This behavior belongs to the high
level.

With these types of behavior in mind, the designer would then partition the system
appropriately, and then design supervisors for the high level and each of the low levels. The
key here is to keep in mind the limit of scope of operation permitted by the HISC method.
Low level supervisors are concerned about local behavior and implementing the relevant (to
that low level) tasks specified by the interface behavior. High level supervisors are concerned
with interacting behavior. However, the control actions can only be expressed in terms of

high level events and interface events. In other words, control actions are expressed in terms

of high level events and in manipulating the interface to achieve the desired goal.

151

Chapter 10

Parallel Case Algorithms

In this chapter, we provide evaluation methods for definitions Interface Consistent, level-
wise nonblocking, and level-wise controllable. Our purpose here is to provide enough details
that the definitions can be evaluated, but skipping over aspects that are straightforward
or have been investigated elsewhere (e.g. controllability algorithms). We will be discussing
a naive “proof of concept” method (horribly inefficient but easy to construct based on
existing algorithms), and we will leave the investigation of detailed efficient algorithms for
later work. The reason for this is partly time constraints but primarily because the strength
of our method doesn’t depend on the individual algorithms but on the ability to decompose
our system into subsystems and perform local checks. Finally, we present a complexity

analysis for verifying a parallel interface system.

10.1 Preliminary Definitions

In the following sections, we take index j to have range {1,...,n} (n > 1 the degree of our
parallel interface system) and assume that we will be given Gy, G1,, Gu, Su, Gr;, S1;, XH,
¥1;, BR;s X4, Lu, Ye, and the maps Answer; : Y g, — Pwr(X4;) (see definition on page
25), but will have to construct DES G 1;- Also, we assume that all DES are deterministic
and have finite state and event sets.

In particular, we define notation for the following DES:

GH = (YH, EGH’ 6H, YH,» YHm)

GLj = (YL]-, ZGng 6Lj7 ngj-? YLmJ')

152

GI]' = (Xa EGN g: Lo, Xm)
We next define our system’s event set as
Y= Ukeqt,.ny (XL, UXR, UXa,) UXy

Finally, we will restrict all our interfaces to star interfaces, as we did in Chapter 6. We will

construct them “correct by design” as discussed in Section 6.2.

10.2 Evaluating Interface Consistent Definition

We now evaluate that the system satisfies the interface consistent definition. Our first step
will be to evaluate the implied condition ¥ := Ugeqy, 01 (X1, U Xg, UX4,) U Xg. This in-
cludes two implicit assumptions. The first is that 3 = Upeqy o) (3L, U Zg, UXa,) U Xy
This is automatic from our definitions in Section 10.1.

The second implicit assumption is that the event sets are pairwise disjoint. This means
checking the four statements below. Again, this is straightforward so we won’t present a

specific algorithm.
L. Xp,N¥a, =10
2. (XRr; UX4,) N [Ureqr,.jm1,j41,m} (ER, UXa,)] =0
3. B, N [Ukeqt,n} (Br, UXa,)] =0
4. B N [Ugeq,..n}(Br, UBR, UXa,)] =0

h serial system extraction: subsystem form

h

All that remains now is to verify that the jt
is serial interface consistent. To achieve this, we simply construct the jt serial system
extraction as specified in Section 7.2 and then apply the serial interface consistent algorithm
from Chapter 6. DES such as Gy (j) := GullsGrlls- - sGr;_y, lsGrjpplls---|[sGr, can
be constructed using the CTCT sync operator (see [60]) repeatedly, but modifying it to
require that the event set of a given DES be specified explicitly, instead of taken to be the

event labels of transitions in that DES.

153

10.3 Evaluating Level-wise Nonblocking Definition

We now evaluate the level-wise nonblocking definition. Our first step will be to evaluate the
implied condition ¥ := Ueqr,. n}(Xz, UXR, UXa,) U Xg. This is the same as in Section

10.2.

h serial system extraction: subsystem form

h

All that remains now is to verify that the jt
is serial level-wise nonblocking. To achieve this, we simply construct the jt serial system
extraction as specified in Section 7.2 and then apply the serial level-wise nonblocking algo-
rithm from Chapter 6. DES such as G (j) := GullsGnlls- .- |[sGr,_y sGrplls - - - 1sGr,
can be constructed using the CTCT sync operator (see [60]) repeatedly, but modifying it
to require that the event set of a given DES be specified explicitly, instead of taken to be

the event labels of transitions in said DES.

10.4 Evaluating Level-wise Controllable Definition

We now evaluate the level-wise controllable definition. Our first step will be to evaluate the
implied condition ¥ := Upcqy,. n} (X1, U Xr, UXa,) UXy. This is the same as in Section

10.2.

b serial system extraction: general form

h

All that remains now is to verify that the jt
is serial level-wise controllable. To achieve this, we simply construct the jt serial system
extraction as specified in Section 8.2 and then apply the serial level-wise controllable algo-
rithm from Chapter 6. DES such as Gu(j) := GullsGnlls- - |sGr,_y [sGrjlls - - - |1sG1,
can be constructed using the CTCT sync operator (see [60]) repeatedly, but modifying it
to require that the event set of a given DES be specified explicitly, instead of taken to be

the event labels of transitions in said DES.

10.5 Software Tool

The software tool we discussed in Section 4.3.4 does not contain any algorithms specifically
for parallel interface systems, only for serial systems. This is due to time constraints and
the fact that almost all parallel case conditions can be evaluated by constructing the serial

system extractions and then using the software’s serial case algorithms.

154

10.6 Complexity Analysis

From the above sections, we see that to verify that a parallel interface system satisfies the
level-wise nonblocking, level-wise controllable, and interface consistent definitions, we must

perform the following tasks:

Event Set Disjoint Properties:

1) Verify that sets X, Xr,,..., 2L, XRy,---» 2R, and X 4,,..., %4, are pairwise disjoint.

This means evaluating:

Ygnd, = R (IE{ELl,...,ELH,ERU...,ER“,EAN...,EAn}

0
Y, NY, = 0, aE{ELQ,...,ELn,ZRl,...,ERn,ZAl,...,ZAn}

XA

(n—2)

N Ea = @, a < {EA(nfl)’ EAn}
0

YA ne1) mEAn =

(

Serial Extraction System Properties:

2) For the n serial extraction systems, we must verify that they are Interface Consistent,

level-wise nonblocking, and level-wise controllable using the algorithms from Chapter 6.

As in Section 6.6.2, we let m be the number of components to be verified. The com-
ponents are the high level and the n low levels, thus m = n 4+ 1. We also assume that
the statespace of each component and the cardinality of the system’s event set (X) are
bounded, with upper bounds N > 0 and Ny > 0 respectively (ie. < N and |X| < Ny).
We further assume that the cardinality of the other event sets is each bounded by Ny > 0
(ie. |Xg| < Nyv).

10.6.1 Analysing Event Set Disjoint Properties

To analyse task 1 above, we need to do multiple empty intersection tests. Examining the

definition of task 1, we see that we first have to perform 3n tests (against X), then 3n —1,

155

down to one test (X4,_,) NXa,). So, the total number of tests, labelled EI, is

El = 3n+GBn—1)+...+2+1=%"

3n(3 1
= n(;z—k) using well know identity Elei = w
9 5, 15 o T
= gm - gm +3 after substituting n = m — 1 and simplifying.

Now, according to Rudie [51], the test that the intersection of sets S and T is empty
is O(|S||T]). As each of our sets is bounded by Nsv, the test is O(NZ,). We perform
this test EI times; thus the whole process is O(El- N&,) = O((3m? — 2m + 3)NZ)) =

O(§m2NE, — BmNE, + 3N2,). This reduces to O(m?) as Ny is a constant.

10.6.2 Analysing Serial Extraction System Properties

To perform task 2, we must verify that n serial extraction systems are serial interface
consistent, serial level-wise nonblocking, and serial level-wise controllable using the algo-
rithms from Chapter 6. We know from Section 6.6.2 that verifying a serial interface system
means applying our O(z®) = O(N3) (z is the number of states the component has and
is bounded by N) per component algorithm twice; once for the system’s high level and
once for its low level. Two analyse n serial extraction systems, we thus apply the per
component algorithm 2n times. This means the time complexity of performing task 2 is
O(2n - N3) = O((2m — 2)N3) = O(2mN?3 — 2N3) after substituting for n = m — 1. This

reduces to O(m) as N is a constant.

10.6.3 Analysing Per System Algorithm

To analyse a complete parallel interface system, we must perform tasks 1 and 2. This
means that our per system algorithm is O(%mQN%, — %mN% + 3NZ, +2mN3 — 2N3) =
O(§m*NE, + (2N3 — L NZ)m + (3N, — 2N3)), which reduces to O(m?).

It’s important to note that O(m?) isn’t the whole story as it hides some potentially
large constants. As the number of components grows slowly, and Ny tends to be small
in comparison to N, m would have to become quite large before the mQN%, term would
dominate the mN? term). Also, many development environments can often guarantee that
most of the event sets are disjoint, making these checks unnecessary. For example, if low

level event sets are equated with program variables local to a function, the compiler will

156

guarantee that these are unique. In practice, it is the per system algorithm that dominates
the running time of this method but it’s important to note that breaking a system into
multiple components does come with a penalty that must be considered.

UPDATE: The analysis presented here relies on the assumption that the statespace of
each component is bounded by the constant N. As long as this assumption is reasonable,
the analysis is correct. For the DES Gg,Gyr,,..., Gr,,Gr,,--.,Gr,, this assumption is
reasonable.

However, when analyzing the conditions interface consistent, level-wise nonblocking,
and level-wise controllable, we must construct serial extraction systems (see sections 7.2
and 8.2) to analyze the corresponding serial conditions. For example, to verify that the
parallel interface system is interface consistent, we must verify that all n serial system
extractions (subsystem form) are serial interface consistent. To verify the latter condition,
we must use the component Gy (j) == GullsGrlls- - [sGr,_ [1sGrills - - - [|sG1, With the
serial algorithms we developed in Chapter 6. Unlike the DES G, component G (j) grows
proportionally to n, thus the assumption that Gy (j) is bounded by N is questionable. In
this view, the above analysis is a bit too optimistic and is thus more in line with an average
or best case analysis. This does not mean that the approach does not have great potential

to scale. For a good scalability discussion, see [32].

10.6.4 Comparing to Monolithic Algorithm

From our discussion in Section 6.6.3, we saw that the monolithic algorithm was O(N?™).
Comparing the complexity of our algorithm to the monolithic algorithm above, we see
that our interface-based method scales significantly better at O(m?) than the other at
O(N?™). To illustrate this, let’s examine the two algorithms for a few values of N, Ny,
and m. Table 10.1 shows the results for terms T} = N?™, Tp, = 2mN?3 — 2N3, and T3 =
%m%\% - %mNz, +3N2,. As we see, the serial extraction systems component (T3) does
dominate the time complexity of our algorithm. We also see that even for m = 2, our
approach is six orders of magnitude better. To put this into perspective, if our algorithm
ran for one hour, the monolithic algorithm would require 114 years! As m increases, we
see very modest increases in complexity for our algorithm. However, even at m = 9, the
monolithic approach is completely unusable.

It’s important to note here that for m = 1000, this represents evaluating 1000 compo-

157

I m=2 m=9 | m = 1000 |
[N [N [[T [T [Tn [T | T [T [[T |
103 | 102 1012 | 2 x 109 6 x 10% [10°% 1.60 x 1010 [3 x 105][105000 2 x 1072 | 4.5 x 1010
106 | 102 1024 | 2 x 1018 | 6 x 10% || 10198 | 1.60 x 10T | 3 x 10% || 10120900 [2 x 102T | 4.5 x 1010
105 | 103 10%% | 2 x 10™ | 6 x 105 [[10™% | 1.60 x 10™ | 3 x 10% |[1012990 | 2 x 102" | 4.49 x 1012

Table 10.1: Parallel Algorithm Comparison

nents. As each one can be evaluated separately, we could utilise a cluster of 100 workstations

and process 100 components in parallel. For N = 109, this would bring down our time es-

timate to 2 x 10'%, only slightly more than the time for processing 9 components!

158

Chapter 11

AIP Example

To demonstrate the utility of our method, we now present its application to a large man-
ufacturing system, the Atelier Inter-établissement de Productique (AIP). In this chapter,
we introduce the AIP and describe its components. We present our control specifications
and describe the systems structure. In the following chapters, we will describe individ-
ual subsystems and then discuss the results of applying our method to this example. All

supervisors are designed as discussed in Section 5.5.

11.1 Overview of the AIP

In this section, we introduce the automated manufacturing system of the Atelier Inter-
établissement de Productique (AIP), as described in [7] and [12]. The AIP, shown in Figure
11.1, is a highly automated manufacturing system consisting of a central loop (CL) and
four external loops (EL), three assembly stations(AS), an input/output (I/O) station, and
four inter-loop transfer units (TU). The I/O station is where the pallets enter and leave the
system. Pallets can be of type 1 or of type 2, and it is assumed that the type of the pallet

entering is random.

11.1.1 Assembly Stations

The structure of the assembly stations is shown in Figure 11.2. Each station consists of a
robot to perform assembly tasks, an extractor to transfer the pallet from the conveyor loop
to the robot, sensors to determine the location of the extractor, and a raising platform to

present the pallet to the robot. The station also contains pallet sensors to detect a pallet

159

I/0O Station ﬂU

External loop 4

External : -
loop 1 Transport
Unit 4 <
Assembly i r j
Station 1
Transport Central Transport
Unit 1 loop Unit 3
Assembly
I L J T Station 3
’ Transport I
Unit 2 External
loop 3
External loop 2
Assembly
Station 2

Figure 11.1: The Atelier Inter-établissement de Productique

at the pallet gate, the pallet stop, and to detect when a pallet has left the station. Finally,
the assembly station contains a read/write (R/W) device to read and write to the pallet’s
electronic label. The pallet label contains information about the pallet type, error status,
and assembly status (which tasks have been performed).

Whereas the assembly stations contain the same basic components, they differ with
respect to functionality. Station 1 is capable of performing tasklA and task1B, while station
2 can perform task2A and task2B. Station 3 can perform all four tasks as well as function
as a repair station allowing an operator to repair a damaged pallet. The assembly stations
also differ with respect to reliability. Stations 1 and 2 can break down and must be repaired,
while station 3 is of higher quality and is assumed never to break down. Station 3 is used

to substitute for the other stations when they are down.

160

External loop X

-

o o
>
o PS X.5 i
O O [CIRW device X / O
SP X.2 4 -«
\
% A ES X1 Pallet gate X.2 Legend
Extractor X O Pallet sensor
/\ Extractor sensor
A ESX2 1 Read\ write device
Raising l Pallet stop
platform X Robot X Assembly /
station X \ Pallet gate

Figure 11.2: Assembly Station of External Loop X = 1,2, 3.

11.1.2 Transport Units

The structure of the four identical transport units are shown in Figure 11.3. The transport
units are used to transfer pallets between the central loop, and the external loops. Each one
consists of a transport drawer which physically conveys the pallet between the two loops,
plus sensors to determine the drawer’s location. At each loop, the unit contains a pallet
gate and a pallet stop, to control access to the unit from the given loop. The unit also
contains multiple pallet sensors to detect when a pallet is at a gate, drawer, or has left the

unit. Also, each unit contains an R/W device located before the central loop gate.

11.2 Control Specifications

For this example, we adopt the control specifications and assumptions used in [7] and [12]
and restated below. To this we add specification 7 to make the assembly stations more
interesting.

Assumptions:
1. The system is initially empty.

2. Two types of pallets are randomly introduced to the system, subjected to assembly

161

Drawer sensor
Read\ write device

Legend «—
Pallet sensor /

=

Central
Pallet stop lo op T

Pallet gate

Transfer drawer

- S N—1eo

OTX'SSsd
OX'ssd
'S dS

O €X' Sd

i

X

O I'X'SSd
N\ XS 21ES 19[1ed

R\W device 5.X [

\|TD X
—_—)
7/
Oz Oe%l
v JOoxXw
oL VEViaEs
— 8 <X 98]
Transport "
unit X =
External loop X +—

Figure 11.3: Transport Unit for External Loop X =1,2,3,4

operations, and then leave.
Specifications:

1. Routing: Pallets follow a certain route based on their type. A type 1 pallet must go
first to AS1, then AS2 before leaving the system. Type 2 pallets go first to AS2, then
AS1 before leaving the system. A pallet is not allowed to leave the system until all

four assembly tasks have been successfully performed on it.

2. Maximum capacity of external loops 1 and 2: The maximum allowed number

of pallets in either loop at a given time is one.

3. Order of pallets exiting from system: The pallets must exit the system in the

following order: type 1, type 2, type 1, ...

162

4. Assembly errors: When a robot makes an assembly error, the pallet is marked dam-
aged and routed to AS3 for maintenance. After maintenance, the pallet is returned

to the original assembly station to undergo the assembly operation again.

5. Assembly station breakdown: The robots of external loops 1 and 2 are susceptible
to breakdowns. When a station is down, pallets are routed to assembly station 3 which
is capable of performing all tasks of the other two stations. When the failed station is

repaired, all pallets not already in external loop 3 are rerouted to the original station.

6. Maximum capacity of assembly stations: To avoid collisions, only one pallet is

allowed in a given station at a time.

7. Assembly task ordering: Assembly tasks are performed in a different order for
pallets of different types. For pallets of type 1, tasklA is performed before tasklB,
and task2A is performed before task2B. For pallets of type 2, tasklB is performed
before tasklA, and task2B is performed before task2A.

11.3 System Structure

To cast the AIP into a parallel interface system, we break the system down into a high level,
and seven low levels corresponding to the three assembly stations and four transport Units,
as shown in Figure 11.4. The high level, and each low level are described in the following

chapters.

High level
GI4

Low level , | Low level , Low level , Low level 4 Low level 3 Low level Low level ,

Gui GIITZ_ G- GL: G13 EGL4 G14 EGLs
AST | ASS | TUlL | TW2 TU4

Figure 11.4: Structure of Parallel System

The alphabet partition that we will use is ¥ := Ujcqq,. 73 (21, UXR;UX 4] U X, with the
individual event sets defined below where » = TU1, TU2 when v = 4,5, and k = AS1, AS2

163

when w = 1, 2, respectively:

XH

S,

YL,

YL,

{DetStnsUp, IsPalletCL.TU1, IsPalletCL. TU2, IsPalletCL. TU3, IsPalletCL. TU/,
IsPalletEL.TU1, IsPalletEL. TU2, IsPalletEL. TUS, IsPalletEL. TUJ,
NoPalletCL.TU1, NoPalletCL.TU2, NoPalletCL.TU3, NoPalletCL.TU/,
NoPalletEL. TU1, NoPalletEL. TU2, NoPalletEL. TUS3, NoPalletEL. TU4,
PalletArvGEL_2.AS3, QPalletAtCL.TU1, QPalletAtCL.TU2, QPalletAtCL. TUS,
QPalletAtCL.TU4, QPalletAtEL. TU1, QPalletAtEL. TU2, QPalletAtEL. TUS,
QPalletAtEL. TU4, QStnUp.AS1, QStnUp.AS2, StnDwn.AS1, StnDwn.AS2, StnUp.AS1,
StnUp.AS2}

{DoneRead.AS1, Done Write.AS1, ExtrArvConv.AS1, ExtrArvPlatf.AS1, GClosesEL_2.AS1,
GOpensEL_2.AS1, IsTypel.AS1, IsType2.AS1, MvExtrToConv.AS1, MvExtrToPlatf.AS1,
PalletArvGEL_2.AS1, PalletLvAS.AS1, PalletLvGEL_2.AS1, PArvAtExtractor.AS1,
PStopClosesEL_2.AS1, PStopOpensEL_2.AS1, QType.AS1, ReadLabel. AS1,
RelPallet. AS1, WrtCplT1A_1 B.AS1, WrtErr1A.AS1, WrtErriB.AS1,

ProcTyp1.AS1, ProcTyp2.AS1, RTasksCpl.AS1,

RobDwn.AS1, AssmbErrA.AS1, AssmbErrB.AS1,
AError1A.AS1, AError1B.AS1, RobRprCpl.AS1, RtaskCpl1A.AS1,

RtaskCpl1B.AS1, Rtimeout.AS1, StrRobRepair.AS1, StrRtask1A.AS1,

StrRtask1B.AS1, StrRtimer.AS1}

{DoneRead.AS2, Done Write.AS2, ExtrArvConv.AS2, ExtrArvPlatf.AS2,
GClosesEL_2.AS2, GOpensEL_2.AS2, IsTypel.AS2, IsType2.AS2,

MuvExtrToConv.AS2, MvExtrToPlatf.AS2, PalletArvGEL_2.AS2, PalletLvAS.AS2,
PalletLvGEL_2.AS2, PArvAtEztractor.AS2, PStopClosesEL_2.AS2, PStopOpensEL_2.AS2,
QType.AS2, ReadLabel. AS2, RelPallet. AS2, WrtCplT2A_2B.AS2,

WrtErr2A.AS2, WrtErr2B.AS2, ProcTypl.AS2, ProcTyp2.AS2,

RTasksCpl.AS2, RobDwn.AS2, AssmbErrA.AS2, AssmbErrB.AS2,

AError2A.AS2, AError2B.AS2, RobRprCpl.AS2, RtaskCpl2A.AS2,

RtaskCpl2B.AS2, Rtimeout.AS2, StrRobRepair.AS2, StrRtask2A.AS2,

StrRtask2B.AS2, StrRtimer. AS2}

{DetNProcPallet. ASS, DoneRead.AS3, DoneReset.AS3, Done Write. ASS,
ExtrArvConv.ASS, ExtrArvPlatf.AS8, GClosesEL_2.AS3, GOpensEL_2.AS3,
MuvEztrToConv.AS3, MvEztrToPlatf.AS3, PalletLvAS.ASS, PalletLvGEL_2.AS3,

PArvAtExtractor.ASS8, PStopClosesEL_2.AS3, PStopOpensEL_2.AS3, ReadLabel. AS3,

164

3L

v

YLg

RelPallet. AS3, ResetAssmbInfo.AS3, WrtCplT1A_1B.AS3, WrtCplT2A_2B.AS3,
WrtErr1A.AS3, WrtErrl1B.AS3, WrtErr2A.AS3, WrtErr2B.AS3, DoRepPallet. AS3,
PalletRepaired.AS3, RepNotNeeded.ASS3, MaintCpl.AS3, SigMaintT1A.ASS,
SigMaintT1B.ASS, SigMaintT2A.AS3, SigMaintT2B.AS3, QError.AS3, NoError.AS3,
IsErr1A.AS3, IsErriB.AS3, IsErr2A.AS3, IsErr2B.AS3, NoErr.AS3, QErriA.ASS,

QFErr1B.AS3, QErr2A.AS3, QErr2B.AS3, DetNProcPallet.AS3, CplT2A_2B.AS3,

CplT1A_1B.AS3, AssmbErr2A.AS3, AssmbErr2B.AS3, AssmbErriA.AS3, AssmbErriB.ASS,

IsCpl. AS3, IsTypel.AS3, IsType2.AS3, NotCpl.AS3, QCplT1A_1B.AS3, QCplT2A_2B.AS3,
QType.AS3, ProcTyplAsR1.AS3, ProcTyp2AsR2.AS3, ProcTyplAsR2.ASS3,
ProcTyp2AsR1.AS3, RTasksCpl.AS3, RtaskCpl1A.AS3, RtaskCpliB.AS3, RtaskCpl2A.ASS,
RtaskCpl2B.ASS, StrRtask1A.ASS, StrRtask1B.ASS, StrRtask2A.ASS3, StrRtask2B.AS3}
{DoneRead.r, DrwArvCL.r, DrwArvEL.r, DrwAtCL.r,
DrwAtEL.r, GClosesCL.r, GClosesEL_1.r, GOpensCL.r,
GOpensEL_1.r, MuvDrwToCL.r, MuDrwToEL.r, PalletArvDrwCL.r,
PalletArvDrwEL.r, PalletLvGCL.r, PalletLvGEL_1.r, PalletLvTUAtCL.r,
PalletLvTUAtEL_1.r, PStopClosesCL.r, PStopClosesEL_1.r, PStop OpensCL.r,
PStopOpensEL_1.r, QDrwLoc.r, ReadLabel.r, QError.r,
NoError.r, IsErr1A.r, IsErr1B.r, IsErr2A.r, IsErr2B.r,
NoErr.r, QErriA.r, QErri1B.r, QErr2A.r, QErr2B.r,
QOpNeeded.r, OpNeeded.r, NotOpNeeded.r, [sCpl.r, IsTypel.r, IsType2.r, NotCpl.r,
QCplT1A_1B.1, QCplT2A_2B.7, QType.r}
{DoneRead. TU3, DrwArvCL. TU3, DrwArvEL.TUS3, DrwAtCL.TUS,
DrwAtEL.TU3, GClosesCL.TUS, GClosesEL_1.TU3, GOpensCL.TUS3,
GOpensEL_1.TU3, MuDrwToCL.TU3, MuDrwToEL.TUS3, PalletArvDrwCL.TUS,
PalletArvDrwEL. TUS3, PalletLvGCL.TUS3, PalletLvGEL_1.TUS3, PalletLvTUAtCL.TUS3,
PalletLvTUAtEL_1.TU3, PStopClosesCL.TUS3, PStopClosesEL_1.TU3, PStopOpensCL.TUS,
PStopOpensEL_1.TU3, QDrwLoc. TU3, ReadLabel. TUS3, Skip DunOpChk.TUS,
QFError. TU3, NoError.TUS3, IsErriA.TUS, IsErr1B.TUS3, IsErr2A.TUS, IsErr2B.TUS,
NoErr.TUS, QErr1A.TUS, QErr1B.TUS,
QErr2A.TUS, QErr2B.TU3, QDwnOpNeeded-1D.TUS3, QQDwnOpNeeded_2D.TUS3,
QDuwnOpNeeded_BD.TUS3, DunOpNeeded.TU3, NotDwnOpNeeded.TUS3,
IsCpl. TUS, IsTypel. TUS, IsType2.TU3, NotCpl. TUS,

QCplT1A_1B.TUS, QCplT2A_2B.TUS, QType. TUS}

165

Yo, = {CorrType.TU4, DoneRead. TU4, DrwArvCL.TU4, DrwArvEL. TUY,
DrwAtCL.TU4, DrwAtEL.TU/, GClosesCL.TU}, GClosesEL_1.TU/,
GOpensCL.TU4, GOpensEL_1.TU}4, IsCpl. TU4, IsTypel. TU4,
IsType2.TU4, MuDrwToCL.TU4, MuvDrwToEL.TU4, NotCpl.TU4,
PalletArvDrwCL. TUY, PalletArvDrwEL. TUY, PalletLvGCL.TU/, PalletLvGEL_1.TU4,
PalletLvTUAtCL.TU/, PalletLvTUAtEL_1.TUY, PStopClosesCL.TU/, PStopClosesEL_1.TU4,
PStopOpensCL.TUY4, PStopOpensEL_1.TU/, QCorrType. TU4, QCplT1A_1B.TU4,

QCpTI2A_2B.TU4, QDrwLoc. TU4, ReadLabel. TU4, WrongType. TU4}

YR, = {DoRpr.k, ProcPallet.k}

Ya, = { ASDwn.k, ProcCpl.k, ProcErr.k, RobUp.k}

YXrs = { ProcPallet.AS8}

Ya;, = { ProcCpl.ASS3, ProcErr.AS3, PalletRepd.AS3}

Yr, = { TrnsfToEL.r, TrnsfELToCL.r, LibPallet.r}

Ya, = { NoTrnsfEL.r, TrnsfCplToEL.r, TrnsfCplToCL.r, PalletRlsd.r}

Yre = { TrnsfToEL3-Up, TrnsfToEL3-1D, TrnsfToEL3_2D, TrnsfToEL3_BD,

TrnsfELToCL. TUS, LibPallet. TUS, }

Yas = { NoTrnsfEL.TU3, TrnsfCplToEL.TUS, TrnsfCplToCL.TUS3, PalletRlsd. TU3}
Yr, = { TrnsfToEL.TUJ, TrnsfELToCL.TU/, LibPallet. TU/}
Ya, = { NoTrnsfEL.TU4, TrnsfCplToEL.TU4, TrnsfCplToCL.TU/, PalletRlsd. TU/}

In the DES diagrams that follow, uncontrollable events are shown in italics; all other
events are controllable. Initial states can be recognized by a thick outline, and marked
states are filled. Finally, all supervisors were designed by hand, using modular techniques.

The models and supervisors developed for this example are based on the automata
presented in [7] and [12]. We have altered them to fit our setting, and we have extended
them to fill in the missing details of several events that were defined as “macro events” in
the cited references.

Adapting the AIP design from [7] and [12] was quite straightforward. As the three
assembly stations were very similar, it was natural that they were modelled as a group by
Charbonnier et al. Similarly, the four transport units were modelled as a group. That we
had seven well defined units in the original design made it easy for us to make these our

seven low levels.

166

The next step was to create interfaces for each low level. To do this, we examined
the behavior of the assembly stations and transport units and extracted this as a set of
commands and responses. For example, we noted that assembly station 1 performed two
tasks; it processed a pallet, or it initiated a repair of itself. When processing a pallet,
it either completed successfully, encountered a processing error, or its robot broke down.
When it initiated a repair, it eventually was fixed and reported that it was operational. We
captured this behavior in Figure 13.2.

We now need to separate the internal behavior of each level (behavior specifying how
the low level operated), from its interaction behavior (behavior specifying how the rest of
the system interacts with it, as well as specifying when it should perform its services).
For assembly station 1, this meant moving details about keeping track of the breakdown
status of the station (plant ASStoreUpState.AS1 in Figure 12.2) as well as when to start
processing a pallet (supervisor OFProtEL1 in Figure 12.9) to the high level. For transport
unit 1, this meant moving the supervisors that enforced the maximum capacity of external
loops 1 and 2 (Figures 12.9 and 12.10) and the supervisors that decided when a pallet should
be transported to/from external loop 1 (Figure 12.5) to the high level.

The last step is to ensure a clear line of causality between events in the high level,
interfaces, and low levels. As an example, let’s examine assembly station 3. If the reader
examines Figure 11.2, they will see a pallet must reach pallet sensor PS 3.4 before it can
leave pallet gate 3.2. In the modelling used in [7] and [12], this was captured in a single
DES. However, the pallet arriving at the gate is needed at the high level to decide when to
tell the assembly station to start processing a pallet. The pallet leaving the gate is needed
internally to express the relationship that a pallet can’t arrive at pallet stop SP 3.2 until
it has left the gate (plant model DepGateNExtraSen.AS3 in Figure 13.5). This can be
easily handled by making request event Proc. Pallet.AS3 dependent on the pallet arriving at
the gate (Figure 12.3) and the pallet leaving the gate dependent on event Proc.Pallet.AS3
(Figure 14.4). This preserves the dependency between the pallet arriving at the gate before
it can leave the gate, while at the same time clearly delineates the relationship to the

interface of assembly station 3.

167

Chapter 12

The AIP High Level

The high level contains the 15 DES shown in Figure 12.1, which shows the definition of the
high level’s subsystem G, plant component G, and supervisor component Sgy. They are

defined to be the synchronous product of the indicated automata.

5; ASStoreUpState.AS1 ~ ASStoreUpState.AS2 PalletArvGateSenEL_2.AS3
QueryPalletAtTU.TU1 QueryPalletAtTU.TU2 QueryPalletAtTU.TU3
QueryPalletAtTU.TU4

Lf;[ManageTU1 ManageTU2 ManageTU3
ManageTU4 OFProtEL1 OFProtEL2
DetWhichStnUp HndlComEventsAS

Figure 12.1: High Level

The high level keeps track of the breakdown status of assembly stations 1 and 2, as well
as enforces the maximum capacity of external loops 1 and 2. It controls the operation of all
transport units and all assembly stations, as well as tracking the pallets’ progress around

the manufacturing system.

12.1 Plant Component

We now discuss the plant models for the high level. The first set of models are DES AS-
StoreUpState.k, where kK = AS1, AS2. They are shown in Figure 12.2. These DES track

168

the breakdown status of assembly stations 1 and 2. They also disable processing pallets
and initiate repairs when their respective station is down. Our next DES is Pallet Arv-
GateSenEL_2.AS3, shown in Figure 12.3. This models the pallet sensor at pallet gate
3.2, the gate which controls access to assembly station 3. It also ensures that AS3 cannot
start processing a pallet until a pallet arrives at the gate. The corresponding sensors for
assembly stations 1 and 2 are not shown here because they’re included as part of the nodes
for the assembly stations. The reason for this difference is that EL 3 is not restricted to the

number of pallets that it may contain, and the other loops are.

DoRpr.k ProcPallet.k Prochalletk

Qstnlpk f50w .k

RobUp.k

RobUp.k

Figure 12.2: ASStoreUpState.k

QiPalletAtEL

MoPalletEl .l

|sPalletEL.i
.’sPa.".ffeIrCL.l' |
Mob oL p tatCLi
PalletArvGEL_2.453 oraEELg QralletAtcL]
50 ProcPalletss3 31 50
Figure 12.3: Pallet ArvGate- Figure 12.4: QueryPalletAtTU.i

SenEL_2.AS3

The next set of DES are QueryPallet AtTU.i, where ¢ = TU1, TU2, TU3, TU4. They

169

are shown in Figure 12.4. They provide a means to determine if a pallet is waiting to enter

the indicated transport unit at either the associated external loop or the central loop.

12.2 Supervisor Component

We now discuss the supervisors for the high level. The first are ManageTU1 and Man-
ageTU2 shown in Figures 12.5 and 12.6, respectively. They are identical up to event
relabelling. They control the transfer of pallets between the central loop and the indicated
external loops, and they permit pallets on the central loop to pass through a transport
unit (to be liberated) without being transferred to its attached external loop. Pallets are
liberated if the attached external loop is at maximum capacity (determined by supervisors
OFProtEL1 and OFProtEL2), the associated assembly station is down, or the transport
unit determines that the pallet is not to be transferred (see the definition of the transport
unit subsystems, low levels 4-7).

The corresponding supervisors for transport units 3 and 4 are DES ManageTU3 and
ManageTU4, shown in Figures 12.7 and 12.8. Supervisor ManageTU3 is similar to
ManageTU1 except that it always tries to transfer a waiting pallet to external loop 3 (EL
3 has no capacity restriction). Also, DES ManageTUS3 first determines the breakdown
status of assembly stations 1 and 2 before attempting to transfer a pallet to EL 3. It also
passes this information to TU3. Finally, DES ManageTU4 is the same as ManageTU3
except that it does not determine the breakdown status of assembly stations 1 and 2.

The next set of supervisors are OFProtEL1 and OFProtEL2, shown in Figures 12.9
and 12.10. These supervisors, identical up to relabelling, ensure that external loops 1 and
2 have at most one pallet in them at a given time. These supervisors also coordinate pallet
transfers to the external loops with the operation of the appropriate assembly station.

The next supervisor the we discuss is DetWhichStnUp, shown in Figure 12.11. This
supervisor is used by supervisor ManageTU3 to determine the breakdown status of as-
sembly stations 1 and 2. It also encodes this information to be passed on to TU3.

The last supervisor in this section is HndlComEventsAS, shown in Figure 12.12.
The supervisor facilitates the lookup of the breakdown status of assembly stations 1 and
2 by multiple supervisors. Supervisor HndlComEventsAS allows ManageTU1, Man-
ageTU2, and DetWhichStnUp to be designed independent of each other but not cause

170

each other to deadlock.

CiPalletAtEL T
MoPalletEL TU QstnlpAst

QPalletatCLTUA

QStnlpast
Stnlp.Ast Stnlp. 481
StnDwn.As1 Stnlwn.451 QStnlUpAs
TrnsfELTGCLTUA Stnllp.ASt
Stnten. A5

IsPalletEL.TU1

=0
IsPaliet L TN

LibPallet, TU
TrasfToELTUT
QstnlUp.Aast
Stnlp.A51
Strwn A5
Stnlp A5

Q5tnUp.ast

PalletRlsd. TL
TrnsfCplTeELTUA

MNoTrnsfELTU1
StnDwn A51
PalletRlsd. TU1
LibPalletTU1
QStnlp.Asi
Stallp. A8
StnDwn.451

Figure 12.5: ManageTUL.

MoPalletEl. TL2
CiPalletAtCLTUZ

CPalletAtELTUZ
Q5tnlip.AS2

QStnUp.AS2
Stalip.dseZ Stnlp.As2
StnDwh.A52 StnDwn.d4582 QStnUp.AS2
TrnsfELTaCLTLZ Stnlp.A52
Stn0wn. A52

IsPalletELTUZ

=0
IsPalletCLTUZ

LibPallet. TUZ
Trn=fToELTUZ
Q5tndp AS2
StnUp.452
StnDwn. 452

Sthlin.Aa52

Q5tnlUp.AS2

PalletRlsd. TUZ2
TrnsfCplToELTUZ

MoTrnsfELTUZ
StnDwn 452

PalletRlsd. TUZ
LibPallet TUZ
Q5tndpAs2

Sthlp.d52
SthDwn. 452

Figure 12.6: ManageTU?2.

171

MoPalletEL. TU3

QPalletAtELTU3 TrnefElTo LTz QPalletAtCLTU3

lsPalletEL TS {) TrhsfCplToCLTUS
E.;"

L 3

[y}

fsPalletCLTUS

NoPalletCL, TLS
TrnsfToEL3_Up

TrnsfTeELZ_1D
TrnsfTeELZ_2D
TrnsfToEL3_BD

TrnsfCplToELTUS

DetstnsUp
NoTrasfELTUS

PalletRlsd. TUZ

LibPallet. TU3

Figure 12.7: ManageTU3.

MoPalletEL. TU4

QPalletAtELTU4 TrnsfELToCLTU4 QPalletAtCLTU4

IsPalletE L T Q TrnsfCplToC LT US
)
52

MNoPalletCl T4

TrnsfCplToELTUG

tsPalletCL. T4

MaTrnsfEL TG

PalletRl=d. T

LibPallet.TU4

Figure 12.8: ManageTU4.

172

LibPallet. TU1 LibPallet.TUA

Stalp A8 IsPalet L TL
TrnsfTeELTU Stndwn 51 Stallp A1
Stalle AS1 isPalletL TU StnDwn.d51
SthDwn.d51 ProcPallet.ds TrnsfELToCLTUT

ProcCpl.as lsPalletEL TUA
ProcErr.a51
50w A5 1

TrasfCplToELTUN

TrnsfCplToCLTUA

fsPalletCL T

Stallp A5

LibPallet. T MoTrnsfELTUN

StnDwn. 51

Sthtp.AST
Strfwn, 451
Figure 12.9: OFProtELL.
LibPalletTUZ LibPallet,TUZ
Stnllp. A52 isPalletCLTUZ
TrosfToELTUZ Sthlwn. 452 Stnllp 452
Stnlin. 452 isPalletol.TL 2 StnDwn.As2
Stnfwn. A5z ProcPalletfsz TrosfELToCLTUZ

ProcCpl.as2 lsPalletELTLZ
ProcErr.A52
50w na52

TrasfCplTeELTUZ

TrosfCplTeCLTUZ

Stnllp.As2 tsPalletcL.TLZ

LibPallet.TUZ MNoTrnsfELTUZ

52

Sthlwn.A52

Stnllp 452
StnDwn. 452

Figure 12.10: OFProtEL2.

173

Q5thlp.As

LibPallet.TUZ
?iﬁgﬂﬁi}? TrnsfTeEL3_2D
QStnlipAs2 LibPallet.TUZ
Stnllp.AS2 TrnsfTeELS_Up
StRDWN.AS2
LibPallet.TUZ Q5tnllp.Aas Q5tnlp.Asz
DetstnsUp . Stalp.AS T
M)

0 51

LibPallet.TU3
TrnsfToEL3_BD

Stnwn A58
Stnlwn. A5

LibPallet. T2
TrnsfTeELZ_1D

Stnlwn A58

O:-. Q5tnlp.As2
-7 Stallp A52 o5
Figure 12.11: DetWhichStnUp.
Stnilp.A5 1
Stnbwn.as 1 SSRGS

MNoPalfetCl, TU
QPalletAtCLTLA

QPalletAtCLTUZ yspatetcr. TU2

Nofalletol TU2
Stnllp.As2

Stalwn 452
Stalln As52

StRwn 482
DetstnsUp

Q5tnlp.A51
Stnllp. A81

sStalwn 457
QStnlp AS2

Figure 12.12: HndlComEventsAS.

174

Chapter 13

AIP Low Levels 1 and 2 (AS1 and
AS2)

We now describe the low levels that represent assembly stations 1 and 2. As they are
identical, we will describe them collectively as low level subsystem w, where w = 1,2. We
also define the companion index k = AS1, AS2, which takes its values relative to w (eg.
k = AS1 when w = 1). As some DES presented in this chapter are identical to those of
Low level 3 (AS3), the index j is used in some diagrams. In this chapter, we will always set
j=k.

Low level w contains the 17 DES shown in Figure 13.1, which shows the definition of
low level w’s subsystem G, , plant component Gy, , and supervisor component Sy, . They

are defined to be the synchronous product of the indicated automata.

GLw
ASNewEvents.k CapGateEL_2.k DepGateNExtrSen.k
G, | Extractork PalletArvGateSenEL 2.k
PalletGateEL_2.k PalletStopEL_2.k PSenAtExtractor.k
QueryPalletTyp.k RWDevice.k Robot.k
RobotNewEvents.k

ﬁjiw HndlPallet.k HndlIPalletLvAS.k OperateGateEL_2.k
Intf-k-Robot.k DoRobotTasks.k

Figure 13.1: Low Level w

175

Low level w provides the functionality specified in its interface, shown in Figure 13.2.
An assembly station accepts the pallet at its gate, and then presents it to its robot for
assembly. It then releases the pallet, and reports on the success of the assembly operation.
If the robot breaks down, this is reported through the interface, and the pallet is released.
Low level w then waits for a repair command to return the robot to operation.

It’s important to note that request event ProcPallet.k should be avoided while the robot
is down. While the robot is down, which answer event that follows event ProcPallet.k is
random and thus meaningless. This is a “fix” to satisfy the interface conditions when star
interfaces are used. Ideally, the interface should have state information that makes event
ProcPallet.k unavailable until the robot is repaired. This is possible with command-pair
interfaces. Unfortunately, the command-pair interface definition was only just developed

and there wasn’t time to update our software and examples.

13.1 Plant Component

We now discuss the plant models for low level w. We start with plant models ASNew-
Events.k and CapGateEL_2.k, shown in Figures 13.3 and 13.4. The first DES simply
introduces new events that are used by the assembly station’s interface.! Plant CapGa-
teEL_2.k models how many pallets can fit into gate w.2 at once. More importantly, it
creates a dependency between pallets arriving and pallets leaving the gate.

The next two plant models are DepGateNExtrSen.k and Extractor.k, shown in
Figures 13.5 and 13.6. The first DES shows that a pallet must first leave gate w.2 before
reaching the extractor, while the second one specifies the behaviour of the extractor which
moves a pallet between the conveyor belt and the robot.

We now discuss plant models PalletArvGateSenEL_2.k, PalletGateEL_2.k, Pal-
letStopEL_2.k and PSenAtExtractor.k, shown in Figures 13.7, 13.8, 13.9, and 13.11.
The first DES shows that the pallet sensor at gate w.2 is gated by the event ProcPallet.k.
The next two DES show the operation of pallet gate w.2 and pallet stop w.2. Finally, DES
PSenAtExtractor.k shows the dependency between a pallet arriving at the extractor, and

a pallet leaving the assembly station.

! Actually, event RelPallet.k coordinates between supervisors HndlPalletLvAS.k and HndPallet.k, the
release of the pallet from the assembly station. It’s the exception.

176

ProcPallet.k

ProcCplk ProcPalletk
ProcErr.k FrocCplk
ASDw K ProcErr.k
GBS k
DoRpr.k FelPallet.k
RobUp.k Q
52 <0
Figure 13.2: Interface to Low Level w. Figure 13.3: ASNewEvents.k
PalletdriGEl _2.k PalletdriraEL _2.k PalletLGEL_2.S PalletlrGEL_2.)
50 : 1 52 50 : 51 : 52
PalletLCEL_2.k PalletlVGEL _ 2.k PArvAtExtractor,) PArvAtExtractor,)
Figure 13.4: CapGateEL_2.k Figure 13.5: DepGateNExtrSen.j
MyExtrToPlatf)
O »)
s0 ¢ s
ExtrdreConpj ExtrdrvPlaty |
¥
C O
=3 MyERtrTaCony. 52

Figure 13.6: Extractor.j

177

COpensEL_2.]

PalletlnSEL_2)

ProcPallet k
Q GClosesEL_2.j
50 =1
PalletdrvdEL_2.k 57
Figure 13.7: Pallet ArvGate- Figure 13.8: PalletGateEL_2.j
SenEL_2.k
ProcTypl.k
ProcTypz. k
RTasksCplk
fzsrmbErrd, k
fzsmbErrB. k
Pailetlvds, HOthkn'k
; : DoRpr.
PStopOpensEL_2.] Roblp.k
=0 : s1 Q
PStopClosesEL_2.]
=0
Figure 13.9: PalletStopEL_2.j Figure 13.10: RobotNewEvents.k
QType.k
PArvdtExtractor,) Q
S0 s IsTppel.k
Palletlids,) sTypes k&
Figure 13.11: PSenAtExtractor.j Figure 13.12: QueryPalletTyp.k

178

The next plant models are QueryPalletTyp.k and RWDevice.k, shown in Figures
13.12, 13.13, and 13.14. DES RWDevice.k models reading and writing to the pallet’s
electronic label. DES QueryPalletTyp.k provides a means of determining the pallet’s
type. QueryPalletTyp.k uses the data from the last read operation performed by the
Assembly station’s R/W device. If a read has not yet been performed, the results are

undefined.

() ()
Donefead. 51 Readlabelas DaneRead.A52 Readlabel &S2
wWrtCplT14_18.451 ﬁrggﬂgg2gs_§_8.ﬂ52
] WriErr1A.851 : rErrzé,
DoneWrite. ST it R Donelrite.ds2 WItErT2B.A52
52 52
Figure 13.13: RWDevice.AS1 Figure 13.14: RWDevice.AS2

We now describe the plant models for the assembly stations’ robots. The robots can
perform two assembly tasks each, can successfully complete the assembly, generate an as-
sembly error, or break down. This behaviour is modelled in Robot.AS1 and Robot.AS2,
shown in Figures 13.15, and 13.16. DES RobotNewEvents.k, shown in Figure 13.10,

introduces new events used by the robots’ supervisors.

13.2 Swupervisor Component

We now discuss the supervisors forlow level w. We start with supervisors Hnd1Pallet.AS1
and HndlPallet.AS2, shown in Figures 13.17 and 13.18. These supervisors handle the
task of processing a pallet once it reaches the extractor for their respective assembly station.
They read the pallet’s label, present the pallet to the robot, and have the robot perform the

appropriate tasks on the pallet. The supervisor then allows the pallet to leave the assembly

179

RobRprinl A5

RtaskCplid.A51
Afrror1d.4517

Riimeout. 451

StrRtaskiA.AS1

StrRtimer.A51

e
-

StrRtask1B.A51
Rtimeout 4517

RiaskCpii1B.d451
Afrrorit a5 =2

Figure 13.15: Robot.AS1

RobRpropl 452

Ritaskipl2d.452
Afrror2d 452

Riimeout 452

StrRtaskza.AS2

StrRtimer.A52

-

StrRtaskZB.AS2
Etimeout.d52

Ritasklpl2B.A452
AErrar2BA52 c7

Figure 13.16: Robot.AS2

180

StrRobRepair.As1

StrRobRepainasz

station and reports on the success of the processing operation by updating the pallet’s label,

and through the station’s interface.

ProcErr.asd
ProcCplAsT @
ASDw n.AS1 O 511 RelPalletAsi
50 b 58 palpalletast
PArvAtExtractor.451 RelPallet.as
.. Readlabel.AS1 Donelrite. St
: Doneldrited5? Donelrite. 451
DoneRead AS1
. MVERtrToP|atf.AS T
()
- WrtCplT1A_1B.A51
ExtrdrvelatfAST ExtrdrvConr 457 WrtErrTA.AS T WriErr1B.A51
;)
OType.asi s10 1 ;
] . =13
=16
IsTypel.Ast tsfvpez.ASt
ExtrdrCome s
O
=4
e ExtrdreCome A5
PP Ul MVEstrToCony.AST
ExtrdreCome A5
sB =
RobDwnAST o7 MyExtrTeCeony.As1
RTasksCpl.as1
f bErra.a51 53
=S MOErTH, MyExtrToCony.AS 1
512
s rbErTE.AS T MyExtrToCony. 857 .

15

Figure 13.17: HndlPallet.AS1

We now discuss supervisor Hnd1PalletLvAS.k, shown in Figure 13.19. Upon receiving
the signal (event RelPallet.k) from supervisor Hnd1Pallet.k, Hnd1PalletLvAS.k opens
the pallet stop and allows the pallet to leave the assembly station.

The next supervisor OperateGateEL_2.k, is shown in Figure 13.20. Once a pallet
has arrived at gate w.2, the supervisor opens the gate and allows the pallet to enter. This

supervisor, in conjunction with HndlPalletLvAS.k, guarantees that there is at most one

181

ProcErrAs2

ProcCplAs2 @
A5 A5 2 ,} s11 RelPallet.asz
50 8 palpallatAs?
PArvditxtractor.A52 RelPallet.as2
. Readlabel.fs52 Donelrite452
51 Donelt'rite.d52 DonelWrite 452
DoneReqd 452
. MyExtrToPlatf.A52
2 WrtCplT24_2B.452
: Extrdrvconvdsz | PR WItErT 28, A5 2
Extrdrvplatf.As2 Q C;O VIrtErT 2B 452
CType.As2 =10
z3 . 13
1sTppe2 A52 #18
IsTypel.AS2 Stypes.
. ExtrdrCone 52
s}
HE e ExtrdreCone 452
S MyERtrToCony.AS2
ExtrdrCome ds?
s e
RobDwn.ASZ o7 MyExtrToConv.A52
RTasksCplasz
AssmbErra.As2 53
=S ML, MyExtrToCony.AS2

12
MyExtrToConw AS2 .

&zsmbErrB.AS2

=15

Figure 13.18: HndlPallet.AS2

182

PstopCpensEL_2k

RelPallet.k @
O *

<0 s

PracCpl k
PrecErr. k PalletLirds &
ASDw .k

kL
~y I
PStopClosesEL_2.k 7

Figure 13.19: HndlPalletL.vAS.k

pallet in the assembly station at a given time.

ProcPallet.k
ProcCplk ()
ProcErr.k
BS0w .k GopensEL_2.k RTasksCpl.k
fobbrwn.k ProcTypl.k
PalletArvGEL_2.k Q AssmbETA.k ProcTyp2.k
s
%1
PalletLraEl _2.k
DoRpr.k
CClosesEL_2.k RobUp.k
52 <7
Figure 13.20: OperateGateEL_2.k Figure 13.21: Intf-k-Robot.k

We now examine the supervisors for the assembly stations’ robots. We start with su-
pervisor Intf-k-Robot.k shown in Figure 13.21. It defines the tasks that the robot can
perform.

Supervisors DoRobotTasks.AS1 and DoRobotTasks.AS2, shown in Figures 13.22
and 13.23, control the operation of the robots. They make sure that the assembly tasks are
performed in the correct order for a given type of pallet, they report on the success of the

assembly operation, and they handle repairs when the robot breaks down.

183

ELS

LSyrpdd3qLussy

LSRR3R
(3301 L B

LSR LY SEIHA5

L5 BLUIY05

LSy Bt I34435 __.,m.v..m_m___ﬁ_.uv___m.nﬁw__

LSezdALzoad
3=

LAFgL o3P

LSRN0y

SLs

LSg'zd Al
LSg L dALxodd

Lsydngoy

[B3- 4= RRE [s R3S
S'gdIgquussy
L5gigdddquuissy
LSy |d sy seLy
LsRusMqey

LS Roaliily

ZLs Els

LLZ

Lsgudyed

Lsyuadyeq LR EDATR oY sy dngoy

LSk uMagey

LSgdledayqoyis

LSkgligquissy

LSER LA sy LS IRoaLdy

LSgLdAloed

LSF IR0y

LSRR L40443F
Ls

L5 Ialliy s

LSy IaIHS LSPR a0ty

LSY'3 Y 5e1dls LS gL 40043F LS LY SEIHALS

PSR sy LSgdaquissy
gls &

(=3

LSy d s seLy

Figure 13.22: DoRobotTasks.AS1

184

ZSF R NS0y

ELS

2SI LSSy

ISP FZA0TR
SR AT FEIHALS

A3 a it oL - R

=5 as

F

E5 i yas

TSy zd Al xead
3=

TSRS ZSEazIays oy

ESPFEA044TY

ZSHIN03UIITY cis

Z5y'zd Al xead
Zsy L dALxoad

, Zswdngoy
2533 qLussy

Z54'g4I3qussy

At V(s V3

ZSy|d sy seLy
ZSyusmggoy

LS oS

CSPAn0atlizy

Lis
754U Mag0Y Z5yudyoq Q 25K a0 9 50y zswdnaoy

Zeydredayqoyns

Zsyudyeq

LS I EsY

ZSPAn0atU Ty

Zoe L dALloodd

CSFIN0atlidy

ESF'F 40443

£s L5

-t
4

TSR UBUIINAS ZSFP I AIHS01Y Z5YBWIREAS

s = Pt EoL=h N =i] o TR T SEIHALS

ZSF'gerdmsoly 25T qLIssY
glLs)

TS |d D sELY

Figure 13.23: DoRobotTasks.AS2

185

Chapter 14

AIP Low Level 3 (AS3)

We now describe the low level that represents assembly station 3. Low level 3 contains the 27
DES shown in Figure 14.1, which shows the definition of low level 3’s subsystem G',,, plant
component Gr,, and supervisor component Sr,. They are defined to be the synchronous

product of the indicated automata.

G
513 ASNewEvents.AS3 CapGateEL_2.AS3 DepGateNExtrSen.AS3 ¥
Extractor.AS3 PalletGateEL_2.AS3 PalletStopEL_2.AS3
PSenAtExtractor.AS3 RWDevice.AS3 PalletMaint
RepPalletNewEvents ~ DetOpNProcNewEvents QueryTypNCpl.AS3
ChkErr.AS3 QueryErrNewEvents.AS3 Robot.AS3
RobotNewEvents.AS3
&f]:} HndlPallet. AS3 HndlPalletLvAS.AS3 OperateGateEL_2.AS3
Intf-AS3-RepairPallet Intf-AS3-DetOpNProc DoMaintenance
DetNProc Intf-RepairPallet-QueryErrors. AS3
Intf-DetOpNProc-Robot.AS3 DoChkErr.AS3 DoRobotTasks.AS3

Figure 14.1: Low Level 3
ProcPallets3

ProcCpl.és3
ProcErr.A53
PalletRepd.as3

Figure 14.2: Interface to Low Level
3.

Low level 3 provides the functionality specified in its interface, shown in Figure 14.2.
It describes the behaviour of assembly station 3, which is very similar to stations 1 and

2. The main differences are that station 3 can repair damaged pallets, is assumed not to

186

breakdown, and it can substitute for either AS1 or AS2 when they are down.

14.1 Plant Component

We now discuss the plant models for low level 3. As low level 3 is so similar to low levels 1
and 2, several of its plant models are identical up to relabelling, to those of low levels 1 and 2.
In particular, DES DepGateNExtrSen.AS3, Extractor.AS3, PalletGateEL_2.AS3,
PalletStopEL_2.AS3 and PSenAtExtractor.AS3 can be obtained by setting variable
j = AS3 in Figures 13.5, 13.6 and 13.8 to 13.11.

The next plant models are ASNewEvents.AS3, CapGateEL_2.AS3, and RWDe-
vice.AS3, shown in Figures 14.3, 14.4, and 14.5. The first DES simply introduces new
events that are used by the assembly station’s interface.! Plant CapGateEL_2.AS3 mod-
els how many pallets can fit into gate 3.2 at once. More importantly, it creates a dependency
between the event ProcPallet. AS3 and pallets leaving the gate. As event ProcPallet.AS3 is
dependent on a pallet arriving at gate 3.2 (see Figure 12.3), this creates a dependency be-
tween pallets arriving and pallets leaving the gate. Finally, DES RWDevice.AS3 models
reading and writing to the pallet’s electronic label.

We now describe the plant models that handle pallet repairs. These tasks consist of
checking if a pallet is damaged, and if so, repairing it. It is assumed that the pallet has
only sustained one assembly error, and thus only the first error found is repaired. We start
with plant models RepPalletNewEvents and PalletMaint, shown in Figures 14.6 and
14.7. The first DES simply introduces new events that are used by related supervisors. The
second DES models informing the operator of the type of error encountered, and waiting
for the repair to be complete.

We now discuss the plant models for tasks related to querying if a pallet has been
damaged. These tasks consist of determining if a pallet has been damaged, and if so, what
type of error has been sustained. Only the first error encountered is reported. We start
with plant models QueryErrNewEvents.AS3 and ChkErr.AS3, shown in Figures 14.8
and 14.9. The first DES simply introduces new events that are used by related supervisors.

The second DES provides a means to query about specific assembly errors.

! Actually, event RelPallet. AS3 coordinates between supervisors HndlPalletLvAS.AS3 and HndPal-
let.AS3, the release of the pallet from the assembly station. It’s the exception.

187

ProcPallet.ss3
ProcZplass
ProcErr AS3
PalletRepd.AS3
RelPallet.as3

Q ProcPallet, 453 ProcPallet.as3

51
Palletb G EL_2.A83 PalletlvGEL_2.A53

Figure 14.3: ASNewEvents.AS3 Figure 14.4: CapGateEL_2.AS3

DoneRead 453 Readlabelas3

Resethssmblinfo.As3

53
Donefeset 453

WriCplT14_1B.453
WtErr1A.453
WrtErr1B.A53
WriCplT24_ZB.453
WtErr2A,.453
WrtErrZB.AS3

DonelWrite A53

52

Figure 14.5: RWDevice.AS3

188

SigMaintT14.453

SigMaintT1B.AS3
DoRepPalletfs3 SigMaintT2A.A53
PalletRepaired.A53 SigMaintTZ2B.A53
RepMotMNeeded. 853

Q 50 51

Maintcpl 453

50
Figure 14.6: RepPalletNew- Figure 14.7: PalletMaint
Events
QErrart
MNoErrort
50

Figure 14.8: QueryErrNewEvents.t,
with t = AS3

NaEret
IsErr gt CQErr1B.t
QErrZa.t QErr1A.t

Mokt

ISEFr2A.t YeEs

tsteridt
ProcTyplasR1.453
NOEret ProcTyp2asR1.A53
1sErroB.t ProcTyp1AsRZ.453
ProcTyp28sR2.853
RTasksCpl.a53

‘o

54 <0

CQErrZB.t

Figure 14.9: ChkErr.t, with ¢t = AS3 Figure 14.10: RobotNew-
Events.AS3

189

We now describe the plant models for tasks related to determining which operations are
needed to be performed on the pallet. Tasks consist of determining the assembly operations
needed by the pallet, based upon the task completion data read from the pallet’s label. The
required assembly task is then performed. For simplicity and to prevent assembly station
3’s resources from being monopolised, tasks for only one assembly station are performed,
and then the pallet is released. For example, if the pallet is of type 1, and all assembly tasks
are still pending, then tasklA and task1B will be performed, and then the pallet would be
released.

We start with plant models DetOpNProcNewEvents and QueryTypNCpl.AS3,
shown in Figures 14.11 and 14.12. The first DES simply introduces new events that are
used by related supervisors. The second DES provides a means of querying the type and

assembly status of a pallet.

tsTmed
s ppel it OType.t
tsCpl.t QCpIT1A_1E.t
DetMProcPalletas3 NotCalt _ b
CplT14_1B.A53 QCplT28_2B.t
CplTZA_2B.A53
<0 52

Figure 14.11: DetOpNProcNew- Figure 14.12: QueryTypNCpl.AS3, with t = AS3
Events

We now discuss the plant components for the assembly station’s robot. Assembly station
3’s robot is similar to the robots in stations 1 and 2, with the difference that this robot
is assumed not to breakdown, and can substitute for the other two robots when they are

down. The plant models are shown in Figures 14.13 and 14.10.

190

RtaskipiiB ASS
dssmbErr 18453
StrRtask1B.AS3

Rtasklplid.AS3

StrRtask2a.A53 dssmbErr 14,453

EtaskCpi2 4,455 StrRtask14.453

dssmbErr2d AS3

RiaskCpl2B.A53

StrRtask2B.A53 AssmbErrZB.A53

Figure 14.13: Robot.AS3

14.2 Supervisor Component

We now discuss the supervisors for low level 3. We start with supervisor HndlPallet.AS3,
shown in Figure 14.16. DES HndlPallet.AS3 handles the task of processing a pallet once
it reaches the extractor. It first reads the pallet’s label, and performs any needed repairs.
If repairs were required, the pallet’s label is updated, the pallet is released, and the results
reported through the station’s interface. If no repairs were required, the pallet is presented
to the robot, and the appropriate tasks are performed on the pallet. The supervisor then
allows the pallet to leave the assembly station and reports on the success of the processing
operation by updating the pallet’s label, and signalling through the station’s interface.

We now discuss supervisor Hnd1PalletLvAS.AS3, shown in Figure 14.14. Upon re-
ceiving the signal (event RelPallet. AS3) from supervisor HndIPallet.AS3, HndIPalletL-
vAS.AS3 opens the pallet stop and allows the pallet to leave the assembly station.

The next supervisor OperateGateEL_2.AS3, is shown in Figure 14.15. Once a pallet
has arrived at gate 3.2, the supervisor opens the gate and allows the pallet to enter. This
supervisor, in conjunction with HndlPalletLvAS.AS3, guarantees that there is at most

one pallet in the assembly station at a given time.

191

M
533 233
=7 A m
@ m S m
BaE =
TinE o T ET
St o S
L =] I-
WA] LA [Py
8 - v B
(5] o m -
oy @ '—. ~ 2
=
e =R
j:- p—
o w =
= =
LA
i = LA
= & Ll
] =]
3 -
wy p—
m [11)
L —+
m I
P o
rd B l{_!r
[5y]
& B =
58] L r_'_lr = g iy O
i
rJ (_/"i w E = i
T - = = =
o =k B
= o] =
— -
T = n (0]
4 [11) m
- = m
= - o —
I m | |
=] — P
T I . T
[N In o
(2N} a o)
o 0
Figure 14.14: HndIPLvAS.AS3 Figure 14.15: OperateGateEL_2.AS3

We now describe the supervisors that handle pallet repairs. We start with supervisor
Intf-AS3-RepairPallet, shown in Figure 14.17. It defines the tasks required for repairing
pallets.

We now discuss supervisor DoMaintence, shown in Figure 14.19. This supervisor
checks if the pallet is damaged and needs repair. If so, it informs the operator of the type
of error, waits for the pallet to be repaired, and then reports the results. If no repairs are
required, then that is reported.

We now discuss the supervisors for tasks related to querying if a pallet has been damaged.
We start with supervisor Intf-RepairPallet-QuerryErrors.AS3, shown in Figure 14.18.
It defines the tasks required for querying if a pallet has errors.

We now discuss supervisor DoChkErr.AS3, shown in Figure 14.20. The supervisor
sequentially checks for all four possible assembly errors, and reports on the first one it finds.
If no errors are present, then that is reported.

We now describe the supervisors for tasks related to determining which operations are
needed to be performed on the pallet. We start with supervisor Intf-AS3-DetOpNProc,

shown in Figure 14.21. It defines the tasks required for determining which operations are

192

ELS

0Zs

SO AUOT0] A3 ETA W ESH A4 QLUSSE
£ls
. ESP'PE44FFLUESE
ESY AL 3TN
(e
ESYALODO] 3XTAN £S1'B1 AI3GsSp
=0
ESYAUODO] 3HIAW
71 ESF'F I 443G LWESE
£S5 AUOD0 LKA N B -
ESPAUONIPN 3 g5 ESYAZ wZLIdD
ESYALTYLLdD
ESY AUODO LTI
ESFAN02AIF I3
ESFALO DAL AN T
ESF AL AN T
ESP U0 AN T

ESF AL AL T
oS ESw38|[Eda0UdNIB0

s MU ESF 108 T

gLs
O P ESYALTY LA ESEIE[doLARIA W . &
ESYAZLATLAM, i ‘
ESYYZ IR, amaeion
ESYELUILM WY LT, 15 ESY'papasNioNday

ESPay4matiog

ESP'a}4Maliog

ESpalidmanog

ESYAZT9TLId 1M

SESFaAmau0g

ESpadaMatog

E5%13||Bd| 8y
L

ESypadEdayialed

(Je*

ESyaJU|qLUSSYIasaY .
SRR ey |eqddayoq ESprpoayauogd

ESpiasayatiog E.

S5y ageETpeay .
£5e38([Bd|2Y EEP 010N IR AL G
ESYI8IIEd |2y \Q 05
& £swpdayis||ed 2
8y dooaedd

ESgI30Ad

: HndlPallet.AS3

Figure 14.16

193

QErrort

DoRepPalletas3 S0 i 51
MoErrort
O ISErr1A.t
fsErrigt
=0

. 51 IsErr2dt
PalletRepaired. 453 ISErr2E.t

RepMotNeeded. A53

Figure 14.17: Intf-AS3-RepairPallet Figure 14.18: Intf-RepairPallet-QuerryErrors.AS3,
with ¢t = AS3

RepMotNeeded as3

QErrorAS3 MaErrornas3

DoRepPallet.as3

501 ISEred.AS3
SigMaintT1A.AS3

{sErr2B.A53

PalletRepaired.4s3

IsErr2d.455

SigMaintTZ4.458

.-. SigMaintTZB.A53
=6
Malintcpl A835

Maintopl ASS

57

Figure 14.19: DoMaintence

194

JErr1At QErr1B.t
MoLrrt

QErrort

ol 52

NoErrt
IsErrigt

MoErrort

D QErr2at
ISErr2A.d 53
DetMProcPallet.as3

ot Q
z0 51

CplT1A_1B.AS3
CplTZA_2B.A53

¥ dssmbErr14.453
_{) QErr2B.t AssmbEre 18,453
54

Istrr2Et

O

3]

NoErr.t dAssmbErr24.453

dssmbErr28.453

Figure 14.20: DoChkErr.t, with ¢t = AS3 Figure 14.21: Intf-AS3-
DetOpNProc

needed to be performed on the pallet.

We next discuss supervisor DetNProc, shown in Figure 14.22. This supervisor deter-
mines the next set of tasks pending for the pallet, performs them and then reports on the
results.

We now discuss the supervisors for the assembly station’s robot. We start with supervi-
sor Intf~-DetOpNProc-Robot.AS3, shown in Figure 14.23. It defines the tasks that the
robot can perform.

The supervisor for the robot is given in Figure 14.24, and labelled DoRobotTasks.AS3.
It’s essentially a combined version of supervisors Robot.AS1 and Robot.AS2, minus

breakdowns.

195

RTasksCpl.AS3
CplT24_2B.A53

AssmbErr24.453
AssmbErr2B.A5E

OType.As3
AssmbErr2d.453

QCpIT1A_TB.ASS ProcTyp1AsRZASS
o AssmbErr2B8.453 DetNProcPaIIet.ASSQ IsTppet A3 Q tsCplASE

sl 52
ProcTyp2AsR2.AS3

o7 RTasksCpl.AS3
isTppes 453

AssmbErriddsg | NotCplLASS

AssmbErr 18483
WotlplA53

ProcTyp1AsR1.453

€]
QCplTZA_2B.AS3
1sCpl 483

ProcTyp2asR1.AS3

AssmbErr14.483
AssmbErr18.483

RTasksCpl.AS3

CplT14_1B.A53

Figure 14.22: DetNProc

RTasksCpl.as3

PracTyplAsR1.A53
dssmbErrid. 453 ProcTyp2asR1.A53
AssmbLrr 18453

ProcTyplAsR2.653
RTasksCpl.&S3 ProcTyp2&sR2.453
dssmbErr2 4,455
AssmbLrr28.453

Figure 14.23: Intf-DetOpNProc-Robot.AS3

196

ESEE Ay s0 Y

25 L5135 593 LY 5115 RIS B G 2RI EEIY S

s
e ESF'FLATS0Y 9 9 ESPASIEIseY 6

a4 i
4

ESYZHswzdALI0Ad
£S5y LYsyzdALooud

"Gl AATPLUSS
SRS ¥ ESF'AZA4FFLUSS

ESPFEIAs0Y

ESF'F L A43 QLussy
E5P'F £ 44T FLssp

5
ols 0)

S Ao selY “ oy dosysely

ESp'F 24T FLUSSY
ESP'G L ST GLISSY
ESF'F L4435 U5 ESF'PEAITqUIEsR
ESF' L doysoly

o s ldsy L dAl ol ESP A IS0y

5 L5 £s 5

ESYZHew L dALIC0Ud -

‘ CSRF L IEs0Y . ‘ ESPRE A E02Y .

£SY'E LY SEIH S ESY'Y LYSEIAS ESYWTNSEINAS ESY" BT SEIHAIS

Figure 14.24: DoRobotTasks.AS3

197

Chapter 15

ATIP Low Levels 4 and 5 (TU1 and

TU2)

We now describe the low levels that represent transport units 1 and 2. As they are iden-

tical, we will describe them collectively as low level v, where v = 4,5. We also define the

companion indexes X = 1,2, and r = TU1, TU2, who take their values relative to v (eg.

X =1 and r = TU1 when v = 4). Finally, for this chapter the variables ¢ and ¢ in the

diagrams should be both set to r.

Low level v contains the 25 DES shown in Figure 15.1, which shows the definition of low

level v’s subsystem G, plant component Gy, , and supervisor component Sy, . They are

defined to be the synchronous product of the indicated automata.

CheckOpNeededNewEvts.r ~ QueryTypNCpl.r

é" CapGateCL.r CapGateEL_1.r CapTUDrwToExit.r
CapTUDrwToGateCL.r CapTUDrwToGateEL_1.r PalletGateCL.r
PalletGateEL_1.r PalletStopCL.r PalletStopEL_1.r
QueryDrwLoc.r RWDevice.r TUDrawer.r
TUNewEvents.r ChkErr.r QueryErrNewEvents.r

nfL‘, HndlComEvents.r HndILibPallet.r
HndITrnsfToEL.r Intf-r-QueryErrors.r
DoChkErr.r DetlfOpNeeded.r

HndITrnsfELToCL.r
Intf-r-CheckOpNeeded.r

v

Figure 15.1: Low Level v

Low level v provides the functionality specified in its interface, shown in Figure 15.2.

The transport units are used to transfer pallets between the central loop, and the external

198

loops (ie. TU1 transfers pallets between CL and EL 1). Transport unit X has two entry
points for pallets, gate 5.X on the central loop, and gate X.1 on the external loop. If a pallet
is at gate X.1, low level v transfers the pallet to the central loop. If a pallet is at gate 5..X,
low level v can be requested to liberate the pallet (allow it to pass through and continue on
the central loop), or to transfer the pallet to the external loop. When requested to transfer
a pallet to the EL, low level v will only transfer the pallet if the pallet is undamaged, and if
the next assembly task required by the pallet is performed by the external loops assembly

station, and the station is not down.

LibPallet.q
TrnsfToELqg

PalletRlsd.q TrnSfTOEL'q
NoTrnsfELQ
MoTrnsfELq TrnsfCplToELQ
TrnsfCplToELa TrnsfELToCLg
TrnsfCplToCLy
TrnsfELToCLg LibPallet.q
PalletRlsd.q
TrnsfiCplToCLyg ;
52 z0
Figure 15.2: Interface to Low Level v. Figure 15.3: TUNewEvents.q

15.1 Plant Component

We now discuss the plant models for low level v. We start with plant models TUNew-
Events.r, CapGateCL.r, and CapGateEL_1.r, shown in Figures 15.3, 15.4, and 15.5.
The first DES simply introduces new events that are used by the transport unit’s interface.
Plant CapGateCL.r models how many pallets can fit into gate 5.X at once. More im-
portantly, it creates a dependency between events TrnsfToEL.r and LibPallet.r and pallets
leaving the gate. As events TrnsfToEL.r and LibPallet.r are dependent on a pallet arriving
at gate 5.X, this creates a dependency between pallets arriving and pallets leaving the gate.
Similarly, DES CapGateEL_1.r creates a dependency between event TrnsfELToCL.r and
pallets leaving gate X.1, and thus between pallets arriving and pallets leaving the gate.
We now discuss plants CapTUDrwToExit.r, CapTUDrwToGateCL.r, and Cap-
TUDrwToGateEL_1.r, shown in Figures 15.6, 15.7, 15.8. DES CapTUDrwToExit.r

199

creates a dependency between pallets arriving at the transport drawer and pallets leaving
the transport unit. DES CapTUDrwToGateCL.r creates a dependency between pallets
leaving gate 5.X and arriving at the transport drawer. DES CapTUDrwToGateEL_1.r
creates a dependency between pallets leaving gate X.1 and arriving at the transport drawer.

Next we discuss plants PalletGateCL.r, PalletGateEL_1.r, PalletStopCL.r, and
PalletStopEL_1.r, shown in Figures 15.10, 15.11, 15.12, 15.13. These DES show the
operation of pallet gates 5.X, X.1 and pallet stops 5.X, X.1, respectively.

The next plant models are QueryDrwLoc.r, TUDrawer.r, and RWDevice.r, shown
in Figures 15.14, 15.15, and 15.16. DES TUDrawer.r models the operation of the transport
drawer, while DES QueryDrwLoc.r stores the location (at the central loop or at EL X)
of the transport drawer and provides a means of querying the location. Finally, DES
RWDevice.r models reading from the pallet’s electronic label.

We now discuss the plant models for tasks related to querying if a pallet has been
damaged. These tasks consist of determining if a pallet has been damaged, and if so,
what type of error has been sustained. These plant models, QueryErrNewEvents.r and
ChkErr.r, are identical to those discussed on page 187 after substituting ¢t = r.

We now discuss the plant models for tasks related to determining if a pallet needs to
be transfered to transport unit X’s attached external loop for assembly operation. We
start with plant models CheckOpNeededNewEvents and QueryTypNCpl.r , shown
in Figures 15.9 and 14.12 (see page 190, with ¢ = r). The first DES simply introduces new
events that are used by related supervisors. The second DES provides a means of querying

the type and assembly status of a pallet.

15.2 Supervisor Component

We now discuss the supervisors for low level v. We start with supervisor HndlComEvents.r,
shown in Figure 15.17. This supervisor allows HndlLibPallet.r, HndlTrnsfELToCL.r,
and HndlTrnsfToEL.r to be designed independent of each other but not cause each other
to deadlock even though they use common events.

We now discuss supervisor HndlLibPallet.r, shown in Figure 15.19. The supervisor
handles liberating pallets. It allows a pallet at gate 5.X on CL, to pass through the transport
unit without being transfered to EL X.

200

TrnsfToELQ TrnsfToELg
LibPallet.q LibPalletq

0] : 51 : 52

PalfetlGCL.g Pallet G L.
NoTrnsfELQ NoTrnsfELQ

Figure 15.4: CapGateCL.q

PalletdroBDrwet.! PalletdriDrwcl.f
PalletdrBrvELd PalletArvDrwel

s0 : 51 : 52

PalletLyTUAICL.S PalletLyTUALCL
PalletLvTUATEL _1.f PalletLTUAEL _ 1.0

Figure 15.6: CapTUDrwToExit.i

PalletlvCEL_ 1. PallettvGEL _ 1

TrnsfELToCLi TrnsfELToC L

: 51 52

50 PallettGEL_ i Pallett vCEL_

Figure 15.5: CapGateEL_1.i

Palletbraoly PalletlbGoL.f

s : 52
Palfet ArvDrwcL.s PalletdrvDrwel.]

Figure 15.7: CapTUDrwToGateCL.i

QopMeeded.r
CDpMeeded.r
NotDpMNesded.r

o

50 : 52
PalletdrvDrweL.] PalletdrifrwEl.] 50
Figure 15.8: CapTUDrwToGateEL_1.i Figure 15.9: CheckOpNeededNew-
Events.r
COpensCL COpensEL_1.i
PalletlvGCL PalletLVGEL_ 1.
GClosesCLi GClosesEL_1.
52 52
Figure 15.10: PalletGateCL.i Figure 15.11: PalletGateEL_1.i
PalletLpTUARCLT -
PStopCOpensCLi , PalletlyTUAREL _ 1.
PStopCpensEL_1.1
s 51

PStopClosesCLi

Figure 15.12: PalletStopCL.i

201

=0 s1

PStopClosesEL_1.i

Figure 15.13: PalletStopEL_1.i

Prwdrrcl.d

D rwdrvEL d QDrwloci

Q0w Lo

Orwditcl.d

DrwdrrEL.!

Figure 15.14: QueryDrwLoc.i

MyDrw ToEL
o >0
[] 1
Drwdect ity
Readlabel.i
O O o« O
= MyDrw ToCLi c3 50 DoheRead.l 51
Figure 15.15: TUDrawer.i Figure 15.16: RWDevice.i
GiopensCLQg
CClosesCLy
GiopenseEL_1.q
GCILosesEL_Lq
TrasfToEL Palietl G CL.q
TrafELToCLa Paliet VGEL_ 1.
LikPallet.g PalletdanDrwel.g
PalletdriDrwEl.g
PStopCpensCLg
PstopClosesCLag
PStopOlpensEL_Lq
50 51 PStopClosesEL_1.g
NoTrnsfELg PalletL v TUALCL g
TrnsfCplToELQ
PolletlyTUAEL _ 1.9
TrasfCplTaCLg QDrwloc.q
PalletRlsd.q DrwAtEL.::; QOpMeeded.r
CrwdiCL.g
MuDrwToELG
My Dirw ToC L,
DrwdrvEL.g : 50 OpMeededr 51
Drwdrict.g NotDpMeeded.r
Figure 15.17: HndlComEvents.q Figure 15.18: Intf-r-CheckOpNeeded.r

202

g5

L AL O

I Ds850| Jdo1Sd

'ps|d3a||Ed
=1
" 25850 00 @
M Dsued0dolsd
I gAR 1A O
11204 3R B
s DLs L5 0s X
O O o)
"1 2I5850] 2T DA 0 "38|1edyl]
| osuadon

IR
IIDAIpAg
1730 L M4
1120 L#d]
PP

[EH e

I'207 M40

LTI ALATIR O
PP ALATI B

I'L ~135850| Ddolsd
I'L ~13suad odelsd
|1 05850 Jdo15d

I 7suad 0dosd
P13 FAIE IR B
112 JAAE 3 B
"L T13DANR e
IIaDANE B

I'l ~735850| 00

'l T13suadon
13585030

I DsuadoD

Figure 15.19: HndlLibPallet.i

203

[2suad0dolsd

s
FAMFALATRN 0 g5 I Dsas0| Jdoysd 5
e) ..u.\llu_
v et p
F
0L dosuaL
II2ApEMG
_ 95
'L 135a52 00
S5 {3
hC F Y 17301 MA A
Zs
P72 L s
" 1IMAGAII3Y O
P IFA AN B 1P T aPMed
e aLs £5 LS
(et { “+ . E&
["L7135852] 00 LTI AT B @ FFEMAd @ 20 L734sudL
I'L T13sued 0D 1207 M A00

fFAEMAG
{1

1732 LAl dé

[T 2oLl
FI2IEMA

I E]

1207 MA0 T

LTI ALATIE B
IR A LA 0
I'L T135a850| Ddolsd
1"l 13suadodolsd
I D5a50| Jdolsd

" osuadodelsd
1134 A28} 0 d
I GAdEIN 0F
A E L e
112Da7e) B
I'L"135850] 20
I'L7135uad 0o
1725850 20

[osuad oo

Figure 15.20: HndlTrnsfELToCL.i

204

We now discuss supervisor Hnd1TrnsfELToCL.r, shown in Figure 15.20. The super-
visor handles transporting pallets from EL X to the central loop.

We now discuss supervisor HndlTrnsfToEL.r, shown in Figure 15.21. The supervisor
handles transporting pallets from the central loop to EL X. It only transfers pallets if
they are undamaged, and if the next assembly task required by the pallet is performed by
assembly station X.

We now discuss the supervisors for tasks related to querying if a pallet has been dam-
aged. These supervisors, Intf-r-QuerryErrors.r, and DoChkErr.r, are identical to those
discussed on page 192 after substituting t = r.

We now discuss the supervisors for tasks related to determining if a pallet needs to
be transfered to the transport units external loop. We start with supervisor Intf-r-
CheckOpNeeded.r, shown in Figure 15.18. It defines the tasks required to determine
if a pallet needs to be transfered.

We now discuss supervisors DetIfOpNeeded.TU1 and DetIfOpNeeded.TU2, shown
in Figures 15.22 and 15.23. These supervisors determine if the pallet needs to be transfered

to external loop X for assembly operation.

205

5 55 FrIapeag L5 e TIRpaLaTeeg 90 I T13s850| 00035 B3
Q (P ’e -O -O
F e 4IP3 B hC

I730L AT
LT 3suadodo
L T13suad odoysd 13018945001
Iosaso| 00
Iosaso| 00
pta (%
4704 gAap) B d
4£730A733)16d
bLs
ES A s
JpapaaNdoloN
AR ETEIRTELTY
Josuadon AT LA

A1 2PAd FIFIPMAG

LS

LS

4@ 4435
AFEAATS
AL 4435
AF L AATS

drpapaando

107 mMaghD JpapaaNdoD

A0

LAed130

Apoadaldod

rlageipeay

17301 45U4L

A IFALPAT
P lp R WEIFEy
4730 L AN

R bR L
AN2IPMAG
A13PG
BTy FUN (g la]
4TI LA B
AR LA B

J L T13sA50 odoysd
S LT13suedodolsd
A osaso|odoysd
J7osuadodolsd
A3 GANE 1 B
AT R E
A TI3maaNed
A2 DA B

SR = =T el
417135uad oD
10585000
Iosuad o

Figure 15.21: HndlTrnsfToEL.r

206

CpMeeded. TU 55

s ppel, U

QCplT1A_1B.TU

QType. T
QOpMeeded. TUT Q Motcpl TU Q) fsCpl TU
50 '52 .
MotDpMesded TUT
fsCpl T
feTpmes TUT

QCplT28_2B.TU1

MNotCpl TU W

51 4

Figure 15.22: DetIfOpNeeded. TU1

COpMeeded TUZ

IsTpesd TUZ

QCplT2A_2B.TUZ

QType. TUZ
QOpMeeded TUZ Q MNotCplTU2 Q:} isCplTUZ
50 '52 -
MNotOpMeeded TUZ
lsCplTUZ IsTpnel TUZ

QCplT1A_1B.TUZ

MNotCplTU2 W

51 4

Figure 15.23: DetIfOpNeeded.TU2

207

Chapter 16

ATIP Low Level 6 (TU3)

We now describe the low level that represents transport unit 3. Low level 6 contains the 29

DES shown in Figure 16.1, which shows the definition of low level 6’s subsystem G, plant

component Gr, and supervisor component Sr,. They are defined to be the synchronous

product of the indicated automata.

GL6

f CapGateCL.TU3

L6 | CapTUDrwToGateCL.TU3
PalletGateEL_1.TU3
QueryDrwLoc.TU3
TUNewEvents. TU3
CheckDwnOpNeededNewEvts

CapGateEL_1.TU3

CapTUDrwToGateEL _1.TU3 PalletGateCL.TU3

PalletStopCL.TU3
RWDevice.TU3
ChkErr.TU3
QueryTypNCpl.TU3

CapTUDrwToExit.TU3

PalletStopEL_1.TU3
TUDrawer. TU3
QueryErrNewEvents. TU3

J HndlComEvents. TU3
HndITrnsfELToCL.TU3
Intf-TU3-CheckDwnOpNeeded
HndlComEvents ChkDwn

HndILibPallet. TU3
HndITrnsfToEL.TU3
DoChkErr. TU3
HndIStn1Dwn

HndlISelCheck.TU3
Intf-TU3-QueryErorrs. TU3
HndIBothStnDwn
HndIStn2Dwn

Figure 16.1: Low Level 6

Low level 6 provides the functionality specified in its interface, shown in Figure 16.2.

Low level 6 describes the behaviour of transport unit 3, which is very similar to TU1 and

TU2. It differs in how it decides if a pallet should be transferred from the central loop to

external loop 3. First, all damaged pallets are to be transferred to EL 3 for maintenance.

Second, if an assembly station is down and it performs the next pending task for the pallet,

then the pallet is to be transferred. As low level 6 must know the breakdown status of

assembly stations 1 and 2, this information is passed in explicitly as separate request events

208

(see Figure 16.2, transitions from state sg to s1).

) TrnsfToEL3_Up
RS e b NoTrnsFELTU3
TrnsfToEL3_2D TrasfCplToELTUS
TrnsfToEL3_BD TrnsfELToCLTUS
TrasfCplTeC LTS
LibPallet.TU3
PalletRlsd. TUZ

SkipDw nOpChkTU3

PalletRlsd. TU3

NoTrnsfELTUS

TrnsfCplTeELTUS TrnsfToEL3_1D
TrisfToEL3_20
TrnsfELToCLTUR TrosfToEL3_BD
TrosfCplToCLTUS Q
52 0
Figure 16.2: Interface to Low Level 6. Figure 16.3: TUNewEvents. TU3

16.1 Plant Component

We now discuss the plant models for low level 6. We start with plant models TUNew-
Events.TU3, and CapGateCL.TU3, shown in Figures 16.3 and 16.4. The first DES
simply introduces new events that are used by the transport unit’s interface.! Plant
CapGateCL.TU3 models how many pallets can fit into gate 5.3 at once. More impor-
tantly, it creates a dependency between events TrnsfToELS3_Up, TrnsfToEL3_1D, Trns-
fToEL3 2D, TrnsfToEL3_BD, and LibPallet. TU3 and pallets leaving the gate. As events
TrnsfToEL3_Up, TrnsfToEL3_1D, TrnsfToEL3_2D, TrnsfToEL3_BD, and LibPallet. TU3
are dependent on a pallet arriving at gate 5.3, this creates a dependency between pallets
arriving and pallets leaving the gate.

The next 11 plant models are identical to those of low levels 4 and 5 and are shown in
Figures 15.5 to 15.8, and 15.10 to 15.16, with ¢ = TUS.

We now discuss the plant models for tasks related to querying if a pallet has been
damaged. These tasks consist of determining if a pallet has been damaged, and if so, what
type of error has been sustained. These plant models, QueryErrNewEvents. TU3 and
ChkErr.TU3, are identical to those discussed on page 187 after substituting ¢ = TU3.

We now discuss the plant models for tasks related to determining if a pallet needs to

be transfered to transport unit 3’s attached external loop for assembly operation. This is a

! Actually, event SkipDwnOpChk.TUS3 is used by supervisor HndlSelCheck.TU3 to indicate that AS3
does not need to substitute for AS1 or AS2 (ie. both are up).

209

GOpensCLTU3
GClosesCLTUZ

TrnsfTeEL3_Up GOpensEL_1.TU3
TrnsfELToCLTUZ GClosesEL_1.TU3
LibPallet.TU3 Palletlra oL TUS
TrnsfTeEL3_1D PalletlpGEL_1.TUZ
TrnsfTeELZ_2D PalletdrRrncl TUS
TrnsfTeEL3_BD PalletdreDrweLl TUZ
PstopOpensCLTUZ
TrnsfToEL3_Lp TrrsfTeEL3_Up PStopClesesCLTUS
LibPallet. T3 LikPallet. T PStopOpensEL_1.TU3
TrnsfToEL3_ 1D TrnsfTeEL3_1D 50 NoTrnsfELTUZ 5 e S
TrnefToE L3 2D TrnsfToELT_2D TrnsfCplToEL TU3 Palletl Ly TUATCLTUS
TrnsfToEL3_ED TrnsfToELZ_ED TrnsfCplToC LTUZ Egiﬁig?—{-ﬁ%ﬂjjug
PalletRlsd TL3 DrsdtEL. TUS
DrdtCL TUS
5 1 oz twDrw ToELTUZ
Palletl O oL TUS Palletl S CLTUSE EVDFEWEEE'IE}EUS
NoTrnsfELTUS NoTrnsfELTUS DrwdrCL
riwdriecl TU S
Figure 16.4: CapGateCL.TU3 Figure 16.5: HndlComEvents. TU3

based on the next pending tasks for the pallet, and the breakdown status of the assembly
station that would normally perform these tasks.

We start with plant models CheckDwnOpNeededNewEvts and QueryTypNC-
pl. TU3, shown in Figures 15.9 and 14.12 (see page 190, with ¢ = TU3). The first DES
simply introduces new events that are used by related supervisors. The second DES provides

a means of querying the type and assembly status of a pallet.

16.2 Supervisor Component

We now discuss the supervisors for low level 6. We start with supervisor HndlComEvent-
s.TU3, shown in Figure 16.5. This supervisor allows HndlLibPallet. TU3, HndlTrns-
fELToCL.TU3, and HndlTrnsfToEL.TU3 to be designed independent of each other but
not cause each other to deadlock even though they use common events.

The next supervisor we discuss is HndlSelCheck.TU3, shown in Figure 16.7. This
supervisor assists supervisor HndlTrnsfToEL.TU3 by mapping the request events sig-
nalling a transfer to EL 3 and containing the breakdown status of assembly stations 1 and
2, to the appropriate events used by supervisor Intf~-TU3-CheckDwnOpNeeded.

We now discuss supervisor HndlTrnsfToEL.TU3, shown in Figure 16.10. The super-
visor handles transporting pallets from the central loop to EL 3. It only transfers pallets if
they are damaged, or if an assembly operation is required by the pallet as a substitute for
a down assembly station.

The next two supervisors for node TU3, HndlLibPallet. TU3 and HndlTrnsfEL-

210

ToCL.TUS3, are identical to those of nodes TU1 and TU2 and are shown in Figures 15.19
and 15.20, with « = TUS3.

We now discuss the supervisors for tasks related to querying if a pallet has been damaged.
These supervisors, Intf-TU3-QuerryErrors.TU3, and DoChkErrTU3, are identical to
those discussed on page 192 after substituting ¢t = TU 3.

We now discuss the supervisors for tasks related to determining if a pallet needs to
be transfered to the unit’s attached external loop for assembly operation. We start with
supervisor Intf~-TU3-CheckDwnOpNeeded, shown in Figure 16.8. It defines the tasks
required to determine if a pallet needs to be transfered.

We now discuss supervisor HndlComEvents_ChkDwn, shown in Figure 16.9. The
supervisor allows HndlStn1Dwn, HndlStn2Dwn, and HndlBothStnDwn to be de-
signed independent of each other but not cause each other to deadlock even though they
use common events.

The remaining supervisors are HndlStn1Dwn, Hnd1Stn2Dwn, HndlBothStnDwn.
They are shown in Figures 16.11, 16.12, and 16.13. These supervisors determine if the
pallet needs to be transfered to TU3’s attached external loop for assembly operation. DES
HndlStn1Dwn handles the case that only AS1 has broken down. It checks if the next
tasks pending for the pallet are handled by AS1, and if so, the pallet is to be transferred.
DES HndlStn2Dwn performs the identical task for the case AS2 has broken down. DES
HndlBothStnDwn handles the case both assembly stations are down. In this case, it is

sufficient to check that the pallet still has assembly tasks pending.

211

51

ODwnOpMeeded_10.TU3
fsErrtdTus
fsErr 1B TUS
fsErr24. TS

ISErr2B.TU S TrnsfTeEL3_1D

TrusfToELZ_Up

2
SkipDwnOpChk Tz

TrnsfTeELZ_2D
53

QDwnOpMeeded_20.TU3 IsErr1d.TUS

tsErrid Tz ISErrigTLE

:sgrr;g%’_ﬂg tsErr2d TUZ

sErr2d. 1sErr2B.TUE
QDwnOpNeeded_10.TU3 VSErFaBTUS

ODwnOpNeeded_20.TU3

QDwnOpNeeded _BD.TUZ

DwnOpMeeded. TU3 TrnsfToELZ_ED
MotDwnOpNeeded TU3

QDwhnOpMeeded_BD.TUZ
S

ISErr1BTU3
Q ISErr2A.TUE
ISErr2B.TU3
0] =4
Figure 16.6: CheckDwnOpNeededNew- Figure 16.7: HndlSelCheck.TU3
Evts
QDwnOpNeeded_10.TU3
QDwnOpNeeded_10.TUZ ODwnOpNeeded_20,TUZ EEEIEQ_EE$£
ODwnOpNeeded_20.TU3 QDwnOpNeeded _BD.TU3 IsCplTUS
ODwnOpMeaded _BD.TUS MWatCpl TUS
OType TU3
©} isTpned. TU3
50 1 50 51 sTped TUS
DwnOpMeeded TU3 DwnopNeeded TU3
NotDw n2pNeeded TU3 NotDwnOpMeeded, TU3
Figure 16.8: Intf-TU3- Figure 16.9: HndlComEvents_ChkDwn
CheckDwnOpNeeded

212

s 85 cariIapalg L8 Eag TiapaLaneod 95

-

ENL 17135850 Ddoysd B3

& Q=
K E£0170MIG0pe) 0d hC
ENL130LMI0n K

ENL25850| 200
ENLT25850| 20

oLs
EnLTamigndpialitg

L

EndTianaiialiod

ES EnLaadpmag

ENL20LMlds

EnLiosusdon

EnL2pmAd

ENLEMLAD

L3 Els

~

O

Enl L T13suedodelsd

LS

ENLYYyIdoumadiys
ENLpapaaydoumdion

)
Ry

LLs
{ e

EMNLT3EUALoN

0O

ENLT3eL|d sl

ENLag_papaandoumdn
EnLaz”papesndoumal
ENLaLTpapesNdouMaD

£ L2307 MO0

ENLpapsandou Mg Q £MLJoLIION

MNL42a3o

Enil'gid435!
ENLFEA435¢
Enl'gl 4435
ENLFLA4IS

~ £n1poayauogd @

£nLiagqelpeay

d9"E£730L4sudL
dZ"E713¢ 15Ul
dL7E13eL4sudL
dnTe13eLdsudl

£ IR

L 12
ENLT3oLMAdA R
ENLTD0L M4
EALTIIIPMAG

E1L 7RG

£ 120 Ml

ENL TIFF LTI
ENL IR LT ed
ENL L T135850| Ddols
ENL LT 13suad odolsy
ENL1osas0 odelsd
enLosuadodoelsd
N4 1AM B
SN 1M AN
Efd L TIInANE e
ENLI2RATaN0ed
EMNL'LT135850| 20
ENLLT13suad0n
ENLD5850| 0D
EnLosuadon

Figure 16.10: HndlTrnsfToEL.TU3

213

e LS

saLaaIoN
ENLAZTYELIH D0
£ ZAAALS)
£ dos

: ENLpapaandousmdion ER1ZaaA1 s
£s < as 3 ENLL3aALs)
_m cnLadAli
_ SRl doN SNl papasNdouMdD £ EDIoN
£ dos £ dos

EnLadilh ENLAz weL|d o0

ENLALTRLLd D0
EnLpapaaNdoumdion
EnLpeapsandoumg

ENLALTRLLd D0

0L 3aALs

ENL'papaaNd O

gs

Figure 16.11: HndlStn1Dwn
214

s

£s

£ a0

C

LNt ZaddLs)

EALdIoN
ENLAL TS LLd D0
£041dDs
£id L 2dd) 8
ENL'papaaNdou M dieN
o5
05 3
@ ERLIEDI0N ENL'dZ papaaNdoumadl
cnLedAlLi

EMNLAZ YL don

EnLpapaandousmg

ERlZaddL sy
ERLaddss
EnLadAli

SALaaIoN

£ dos
ENLEZ " wZL|d oD
ENLALTYLLd DD
ENL'papasNdOumdien
ENLpapaapdousmg

Figure 16.12: HndlStn2Dwn

215

75

ENL'papasNdoum]

EfLdI0n

ELdII0N

- EAL L AaALS
EnLadili
EALIEII0N

£n1 a5

ENL'az"wzl|don

ENLALTYLLdon

ENL'papaandouMmOdioN

ENLpapsaNdoumag

£ dos EnL'dg papasWdousmdo

ENLELTYLLdoD

£ as)

EnLpapaandoumOIeN

5 1

Figure 16.13: HndlBothStnDwn
216

Chapter 17

AIP Low Level 7 (TU4)

We now describe the low level that represents transport unit 4. Low level 7 contains the 19
DES shown in Figure 17.1, which shows the definition of low level 7’s subsystem G',,, plant
component Gr,., and supervisor component Sr,. They are defined to be the synchronous

product of the indicated automata.

G,
LQTJ CapGateCL.TU4 CapGateEL_1.TU4 CapTUDrwToExit. TU4
CapTUDrwToGateCL.TU4 CapTUDrwToGateEL_1.TU4 PalletGateCL.TU4
PalletGateEL_1.TU4 PalletStopCL.TU4 PalletStopEL_1.TU4
QCorrectType QTasksCpl QueryDrwLoc. TU4 QCp IT1A_1B.TUG
RWDevice.TU4 TUDrawer.TU4 TUNewEvents. TU4 QCpTIZ4_2B.TUg

Y7 | HndIComEvents. TU4 HndILibPallet TU4 HndITrnsfELToCL.TU4 0 i ; 51

HndITrnsfToEL. TU4 lscpd TUS
WotCpl TU4

Figure 17.1: Low Level 7 Figure 17.2: QTasksCpl

Low level 7 provides the functionality specified in its interface, shown in Figure 15.2
(See page 199, with ¢ = TU4). It describes the behaviour of transport unit 4, which is
very similar to TU1 and TU2. Low level 7 differs in how it decides if a pallet should be
transferred from the central loop to external loop 4, which contains the I/O station (the
I/O station is where pallets enter and leave the system). As pallets are required to leave
the system in a particular order (ie. type 1, type 2, type 1, ...), Low level 7 keeps track of
the type of the last pallet to be transferred to EL 4 and will only transfer the current pallet
if it is of the type required by the sequence, and if all required assembly tasks have been

successfully performed on the pallet.

217

17.1 Plant Component

We now discuss the plant models for low level 7. We start with plant models QTasksCpl,
and QCorrectType, shown in Figures 17.2 and 17.3. The first DES provides a means
to query the assembly status of the pallet. QTasksCpl uses the data from the last read
operation performed by TU4’s R/W device. If a read has not yet been performed, the
results are undefined. The second DES stores the type of last pallet to be transferred to
EL 4, and provides a means to determine if the current pallet is of the next required type.
The remaining plant models for low level 7 are identical to those for TU1 and TU2
and are shown in Figures 15.5 to 15.8, and 15.10 to 15.16, with ¢ = TU4, and ¢ = TU4.

isTrpel TUS

CoreTee TLE

=0
Motop! TLY .
IsCpl.TUS :
WrongTipe T4
<103 NotCpl TU4
IsTppel TUL
IsColTUS Notop! TV
'C\ & QCorrType TU
iy
o NotCpl TL4
CortTreeTUL
IsTrpe2, TUS

sB

Figure 17.3: QCorrectType

17.2 Supervisor Component

We now discuss the supervisors for low level 7. We start with supervisor HndlTrns-

fToEL.TU4, shown in Figure 17.4. The supervisor handles transporting pallets from the

218

central loop to EL 4. It only transfers the current pallet if it is of the type required by the

exit sequence, and if all required assembly tasks have been successfully performed on the

pallet.

The remaining three supervisors for low level 7 are identical to those for TU1 and TU2

and are shown in Figures 15.17, 15.19 and 15.20, with ¢ = TU4 and ¢ = TU4.

219

s gs Qqpaia L0 pndtl TIIIFAAATIAes BF BNLLT13sase|0doeisd BS
W{J%:m_lm"} jiod =7 O

O kS T e
X tnirosguisyed K G

FALTILMATA

AL 25850120

aLs g5

! .."O

AL IIMAGALP AN O

L 13PN
L AP

L1 10T O B L T30 L M08 W
5 tLs BT 20 L MACH
£5 FNL TG C BAL IR
- %Hd%ggm
y . L 20TMA0
C FLT35ULON bAL TIFIFALATI B
BhL

Josuadon ENLT 20 L A0 AL TP ALATE O
FNL L T135850] 2d035d
tN1 L T13suadodoysd

tNL7 25850 D005

ELadd) Lol

FOALI2IFMAT FALIFEMLT

L aazon

. Nl osuadodelsd

s sk SR gls ksl gy A1 1IMIGAIP IO
¥ - - - . B IO G IA) 0
Ly dos Q FiiL s Qiﬁ.mu&tou @ thlpoagauog @ B3 lsua) FL TIInATAN e

AL DA ey

EhLsoTmagn POLEETRZILA0D pnlgL~wiL|dobn EnLedéluedh Bl aqelpeay FrL L ~135850| 20

L L T135uad 00
FAL 25850 00
FNLIDsuad 0D

Figure 17.4: HndlTrnsfToEL.TU4

220

Chapter 18

AIP Results and Discussion

In this Chapter, we evaluate our system to determine if it satisfies the parallel case condi-
tions, and is thus controllable and nonblocking. We then discuss the results, and present

our conclusions.

18.1 Evaluating Properties

We will now show that the system shown in Figure 11.4 and defined in Chapters 12-17 is
controllable and nonblocking; that is to say, its corresponding flat system is nonblocking,
and its flat supervisor is controllable for its flat plant.

To verify controllability and nonblocking, we will use Theorems 3 and 4. To apply
the theorems, we must first verify that the system is level-wise non-blocking, level-wise
controllable, and interface consistent. As we have a parallel system of degree n = 7, this
means we must verify that the seven serial extraction systems are serial level-wise non-
blocking, serial level-wise controllable, and serial interface consistent.

Our first step is to show that sets ¥y, Yg,, ¥a,, and X, (j = 1,...,7) are pairwise

disjoint. This can be seen by inspection from their definitions on page 163.

Next, we define the j*"serial extraction system, system(j)," where j =1,...,7.
Gu(j) = GHHSGIIHS"'"SGI(j—1)|‘SGI<j+I)‘|5"'||3GIn
Gu(j) = GullsGrlls--- |’5GI(J'—1)||SGI(j+1)||S"' sG1,

! Actually, we are giving both the subsystem form and the general form components as one group.

221

(i) = [Yke(t, o, -1), G41), oy 20] U0
EL] = EL]
Yr(j) = Xg

J

= ZA-

J

= Yu())UEL() UER()) USa())

We now apply our research tool to the seven serial extraction systems and we find that
they are all serial level-wise non-blocking, serial level-wise controllable, and serial interface
consistent. We can thus conclude that the system is level-wise non-blocking, level-wise
controllable, and interface consistent. This allows us to conclude by Theorems 3 and 4,
that the flat system is nonblocking and that the system’s flat supervisor is controllable for

the flat plant.

18.2 Discussion of Results

The AIP was an excellent example for our method due to its size, complexity, and natural
partition of tasks. The system was quite large, containing 181 DES in total, with an
estimated closed-loop state space of size 7.01 x 10?!. This estimate was calculated by
determining the closed-loop state space of the high level, and each low level and then these
values were multiplied together to create a worst case state estimate. The computation
ran for 25 minutes and used 760MB of memory. The machine used was a 750MHz Athlon
system, with 512MB of RAM, 2GB of swap, and running Redhat Linux 6.2. A standard
nonblocking verification was also attempted on the monolithic system, but it quickly failed
due to lack of memory.

It is worth noting at this point that Zhang et al. have recently developed algorithms

222

that use Integer Decision Diagrams, an extension of Binary Decision Diagrams, to verify
centralized DES systems on the order of 10?3 states [65, 66]. These results are complemen-
tary to the hierarchical method illustrated here, as their approach can be used to verify

many of the required conditions, allowing HISC to scale to even larger systems.

18.3 Star and Command-pair Interface Comparison

The AIP example illustrates very well the primary advantage of a command-pair interface
over a star interface: the ability to store state information about the low level and to alter
the selection of request events (and answer events) based on this information. In the AIP
example, star interfaces were very effective for all low levels except for low levels 1 and 2
(assembly stations 1 and 2). For AS1, the star interface is as given in Figure 18.1. Because
all request events must be eligible at the initial state, we are forced to make both events
ProcPallet. AS1 and DoRpr.AS1 eligible at state 0. The problem is that it doesn’t make
sense for event DoRpr.AS1 to occur until after event ASDwn.AS1 has occurred. Similarly,
event ProcPallet. AS1 shouldn’t occur after event ASDwn.AS1 until event RobUp.ASI has
occurred. This can easily be avoided using command-pair interfaces, as shown in Figure

18.1.

Star Interface Command-Pair Interface

ProcPallet.AS1 ProcPallet.AS1

N ./\\\
o <0 1

0 ProcCpl.ASI1, 0 ProcCpl.AS1, >
ProcErr.AS1, ProcErr.AS1)
ASDwn.ASI 2 g
= 2 B
& o o >
5 % % =
> S - \4
Z >
Zi 3 DoRprASl |2

Figure 18.1: Interfaces for Assembly Station 1

223

As we can see from this discussion, the more restrictive star interface is excellent for
representing low levels that are stateless with respect to interface events. As many systems
fall into this category, star interfaces are useful due to their regular structure, making them
easy to construct. The ability of command-pair interfaces to store state information allows

them to be more flexible, elegant, and handle a broader range of systems.

18.4 Systems with Dynamic Architecture

The HISC approach can handle some systems with architectures that are not static. Ob-
viously, a high level can’t become a low level and vice versa, but the method can certainly
handle some variation in the type and number of low levels.

When a system’s structure is static, we simply model each low level and how the high
level uses them. For a system able to handle a variety of client (low level) types and a
variable number of clients, we can model the system in a more general way as long as we
know the details of each client type, and the maximum number of each. We would create a
low level and interface for each instance of each client type. We would then have an event to
activate and deactivate each low level. Deactivating a low level would be accomplished by
the high level disabling all request events for the low level. It could then be activated by the
high level starting to enable its request events. The interface conditions guarantee that this
can be done without making the system nonblocking, or the supervisors uncontrollable. We
would also want the serial system extractions to be serial interface strict marking as this
would guarantee that a given low level is in a marked state when its corresponding interface
is. We are assuming that the low level is in a quiescent state when it is in a marked state
and that it’s safe to disconnect it.

When a new client is physically added to the system, the corresponding activation event
would occur and the high level could then begin to use its interface. When we want to
remove a client, we would generate the deactivation event (perhaps a switch, or a computer
console command) and then wait for the client’s interface to return to a marked state. Once
this has occurred, we can physically disconnect the client.

In the AIP example, we have four external loops with distinct capabilities. We could
have designed our high level to be able to handle two of each type of external loop, but
to start up with only one of each type activated. We could then physically add additional

loops (and later remove) as production required.

224

Chapter 19

Conclusions and Future Work

In this chapter, we discuss extensions to our work, and then present our conclusions.

19.1 Future Work

The HISC method provides an excellent foundation for future work. Some outstanding

issues to address are:

e Generalizing the Interface: It would be useful to allow the behavior representable by

an interface to be more general. In particular, to allow multiple commands before a
reply is returned (this would be analogous to providing additional information while
a command is being processed, or perhaps an interrupt condition), and to allow for
bi-directional flow of commands (for example, the low level might request a status

report on another part of the system).

Interface-based Synthesis: It would be useful to develop a per component supervisor

synthesis method that respects the interface conditions.

Multi-level Case: The method presented here scales well horizontally (ie. adding
more low levels), but not vertically. If a given component becomes too complicated,
the method would fail. What we need is to be able to decompose the system into
a multi-level structure, with components communicating with the component above

them and the components below them in the hierarchy via interfaces.

Model Correctness: The approach here focuses on verification of the system model,

but this does not imply that the results will hold true for the physical system. It

225

would be useful to extend the results to ensuring that the model accurately describes
the physical system, and that the implementation of the supervisors produces results

consistent with the modelled behavior.

Parameterization and Guard Conditions: 1t is often the case that actions are param-
eterized and have guard conditions (ie. [19, 28, 42, 49]). Parameterization can be
handled explicitly in automata by associating a separate event for each parameter
value. Guard conditions can be handled by associating an explicit state with the
guard condition such that the event is not possible until the system reaches this state.
It would be useful to be able to handle these in the HISC method without having to
“automatonize” them as this would allow us to express this information in a more

compact form.

Infinite State Systems: This work deals only with finite state systems. Many infinite
state systems (ie. a system with temperature as a state variable, or clocks as in the
timed automata model of [49]) can be handled if we can represent them as equivalent
(for our purposes) finite state systems. For instance, we may only need to know if the
temperature (7') is less then some minimum value (¢,), greater than some maximum
value (tmaz), or that tyin < T < tpmaee- We can then replace temperature by a variable
with three values. It would be interesting to extend the HISC method to be able to

deal with infinite state systems explicitly.

19.2 Conclusions

In this thesis, we have presented a method for DES design and verification that implements

many of the concepts of “information hiding” from software engineering and thus provides

us with the benefits discussed in Section 1.2 such as independent development, high degree

of changeability and comprehensibility, and an excellent means to manage complexity by

hiding unnecessary detail behind interfaces.

Our method, hierarchical interface-based supervisory control, offers an effective means

to model systems with a natural master-slave structure. The method offers an intuitive way

to model and design the system. Using multiple (n > 1) low level subsystems allows the

subsystems to be independently modelled and verified, while still allowing a high degree

of concurrent operation. As each requirement can be verified using only one subsystem,

226

the entire plant model never needs to be constructed or traversed (in computer memory),
offering potentially significant savings in computation. This is immediately apparent by
noting that the time complexity for analyzing a system by our method is O(m?) (m = n+1
is the total number of subsystems), as compared to a monolithic analysis which is O(N?™)
(N >0 is an upper bound for the statespace size of the subsystems).

Finally, we discussed a large example based on the automated manufacturing system of
the Atelier Inter-établissement de Productique (AIP). As the example contains 181 DES
with an estimated closed-loop statespace of size 7 x 102!, it demonstrates that the HISC
method can be applied to interesting systems of realistic complexity that were previously
beyond the means of monolithic, modular, or hierarchical supervisor design techniques.
Once this approach is coupled with the Integer Decision Diagrams work of Zhang et al.

[66, 65], the size of systems that can be handled will greatly increase again.

227

Bibliography

1]

8]

N. Alsop. Formal Techniques for the Procedural Control of Industrial Processes. PhD
thesis, Department of Chemical Engineering and Chemical Technology, Imperial Col-

lege of Science, Technology and Medicine, London, 1996.

Rajeev Alur and Thomas A. Henzinger. Local liveness for compositional modelling of
fair reactive systems. In Proc. of seventh Int. Conf. on Computer-aided Verification,

Lecture Notes in Computer Science, pages 166-179, 1995.
A. Arnold. Finite Transition Systems. Prentice Hall, 1994.

Adnan Aziz, Vigyan Singhal, and Gitanjali M. Swamy. Minimizing interacting finite
state machines: A compositional approach to language containment. In Proc. of IEEE
Int. Conf. on Computer Design: VLSI in Computers and Processors, pages 255-261,
Cambridge, Massachusetts, Oct 1994.

George Barrett and Stephane Lafortune. Decentralized supervisory control with com-

municating controllers. IEEE Trans. Automatic Control, 45(9):1620-1638, 2000.

John Bourne. Object-Oriented Engineering: Building Engineering Systems Using
Smalltalk-80. Aksen Associates, 1992.

Bertil Brandin and Frangois Charbonnier. The supervisory control of the automated
manufacturing system of the AIP. In Proc. Rensselaer’s 1994 Fourth International
Conference on Computer Integrated Manufacturing and Automation Technology, pages

319-324, Troy, Oct 1994.

Y. Brave and M. Heymann. Control of discrete event systems modeled as hierarchical

state machines. IEEE Trans. on Automatic Control, 38(12):1803-1819, Dec 1993.

228

[9]

[10]

[13]

[14]

[16]

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans.
Comput., C-35(8), 1986.

J.R. Burch, Edmund M. Clarke, and K.L. McMillan. Symbolic model checking: 10%°
states and beyond. Information and Computation, 98:142-170, 1992.

P.E. Caines and Y.J. Wei. The hierarchical lattices of a finite machine. Systems Control
Letters, 25:257-263, July 1995.

F. Charbonnier. Commande par supervision des systemes a événements discrets: ap-
plication a un site expérimental 1’ Atelier Inter-établissement de Productique. Technical

report, Laboratoire d’Automatique de Grenoble, Grenoble, France, 1994.

Haoxun Chen and Hans-Michael Hanisch. Model aggregation for hierarchical control
synthesis of discrete event systems. In Proc. 39th Conf. Decision Contr., pages 418423,
Sydney, Australia, December 2000.

S.-L. Chen. Existence and design of supervisors for vector discrete event systems.
Master’s thesis, Department of Electrical Engineering, University of Toronto, Toronto,

Ont, 1992.

S.-L. Chen. Control of Discrete-Event Systems of Vector and Mized Structural
Type. PhD thesis, Department of Electrical and Computer Engineering, University
of Toronto, Toronto, Ont, 1996.

Yi-Liang Chen and Feng Lin. Hierarchical modeling and abstraction of discrete event
systems using finite state machines with parameters. In Proc. 40th Conf. Decision

Contr., pages 4110-4115, Orlando, USA, December 2001.

Edmund M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Programming

Languages and Systems, 8(2):244-263, April 1986.

Edmund M. Clarke, O. Griimberg, and K. Hamaguchi. Another look at LTL model
checking. In Proc. of 6th Conf. on Computer Aided Verification, number 818 in LNCS,
pages 415-427. Springer-Verlag, 1994.

229

[19]

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. MIT Press,
2001.

M. Courvoisier, M.Combacau, and A. de Bonneval. Control and monitoring of large
discrete event systems: a generic approach. In Proc. of ISIE 93, pages 571-576, Bu-
dapest, 1993.

E. W. Endsley, M. R. Lucas, and D. M. Tilbury. Modular design and verification
of logic control for reconfigurable machining systems. Submitted to Discrete Event

Dynamic Systems: Theory and Applications.

Jose M. Eyzell and Jose E.R. Cury. Exploiting symmetry in the synthesis of supervisors
for discrete event systems. In Proc. of American Control Conference, pages 244-248,

Philadelphia, USA, June 1998.

Peyman Gohari-Moghadam. A linguistic framework for controlled hierarchical DES.
Master’s thesis, Department of Electrical and Computer Engineering, University of

Toronto, Toronto, Ont, 1998.
Michael T. Goodrich and Roberto Tamassia. Algorithm Design. Wiley, 2001.

O. Griimberg and D.E. Long. Model checking and modular verification. In Proc. of
CONCOUR’91, number 527 in LNCS, pages 361-375. Springer-Verlag, 1991.

Daniel M. Hoffman and David M. Weiss, editors. Software Fundamentals. Collected
Papers by David L. Parnas. Addison Wesley, 2001.

Paul Hubbard and Peter E. Caines. Trace-DC hierarchical supervisory control with
applications to transfer-lines. In Proc. 37th Conf. Decision Contr., pages 3293-3298,
Tampa, Florida USA, December 1998.

Mark Lawford. Model Reduction of Discrete Real-Time Systems. PhD thesis, Depart-
ment of Electrical and Computer Engineering, University of Toronto, Toronto, Ont,

1997.

R. Leduc, M. Lawford, and W. Murray Wonham. Hierarchical interface-based super-
visory control: AIP example. In Proc. of 39th Annual Allerton Conference on Comm.,

Contr., and Comp., pages 396—405, Oct 2001.

230

[30]

[31]

33]

[34]

[37]

R.J. Leduc, B.A. Brandin, and W. Murray Wonham. Hierarchical interface-based non-
blocking verification. In Proceedings of the Canadian Conference on Electrical and

Computer Engineering, pages 1-6, May 2000.

R.J. Leduc, B.A. Brandin, W. Murray Wonham, and M. Lawford. Hierarchical
interface-based supervisory control: Serial case. In Proc. of 40th Conf. Decision Contr.,

pages 4116-4121, Orlando, USA, December 2001.

R.J. Leduc, M. Lawford, and W. Murray Wonham. Hierarchical interface-based super-
visory control, part II: Parallel case. Submitted to IEEE Trans. Automatic Control,
Aug, 2003. An earlier version is available as Software Quality Research Laboratory Re-
port No. 13, Dept. of Computing and Software, McMaster University, Hamilton, ON.
[ONLINE] Available: http://www.cas.mcmaster.ca/sqrl/sqrl_reports.html.

R.J. Leduc, W. Murray Wonham, and M. Lawford. Hierarchical interface-based super-
visory control: Parallel case. In Proc. of 39th Annual Allerton Conference on Comm.,

Contr., and Comp., pages 386-395, Oct 2001.

Ryan Leduc. PLC implementation of a DES supervisor for a manufacturing testbed: An
implementation perspective. Master’s thesis, Department of Electrical and Computer

Engineering, University of Toronto, Toronto, Ont, 1996.

Y. Li. Control of Vector Discrete-Fvent Systems. PhD thesis, Department of Electrical

Engineering, University of Toronto, Toronto, Ont, 1991.

F. Lin and W. Murray Wonham. Decentralized control and coordination of discrete-
event systems with partial observations. In Proc. 27th IEEE Conf. Decision Contr.,
pages 1125-1130, Dec 1988.

Hong Liu, Jun-Cheol Park, and Raymond E. Miller. On hybrid synthesis for hierarchical
structured petri nets. Technical report, Department of Computer Science, University

of Maryland, College Park, MD, 1996.

Chuan Ma. A computational approach to top-down hierarchical supervisory control of
DES. Master’s thesis, Department of Electrical and Computer Engineering, University
of Toronto, Toronto, Ont, 1999.

231

[39]

[40]

[41]

[44]

[45]

[46]

E.M. Clarke M.C. Brown and O. Griimberg. Characterizing kripke structures in tem-
poral logic. In G. Levi H. Erhig, R. Kowalski and U. Montanari, editors, TAPSOFT’87,
vol. I, number 249 in LNCS, pages 256—270. Springer-Verlag, 1987.

K.L. McMillan. Symbolic Model Checking. Kluwer, 1992.

John O. Moody and Panos J. Antsaklis. Supervisory Control of Discrete Event Systems
using Petri Nets. Kluwer Academic Publishers, 1998.

J.S. Ostroff. Temporal Logic for Real-Time Systems. Research Studies Press/ Wiley,
Taunton, UK, 1989.

D. L. Parnas. Use of abstract interfaces in the development of software for embedded

computer systems. NRL Report 8047, Naval Research Laboratory, 1977.

David L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of the ACM, December:1053-1058, December 1972.

David Lorge Parnas, Paul C. Clements, and David M. Weiss. The modular structure
of complex systems. [EEE Transactions on Software Engineering, SE-11(3):259-66,
March 1985.

Ken Qian Pu. Modeling and control of discrete-event systems with hierarchical ab-
straction. Master’s thesis, Dept. of Electrical and Computer Engineering, University

of Toronto, Toronto, Ont, 2000.

Robin G. Qiu and Sanjay B. Joshi. A structured adaptive supervisory control method-
ology for modeling the control of a discrete event manufacturing system. IEEE Trans.

Systems, Man, and Cybernetics, Part A, 29(6):573-586, 1999.

M.H. de Queiroz and J.E.R. Cury. Modular supervisory control of large scale discrete
event systems. In Proceedings of WODES 2000, pages 103-110, Ghent, Belgium, Aug
2000.

C. Costas R. Alur and D. Dill. Model-checking for real-time systems. In Proc. of 5th
IEEE Symp. Logic in Computer Science, pages 414-425, 1990.

P. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete-event

processes. SIAM J. Control Optim, 25(1):206-230, 1987.

232

[51]

[52]

[56]

[57]

[59]

[60]

K. Rudie. Software for the control of discrete-event systems: A complexity study.
Master’s thesis, Dept. of Electrical and Computer Engineering, University of Toronto,

Toronto, Ont, 1988.

Karen Rudie and Jan C. Willems. The computational complexity of decentralized
discrete-event control problems. IEEE Trans. Automatic Control, 440(7):1313-1319,
1995.

Karen Rudie and W. Murray Wonham. Think globally, act locally: decentralized
supervisory control. IEEE Trans. on Automatic Control, 37(11):1692-1708, Nov 1992.
Reprinted in F.A. Sadjadi (Ed.), Selected Papers on Sensor and Data Fusion, 1996;
ISBN 0-8194-2265-7.

Gang Shen and Peter E. Caines. Hierarchically accelerated dynamic programming for

finite-state machines. IEEE Trans. Automatic Control, 47(2):271-283, 2002.

G. Stremersch and R.K. Boel. Decomposition of the supervisory control problem for
Petri nets under preservation of maximal permissiveness. IEFEE Trans. Automatic

Control, 46(9):1490-1496, 2001.
J. Wakerley. Digital Design Principles. Prentice-Hall, Inc., 1990.

Bing Wang. Top-down design for RW supervisory control theory. Master’s thesis,
Department of Electrical and Computer Engineering, University of Toronto, Toronto,

Ont, 1995.

K.C. Wong. Discrete-Event Control Architecture: An Algebraic Approach. PhD thesis,
Department of Electrical and Computer Engineering, University of Toronto, Toronto,

Ont, 1994.

K.C. Wong and J.H. van Schuppen. Decentralized supervisory control of discrete event
systems with communication. In Proc. of WODES 1996, pages 284-289, Edinburgh,
UK, Aug 1996.

W. Murray Wonham. Notes on Control of Discrete-Event Systems. Department of
Electrical and Computer Engineering, University of Toronto, 2002. Notes and CTCT

software can be downloaded at http://odin.control.toronto.edu/DES/.

233

[61]

[62]

[63]

W. Murray Wonham and P. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM J. Control Optim, 25(3):637-659, 1987.

Weimin Wu, Hongye Su, Jian Chu, and Haifeng Zhai. Hierarchical control of DES based
on colored petri nets. In Proc. of IEEE Systems, Man, and Cybernetics, volume 3, pages
1571-1576, 2001.

T. Yoo and S. Lafortune. A general architecture for decentralized supervisory control
of discrete-event systems. In Proc. of WODES 2000, pages 111-118, Ghent, Belgium,
Aug 2000.

Bernard Zeigler. Object-Oriented Simulation with Hierarchical, Modular Models: In-

telligent Agents and Endomorphic Systems. Academic Press Inc, 1990.

Z.H. Zhang. Smart TCT: an efficient algorithm for supervisory control design. Master’s
thesis, Dept. of Electrical and Computer Engineering, University of Toronto, Toronto,

Ont, 2001.

Z.H. Zhang and W. Murray Wonham. STCT: an efficient algorithm for supervisory
control design. In Proc. of SCODES 2001, INRIA, Paris, July 2001.

H. Zhong and W. Murray Wonham. On the consistency of hierarchical supervision
in discrete-event systems. IEEFE Trans. on Automatic Control, 35(10):1125-1134, Oct
1990.

Meng Chu Zhou, David T. Wang, and Israel Mayk. Using petri nets for object-oriented
design of command and control systems. International Journal of Intelligent Control

and Systems, 2(2):287-300, 1998.

MengChu Zhou and Frank DiCesare. Petri Net Synthesis for Discrete Event Control

of Manufacturing Systems. Kluwer Academic Publishers, 1993.

234

