2015 IEEE 54th Annual Conference on Decision and Control (CDC)
December 15-18, 2015. Osaka, Japan

Hierarchical Interface-Based Decentralized Supervisory Control*

Huailiang Liu', Ryan J. Leduc? and S. L. Ricker?

Abstract—The Hierarchical Interface-Based Supervisory
Control (HISC) framework was proposed to address challenges
inherent in modeling the behavior of large, complex systems.
Such systems are often characterized by decentralized or
distributed architectures, where agents have only a partial view
of the system behavior and cooperate to achieve the control
objective, aspects unsupported by HISC. We introduce the
Hierarchical Interface-Based Decentralized Supervisory Con-
trol (HIDSC) framework that extends HISC to decentralized
control.

In decentralized control, the specification must satisfy a prop-
erty called co-observability. The verification of co-observability
requires the (possibly intractable) construction of the com-
plete system. To adapt this property for HIDSC, we propose
a per-component definition of co-observability along with a
verification strategy that does not require the construction
of the complete system. We provide and prove the necessary
and sufficient conditions for supervisor existence in this new
framework and illustrate our approach with an example.

I. INTRODUCTION

One of the main challenges in the control of Discrete Event
Systems (DES) is the combinatorial explosion of the product
state space. The Hierarchical Interface-Based Supervisory
Control (HISC) framework proposed in [4], [5] can alleviate
the state-space explosion problem. HISC provides a set of
local properties that can be used to verify global properties,
such as nonblocking and controllability, so that the complete
system model never needs to be constructed. The sufficient
conditions of HISC allow the independent design and verifi-
cation of different levels, ensuring that a change to one level
of the hierarchy will not impact the others.

However, the current HISC framework does not sup-
port decentralized control problems which arise naturally
through the investigation of a large variety of distributed
systems, such as communication networks, integrated sensor
networks, networked control systems and automated guided
vehicular systems. These systems have many controllers that
jointly control the distributed architecture. Further, these
controllers may be supervisors with only a partial observation
of the system. Also, due to the distributed nature of the
system, controllers at different sites in the distributed system
may see the effect of different sets of sensors and may control
different sets of controllable events. The controllers must

*This work was supported by Natural Sciences and Engineering Research
Council of Canada (NSERC)

1Huailiang Liu and ?Ryan J. Leduc are with the Department of Comput-
ing and Software, McMaster University, Hamilton, ON L8S 4K1, Canada
{1iuh26, leduc}@mcmaster.ca

3S. L. Ricker is with the Department of Mathematics and Computer
Science, Mount Allison University, Sackville, NB E4L 1E6, Canada
lricker@mta.ca

978-1-4799-7885-4/15/$31.00 ©2015 IEEE

coordinate the disabling and enabling of events to realize
the legal or desired behavior.

Decentralized control of DES focuses on problems where
multiple agents each control and observe some events in
a system and must together achieve some prescribed goal.
The synthesis of decentralized supervisors requires that the
specification satisfies a decentralized property called co-
observability [12]. Nevertheless, when the system is very
large and composed of many sub-systems, checking co-
observability using the existing monolithic method [11] re-
quires the construction of the complete system model, which
may be intractable due to the state-space explosion problem.

To address the above problems, we propose an approach
called the Hierarchical Interface-Based Decentralized Su-
pervisory Control (HIDSC) framework that allows HISC
to manage decentralized control problems. The proposed
HIDSC framework is a scalable method that can mitigate
the product state-space explosion problem, and make decen-
tralized control scale better. We introduce a per-component
co-observability definition which does not require the syn-
chronization of all the components. We then prove that if
a system is level-wise co-observable, then it is globally co-
observable. This should allow more large problems to be
solved. Further, we provide and prove the necessary and
sufficient conditions for supervisor existence in HIDSC. We
then apply our HIDSC approach to an illustrative example.

This paper is organized as follows. Section II presents
a summary of the DES terminology that we will use in
this paper. Section III discusses the HISC architecture. In
Section 1V, a new framework called the HIDSC architecture
is introduced. Section V introduces the new level-wise co-
observability definition and the HIDSC co-observability the-
orem. Section VI provides and proves a supervisor existence
theorem. In Section VII, we illustrate our HIDSC approach
with an example. We present conclusions in Section VIII.

II. PRELIMINARIES

This section provides a review of the key concepts used
in this paper. Readers unfamiliar with the notation and
definitions may refer to [2].

Event sequences and languages are simple ways to de-
scribe DES behavior. Let ¥ be a finite set of distinct symbols
(events), and X* be the set of all finite sequences of events
plus €, the empty string. A language L over X is any subset
L C¥*.

The concatenation of two strings s, t € X%, is written as
st. Languages and alphabets can also be concatenated. For
L C ¥* and ¥’ C X, the concatenation of the language and
event set is defined as LY := {so|s € L, o € ¥'}. For

1693

strings s, t € X*, we say that ¢ is a prefix of s (written
t < s)if s = tu, for some u € X*. We also say that ¢ can be
extended to s. The prefix closure L of a language L C ©*
is defined as follows: L := {t € $*|t < s for some s € L}.
A language L is said to be prefix-closed if L = L.

Let ¥ = ¥, UXy, Ly € X3, and Ly C X3, For ¢ €
{1,2}, s € ¥*, and o € 3. To capture the notion of partial
observation, we define the natural projection P; : ¥* — X7}
according to:

Pi(e) =€
€, ifoc ¢
o, ifo el

Py(s0) := Pi(s)P(0)

Given any language L C X*, the natural projection of a
language L, is P;(L) :={P;(s) | s € L}.

The inverse projection P, ': Pwr(X}) — Pwr(X*) is
defined over subsets of languages, where Pwr(3}) and
Pwr(X*) denote all subsets of X7 and ¥*, respectively.
Given any L; C X7, the inverse projection of L; is defined
as: P, N(L,) = {s | Pi(s) € Li}.

A DES is represented as a tuple: G :=(Q, X, 4, qo, Qm)s
with finite state set), finite alphabet set 3, partial transition
function 6 : @Q x ¥ — (@, initial state ¢g, and the set of
marker states Q,,. We use (g, o)! to represent that ¢§ is
defined for o € ¥ at state ¢ € Q. Function § can be extended
to X* by defining 6(q, €) := g and é(q, so) := §(d(q,), 0),
provided that ¢’ = (g, s)! and §(¢’, o)!, for s € ¥* and
q € Q. We will always assume that a DES has a finite state
and event set, and is deterministic.

For DES G, its closed behavior is denoted by L(G) :=
{s € £*|6(qo, s)!}. The marked behavior of G, is defined
as L, (G) := {s € L(G)] §(qo,5) € Qm}. A DES G is
said to be nonblocking if L,,(G) = L(Q).

Let K C L,,(G) C X*. We say that the language K is
L, (G)-closed if K = K N L, (G). Thus K is L,,(G)-
closed if it contains all of its prefixes that belong to L,,(G).

The synchronous product of languages L, and Lo, denoted
by L1||Lo, is defined to be: Ly ||Ly := Py (L) NPy (Ly).

If both L and Lo are over the same event set X2, then their
languages have the following property: L;||Lo= P; ' (L1)N
Py (Ly)= Ly N L.

Let G; = (Qi,zi,5i,qO7i,Qmi), 1 = 1, 2. We define
the synchronous product Gi1||Gs as: (Q1 X Q2, X1 U
227 63 (qO,la qO,Z)v le X Qm,Q)v where 5(((11,(12), U) is
defined as:

((51(Q1,0‘),(52((]2,0‘)),if0‘ eXinN 22,(51((]1,0’)!,62((12,0‘)!;

(01(q1,0),q2), if 0 € 31\32 and §1(q1,0);

(ql,ég(qQ,a)), if o € 22\21 and 62((]2,0')!.

In supervisory control, the event set 3 is partitioned into
two disjoint sets: the controllable event set 3. and the
uncontrollable event set X,.. Controllable events can be
prevented from happening (disabled) by a supervisor, while
uncontrollable events cannot be disabled.

Let K and L = L be languages over event set ¥. K is
said to be controllable with respect to L and ¥, if and
only if] K, . NLCK.

Pi(o) :=

For decentralized control, there is an index set of N > 1
decentralized controllers, D = {1, ..., N}. These controllers
have only a partial view of the system behavior and control
only a subset of the controllable events. To describe events
that each decentralized controller 1 € D controls, we use
the notation ¥.; C 3., where Uf\LlEC’Z— = Y.. We refer
to the set of controllers that control o € ¥, as D, (o) :=
{ieDloeX.}

To describe events that each decentralized controller s € D
observes, we use the notation Y, ; C X, where Uf\LlE(m; =
3,. We refer to the set of controllers that observe o € ¥, by
D, (o) :={ie€ Dlo€¥,,} Correspondingly, the natural
projection describing the partial view of each controller is
denoted by P; : X* — X7, for i € D.

For decentralized control with a conjunctive architecture
[12], the fusion rule is the conjunction of all local control
decisions, i.e., an event is globally enabled if not locally
disabled. We use the conjunctive architecture in this paper.

Definition 1: Let K C ¥* be the desired language, ¢ € D,
and ¢ € L(G). Then the decision rule for a local partial-
observation decentralized supervisor is a function: Sp, (t) :=
(B\Sei) Ufo € B | POUP(B]o NE N L(G) # 0}. The
conjunction of Sp,, i € D, denoted by Scon, is defined as:
Scon(t) = NiZ1Sp,(t) = M2, Sp, (Fi(t)).

We note that Sp, (t) = Sp, (P;(¢)) as the natural projection
is idempotent, i.e., P;(t) = P;(P;(t)).

Definition 2: Given G and Sco,, the resulting closed-
loop system is denoted by Scon/G. The system’s closed
behavior L(Scon/G), is recursively defined as follows:

Dee L(SCOH/G)

D) ¢t € L(Scon/G), 0 € Scon(t), and to € L(G) if and
only if to € L(Scon/G).

Definition 3: Given G and S¢op, We say Scon 1S a de-
centralized supervisory control if the decision rule is defined
as in Definition 1, and the resulting closed-loop system and
closed behavior is defined as in Definition 2.

Definition 4: We say that Sco, is a nonblocking
decentralized supervisory control (NDSC) for G if
Lin(Scon/G) = L(Scon/G) where Ly, (Scon/G) =
L(Scon/G) N Ly (G).

It is useful to introduce a generalization of NDSC in which
the supervisory action also includes marking as well as con-
trol, since allowing supervisors to add marking information
makes them more expressive.

Definition 5: Let K C L,,(G). We say that S, is
a marking nonblocking decentralized supervisory control
(MNDSC) for (K, G) if Ly, (Scon/G) = L(Scon/G)
where Ly, (Seon/G) := L(Seon/G) N K.

Definition 6: Let Scon, be a MNDSC for plant G =
(@, 2, 0, qo, Qmn) and K C L,(G), with
L (Scon/G) = L(Seon/G) N K and L(Scon/G) = K.
Let H= (X, X, £ =y, X,,) be a specification automaton.
We say that H||G has equivalent MNDSC behavior with
Scon/G,if K = L,,(H)NL,,(G)and K = L(H) N L(G).
Alternatively, we say that H is an equivalent theoretical
implementation of MNDSC Scon for G.

1694

In this paper, we focus on MNDSC, which is a more
expressive supervisory control paradigm. In particular, it will
allow us to later introduce a decentralized supervisor exis-
tence result that relies on a closed-loop system (H||G) to be
nonblocking, instead of the existing results that require K to
be L., (G)-closed. This is essential to adapting decentralized
control to the HISC approach as HISC provides a scalable
method to verify nonblocking but not L,,(G)-closure.

We note that in decentralized control, there is no real
implementation of the centralized supervisor H. The above
MNDSC Scon, defined as the control policy of the con-
junction of a group of decentralized supervisors, is the real
supervisory control. Further, for an HISC system, H will
correspond to the theoretical flat supervisor of the system
defined in Section III, and will be used to determine if the
flat system is nonblocking.

The following is the definition of co-observability adapted
from [12], [1], [10]. Co-observability is a necessary condition
to synthesize decentralized controllers which ensure that
the supervised system generates exactly the behavior of
specification K.

Definition 7: Let K, L = L be languages over event
set . Let D = {1,...,N} be an index set. Let ¥.; C
Y and X,; C X be sets of controllable and observable
events, respectively, for ¢ € D, where X, = UlNzlECﬂ- and
D.(o) .= {i€eDloeX.;}. Let P, : ¥* — ¥}, be a
natural projection. A language K is said to be co-observable
with respect to L, 3, ;, Y., ¢ € D, if and only if

(Vt € KNL) Vo € %) to € L\K = (3 €
D. (o)) P P(t)]eNnKNL=0.

Note that, when D = {1}, this property is called ob-
servability [7]. Since, in practice, the specification K is not
necessarily a subset of L, we do not require that X C L,
as is traditionally done. Instead of checking all strings in K,
we check all strings in K N L.

If an event o needs to be disabled (ie., t € K, to €
L\K), then at least one of the controllers that control o
must unambiguously know to disable o (i.e., P, '[P;(t)]jo N
KN L = (). In accordance with the conjunctive architecture,
a global disablement decision will be to disable sigma.

In the following when there is no ambiguity, instead of
saying that K is co-observable with respect to L, X, ;, X,
i € D, we will say that K is co-observable w.r.t. L.

III. HISC ARCHITECTURE

The HISC approach decomposes a system into a high-
level subsystem which communicates with n > 1 parallel
low-level subsystems through separate interfaces that restrict
the interaction of the subsystems. The high-level subsystem
communicates with each low-level subsystem through a
separate interface.

In HISC there is a master-slave relationship. A high-level
subsystem sends a command to a particular low-level sub-
system, which then performs the indicated task and returns
a response (answer). Fig 1 shows conceptually the structure
and information flow of the system. This style of interaction

High-Level 2
i

\ ‘ A 1 ‘ A
v\/—JRl Z‘/\]UZ’LDI VZ’Rn >—’Anuxh’LDn
| Interface , | oo Interface ,

\ A .« A .
'>—’Rl Z‘/\IUZ’LDI VERn 2AnUX:LDn

Low-Level | Low-Level ,
1. L1
Fig. 1. Interface Block Diagram with Low Data Events.

is enforced by an interface that mediates communication be-
tween the two subsystems. All system components, including
the interfaces, are modeled as automata.

To restrict information flow and decouple the subsystems,
the system alphabet is partitioned into pairwise disjoint
alphabets:

=Yy U |J [S1,U8k,U84,USLp,] (1)

j=1,....,n

where we use U to represent disjoint union.

The events in Yy are called high-level events and the
events in X7, are the j low-level events (j € {1,...,n}) as
these events appear only in the high-level and j** low-level
subsystem models, Gy and G, respectively.

Subsystem Gy is defined over event set
YaUWUjeqa,...n} [XR,U%4,UXLp,]) while G, is defined
over event set Yy UXp UX4,UXrp,. We model the
jth interface by DES G I which is defined over events
that are common to both levels of the hierarchy, namely
Yg,U¥4,ULp,. For the remainder of this paper, the
index j € {1,...,n}. We define our flat system to be
G = Gyl||GL||GL,]| - |G, ||GL,. By flat system
we mean the equivalent DES if we ignore the interface
structure.

The events in 2 R;> called request events, represent com-
mands sent from the high-level subsystem to the j* low-
level subsystem. The events in X A, are answer events and
represent the low-level subsystem’s responses to the request
events. The events in X1 p, are called low data events which
provide a means for a low-level to send information (data)
through the interface. Request, answer, and low data events
are collectively known as the set of LD interface events,
defined as E[= Oke{L,..,n}[ERkUEAkUELDk]’ and G]jiS
an LD interface [5].

To simplify notation in our exposition, we bring in the
following event sets, natural projections, and languages.

E]j = ER].L.JEA].UELDj, P]j DI EZ,

EILJ = ZLJ UEIJ, PILj DI E?LJ’

Yig = YH UUke{l,...,n}Zlk’PIH (X = Xy

1695

H = P (L(Gn)), £j = P, (L(Gp,)) € T,

T = Mkeqr,...ny i, Zj := szl(L(ij))-

We define the high-level plant to be G%,, and the high-
level supervisor to be Sy (both defined over event set X7py).
Similarly, the jth low-level plant and supervisor are GY
and Sy, (defined over ¥;y,;). The high-level subsystem and
the 7t low-level subsystem are then Gy := G%||Sy and
Gp, = G’ij||SL]., respectively. We note that in HISC
systems, interfaces are always supervisors.

We can now define our flat supervisor and plant as well
as some other useful languages as follows:

Plant := G’;I||G’£1|| e ||Gpn

Sup :=Sg|[S., .- [ISL |G|l - [|Gr,,

HP := P L(GY,), Sy == Pr;; L(Sy) C &%,

L= Py L(GY), St := P L(Si,) € %7

IV. HIDSC ARCHITECTURE

In Section III, we described a
of plant DES G, G7 ,..., G% , supervisor DES
Su,Sr,,...,SL,, and interface DES Gy,,..., Gy, . Al-
though the level-wise controllability condition [4], [5] does
effectively limit the high-level supervisor to events in X,
and the j th Jow-level supervisor to events in Xy L it requires
the HISC structure and does not allow further restrictions
outside of this structure. In order to allow decentralized
supervisors within components, we need to extend the HISC
structure. We will now introduce the Hierarchical Interface-
based Decentralized Supervisory Control (HIDSC) architec-
ture.

HIDSC is an extension of HISC from centralized control
to a decentralized architecture. In the HIDSC framework,
all the HISC supervisors are replaced by corresponding
specification DES, which are our requirements of the legal
behavior of the system. In HIDSC, we will replace supervisor
Sy by specification DES Fp (defined over X;p), and
we will replace supervisor Sy, by specification DES F,
(defined over Xy, ;). Typically, F g will express system-wide
constraints about how the components interact and what tasks
the low-levels should perform. F . expresses how the gth
low-level will perform the tasks (requests) given to it by the
high-level. For each component, there is a different index set
of decentralized controllers.

Definition 8: The nth degree decentralized specifica-
tion interface system with respect to the alphabet
partition given by (1) is composed of plant DES
G%, GY ,...,G} , specification DES Fy, Fp,,...,Fp,,
interface DES Gy,,..., Gy, and high-level and low-level
decentralized controllers. The high-level decentralized con-
trollers have an index set Dy := {Ng1,..., Ny n,}. The
event set for G’;I, F 5 and the corresponding decentralized
controllers is X;py. For ¢ € Dy, Ypgc; © Y N Xrg
and Yy ,; C X, N Xy are the corresponding controllable
and observable event subsets for the high-level decentralized
controllers. Each low-level component has an index set
Dp, :={Ng,1,...,NL,n,} for its own decentralized con-
trollers. For j € {1,...,n}, the event set of each low-level

system composed

component G% e F, and the corresponding decentralized
controllers is Yyr,. For ¢ € Dy, Y. i € YNy,
and X Lj0i C YoNXg L, are the corresponding controllable
and observable event subsets for the low-level decentralized
controllers. The index set fg{ all decentralized controllers in
the system is D := DyUJ;_, D1, = {1,..., N}.

For the rest of this section, we will refer to such a system
as an n'h degree decentralized specification interface system
¥, or simply W. Note that in ¥, we do not specify the index
of decentralized controllers by {1,...,n0}, {1,...,n;}, etc.,
because once combined they would overlap. We create the
system index set using disjoint union.

The flat system G is the synchronization of all the plant,
specification, and interface components in the whole system
together, ie., G = GY [| G} || ... || G] [[Fyu || Fy, ||
)| Fr, |l G, || --- || Gi,,- We use the term flat system
to mean the overall system ignoring the HIDSC structure.

It is important to note that for an HIDSC system, we
would first design level-wise supervisors for the original
HISC system while ignoring any decentralized restrictions.
We would then use the HISC structure to verify that the
system is nonblocking and controllable. We would next use
these level-wise supervisors (which include the system’s
interface DES) as “specifications” for the design of the per-
component decentralized supervisors specified by the HIDSC
system. The final system would not contain any of these
specification DES, just the resulting decentralized controllers
that would provide us with equivalent closed-loop behavior
(see Corollary 1 in Section VI).

V. HIDSC C0O-OBSERVABILITY DEFINITION AND
THEOREM

The main focus here is to verify co-observability in an
HIDSC system ¥ without explicitly constructing the flat sys-
tem. We will only perform a per-component co-observability
verification, but guarantee that the whole system is co-
observable.

To aid in defining our per-component co-observability
definition and HIDSC co-observability theorem, we specify
some decentralized notations for W.

We use Dy (o) :={i € Dy |0 € g} to denote the
set of decentralized controllers in the high-level that can
control the event o.

We use Dy, (o) = {i€Dylo€Xph,i} to denote
the set of decentralized controllers in the high-level that
can observe the event o. Correspondingly, Pg; : X* —
(XH,0,i)" is the natural projection describing the partial view
of controller i € Dp.

Forje{l,...,n}, Dp,c(0):={i €Dy, lc €3, ci}
is the set of decentralized controllers in the jth low-level
component that can control the event o.

Forje{l,...,n},Dr,,(0):={i€ Dy, |0 €2, 0}
is the set of decentralized controllers in the jth low-level
component that can observe the event o. Correspondingly,
Pp,i:¥* = (¥1,,0,)" is the natural projection describing
the partial view of controller ¢ € Dy, .

1696

Further, we introduce a few languages used for the HIDSC
co-observability definition and theorem.

Fr = P (L(Fn)), Fr, = P, (L(Fp,)),

F=FanFr,N...0Fp,,P:=HNLIN...NLP.
Language Fp represents the behavior of the specification
automata in the high-level subsystem, while 7, represents
the behavior of the specification automata for component j in
the low-level subsystem. Language JF represents the global
specification of the flat system, and P represents the behavior
of the flat plant.

A. HIDSC Co-observability Definition

We now present the per-component level-wise co-
observability definition for HIDSC system W.

Definition 9: Let W be an HIDSC nth degree decentral-
ized specification interface system. Then W is level-wise co-
observable if for all j € {1,...,n} the following conditions
hold:

D (Vte Fu NHPNI)(Vo € Bo)to € (HP NI)\Fu=

(3i € Dy (0)) Pi[Pri()]oNFuNHP NI =)

) (Vt € Fr, NZ;NLY) (Vo € Be)to € LEN(Fr, NZ;)=

(3i € Dr, e (0))Pp[Pri(t)]o N Fr, NIy N LY = 0.

Definition 9 states that HIDSC system W is level-wise co-
observable if the system is co-observable at the high-level
component and at each low-level component.

We note that the interfaces are treated as specifications
at the low-level and treated as plants at the high-level. This
is done this way because interfaces represent the behavior
provided by its low-level and the information needed to
verify that it is co-observable is typically present at the low-
level but not the high-level. To avoid having to repeat this
information at the high-level, we use the results of [8] that
allow us to treat supervisors as if they are plants once we
verify they are co-observable. By treating interfaces as plants
at the high-level, we allow the high-level supervisor to be
more permissive in general as there will typically be fewer
strings that can cause co-observability verification to fail.

Definition 10: Let ¥ be an HIDSC nth degree decentral-
ized specification interface system. Then W is globally co-
observable if

WVt €e FNINP) Vo € %) to € P\(FNI)=(Ti €
D.(o))P HP()]oNFNINP =0.

Definition 10 states that for HIDSC system W, if the
global specification F synchronized with interface Z is co-
observable with respect to the flat plant system P, then W is
globally co-observable.

Note that Definition 10 is the property we want to ver-
ify but we will do so by using our per-component co-
observability definition. We do not need to combine the flat
specifications, interfaces and plant components together. This
potentially saves computation and helps to alleviate the state-
space explosion problem.

B. HIDSC Co-observability Theorem

The following is the HIDSC co-observability theorem
which states that the level-wise co-observability property is
sufficient to guarantee that the flat system is co-observable.

Theorem 1: Let U be an HIDSC nth degree decentral-
ized specification interface system. If W is level-wise co-
observable then W is globally co-observable.

Proof: See proof in [9]. |

C. Complexity Analysis

The following is the complexity analysis of our verification
method to which we compare monolithic verification.

In monolithic verification, the n low-level subsystems are
composed directly with the high-level system without using
the interface structure. The size of the state space for the
monolithic method is the size of the product state space of
Gy || Gr, || -.- || GL,. If the size of the state space of
Gy is bounded by N, and each of the size of the state
space of G, is bounded by Ny, then the size of the state
space of the monolithic method is bounded by Ny N7.

Our method verifies each component separately, therefore
the size of the state space is bounded by the size of the
component combined with its interface. For j = 1,...,n, if
we assume that the size of the state space of Gy, is bounded
by N, then each low-level subsystem G, ||G;, is bounded
by N N;. The high-level subsystem Gy ||Gr,||...||Gy, is
bounded by Ny N}'. Therefore, our method is bounded by
the larger of Ny N7 and NpNj. Typically in an HIDSC
design, the size of the high-level is the limiting factor.
This means that as long as N;y < N, we should achieve
significant computational savings [6].

VI. MNDSC SUPERVISOR EXISTENCE THEOREM

We now present the marking nonblocking decentralized
supervisory control (MNDSC) existence theorem, which
shows that there exists an MNDSC to achieve the specifi-
cation if and only if K is controllable and co-observable.

Theorem 2: Let Plant := (Q, X, 0, qo, @Qm), K C
L,,(Plant), and K # {). There exists an MNDSC S¢,,, for
(K, Plant) such that L,,(Scon/Plant) = K if and only if K
is controllable and co-observable with respect to L(Plant).

Proof: See proof in [9]. []

Note that in Theorem 2 we do not require that K be
L,,,(G)-closed which is assumed by traditional decentralized
control [2]. This will allow us to apply the result to our
HIDSC system as we have an HISC nonblocking result but
not an HISC L,,(G)-closed result.

We will now relate Theorem 2 to our HIDSC system and
nonblocking. In essence, we are requiring ¥ to have equiva-
lent MNDSC behavior with S¢,,,, /Plant, which ensures our
HIDSC system implementation will be nonblocking.

Corollary 1: Let ¥ be an HIDSC nth degree
decentralized specification interface system.
Let Plant := GY[|G] |[...[|[G] , Spec =
FullF, |- ||IFL, ||IGnll---||Gr,. Let L, (Spec) N
L,,(Plant) # (). There exists an MNDSC Scon

for (L,,(Spec) N L, (Plant), Plant) such that
L..(Scon/Plant) = L, (Spec) N L,,(Plant), and
L(Scon/Plant) = L(Spec) N L(Plant), if and
only if L, (Spec) N L, (Plant) is controllable

1697

and co-observable with respect to L(Plant), and
L..(Spec) N L,,(Plant) = L(Spec) N L(Plant).
Proof: See proof in [9]. []
For HIDSC system W, Corollary 1 tells us that the
marked behavior of our MNDSC and flat plant is equal to
L..(Spec) N L,,(Plant) and their closed behavior is equal
to L(Spec) N L(Plant). To apply Corollary 1, we need to
first show that ¥ is co-observable, nonblocking, and con-
trollable. For scalability, we want to verify all these global
properties using only per-component properties. Theorem 1
shows us that level-wise co-observability gives us global co-
observability. From [4], [5], we know that the HISC LD
level-wise nonblocking, LD interface consistent, and level-
wise controllability properties together imply that our flat
system is nonblocking and controllable. We can thus verify
all needed global properties using per-component check. As
we never need to construct the full system model, this offers
potentially great computational savings.

VII. EXAMPLE

To demonstrate the HIDSC method, we adapt a small
manufacturing system from [4], that was originally modeled
as an HISC system, shown in Fig 2. The system is composed
of three manufacturing units running in parallel, a testing
unit, material feedback, a packaging unit, plus three buffers
to insure the proper flow of material.

Fig 3 shows which DES belong to the high level subsystem
(Gpg), high-level plant (Gp), the high-level specification
automata (Sg), the j* low-level subsystem (G), the j*"
low-level plant (Gr,), the 4t low-level specification au-
tomata (S), and the jt" interface DES (G 1;), = LILIIL
We note that the three low-level subsystems shown in Fig 2
and 3 are identical up to relabeling. Fig 4 shows the low-level
subsystems in detail.

Controllable events are those with a slash on the transition
arrow, marked states are states with an unlabeled incoming
arrow, and initial states are states with an unlabeled outgoing
arrow.

A. A Manufacturing System as an HIDSC

Originally this example was modeled as an HISC system.
We will now adapt it to an HIDSC system. Typically, we
would only do this if the system had an inherent distributed
nature forcing us to implement supervisors with partial
observations and partial controllability beyond the compart-
mentalized limitation imposed by the HISC structure.

We define the alphabet partition
Y= [UkG{I,H,HI} (ZLk UZRk UEAk)] U ZH below:

Yy = {take_item, package, allow_exit,
new_part, part_f_obuff, part_passes,
part_fails, ret_inbuff, deposit_part}

YRr, = {partentj}

ndur | ¢—

loynq |«
1018 ¢

" B " B g
H] :)]
@ £ [é 2 2
il @ Lo @ &
v
gg s
FEe
Ed
g8
[}
o=
8
59
=@,
7
Fig. 2. Block Diagram of Parallel Plant System.
Ya, = {finexitj}

{start_pol-j, attch_ptA-j, attch_ptB-j,
start_case-j, comp_pol-j, finA_attch-j,
finB_attch-j, compl_case-j, part_arrl-j,
part_Ivl-j, partLvExit-j, str_exit-j,
part_arr2-j, recog_A-j, recog_B-j,
part_lv2-j, part_arr3-j, part_lv3-j,

take_pt-j, str_ptA-j, str_ptB-j,

compl_A-j, compl_B-j, ret_pt-j,

dip_acid-j, polish-j, str_rlse-j}

Our first step is to replace the existing supervisors with

specification automata. Thus let Fy; = Sy and F L; = S L
4 =LILIIL

1698

High level Subsystem

G,
g Packaging System Source Sink Test Unit
" take_item new_part part_f obufl
allow_exit
4; in buff ret_inbuff, ret_inbuff, ret_inbuff, ret_inbuff,
b - new_part new_part new_part new_part
part_ent-L art_ent-1, part_ent-1, part_ent-1,
11 part_ent-II, part_ent-1I art_ent-I1,
part_ent-1Il part_ent-ITT part_ent-I1T
part_ent-I part_ent-1,
part_ent-1I, part_ent-Il
part_ent-IIT part_ent-I11
fin_exit-I fin_exit-I, fin_exit-1 fin_exit-1,
t buff fin_exit-1I, fin_exit-1I, fin_exit-11, fin_exit-11,
out_bu fin_exit-111 fin_exit-I1T fin_exit-11l fin_exit-11l
part_f_obuff part_f_obuff part_f_obuff part_f_obuff
package
buffer deposit_part deposit_part deposit_part deposit_part
)~
take_item take_item take_item take_item
Ensure_matFb
new_part new_part new_part new_part
par_passes part_passes part part_passes
G,, partentl G,y part_ent-ll Gy part_ent-Ill
fin_exit- fin_exit-IT fin_exit-I11
Low Level Subsystem , Low Level Subsystem Low Level Subsystem
Gund=t [Gua i =111

Ty K ‘

Fig. 3. Complete Parallel System.

Next, we design five decentralized controllers (H1, H2,
L1, L2 and L3) to define our HIDSC problem.

Controller H1 can only observe interface events, and can
only control controllable interface events (i.e., X, N Xj).
Hence events in X gUX [, UX,,,UX,,, are all unobservable
and uncontrollable to H1, therefore can be safely ignored.

Controller H2 can only observe events in ¥z, and can only
control controllable events in > g. Therefore, events in the
low-level components and interfaces can be safely ignored.

In each low-level subsystem, a controller can only observe
and control events in its own subsystem. For example,
controller L1 can only observe and control events in G,
and Gy,, ie., events in Xjy,,. Therefore high-level events
and other low-levels can be safely ignored. Analogously, this
is also true for controllers L2 and L3.

The index sets of decentralized controllers for each
component are: Dy={H1, H2}, Dy, ={L1}, Dp,,={L2},
Dy, ={L3}'

We now define the flat system, the flat plant, and the flat
specification automata as follows:

Plant := Gy ||Gr, |G, |Gy,

Spec :=Fpg | |FL1 | |FLII ‘ |FLIII | |GII ‘ |GIH | |GIH]

B

Path Flow Model-j

str_exitj

Attach Part to Assembly-j

fin_exit-j

str_ptA-i_ g_cmplAj

take_ptj

ret_ptoj

Define New Events-j dip_acid-j,

polish-j

Polish Part-j Attach Case to Assembly-j

start_case-j
start_pol-j

f-os1 s

compl_pol-j compl_case

Polishing Sequence-j Sequence Tasks-j
fin_exit-j

dip_acid-j

start_pol-j

rt_ent-j part_arrl-j start_pol-j compl_pol-j
O

finB_attch-j recog_B-j

[-gue ed

0= COMPLEET part 1v3j part_arrl-j

i

[-af Hed

Affix Part-j

strptA take pis

v jdwo

.

ret_pi-

finA attchj | > atch ptB take_ptj

Fone”guy
nd ns

cmpl_B-j

retptoj

Fig. 4. Low Level Subsystem j.

B. Co-observability Verification for the Decentralized Sys-
tem

We need to verify whether L,,(Spec) is co-observable
w.r.t. L(Plant). We can then conclude, in combination with
checking controllability, by Theorem 2 that there exists an
MNDSC decentralized supervisory control. By Theorem 1,
we know it is sufficient to verify level-wise co-observability.

The following steps for level-wise co-observability verifi-
cation are:

Step 1. Verify whether the first low-level subsys-
tem satisfies its portion of the level-wise co-
observable definition, i.e., whether L(Fr [|Gp,) is
co-observable w.rt. L(Gr,),XL c.i» XL, for i €
Dy,.

L1 is the only decentralized supervisor for Dp,.
We find that controller L1 can observe all the events
in the first low-level subsystem, ie., Xr, .1
{part_ent-1, fin_exit-I}UY,, = X,. Further, controller L1
can control all the events in the first low-level subsystem,
ie, Y, c1 = {partent-I}UX, N X, = X, N ..
Therefore, the first low-level component trivially satisfies
its portion of the level-wise co-observable definition.

Step 2. Verify whether the second low-level subsys-
tem satisfies its portion of the level-wise co-
observable definition, i.e., whether L(FLH||G 111)
is co-observable w.r.t. L(GLH), YL LL,0, for

1699

t € Dr,,,. We note that since the second low-level
subsystem is identical up to relabeling with the first
one, this step does not need to be verified.

Step 3. Verify whether the third low-level subsystem
satisfies its portion of the level-wise co-observable
definition. Similar to Step 2, this step does not need
to be verified.

Step 4. Verify whether the high-level subsystem satisfies

its portion of the level-wise co-observable defini-
tion, i.e., verifying whether L(F) is co-observable
W.I.t. L(gHHG[IHG[HHG[m), EH,c,i’ EH,o,i’ for
i€ Dg.

In the high-level subsystem, each controllable event in
Yrg can be controlled by either HI or H2, but not both.
In other words, Xgc1N¥gc2 =0, X 01N ZHo2 =10

Observability is a special case of co-observability, and if
a system is observable for each controller independently,
then it is definitely co-observable [2], [12]. This means
the problem can be reduced to whether the high-level is
observable for HI and H2 separately.

Using the DES design software TCT [13], we find that
the high-level is observable for H1 and H2 separately. When
we verify H1 by TCT, we specify that all controllable and
observable events are within X;. Correspondingly, when we
verify H2, we specify that events in > are all uncontrollable
and unobservable. We thus conclude that the high-level
satisfies its portion of the level-wise co-observable definition.

By completing Steps 1-4, we conclude that the decentral-
ized system is level-wise co-observable, thus globally co-
observable by Theorem 1.

Using our software tool DESpot [3], we verified that the
system is level-wise controllable, LD level-wise nonblock-
ing, and LD interface consistent. We can thus conclude by
[5] that our flat system is controllable and nonblocking. We
conclude by Corollary 1 that there exists a marking non-
blocking decentralized supervisory control S¢,,, for Plant,
and that Spec||Plant has equivalent MNDSC behavior with
Scon/Plant. This means that since Spec||Plant is nonblock-
ing, Scon/Plant is also nonblocking.

C. Complexity Analysis for the Decentralized System

Applying DESpot to the small manufacturing system ex-
ample, we found that the state size of the entire system was
2.78 x1019. However, the high-level state size was 3.12x 103
and the low-level state size was 5.5 x 102. This is a potential
savings of about seven orders of magnitude.

The computational complexity to verify co-observability
using the monolithic approach in [11] is O(|3["+2|Y|"*2),
where X is the event set, Y is the state space, and n is the
number of decentralized controllers. Substituting in the small
manufacturing system example, verifying co-observability
using the above method gives a complexity bounded by
|42]572]2.78 x 10'05+2 = 2.96 x 108*. Using our method,
the complexity is bounded by |152%2(3.12 x 103|2*2
4.8 x 10'8. The potential computation saving is a 65 order
of magnitude reduction.

VIII. CONCLUSION

The existing HISC method does not support decentralized
control. In this paper, we extended HISC to the decentral-
ized architecture HIDSC. We introduced per-component co-
observability verification which avoids the explicit construc-
tion of the complete system model. We then proved that if
a system is level-wise co-observable, it is also globally co-
observable. This verification method should be very useful
for decentralized systems with many components, and should
allow us to work with large distributed systems. Further,
we provided a supervisory control existence theorem for
HIDSC systems, and proved the necessary and sufficient
conditions for decentralized control in HIDSC. Finally, we
use an example to demonstrate the HIDSC approach.

REFERENCES

[1] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,” IEEE Transactions on Automatic Control,
vol. 45, no. 9, pp. 1620-1638, 2000.

[2] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems (second edition). Springer, 2008.

[3] DESpot, “The official website for the despot project,” [Online].
Available: http://www.cas.mcmaster.ca/~leduc/DESpot.html, 2014.

[4] R.J. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Department of Electrical and Computer Engineering,
University of Toronto, Toronto, Ont., 2002, [ONLINE] Available:
http://www.cas.mcmaster.ca/ " leduc.

, “Hierarchical interface-based supervisory control with data
events,” International Journal of Control, vol. 82, no. 5, pp. 783-800,
2009.

[6] R.J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control-part II: parallel case,” IEEE Transactions on
Automatic Control, vol. 50, no. 9, pp. 1336-1348, 2005.

[71 F. Lin and W. M. Wonham, “On observability of discrete-event
systems,” Infomation Sciience, vol. 44, pp. 173198, 1988.

[8] H. Liu, R. J. Leduc, R. Malik, and S. L. Ricker, “Incremental
verification of co-observability in discrete-event systems,” in Proc. of
2014 American Control Conference, June 2014, pp. 5446-5452.

[9] H. Liu, R. J. Leduc, and S. L. Ricker, “Decentralized con-
trol using the hierarchical interface-based supervisory control ap-
proach,” Technical Reports CAS-14-10-RL. Department of Com-
puting and Software, McMaster University [Online]. Available:
http://www.cas.mcmaster.ca/ ~leduc, December 2014.

[10] L. Ricker and B. Caillaud, “Mind the gap: Expanding communication
options in decentralized discrete-event control,” Automatica, vol. 47,
no. 11, pp. 2364-2372, 2011.

[11] K. Rudie and J. C. Willems, “The computational complexity of
decentralized discrete-event control problems,” IEEE Transactions on
Automatic Control, vol. 40, no. 7, pp. 1313-1319, 1995.

[12] K. Rudie and W. M. Wonham, “Think globally, act locally: Decentral-
ized supervisory control,” IEEE Transactions on Automatic Control,
vol. 37, no. 11, pp. 1692-1708, 1992.

[13] TCT, “The official website for the design software: TCT,” [Online].
Available: http://www.control.utoronto.ca/~ wonham/, 2014.

[5]

1700

