
Hierarchical Interface-Based Supervisory
Control with Data Events

Ryan J. Leduc

Abstract— Hierarchical Interface-based Supervisory Control
(HISC) decomposes a discrete-event system (DES) into a
high-level subsystem which communicates with n ≥ 1 low-
level subsystems, through separate interfaces which restrict
the interaction of the subsystems. It provides a set of local
conditions that can be used to verify global conditions such as
nonblocking and controllability. As each clause of the definition
can be verified using a single subsystem, the complete system
model never needs to be stored in memory, offering potentially
significant savings in computational resources.

In this paper, we extend the range of the behavior of low-
levels that interfaces can model by adding a new type of event,
low data events, and by relaxing some restrictions in the HISC
definitions. This allows us to have (i) request events that don’t
need to be followed by an answer event, (ii) to start a low-level
on a task and then poll it for completion, (iii) to be able to send
additional commands while a low-level is already processing a
command (iv) to model low-levels that behave as buffers, and
(v) to allow unsolicited information (status etc.) to be sent up
from a low-level.

Besides greatly enriching the behavior that can be modelled
as interfaces and thus expanding the systems that HISC can
effectively be applied to, the changes can enable behavior to be
moved from the high-level to the low-levels. We demonstrate
this when we discuss the application of our method to a large
manufacturing system example based upon the AIP example,
where we saw a 4.8 times reduction in computation time and
a 6.5 times reduction in memory use. This helps prevent the
high-level from growing too large, allowing the HISC method
to apply to larger systems.

I. INTRODUCTION

In the area of Discrete-Event Systems (DES), two common
tasks are to verify that a composite system, based on a
Cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is
the combinatorial explosion of the product state space.

The Hierarchical Interface-based Supervisory Control
(HISC) framework was proposed by Leduc et al. ([1], [2],
[3], [4]) to alleviate the state explosion problem. The HISC
approach decomposes a system into a high-level subsystem
which communicates with n ≥ 1 parallel low-level subsys-
tems through separate interfaces that restrict the interaction
of the subsystems. It provides a set of local conditions that
can be used to verify global conditions such as nonblocking
and controllability. As each clause of the definition can be
verified using a single subsystem, the complete system model
never needs to be stored in memory, offering potentially
significant savings in computational resources.

There has been some very promising recent work by Pena
et al. [5], Flordal et al. [6], and Hill et al. [7] in using different

Ryan J. Leduc is with the Dept. of Computing and Software, McMaster
University, Hamilton, ON, Canada, L8S 4K1 leduc@mcmaster.ca

forms of equivalence abstractions to verify flat systems in a
modular fashion. These methods promise to increase the size
of unstructured systems that we can verify. As individual
levels (components) of an HISC system are treated as flat
systems, these new results have the potential of being able to
increase the individual component size that we can handle,
if they can be adapted to verify the per component HISC
conditions.

In this paper, we set out to extend the range of the behavior
of low-levels that interfaces can model. This will have the
affect of increasing the systems that HISC can be applied to
as well as, in some cases, allow us to model certain low-
levels in a more flexible, and intuitive way.

As we will see, extending the range of behavior we can
model can have the side effect of allowing us to move
behavior from the high-level to one or more low-levels,
decreasing the size of the high-level. As the high-level (which
includes the interfaces) typically increases in size as we add
more low-levels, it is often the bottleneck limiting the size
of systems we can handle with the HISC method. The new
changes we are introducing can thus result in more natural
HISC system design, as well as a decrease in computation
time and memory usage.

The most important type of behavior we wish to be able
to add, is the ability to start a low-level on a task and then
poll it for completion. Currently, we can start the low-level
on a task by sending it a command (request event), but
then we must wait for it to complete the task and send us
a response (answer event). Between the request event and
answer event, we can not send any more commands to the
low-level such as to add another task to its queue, or even
to send it an abort command. Once the low-level has sent an
answer event, it can’t currently provide the high-level with
any additional status information until after the next request
event. That means the interface can’t change state at this
point in response to changes in the low-level state that would
effect which request events are currently available, as well
as which answer events can follow these request events.

The current inability of the low-level to provide status
information between the occurrence of an answer event and
a request event is the key limiting factor. If we started a
machine on a task, and then polled it to see if the task is
complete, we might expect to get two possible responses:
taskDone or notDone. However, if the task completed at the
low-level between the reception of the notDone, and before
the request event to check completion, the interface would
still be saying that the answer event notDone is possible,
even though it is not. This would violate the current HISC

interface consistency condition.
What we need is a new type of interface events, called low

data events, that can occur in between a request and answer
event, allowing the low-level to send status information as
needed. This will allow the interface automata to stay in a
consistent state. Low data events will actually be allowed to
occur at any state in the interface, providing the additional
ability of allowing the low-level to provide information to
the high-level at will.

These new events will not only allow us to model polling
behavior, but more importantly allow us to model low-levels
that behave, from an input-output perspective, as buffers.
This is important as buffers are a very common structure
in systems. Being able to represent such low-levels using
interfaces allows us to move the behavior of such subsystems
to a low-level, while still interacting with the system as a
buffer (i.e. adding tasks to the subsystems queue individually,
and removing them individually once processed).

In addition to these new abilities, we would also like
to have request events that don’t need to be followed by
an answer event. For instance, starting a task when using
polling doesn’t require a response, thus simplifying the
interface automata. Finally, we would like to be able to send
additional commands (additional information, an abort signal
etc.) while a low-level is already processing a command.

In this paper, we first discuss DES preliminaries and then
introduce the HISC approach in Section III. As the HISC
method has already been explained and justified in detail in
[2], [3] , and [4], we will present it quickly, focussing on
our changes. We will discuss the new low data events, and
the corresponding modifications to the HISC definitions to
allow us to model the new types of behavior. We will then
present our nonblocking and controllability results. Next we
will discuss how to use the new method to model buffers,
followed by an application to the AIP example from [1], [4].

II. DES PRELIMINARIES

Supervisory control theory [8], [9], [10] provides a frame-
work for the control of discrete-event systems (DES), sys-
tems that are discrete in space and time. For a detailed
exposition of DES, see [10]. Below, we present a summary
of the terminology that we use in this paper.

Let Σ be a finite set of distinct symbols (events), and Σ∗

be the set of all finite sequences of events, including ε, the
empty string. Let L ⊆ Σ∗ be a language over Σ. A string
t ∈ Σ∗ is a prefix of s ∈ Σ∗ (written t ≤ s) if s = tu, for
some u ∈ Σ∗. The prefix closure of language L (denoted
L) is defined as L = {t ∈ Σ∗ | t ≤ s for some s ∈ L}.
Let Pwr(Σ) denote the power set of Σ. For language L,
the eligibility operator EligL : Σ∗ → Pwr(Σ) is given by
EligL(s) := {σ ∈ Σ |sσ ∈ L} for s ∈ Σ∗.

A DES automaton is represented as a 5-tuple G =
(Y, Σ, δ, yo, Ym) where Y is the state set, Σ is the event set,
the partial function δ : Y × Σ → Y is the transition function,
yo is the initial state, and Ym is the set of marker states. The
function δ is extended to δ : Y ×Σ∗ → Y in the natural way.
The notation δ(y, s)! means that δ is defined for s ∈ Σ∗ at

state y. For DES G, the language generated is denoted by
L(G), and is defined to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G, is defined as Lm(G) := {s ∈
L(G)| δ(yo, s) ∈ Ym}. The reachable state subset of DES
G, denoted Yr, is: Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}.
A DES G is reachable if Yr = Y . We will always assume G
is reachable. The coreachable state subset, denoted by Ycr,
is Ycr := {y ∈ Y | (∃s ∈ Σ∗) δ(y, s) ∈ Ym}. A DES is
coreachable if Ycr = Y .

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1, and L2 ⊆ Σ∗2. For i = 1, 2,
s ∈ Σ∗, and σ ∈ Σ, we define the natural projection Pi :
Σ∗ → Σ∗i according to:

Pi(ε) = ε, Pi(σ) =
{

ε if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The synchronous product of languages L1 and L2, denoted
L1||L2, is defined to be:

L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2)

where P−1
i : Pwr(Σ∗i) → Pwr(Σ∗) is the inverse image

function of Pi.
The synchronous product of DES Gi =

(Yi, Σi, δi, yoi , Ymi) (i = 1, 2), denoted G1||G2, is defined
to be a reachable DES G with event set Σ = Σ1 ∪ Σ2 and
properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2),

For DES, the two main properties we want to check are
nonblocking and controllability. A DES G is said to be
nonblocking if Lm(G) = L(G). This is equivalent to saying
that every reachable state is also coreachable.

For controllability, we assume the standard event partition
Σ = Σu ∪̇Σc, splitting our alphabet into uncontrollable
and controllable events. To control a given plant G1, we
define a supervisor represented as an automaton S =
(X, ΣS , ξ, xo, Xm).

Definition 1: Let Σ := Σ1 ∪ ΣS , P1 : Σ∗ → Σ∗1
and PS : Σ∗ → Σ∗S . Define LG1 := P−1

1 (L(G1)) and
LS := P−1

S (L(S)). A supervisor S is controllable for a
plant G1 if LSΣu ∩ LG1 ⊆ LS or, equivalently, (∀s ∈
LG1 ∩ LS) EligLG1

(s) ∩ Σu ⊆ EligLS
(s).

III. HISC WITH LOW DATA EVENTS

A HISC system currently is a two-level system which
includes one high-level subsystem and n ≥ 1 low-level
subsystems. The high-level subsystem communicates with
each low-level subsystem through a separate interface.

In HISC there is a master-slave relationship. A high-
level subsystem sends a command to a particular low-
level subsystem, which then performs the indicated task and
returns an answer. Fig. 1 shows conceptually the structure
and information flow of the system. This style of interaction
is enforced by an interface that mediates communication be-
tween the two subsystems. All system components, including
the interfaces, are modeled as automata.

Fig. 1. Interface Block Diagram.

In order to restrict information flow and decouple the
subsystems, the system alphabet is partitioned into pairwise
disjoint alphabets:

Σ := ΣH ∪̇
⋃̇

j=1,...,n

[ΣLj
∪̇ΣRj

∪̇ΣAj
∪̇ΣLDj

] (1)

The events in ΣH are called high-level events and
the events in ΣLj are the jth low-level events (j =
1, . . . , n) as these events appear only in the high-level
and jth low-level subsystem models, GH and GLj re-
spectively. We then have GH defined over event set
ΣH ∪̇(∪̇j∈{1,...,n}[ΣRj ∪̇ΣAj ∪̇ΣLDj]) and GLj defined over
event set ΣLj ∪̇ΣRj ∪̇ΣAj ∪̇ΣLDj . We model the jth in-
terface by DES GIj , which is defined over event set
ΣRj

∪̇ΣAj
∪̇ΣLDj . We define our flat system to be G =

GH ||GI1 ||GL1 || . . . ||GIn ||GLn . By flat system we mean
the equivalent DES if we ignored the interface structure. For
the remainder of this paper, the index j has range {1, . . . , n}.

As the jth interface, GIj , is only concerned with commu-
nication between the two subsystems, it is defined over the
events that are common to both levels of the hierarchy. The
events in ΣRj , called request events, represent commands
sent from the high-level subsystem to the jth low-level sub-
system. The events in ΣAj are answer events and represent
the low-level subsystem’s responses to the request events.

To these two event types present in the HISC formulation
of [1], [2], [3], [4], we add a new event type called low data
events. These events provide a means for a low-level to send
information (data) through the interface, independent of the
standard command-answer structure offered by the request
and answer events. These new events are the key to keeping
the state of the interfaces consistent with the state of their
corresponding low-levels. Otherwise, the state of an interface
can only be updated after the high-level sends a command
down and the low-level responds with an answer event. This
is insufficient to allow interfaces to represent polling (and
thus buffer) behavior. Request, answer, and low data events
are collectively known as the set of interface events, defined
as ΣI := ∪̇k∈{1,...,n}[ΣRk

∪̇ΣAk
∪̇ΣLDk

].

In order to enforce the serialization of requests and
answers, we restrict the interfaces to the subclass of LD
interfaces defined below. Our definition is based upon the
state based command-pair interface definition of Leduc et
al. [11], [12], which is equivalent to the definitions in [2],
[3], [4]. Fig. 2 shows an example of a LD interface. It could
correspond to a machine at the low-level with an effective
internal buffer of two.

Definition 2: The jth interface DES GIj =
(Xj , ΣIj

, ξj , xoj
, Xmj

) is a LD interface if the following
properties are satisfied:

1) xoj
∈ Xmj

2) (∀x ∈ Xmj
)(∀σ ∈ ΣIj

) ξj(x, σ)! ⇒ [σ ∈ ΣRj
] ∨

[σ ∈ ΣLDj
∧ ξj(x, σ) ∈ Xmj

]
3) (∀x ∈ Xj −Xmj

)(∀σ ∈ ΣIj
) ξj(x, σ)! ⇒

[σ ∈ ΣAj ∧ ξj(x, σ) ∈ Xmj] ∨ [σ ∈ ΣLDj]

In the command-pair interface definition, Point 2 would
have only allowed request events to go to an unmarked state,
requiring that they must be followed by an answer event. We
allow request events to also go directly to a marked state
and thus not requiring a succeeding answer event. Allowing
this type of behavior can lead to smaller, more compact
interfaces. This is possible because our proofs require that
request events be only possible at marked states (allows us to
force a low-level to a marked state even if the desired request
event is disabled) and every answer event be preceded by a
request event (so we can apply Point 5 of Definition 3), not
that every request event be followed by an answer event.

The other main change to the interface definition is the
addition of the low-level data events. Point 2 says low data
events can occur at marked states, but they may only lead
to another marked state. Point 3 states that low data events
may occur at unmarked states, and take us to either marked
or unmarked states. These conditions are important because
they ensure that the only way to get to a state where answer
events are possible (an unmarked state), is via at least one
request event.

GIj
start

done

isD
on

e

no
tD

on
e

start

done

isD
on

e

no
tD

on
e

0

1

3 4

2

SRj={isDone,start},SAj={done},SLDj={notDone}

Fig. 2. Example LD Interface 1.

To simplify notation in our exposition, we bring in the
following event sets, natural projections, and languages. In
particular, languages such as H represent the behavior of a
given DES extended over Σ∗, as needed for the synchronous

product.

ΣIj
:= ΣRj

∪̇ΣAj
∪̇ΣLDj

, PIj
: Σ∗ → Σ∗Ij

ΣILj := ΣLj ∪ΣIj , PILj : Σ∗ → Σ∗ILj

ΣIH := ΣH ∪
⋃

k∈{1,...,n}
ΣIk

, PIH : Σ∗ → Σ∗IH

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj)), Lmj := P−1
ILj

(Lm(GLj)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj)), Imj := P−1
Ij

(Lm(GIj)) ⊆ Σ∗

I := ∩k∈{1,...,n}Ik, Im := ∩k∈{1,...,n}Imk

ΣLD :=
⋃

k∈{1,...,n}
ΣLDk

ΣIHc := ΣIH − ΣLD

We now present the properties that the system must satisfy
to ensure that it interacts with the interfaces correctly.

Definition 3: The nth degree (n ≥ 1) interface system
composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is LD
interface consistent with respect to the alphabet partition
given by (1), if for all j ∈ {1, . . . , n}, the following
conditions are satisfied:

Multi-level Properties
1) The event set of GH is ΣIH , and the event set of GLj

is ΣILj .
2) GIj is a LD interface.

High-Level Property
3) (∀s ∈ H ∩ I) EligIj

(s) ∩ (ΣAj ∪̇ΣLDj) ⊆ EligH(s)
Low-Level Properties

4) (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj ⊆ EligLj

(s)
5) (∀s ∈ Σ∗.ΣRj ∩ Lj ∩ Ij)

EligLj ∩Ij
(sΣ∗Lj

) ∩ΣAj = EligIj
(s) ∩ΣAj where

EligLj∩Ij
(sΣ∗Lj

) :=
⋃

l∈Σ∗Lj

EligLj∩Ij
(sl)

6) (∀s ∈ Lj ∩ Ij)
s ∈ Imj ⇒ (∃l ∈ Σ∗Lj

) sl ∈ Lmj ∩ Imj .
The only change from the interface consistency definition

of [4], is in Point 3. Previously, it only referred to answer
events. This addition ensures that if a low-level (which
includes an interface) needs a low data event to occur to
reach a marked state, the high-level subsystem must allow
it. However, if the high-level requires a low data event to
occur, there is no such guarantee. For a discussion of the
remaining points, please see [1], [4].

A. Local Conditions for Global Nonblocking of the System
We now provide the conditions that the subsystems and

their interface(s) must satisfy in addition to the interface con-
sistency properties, if the flat system G is to be nonblocking.

Definition 4: The nth degree (n ≥ 1) interface system
composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is said to
be LD level-wise nonblocking if the following conditions are
satisfied:

(I) LD nonblocking at the high-level:
(∀s ∈ H ∩ I)(∃s′ ∈ (Σ− ΣLD)∗)

ss′ ∈ Hm ∩ Im

(II) nonblocking at the low-level:
(∀j ∈ {1, . . . , n})Lmj ∩ Imj = Lj ∩ Ij

Like the level-wise nonblocking definition of [4], Def-
inition 4 requires that the high-level and each low-level
be individually nonblocking. However, we add the further
restriction that each string in the high-level’s closed behavior
must be extendable to a marked string without using low data
events. The reason for this is that although the high-level can
react to the occurrence of low data events, it has no guarantee
that a low-level will ever allow these events to occur. As a
result, it must ensure that it can always return to a marked
state without them. A useful rule of thumb is to make sure
that for each reachable, unmarked state in each DES at the
high-level (including the interfaces), there is at least one non
low data event transition defined leading to a different state.
For example, if we removed answer event done at state 3 in
Fig. 2, then the only way to reach a marked state from state
3 would be via low data event notDone, thus violating Point
I of Definition 4. This doesn’t guarantee the system will be
LD level-wise nonblocking, but will avoid many problems.

We have now presented all the changes to the HISC defi-
nitions of [4], required to model the new types of behavior
discussed in Section I. It can be easily shown that if a nth

degree interface system satisfies the level-wise nonblocking
and interface consistency definitions of [4], and contains no
low data events (i.e. ΣLD = ∅), then it follows that it is also
LD level-wise nonblocking and LD interface consistent. The
new definitions were difficult to develop since we required
that they be backwards compatible, make as few changes as
possible to the previous HISC definitions, allow for compact
interfaces, and allow for significant reuse of existing proofs
and software, while still allowing us to be able to model the
desired new behaviors.

We now present our new results from [13]. Our first
proposition says that for every string accepted by our system,
we can always bring all the low-levels to a marked state via
a string containing only low-level and interface events. This
is useful as it ensures that after string sl, all interfaces are
in a marked states. This means that any future extensions
that contain answer events also contain a preceding request
event, making the application of Point 5 of our LD interface
consistency definition straight forward.

Proposition 1: If the nth degree (n ≥ 1) interface system
composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is LD
level-wise nonblocking and LD interface consistent with
respect to the alphabet partition given by (1), then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])
(∃l ∈ Σ∗IL) (sl ∈ H ∩ [∩j∈{1,...,n}(Lmj ∩ Imj)])

Proof: See proof in [13].
Our next propositions says that for every string accepted

by our system, we can always find a string containing only
high-level and interface events but no low data events, that
will bring the high-level to a marked state. However, string
h may not be accepted by the low-levels.

Proposition 2: If the nth degree (n ≥ 1) interface system
composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is LD

level-wise nonblocking and LD interface consistent with
respect to the alphabet partition given by (1), then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)])
(∃h ∈ Σ∗IHc) sh ∈ Hm ∩ Im

Proof: See proof in [13].
The next proposition says that given appropriate strings s

and h, we can modify string h by adding appropriate low-
level events (which are ignored by the high-level) into a
string u, such that the flat system is in a marked state. It
is key that h does not contain any low data events as there
is no guarantee that we could get the low-levels to accept
them.

Proposition 3: If the nth degree (n ≥ 1) interface system
composed of DES GH ,GI1 , GL1 , . . . ,GIn

,GLn
, is LD

interface consistent with respect to the alphabet partition
given by (1), then

(∀s ∈ H ∩ [∩j∈{1,...,n}(Lmj
∩ Imj

)])(∀h ∈ Σ∗IHc)
sh ∈ Hm ∩ Im ⇒ (∃u ∈ Σ∗) (su ∈ Hm∩

[∩j∈{1,...,n}(Lmj
∩ Imj

)]) ∧ (PIH(u) = h)
Proof: See proof in [13].

This brings us to our main nonblocking result.
Theorem 1: If the nth degree (n ≥ 1) interface system

composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is LD
level-wise nonblocking and LD interface consistent with
respect to the alphabet partition given by (1), then

L(G) = Lm(G) where G = GH ||GL1 ||GI1 || . . . ||GLn ||GIn

Proof:

Assume system is LD level-wise nonblocking and LD inter-
face consistent. (1)
As Lm(G) ⊆ L(G) is automatic, it suffices to show L(G) ⊆
Lm(G)

Let s ∈ L(G) = H ∩ [∩j∈{1,...,n}(Lj ∩ Ij)] (2)
Must show: (∃u ∈ Σ∗) su ∈ Lm(G) = Hm ∩
[∩j∈{1,...,n}(Lmj ∩ Imj)]

Applying Proposition 1, we can conclude:
(∃l ∈ Σ∗IL) sl ∈ H ∩ [∩j∈{1,...,n}(Lmj ∩ Imj)] (3)

Applying Proposition 2, taking sl to be string s in said
proposition, we can conclude:

(∃h ∈ Σ∗IHc) (slh ∈ Hm ∩ [∩j∈{1,...,n}Imj]) (4)
Combining with (3), we can now apply Proposition 3, taking
sl to be string s in said proposition, and conclude:

(∃u′ ∈ Σ∗) (slu′ ∈ Hm ∩ [∩j∈{1,...,n}(Lmj ∩ Imj)]

We take string u = lu′ and we have su ∈ Hm ∩
[∩j∈{1,...,n}(Lmj ∩ Imj)] = Lm(G), as required.

As verifying the LD level-wise nonblocking and LD
interface consistent conditions only require a single level at
a time, we can evaluate each level independently. We thus
do not need to construct the entire system model, potentially
significantly reducing the computational resources required.

B. Local Conditions for Global Controllability of the System

For controllability, we need to split the subsystems into
their plant and supervisor components. To do this, we define

the high-level plant to be Gp
H , and the high-level supervisor

to be SH (both defined over event set ΣIH). Similarly, the
jth low-level plant and supervisor are Gp

Lj
and SLj (defined

over ΣILj
). The high-level subsystem and the jth low-level

subsystem are then GH := Gp
H ||SH and GLj

:= Gp
Lj
||SLj

,
respectively.

We can now define our flat supervisor and plant as well
as some useful languages as follows:

Plant := Gp
H ||Gp

L1
|| . . . ||Gp

Ln

Sup := SH ||SL1 || . . . ||SLn
||GI1 || . . . ||GIn

Hp := P−1
IH L(Gp

H), SH := P−1
IH L(SH),⊆ Σ∗

Lp
j := P−1

ILj
L(Gp

Lj
), SLj

:= P−1
ILj

L(SLj
),⊆ Σ∗

We now provide the controllability requirements that each
level must satisfy.

Definition 5: The nth degree (n ≥ 1)
interface system composed of DES Gp

H ,SH ,
Gp

L1
,SL1 ,GI1 , . . . ,G

p
Ln

,SLn
,GIn

, is LD level-wise
controllable with respect to the alphabet partition given by
(1), if for all j ∈ {1, . . . , n} the following conditions hold:

(I) The alphabet of Gp
H and SH is ΣIH , the alphabet of

Gp
Lj

and SLj is ΣILj , and the alphabet of GIj is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj ∩ Ij) EligLp

j
(s) ∩ Σu ⊆

EligSLj
∩Ij

(s)
(III) (∀s ∈ Hp ∩ I ∩ SH) EligHp∩I(s) ∩ Σu ⊆

EligSH
(s)

The above definition is identical to the level-wise control-
lability definition of [4], except that the system is defined
over an event set that can also contain low data events. For
a discussion of the individual points, please see [1], [4].

We now present our new controllability results from [13].
Our first proposition says that the jth low-level supervisor,
in conjunction with the jth interface, is controllable for the
flat plant.

Proposition 4: If nth degree (n ≥ 1) interface sys-
tem composed of DES Gp

H ,SH ,Gp
L1

,SL1 ,GI1 , . . . ,G
p
Ln

,
SLn ,GIn is LD level-wise controllable with respect to the
alphabet partition given by (1), then
(∀j ∈ {1, . . . , n}) (∀s ∈ L(Plant) ∩ SLj ∩ Ij)

EligL(Plant)(s) ∩ Σu ⊆ EligSLj
∩Ij

(s)
Proof: See proof in [13].

Our next proposition says that the high-level supervisor
is controllable for the flat plant, when the plant is already
under the control of the system’s interfaces.

Proposition 5: If nth degree (n ≥ 1) interface sys-
tem composed of DES Gp

H ,SH ,Gp
L1

,SL1 ,GI1 , . . . ,G
p
Ln

,
SLn ,GIn is LD level-wise controllable with respect to the
alphabet partition given by (1), then

(∀s ∈ L(Plant)∩SH∩I) EligL(Plant)∩I(s)∩Σu ⊆ EligSH
(s)

Proof: See proof in [13].
This brings us to our main controllability result.
Theorem 2: If nth degree (n ≥ 1) interface system com-

posed of DES Gp
H ,SH , Gp

L1
,SL1 ,GI1 , . . . ,G

p
Ln

,SLn ,GIn

is LD level-wise controllable with respect to the alphabet
partition given by (1), then
(∀s ∈ L(Plant) ∩ L(Sup))

EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)
Proof:

Assume system is LD level-wise controllable. (1)
Let s ∈ L(Plant) ∩ L(Sup), σ ∈ EligL(Plant)(s) ∩ Σu (2)
Must show sσ ∈ L(Sup) = SH ∩ [∩j∈{1,...,n}(SLj ∩ Ij)]

We first apply Proposition 4 and conclude:
sσ ∈ ∩j∈{1,...,n}(SLj

∩ Ij) (3)
Combining with (2), we have σ ∈ EligL(Plant)∩I(s) ∩ Σu

Applying Proposition 5, we can conclude sσ ∈ SH

Combining with (3), gives sσ ∈ SH∩[∩j∈{1,...,n}(SLj
∩Ij)],

as required.

As verifying the LD level-wise controllable condition only
requires a single level at a time, we can evaluate each level
independently. We again do not need to construct the entire
system model.

IV. REPRESENTING BUFFERS AS INTERFACES

Now that we have defined the new low data HISC con-
ditions, we will discuss how to use interfaces to represent
low-levels that behave as buffers. It proved to be tricky to
figure out how to do this in a way that produced compact
interfaces, yet did not violate Point 5 of the LD interface
consistency definition. Point 5 says that immediately after a
request event occurs, there must exist a path containing only
low-level events to each answer event that can follow said
request event.

If we are only interested in starting tasks and determining
when the task is complete, we can use the approach shown
in Fig. 2 which represents a two slot buffer. Request event
start is used to add a task to the low-level’s buffer. As we
will start the task and then poll to determine completion, we
don’t need a matching answer event; thus event start takes
us directly to a marked state (gray circle). We can then either
add another task or use request event isDone to check to see
if the task is complete.

Done must be an answer event so that we can be assured
that it will eventually occur, and so that the high-level can
require that it occur in order to reach a marked state. If we
made done a low data event, we would have problems with
Point I of the LD level-wise nonblocking definition.

Response events that represent behavior that is not re-
quired to complete a task (i.e. error events, notDone etc.)
should be made low data events as they typically don’t need
to occur to reach a marked state. Accordingly, we make
notDone a low data event. This is key to passing Point 5 of
the LD interface consistency definition. If we made notDone
an answer event and the low-level finished its task while the
interface was in state 1 or 2, then notDone would no longer
be possible at state 3. This would cause Point 5 of the LD
interface consistency definition to fail. However, if notDone
is a low data event, it is not subject to Point 5 and need never

occur as the high-level can always return to a marked state
without it.

The approach shown in Fig. 2 works well if we only
wish to report that the task is complete. If we wish to also
report that an error occurred, for instance, things are more
complicated. If we added a low data event, error, from state
3 to 0, this would cause event done to fail Point 5 of the LD
interface consistency definition if the low-level determined
an error occurred while the interface was at state 1. The
reason is that event done would no longer be possible at
state 3.

We can use the approach shown in Fig. 3 to handle this
situation. Here we have added a new low data event, errDe-
tected, and selflooped it at states 1–4. As the occurrence of
errDetected does not preempt the occurrence of answer event
done, all is well. The high-level can detect the occurrence
of errDetected and change state so that it will take the
appropriate action once event done finally occurs. There
is one caveat: event errDetected must be the first point at
which the low-level knows that an error has occurred (i.e.
up until errDetected occurs, it must have been still possible
that the task could have completed without error). If this is
not the case, then it is possible that once the interface reaches
state 3 or 4, all paths to answer event done contain the low
data event errDetected, violating Point 5 of the LD interface
consistency definition. As can be seen from Fig. 3, the new
low data HISC conditions allow buffers to be modelled in a
very compact manner, minimizing the increase in complexity
of the high-level.

GI
start start

done
done

is
D
on

e

not
Don

e

0

1

3

is
D
on

e

notD
one

4

2

SR={isDone,start},SA={done},SLD={notDone,errDetected}

errDetected errDetected

errDetected errDetected

Fig. 3. Example LD Interface With Error Event.

V. VERIFYING PROPERTIES

The LD interface definition can be verified using the
command-pair interface algorithm from [11] with straight
forward modifications. The LD level-wise controllability def-
inition as well as Point II of the LD level-wise nonblocking
definition can be verified using existing supervisory control
algorithms after suitable definitions have been made. For
Point I of the LD level-wise nonblocking definition, we can
use a standard nonblocking algorithm modified to ignore low
data events when it checks coreachability.

For Point 3 of the LD interface consistency definition, we
can use standard controllability algorithms such as TCT’s
condat function [10]. We simply define ThePlant = GIj ,
TheSpec = GH , Σu = ΣAj ∪̇ΣLDj , and Σc = Σ − Σu.
The remaining conditions of the LD interface consistency

definition can be verified using the interface consistency
algorithm in [11].

VI. AIP EXAMPLE

To demonstrate the utility of our method, we apply it to a
large manufacturing system, the Atelier Inter-établissement
de Productique (AIP). The AIP was originally investigated
by Charbonnier et al. in [14], [15], by Leduc et al. in [1],
[4] using the HISC method, and finally by Ma et al. in
[16] using state tree structures and binary decision diagrams.
The AIP, shown in Fig 4, is an automated manufacturing
system consisting of a central loop (CL) and four external
loops (EL), three assembly stations(AS), an input/output
(I/O) station, and four inter-loop transport units (TU). The
I/O station is where the pallets enter and leave the system.
Pallets entering the system can be of type 1 or of type 2.

In the original HISC design from [1], [4], the system
consisted of a high-level and seven low-levels; one for each
transport unit and assembly station. Also, only one pallet at
a time was allowed on external loops 1 and 2. For the full
control specifications, see [1], [4].

In our new extended version, we wanted to allow two
pallets at a time in external loops 1 and 2 (which should
significantly increase the size of the original design’s high-
level), and move the details of these loops (including the
assembly stations) out of the high-level. To achieve this, we
merged low-levels AS1 and TU1 into a new low-level called
EL1. Similarly, AS2 and TU2 became EL2. We now have
only five low-levels.

Fig. 5 shows the interface for an EL low-level ((k, r) =
(AS1, TU1) for EL1, and (k, r) = (AS2, TU2) for EL2).
Here, uncontrollable events are shown in italics; all other
events are controllable. Initial states can be recognized by a
thick outline, and marked states are filled.

In essence, the interface represents a two slot buffer (states
s0-s5, s9, s10) where pallets are moved from the central loop
to the external loop via request-answer event pair TrnsfToEL-
TrnsfCplToEL, processed internally by the assembly station,
and then returned to the central loop via request-answer event
pair TrnsfELToCL-TrnsfCplToCL. Request event SkipTrns-
fCL, selflooped at states s0, s6, s11, is used by the high-level
to bypass attempts to execute event TrnsfELToCL as it would
cause blocking at that point. At state s5, the EL is full so
request-answer event pair LibPallet-palletRlsd allows pallets
on the central loop to pass through the TU and continue
moving around the CL.

At states s2 and s5, we are polling to see if a pallet on the
external loop has been processed by the assembly station and
is now waiting to be transferred back to the central loop. If
not, low data event noTrnsfCL occurs and we keep waiting.
Otherwise, the pallet is transferred to the CL.

States s6-s8 and s11-s14 handle the case when the as-
sembly station is down. Low data event, Rtimeout, signals
that the AS is down, and causes the interface to change
to a new behavior where transfers to and from the external
loop are suspended until the AS is repaired. Request-answer
event pair LibPallet-palletRlsd allows pallets on the central

loop to pass through the TU and continue moving around
the CL. We use request event ASUpYet to poll if the AS
is up yet, where answer event RobUp and low data event
NotASUp provide the responses. For the remainder of the
design details, including the more than 170 other automata,
please refer to [13].

After the design was completed, we applied our software
to the system and determined that it was LD level-wise
nonblocking and controllable, and LD interface consistent.
We can thus apply Theorems 1 and 2 and conclude that
the flat system is nonblocking and that the flat supervisor
is controllable for the flat plant. The computation took 104
seconds, and required 117MB. Detailed results are shown in
Table I, including the statespace of each level. This example

TABLE I
LOW DATA AIP RESULTS

States
Subsystem || with GIj

Size of GIj

GH 518,400 7,200

EL1, EL2 30,185 15

AS3 203 2

TU3 204 4

TU4 152 4

has an estimated closed-loop statespace of 2.97 × 1021.
This estimate was calculated by determining the closed-
loop statespace of the high-level and each low-level, and
then multiplying these together to create a worst case state
estimate. It’s quite likely that the actual system will be
considerably smaller.

On the same computer, we also verified that the AIP
example from [1], [4] was level-wise nonblocking and con-
trollable, and interface consistent. The computation took
356.76 seconds, and required 760MB. Table II shows the

TABLE II
AIP RESULTS

States
Subsystem || with GIj

Size of GIj

GH 3,306,240 8,192

AS1, AS2 120 4

AS3 203 2

TU1, TU2 98 4

TU3 204 4

TU4 152 4

detailed results. As we can see, because the new low Data
HISC method allowed us to shift behavior to the low-levels,
we were able to decrease the statespace of the high-level
by a factor of 6.4. This resulted in a 3.4 times computation
speedup, and a 6.5 times reduction in memory. We believe
that applying this approach to much larger examples will
produce even more dramatic savings.

VII. CONCLUSIONS

Hierarchical interface-based supervisory control (HISC)
offers an effective method to model systems with a natural

External loop 4

I/O Station

External
loop 3

Central
loop

External
loop 1

External loop 2

Assembly
Station 2

Assembly
Station 1

Assembly
Station 3

Transport
Unit 4

Transport
Unit 3

Transport
Unit 2

Transport
Unit 1

Fig. 4. The Atelier Inter-établissement de Productique Fig. 5. EL Interface

client-server architecture. As each requirement can be veri-
fied using only one subsystem, the entire plant model never
needs to be constructed or traversed, offering potentially
significant savings in computation.

In this paper, we extend the range of the behavior of low-
levels that interfaces can model by adding a new type of
event, low data events, and by relaxing some restrictions
in the HISC definitions. These new changes are backwards
compatible, allow for compact interfaces, and permit signif-
icant reuse of existing proofs, and software.

These changes allow us to give low-levels more freedom
in sending information to the high-level, allow us to model
polling behavior, and most importantly, allow us to model
low-levels that behave as buffers in a natural, intuitive
manner. This not only lets us greatly enrich the behaviors
we can model, but enables us to move more behavior from
the high-level to low-levels. Reducing the complexity of the
high-level increases the size of the systems we can apply
HISC to since the statesize of the high-level grows as we
add more low-levels, becoming a limiting factor.

This paper also offers a tutorial on how to model buffers
using interfaces. As determining how to do this in an
intuitive, compact manner was nontrivial, this provides an
invaluable resource for using the new approach.

Finally, an application of our method to a large manufac-
turing system (estimated worst case statespace on order of
1021) based on the AIP example shows how we can apply the
method to a real system and reduce the state size of the high-
level by a factor of 6.4. This resulted in a 3.4 computation
speedup, and a 6.5 times reduction in memory just from
moving behavior out of the high-level.

REFERENCES

[1] R. Leduc, “Hierarchical interface-based supervisory control,” Ph.D.
dissertation, Department of Elec. and Comp. Engineering, Uni-
versity of Toronto, Toronto, Ont, 2002, [ONLINE] Available:
http://www.cas.mcmaster.ca/˜leduc.

[2] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham,
“Hierarchical interface-based supervisory control, part I: Serial case,”
IEEE Trans. Automatic Control, vol. 50, no. 9, pp. 1322–1335, Sept.
2005.

[3] R. J. Leduc, M. Lawford, and W. M. Wonham, “Hierarchical interface-
based supervisory control, part II: Parallel case,” IEEE Trans. Auto-
matic Control, vol. 50, no. 9, pp. 1336–1348, Sept. 2005.

[4] R. J. Leduc, M. Lawford, and P. Dai, “Hierarchical interface-based
supervisory control of a flexible manufacturing system,” IEEE Trans.
on Control Systems Technology, vol. 14, no. 4, pp. 654–668, July 2006.

[5] P. Pena, J. Cury, and S. Lafortune, “Testing modularity of local
supervisors: An approach based on abstractions,” in Proc. of WODES
2006, Ann Arbor, USA, Jul. 2006, pp. 107–112.

[6] H. Flordal and R. Malik, “Modular nonblocking verification using
conflict equivalence,” in Proc. of WODES 2006, Ann Arbor, USA,
Jul. 2006, pp. 100–106.

[7] R. Hill and D. Tilbury, “Modular supervisory control of discrete-event
systems with abstraction and incremental hierarchical construction,”
in Proc. of WODES 2006, Ann Arbor, USA, Jul. 2006, pp. 399–406.

[8] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete-event processes,” SIAM J. Control Optim, vol. 25, no. 1, pp.
206–230, 1987.

[9] W. M. Wonham and P. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Control Optim, vol. 25,
no. 3, pp. 637–659, May 1987.

[10] W. M. Wonham, Supervisory Control of Discrete-Event Systems,
Department of Electrical and Computer Engineering, University of
Toronto, July 2006, Monograph and TCT software can be downloaded
at http://www.control.toronto.edu/DES/.

[11] P. Dai, “Synthesis method for hierarchical interface-based super-
visory control,” Master’s thesis, Dept. of Computing and Soft-
ware, McMaster University, Hamilton, Ont, 2006, [ONLINE]
http://www.cas.mcmaster.ca/˜leduc/#studtheses.

[12] R. J. Leduc and P. Dai, “Synthesis method for hierarchical interface-
based supervisory control,” in Proc. of 26th American Control Con-
ference, New York City, USA, July 2007, pp. 4260–4267.

[13] R. J. Leduc, “Hierarchical interface-based supervisory control
with data events,” Software Quality Research Laboratory, Dept.
of Computing and Software, McMaster University, Hamilton,
ON, Canada, Tech. Rep. No. 44, 2007, [ONLINE] Available:
http://www.cas.mcmaster.ca/sqrl/sqrl reports.html.

[14] B. Brandin and F. Charbonnier, “The supervisory control of the
automated manufacturing system of the AIP,” in Proc. Rensselaer’s
1994 4th International Conf. on Comput. Integr. Mfg and Automation
Technol., Troy, Oct 1994, pp. 319–324.

[15] F. Charbonnier, “Commande par supervision des systèmes à
événements discrets: application à un site expérimental l’Atelier Inter-
établissement de Productique,” Laboratoire d’Automatique de Greno-
ble, Grenoble, France, Tech. Rep., 1994.

[16] C. Ma and W. M. Wonham, Nonblocking Supervisory Control of
State Tree Structures, ser. Lecture Notes in Control and Information
Sciences. Berlin, Germany: Springer-Verlag, 2005, vol. 317, a1:
20010101.

