
Fault Tolerant Controllability

Simon Radel, Aos Mulahuwaish, and Ryan J. Leduc

Abstract— In this paper we investigate the problem of fault
tolerance in the framework of discrete-event system (DES). We
introduce our setting, and then provide a set of fault tolerant
definitions designed to capture different types of fault scenarios
and to ensure that our system remains controllable in each
scenario. We then present algorithms to verify these properties.
Finally, a simple example is provided to illustrate the properties.

Keywords: Discrete-event systems; Fault-tolerant; Supervi-
sory control.

I. INTRODUCTION

Supervisory control theory, introduced by Ramadge and
Wonham [1], [2], [3], provides a formal framework for
analysing discrete-event systems (DES). In this theory, au-
tomata are used to model the system to be controlled and the
specification for the desired system behaviour. The theory
provides methods and algorithms to obtain a supervisor that
ensures the system will produce the desired behaviour.

However, the above typically assumes that the system
behavior does not contain faults that would cause the actual
system to deviate from the theoretical model. An example is a
sensor that detects the presence of an approaching train. If the
supervisor relies on this sensor to determine when the train
should be stopped in order to prevent a collision, it could fail
to enforce its control law if the sensor failed. Our goal in this
paper is to develop a way to add fault events to the systems
plant model and to categorize some common fault scenarios.
We will then develop some properties that will allow us to
determine if a supervisor will still be controllable in these
scenarios.

Currently in the DES literature, the most common ap-
proach when a fault is detected is to switch to a new
supervisor to handle the system in its degraded mode.
Such an approach focuses on fault recovery as opposed to
fault tolerance. This requires the construction of a second
supervisor, and requires that there be a means to detect the
occurrence of the fault in order to initiate the switch. In the
approach we present in this paper, we use a single supervisor
that will behave correctly in the presence of the specified
fault scenarios. This method does not rely on detecting the
fault, but on fault tolerant supervisors. We will now discuss
some relevant previous work.

Lin [4] discussed both robust and adaptive supervisory
control in discrete-event systems, including necessary and

Simon Radel is with the Dept. Génie Mécanique, ENS DE
CACHAN, 61 avenue du Président Wilson, 94235 Cachan cedex, France
sradel@ens-cachan.fr.gov

Aos Mulahuwaish and Ryan Leduc are with the Dept. of Computing
and Software, McMaster University, Hamilton, ON, Canada, L8S 4K1
mulahuaa@mcmaster.ca and leduc@mcmaster.ca

sufficient conditions for the existence of a robust supervisor.
Based on this condition, a robust supervisory control and
observation approach for synthesizing a supervisory control
was developed. The goal of robust supervision is to synthe-
size a supervisor that realizes a given desired behavior for
all possible systems.

In Park et al. [5], they presented necessary and sufficient
conditions for fault tolerant robust supervisory control of
discrete-event systems that belong to a set of models. When
these conditions are satisfied, fault tolerance can be achieved.
In the paper, the results were applied to the design, mod-
elling, and control of a workcell consisting of arc welding
(GMAW) robots, a sensor, and a conveyor.

In Paoli et al. [6], the controller was updated based on the
information provided by online diagnostics. The supervisor
needs to detect the malfunctioning component in the system
in order to achieve the desired specification. The authors
proposed the idea of safe diagnosability as a step to achieve
the fault tolerant control. Two new notations were introduced
in this work (safe controllability) and (active fault tolerant
system), to characterize the conditions that must be satisfied
when solving the fault tolerant control problem using this
approach.

Qin Wen et al. [7] introduce a framework for fault-
tolerant supervisory control of discrete-event systems. In
this framework, plants contain both normal behavior and
behavior with faults, as well as a submodel that contains
only the normal behavior. The goal of fault-tolerant super-
visory control is to enforce a specification for the normal
behavior of the plant and to enforce another specification
for the overall plant behavior. This includes ensuring that
the plant recovers from any fault within a bounded delay
so that after the recovery, the system state is equivalent to
a state in the normal plant behavior. They formulate this
notion of fault-tolerant supervisory control and provide a
necessary and sufficient condition for the existence of such a
supervisor. The condition involves notions of controllability,
observability and relative-closure together with the notion of
stability.

This paper is organized as follows. Section II discusses
DES preliminaries. Section III introduces fault events, our
fault tolerant controllability definitions and the fault scenar-
ios to which they apply. Section IV presents algorithms to
verify these properties. Section V provides a simple example.
Finally, Section VI provides our conclusions.

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8686-6/$31.00 ©2015 AACC 1603

II. PRELIMINARIES

We now present a summary of the DES terminology that
we use in this paper. For more details, please refer to [3].

Let Σ be a finite set of distinct symbols (events), and Σ∗

be the set of all finite sequences of events including ǫ, the
empty string. Let Σ+ denote the set of all finite, non-empty
sequences of events. We can then define Σ∗:= Σ+ ∪ {ǫ}.

Let L ⊆ Σ∗ be a language over Σ. A string t ∈ Σ∗ is a
prefix of s ∈ Σ∗ (written t ≤ s) if s = tu, for some u ∈
Σ∗. The prefix closure of language L (denoted L) is defined
as L := {t ∈ Σ∗ | t ≤ s for some s ∈ L}. Let Pwr(Σ)
denote the set of all possible subsets of Σ. For language L,
the eligibility operator, EligL : Σ∗ → Pwr(Σ), is given by
EligL(s) := {σ ∈ Σ |sσ ∈ L for some s ∈ Σ∗}.

A DES automaton is represented as a 5-tuple G =
(Y,Σ, δ, yo, Ym) where Y is the state set, Σ is the event set,
the partial function δ : Y ×Σ → Y is the transition function,
yo is the initial state, and Ym is the set of marker states. The
function δ is extended to δ : Y ×Σ∗ → Y in the natural way.
The notation δ(y, s)! means that δ is defined for s ∈ Σ∗ at
state y. For DES G, the language generated is denoted by
L(G), and is defined to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G is defined as Lm(G) := { s ∈
L(G)| δ(yo, s) ∈ Ym}. The reachable state subset of DES
G, denoted Yr, is Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}.
A DES G is reachable if Yr = Y . We will always assume
G is reachable.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2,
s ∈ Σ∗, and σ ∈ Σ, we define the natural projection Pi :
Σ∗ → Σ∗

i according to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i) → Pwr(Σ∗) is the inverse image
of Pi such that for L⊆Σ∗

i , P−1
i (L) := {s ∈ Σ∗|Pi(s) ∈ L}.

Definition 1: For Gi = (Qi,Σi, δi, qo,i, Qm,i) (i = 1, 2),
we define the synchronous product G = G1||G2 of the two
DES as:

G := (Q1 × Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 × Qm,2),

where δ((q1, q2), σ) is only defined and equals:

(q′1, q
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or
(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1or
(q1, q

′

2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

We note that if Σ1 = Σ2, we get L(G) = L(G1)∩L(G2).

For DES, the two main properties we want to check are
nonblocking and controllability. A DES G is said to be
nonblocking if Lm(G) = L(G). For controllability, we
assume the standard event partition Σ = Σu ∪̇Σc, splitting
our alphabet into uncontrollable and controllable events.

Definition 2: A supervisor S = (X,Σ, ξ, xo,Xm) is con-

trollable for plant G = (Y,Σ, δ, yo, Ym) if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ L(S)

We now provide some language definitions that will be
useful for this paper. We start with the language Lk. This is
the set of strings constructed from any k strings in L.

Definition 3: Let L⊆Σ∗ and k ∈ {1, 2, . . .}. We define
the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2...sk for some s1, s2, ..., sk ∈ L}

We next define the notation for the language constructed
from all possible ways to concatenate a string from the first
language, followed by an event from the event set, and a
string from the second language.

Definition 4: Let L1, L2⊆Σ∗ and Σ
′

⊆Σ. We define the
language L1.Σ

′

.L2 to be:
L1.Σ

′

.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈
L2, σ ∈ Σ

′

}

III. FAULT TOLERANT SUPERVISORS

In this section, we will introduce our concept of fault
events and then categorize some common fault scenarios.
We will then develop some properties that will allow us to
determine if a supervisor will still be controllable in these
scenarios. We will assume that all DES are deterministic, and
that we are given plant G = (Y,Σ, δ, yo, Ym) and supervisor
S = (X,Σ, ξ, xo,Xm).

A. Fault Events

In this paper, our approach will be to add a set of
uncontrollable events to our plant model to represent the
possible faults in the system. For example, if we had a sensor
to detect when a train passes, its plant model might originally
contain an event such as trn sen0 indicating a train is present.
We could add a new uncontrollable event, trnf sen0, that
will occur instead if the sensor fails to detect the train. This
will allow us to model how the system will behave after the
occurrence of the fault. Our goal will be to design supervisors
that will still behave correctly even if a fault event occurs,
even though they can’t detect the fault event directly.

We start by defining a group of m ≥ 0 mutually exclusive
sets of fault events. The idea here is to group related faults
into sets such that faults of a given set represent a common
fault condition, while faults of a different set represent a
different fault condition. For example, two sensors in a row
that could each be used to detect the train in time for a given
track segment might be in the same fault set, but a sensor in
a different part of the track would be in a different set.

ΣFi
⊆ Σu, i = 1, ..,m

Definition 5: We define the set of standard fault events,
ΣF , as:

ΣF :=

m

˙⋃

i=1

ΣFi

1604

We note that for m = 0, ΣF = ∅.

The standard fault events are the faults that will be used
to define the various fault scenarios that our supervisors
will need to be able to handle. However, there are two
additional types of faults that we need to define to handle
two special cases. The first type is called unrestricted fault
events, denoted ΣΩF ⊆ Σu. These are faults that a supervisor
can always handle and thus are allowed to occur unrestricted.

The second type is called excluded fault events, denoted
Σ∆F ⊆ Σu. These are faults that can not be handled at all
and thus are essentially ignored in our scenarios. The idea
is that this would allow us to still design a fault tolerant
supervisor for the remaining faults. Typically, most systems
would have neither excluded or unrestricted faults, but we
will include them in our definitions for the systems that do.

For each fault set, ΣFi
(i = 0, ..,m), we also need to

define a matching set of reset events, denoted ΣTi
⊆ Σ.

These events will be explained in Section III-C.

B. Fault Tolerant Consistency

We now present a consistency requirement that our sys-
tems must satisfy.

Definition 6: A system, with plant G = (Y,Σ, δ, yo, Ym),
supervisor S = (X,Σ, ξ, xo,Xm), and fault sets ΣFi

(i =
0, ..,m),Σ∆F , and ΣΩF , is fault tolerant (FT) consistent if:

1) Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2) Σ∆F ,ΣΩF ,ΣFi
(i = 0, ..,m), are pair-wise disjoint.

3) (∀i ∈ 1, ..,m)ΣFi
6= ∅

4) (∀i ∈ 1, ..,m)ΣFi
∩ ΣTi

= ∅
5) Supervisor S is deterministic.
6) (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF))ξ(x, σ) = x

Point (1) says that fault events are uncontrollable since
allowing a supervisor to disable fault events would be
unrealistic. Point (2) requires that the indicated sets of faults
be disjoint since they must each be handled differently. Point
(3) says that fault sets ΣFi

are non-empty. Point (4) says a
fault set must be disjoint from its corresponding set of reset
events.

Points (5) and (6) say that S is deterministic (single initial
state and at most a single transition leaving a given state
for a given event) and that at every state in S, there is a
selfloop for each fault event in the system. This means a
supervisor cannot change state (and thus change enablement
information) based on a fault event. This is a key concept as
it effectively makes fault events unobservable to supervisors.
If S is defined over a subset Σ′ ⊂ Σ instead, we could
equivalently require that Σ′ contain no fault events.

C. Fault Scenarios

In this paper, we will consider four fault scenarios. The
first is the default fault scenario where the supervisor must
be able to handle any non-excluded fault event that occurs.

The second scenario is the N ≥ 0 fault scenario where
the supervisor is only required to handle at most N , non-
excluded fault events and all unrestricted fault events.

The next scenario is the non-repeatable N ≥ 0 fault
scenario where the supervisor is only required to handle at
most N , non-excluded fault events and all unrestricted fault
events, but no more than one fault event from any given ΣFi

(i = 0, ..,m) fault set. This definition allows the designer to
group faults together in fault sets such that a fault occurring
from one set does not affect a supervisors ability to handle
a fault from a different set. Particularly for a situation where
a supervisor could handle only one fault per fault set, this
would allow m faults to occur instead of only one using the
previous scenario.

The last scenario we consider is the resettable fault
scenario. This is designed to capture the situation where at
most one fault event from each ΣFi

(i = 0, ..,m) fault set
can be handled by the supervisor during each pass through
a part of the system, but this ability resets for the next pass.
For this to work, we need to be able to detect when the
current pass has completed and it is safe for another fault
event from the same fault set to occur. We use the fault set’s
corresponding set of reset events to achieve this. The idea
is that once a reset event has occurred, the current pass can
be considered over and it is safe for another fault event to
occur.

D. Fault Tolerant Controllability

The first fault tolerant property that we introduce is
designed to handle the default fault scenario. First, we need
to define the language of excluded faults. This is the set of
all strings that include at least one fault from Σ∆F .

Definition 7: We define the language of excluded faults
as:

L∆F := Σ∗.Σ∆F .Σ∗

Definition 8: A system, with plant G = (Y,Σ, δ, yo, Ym),
supervisor S = (X,Σ, ξ, xo,Xm), and fault sets ΣFi

(i =
0, ..,m) and Σ∆F , is fault tolerant (FT) controllable if it is
FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F) ⇒ sσ ∈ L(S)

The above definition is essentially the standard control-
lability definition, but ignores strings that include excluded
fault events. As the language L(S) ∩L(G) is prefix closed,
prefixes of these strings that do not contain excluded faults
must be checked. This definition is equivalent to blocking all
excluded fault events from occurring in the system behavior
and then checking the standard controllability definition. This
is the most powerful of the fault tolerant definitions as the
supervisor must be able to handle a potentially unlimited
number of faults that can occur in any order and at any
time.

Typically, the set of excluded faults for a given system
is empty. When a system is FT controllable and Σ∆F 6=

1605

∅, we say that it is FT controllable with excluded faults to
emphasize that it is less fault tolerant than if it passed the
definition with Σ∆F = ∅. We will use a similar expression
with the other fault tolerant definitions.

E. N-Fault Tolerant Controllability

The next fault tolerant property that we introduce is
designed to handle the N ≥ 0 fault scenario. First, we need
to define the language of N-fault events. This is the set of
all strings that include at most N faults from fault sets ΣFi

(i = 0, ..,m), including those that contain no such faults.

Definition 9: We define the language of N-fault events as:

LNF := (Σ − ΣF)∗ ∪
N
⋃

k=1

((Σ − ΣF)∗.ΣF .(Σ − ΣF)∗)k

Definition 10: A system, with plant G = (Y,Σ, δ, yo,
Ym), supervisor S = (X,Σ, ξ, xo,Xm), and fault sets
ΣFi

(i = 0, ..,m) and Σ∆F , is N-fault tolerant (N-FT)
controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F) ∧ (s ∈ LNF) ⇒ sσ ∈ L(S)

The above definition is essentially the standard control-
lability definition, but ignores strings that include excluded
fault events or more than N faults from ΣF . This definition
is essentially weaker than the previous one since if we take
N = ∞ we get the FT controllability definition back. If we
set N = 0, we get the controllability definition with all fault
events from ΣF excluded as well.

Typically, the set of unrestricted faults for a given system
is empty. When a system is N-FT controllable and ΣΩF 6= ∅,
we say that it is N-FT controllable with unrestricted faults to
emphasize that it is more fault tolerant than if it passed the
definition with ΣΩF = ∅. We will use a similar expression
with the other fault tolerant definitions.

F. Non-repeatable N-Fault Tolerant Controllability

The next fault tolerant property that we introduce is
designed to handle the non-repeatable N ≥ 0 fault scenario.
First, we need to define the language of non-repeatable fault
events. This is the set of all strings that include two or more
faults from a single fault set ΣFi

(i = 0, ..,m).

Definition 11: We define the language of non-repeatable
fault events as:

LNRF :=
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

Definition 12: A system, with plant G = (Y,Σ, δ, yo,
Ym), supervisor S = (X,Σ, ξ, xo,Xm), and fault sets ΣFi

(i = 0, ..,m) and Σ∆F , is non-repeatable N-fault tolerant
(NR-FT) controllable, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)(sσ ∈ L(G))∧
(s /∈ (L∆F ∪ LNRF)) ∧ (s ∈ LNF) ⇒ sσ ∈ L(S)

The above definition is essentially the standard control-
lability definition, but ignores strings that include excluded

fault events, more than N faults from ΣF , or strings that
include two or more faults from a single fault set.

G. Resettable Fault Tolerant Controllability

The next fault tolerant property that we introduce is
designed to handle the resettable fault scenario. First, we
need to define the language of resettable fault events. This is
the set of all strings where two faults from the same fault set
ΣFi

occur in a row without an event from the corresponding
set of reset events in between.

Definition 13: We define the language of resettable fault
events as:

LTF :=

m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗)

Definition 14: A system, with plant G = (Y,Σ, δ, yo,
Ym), supervisor S = (X,Σ, ξ, xo,Xm), fault and reset sets
ΣFi

,ΣTi
(i = 0, ..,m) and fault set Σ∆F , is resettable fault

tolerant (T-FT) controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF) ⇒ sσ ∈ L(S)

The above definition is essentially the standard control-
lability definition, but ignores strings that include excluded
fault events and strings where we get two fault events from
the same fault set in a row without an event from the
corresponding set of reset events in between.

IV. ALGORITHMS

In this section, we will present algorithms to verify the
four fault tolerant controllability properties that we defined
in Section III. We will not present an algorithm for the FT
consistency property as its individual points can easily be
checked by adapting various standard algorithms. We assume
that our system consists of a plant G = (Y,Σ, δ, yo, Ym),
supervisor S = (X,Σ, η, xo,Xm), and fault and reset sets
ΣFi

,ΣTi
(i = 0, ..,m),Σ∆F , and ΣΩF .

Our approach will be to construct plant components to
synchronize with our plant G such that the new DES will re-
strict the occurrence of faults to match the given fault tolerant
controllability definition. We can then synchronize the plant
components together and then use a standard controllability
algorithm to check the property. This approach allows us to
automatically take advantage of existing scalability methods
such as incremental [8], and binary decision diagram-based
(BDD) algorithms [9], [10], [11], [12], [13], [14].

As the controllability and synchronous product have al-
ready been studied in the literature [15], we will assume that
they are given to us. We will use the standard || to indicate
the synchronous product operation, and vCont(Plant,Sup) to
indicate controllability verification. Function vCont returns
true or false to indicate whether the verification passed or
failed, and the result will be stored in the Boolean variable
pass.

1606

A. Verify Fault Tolerant Controllability

Algorithm 1 shows how to verify fault tolerant controlla-
bility for G and S. Line 1 constructs the excluded fault plant,
G∆F, using Algorithm 2. Line 2 constructs the new plant
G

′. Line 3 checks that supervisor S is controllable for plant
G

′. As G∆F is defined over event set Σ∆F and contains
only a marked initial state and no transitions, synchronizing
it with G creates the original behavior with all excluded
fault events removed. Checking that S is controllable for
the resulting behavior will have the effect of verifying fault
tolerant controllability.

Algorithm 1 Verify fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F);
2: G

′ ← G||G∆F;
3: pass ← vCont(G′,S);
4: return pass;

Algorithm 2 constructs G∆F for fault set Σ∆F . The
algorithm constructs a new DES with event set Σ∆F , but
no transitions. It also contains only its initial state, which
is marked. This will have the effect of removing any Σ∆F

transitions from any DES it is synchronized with.

Please note that all of the constructed DES in these
algorithms always have all their states marked since their
goal is to modify the closed behavior by restricting the
occurrence of fault events as needed, not to modify the
marked behavior of the system directly. Also, when we define
our transition functions such as δ1, we will define them as a
subset of Y × Σ × Y for convenience.

Algorithm 2 construct-G∆F(Σ∆F)

1: Y1 ← {y0};
2: Ym,1 ← Y1;
3: δ1 ← ∅;
4: return (Y1,Σ∆F , δ1, yo, Ym,1);

Figure 1 shows an example G∆F. In the DES diagrams,
circles represent unmarked states, while filled circles repre-
sent marked states. Two concentric, unfilled circles represent
the initial state. If the initial state is also marked, the inner
circle is filled. Uncontrollable event labels are preceded by
an “!”. Note that if a transition is labeled by an event set
such as in Figure 2, this is a shorthand for a transition for
each event in the event set.

B. Verify N-Fault Tolerant Controllability

Algorithm 3 shows how to verify N-fault tolerant con-
trollability for G, and S. Line 1 constructs the excluded
fault plant, G∆F. Line 2 constructs the N-fault plant, GNF,
using Algorithm 4. Line 3 constructs the new plant G

′.
Line 4 checks that supervisor S is controllable for plant G

′.
As G∆F removes any excluded fault transitions and GNF

prevents strings from containing more than N fault events,

0

Fig. 1. Excluded Fault Plant G∆F

!∑F ∑F ∑F

0 1 2 N

! !

Fig. 2. N-Fault Plant GNF, N = 3

!∑F,i

00 1

Fig. 3. Non-Repeatable N-Fault
Plant GF,i

!∑F,i

!∑T,i

!∑T,i

0 1

Fig. 4. Resettable Fault Plant
GTF,i

checking that S is controllable for the resulting behavior will
have the effect of verifying N-fault tolerant controllability.

Algorithm 3 Verify N-fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F);
2: GNF ← construct-GNF(N,ΣF);
3: G

′ ← G||G∆F||GNF;
4: pass ← vCont(G′,S);
5: return pass;

Algorithm 4 constructs GNF for max N faults and
standard fault set ΣF . The algorithm constructs a new DES
with event set ΣF and N + 1 states, each state marked. It
then creates a transition for each fault event in ΣF from
state yi to state yi+1. As there are no transitions at state
yN , synchronizing with this DES will allow at most N
faults to occur, and then remove any additional standard fault
transitions. Figure 2 shows an example GNF for N = 3.

Algorithm 4 construct-GNF(N,ΣF)

1: Y1 ← {y0, y1,, yN};
2: Ym,1 ← Y1;
3: δ1 ← ∅;
4: for i = 0,, N − 1;
5: for σ ∈ ΣF ;
6: δ1 ← δ1 ∪ {(yi, σ, yi+1)};
7: end for;
8: end for;
9: return (Y1,ΣF , δ1, yo, Ym,1);

C. Verify Non-repeatable N-Fault Tolerant Controllability

Algorithm 5 shows how to verify non-repeatable N-fault
tolerant controllability for G and S. Line 1 constructs the
excluded fault plant, G∆F. Line 2 constructs the N-fault
plant, GNF. For i ∈ {1, . . . ,m}, Line 4 constructs the non-
repeatable N-fault plant, GF,i, using Algorithm 6. Line 6
constructs the new plant G

′. Line 7 checks that supervisor S

is controllable for plant G
′. As G∆F removes any excluded

fault transitions, GNF prevents strings from containing more
than N fault events, and each GF,i allows at most one fault
from their fault set to occur, checking that S is controllable
for the resulting behavior will have the effect of verifying

1607

non-repeatable N-fault tolerant controllability. We note that
if m ≤ N , we can safely skip Line 2 as Lines 3-5 will ensure
at most m faults can occur.

Algorithm 5 Verify non-repeatable N-fault tolerant control-
lability

1: G∆F ← construct-G∆F(Σ∆F);
2: GNF ← construct-GNF(N,ΣF);
3: for i = 1, . . . ,m;
4: GF,i ← construct-GF,i(ΣFi

, i);
5: end for;
6: G

′ ← G||G∆F||GNF||GF,1||.....||GF,m;
7: pass ← vCont(G′,S);
8: return pass;

Algorithm 6 constructs GF,i for i ∈ {1, . . . ,m}, and fault
set ΣFi

. The algorithm constructs a new DES with event
set ΣFi

and two states, each state marked. It then creates a
transition for each fault event in ΣFi

from the initial state to
state y1. As there are no transitions at state y1, synchronizing
with this DES will allow at most 1 fault event from the fault
set to occur, and then remove any additional fault transitions
from the fault set. Figure 3 shows an example GF,i.

Algorithm 6 construct-GF,i(ΣFi
, i)

1: Yi ← {y0, y1};
2: Ym,i ← Yi;
3: δi ← ∅;
4: for σ ∈ ΣFi

;
5: δi ← δi ∪ {(y0, σ, y1)};
6: end for;
7: return (Yi,ΣFi

, δi, yo, Ym,i);

D. Verify Resettable Fault Tolerant Controllability

Algorithm 7 shows how to verify resettable fault tolerant
controllability for G and S. Line 1 constructs the excluded
fault plant. For i ∈ {1, . . . ,m}, Line 3 constructs the
resettable fault plant GTF,i, using Algorithm 8. Line 5
constructs the new plant G

′. Line 6 checks that supervisor S

is controllable for plant G
′. As G∆F removes any excluded

fault transitions, and each GTF,i only allows strings where
fault events from ΣFi

are always separated by at least
one event from the corresponding set of reset events, ΣTi

,
checking that S is controllable for the resulting behavior
will have the effect of verifying resettable fault tolerant
controllability.

Algorithm 7 Verify resettable fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F);
2: for i = 1,...,m;
3: GTF,i ← construct-GTF,i(ΣFi

,ΣTi
, i);

4: end for;
5: G

′

← G||G∆F||GTF,1||.....||GTF,m;
6: pass ← vCont(G′,S);
7: return pass;

Algorithm 8 constructs GTF,i for i ∈ {1, . . . ,m}, fault
set ΣFi

, and the set of reset events, ΣTi
. The algorithm

constructs a new DES with event set ΣFi
∪ ΣTi

and two
states, each state marked. It then creates a transition for each
fault event in ΣFi

from the initial state to state y1. Next, it
creates a transition for each reset event in ΣTi

from state y1

to the initial state, as well as a selfloop at the initial state.
Figure 4 shows an example GTF,i. Essentially, reset events
can occur unrestricted, but once a fault event occurs from
ΣFi

, a second event from the set is blocked until a reset
event from ΣTi

occurs. Synchronizing with this DES will
have the effect of restricting the plant’s fault behavior to
that which the supervisor is required to handle.

Algorithm 8 construct-GTF,i(ΣFi
,ΣTi

, i)

1: Yi ← {y0, y1};
2: Ym,i ← Yi;
3: δi ← ∅;
4: for σ ∈ ΣFi

;
5: δi ← δi ∪ {(y0, σ, y1)};
6: end for;
7: for σ ∈ ΣTi

;
8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)};
9: end for;

10: return (Yi,ΣFi
∪ ΣTi

, δi, yo, Ym,i);

V. MANUFACTURING TESTBED EXAMPLE

This example is based on the manufacturing testbed from
Leduc [16]. The testbed was designed to simulate a man-
ufacturing workcell, in particular problems of routing and
collision.

In this paper, we will focus on only a single track loop,
shown in Figure 5. The loop contains 8 sensors and two
trains (train1, train2). Train1 starts between sensors 9 and
10, while train 2 starts between sensors 15 and 16. Both
trains can only traverse the tracks in a clockwise direction.

A. Plant Models

The plant model for the testbed consists of the following
basic elements: sensors, trains and the relationship between
sensors and trains.

1) Sensor Models: The sensor models indicate when a
given train is present and when no trains are present. Also,
they state that only one train can activate a given sensor at

1608

S9 S10

S15

S11

S13

S12

S16

S14

Fig. 5. Single Train Loop

a time. Figure 8 shows the original sensor model, for sensor
J ∈ {9, . . . , 16}.

To add faults to the model, we assumed that sensors 9
10, and 16 could have an intermittent fault; sometimes the
sensor would detect the presence of a train, sometimes it
would fail to do so. We modelled this by adding to all the
plant models a new event t1F atJ, J ∈ {9, 10, 16}, for each
t1 atJ event. For each t1 atJ transition in a plant model, we
added an identical t1F atJ transition. The idea is we can now
get the original detection event or the new fault one instead.
We made similar changes for train2. Figure 9 shows the new
sensor models with the added fault events.

For this example, Σ∆F = ΣΩF = ∅. We also set m =
2, ΣF1

= {t1F at9, t1F at10}, ΣF2
= {t1F at16}, ΣT1

=
{t1 at11}, and ΣT2

= {t1 at14}.

2) Sensor Interdependencies: This series of models show
the sensor’s interdependencies with respect to a given train.
With respect to the starting position of a particular train
(represented by the initial state), sensors can only be reached
in a particular order, dictated by their physical location on the
track. This is shown in Figures 6 and 7. Both DES already
show the added fault events.

f�������

f������

f�������

f��������

f�������

f������	

f������

f��������

f�������f�������

f������

���

�

�

	

�

Fig. 6. Sensor Interdependencies
For Train 1

f�������

f������

f�������

f������	

f�������

f������

f�������

f�������

f�������

f������

f�������

�

��

� 	

� �

�

Fig. 7. Sensor Interdependencies
For Train 2

3) Train Models: The train models are shown in Figure
10 for trainK (K = 1, 2). TrainK can only move when its
enablement event, en trainK, occurs, and then it can move
at most a single unit of distance (event umv trainK), before
another en trainK must occur. This allows a supervisor to
precisely control the movement of the train by enabling and
disabling event en trainK as needed.

4) Relationship Between Sensors and Trains Models:
Figure 11 shows the relationship between trainK’s (K =

_������

_������

_������
	 �

Fig. 8. Original Sensor Model

_������

_������

_���	����

_���	����

_
�����
� �

Fig. 9. Sensors 9, 10, and 16 with
Faults

���������

t
���������
 �

Fig. 10. Train Models

���������

t
���������

t�����65

t������

t�����66

t�����6�

t�����6�

t�����6�

t�����6�

t�����6�

t
���������

�5 6

Fig. 11. Sensors and Trains

v�������	
�

v������

v������5�

v������54

v�����54

v�����

v�����55

v�����5e

v�����5�

v�����5�

v�����5�

v�����5�

v�������	
�

�
����	
�

4
5 e

Fig. 12. Sensors and Trains with Faults

1, 2) movement, and a sensor detecting the train. It captures
the idea that a train can reach at most one sensor during a
unit movement, and no sensors if it is disabled. Figure 12
shows the model with fault events added.

B. Modular Supervisor

After the plant models were developed, a single supervisor
was designed to prevent collisions in the track section with
sensors 11 and 13. The idea is to ensure that only one train
uses this track section at a time. We will first introduce
the original collision protection supervisor that was designed
with the assumption of no faults, and then we will introduce
a fault tolerant supervisor.

1) Collision Protection Supervisor: Figure 13 shows the
collision protection supervisor (CPS) for the track section
containing sensors 11 and 13. Once a train has reached sensor
11, the other train is stopped at sensor 10 until the first train
reaches sensor 15, which indicates it has left the protected
area. The stopped train is then allowed to continue.

It’s easy to see that this supervisor will fail all four fault
tolerant controllability definitions as it relies solely on sensor
10 to detect when a second train arrives. If sensor 10 fails,
the train continues and could collide with the first train.

2) Collision Protection Fault Tolerant Supervisor: We
next modified the supervisor in Figure 13 to make it more
fault tolerant. The result is shown in Figure 14. We have
added at state 1 a check for either sensor 9 or sensor 10.

1609

_�������

_�������

_�������

_��������	��
��	�

�	��
��	�

_�������

_�������

_�������

�	��
��	�

_�������

�	��
��	�

_�������

_�������

�	��
��	�

�	��
��	�
�

�

�

Fig. 13. CPS Supervisor

That way if sensor 10 fails but sensor 9 doesn’t, we can still
stop the train at sensor 9 and avoid the collision.

Using the DES research software tool, DESpot [17], we
can verify that the supervisor is not fault tolerant controllable
for the plant. The reason is that if both sensors 9 and 10
fail, the train will not stop and a collision could occur.
However, the system can be show to be N-fault tolerant
controllable for N = 1 (sensor 10 fails but not sensor 9),
non-repeatable N-fault tolerant controllable for N = 2 (a
fault from ΣF2

doesn’t affect anything), and resettable fault
tolerant controllable (as long as both sensors 9 and 10 don’t
fail in a given pass, all is well).

_�������

_�������

�	��
��	�

_������

�	��
��	�

_������

_�������

_�������

�	��
��	�

_������

_�������

_������

_�������

_������

�	��
��	�

�	��
��	�_������

_������

�	��
��	�

_������

�

�

�

�

Fig. 14. CPS With Redundancy for Faults

VI. CONCLUSIONS

In this paper we investigate the problem of fault tolerance
in the framework of discrete-event system (DES). We in-
troduce a set of four fault tolerant controllability definitions
designed to capture different types of fault scenarios and to
ensure that our system remains controllable in each scenario.
We then present a set of algorithms to verify the properties.
As these algorithms involve adding new plant components
and then checking standard controllability, they can instantly

take advantage of existing controllability algorithms, soft-
ware, and scalability approaches such as incremental veri-
fication and binary decision diagrams (BDD). We finished
with a small example that illustrated how the theory can be
applied.

REFERENCES

[1] P. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete-event processes,” SIAM J. Control Optim, vol. 25, no. 1, pp.
206–230, 1987.

[2] W. M. Wonham and P. Ramadge, “On the supremal controllable
sublanguage of a given language,” SIAM J. Control Optim, vol. 25,
no. 3, pp. 637–659, May 1987.

[3] W. M. Wonham, Supervisory Control of Discrete-Event Systems,
Department of Electrical and Computer Engineering, University of
Toronto, July 2014, Monograph and TCT software can be downloaded
at http://www.control.toronto.edu/DES/.

[4] F. Lin, “Robust and adaptive supervisory control of discrete event
systems,” IEEE Trans. Automatic Control, vol. 38, no. 12, pp. 1848–
1852, Dec. 1993.

[5] S.-J. Park and J.-T. Lim, “Fault-tolerant robust supervisor for discrete
event systems with model uncertainty and its application to a work-
cell,” IEEE Transactions on Robotics and Automation, vol. 15, no. 2,
pp. 386–391, 1999.

[6] A. Paoli, M. Sartini, and S. Lafortune, “Active fault tolerant control of
discrete event systems using online diagnostics,” Automatica, vol. 47,
no. 4, pp. 639–649, 2011.

[7] Q. Wen, R. Kumar, J. Huang, and H. Liu, “A framework for fault-
tolerant control of discrete event systems,” IEEE Trans. on Automatic
Control, vol. 53, pp. 1839–1849, 2008.

[8] B. A. Brandin, R. Malik, and P. Malik, “Incremental verification
and synthesis of discrete-event systems guided by counter-examples,”
IEEE Trans. on Control Systems Technology, vol. 12, no. 3, pp. 387–
401, May 2004.

[9] A. E. Bryant, “Symbolic boolean manipulation with ordered binary-
decision diagrams,” ACM Computing Surveys, vol. 24, pp. 293–318,
1992.

[10] Z. Zhang, “Smart TCT: an efficient algorithm for supervisory control
design.” Master’s thesis, Dept. of Electrical and Computer Engineer-
ing, University of Toronto, Toronto, Ont, 2001.

[11] C. Ma, “Nonblocking supervisory control of state tree structures,”
Ph.D. dissertation, Department of Electrical and Computer Engineer-
ing, University of Toronto, 2004.

[12] A. Vahidi, B. Lennartson, and M. Fabian, “Efficient analysis of large
discrete-event systems with binary decision diagrams,” in Proc. of the
44th IEEE Conf. Decision Contr. and and 2005 European Contr. Conf.,
Seville, Spain, 2005, pp. 2751–2756.

[13] R. Song, “Symbolic synthesis and verification of hierarchical interface-
based supervisory control,” Master’s thesis, Dept. of Comput. and
Softw., McMaster University, Hamilton, Ont, 2006.

[14] Y. Wang, “Sampled-data supervisory control,” Master’s thesis, Dept. of
Computing and Software, McMaster University, Hamilton, Ont, 2009.

[15] K. Rudie, “Software for the control of discrete-event systems: A
complexity study,” Master’s thesis, Dept. of Electrical and Computer
Engineering, University of Toronto, Toronto, Ont, 1988.

[16] R. Leduc, “PLC implementation of a DES supervisor for a manufac-
turing testbed: An implementation perspective,” Master’s thesis, Dept.
of Elec and Comp Eng, University of Toronto, Toronto, Ont, 1996.

[17] DESpot, “www.cas.mcmaster.ca/˜leduc/DESpot.html.
The official website for the DESpot project,” 2013.

1610

