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Abstract— Hierarchical Interface-based Supervisory Control
(HISC) decomposes a discrete-event system (DES) into a
high-level subsystem which communicates with n ≥ 1 low-
level subsystems, through separate interfaces which restrict
the interaction of the subsystems. It provides a set of local
conditions that can be used to verify global conditions such as
nonblocking and controllability. As each clause of the definition
can be verified using a single subsystem, the complete system
model never needs to be stored in memory, offering potentially
significant savings in computational resources.

Currently, a designer must create the supervisors himself
and then verify that they satisfy the HISC conditions. In this
paper, we develop a synthesis method that can take advantage
of the HISC structure. We replace the supervisor for each level
by a corresponding specification DES. We then do a per level
synthesis to construct for each level a maximally permissive
supervisor that satisfies the corresponding HISC conditions.

We define a set of language based fixpoint operators and show
that they compute the required level-wise supremal languages.
We then discuss the complexity of the algorithms that we have
constructed that implement the fixpoint operators and show
that they potentially offer significant improvement over the
monolithic approach.

A large manufacturing system example (estimated worst case
statespace on the order of 1022) extended from the AIP example
is discussed. A software tool for synthesis and verification of
HISC systems using our approach was also developed.

I. INTRODUCTION

In the area of Discrete-Event Systems (DES), two common
tasks are to verify that a composite system, based on a
Cartesian product of subsystems, is (i) nonblocking and (ii)
controllable. The main obstacle to performing these tasks is
the combinatorial explosion of the product statespace.

The Hierarchical Interface-based Supervisory Control
(HISC) framework was proposed by Leduc et al. ([7], [8],
[9], [10]) to alleviate the state explosion problem. The HISC
approach decomposes a system into a high-level subsystem
which communicates with n ≥ 1 parallel low-level subsys-
tems through separate interfaces that restrict the interaction
of the subsystems. It provides a set of local conditions that
can be used to verify global conditions such as nonblocking
and controllability. As each clause of the definition can be
verified using a single subsystem, the complete system model
never needs to be stored in memory, offering potentially
significant savings in computational resources.

Currently, a designer must create the supervisors for a
HISC system himself, and then verify that they satisfy the
HISC conditions. If they do not, he must modify them until
they do satisfy the conditions. For a complex system, it

may be very non obvious how to achieve this. Also, the
resulting supervisors may be more restrictive than they need
to be. In this paper, we develop a synthesis method that
can take advantage of the HISC structure. We replace the
supervisor for each level by a corresponding specification
DES. We then do a per level synthesis to construct for
each level a maximally permissive supervisor that satisfies
the corresponding HISC conditions. As the synthesis will be
done on a per level basis, the complete system model never
needs to be constructed. We thus expect to see similar savings
in computation as in the HISC verification method. These
savings should be even more pronounced as synthesis is an
iterative process, thus typically requiring more computation.

There has been some very promising recent work by
Pena et al. [11], Flordal et al. [4], and Hill et al. [5] in
using different forms of equivalence abstractions to verify
flat systems in a modular fashion. These methods promise to
increase the size of unstructured systems that we can verify.
As individual levels (components) of an HISC system are
treated as flat systems, these new results have the potential of
being able to increase the individual component size that we
can handle if they can be adapted to verify the per component
HISC conditions.

In this paper, we first discuss DES preliminaries, and then
introduce the HISC approach in Section III. As the HISC
method has already been explained and justified in detail in
[8],[9], and [10], we will only discuss it briefly here. For a
small illustrative HISC example, please see [8].

For the remainder of the paper we will be presenting
our new results from [3], beginning with an introduction
to our HISC synthesis method. We will then define a set
of language based fixpoint operators and show that they
compute the required level-wise supremal languages. We will
then show the equivalence between removing strings that fail
the HISC conditions to removing DES states, as done in our
algorithms.

We will then discuss the complexity of our algorithms
and show that they potentially offer significant improvement
over the monolithic approach. We close by discussing a large
manufacturing system example which was extended from the
AIP example in [7], [9].

II. DES PRELIMINARIES

Supervisory control theory provides a framework for the
control of discrete-event systems (DES), systems that are
discrete in space and time. For a detailed exposition of DES,



see [14]. Below, we present a summary of the terminology
that we use in this paper.

Let Σ be a finite set of distinct symbols (events), and Σ∗

be the set of all finite sequences of events plus ε, the empty
string. For strings s, t ∈ Σ∗, we say t is a prefix of s (written
t ≤ s) if s = tu, for some u ∈ Σ∗. We also say that t can
be extended to s. We can now define the extension operator
for language L ⊆ Σ∗.

Definition 1: For language L, we define the function
ExtL : Pwr(Σ∗) → Pwr(Σ∗), for arbitrary K ∈ Pwr(Σ∗)
as follows:

ExtL(K) := {t ∈ L| s ≤ t for some s ∈ K}
In essence, ExtL(K) is the set of all strings in L that have
prefixes in K. If we have K ⊆ L, we would then have
K ⊆ ExtL(K) as s ≤ s.

The prefix closure of language L, denoted L, is defined
as L = {t ∈ Σ∗ | t ≤ s for some s ∈ L}. We say that L
is closed if L = L. Let Pwr(Σ) denote the power set of Σ
(i.e. all possible subsets of Σ). For language L, the eligibility
operator EligL : Σ∗ → Pwr(Σ) is given by EligL(s) := {σ ∈
Σ |sσ ∈ L} for s ∈ Σ∗.

Let X be an arbitrary set. We say a function f : X → X
is monotone if for all x, x′ in X , x ≤ x′ ⇒ f(x) ≤ f(x′).

We say an element x ∈ X is a fixpoint of f if f(x) = x.
Furthermore, we say x is the greatest fixpoint of f if for all
x′ in X , f(x′) = x′ ⇒ x′ ≤ x.

We will also use the notation f i(x), i ∈ {0, 1, 2, . . .}, to
mean i applications of f in a row with f0(x) := x. i.e.
f1(x) = f(x), f2(x) = f(f(x)) and so on.

The Nerode equivalence relation over Σ∗ mod L is defined
for s, t ∈ Σ∗ as: s ≡L t iff (∀u ∈ Σ∗)su ∈ L ⇔ tu ∈ L. We
say L is regular if ≡L has a finite number of equivalence
classes.

A DES automaton is represented as a 5-tuple G =
(Y, Σ, δ, yo, Ym) where Y is the state set, Σ is the event set,
the partial function δ : Y × Σ → Y is the transition function,
yo is the initial state, and Ym is the set of marker states. The
function δ is extended to δ : Y ×Σ∗ → Y in the natural way.
The notation δ(y, s)! means that δ is defined for s ∈ Σ∗ at
state y. For DES G, the language generated is denoted by
L(G), and is defined to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G, is defined as Lm(G) := {s ∈
L(G)| δ(yo, s) ∈ Ym}.

The reachable state subset of DES G, denoted Yr, is: Yr :=
{y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}. A DES G is reachable
if Yr = Y . We will always assume that a DES has a finite
state and event set, and is deterministic.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1, and L2 ⊆ Σ∗2. For i = 1, 2,
s ∈ Σ∗, and σ ∈ Σ, we define the natural projection Pi :
Σ∗ → Σ∗i according to:

Pi(ε) = ε, Pi(σ) =
{

ε if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The synchronous product of languages L1 and L2, denoted

L1||L2, is defined to be:

L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2)

where P−1
i : Pwr(Σ∗i ) → Pwr(Σ∗) is the inverse image

function of Pi.
The synchronous product of DES Gi =

(Yi, Σi, δi, yoi
, Ymi

) (i = 1, 2), denoted G1||G2, is defined
to be a reachable DES G with event set Σ = Σ1 ∪ Σ2 and
properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2)

For our purposes, we will assume that G1||G2 is imple-
mented by first adding selfloops to all states of Gi (i = 1, 2)
for events in Σ−Σi, and then constructing the cross product
of the two automata.

A DES G is said to be nonblocking if Lm(G) = L(G).
We say that DES G represents a language K ⊆ Σ∗ if G is
nonblocking and Lm(G) = K. We thus have L(G) = K.

III. HIERARCHICAL INTERFACE BASED SUPERVISORY
CONTROL

A HISC system currently is a two-level system which
includes one high-level subsystem and n ≥ 1 low-level
subsystems. The high-level subsystem communicates with
each low-level subsystem through a separate interface.

In HISC there is a master-slave relationship. A high-
level subsystem sends a command to a particular low-level
subsystem, which then performs the indicated task and re-
turns an answer. Fig 1 shows conceptually the structure and
information flow of the system. This style of interaction
is enforced by an interface that mediates communication
between the two subsystems.

High-Level

SRnSA1 SAn

SR1

SR1

SRnSA1
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Fig. 1. Parallel Interface Block Diagram.

In order to restrict information flow and decouple the
subsystems, the system alphabet is partitioned into pairwise
disjoint alphabets

Σ := ΣH ∪̇
⋃̇

j=1,...,n

[ΣLj ∪̇ΣRj ∪̇ΣAj ] (1)

where we use “∪̇” to represent disjoint union.



The events in ΣH are called high-level events and the
events in ΣLj (j = {1, . . . , n}) are low-level events as these
events appear only in the high-level and low-level subsystem
models, GH and GLj , respectively. We define our flat system
to be G = GH ||GI1 ||GL1 || . . . ||GIn

||GLn
. By flat system

we mean the equivalent DES if we ignored the interface
structure. For the remainder of this paper, the index j has
range {1, . . . , n}.

The jth interface, GIj
, is defined over the events that

are common to both levels of the hierarchy, ΣRj ∪̇ΣAj . The
events in ΣRj

, called request events, represent commands
sent from the high-level subsystem to the jth low-level sub-
system. The events in ΣAj are answer events and represent
the low-level subsystem’s responses to the request events.
Request and answer events are collectively known as the set
of interface events, defined as ΣI := ∪̇k∈{1,...,n}[ΣRk

∪̇ΣAk
].

In order to enforce the serialization of requests and an-
swers, we restrict the interfaces to the subclass of command-
pair interfaces defined below. We present below a state based
interface definition as it is more straightforward to verify.
We show in [3] that it is equivalent to the language based
definition given in [8], [9], [10].

Definition 2: The jth interface DES GIj = (Xj ,
ΣRj

∪̇ΣAj , ξj , xoj , Xmj ), with Xrch ⊆ Xj its set of reach-
able states and Xrm ⊆ Xmj its set of reachable marked
states, is a command-pair interface if:

1) xoj ∈ Xrm

2) (∀x ∈ Xrm)(∀σ ∈ ΣRj ∪̇ΣAj ) ξj(x, σ)! ⇒ σ ∈
ΣRj ∧ ξj(x, σ) ∈ Xrch −Xrm

3) (∀x ∈ Xrch − Xrm)(∀σ ∈ ΣRj
∪̇ΣAj ) ξj(x, σ)! ⇒

σ ∈ ΣAj ∧ ξj(x, σ) ∈ Xrm

To simplify notation in our exposition, we bring in the
following event sets, natural projections, and languages.

ΣIj := ΣRj ∪ΣAj , PIj : Σ∗ → Σ∗Ij

ΣILj := ΣLj ∪ΣIj , PILj : Σ∗ → Σ∗ILj

ΣIH := ΣH ∪
⋃

k∈{1,...,n}
ΣIk

PIH : Σ∗ → Σ∗IH

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj )), Lmj := P−1
ILj

(Lm(GLj )) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj )), Imj := P−1
Ij

(Lm(GIj )) ⊆ Σ∗

I := ∩k∈{1,...,n}Ik, Im := ∩k∈{1,...,n}Imk

We now present the properties that the system must satisfy
to ensure that it interacts with the interfaces correctly. The
point 5 in the definition below is actually slightly different
than the one given in [7], [8], [9], [10]. We use it since it
makes the synthesis definitions clearer. We show in [3] that
our new definition is equivalent.

Definition 3: The nth degree (n ≥ 1) parallel interface
system composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn ,
is interface consistent with respect to the alphabet partition
given by (1), if for all j ∈ {1, . . . , n}, the following
conditions are satisfied:

Multi-level Properties
1) The event set of GH is ΣIH , and the event set of GLj

is ΣILj
.

2) GIj
is a command-pair interface.

High-Level Property
3) (∀s ∈ H ∩ I) EligIj

(s) ∩ ΣAj ⊆ EligH(s)
Low-Level Properties

4) (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

5) (∀s ∈ Lj ∩ Ij)(∀ρ ∈ ΣRj )(∀α ∈ ΣAj )
sρα ∈ Ij ⇒ (∃l ∈ Σ∗Lj

) sρlα ∈ Lj ∩ Ij

6) (∀s ∈ Lj ∩ Ij)
s ∈ Imj ⇒ (∃l ∈ Σ∗Lj

) sl ∈ Lmj ∩ Imj .

A. Local Conditions for Global Nonblocking of the System

We now provide the conditions that the subsystems and
their interface(s) must satisfy in addition to the interface
consistency properties, if the system G is to be nonblocking.

Definition 4: The nth degree (n ≥ 1) parallel interface
system composed of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn , is
said to be level-wise nonblocking if the following conditions
are satisfied:

(I) Hm ∩ Im = H ∩ I
(II) (∀j ∈ {1, . . . , n}) Lmj ∩ Imj = Lj ∩ Ij

Theorem 1 (from [9]): If the nth degree (n ≥ 1)
parallel interface system composed of DES GH ,GI1 ,
GL1 , . . . ,GIn ,GLn , is level-wise nonblocking and in-
terface consistent with respect to the alphabet partition
given by (1), then Lm(G) = L(G), where G =
GH ||GI1 ||GL1 || . . . ||GIn ||GLn .

B. Local Conditions for Global Controllability of the System

For controllability, we need to split the subsystems into
their plant and supervisor components. To do this, we define
the high-level plant to be Gp

H , and the high-level supervisor
to be SH (both defined over event set ΣIH ). Similarly, the
jth low-level plant and supervisor are Gp

Lj
and SLj (defined

over ΣILj ). The high-level subsystem and the jth low-level
subsystem are then GH := Gp

H ||SH and GLj := Gp
Lj
||SLj ,

respectively.
We can now define our flat supervisor and plant as well

as some useful languages as follows:

Plant := Gp
H ||Gp

L1
|| . . . ||Gp

Ln

Sup := SH ||SL1 || . . . ||SLn ||GI1 || . . . ||GIn

Hp := P−1
IH L(Gp

H), SH := P−1
IH L(SH),⊆ Σ∗

Lp
j := P−1

ILj
L(Gp

Lj
), SLj := P−1

ILj
L(SLj ),⊆ Σ∗

For the controllability requirements at each level, we adopt
the standard partition Σ = Σu ∪̇Σc, splitting our alphabet
into uncontrollable and controllable events. Note that this
partition may, in general, be independent of the partition
given by (1). In fact, Point 3 of Defn. 3 allows answer
events to be controllable at the low-level, but forces high-
level supervisors to treat them like uncontrollable events.



Point 4 produces a similar result for request events and low-
level supervisors.

Definition 5: The nth degree (n ≥ 1) parallel
interface system composed of DES Gp

H , Gp
L1

, . . . ,
Gp

Ln
, SH , SL1 , . . . ,SLn

, GI1 , . . . ,GIn
, is level-wise con-

trollable with respect to the alphabet partition given by (1),
if for all j ∈ {1, . . . , n} the following conditions hold:

(I) The alphabet of Gp
H and SH is ΣIH , the alphabet of

Gp
Lj

and SLj
is ΣILj

, and the alphabet of GIj
is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj

∩ Ij)

EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s)

(III) (∀s ∈ Hp ∩ I ∩ SH)

EligHp∩I(s) ∩ Σu ⊆ EligSH
(s)

Theorem 2 (from [9]): If the nth degree (n ≥ 1) paral-
lel interface system composed of plant components Gp

H ,
Gp

L1
, . . . ,Gp

Ln
, supervisors SH , SL1 , . . . ,SLn , and inter-

faces GI1 , . . . ,GIn
, is level-wise controllable with re-

spect to the alphabet partition given by (1), then (∀s ∈
L(Plant) ∩ L(Sup))

EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

IV. HISC SYNTHESIS METHOD

In Section III, we describe a system composed
of plant DES Gp

H , Gp
L1

, . . . , Gp
Ln

, supervisor DES
SH , SL1 , . . . ,SLn , and interface DES GI1 , . . . ,GIn as a
nth degree interface system. When we specify a nth degree
interface system and give supervisors (as opposed to spec-
ifications), we will refer to such a system as a nth degree
supervisor interface system.

For this system, we showed how the properties of in-
terface consistency, level-wise nonblocking, and level-wise
controllable could be used to verify that the flat system is
nonblocking, and that the flat supervisor is controllable for
the flat plant. However, if the system fails one of these
properties, we need a way to automatically modify the
system to correct this. We need a synthesis method that can
take advantage of the HISC structure and thus provide a
similar level of scalability.

A. Synthesis Setting

For synthesis, we will replace supervisor SH by specifi-
cation DES EH (defined over ΣIH ), and we will replace
supervisor SLj by specification DES ELj (defined over
ΣILj ). We thus get the system illustrated in Fig. 2. We will
refer to such a system as a nth degree specification interface
system.

As a starting point for synthesis, we need to make sure
that our specification interface system meets certain basic
requirements. These are portions of the HISC conditions that
we will not be able to correct for as part of our synthesis
procedure.

Definition 6: The nth degree specification interface sys-
tem composed of plant DES Gp

H , Gp
L1

, . . . , Gp
Ln

,
specification DES EH , EL1 , . . . ,ELn , and interface DES

GI1 , . . . ,GIn
is HISC-valid with respect to alphabet par-

tition given by (1), if for all j ∈ {1, . . . , n}, the following
conditions are satisfied:

1) The event set of Gp
H and EH is ΣIH , and the event

set of Gp
Lj

and ELj is ΣILj .
2) GIj

is a command-pair interface.

G
p

L1
G

p

Ln

G
p

H EH

EL1 ELn

High-Level

Low-Level 1

GI1

Low-Level n

GIn

Fig. 2. Bi-level Structure of System With Specs.

For the rest of this section, we will use Φ to stand for
the nth degree HISC-valid specification interface system that
respects the alphabet partition given by (1) and is composed
of the plant DES Gp

H , Gp
L1

, . . . , Gp
Ln

, specification DES
EH , EL1 , . . . ,ELn , and interface DES GI1 , . . . ,GIn , that
we are considering.

In Section III, we introduced the languages Hp, Lp
j , Ij ,

and Imj . We now introduce a few more useful languages.

Hp
m = P−1

IH (Lm(Gp
H)) Lp

mj
= P−1

ILj
(Lm(Gp

Lj
))

EH = P−1
IH (L(EH)) EHm = P−1

IH (Lm(EH))

ELj = P−1
ILj

(L(ELj )) ELj,m = P−1
ILj

(Lm(ELj ))

We will refer to the DES that represents the high-level of
Φ as GHL = Gp

H ||EH ||GI1 || . . . ||GIn .
We can now define the languages for GHL over Σ∗ as:

ZH = P−1
IH (L(GHL)) = Hp ∩ EH ∩ I

ZHm = P−1
IH (Lm(GHL)) = Hp

m ∩ EHm ∩ Im

We will refer to the DES that represents the jth low-level
of Φ as GLLj = Gp

Lj
||ELj ||GIj .

We can now define the languages for GLLj over Σ∗ as:

ZLj = P−1
ILj

(L(GLLj )) = Lp
j ∩ ELj ∩ Ij

ZLj,m = P−1
ILj

(Lm(GLLj )) = Lp
mj
∩ ELj,m ∩ Imj

B. High-Level Synthesis

We start by examining how, given system Φ, we can
synthesize a supervisor for the high-level. Our first step is
to capture the HISC properties that the supervisor’s marked
language must satisfy.

Definition 7: Let Z ⊆ Σ∗. For system Φ, language Z is
high-level interface controllable (HIC) if for all s ∈ Hp ∩
I ∩ Z, the following conditions are satisfied:

1) EligHp∩I(s) ∩ Σu ⊆ EligZ(s)



2) (∀j ∈ {1, . . . , n})
EligIj

(s) ∩ ΣAj ⊆ EligHp∩Z(s)
These conditions are essentially point 3 of Definition 5

and point 3 of Definition 3, where we have substituted Z for
any reference of the high-level supervisor’s closed behavior,
SH , and we have used the identity GH := Gp

H ||SH for the
high-level subsystem.

For an arbitrary language E ⊆ Σ∗, we now define the set
of all sublanguages of E that are HIC with respect to Φ as:

CH(E) := {Z ⊆ E|Z is HIC with respect to Φ}

We now show that a supremal element always exists.
Proposition 1: Let E ⊆ Σ∗. For system Φ, CH(E) is

nonempty and is closed under arbitrary union. In particular,
CH(E) contains a (unique) supremal element that we will
denote supCH(E).

Proof: See proof in [3].
The proof essentially consists of showing that ∅ is HIC

(thus CH(E) 6= ∅), and that CH(E) is closed under arbitrary
union (supCH(E) = ∪{Z|Z ∈ CH(E)}).

We note here that supCH(E) is not only the supremal
HIC sublanguage, but is also nonblocking. This follows
from Definition 7 where we refer to a language Z as being
HIC, but the actual definition is in terms of Z. We define
the problem this way as we want a supremal controllable,
interface consistent, and nonblocking supervisor. As we are
only interested in nonblocking solutions, it is sufficient
to only refer to marked behaviors as the corresponding
closed behavior must be its prefix closure. We can think
of supCH(E) as the largest sublanguage of marked language
E, that has a corresponding closed behavior (Z) that satisfies
the terms of the HIC definition. This is consistent with the
treatment in [15].

We now note that if we take language E = ZHm , we can
conclude that supCH(ZHm) exists. If supCH(ZHm) 6= ∅, we
can then take supCH(ZHm) as the marked language of our
high-level supervisor and supCH(ZHm) as the supervisor’s
closed behavior, and it will follow that the high-level is
nonblocking (i.e. point 1 of Definition 4).

We will now define a fixpoint operator ΩH , and then show
that supCH(ZHm) is the greatest fixpoint of the operator. We
need to first define functions ΩHIC and ΩHNB.

Definition 8: For system Φ, we define the high-level in-
terface controllable operator, ΩHIC : Pwr(Σ∗) → Pwr(Σ∗),
for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩHIC(Z) := Z − ExtZ(FailHIC(Z))

where FailHIC(Z) := {s ∈ Hp ∩ I ∩ Z|¬[EligHp∩I(s) ∩
Σu ⊆ EligZ(s)] ∨ [(∃j ∈ {1, . . . , n})¬(EligIj

(s) ∩ ΣAj ⊆
EligHp∩Z(s))]}.
This operator takes our current estimate of our marked
language, constructs its prefix closure(Z), then removes any
strings (and their extensions) that would cause Z to fail the
HIC definition. The reason we also remove the extensions,
is so that we will get a prefix closed language.

Definition 9: For system Φ, we define the high-level
nonblocking operator, ΩHNB : Pwr(Σ∗) → Pwr(Σ∗), for
arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩHNB(Z) := Z ∩ ZHm

This operator takes the closed behavior from ΩHIC, and
converts it back to a marked language.

We now combine these two operators to construct our
fixpoint operator.

Definition 10: For system Φ, we define ΩH : Pwr(Σ∗) →
Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗), as follows:

ΩH(Z) := ΩHNB(ΩHIC(Z))
We next present two useful propositions before we give

our main result for this section. Point 1 of the first proposition
says that ΩH is monotone, thus once Z ⊆ Z ′ is established,
applying ΩH a finite number of times to each side will
preserve the relationship. The second point states that all
fixpoints are members of CH(ZHm

).
Proposition 2: Let Z, Z ′ ⊆ Σ∗ be arbitrary languages. For

system Φ, the following properties are true:
1) Z ⊆ Z ′ ⇒ (∀i ∈ {0, 1, 2, . . .})Ωi

H(Z) ⊆ Ωi
H(Z ′)

2) ΩH(Z) = Z ⇒ Z ∈ CH(ZHm)
Proof: See proof in [3].

To prove the next proposition, we first have to show that
supCH(ZHm) is a fixpoint. That it is the largest fixpoint then
follows from applying Point 2 of Proposition 2.

Proposition 3: For system Φ, supCH(ZHm) is the greatest
fixpoint of ΩH .

Proof: See proof in [3].
We will now show that if ΩH(ZH) reaches a fixpoint

after a finite number of steps, then that fixpoint is our
supremal element. In section IV-D, we show that as long
as the languages involved are all regular, then a finite index
always exists; thus our fixpoint operator can always produce
the required supremal language in a finite number of steps.

Theorem 3: For system Φ, if there exists i ∈ {0, 1, 2, . . .}
such that Ωi

H(ZH) is a fixpoint, then Ωi
H(ZH) =

supCH(ZHm).
Proof: Ωi

H(ZH) ⊆ supCH(ZHm) follows immediately
from Proposition 3. We get supCH(ZHm) ⊆ Ωi

H(ZH) by
noting supCH(ZHm) ⊆ ZHm ⊆ ZH , that ΩH is idempotent
for fixpoint supCH(ZHm), and then applying Point 1 of
Proposition 2.

We will use SHm to stand for the marked language of the
high-level supervisor in the corollary below.

Corollary 1: For system Φ, if there exists i ∈ {0, 1, 2, . . .}
such that Ωi

H(ZH) is a fixpoint, then system Φ with SHm =
Ωi

H(ZH) and SH = SHm satisfies point 3 of Definition 3,
point I of Definition 4 and point III of Definition 5.

Proof: See proof in [3].

C. Low-Level Synthesis

We now examine how, given system Φ, we can synthesize
a supervisor for the jth low-level. Our first step is to capture
the HISC properties that the supervisor’s marked language
must satisfy.



Definition 11: Let Z ⊆ Σ∗. For system Φ, language Z
is jth low-level interface controllable (LICj) if for all s ∈
Lp

j ∩ Ij ∩ Z, the following conditions are satisfied:
1) EligLp

j
(s) ∩ Σu ⊆ EligZ∩Ij

(s)
2) EligIj

(s) ∩ ΣRj
⊆ EligLp

j∩Z(s)
3) (∀ρ ∈ ΣRj

)(∀α ∈ ΣAj
)

sρα ∈ Ij ⇒ (∃l ∈ Σ∗Lj
) sρlα ∈ Lp

j ∩ Z ∩ Ij

4) s ∈ Imj
⇒ (∃l ∈ Σ∗Lj

) sl ∈ Lp
mj
∩ Z ∩ Imj

These conditions are essentially point 2 of Definition 5, and
points 4-6 of Definition 3.

Similarly to the high-level, we can define for E ⊆ Σ∗

CLj (E) := {Z ⊆ E|Z is LICj with respect to Φ}.
Similar to Proposition 1, we can show that the supremal

element for E = ZLj,m
, supCLj

(ZLj,m
), always exists. If

supCLj (ZLj,m) 6= ∅, we can then take supCLj (ZLj,m) as
the marked language of our jth low-level supervisor and
supCLj

(ZLj,m
) as the supervisor’s closed behavior, and it

will follow that the low-level is nonblocking (i.e. point 2 of
Definition 4, for this j).

We will now define a fixpoint operator ΩLj , to construct
supCLj (ZLj,m). We need to first define functions ΩLICj and
ΩLNBj .

Definition 12: For system Φ, we define the jth low-
level interface controllable operator, ΩLICj : Pwr(Σ∗) →
Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩLICj (Z) := Z − ExtZ(FailLICj(Z))

where FailLICj(Z) := {s ∈ Lp
j ∩ Ij ∩ Z| ¬[EligLp

j
(s) ∩

Σu ⊆ EligZ∩Ij
(s)] ∨ ¬[EligIj

(s) ∩ ΣRj ⊆ EligLp
j∩Z(s)] ∨

¬[(∀ρ ∈ ΣRj )(∀α ∈ ΣAj ) sρα ∈ Ij ⇒ (∃l ∈ Σ∗Lj
) sρlα ∈

Lp
j ∩ Z ∩ Ij ] ∨ ¬[s ∈ Imj ⇒ (∃l ∈ Σ∗Lj

) sl ∈ Lp
mj
∩ Z ∩

Imj ]}.
Definition 13: For system Φ, we define the jth low-level

nonblocking operator, ΩLNBj : Pwr(Σ∗) → Pwr(Σ∗), for
arbitrary Z ∈ Pwr(Σ∗) as follows:

ΩLNBj (Z) := Z ∩ ZLj,m

Definition 14: For system Φ, we define ΩLj : Pwr(Σ∗) →
Pwr(Σ∗), for arbitrary Z ∈ Pwr(Σ∗), as follows:

ΩLj (Z) := ΩLNBj (ΩLICj (Z))
We will now show that if ΩLj (ZLj ) reaches a fixpoint

after a finite number of steps, then that fixpoint is our
supremal element. In section IV-D, we show that as long
as the languages involved are all regular, then a finite index
always exists; thus our fixpoint operator can always produce
the required supremal language in a finite number of steps.

Theorem 4: For system Φ, if there exists i ∈ {0, 1, 2, . . .}
such that Ωi

Lj
(ZLj ) is a fixpoint, then Ωi

Lj
(ZLj ) =

supCLj (ZLj,m).
Proof: See proof in [3].

We will use SLj,m to stand for the marked language of
the jth low-level supervisor in the corollary below.

Corollary 2: For system Φ, if there exists i ∈ {0, 1, 2, . . .}
such that Ωi

Lj
(ZLj ) is a fixpoint, then system Φ with

SLj,m
= Ωi

Lj
(ZLj

) and SLj
= SLj,m

satisfies points 4–
6 of Definition 3, point II of Definition 4 and point II of
Definition 5.

Proof: See proof in [3].
Combining Corollaries 1 and 2, we see that our fixpoint

operators allow us to construct supervisors for the high-level
and the n low-levels that by design, will make system Φ with
its specification DES replaced by these supervisors (referred
to as the augmented system), be interface consistent, level-
wise nonblocking and level-wise controllable.

D. String and State Equivalence

In the above two sections, we presented a set of language-
based fixpoint operators to construct our supremal languages.
The algorithms we have developed in [3] construct DES
that represent these supremal languages, but they operate
by removing states instead of strings. In this section, we
will show the equivalence of the two approaches, and that
our method can always construct the required supremal
languages in a finite amount of time.

We first present a nonblocking result. If a DES G blocks,
we would have L(G) 6⊆ Lm(G). The proposition below
states that if a string can not be extended to a marked string,
then all strings that lead to the same state in G can not either;
thus we need to remove the state.

Proposition 4: Let G = (Q, Σ, δ, qo, Qm). It thus follows
that for all s, t ∈ L(G), if δ(qo, s) = δ(qo, t) then

s 6∈ Lm(G) ⇔ t 6∈ Lm(G)
Proof: See proof in [3].

We next present a proposition relevant to the LICj defini-
tion. We first need to define DESG′

LLj
to be DES GLLj

with events Σ − ΣILj selflooped at every state. This is
to extend the event set of GLLj to Σ, so that it will be
compatible with the languages used in the LICj definition.
Essentially, the proposition states that if a string fails one of
the clauses in the LICj definition, then all strings that lead
to the same state in G′

LLj
will also fail, thus we need to

remove the state. We also note that if we remove state q of
G′

LLj
, we remove from L(G′

LLj
) the strings ExtL(G′

LLj
)({s ∈

L(G′
LLj

)| δLj (qo,Lj , s) = q}). This is consistent with how
we defined our language-based fixpoint operators.

Proposition 5: For system Φ, let G′
LLj

=
(QLj , Σ, δLj , qo,Lj , Qm,Lj ). It follows that for all
s, t ∈ L(G′

LLj
), if δLj (qo,Lj , s) = δLj (qo,Lj , t) then

1) EligLp
j
(s)∩Σu 6⊆ EligZLj

∩Ij
(s) ⇔ EligLp

j
(t)∩Σu 6⊆

EligZLj
∩Ij

(t)
2) EligIj

(s) ∩ ΣRj 6⊆ EligLp
j∩ZLj

(s) ⇔ EligIj
(t) ∩

ΣRj 6⊆ EligLp
j∩ZLj

(t)
3) (∀ρ ∈ ΣRj )(∀α ∈ ΣAj )

[sρα ∈ Ij ] ∧ [(∀l ∈ Σ∗Lj
) sρlα 6∈ Lp

j ∩ ZLj ∩ Ij ] ⇔
[tρα ∈ Ij ] ∧ [(∀l ∈ Σ∗Lj

) tρlα 6∈ Lp
j ∩ ZLj ∩ Ij ]

4) [s ∈ Imj ]∧ [(∀l ∈ Σ∗Lj
) sl 6∈ Lp

mj
∩ZLj,m ∩ Imj ] ⇔

[t ∈ Imj ] ∧ [(∀l ∈ Σ∗Lj
) tl 6∈ Lp

mj
∩ ZLj,m ∩ Imj ]

Proof: See proof in [3].



Combining the results from Propositions 4 and 5, it
follows that each application of ΩLj is equivalent to either
removing at least one state from G′

LLj
, or reaching a fix-

point. As we assume that all DES components have a finite
statespace, it follows that G′

LLj
also has a finite statespace.

We can thus conclude that ΩLj (ZLj ) will reach a fixpoint
in at most |QLj

| steps and, by Theorem 4, the fixpoint will
be the desired supremal element.

By a similar approach, we can conclude that ΩH(ZH) will
reach a fixpoint in at most |QH | (state size of GHL) steps
and, by Theorem 3, the fixpoint will be the desired supremal
element.

We next note that every regular language can be repre-
sented by a deterministic finite state automata [6]. The above
result then implies that as long as the languages involved are
all regular, then Theorem 3 and Theorem 4 state that our
fixpoint operators can always produce the required supremal
languages in a finite number of steps.

V. ALGORITHMS

In [3], we first defined a set of algorithms to verify that a
given system is interface consistent. We then defined algo-
rithms to implement the high-level and the low-level fixpoint
operators. The synthesis process starts with constructing the
synchronous product of the component DES for a given
level. Based on this new DES, our algorithms trim off states
that represent strings that fail the HISC conditions for that
level. Please see [3] for full details of the data structures,
algorithms, and complexity analysis.

Below, we state the findings of our complexity analysis.
First, we need to define a few constants. Let NΣ := |Σ|,
NΣI

:= |ΣI |, NΣIH
:= |ΣIH |, and NΣILj

:= |ΣILj |. Let
NXI be an upper bound for the statespace of the interface
DES, NH be an upper bound for the statespace of any DES at
the high-level, and NLj be an upper bound for the statespace
of any DES at the jth low-level. Let mH be the number
of DES at the high-level, including all plant components,
supervisors, and interfaces. Similarly, let mLj be the number
of DES at the jth low-level. Finally, let ND be an upper
bound for the number of component DES for GH, as well as
for GLj

. Table I gives the results of the complexity analysis.
Let NEH denote the size of the statespace of Gp

H ||EH ,
and NI and NL be upper bounds for the statespaces of
GIk

and Gp
Lk
||ELk

(k = 1, . . . , n), respectively. As was
discussed in [10], the limiting factor for analyzing a flat
system would typically be the size of its statespace, NEHNn

L .
For an HISC system, it would be the size of the statespace
of the high-level, NEHNn

I , since it grows as we add more
low-levels. We would expect our method to offer significant
improvement as long as NI ¿ NL.

Of course, this increased scalability comes with a price:
a more restrictive architecture and thus the possible loss
of global maximal permissiveness. We feel the tradeoff is
worthwhile due to the increase in scalability and the other
benefits of our approach [8].

TABLE I
COMPLEXITY RESULTS FOR ALGORITHMS

Algorithm Complexity

Verifying Event Par-
tition and Interface
Consistency Point 1

O(nNΣlogNΣ), O(nNΣND)

Interface Consistency
Point 2 O(n(NΣI

logNΣI
+ NXI

NΣI
))

Interface Consistency
Point 3 O(mHNΣIH

N
mH
H )

Interface Consistency
Points 4,5,6 O(n(mLj

NΣILj
N

mLj

Lj
+NΣILj

N
2mLj

Lj
))

High-Level Fixpoint
O(mHNΣIH

N
mH
H )

jth Low-Level Fix-
point O(n(mLj

NΣILj
N

mLj

Lj
+NΣILj

N
2mLj

Lj
))

VI. AIP EXAMPLE

To demonstrate the utility of our method, we apply it to a
large manufacturing system, the Atelier Inter-établissement
de Productique (AIP) [1], [2].

The AIP, shown in Fig 3, is an automated manufacturing

External loop 4

I/O Station

External
loop 3

Central
loop

External
loop 1

External loop 2

Assembly
Station 2

Assembly
Station 1

Assembly
Station 3

Transport
Unit 4

Transport
Unit 3

Transport
Unit 2

Transport
Unit 1

Fig. 3. The Atelier Inter-établissement de Productique

system consisting of a central loop (CL) and four external
loops (EL), three assembly stations (AS), an input/output
(I/O) station, and four inter-loop transfer units (TU). The
I/O station is where the pallets enter and leave the system.
Pallets entering the system can be of type 1 or of type 2,
chosen at random. The system consists of a high-level and
seven low-levels; one for each transfer unit and assembly
station.

We use the version of the AIP described in [7], [9] as a
starting point and add the design requirements below. See
[3] for the full design details.
• Restrict capacity of external loop 3 to three pallets.
• For AS1 or AS2, if three consecutive assembly errors

occur, then the station must undergo maintenance.
After the design was completed, we applied our software

to the system, and determined that the system was HISC-
valid. We then did a high-level synthesis and a synthesis



for each low-level, to get our supremal supervisors for
each level. Since our algorithms construct supervisors such
that the augmented system is interface consistent, level-
wise nonblocking and level-wise controllable by design, we
can then apply Theorems 1 and 2, and conclude that the
flat system is nonblocking and that the flat supervisor is
controllable for the flat plant.

Our software ran on a Redhat Linux 9 computer with a 2.4
GHz Xeon CPU and 4G memory. It took 6.03 minutes and
used 2GB of memory. Detailed results are shown in Table
II, including the statespace of each level, with and with out
the interfaces. This example has an estimated closed-loop
statespace of 5.0 × 1022. This estimate was calculated by
determining the closed-loop statespace of the high-level and
each low-level, and then multiplying these together to create
a worst case state estimate. It’s quite likely that the actual
system will be considerably smaller.

TABLE II
AIP RESULTS

States States
Subsystem Standalone || with GIj

Size of GIj
Trimmed

GH 793,800 6,634,800 41,472 349,200

AS1, AS2 1,732 353 9 116

AS3 1,178 203 2 0

TU1, TU2 98 98 4 0

TU3 204 204 4 0

TU4 152 152 4 0

In Section V, we discussed that the limiting factor for a
flat system would be NEHNn

L , and similarly NEHNn
I for

an HISC system. If we substitute actual data from Table II,
we get Nn

L = (353)2(203)(98)2(204)(152) = 7.53 × 1015

and Nn
I = (9)2(2)(4)4 = 41, 472. This is a potential savings

of 11 orders of magnitude!
The utility of our synthesis method has been greatly en-

hanced by Song et al. ([12], [13]) who developed BDD based
algorithms for our synthesis method. Using their algorithms,
they were able to synthesize supervisors for a much larger
version of the AIP example in which the statespace of the
high-level alone was on the order of 1015.

It is interesting to note that typically we can not perform
a flat synthesis (eg. the supcon algorithm from TCT [14])
on an HISC system and expect to receive a useful result.
For example, if a high-level specification required that a
controllable answer event be disabled, the flat synthesis
would just disable the event. This would not produce the
desired effect as this would still allow the corresponding
low-level task to occur, and would only prevent the low-
level from reporting that the task was complete. However,
the high-level HISC synthesis would be unable to disable
the answer event and would be forced to disable the request
events leading to the answer event. This would have the
correct effect of preventing the low-level task from occurring.

VII. CONCLUSIONS

In this paper we developed a synthesis method for the
Hierarchical Interface-based Supervisory Control system that

does a per level synthesis to construct for each level a max-
imally permissive supervisor that satisfies the corresponding
HISC conditions.

As the synthesis is done on a per level basis, the complete
system model never needs to be stored in memory, offering
potentially significant savings in computational resources. In
fact, as long as the statespace of the interfaces are much
smaller than the statespace of the corresponding low-levels,
we should see significant reduction in complexity over a
standard flat synthesis approach.

The benefits of our approach were illustrated by a large
example (worst case statespace on order of 1022) based on
the AIP example. The example demonstrates how the HISC
synthesis method can be applied to interesting systems of
realistic complexity.
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