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1. INTRODUCTION

The framework of Hierarchical Interface-based Supervi-
sory Control (HISC) (Leduc, 2002; Leduc et al., 2005)
facilitates the design of large discrete event systems, by
decomposing them into subsystems communicating with
each other through interfaces. This structure improves re-
use and documentation of subsystems. In addition, global
conditions such as controllability and nonblocking can be
verified by only checking local interface consistency con-
ditions for each subsystem. The complete system model
never needs to be constructed, offering potentially signifi-
cant savings in computational effort.

Most current HISC frameworks are based on a master-
slave relationship between subsystems, with high-level sub-
systems sending requests to low-level subsystems and wait-
ing for answers to come back (Leduc, 2002; Leduc et
al., 2005). Expressiveness is increased by the addition of
low data events (Leduc, 2009). The framework has also
been extended to support synthesis of least restrictive
subsystem controllers (Leduc et al., 2009) and multi-level
hierarchies (Hill et al., 2010).

While the master-slave structure is common in software,
it is not always appropriate for reactive and control sys-
tems. Other methods use natural projection to obtain
abstractions of subsystems (Lin and Wonham, 1990). This
allows for more flexible structure, but projection-based
methods are limited by the fact that natural projection
does not preserve the often crucial nonblocking property,
unless additional constraints are imposed (Wong and Won-
ham, 1996).

This paper proposes Hierarchical Interface-based Super-
visory Control using the Conflict Preorder (HISC-CP),
which does not assume a strict master-slave relationship.
Based on results about the conflict preorder (Malik et
al., 2006), interfaces are conflict-preserving abstractions
of the subsystem they represent. The limitations of natu-
ral projection are avoided by the use of nondeterministic

interfaces. The resulting interface consistency conditions
facilitate the design of better hierarchies by allowing more
flexibility in the construction of interfaces and subsystems.

This paper is organised as follows. Sect. 2 introduces the
background of discrete event systems and the conflict
preorder. This is followed in Sect. 3 by the description
of HISC-CP. Afterwards, Sect. 4 presents some example
interfaces for a large manufacturing system, and Sect. 5
concludes by comparing the approach to previous work.

2. PRELIMINARIES

2.1 Events and Traces

Event sequences and languages are a simple means to
describe the behaviour of discrete event systems. Their
building blocks are events, which are taken from a finite
alphabet Σ. For supervisory control, Σ is partitioned into
the set Σc of controllable events and the set Σu of uncon-
trollable events. In addition, the silent event τ /∈ Σ is used,
with the notation Σ′

τ = Σ′ ∪̇ {τ} for any alphabet Σ′ ⊆ Σ.

Σ∗ denotes the set of all finite traces of the form σ1σ2 · · ·σn

of events from Σ, including the empty trace ε. A subset
L ⊆ Σ∗ is called a language. The concatenation of two
traces s, t ∈ Σ∗ is written as st. Trace s ∈ Σ∗ is a prefix
of t ∈ Σ∗, written s ⊑ t, if t = su for some u ∈ Σ∗. For
Ω ⊆ Σ, the natural projection PΩ : Σ∗ → Ω∗ removes from
traces s ∈ Σ∗ all events not in Ω.

2.2 Nondeterministic Automata

System behaviours are modelled using finite-state auto-
mata. Supervisors are usually deterministic, but plant
models and interfaces may be nondeterministic.

Definition 1. A (nondeterministic) finite-state automaton
is a 5-tuple G = 〈ΣG, Q,→, Q◦, Qω〉 where ΣG ⊆ Σ
is the automaton alphabet, Q is a finite set of states,
→ ⊆ Q × ΣG,τ × Q is the transition relation, Q◦ ⊆ Q
is the set of initial states, and Qω ⊆ Q is the set of marked
or terminal states.



The transition relation is written in infix notation x
σ
→ y.

It is also defined for υ /∈ ΣG,τ by letting x
υ
→ x for all

states x ∈ Q. The transition relation is further extended

to traces in Σ∗

τ by letting x
ε
→ x for all x ∈ Q, and x

sσ
→ y

if x
s
→ z

σ
→ y for some z ∈ Q. For brevity, x

s
⇒ y, with

s ∈ Σ∗, denotes the existence of a trace t ∈ Σ∗

τ such that

x
t
→ y and PΣ(t) = s. That is,

s
→ denotes a path with

exactly the events in s, while
s
⇒ denotes a path with an

arbitrary number of τ shuffled with the events in s.

For state sets X,Y ⊆ Q, the expression X
s
→ Y denotes

the existence of x ∈ X and y ∈ Y such that x
s
→ y.

Furthermore, x → y denotes the existence of s ∈ Σ∗ such

that x
s
→ y, and x

s
→ denotes the existence of y ∈ Q such

that x
s
→ y, and G

s
→ x stands for Q◦ s

→ x, etc. The same
notations are introduced for ⇒.

The prefix-closed language of the automaton G is L(G) =

{ s ∈ Σ∗ | G
s
⇒}. Note that this is defined over the

complete alphabet Σ, not just the automaton alphabet ΣG.

When two automata are running in parallel, lock-step
synchronisation in the style of (Hoare, 1985) is used.

Definition 2. Let G = 〈ΣG, QG,→G, Q◦

G, Qω
G〉 and H =

〈ΣH , QH ,→H , Q◦

H , Qω
H〉 be two automata. Then the syn-

chronous composition of G and H is

G‖H = 〈QG×QH ,ΣG∪ΣH ,→, Q◦

G×Q◦

H , Qω
G×Qω

H〉 (1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ (ΣG ∩ ΣH), x

σ
→G x′, y

σ
→H y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ (ΣG \ ΣH) ∪ {τ}, x

σ
→G x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ (ΣH \ ΣG) ∪ {τ}, y

σ
→H y′ .

In synchronous composition, shared events must be exe-
cuted by all automata synchronously, while other events
(including τ) are executed independently.

Hiding is the act of replacing certain events by the silent
event τ . This is a simple form of abstraction that in general
introduces nondeterminism.

Definition 3. Let G = 〈ΣG, Q,→, Q◦, Qω〉 and Υ ⊆ Σ.
The result of hiding Υ from G, written G \ Υ, is the
automaton obtained from G by replacing each transition

x
υ
→ y with υ ∈ Υ by x

τ
→ y, and removing all events in Υ

from ΣG.

2.3 Supervisory Control

Given plant and specification automata, supervisory con-
trol theory (Ramadge and Wonham, 1989) allows one to
design a supervisor that restricts the plant behaviour such
that the specification is fulfilled. The key requirements for
such supervisors are controllability and nonblocking.

Definition 4. Specification K = 〈ΣK , QK ,→K , Q◦

K , Qω
K〉

is controllable with respect to plant G = 〈ΣG, QG,→G,
Q◦

G, Qω
G〉 if, for every trace s ∈ Σ∗, every state x ∈ QK ,

and every uncontrollable event υ ∈ Σu such that K
s
⇒K x

and G
sυ
⇒G, it holds that x

υ
→K .

Definition 5. An automaton G = 〈ΣG, Q,→, Q◦, Qω〉 is
nonblocking if, for every state x ∈ Q such that G → x, it
holds that x → Qω; otherwise G is blocking. Two automata
G and H are nonconflicting if G ‖ H is nonblocking.

Controllability essentially represents safety properties,
while nonblocking or nonconflicting is the weak liveness

property underlying supervisory control theory. A major
challenge in supervisory control is to ensure that large
systems remain nonconflicting.

2.4 The Conflict Preorder

Conflict equivalence (Malik et al., 2006) provides a means
to reason about conflicts in a compositional way. Ac-
cording to process-algebraic testing theory, two automata
are considered as equivalent if they both respond in the
same way to all tests of a certain type (De Nicola and
Hennessy, 1984). Here, a test is an arbitrary automaton,
and the response is the observation whether or not the test
and the automaton in question are nonconflicting.

Definition 6. (Malik et al., 2006) Automaton G is less
conflicting than automaton H, written G .conf H, if for
any automaton T such that H‖T is nonblocking, G‖T also
is nonblocking. G and H are conflict equivalent, written
G ≃conf H, if G .conf H and H .conf G.

The conflict preorder .conf is a congruence with respect
to synchronous composition and hiding, i.e., it is always
preserved under these operations.

Proposition 1. (Malik et al., 2006) The following condi-
tions hold for all automata G .conf H.

(i) G ‖ T .conf H ‖ T for every automaton T .
(ii) G \ Υ .conf H \ Υ for every Υ ⊆ Σ.

In fact, the conflict preorder is the coarsest nonblocking-
preserving preorder with these congruence properties. It
is the best possible preorder for compositional reasoning
about nonblocking (Malik et al., 2006). Therefore, conflict
equivalence is used for efficient compositional verification
of the nonblocking property (Flordal and Malik, 2009).

Every automaton can be associated with a language of
certain conflicts, which contains all traces that, when
possible in the environment, necessarily cause blocking.

Definition 7. (Malik, 2010) The set of certain conflicts of
automaton G is

Conf(G) = { s ∈ Σ∗ | for every automaton T ,

if T
s
⇒ then G ‖ T is blocking } .

(2)

If G is nonblocking, then clearly Conf(G) = ∅. However,
the set of certain conflicts is not necessarily a subset of the
language of the automaton (Malik et al., 2006). Certain
conflicts are closed under extension, because whenever the
possibility to execute a trace s leads to blocking, then this
also holds when an extension st is possible. Conversely,
every trace s of certain conflicts has an explanation in the
language of its automaton G, i.e., a prefix r ⊑ s accepted
by G that is a certain conflict.

Lemma 2. (Malik, 2010) Let G be an automaton. Then
Conf(G) = Conf(G)Σ∗.

Lemma 3. (Malik, 2010) Let G be an automaton, and let
s ∈ Conf(G). Then there exists a prefix r ⊑ s such that
r ∈ L(G) ∩ Conf(G).

Certain conflicts are closely related to the conflict pre-
order. The conflict preorder does not imply language in-
clusion, i.e., G .conf H does not imply L(G) ⊆ L(H).
A relationship between the languages of two automata re-
lated through the conflict preorder can only be established
when certain conflicts are taken into account.



Lemma 4. (Malik et al., 2006) Let G and H be arbitrary
automata. If G .conf H then

(i) Conf(G) ⊆ Conf(H);
(ii) L(G) ∪ Conf(G) ⊆ L(H) ∪ Conf(H).

The following lemma is needed below to prove Prop. 8. It
follows from the results cited above and shows how certain
conflicts can be preserved under synchronous composition.

Lemma 5. Let G and H be two automata. If s ∈ Conf(G)
and s ∈ L(H)∪Conf(H), it follows that s ∈ Conf(G‖H).

Proof. Let s ∈ Conf(G) and s ∈ L(H) ∪ Conf(H), and

let T be an arbitrary automaton such that T
s
⇒. It is to

be shown that G ‖ H ‖ T is blocking. Consider two cases.

If s ∈ L(H), then clearly H‖T
s
⇒, and since s ∈ Conf(G),

it follows that G ‖ H ‖ T is blocking.

Otherwise s ∈ Conf(H), and also s ∈ Conf(G) by
assumption. By Lemma 3 there exist prefixes rG, rH ⊑ s
such that rI ∈ L(I) ∩ Conf(I) for I ∈ {G,H}. Choose

r = rI to be the shorter of these prefixes. Then G ‖ T
r
⇒

and H ‖ T
r
⇒, and since r = rI ∈ Conf(I), this implies

that G ‖ H ‖ T is blocking. 2

Exponential complexity algorithms are known to compute
the set of certain conflicts of a given automaton (Malik,
2010) and to test whether two given automata are related
through the conflict preorder (Ware and Malik, 2011).

3. HISC USING THE CONFLICT PREORDER

Large discrete event systems become intractable when
modelled as a flat synchronous product of many automata
without any structure. One solution is to organise the
system into a hierarchy of subsystems, each containing only
a few automata. Hierarchical Interface-Based Supervisory
Control using the Conflict Preorder (HISC-CP) is based
on a tree-like structure, defined recursively as follows.

Definition 8. A Hierarchical Interface Structure (HIS) is
a 5-tuple

H = 〈r, I,G, S,LL〉 (3)

where

• r ∈ N0 is the rank of H, also denoted by rank(H).
• I, G, and S are automata, called the interface, plant,

and supervisor of H, respectively.
• LL is a finite set of HIS, called the lower levels of H,

such that rank(L) < r for each L ∈ LL.

Given an HIS H = 〈r, I,G, S,LL〉 with I = 〈ΣI , QI ,→I ,
Q◦

I , Q
ω
I 〉, G = 〈ΣG, QG,→G, Q◦

G, Qω
G〉, and S = 〈ΣS , QS ,

→S , Q◦

S , Qω
S〉, the following additional notations are used.

• I(H) = I is the interface of H.
• LL(H) = LL denotes the lower levels of H.
• ΣI(H) = ΣI is the interface alphabet of H.
• ΣH(H) = ΣG ∪ ΣS is the local or high-level alphabet

of H.
• Σ(H) = ΣG ∪ΣS ∪

⋃

L∈LL
Σ(L) is the global alphabet

of H.
• G(H) = G ‖

∥

∥

L∈LL
G(L) is the flat plant of H.

• S(H) = S ‖
∥

∥

L∈LL
S(L) is the flat supervisor of H.

• F (H) = G(H) ‖ S(H) is the flat system of H.

The above definitions describe a structure similar to
(Leduc et al., 2005; Hill et al., 2010), with each subsys-
tem consisting of local plant, specification, and interface

automata. The flat system describes the composition of all
the automata in the hierarchy and thus the behaviour of
the complete system. Unlike the above works, interfaces
are not part of the flat system. The interface of an HIS H
is understood as an abstraction that can replace H when
analysing a larger system containing H.

For the subsystems to be considered in isolation, they
may not share any events except through the interface
alphabets. Unlike previous approaches, HISC-CP allows
events to be shared by different lower levels, if these events
are in both interfaces. Strict event locality is thus sacrificed
for increased expressiveness.

Definition 9. An HIS H is well-formed if it satisfies the
following conditions.

• ΣI(H) ⊆ ΣH(H).
• Σ(L) ∩ ΣH(H) ⊆ ΣI(L) for all L ∈ LL(H).
• Σ(L1)∩Σ(L2) ⊆ ΣI(L1) for all L1,L2 ∈ LL(H) with

L1 6= L2.
• Every L ∈ LL(H) is well-formed.

A crucial question in supervisory control is whether a
system is controllable and nonblocking. This amounts to
checking whether the flat system of an HIS satisfies these
properties.

Definition 10. An HIS H is globally controllable if S(H) is
controllable with respect to G(H).

Definition 11. An HIS H is globally nonblocking if F (H)
is nonblocking.

HISC abandons these global conditions in favour of suffi-
cient conditions checked locally for each subsystem. HISC-
CP uses the conflict preorder to define these so-called
interface consistency conditions.

Definition 12. An HIS H is interface consistent if it sat-
isfies the following conditions.

• (G ‖ S ‖
∥

∥

L∈LL
I(L)) \ (Σ \ ΣI(H)) .conf I(H).

• Every L ∈ LL(H) is interface consistent.

An HIS H is interface consistent if its interface is a conflict-
preserving abstraction of the automata in H and the
interfaces at the next level. All events not used in the
interface can be hidden as well-formedness ensures that
they cannot be used by any other subsystem. The require-
ment for the interface to be more conflicting ensures that
the nonblocking property is preserved if the subsystem is
replaced by its interface when analysing another system
that uses the subsystem. The following result lifts the
interface consistency condition to the complete flat system
containing all lower levels of the hierarchy.

Proposition 6. Let HIS H be well-formed and interface
consistent. Then F (H) \ (Σ \ ΣI(H)) .conf I(H).

Proof. Let H = 〈r, I,G, S,LL〉 and I = 〈ΣI , QI ,→I , Q
◦

I ,
Qω

I 〉. The claim is shown by induction on the rank r of H.

If r = 0 then LL = ∅, and it follows directly from Def. 12
that F (H) \ (Σ \ΣI) = (G ‖ S ‖

∥

∥

L∈LL
F (L)) \ (Σ \ΣI) =

(G‖S)\ (Σ\ΣI) = (G‖S ‖
∥

∥

L∈LL
I(L))\ (Σ\ΣI) .conf I.

Now consider r = n + 1, and assume the claim holds for
all L ∈ LL. It follows that,



F (H) \ (Σ \ ΣI)

=
(

G ‖ S ‖
∥

∥

L∈LL

F (L)
)

\ (Σ \ ΣI)

=
(

G ‖ S ‖
∥

∥

L∈LL

[F (L) \ (Σ \ ΣI(L))]
)

\ (Σ \ ΣI)

(by Def. 9 as H is well-formed)

.conf (G ‖ S ‖
∥

∥

L∈LL

I(L)) \ (Σ \ ΣI)

(by inductive assumption and Prop. 1)

.conf I (by Def. 12 as H is interface consistent) 2

By Prop. 6, the local property of interface consistency
ensures that the interface of an HIS H is a more conflicting
abstraction of the complete flat system of H. If the
interface is nonblocking, this is enough to ensure that the
complete system is nonblocking.

Proposition 7. Let HIS H = 〈r, I,G, S,LL〉 be well-formed
and interface consistent. If I is nonblocking, then H is
globally nonblocking.

Proof. Note that F (H) \ (Σ \ΣI(H)) .conf I by Prop. 6.
Since I is nonblocking, it follows from Lemma 4(i) that
Conf(F (H) \ (Σ \ ΣI(H))) ⊆ Conf(I) = ∅, i.e.,
Conf(F (H)) = ∅. This means that F (H) is nonblocking,
i.e., H is globally nonblocking. 2

If an HIS H has a nonblocking interface, then interface
consistency guarantees that the complete hierarchy be-
low H is nonblocking. Usually it is desired for subsystems
to be nonblocking on their own, and such subsystems can
be represented by nonblocking interfaces. If the topmost
system in a hierarchy is not intended for use as part of
another system, a one-state nonblocking interface Itop =
〈∅, {q◦}, ∅, {q◦}, {q◦}〉 can capture the requirement that
the global system must be nonblocking.

Global controllability is more difficult to prove. It is known
that controllability of subsystems implies controllability of
the global system (Brandin et al., 2004). This suggests that
global controllability can be ensured if each subsystem is
controllable on its own. Unfortunately, these results do
not take interfaces into account. Sometimes, the following
stronger condition is needed to prove global controllability.

Definition 13. An HIS H is locally controllable if it satis-
fies the following conditions.

• S is controllable with respect to G ‖
∥

∥

L∈LL
I(L).

• Every L ∈ LL(H) is locally controllable.

The problem with taking the interfaces into account is
that the conflict preorder is not directly linked to lan-
guage inclusion when certain conflicts are present. Yet,
the additional assumption of the system being nonblocking
ensures that interface consistency in combination with
local controllability implies global controllability.

Proposition 8. Let HIS H = 〈r, I,G, S,LL〉 be well-
formed, interface consistent, and locally controllable. If I
is nonblocking, then H is globally controllable.

Proof. It is shown by induction on the rank r that for

all s ∈ Σ∗ and for all υ ∈ Σu such that S(H)
s
⇒ xS(H)

and G(H)
s
⇒ xG(H)

υ
→, it holds that S(H)

s
⇒ xS(H)

υ
→

or s ∈ Conf(I). As Conf(I) = ∅ for nonblocking I, this
implies the claim.

If r = 0, then LL = ∅. In this case, S = S(H)
s
⇒ xS(H) and

G‖
∥

∥

L∈LL
I(L) = G(H)

s
⇒ xG(H)

υ
→, and since H is locally

controllable, it follows by Def. 13 that S(H)
s
⇒ xS(H)

υ
→.

Now consider r = n + 1, and assume the claim holds for

all L ∈ LL. By assumption S ‖
∥

∥

L∈LL
S(L) = S(H)

s
⇒

xS(H) = (xS , (xS(L))L∈LL). That is, for each L ∈ LL there

exists a state xS(L) such that S(L)
s
⇒ xS(L), and likewise

there exists a state xG(L) such that G(L)
s
⇒ xG(L)

υ
→. By

inductive assumption, it follows that S(L)
s
⇒ xS(L)

υ
→ or

s ∈ Conf(I(L)). Let F ′(L) = F (L)\(Σ\ΣI(L)), and note
that F ′(L) .conf I(L) by Prop. 6, and therefore

L(F ′(L)) ∪ Conf(F ′(L)) ⊆ L(I(L)) ∪ Conf(I(L)) (4)

by Lemma 4(ii), for all L ∈ LL. Consider two cases.

If s ∈ Conf(I(L0)) for some L0 ∈ LL, then first note that

as F (L) = G(L) ‖ S(L)
s
⇒ for all L ∈ LL and by (4):

s ∈ L(F (L)) ⊆ L(F ′(L)) ⊆ L(F ′(L)) ∪ Conf(F ′(L))

⊆ L(I(L)) ∪ Conf(I(L)) . (5)

As this holds for all L ∈ LL, and given s ∈ Conf(I(L0))
it follows by Lemma 5 that s ∈ Conf(G‖S ‖

∥

∥

L∈LL
I(L)).

Since furthermore (G‖S‖
∥

∥

L∈LL
I(L))\(Σ\ΣI(H)) .conf I

by Def. 12, it follows by Lemma 4(i) that PΣI(H)(s) ∈

Conf
(

(G ‖ S ‖
∥

∥

L∈LL
I(L)) \ (Σ \ ΣI(H))

)

⊆ Conf(I),

and since I has alphabet ΣI(H) also s ∈ Conf(I).

Otherwise s /∈ Conf(I(L)) for all L ∈ LL, so S(L)
s
⇒

xS(L)
υ
→ and thus F (L)

sυ
⇒ for all L ∈ LL. It remains to

be shown that S
s
⇒ xS

υ
→. Since sυ ∈ L(F (L)), it follows

from (4) for all L ∈ LL that

sυ ∈ L(F (L)) ⊆ L(F ′(L)) ⊆ L(F ′(L)) ∪ Conf(F ′(L))

⊆ L(I(L)) ∪ Conf(I(L)) . (6)

As s /∈ Conf(I(L)) for all L ∈ LL, it follows that sυ ∈
L(I(L)) for all L ∈ LL. This is because s /∈ Conf(I(L))
and sυ ∈ Conf(I(L)) implies sυ ∈ L(I(L)) by Lemma 2

and 3. It follows that G‖
∥

∥

L∈LL
I(L)

sυ
⇒, and since S

s
⇒ xS

and H is locally controllable, it follows from Def. 13 that

S
s
⇒ xS

υ
→. 2

In summary, an HIS is guaranteed to be globally control-
lable and nonblocking if each subsystem satisfies the local
conditions of well-formedness, interface consistency, and
local controllability.

Well-formedness is a straightforward syntactic condition,
and local controllability can be checked by standard al-
gorithms after construction of the synchronous composi-
tion (Ramadge and Wonham, 1989). To verify interface
consistency, it is necessary to determine whether the inter-
face is more conflicting than the automata in the subsys-
tem and the interfaces at the next level. The conflict pre-
order can be checked by an exponential algorithm (Ware
and Malik, 2011).

For improved performance, polynomial abstraction algo-
rithms (Flordal and Malik, 2009; Malik and Leduc, 2009)
can replace the subsystem by a conflict equivalent ab-
straction using only the interface events. Then the smaller
abstraction can be compared to the interface by the con-
flict preorder algorithm. This algorithm (Ware and Ma-
lik, 2011) can analyse automata with several thousand
states, which is likely to be sufficient for many applications.
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Fig. 1. The Atelier Inter-établissement de Productique.

The abstraction algorithms can also be used to auto-
matically generate conflict equivalent interfaces for legacy
subsystems. These interfaces can later be edited manually,
or used to confirm that a subsystem continues to satisfy
interface consistency after modifications.

4. EXAMPLE

This section discusses hierarchical interface design in the
context of modelling a large manufacturing system, the
Atelier Inter-établissement de Productique (AIP). The
system was first modelled as a discrete event system
by (Brandin and Charbonnier, 1994), and later by (Leduc,
2002) using HISC and by (Ma and Wonham, 2005) using
state tree structures. This paper is based on a more
detailed hierarchical model (Song, 2006).

The AIP system coordinates the transport and processing
of workpieces in pallets. The system consists of a central
loop and four external loop conveyors as shown in Fig. 1.
Pallets can be transferred between the central and external
loops by four transport units. External loops 1, 2, and 3
each have an assembly station with a robot to process
pallets. External loop 4 is linked to an input/output
station to allow pallets to enter and leave the system. Two
types of pallets, Type1 and Type2, can enter the system.

According to (Song, 2006), the AIP system is modelled
in a two-level hierarchy with one high level coordinating
eight low levels, one for each of the four transfer units, the
three assembly units, and the input/output station. Fig. 2
shows some possible interface automata for this model.

The input/output station is described by I(IO) (Song,
2006). The input/output station can be requested to
transfer a pallet into external loop 4 (MvInPalletType1
or MvInPalletType2) or to remove a pallet from there
(MvOutPallet), and it reports back on completion of the
transfer (CplMvInPallet or CplMvOutPallet). Due to its
simplicity, this interface from (Song, 2006) can be used
unchanged with HISC-CP.

CplMvInPallet

MvInPalletType1
MvOutPalletMvInPalletType2

CplMvOutPallet

I(IO)

ASDwnDoRpr

ProcPallet

ProcErr
ProcCpl

RobUp

I1(AS)

RobUp

ProcCpl

DoRpr

ProcErr

ASDwn

ProcPallet

τ

τ

τ

I2(AS)

IsPalletType2InIO

IsPalletType1InIO

IsPalletType1InIO

IsPalletType2InIO

CplMvOutPallet

CplMvOutPallet

IsPalletType2InIO

CplMvOutPallet

CplMvOutPallet

CplMvOutPallet

IsPalletType1InIO
CplMvOutPallet

IsPalletType1InIO

IsPalletType1InIO

IsPalletType2InIO

IsPalletType1InIO

IsPalletType2InIO
IsPalletType1InIO

IsPalletType2InIO

IsPalletType2InIOτ

τ

τ

τ

τ

τ

I(AIP)

Fig. 2. Some interfaces for AIP manufacturing system.

The assembly stations are more involved. An assembly
station is given a pallet (ProcPallet), which it presents
to its robot for assembly. It then releases the pallet, and
reports the success (ProcCpl) or failure (ProcErr) of the
assembly operation. Alternatively, the robot may break
down (ASDwn), which also leads to release of the pallet,
but afterwards the robot must be repaired (DoRpr, RobUp)
before another pallet can be processed (Leduc, 2002).

The assembly station interface I1(AS) is a so-called
command-pair interface (Leduc, 2002). Request events
ProcPallet and DoRpr are paired with answer events
ProcCpl, ProcErr, ASDwn, and RobUp. The HISC interface
conditions (Leduc, 2002) require the high level always
to be capable of processing all answer events that are
possible according to the interface. For example, at any
time after the request ProcPallet, the robot may break
down (ASDwn), so the high level must be able to process
this answer.

HISC-CP does not distinguish event types, so the answer
event semantics must be expressed through nonblocking.
This is achieved by the more detailed interface I2(AS).
Silent transitions linked to additional states show that
under certain circumstances the low level may allow only
some events. As the high level cannot synchronise on τ ,
after sending the request ProcPallet, it must be able to
continue with each answer ProcCpl, ProcErr, and ASDwn
to avert blocking.

HISC-CP interfaces may be larger than command-pair
interfaces for master-slave hierarchies with clear request
and answer events. Also, as HISC-CP only considers non-
blocking, a high level using I2(AS) only needs to be able
to process each of the events ProcCpl, ProcErr, and ASDwn
eventually, whereas an HISC high level using I1(AS) must
be able to accept these answers immediately.

On the other hand, HISC-CP interfaces are more flex-
ible and can also be used when there are no obvious
request and answer events. For example, I(AIP) presents
an interface for the entire AIP system. The manufac-



turing cell can be presented up to six Type1 or Type2
pallets in the input/output station (IsPalletType1InIO or
IsPalletType2InIO), and each pallet will eventually be
ejected (CplMvOutPallet). If more than six pallets are
presented, the system may block. The blocking inter-
face I(AIP) models a subsystem that does not prevent
blocking on its own, and shows what is required of a high-
level coordinator to ensure nonblocking.

The τ -transitions show that at any time—even if no
further pallets are presented—the AIP can eventually eject
a pallet. However, after starting the output of a pallet
(MvOutPallet), the system temporarily stops to accept
new pallets as input, i.e., events IsPalletTypeXInIO are
not possible until output is completed. A high level using
this interface can assume that pallets will eventually be
ejected (CplMvOutPallet), but it should not assume that
the subsystem will always be able to accept a new pallet
(IsPalletTypeXInIO).

I(AIP) cannot be interpreted as a command-pair inter-
face (Leduc, 2002), which does not permit two request
events to occur in sequence without an answer in between.
Low data interfaces (Leduc, 2009) are more expressive and
allow the specification of behaviour like I(AIP), albeit
after the introduction of polling with additional events
in the interface alphabet. HISC-CP does not restrict the
choice of events: an interface exists for every subsystem
and set of interface events, although these interfaces may
be nondeterministic and include τ -transitions.

5. CONCLUSIONS

The framework of Hierarchical Interface-Based Supervi-
sory Control using the Conflict Preorder (HISC-CP) has
been proposed as an alternative approach to hierarchical
supervisor design.

Previous HISC frameworks such as (Leduc, 2009) are
based on a master-slave relationship between subsystem,
and for such systems offer good event localisation and
more structure and guidance for system design. This leads
to smaller subsystems with smaller interfaces, which are
deterministic and easy to understand.

HISC-CP allows a wide range of interfaces, including non-
deterministic interfaces. It it is more flexible in how the
system is decomposed, potentially leading to smaller inter-
faces and subsystems when there is no clear master-slave
relationship. The algorithms to check HISC-CP interface
consistency are exponential, which may pose challenges
when faced with large interfaces. On the other hand,
it is possible to automatically generate interfaces using
polynomial algorithms.

The framework of HISC-CP is not directly comparable to
previous HISC frameworks, with the interface consistency
conditions of neither approach implying the other. It
remains to be investigated which framework gives better
models under which circumstances.
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