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Abstract— This paper proposes a compositional approach to
verify the generalised nonblocking property of discrete-event
systems. Generalised nonblocking is introduced in [1] to over-
come weaknesses of the standard nonblocking check in discrete-
event systems and increase the scope of liveness properties
that can be handled. This paper addresses the question of
how generalised nonblocking can be verified efficiently. The
explicit construction of the complete state space is avoided
by first composing and simplifying individual components
in ways that preserve generalised nonblocking. The paper
extends and generalises previous results about compositional
verification of standard nonblocking and lists a new set of
computationally feasible abstraction rules for standard and
generalised nonblocking.

I. I NTRODUCTION

Blocking or conflictsare common faults in the design of
concurrent programs that can be very subtle and hard to
detect [2], [3]. They have long been studied in the field
of discrete-event systems[4], [5], which is applied to the
modelling of complex, safety-critical systems. To improve
the reliability of such systems, techniques are needed to
detect the presence or verify the absence of blocking in
models of an ever increasing size.

In discrete-events theory, the absence of blocking is for-
malised using thenonblockingproperty, which is used very
successfully forsynthesis[4], [5]. A lot of research has
been conducted to study the compositional semantics [6],
[7] of nonblocking and its verification [8], [9]. Despite its
widespread use, the expressive powers of nonblocking are
limited. To overcome its weaknesses, nonblocking has been
modified and extended in several ways [1], [10], [11].

This paper is concerned about compositional verification
of the generalised nonblockingproperty introduced in [1].
Generalised nonblocking adds to standard nonblocking the
ability to restrict the set of states from which blocking needs
to be checked. This is useful for the verification of soft-
ware components and of certain conditions in Hierarchical
Interface-Based Supervisory Control [12].

While properties such as generalised nonblocking can be
verified using straightforward state-space exploration orCTL
model checking [13], these approaches are limited by the
well-known state-space explosion problem.Compositional
verification using conflict-preserving abstractions is an al-
ternative used with considerable success to verify standard
nonblocking [8]. In an effort to extend those results for
generalised nonblocking, this paper presents seven compu-

tationally feasible abstraction rules and shows how they can
reduce the size of automata during compositional verification
of both generalised and standard nonblocking.

This paper is organised as follows. Sect. II introduces
the necessary background of nondeterministic automata and
defines the generalised nonblocking property. Then Sect. III
outlines the compositional verification method, Sect. IV
presents the abstraction rules for generalised nonblocking
and discusses their complexity, and Sect. V adds some
concluding remarks. Most formal proofs are omitted for lack
of space in this paper and can be found in [14].

II. PRELIMINARIES

A. Events and Languages

Event sequences and languages are a simple means to
describe discrete system behaviours [4], [5]. Their basic
building blocks areevents, which are taken from a finite
alphabetΣ. In addition, thesilent eventτ /∈ Σ is used, with
the notationΣτ = Σ ∪ {τ}.

Σ∗ denotes the set of all finitestrings of the form
σ1σ2 . . . σn of events fromΣ, including theempty stringε.
Theconcatenationof two stringss, t ∈ Σ∗ is written asst. A
subsetL ⊆ Σ∗ is called alanguage. The natural projection
Pτ : Σ∗

τ → Σ∗ is the operation that deletes all silent (τ )
events from strings.

B. Multi-coloured Automata

Nondeterministic multi-coloured automata are used to
model dynamic system behaviours.Nondeterminismis es-
sential for the abstraction techniques in this paper.Multi-
colouredautomata extend the traditional concept ofmarked
statesto multiple simultaneous marking conditions, by la-
belling states with differentcolours or propositions. The
generalised nonblocking condition is defined using these
propositions. The following definition is introduced in [1],
and is based on similar ideas in [11], [13].

Definition 1: A multi-coloured automatonis a tupleG =
〈Σ,Π,X ,→,X◦,Ξ〉 whereΣ is a finite set ofevents, Π is
a finite set ofpropositionsor colours, X is a set ofstates,
→ ⊆ X × Στ × X is thestate transition relation, X◦ ⊆ X
is the set ofinitial states, andΞ:Π → 2X defines the set of
marked states for each proposition inΠ.

The transition relation is written in infix notationx
σ
→ y,

and is extended to strings inΣ∗
τ in the standard way. For

state setsX1,X2 ⊆ X, the notationX1
s
→ X2 denotes the



existence ofx1 ∈ X1 andx2 ∈ X2 such thatx1
s
→ x2. Also,

x → y denotes the existence of a strings ∈ Σ∗
τ such that

x
s
→ y, and x

s
→ denotes the existence of a statey ∈ X

such thatx
s
→ y. Finally, G

s
→ x stands forX◦ s

→ x.
To support silent events, another transition relation⇒ ⊆

X×Σ∗×X is introduced, wherex
s
⇒ y denotes the existence

of a string t ∈ Σ∗
τ such thatPτ (t) = s and x

t
→ y. That

is, x
s
→ y denotes a path withexactlythe events ins, while

x
s
⇒ y denotes a path with an arbitrary number ofτ events

shuffled with the events ofs. Notations such asX1
s
⇒ X2,

x ⇒ y, andx
s
⇒ are defined analogously to→.

Synchronous compositionmodels the parallel execution
of two or more automata, and is done using lock-step
synchronisation in the style of [15].

Definition 2: Let G1 = 〈Σ,Π,X1,→1,X
◦
1 ,Ξ1〉 and

G2 = 〈Σ,Π,X2,→2,X
◦
2 ,Ξ2〉 be multi-coloured automata.

The synchronous productof G1 andG2 is

G1 ‖ G2 = 〈Σ,Π,X1 × X2,→,X◦
1 × X◦

2 ,Ξ〉 (1)

where(x1, x2)
σ
→ (y1, y2) if σ ∈ Σ, x1

σ
→1 y1, x2

σ
→2 y2;

(x1, x2)
τ
→ (y1, x2) if x1

τ
→1 y1; (x1, x2)

τ
→ (x1, y2) if

x2
τ
→2 y2; andΞ(π) = Ξ1(π) × Ξ2(π) for eachπ ∈ Π.

This definition assumes that the two composed automata
share the same event and proposition alphabets. This is
sufficient for the purpose of this paper. Automata with
different alphabets can also be composed by lifting them
to common alphabets first: when an eventσ is added to the
alphabetΣ, selfloop transitionsx

σ
→ x are added for all

statesx ∈ X, and when a propositionπ is added toΠ, it is
defined thatΞ(π) = X.

Hiding is the process-algebraic operation that generalises
natural projection of languages when nondeterministic au-
tomata are considered. Events that are not of interest are
replaced by silent (τ ) transitions orε-moves[16].

Definition 3: Let G = 〈Σ,Π,X ,→,X◦,Ξ〉 be a multi-
coloured automaton, and letΥ ⊆ Σ. The result ofhiding Υ
in G is

G \ Υ = 〈Σ \ Υ,Π,X,→ \ Υ,X◦,Ξ〉 , (2)

where→ \ Υ is obtained from→ by replacing all events
in Υ with the silent eventτ .

C. Generalised Nonblocking

It is a desirable for control systems to be free fromlivelock
or deadlock. This is typically expressed and checked by
designating certain states of an automaton assuccessor ter-
minal states and checking their reachability. Thegeneralised
nonblockingproperty introduced in [1] uses two propositions,
calledα andω, for this purpose. The intended meaning is that
ω represents terminal states and corresponds to the traditional
markedstates [5], whileα specifies a set of states from which
terminal states are required to be reachable.

Definition 4: Let G = 〈Σ,Π,X ,→,X◦,Ξ〉 with α, ω ∈
Π be a multi-coloured automaton.G is (α, ω)-nonblocking,
if for all statesx ∈ Ξ(α) such thatG ⇒ x it also holds that
x ⇒ Ξ(ω). Otherwise,G is (α, ω)-blocking.

G1: G2: G3:

σ1

σ1

σ2

σ2

σ1

σ1

σ2

σ2

σ1

σ1

σ2

σ2

Fig. 1. Generalised nonblocking vs. standard nonblocking.

Generalised nonblocking requires that, from all reachable
states markedα, it is possible to reach a state markedω. This
extends the standard definition of nonblocking, which re-
quires that a state markedω be reachable fromall states [5],
by adding the ability to specify the set of states from which
termination must be possible. Clearly, if an automaton is
standard nonblocking, it is also(α, ω)-nonblocking. The
converse is not true in general.

Example 1:Consider the automata in Fig. 1. States
markedα are grey, and states markedω are black. Only
automatonG3 is (α, ω)-blocking, althoughG2 and G3 are
both blocking according to the standard definition [5].

The relationship between generalised nonblocking and
standard nonblocking along with some applications is dis-
cussed in [1].

III. C OMPOSITIONAL VERIFICATION

The straightforward approach to verify whether a com-
posed system

G1 ‖ G2 ‖ · · · ‖ Gn (3)

is (α, ω)-nonblocking consists of explicitly constructing the
synchronous product and checking whether a state markedω
can be reached from every state markedα. This can be
done using CTL model checking, and models of substan-
tial size can be analysed if the state space is represented
symbolically [13]. Yet, the technique remains limited by the
amount of memory available to store representations of the
synchronous product.

As an alternative,compositionalreasoning [8] attempts to
rewrite individual components of a composed system such
as (3) and, e.g., replaceG1 by a simpler versionG′

1, to
analyse the simpler system

G′
1 ‖ G2 ‖ · · · ‖ Gn . (4)

Such compositional reasoning requires thatG1 and G′
1 are

related in some way. An appropriate notion of equivalence
has been identified for the verification of standard nonblock-
ing in [7], and adapted to(α, ω)-nonblocking in [1].

Definition 5: Let G1 and G2 be two multi-coloured au-
tomata withα, ω ∈ Π. ThenG1 and G2 are called(α, ω)-
nonblocking equivalent, written G1 ≃(α,ω) G2, if for any
multi-coloured automatonT , it holds thatG1 ‖ T is (α, ω)-
nonblocking if and only ifG2 ‖ T is (α, ω)-nonblocking.

To be feasible for compositional verification, the equiva-
lence used must be well-behaved with respect to synchronous
composition and hiding. These so-calledcongruenceprop-
erties can easily be shown for(α, ω)-nonblocking equiva-
lence [1].



Proposition 1: Let G1, G2, T be multi-coloured automata
with α, ω ∈ Π. If G1 ≃(α,ω) G2, thenG1 ‖T ≃(α,ω) G2 ‖T .

Proof: Let G1, G2, andT be such thatG1 ≃(α,ω) G2,
and letT ′ be an arbitrary multi-coloured automaton. Since
G1 ≃(α,ω) G2, it holds that(G1 ‖T ) ‖T ′ = G1 ‖ (T ‖T ′) is
(α, ω)-nonblocking if and only ifG2‖(T ‖T ′) = (G2‖T )‖T ′

is.
Proposition 2: Let G = 〈Σ,Π,X ,→,X◦,Ξ〉 be a multi-

coloured automaton withα, ω ∈ Π, and letΥ ⊆ Σ. Then
G is (α, ω)-nonblocking if and only ifG \Υ is (α, ω)-non-
blocking.

Note that, if given two automataG and H such thatH
does not use any events in alphabetΥ, then(G ‖ H) \ Υ =
(G \ Υ) ‖ H. In combination with Prop. 2 this means that
abstractions can be applied in a compositional way, as long
as only events local to the subsystem considered are ab-
stracted away. Subsystems can be simplified individually or
composed as needed, and the verification and simplification
strategies outlined in [7], [8] can be used.

IV. A BSTRACTIONS THATPRESERVEGENERALISED

NONBLOCKING

This section follows the previous work [8] on standard
nonblocking and proposes a set ofsimplification rulesthat
can be used to rewrite an automaton to an equivalent but
simpler version. The rules are notcomplete, as no attempt is
made to ensure that any two(α, ω)-nonblocking equivalent
automata can be transformed into each other. Instead, the
focus is to provide computationally feasible rewrite rulesthat
can achieve a fair reduction of the state space.

Some of the following results are similar and closely re-
lated to corresponding results about abstractions for standard
nonblocking [8]. Yet, although(α, ω)-nonblocking seems
to be more complicated then standard nonblocking at first
glance, it is a weaker property and different kinds of
abstraction are possible. Markings can be removed from
certain states, and some states that are not coreachable can
be removed. Furthermore, unlike in standard nonblocking,
a large proportion of the states encountered in generalised
nonblocking may benot markedα, and these can often be
simplified more aggressively than states markedα.

A. Observation Equivalence

One of the strongest known equivalences of nondetermin-
istic automata is known asobservation equivalenceor weak
bisimulation [17]. Observation equivalence considers two
states as equivalent if they have exactly the same structure
of nondeterministic future behaviour.

Definition 6: Let G1 = 〈Σ,Π,X1,→1,X
◦
1 ,Ξ1〉 and

G2 = 〈Σ,Π,X2,→2,X
◦
2 ,Ξ2〉 be two multi-coloured au-

tomata. A relation≈ ⊆ X1 × X2 is a weak bisimulation
betweenG1 andG2 if, for all statesx1 ∈ X1 andx2 ∈ X2

such thatx1 ≈ x2,

• if x1
s
⇒1 y1 for somes ∈ Σ∗, then there existsy2 ∈ X2

such thaty1 ≈ y2 andx2
s
⇒2 y2;

• if x2
s
⇒2 y2 for somes ∈ Σ∗, then there existsy1 ∈ X1

such thaty1 ≈ y2 andx1
s
⇒1 y1;

• if x1 ∈ Ξ1(π) for someπ ∈ Π, thenx2
ε
⇒2 Ξ2(π);

• if x2 ∈ Ξ2(π) for someπ ∈ Π, thenx1
ε
⇒1 Ξ1(π).

G1 and G2 are observation equivalentor weakly bisimilar,
G1 ≈ G2, if there exists a weak bisimulation≈ betweenG1

andG2 such that, for each initial statex◦
1 ∈ X◦

1 there exists
x◦

2 ∈ X2 such thatX◦
2

ε
⇒2 x◦

2 andx◦
1 ≈ x◦

2, and vice versa.
Observation equivalence has been studied extensively

in process algebra. It is known to preserve all temporal
properties, and as such it is finer than(α, ω)-nonblocking
equivalence. The following result is straightforward to prove.

Proposition 3: Let G1 and G2 be two multi-coloured
automata withα, ω ∈ Π. If G1 ≈ G2 thenG1 ≃(α,ω) G2.

Observation equivalence comes with efficient simplifica-
tion algorithms [18] and has been used successfully to sim-
plify automata for the verification of standard nonblocking,
where this abstraction alone is responsible for a substantial
reduction in the number of states [8].

Rule 1 (Observation Equivalence Rule):If two automata
G1 and G2 are observation equivalent, thenG1 can be
replaced byG2 (and vice versa).

Complexity.A coarsest observation equivalence relation
can be computed inO(|→| log |X|) using the algorithm
in [18]. However, since this algorithm is designed for bisim-
ulation, the automaton has to be augmented such that, for all
σ ∈ Σ, x

σ
⇒ y always impliesx

σ
→ y. Thus, the number|→|

of transitions may be very large—on the order of|X|2|Σ|,
resulting in the overall complexityO(|X|2|Σ| log |X|).

B. Removal ofα-Markings

While observation equivalence achieves a good reduction
of the state space and is easy to implement, there are several
examples of(α, ω)-nonblocking equivalent automata that are
not observation equivalent. The following sections propose
a selection of simplification rules that are applied directly to
the states and transitions of an automaton. The first of these
rules simply removesα-markings from certain states.

Rule 2 (α-Removal Rule):If an automaton contains two
different statesx and y both markedα, such thatx

τ
→ y,

then theα-marking can be removed from statex.
Example 2:AutomataG1 and G2 in Fig. 2 are(α, ω)-

nonblocking equivalent. States markedα are grey, and states
markedω are black. Since statex1 is markedα, any test that
is to be (α, ω)-nonblocking in combination withG1 needs
to be able to executeσ2 initially. This implicitly includes the
condition for statex0, which says that a test needs to be able
to executeσ1 or σ2 initially. As the test must satisfy both, the
condition simplifies to just executingσ2. Testing for statex1

alone is thus sufficient, so theα-marking of statex0 can be
removed as shown inG2.

Proposition 4: Let G = 〈Σ,Π,X,→,X◦,ΞG〉 be a
multi-coloured automaton withα, ω ∈ Π and statesx, y ∈ X
such thatx

τ
→ y, x 6= y, and x, y ∈ ΞG(α). Define

H = 〈Σ,Π,X,→,X◦,ΞH〉 where ΞH is identical toΞG

exceptΞH(α) = ΞG(α) \ {x}. ThenG ≃(α,ω) H.
Complexity.To check the applicability of theα-Removal

Rule to an automaton, it is enough to visit and check the
source and target states of allτ -transitions. There are at most



G1: G2: G3 : G4 :
σ1 σ2

τ

x0 x1

x2 x3

σ1 σ2

τ

x0 x1

x2 x3

σ1 σ2

τ

x0 x1

x2 x3

σ2

τ

x0 x1

x3

Fig. 2. Example application ofα-Removal Rule, followed byω-Removal Rule, and Coreachability Rule

|X|2 τ -transitions, and this leads to the overall complexity
of O(|X|2) to check and apply theα-Removal Rule to all
states where it is applicable.

While the removal of markings does not reduce the
number of states of an automaton, it can make it simpler
and enable other abstractions. Only states markedα need
to satisfy nonblocking conditions, so verification is expected
to be easier with less states markedα. Theα-Removal Rule
can also be considered when verifying standard nonblocking,
where all states are markedα initially, treating standard
nonblocking as generalised nonblocking and making some
of the rules for generalised nonblocking applicable.

C. Removal ofω-Markings

Similar to the case ofα-markings,ω-markings can also
be removed under certain conditions, namely if the state
markedω is not reachable from any state markedα.

Rule 3 (ω-Removal Rule):If a state x is not reachable
from any state markedα, then anω-marking can be removed
from (or added to) statex.

Example 3:AutomataG2 and G3 in Fig. 2 are(α, ω)-
nonblocking equivalent. Only for states markedα, it is
required that a state markedω is reachable, but statex2 in G2

cannot be reached from any state markedα. Therefore, the
fact thatx2 is markedω is irrelevant, and this marking can
be removed as shown inG3.

Proposition 5: Let G = 〈Σ,Π,X,→,X◦,ΞG〉 be a
multi-coloured automaton withα, ω ∈ Π, and let x ∈
X such thatΞG(α) → x does not hold. DefineH =
〈Σ,Π,X,→,X◦,ΞH〉 whereΞH is identical toΞG except
ΞH(ω) = ΞG(ω) \ {x}. ThenG ≃(α,ω) H.

Complexity.To apply theω-Removal Rule to an automa-
ton, it needs to be checked for all states whether they are
reachable from anα-marked state. This can be done by a
standard graph search visiting each transition at most once.
There are at most|X|2|Στ | transitions, and this leads to the
overall complexity ofO(|X|2|Σ|) to check and apply the
ω-Removal Rule to all states where it is applicable.

Again, the removal ofω-markings does not directly reduce
the state space, but it can make other rules applicable. In
particular, it may increase the number of non-coreachable
states, which can be deleted according to the following rule.

D. Removal of Non-coreachable States

Following is the first abstraction that actually removes
states from an automaton. While the following rule seems
superficially similar to theCertain Conflicts Ruleof [8],
it is quite different. The Certain Conflicts Rule merges
blocking states into a single state when verifying standard
nonblocking. Here, in the case of generalised nonblocking,
states that are not coreachable can be removed entirely.

G: H:
σ1

σ1

σ2

σ3

g0

g1 g2

g3 g4

σ1

σ2

σ3

h0 h13

h2

h4

Fig. 3. Example application of Non-α Determinisation Rule.

Rule 4 (Coreachability Rule):States that are notα/ω-co-
reachable, i.e., from which neither a state markedα nor a
state markedω can be reached, can be removed.

Example 4:AutomataG3 and G4 in Fig. 2 are(α, ω)-
nonblocking equivalent. Statex2 in G3 is neither α-
coreachable norω-coreachable, and therefore it is not needed
to reach anω-marked state, nor does it lead to any further
conditions (α-marked state) that need to be satisfied. This
state can be removed as shown inG4.

Proposition 6: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π, and letC be the set of
α/ω-coreachable states forG, namelyC = {x ∈ X | x →
Ξ(α) ∪ Ξ(ω) }. DefineH = 〈Σ,Π, C,→|C ,X◦ ∩ C,Ξ|C 〉
where→|C = { (x, σ, y) ∈ → | x, y ∈ C } and Ξ|C (π) =
Ξ(π) ∩ C for all π ∈ Π. ThenG ≃(α,ω) H.

Complexity.α/ω-coreachability of all states in an automa-
ton can be checked by a standard graph search visiting each
transition at most once. There are at most|X|2|Στ | transi-
tions, and this leads to the overall complexity ofO(|X|2|Σ|)
to check and apply the Coreachability Rule.

E. Determinisation of Non-α States

In generalised nonblocking, there are two different kinds
of states. States markedα carry nonblocking requirements,
which means that their precise nondeterministic future may
be relevant. These states can only be simplified using rules
preserving conflict equivalence such as those in [8]. On
the other hand, non-α states do not carry nonblocking
requirements, and only the language associated with these
states is important. These states can be treated using language
equivalence, and determinisation algorithms [16] can be used
to merge them.

Rule 5 (Non-α Determinisation Rule):Two non-α states
that are reachable by exactly the same strings from initial
states and from each state markedα, can be merged into a
single state.

Example 5:AutomataG andH in Fig. 3 are(α, ω)-non-
blocking equivalent. Statesg1 andg3 are only reachable via
string σ1 from the initial state or from the onlyα-marked
state and therefore can be merged into a single stateh13 as
shown inH. Note that this simplification is not possible for
standard nonblocking, or if one of the two states is markedα,



because in this case it is important that the two states have
different continuations to states markedω.

To describe this rule formally, the concept of automaton
abstraction with respect to anequivalence relationis used.
The idea is to identify certain groups of states as equivalent
and merge each group into a single state. The following
definitions are standard.

Definition 7: Let X be an arbitrary set. A binary relation
∼ ⊆ X × X is an equivalence relation, if ∼ is reflexive,
symmetric, and transitive. If∼ is an equivalence relation
on X, the equivalence classof x ∈ X is [x] = { y ∈ X |
x ∼ y }, and the set of equivalence classes modulo∼ is
written asX/∼ = { [x] | x ∈ X }.

Definition 8: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton, and let∼ ⊆ X × X be an equivalence
relation. Theabstractionof G with respect to∼ is

G/∼ = 〈Σ,Π,X/∼,→/∼, X̃◦, Ξ̃〉 , (5)

where

→/∼ = { ([x], σ, [y]) | x
σ
→ y } ;

X̃◦ = { [x◦] | x◦ ∈ X◦ } ;

Ξ̃(π) = { [x] | x ∈ Ξ(π) } for all π ∈ Π .

The Non-α Determinisation Rule is described using a
particular equivalence relation, namely areverse weak bisim-
ulation [19]: two states are considered as equivalent if they
can be reached via the same traces from the initial states.

Definition 9: Let G = 〈Σ,Π,X,→,X◦,Ξ〉. An equiva-
lence relation∼ ⊆ X × X is a reverse weak bisimulation
on G, if the following conditions hold for allx1, x2 ∈ X
with x1 ∼ x2.

• If x1 ∈ X◦, thenX◦ ε
⇒ x2.

• For all statesw1 ∈ X and all eventsσ ∈ Στ such
that w1

σ
→ x1 there exists a statew2 ∈ X such that

w2
Pτ (σ)
=⇒ x2 andw1 ∼ w2.

Given these definitions, the Non-α Determinisation Rule
can be described in a more precise way.

Rule 5 (Non-α Determinisation Rule):If ∼ is a reverse
weak bisimulation on an automatonG such that states
markedα are only equated to themselves by∼, thenG can
be replaced byG/∼.

Proposition 7: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π, and let∼ ⊆ X × X be
a reverse weak bisimulation onG such that[x] = {x} for
all x ∈ Ξ(α). ThenG ≃(α,ω) G/∼.

Complexity.A reverse weak bisimulation relation can be
computed in the same way as an observation equivalence us-
ing the algorithm in [18], also under the additional constraint
that states markedα cannot be merged. Like in the case of
observation equivalence, the transition relation first needs to
be augmented to bypass anyτ -transitions, resulting in the
overall complexityO(|X|2|Σ| log |X|).

F. Removal ofτ -Transitions Leading to Non-α States

Silent (τ ) transitions provide a significant potential for
abstraction. If a silent transition links two states that are both

G: H:
σ1 σ2

τ

g0 g1

g2 g3

σ1

σ2
h0

h2 h3

Fig. 4. Example application of Silent Continuation Rule.

not markedα, Non-α Determinisation can be used to merge
the source and target states of this transition. If both states
are markedα, the α-Removal Rule can be used to remove
the α-marking of the source state. The Silent Continuation
Rule in this section and the Only Silent Outgoing Rule in
the following section can address cases where at most one
of the two states linked by a silent transition is markedα.

Rule 6 (Silent Continuation Rule):A transition x
τ
→ y

with y /∈ Ξ(α) can be removed if all transitions originating
from statey are copied to statex.

Example 6:AutomataG andH in Fig. 4 are(α, ω)-non-
blocking equivalent. The transitiong0

τ
→ g1 in G leads to

a non-α state, so it can be removed after copying theσ2-
transition originating from the target stateg1 to the source
stateg0. As a result, the target stateg1 becomes unreachable
and can be removed as shown inH.

This simplification relies on the fact that the target stateg1

is not markedα, so there is no nonblocking requirement
associated with that state. Therefore it can be merged into
the source state, leading to much stronger simplification than
the Silent Continuation Rule for standard nonblocking [8].

Definition 10: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton with statesx, y ∈ X such thatx

τ
→ y.

The target bypassof transitionx
τ
→ y in G is the automaton

Gxxy = 〈Σ,Π,X,→xxy,X◦,Ξxxy〉 where

→xxy = (→ \ {(x, τ, y)}) ∪ { (x, σ, z) | y
σ
→ z } ;

Ξxxy(π) =

{

Ξ(π) ∪ {x}, if y ∈ Ξ(π);
Ξ(π), otherwise.

Proposition 8: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton withα, ω ∈ Π and statesx, y ∈ X such
that x

τ
→ y, andy /∈ Ξ(α). ThenG ≃(α,ω) Gxxy.

Complexity.The Silent Continuation Rule can be applied
at most once to everyτ -transition in an automaton, i.e.,
at most |X|2 applications. Each application involves the
copying of all transitions from the target state to the source
state, and there may be up to|Στ ||X| transitions outgoing
from every state. Therefore, the overall complexity to check
the applicability of this rule and apply it to all applicable
transitions isO(|X|3|Σ|).

It should be noted that the removal of aτ -transition alone
does not necessarily lead to a reduction in state space or
complexity. Indeed, the Silent Continuation Rule is likelyto
increase the number of transitions. Its major benefit is thatthe
target state may become unreachable, perhaps after multiple
application of the rule, and then can be removed. Also, the
rule produces a more regular structure of transitions, which
may pave the way for other simplifications.
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Fig. 5. Example application of Only Silent Outgoing Rule.

G. Removal ofτ -Transitions Originating from Non-α States

The final rule considers the case of a silent transition
originating from a non-α state. This case is more difficult,
and the following rule is more restrictive than its companion
for standard nonblocking [8], becauseα-markings need to
be taken into account in addition to other conditions.

Rule 7 (Only Silent Outgoing Rule):A statex that is not
markedα or ω can be removed, ifx

τ
→, and x has only

τ -transitions outgoing. Incoming transitions tox must be
redirected to all theτ -successor states ofx.

Example 7:Automata G and H in Fig. 5 are (α, ω)-
nonblocking equivalent. Stateg1 in G is not markedα or ω
and has onlyτ -transitions outgoing, so it can be bypassed
and removed as shown inH. This simplification is only
possible because stateg1 is not markedα or ω. If the state is
marked, the nonblocking conditions associated with it need
to be retained, and there is no easy way to merge these into
one or both of the successor states.

Definition 11: Let G = 〈Σ,Π,X,→,X◦,Ξ〉 be a multi-
coloured automaton, and letx ∈ X. The silent outgoing
bypassof statex in G is the automatonGxy = 〈Σ,Π,X,
→xy

,X◦
xy

,Ξ〉 where

→xy
= (→ \ { (w, σ, x) | w

σ
→ x }) ∪

{ (w, σ, y) | w
σ
→ x

τ
→ y } ;

X◦
xy

=

{

(X◦ \ {x}) ∪ { y ∈ X | x
τ
→ y }, if x ∈ X◦,

X◦, otherwise.

No state is explicitly removed in this construction. How-
ever, the bypassed statex becomes unreachable and can be
removed, provided thatx

τ
→ x does not hold. Ifx

τ
→ x, then

x remains reachable (considerw
σ
→ x

τ
→ x in the definition

of →xy
), but suchτ -selfloops can be removed first using

observation equivalence.
Proposition 9: Let G = 〈Σ,Π,X,→,X◦,Ξ〉, and letx ∈

X be a state withx
τ
→ and x /∈ Ξ(α) ∪ Ξ(ω), which has

only τ -transitions outgoing, i.e.,x
σ
→ implies σ = τ . Then

G ≃(α,ω) Gxy.
Complexity.To check whether the Only Silent Outgoing

Rule is applicable to a state, it must be confirmed that it
is not marked and has at least one and onlyτ -transitions
outgoing. Using appropriate data structures, this can be
done in constant complexity. Applying the rule requires all
incoming transitions to be copied to allτ -successor states.
There can be up to|X||Στ | incoming transitions and up
to |X| τ -successors per state. Then the complexity to check
and apply the Only Silent Outgoing Rule to all states of an
automaton isO(|X|3|Σ|).

V. CONCLUSIONS

This paper shows how generalised nonblocking can be
verified compositionally by simplifying individual compo-
nents of a system before or while composing them. Seven
rewrite rules preserving generalised nonblocking have been
proposed, which can substantially reduce the number of
states of the automata encountered during verification. The
rules have been chosen to be computationally feasible, while
still covering a wide range of situations encountered in
nondeterministic automata. Although developed specifically
for generalised nonblocking, the results presented here are
also applicable to standard nonblocking.
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