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Abstract— This paper proposes a compositional approach to tationally feasible abstraction rules and shows how they ca

verify the generalised nonblocking property of discrete-event reduce the size of automata during compositional verificati
systems. Generalised nonblocking is introduced in [1] to over- of both generalised and standard nonblocking.

come weaknesses of the standard nonblocking check in discrete- Thi - ised foll Sect. Il introd
event systems and increase the scope of liveness properties IS paper 1S organised as Tollows. _e_c 3 Introduces
that can be handled. This paper addresses the question of the necessary background of nondeterministic automata and

how generalised nonblocking can be verified efficiently. The defines the generalised nonblocking property. Then Sdct. Il
explicit construction of the complete state space is avoided gutlines the compositional verification method, Sect. IV
by first composing and simplifying individual components  ,egants the abstraction rules for generalised nonblgckin
in ways that preserve generalised nonblocking. The paper . - .

extends and generalises previous results about compositional and dls_cusses their complexity, and Sect. V adds some
verification of standard nonblocking and lists a new set of concluding remarks. Most formal proofs are omitted for lack

computationally feasible abstraction rules for standard and of space in this paper and can be found in [14].
generalised nonblocking.
1. PRELIMINARIES

. INTRODUCTION A. Events and Languages

BIOCking or conflictsare common faults in the deSign of Event sequences and |anguages are a Simp|e means to
concurrent programs that can be very subtle and hard gscribe discrete system behaviours [4], [5]. Their basic
detect [2], [3]. They have long been studied in the fielthyjlding blocks areevents which are taken from a finite

of discrete-event systenjd], [5], which is applied to the alphabets. In addition, thesilent eventr ¢ ¥ is used, with
modelling of complex, safety-critical systems. To improvehe notations:, = > U {}.

the reliability of such systems, techniques are needed toy* denotes the set of all finitestrings of the form

detect the presence or verify the absence of blocking in,4, ..., of events froms, including theempty stringe.
models of an ever increasing size. The concatenatiorof two stringss, t € X* is written asst. A
In discrete-events theory, the absence of blocking is fosybsetz C ©* is called alanguage The natural projection
malised using the@onblockingproperty, which is used very p . »* — %* is the operation that deletes all silent)(
successfully forsynthesis[4], [5]. A lot of research has events from strings.
been conducted to study the compositional semantics [6], )
[7] of nonblocking and its verification [8], [9]. Despite its B- Multi-coloured Automata
widespread use, the expressive powers of nonblocking areNondeterministic multi-coloured automata are used to
limited. To overcome its weaknesses, nonblocking has beemodel dynamic system behavioufdondeterminismis es-
modified and extended in several ways [1], [10], [11]. sential for the abstraction techniques in this papéulti-
This paper is concerned about compositional verificationolouredautomata extend the traditional conceptnedirked
of the generalised nonblockingroperty introduced in [1]. statesto multiple simultaneous marking conditions, by la-
Generalised nonblocking adds to standard nonblocking theelling states with differentolours or propositions The
ability to restrict the set of states from which blocking dee generalised nonblocking condition is defined using these
to be checked. This is useful for the verification of softpropositions. The following definition is introduced in [1]
ware components and of certain conditions in Hierarchicand is based on similar ideas in [11], [13].
Interface-Based Supervisory Control [12]. Definition 1: A multi-coloured automatois a tupleG =
While properties such as generalised nonblocking can H&, II, X, —, X° =) whereX is a finite set ofeventsII is
verified using straightforward state-space exploratioB®Bt  a finite set ofpropositionsor colours X is a set ofstates
model checking [13], these approaches are limited by thes C X x ¥ x X is thestate transition relationX° C X
well-known state-space explosion proble@ompositional is the set ofinitial states and=: I — 2X defines the set of
verification using conflict-preserving abstractions is an almarked states for each propositionIin
ternative used with considerable success to verify stahdar The transition relation is written in infix notatian % v,
nonblocking [8]. In an effort to extend those results forand is extended to strings B in the standard way. For
generalised nonblocking, this paper presents seven compmtate setsX;, X, C X, the notationX; > X, denotes the



existence oft; € X; andzy € X, such that; > zo. Also, Gy Gt Gi:
x — y denotes the existence of a stringe ¥* such that
r > gy, andz > denotes the existence of a statec X
such thatz > y. Finally, G = z stands forX° > z.

To support silent events, another transition relatienC
X x¥*x X is introduced, where = y denotes the existence
of a stringt € X7 such thatP,(t) = s andz < y. That Fig. 1. Generalised nonblocking vs. standard nonblocking.
is, z - y denotes a path witkxactlythe events ins, while
x = y denotes a path with an arbitrary numberroévents

shuffled with the events of. Notations such ag; = X, Generalised nonblocking requires that, from all reachable
z =y, andz = are defined analogously te-. states marked, it is possible to reach a state markedThis

Synchronous Compositiomode'g the para”e' execution extends the standard definition of nonblocking, which re-
of two or more automata, and is done using Iock-steEUires that a state markedbe reachable frorall states [5],
synchronisation in the style of [15]. y adding the ability to specify the set of states from which

Definition 2: Let G; = (3,11, X,,—,,X?,Z,) and termination must be possible. Clearly, if an automaton is
Gy = (11, X, —, X3, Z,) be multi-coloured automata. Standard nonblocking, it is alsea,w)-nonblocking. The
The synchronous produadf G; and G is converse is not true in general.

Example 1:Consider the automata in Fig. 1. States
G| G2 = (5,11, X, x Xy,—, X7 x X35,E) (1) markeda are grey, and states marked are black. Only
automatonGs is (a,w)-blocking, althoughGs and G5 are
2l - - z 2 both blocking according to the standard definition [5].
(@1, 22) = (y1,22) I 21 =1 i (w1,2) = (21,92) 1f The relationship between generalised nonblocking and

@2 =2 y2; ANAE(m) = =, () x Ey(m) for eachr € 11. standard nonblocking along with some applications is dis-
This definition assumes that the two composed automatgssed in [1].

share the same event and proposition alphabets. This is

sufficient for the purpose of this paper. Automata with [1l. COMPOSITIONAL VERIFICATION

different alphabets can also be composed by lifting them The straightforward approach to verify whether a com-
to common alphabets first: when an evenis added to the posed system

alphabety, selfloop transitionst % x are added for all Gi||G2 - || Gn (3)

statesr € X, and when a proposition is added tdll, itis . : : . .
) is (a,w)-nonblocking consists of explicitly constructing the
defined thatE(r) = X. .
S . : ._synchronous product and checking whether a state marked
Hiding is the process-algebraic operation that generalisé :
o ...~ _can be reached from every state markedThis can be
natural projection of languages when nondeterministic au; . :
. . done using CTL model checking, and models of substan-
tomata are considered. Events that are not of interest are

replaced by silentr() transitions orz-moves{16] 1al size can be analysed if the state space is represented
Definition 3: Let G — (3,11, X, —, X°,Z) be a multi- symbolically [13]. Yet, the technique remains limited by th

. amount of memory available to store representations of the
coloured automaton, and lat C X. The result ofhiding T y P
in G is synchronous product.

As an alternativecompositionakeasoning [8] attempts to
G\YT = (S\T,ILX,—\T,X°E), (2) rewrite individual components of a composed system such
as (3) and, e.g., replacé; by a simpler versionG}, to
where — \ T is obtained from— by replacing all events analyse the simpler system
in T with the silent event-. ,
GGz I Gn - 4)

Such compositional reasoning requires that and G are
Itis a desirable for control systems to be free friwelock related in some way. An appropriate notion of equivalence

or deadlock This is typically expressed and checked byhas been identified for the verification of standard nonblock

designating certain states of an automatoswaxesr ter-  ing in [7], and adapted t¢«, w)-nonblocking in [1].

minal states and checking their reachability. Tdeneralised Definition 5: Let G; and G, be two multi-coloured au-

nonblockingproperty introduced in [1] uses two propositions tomata witha,w € II. ThenG; and G, are called(a, w)-

calleda andw, for this purpose. The intended meaning is thahonblocking equivalentwritten G ~(, .,y Go, if for any

w represents terminal states and corresponds to the trzalitio multi-coloured automatoff’, it holds thatG, || T'is (o, w)-

markedstates [5], whilex specifies a set of states from whichnonblocking if and only ifGs || T is (o, w)-nonblocking.

terminal states are required to be reachable. To be feasible for compositional verification, the equiva-
Definition 4: Let G = (X, 11, X, —, X° E) with a,w € lence used must be well-behaved with respect to synchronous

IT be a multi-coloured automator® is («,w)-nonblocking composition and hiding. These so-calledngruenceprop-

if for all statesz € Z(«) such thatG = z it also holds that erties can easily be shown fdry,w)-nonblocking equiva-

x = E(w). Otherwise,G is («,w)-blocking lence [1].

Where(zl,xg) g (yl,yg) if o€ Z, T gl Y1, T2 1)2 Y2,

C. Generalised Nonblocking



Proposition 1: Let G1, G2, T be multi-coloured automata o if 21 € Z;(7) for somer € II, thenz, =, Eo(m);
with o, w € IL If Gy (4 ) Go, thenGy || T ~(4 ) G2 || T o if 25 € Zy(7) for somer € 11, thenz; =, ().
Proof: Let G1, G2, andT be such thatv; ~(, ) G2, G4 and G, are observation equivalenor weakly bisimilar
and letT” be an arbitrary multi-coloured automaton. Sincez, ~ G., if there exists a weak bisimulation betweenG,
G1 ~(a,w) Go, itholds that(Gy || T) | T" = G || (T'| T") IS and G, such that, for each initial statef € X? there exists
(a, w)-nonblocking if and only it || (T'[|T7) = (G2 T) T 25 € X, such thatXs =, 25 andz ~ =3, and vice versa.
IS. u Observation equivalence has been studied extensively
Proposition 2: Let G = (X,11, X, —, X°,E) be a multi- in process algebra. It is known to preserve all temporal
coloured automaton witly,w € II, and letT C X. Then properties, and as such it is finer thém, w)-nonblocking
G is (o, w)-nonblocking if and only ifG'\ T is (o, w)-non-  equivalence. The following result is straightforward toye.

blocking. Proposition 3:Let G; and G, be two multi-coloured
Note that, if given two automat& and H such thatH  automata witho, w € IL. If G4 ~ G5 thenG; ~(aw) G2
does not use any events in alphalfetthen (G || H) \ T = Observation equivalence comes with efficient simplifica-

(G\T) || H. In combination with Prop. 2 this means thattion algorithms [18] and has been used successfully to sim-
abstractions can be applied in a compositional way, as loigify automata for the verification of standard nonblocking
as only events local to the subsystem considered are abhere this abstraction alone is responsible for a subsfanti
stracted away. Subsystems can be simplified individually eduction in the number of states [8].
composed as needed, and the verification and simplificationrule 1 (Observation Equivalence Ruldj:two automata
strategies outlined in [7], [8] can be used. G, and G, are observation equivalent, thefi; can be
replaced byG, (and vice versa).

Complexity. A coarsest observation equivalence relation
_ ) ) can be computed irO(]—|log|X]|) using the algorithm

This section follows the previous work [8] on standardy, [18]. However, since this algorithm is designed for bisim
nonblocking and proposes a set implification rulesthat  jation, the automaton has to be augmented such that, for all
can be used to rewrite an automaton to an equivalent byt y2 - % o/ a\ways impliest % y. Thus, the numbelr— |
simpler version. The rules are nadmplete as no attempt is of transitions may be very large—on the order|af[2[S|,

made to ensure that any twa, w)-nonblocking equivalent yegyiting in the overall complexit9(| X 2| log | X|)
automata can be transformed into each other. Instead, the

focus is to provide computationally feasible rewrite rulest B. Removal ot-Markings
can achieve a fair reduction of the state space. While observation equivalence achieves a good reduction
Some of the following results are similar and closely reof the state space and is easy to implement, there are several
lated to corresponding results about abstractions fodatah examples of a, w)-nonblocking equivalent automata that are
nonblocking [8]. Yet, although(«,w)-nonblocking seems not observation equivalent. The following sections pr@pos
to be more complicated then standard nonblocking at first selection of simplification rules that are applied dinettl
glance, it is a weaker property and different kinds othe states and transitions of an automaton. The first of these
abstraction are possible. Markings can be removed fromules simply removes-markings from certain states.
certain states, and some states that are not coreachable caRule 2 @-Removal Rule)lf an automaton contains two
be removed. Furthermore, unlike in standard nonblockingiifferent statest and y both markedo, such thatz = v,
a large proportion of the states encountered in generalisétbn thea-marking can be removed from state
nonblocking may benot markeda, and these can often be Example 2: AutomataG; and G» in Fig. 2 are(a,w)-
simplified more aggressively than states marked nonblocking equivalent. States markedire grey, and states
. . markedw are black. Since state, is markedqa, any test that
A. Observation Equivalence . L - :
is to be («,w)-nonblocking in combination withG; needs
One of the strongest known equivalences of nondetermigy pe able to execute, initially. This implicitly includes the
istic automata is known asbservation equivalencer weak  condition for stater,, which says that a test needs to be able
bisimulation [17]. Observation equivalence considers twqo executer; or o initially. As the test must satisfy both, the
states as equivalent if they have exactly the same structugndition simplifies to just executing,. Testing for state:;
of nondeterministic future behaviour. alone is thus sufficient, so the-marking of stater, can be
Definition 6: Let G1 = (X,1I,X;,—,,X7,Z;) and removed as shown ifi's.
Gy = (5,11, X5, —4, X3, E,y) be two multi-coloured au-  proposition 4:Let G = (¥,II, X, —, X° E¢) be a
tomata. A relation~ C X; x X, is aweak bisimulation muylti-coloured automaton with, w € II and states, y € X
betweenG; andG; if, for all statesz; € X; andz; € Xo  such thatz = y, 2 # y, andz,y € Eg(a). Define

IV. ABSTRACTIONS THATPRESERVEGENERALISED
NONBLOCKING

such thatr; ~ zs, H = (311, X,—,X° Zy) whereZy is identical to=¢
o if 21 =1 y1 for somes € £, then there existg; € X  except=x(a) = Z¢(a) \ {z}. ThenG ~(, ) H.
such thaty; ~ y» andzs =5 yo; Complexity.To check the applicability of the.--Removal

o if 29 =4 y, for somes € ©*, then there existg; € X;  Rule to an automaton, it is enough to visit and check the
such thaty; ~ y» andz; =1 yi; source and target states of altransitions. There are at most
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Fig. 2. Example application af-Removal Rule, followed bw-Removal Rule, and Coreachability Rule

|X|? r-transitions, and this leads to the overall complexity G & H:
of O(]X|?) to check and apply the-Removal Rule to all 91/ g1 g2 02 /¥Ry
states where it is applicable. &

While the removal of markings does not reduce the g0 A o ho hi3
number of states of an automaton, it can make it simpler - 0 73 I

and enable other abstractions. Only states markateed

to satisfy nonblocking conditions, so verification is exjelc Fig. 3. Example application of Noa-Determinisation Rule.

to be easier with less states markedThe a-Removal Rule

can also be considered when verifying standard nonblog¢king

where all states are marked initially, treating standard ~ Rule 4 (Coreachability Rule)States that are net/w-co-
nonblocking as generalised nonblocking and making sonigachable, i.e., from which neither a state markedor a

of the rules for generalised nonblocking applicable. state markedv can be reached, can be removed.
) Example 4: AutomataGs and G4 in Fig. 2 are(«,w)-
C. Removal ofu-Markings nonblocking equivalent. Stater, in Gs is neither a-

Similar to the case of--markings,w-markings can also coreachable nav-coreachable, and therefore it is not needed
be removed under certain conditions, namely if the stat® reach anu-marked state, nor does it lead to any further
markedw is not reachable from any state marked conditions &-marked state) that need to be satisfied. This

Rule 3 (v-Removal Rule)lf a state z is not reachable state can be removed as shownGpy.
from any state marked, then anv-marking can be removed  Proposition 6: Let G = (3,11, X, —, X°, =) be a multi-
from (or added to) state. coloured automaton with, w € TI, and letC' be the set of

Example 3:AutomataGs and Gs in Fig. 2 are(a,w)- «a/w-coreachable states fd¥, namelyC = {z € X | z —
nonblocking equivalent. Only for states marked it is Z(a)UZ(w)}. Define H = (3,11,C, — ¢, X° N C,E|0)
required that a state markeds reachable, but state, in G2~ where — ¢ = {(z,0,y) € — | z,y € C} andE ¢ (1) =
cannot be reached from any state markedrherefore, the Z(x) N C for all w € II. ThenG ~(, ) H.
fact thatxs is markedw is irrelevant, and this marking can  Complexity.«./w-coreachability of all states in an automa-

be removed as shown ifi;. ton can be checked by a standard graph search visiting each
Proposition 5:Let ¢ = (3,11, X,—,X° Zg) be a transition at most once. There are at mpst?|>, | transi-

multi-coloured automaton withv,w € II, and letz € tions, and this leads to the overall complexity@f| X |?|%|)

X such that=Zg(a) — « does not hold. Defined = to check and apply the Coreachability Rule.

(3,11, X, —, X°, =) whereZy is identical to=; except
En(w) = Eg(w) \ {z}. ThenG ~(, ) H. _ _ . .
Complexity.To apply thew-Removal Rule to an automa- In generalised nonblocking, there are two different kinds
ton, it needs to be checked for all states whether they afé states. States marked carry nonblocking requirements,
reachable from am-marked state. This can be done by avhich means that their precise nondeterministic future may
standard graph search visiting each transition at most.ond€ relevant. These states can only be simplified using rules
There are at mostX|2|%,| transitions, and this leads to the Preserving conflict equivalence such as those in [8]. On
overall complexity ofO(|X|2|%|) to check and apply the the other hand, non- states do not carry nonblocking
w-Removal Rule to all states where it is applicable. requirements, and only the language associated with these

Again, the removal of--markings does not directly reduce States is important. These states can be treated usingaigegu
the state space, but it can make other rules applicable. @quivalence, and determinisation algorithms [16] can leelus
particular, it may increase the number of non-coreachable merge them.

states, which can be deleted according to the following. rule Rule 5 (Nona Determinisation Rule)Two non« states
that are reachable by exactly the same strings from initial

D. Removal of Non-coreachable States states and from each state markedcan be merged into a
Following is the first abstraction that actually removesingle state.
states from an automaton. While the following rule seems Example 5: AutomataG and H in Fig. 3 are(«,w)-non-
superficially similar to theCertain Conflicts Ruleof [8], blocking equivalent. Stateg andgs; are only reachable via
it is quite different. The Certain Conflicts Rule mergesstring o; from the initial state or from the onlyw-marked
blocking states into a single state when verifying standarstate and therefore can be merged into a single étates
nonblocking. Here, in the case of generalised nonblockinghown in H. Note that this simplification is not possible for
states that are not coreachable can be removed entirely. standard nonblocking, or if one of the two states is marked

E. Determinisation of Nom States



because in this case it is important that the two states have G

g2
different continuations to states marked g0 o1 91 02 ho 401
To de:scriber this rule formaIIy,'the concept 'of'automaton g2 g3 ho hs
abstraction with respect to aqguivalence relatioris used. _ o _ o
The idea is to identify certain groups of states as equitalen Fig. 4. Example application of Silent Continuation Rule.

and merge each group into a single state. The following

definitions are standard. S
Definition 7: Let X be an arbitrary set. A binary relation not markeda, Non- Determinisation can be used to merge

~ C X x X is anequivalence relationif ~ is reflexive, the source and target states of this transition. If botrestat
symmetric, and transitive. Ik is an equivalence relation are markedx, the a-Removal Rule can be used to remove
on X, the equivalence classf 2 € X is [z] = {y € X | the a-marking of the source state. The Silent Continuation
r ~ y}, and the set of equivalence classes modulds Rule in this section and the Only Silent Outgoing Rule in
written asX/~ = {[z] |z € X }. the following section can address cases where at most one
Definition 8: Let G = (X,1I, X, —, X°,Z) be a multi- of the two states linked by a silent transition is marked
coloured automaton, and let C X x X be an equivalence  Rule 6 (Silent Continuation Rule)A transition 2 — y

relation. Theabstractionof G with respect to~ is with y ¢ Z(«) can be removed if all transitions originating
0 & from statey are copied to state.
G/~ = (BIL X/~ =/~ X% E) ®) Example 6: AutomataG and H in Fig. 4 are(«,w)-non-
where blocking equivalent. The transitiogy — ¢; in G leads to
fm = {2l o) TSy} a none state, so it can be removed after copying the
- T ’ transition originating from the target state to the source
Xe = {[2°]|2z° € X°}; stategy. As a result, the target statg becomes unreachable
2(r) = {[z]|zeZ(r)} forallmell. and can be removed as shown#h

The None Determinisation Rule is described using a This simplification relies on the fact that the target siate

. . i ..~ "Is not marked «,, so there is no nonblocking requirement
particular equivalence relation, namelyeverse weak bisim- associated with that state. Therefore it can be merged into
ulation [19]: two states are considered as equivalent if the ' 9

can be reached via the same traces from the initial states. - oo oc state, leading to much stronger simplificatian th
Definition 9: Let G = (3, IT, X, —, X°,Z). An equiva- the Silent Continuation Rule for standard nonblocking [8].

lence relation~ C X x X is areverse weak bisimulation Definition 10: Let & = (X,IL X, —, X°, =) be a rDuIti-
on G, if the following conditions hold for alls1,z, € X coloured automaton with statesy € X such thatr — y.
with 2, ~ . Thetarget bypas®f transitionz — y in G is the automaton

e If 21 € X°, thenX° = . Gary = (5,1LX, =7y, X°, Eurny) Where
o For all statesw; € X and all eventss € Y, such

o
that w; - z; there exists a state, € X such that —any = @) U{(z02)[y =2}
P = i =(7)
Wa :((;) 9 andwy ~ ws. By () = { :(ﬂ') U{z}, Iftg € ~_(7T)-
Given these definitions, the Nan-Determinisation Rule (), otherwise.

can be described in a more precise way.
Rule 5 (None: Determinisation Rule)lf ~ is a reverse | 4 aut : ith I and stat X h
weak bisimulation on an automato@ such that states C©'0Ur€d automaton with,w € 11 and states, y € A suc

markeda are only equated to themselves by thenG can thatz = y, _andy # 3(0‘)' ThepG ~(aw) Goay- _
be replaced by3/~. Complexity.The Silent Continuation Rule can be applied

Proposition 7: Let G = (X, II, X, —, X°, =) be a multi- at most once to every-transition in an automaton, i.e.,
coloured automaton with, w € 11, and let~ C X x X be at most | X|? applications. Each application involves the
a reverse weak bisimulation off such thatlz] = {z} for COPYINg of all transitions from the target state to the seurc
all z € Z(a). ThenG ~(, ) G/~. state, and there may be up f8,||X| transitions outgoing
Complexity.A reverse weak bisimulation relation can beffom every state. Therefore, the overall complexity to éhec
computed in the same way as an observation equivalence 3¢ applicability of this rule and apply it to all applicable
ing the algorithm in [18], also under the additional coristra transitions iISO(|X (%))
that states marked cannot be merged. Like in the case of It should be noted that the removal ofréransition alone
observation equivalence, the transition relation firstisee does not necessarily lead to a reduction in state space or
be augmented to bypass amytransitions, resulting in the complexity. Indeed, the Silent Continuation Rule is likéty

Proposition 8: Let G = (3,11, X, —, X°, =) be a multi-

overall complexityO(| X |2|%|log | X]|). increase the number of transitions. Its major benefit isttreat
N ) target state may become unreachable, perhaps after raultipl
F. Removal ofr-Transitions Leading to Non- States application of the rule, and then can be removed. Also, the

Silent () transitions provide a significant potential forrule produces a more regular structure of transitions, whic
abstraction. If a silent transition links two states that lboth may pave the way for other simplifications.



Fig. 5.

Example application of Only Silent Outgoing Rule.

G. Removal of--Transitions Originating from Nom States

V. CONCLUSIONS

This paper shows how generalised nonblocking can be
verified compositionally by simplifying individual compo-
nents of a system before or while composing them. Seven
rewrite rules preserving generalised nonblocking haven bee
proposed, which can substantially reduce the number of
states of the automata encountered during verification. The
rules have been chosen to be computationally feasiblegwhil
still covering a wide range of situations encountered in
nondeterministic automata. Although developed specifical

The final rule considers the case of a silent transitiofor generalised nonblocking, the results presented hexe ar

originating from a nonmx state. This case is more difficult, also applicable to standard nonblocking.

and the following rule is more restrictive than its companio
for standard nonblocking [8], becausemarkings need to
be taken into account in addition to other conditions. (1

Rule 7 (Only Silent Outgoing RuleA statex that is not
markeda or w can be removed, if: =, andz has only [2]
T-transitions outgoing. Incoming transitions o must be
redirected to all the--successor states of

Example 7:Automata G and H in Fig. 5 are (a,w)- [l
nonblocking equivalent. Staig in G is not markedx or w
and has onlyr-transitions outgoing, so it can be bypassed
and removed as shown if/. This simplification is only [4]
possible because staje is not markedx or w. If the state is 5]
marked, the nonblocking conditions associated with it nee(g
to be retained, and there is no easy way to merge these intél
one or both of the successor states.

Definition 11: Let G = (%,11, X, —, X°,Z) be a multi-  [7]
coloured automaton, and let € X. The silent outgoing
bypassof statex in G is the automator,,~, = (3,11, X, (8]
— ey XS, Z) where

x

[9]
—en = (=2 \{(w,0,2) w5 x}) U
{(w,o,9) |lw> x5y}
o (X \{zhU{yeX|z Sy}, ifzexe, 10
o Xe, otherwise.
11]

No state is explicitly removed in this construction. How—[
ever, the bypassed statebecomes unreachable and can be
removed, provided that = x does not hold. If: = z, then
x remains reachable (consider> = = z in the definition
of —,~), but suchr-selfloops can be removed first using
observation equivalence. [13]

Proposition 9: Let G = (3,11, X, —, X°, =), and letz €
X be a state withv = andz ¢ Z(«) U Z(w), which has  [14]
only 7-transitions outgoing, i.es % implies o = 7. Then
G Z(a,w) Gen-

Complexity.To check whether the Only Silent Outgoing
Rule is applicable to a state, it must be confirmed that Em]
is not marked and has at least one and ordiyansitions
outgoing. Using appropriate data structures, this can Bb&’]
done in constant complexity. Applying the rule requires all;g,
incoming transitions to be copied to aitsuccessor states.
There can be up tdX||X,| incoming transitions and up
to | X| T-successors per state. Then the complexity to chegkg]
and apply the Only Silent Outgoing Rule to all states of an
automaton iO(|X|3|%]).

[15]
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