
Sampled-Data Controller Implementation

Yu Wang and Ryan J. Leduc

Dept. of Computing and Software, McMaster University
email: wangy22@cas.mcmaster.ca, leduc@mcmaster.ca

Abstract— The setting of this paper is the implementation
of timed discrete-event systems (TDES) as sampled-data (SD)
controllers. An SD controller is driven by a periodic clock and
sees the system as a series of inputs and outputs. On each
clock edge (tick event), it samples its inputs, changes states,
and updates its outputs.

In this paper, we establish a formal representation of an SD
controller as a Moore synchronous finite state machine (FSM).
We describe how to translate a TDES supervisor to a FSM,
as well as necessary properties to be able to do so. We discuss
how to construct a single centralized controller as well as a
set of modular controllers, and show that they will produce
equivalent output.

We also discuss a flexible manufacturing system (FMS)
example and present some FSM translation issues encountered,
as well as the FSM version of some of the system’s supervisors.

I. I NTRODUCTION

In the area of Discrete-Event Systems (DES) [1], [2], [3], a
lot of effort has been devoted to studying standard properties
such as nonblocking and controllability in a theoretical set-
ting. However, limited effort has been made in investigating
what an implementation of a DES supervisor would be like.

A good implementation method for DES supervisors
would be assampled-data (SD) controllers. An SD controller
is driven by a periodic clock and sees the system as a series of
inputs and outputs. On each clock edge, it samples its inputs,
changes state, and updates its outputs. An example of an SD
controller might be a programmable logic controller (PLC)
[4] or a Moore synchronous finite state machine (FSM) [5].
We are particularly interested in implementing timed DES
(TDES) [6] as SD controllers.

When we are using an SD controller to manage a given
system, we associate an input with each event, and an output
with each controllable event. We consider an event to have
occurred when its corresponding input has gone true during
a given clock period. We consider a controllable event to
be enabled when its corresponding output has been set true
by the controller, disabled otherwise. Finally, we associate
the clock edge that drives the SD controller with the TDES
tick (τ) event.

These definitions have several ramifications. First, an SD
controller does not know an event has occurred until the
next clock edge, and then it has no information on the
order or number of occurrences of events. The only ordering
information that remains is whichsampling period(clock
period) a given event occurred in.

As an example, consider Fig. 1. We see on the third rising
edge of the clock, the SD controller knows that both events
e1 and e2 have occurred, but not which came first. This
means that the SD controller can’t tell the difference between
the stringse1-e2-τ , e2-e1-τ , or e1-e2-e1-τ .

Fig. 1. Sampling Events

Second, forcing and disablement decisions can only be
made immediately after the clock edge and are constant till
the next clock edge. These issues raise concerns with respect
to controllability, nonblocking, plant model correctness, and
the SD controllers ability to determine which state the TDES
system currently is in.

In [7], [8], we identified a number of existing TDES
properties as well as introduced some new properties, in
particular SD controllability, to address issues related to
timing delay and concurrency inherent in an implementation,
and to make the translation from a TDES supervisor to an SD
controller easier. For a discussion on how SD controllability
compares to earlier works, see [8].

In this paper, we will focus on formalizing SD controllers
and defining how to translate a TDES supervisor into an SD
controller. We establish a formal representation of an SD
controller as a Moore synchronous finite state machine, and
describe how to translate a TDES supervisor to an FSM, as
well as necessary properties to be able to do so. We discuss
how to construct a single centralized controller as well as a
set of modular controllers, and show that they will produce
equivalent output.

We will also discuss a flexible manufacturing system
(FMS) example that we had earlier applied the SD controlla-
bility definition to and present some FSM translation issues
encountered, as well as the FSM version of some of the
system’s supervisors.

In Section II, we discuss TDES preliminaries. Section III
gives a quick introduction to the sampled-data setting. In
Section IV, we introduce a formal representation for SD
controllers as FSM, and present a centralized and modular
conversion method from TDES supervisors to FSM. Next,
in Section V we discuss the flexible manufacturing system
example and FSM implementations.

II. PRELIMINARIES

Below, we present a summary of the DES terminology
that we use in this paper.

Let Σ be a finite set of distinct symbols (events), Σ+ the
set of finite sequences of events, andΣ∗ = Σ+ ∪{ǫ}, where
ǫ is the empty string.Let L ⊆ Σ∗ be a languageover Σ.
A string t ∈ Σ∗ is a prefix of s ∈ Σ∗ (written t ≤ s) if
s = tu, for someu ∈ Σ∗. The prefix closureof language
L is defined asL = {t ∈ Σ∗ | t ≤ s for somes ∈ L}. Let
Pwr(Σ) denote the set of all possible subsets ofΣ. We will
use the notationΣ∗.σ to stand for the set of all stringssσ
for somes ∈ Σ∗.

For Ω ⊆ Σ, natural projectionPΩ : Σ∗ → Ω∗ denotes the
operation that deletes all events not inΩ from strings.

Definition 2.1: The Nerode equivalence relationover Σ∗

modL is defined fors, t ∈ Σ∗ as:s ≡L t iff (∀u ∈ Σ∗)su ∈
L ⇔ tu ∈ L.

Timed DES (TDES) [6] extends untimed DES theory by
adding a newtick (τ) event, corresponding to the tick of a
global clock. The event set of a TDES contains thetick event
as well as other non-tick events calledactivity events(Σact).

A TDES automaton is represented as a 5-tupleG =
(Q,Σ, δ, qo, Qm) whereQ is the state set,Σ = Σact ∪̇ {τ}
is the event set, the partial functionδ : Q × Σ → Q is
the transition function,qo is the initial state, andQm is the
set of marked states. We extendδ to δ : Q × Σ∗ → Q in
the natural way. The notationδ(q, s)! means the transition
is defined. Theclosed behaviorof G is defined to be
L(G) := {s ∈ Σ∗| δ(qo, s)!}. The marked behavioris
defined asLm(G) := {s ∈ L(G)| δ(qo, s) ∈ Qm}.

Definition 2.2: A DES G is said to benonblockingif

Lm(G) = L(G)
TDES contain forcible (Σfor), and prohibitable events

(Σhib). Forcible events are non-tick events which can be
relied upon to preempttick, when needed. Prohibitable events
are non-tick events that can be disabled. The set of control-
lable events areΣc = Σhib∪̇ {τ}, and the uncontrollable
events areΣu = Σ \ Σc.

The reachable state subset of DESG is Qr := {q ∈
Q| (∃s ∈ Σ∗) δ(qo, s) = q}. A DES G is reachable if
Qr = Q. We will always assume that a DES is reachable,
has a finite state and event set, and is deterministic.

Definition 2.3: For Gi = (Qi,Σi, δi, qo,i, Qm,i) (i =
1, 2), we define thesynchronous productG1||G2 of the two
DES as:

(Q1 × Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 × Qm,2),

whereδ((q1, q2), σ) is only defined and equals

(q′1, q
′
2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2;

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1;
(q1, q

′
2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

For the definitions given in this paper, we assume that
our plantG and supervisorS are always combined with the
synchronous product operator, thus our closed-loop system
is G||S.

We now introduce an existing TDES conditions that will
be useful. It ensures that TDES do not allow atick event to
be indefinitely preempted by activity events.

Definition 2.4: TDES G = (Q,Σ, δ, q0, Qm) is activity-
loop-free (ALF)if

(∀q ∈ Qr)(∀s ∈ Σ+
act)δ(q, s) 6= q

We require that our closed-loop system be ALF, but it
does not make sense to require our supervisors to be ALF
as they may contain selfloops of prohibitable events in order
to be more compact. However, selfloops provide enablement
information but do not contain useful next-state information
for SD controllers, so we can ignore them for translation
purposes. We now introduce the definition below that will
make supervisors easier to translate.

Definition 2.5: Let G = (Q,Σ, δ, q0, Qm) be a TDES,
and letG′ be G with all activity event selfloops removed.
G is non-selfloop activity-loop-freeif G′ is ALF.

III. SAMPLED-DATA SETTING

In this section, we introduce the sampled-data setting from
[7], [8]. We will take Σ to be our system event set. For SD
controllers, we make the following assumptions about our
system. It is the designer’s responsibility to ensure that they
are met.

1) The set of prohibitable events is exactly equal to the set
of forcible events for our system. This is a reasonable
assumption that will greatly simplify things.

2) Enabling a prohibitable event means we should force the
event during the current clock period. We only allow it
to occur once per clock period.

3) We assume an event has “occurred” when its input goes
true unless this occurs so close to the clock edge, it
shows up in the next sampling period. In that case, it
“occurs” immediately after the clock edge. This should
be reflected in the system model.

4) The length of a given input pulse for an event is such
that the controller will never miss it, or interpret the
event as occurring in the wrong clock period.

For SD controllers, we identify atick event with the clock
edge that the SD controller uses for sampling and state
change. This means the strings an SD controller can observe
areǫ and strings ending with atick. We refer to these strings
assampled strings, defined asLsamp = Σ∗.τ ∪ {ǫ}.

An SD controller changes state after each clock edge
(tick). Its next state is determined by all the strings that can
occur containing a singletick event at the end, since the last
tick event. We refer to such strings asconcurrent strings,
defined asLconc = Σ∗

act.τ ⊂ Lsamp.
For TDES supervisorS = (X,Σ, ξ, xo,Xm), states

reached from the initial state by sampled strings represent
states inS that are at least partially observable. We refer to
such states assampled states, defined as:

Xsamp := {x ∈ X|x = ξ(xo, s) for somes ∈ L(S)∩Lsamp}

However, if two strings contain the exact same events but
in different order and/or number, they are indistinguishable
to the controller. To capture this uncertainty, we define the
occurrenceoperator. It takes a string and returns the set of
events (theoccurrence image) that make up the string.

Definition 3.1: For s ∈ Σ∗, the occurrence operator,
Occu: Σ∗ → Pwr(Σ), is defined as:

Occu(s) := {σ ∈ Σ | s ∈ Σ∗.σ.Σ∗}

Clearly, we would have a problem translating a supervisor
if two concurrent strings with the same occurrence image are
possible at a given sampled state, but they lead to different
states inS. This would mean our controller would become
nondeterministic. To ensure this doesn’t happen, we require
our TDES beconcurrent string deterministic.

Definition 3.2: A TDES S = (X,Σ, ξ, xo,Xm) is con-
current string (CS) deterministic, if

(∀s ∈ L(S) ∩ Lsamp)(∀s′, s′′ ∈ Lconc)

[ss′, ss′′ ∈ L(S) ∧ Occu(s′) = Occu(s′′)] =⇒

[ss′ ≡L(S) ss′′∧ss′ ≡Lm(S) ss′′∧ξ(xo, ss
′) = ξ(xo, ss

′′)]
In Fig. 2(a), we see part of a TDES that is not CS

deterministic. For this e.g., we can merge statesx′and x′′

and use the minimal version for our translation. This results
in the TDES we see in Fig. 2(b), which is CS deterministic.
If the two states were not equivalent, we wouldn’t be able
to translate the supervisor.

Fig. 2. CS Deterministic Example

We now can define for a given TDES anext-sampling-
statefunction. This represents how a TDES will move from
sampling state to sampling state via concurrent strings.

Definition 3.3: For CS deterministic TDESS = (X,Σ,

ξ, xo,Xm), we define thenext-sampling-statepartial func-
tion, ∆ : Xsamp × Pwr(Σact) → Xsamp, as follows. For
x ∈ Xsamp ⊆ X andΣ′ ⊆ Σact,

∆(x,Σ′) :=

{

ξ(x, s) if (∃s ∈ Lconc)ξ(x, s)! &
Occu(s) ∩ Σact = Σ′

undefined otherwise
We use the notation∆(x,Σ′)! to indicate that∆(x,Σ′)

is defined. As function∆ is only used for CS deterministic
TDES, it’s easy to see that it is well defined.

We define forS a prohibited actionfunction that captures
which prohibitable events are disabled at the sampled state.

Definition 3.4: For TDES supervisorS = (X,Σ, ξ, xo,

Xm), theprohibited actionfunctionζ : Xsamp → Pwr(Σhib)
is defined forx ∈ Xsamp ⊆ X as follows:

ζ(x) := {σ ∈ Σhib|ξ(x, σ)!}

IV. M OOREFSM

In this section, we introduce a formal representation for
SD controllers and a translation method for TDES supervi-
sors. We will model SD controllers as Moore synchronous
finite state machine (FSM) [5]. Our choice to do so is
based on the work of Leduc [9] who implemented, in an
ad hoc fashion, untimed DES as FSM. Using FSM to define
SD controllers is a good choice as it provides a concrete

definition of the controller, yet a FSM still allows a variety
of physical implementations such as a programmable logic
controller (PLC) [4] program, using digital logic [5], or asa
software program on a computer.

A. Formal Model

Before we give a formal definition of an SD controller,
we first need to discuss some notation. We will often be
discussing Boolean vectors that change periodically with
respect to some clock. A Boolean vector is a vector whose
individual elements can only be assigned the values oftrue
(1) or false (0). We say “at timek” to indicate the point of
time at whichk clock ticks have gone by since our starting
reference point atk = 0. For any vectorv = [v1, v2, ..., vn],
we write “v(k)” and “vj(k)” to denote the value ofv and
vj (j ∈ {1, . . . , n}) at timek. As our indexk takes on new
values, our vectorv defines a sequence with respect to ticks
of our clock, which we define to be{v(k)|k = 0, 1, ...}, and
is denoted as{v(k)} as a shorthand. When we are discussing
an SD controller, we can think ofk = 0 as representing the
time when the controller has just been turned on or reset. For
TDES systems, a “clock tick” corresponds to the occurrence
of a tick event.

We define an SD controllerC as the tupple

C = (I, Z,Q,Ω,Φ,qres)
where

• I is the set of possible Boolean vectors that the in-
puts to our controller can take on. Each vectori =
[i0, i1, .., iv−1] ∈ I hasv input variables. Each element
of i corresponds to a unique activity event in our
system. When an element is set to1, this means the
corresponding event has occurred at least once in the
previous clock period, otherwise it is set to0.

• Z is the set of possible Boolean vectors that the
controller outputs can take on. Each vectorz =
[z0, z1, .., zr−1] ∈ Z hasr output variables. Each ele-
ment ofz corresponds to a unique prohibitable event in
our system. When an element is set to1, this means that
corresponding event is enabled and that the controller
should make the event occur before the next clock tick,
where0 means it is disabled.

• Q is the set of possible Boolean vectors that the
state of our controller can take on. Each vectorq =
[q0, q1, .., ql−1] ∈ Q hasl state variables.

• qres is the initial (reset) state for when the controller
starts operating or is reset. We takeq(0) = qres.

• Ω : Q× I → Q is a next-state function which takes the
current stateq(k) ∈ Q and an input vectori(k+1) ∈ I,
and returns the next stateq(k+1) = Ω(q(k), i(k+1)).

• Φ : Q → Z is the state-to-output map. For stateq ∈ Q,
the outputz ∈ Z at this state isz = Φ(q).

For a specific run of our controller, we would receive a
specific sequence of inputs{i(k)}, starting at timek = 0.
This sequence, combined withqres, and Ω, will uniquely
define our current sequence of states,{q(k)}. In turn,{q(k)}
andΦ will uniquely define our current sequence of outputs,
{z(k)}.

B. Translation Method Introduction

Informally, to convert TDESS = (X,Σ, ξ, xo,Xm) into
SD controllerC = (I, Z,Q,Ω,Φ,qres), we take the sam-
pled states ofS as the states ofC. The initial (reset) state of
C would be the initial state ofS. We then determine which
concurrent strings are possible from a given sampled state.
The occurrence image of these concurrent strings would
then define our next-state conditions. For stateq of C, an
output (enablement of someσ ∈ Σhib) is set totrue if the
corresponding event is possible at the corresponding sampled
statex in S, else set tofalse.

As an example, consider the TDES shown in Fig. 3(a)
where arrows with slashes indicate prohibitable events. We
see that its sampled states areI (initial state), W and D

(only other states with incomingtick event). We thus equate
the states of our FSM in 3(b) toqres = [0, 0] = I, [0, 1] = W

and [1, 0] = D.

(a) Original TDES

Q=[0, 0]
Z=[1,1,0,0]

Reset

DEF

Q=[0, 1]
Z=[0,0,0,0]

[1,1,0,0,0,0] [0,0,0,0,1,0]

DEF

Q=[1, 0]
Z=[0,0,1,1]

[0,0,0,0,0,1]

[0,0,1,1,0,0]

DEF

(b) FSM Translation

Fig. 3. FSM Translation Example

For our FSM, our ordering for the input variables is
i = [α1, α2, µ1, µ2, β, λ] and for our outputs it isz =
[α1, α2, µ1, µ2]. Our outputs for each state of the FSM
is determined by the prohibitable events possible at the
corresponding sampled state of the TDES. As onlyα1 and
α2 are possible at stateI, only these outputs are set to 1 at
state[0, 0]. Similarly, all outputs are set to 0 at state[0, 1]
and onlyµ1 andµ2 outputs are set to 1 at state[1, 0].

Examining stateI, we see that the only concurrent strings
leaving it are α1α2τ and α2α1τ . They have the same
concurrent image{α1, α2, τ} and both take us to stateW .
Our next-state condition is thus when onlyα1 andα2 have
occurred, we go to state[0, 1] as shown in 3(b). AsΩ is a
total function andξ is a partial function, we usually have to
add aDEF, or default transition, to cover input combinations
that we have not explicitly specified (i.e. it matches all
remaining unspecified input combinations). We determine the
next-state conditions for the remaining sampled states in a
similar fashion.

The operation of our FSM is that at system reset, it starts
operating at stateqres = [0, 0] with its outputs set to enable
only α1 and α2. At each clock tick, it samples its inputs
creating a new input vector,i, which is matched to the current
state’s next-state conditions to determine its new state. It then
changes to the new state, updates its outputs, and then waits
for the next clock tick. For an example of how to implement

an FSM on a programmable logic controller, see [9].
To be able to translate a TDES supervisor into an SD

controller, we only require that it be CS deterministic to
ensure that the resulting FSM will be deterministic. In
practice, we also require that the TDES be non-selfloop ALF
as a design aid. This makes it more likely that the TDES be
CS deterministic and typically makes the translation easier
and more compact as we will see in Section V.

Although the CS deterministic property is a sufficient
condition to do the translation, it is not sufficient to ensure
that the resultant controller applied to the plant will result in
the desired enablement, forcing, and nonblocking behavior.
As discussed in [7], [8], this requires that our supervisor
S be SD controllable for our plantG, G have proper
time behavior,S-singular prohibitable behavior, thatG be
complete forS, and that our closed-loop system be ALF
and nonblocking. Please see [7], [8] for an explanation of
these properties and a discussion of the results.

C. Event Mapping Functions

As we will often be discussing vectors whose elements
refer to specific events inΣact, we need a way to map
events to a vector’s elements and vice versa. LetG =
(Y,Σ, δ, yo, Ym) be the TDES plant to be controlled and
let S = (X,ΣS, ξ, xo,Xm) be a CS deterministic TDES
supervisor forG. Let C = (I, Z,Q,Ω,Φ,qres) be the SD
controller forS. We will take Σ to be our system event set
with ΣS ⊆ Σ.

As we could have multiple controllers, each using their
own event orderings, we first need define a default bijective
map,γg, between our activity event set and a default index
set that we will use for labeling the events. To simplify
things, we will require the event mapping functions for each
controller to respect the event ordering imposed byγg. This
means thatγg will induce a single way to define the various
mapping functions for our controller.

Definition 4.1: Let bijective mapγg : Σact → {0, . . . ,

|Σact|−1} be thecanonical event mapping functionfor Σact.
We now define input and output mapping functions for our

controller. Each function will map events to the index value
for the corresponding variable in the specified vector (I or
Z).

Definition 4.2: The input event mapping functionfor C is
defined to be a bijective mapγ : ΣS∩Σact → {0, 1, . . . , v−
1} with v = |ΣS ∩ Σact| such that

(∀σ1, σ2 ∈ ΣS∩Σact)γg(σ1) < γg(σ2) =⇒ γ(σ1) < γ(σ2)

Definition 4.3: The output event mapping functionfor C

is defined to be a bijective mapη : ΣS∩Σhib → {0, 1, .., r−
1} with r = |ΣS ∩ Σhib| such that

(∀σ1, σ2 ∈ ΣS∩Σhib)γg(σ1) < γg(σ2) =⇒ η(σ1) < η(σ2)
As these functions are bijective, their inverse functions

always exist. We can thus use their inverse functions to map
an index value to its corresponding activity event.

D. Centralized Translation Method

We will now discuss how to translate a TDES super-
visor into a single centralized controller. Let TDESS =

(X,Σ, ξ, xo,Xm) be CS deterministic. To translateS into a
controller C = (I, Z,Q,Ω,Φ,qres), we need to determine
values for the members of the tupple.

We will start with I, Z, and Q. As they represent all
possible assignments of Boolean vectors, we first need to
define the size (number of elements/variables) of each vector.
The size of each input vectori ∈ I is defined to bev =
|Σact|. The size of each output vectorz ∈ Z is defined to
be r = |Σhib|.

We now specifyQ. We need to define the size of the state
vectors,l, so that a state vector is large enough to encode
a value for each sampled statex ∈ Xsamp ⊆ X. We thus
choosel to satisfy2l−1 < |Xsamp| ≤ 2l.

To complete our definition ofI, Z, andQ, we now need
to associate activity events with individual input variables,
prohibitable events with individual output variables, and
sampled states with state assignments ofQ.

Definition 4.4: Let γ be the input event mapping function
for controller C. We define forC the input set mapping
bijective function,ΓI : Pwr(Σact) → I, as follows. For
Σ′ ⊆ Σact, we haveΓI(Σ

′) = [i0, i1, .., iv−1] such that for
j = 0, 1, .., v − 1,

ij :=

{

1 if (∃σ ∈ Σ′)γ(σ) = j

0 otherwise
Definition 4.5: Let η be the output event mapping func-

tion for controllerC. We define forC theoutput set mapping
bijective function,ΓZ : Pwr(Σhib) → Z, as follows. For
Σ′ ⊆ Σhib, we haveΓZ(Σ′) = [z0, z1, .., zr−1] such that for
j = 0, 1, .., r − 1,

zj :=

{

1 if (∃σ ∈ Σ′)η(σ) = j

0 otherwise
Definition 4.6: We define for controllerC the state set

mapping function, Λ : Xsamp → Q, to be an arbitrary
injective function of the designer’s choice.

We can now define the reset state forC asqres = Λ(xo).
Next, we define the next-state and state-to-output maps.

Definition 4.7: Let ∆ be the next-sampling-state partial
function for supervisorS. For stateq ∈ Q and inputi ∈ I,
the next-statefunction, Ω, is defined to be

Ω(q, i) :=

{Λ(∆(x,Γ−1
I (i))) if (∃x ∈ Xsamp)q = Λ(x) &

∆(x,Γ−1
I (i))!

arbitrary otherwise
Definition 4.8: Let ζ be theprohibited actionfunction for

supervisorS. For stateq ∈ Q, the state-to-output mapΦ is
defined to be

Φ(q) :=

{

ΓZ(ζ(x)) if (∃x ∈ Xsamp)q = Λ(x)
ΓZ(∅) otherwise

We now have completely defined our controllerC for
TDES supervisorS. As long asS is CS deterministic, then its
next-sampling-state function∆ will be well defined, allowing
us to do the translation. Based on the above definitions, it is
easy to see that forΣ′ ⊆ Σact andx ∈ Xsamp, if ∆(x,Σ′)!,
then the diagram in Fig. 4 commutes.

So far we have assumed our supervisor’s event set isΣ. If
our supervisor is defined over a subsetΣS ⊂ Σ, we would
simply add to every state of our supervisor selfloops for each
σ ∈ Σ \ ΣS and use this new supervisor for the translation.

Fig. 4. Centralized Control Equivalence Diagram

E. Output Equivalence

Before we define a modular translation method, we first
need to consider how to determine if two different controllers
would produce equivalent output (i.e. enablement informa-
tion) for the same input sequence. The problem is that the
controllers could be defined over different sets of input events
and might use different event ordering for their vectors.

To handle different input requirements, we will assume
that we have a system input vector,ig, containing all activity
events and ordered with respect to the canonical event
mapping function,γg. We call {ig(k)} a canonical input
sequenceand ig ∈ {ig(k)} a canonical input vector. We
can then map eachig to a corresponding input vector for
each controller usingγg and the controllers own output
event mapping function,γ. For example, we can mapig =
[ig,0, ig,1, .., ig,vg−1] (vg = |Σact|) to i = [i0, i1, .., iv−1] by
settingil = ig,l′ for l = 0, . . . , v−1, with l′ = γg((γ

−1(l))).
In particular, we are interested in comparing two con-

trollers C1 and C2 that have been defined relative to the
same CS deterministic supervisorS = (X,Σ, ξ, xo,Xm).
We are thus only interested in determining if they generate
the same output with respect to input sequences that represent
valid input strings toS (i.e. s ∈ L(S) ∩ Lsamp).

Definition 4.9: A canonical input sequence{ig(k)} is
input valid for S, if
(∀k′ ∈ {1, 2, . . .})(∃s1, s2, . . . , sk′ ∈ Lconc)

[s1s2 . . . sk′ ∈ L(S)]∧ [(∀n ∈ {1, 2, . . . , k′})(∀σ ∈ Σact)
ig,γg(σ)(n) = 1 iff σ ∈ Occu(sn)]

Essentially in the above definition, we are requiring the
sequence{ig(k)} to correspond to a sequence of concurrent
strings that supervisorS will accept.

Definition 4.10: Let Cj = (Ij , Zj , Qj ,Ωj ,Φj ,qres,j) be
an SD controller with output mapping functionηj , j =
1, 2. We say C1 and C2 are output equivalent with re-
spect to S if for any canonical input sequence{ig(k)}
that is input valid forS, and induced outputszj(k

′) =
[zj,1(k

′), zj,2(k
′), .., zj,rj

(k′)] ∈ Zj (j = 1, 2) at time k′ =
{0, 1, 2, . . .}, the follow conditions are satisfied:

1) r1 = r2

2) (∀0 ≤ i < r1)η
−1
1 (i) = η−1

2 (i)
3) (∀k′ ∈ {0, 1, ..})z1(k

′) = z2(k
′)

Points 1 and 2 require the outputs of the two controllers to
be of the same size, and event ordering. Point 3 requires that
one controller enables a prohibitable event if and only if the
other does, for the same value ofk′.

F. Modular Translation Method

For large systems, we typically define modular supervisors
rather than a single centralised supervisor. We would like to
translate each supervisor into their own modular controller,
and then combine their outputs to produce the equivalent
enablement information of a centralized controller.

Let TDES S = S1||S2||..||Sn be a CS deterministic
supervisor where each modular supervisorSj = (Xj ,Σj , ξj ,

xo,j ,Xm,j), j = 1, 2, .., n, is also CS deterministic. LetΣj =
Σact,j∪̇{τ}, Σhib,j := Σhib ∩Σact,j , andΣ =

⋃

l∈{1,2,..,n}

Σl.

For the following discussion, we will define the logical
AND of vectorsu = [u1, u2, .., um] andv = [v1, v2, .., vm]
as u ∧ v = [u1 ∧ v1, u2 ∧ v2, .., um ∧ vm]. We define the
concatenation of vectorsu = [u1, u2, .., um1

] and v =
[v1, v2, .., vm2

] asuv = [u1, u2, .., um1
, v1, v2, .., vm2

].
Definition 4.11: For j = 1, 2, .., n, the jth modular

translation of CS deterministic supervisorSj to modular
controller Cj = (Ij , Zj , Qj ,Ωj ,Φj ,qres,j) is performed
using the method defined in Section IV-D after replacing
Σact by Σact,j , andΣhib with Σhib,j in the definitions.

To define how we combine the individual outputs of the
modular controllers together, we need to define the composite
controller of ourn modular controllers.

Definition 4.12: The composite controller forC1,C2,

. . . ,Cn, C = (I, Z,Q,Ω,Φ,qres) = comp(C1,C2, . . . ,

Cn), is defined as follows:
• The size of each input vectori ∈ I is defined to be

v = |Σact|. The size of each output vectorz ∈ Z is
defined to ber = |Σhib|. Let γ to be the input event
mapping function forC and η to be the output event
mapping function.

• The number of state variables for vectorsq ∈ Q is
defined to bel =

∑n
j=1 lj , wherelj is the number of

state variables forQj . The reset state is defined to be
qres = qres,1qres,2 . . .qres,n.

• The next-state functionΩ is defined such that, for
q(k) = q1(k)q2(k)..qn(k) ∈ Q and i(k + 1) ∈ I,
q(k + 1) = Ω(q(k), i(k + 1))

= Ω1(q1(k), i1(k + 1)) . . . Ωn(qn(k), in(k + 1))

where input vectori(k + 1) in canonical form with
respect toγg, was mapped to input vectorij(k + 1)
(j = 1, . . . , n) as described in Section IV-E.

• The state-to-output mapΦ is defined as follows. For
q = q1q2..qn ∈ Q, let zj = Φj(qj) = [zj,0, zj,1, . . . ,

zj,rj−1] ∈ Zj , j = 1, . . . , n. For eachzj , we translate
it to z′j = [z′j,0, z

′
j,1, .., z

′
j,r−1] ∈ Z such that,

(∀σ ∈ Σhib)z
′
j,η(σ) =

{

zj,ηj(σ) if σ ∈ Σhib,j

1 otherwise

We can now define:

Φ(q) =
∧

j∈{1,2,..,n}

z′j

The following theorem essentially states that the enable-
ment information of the composite controller is equivalent
to that of the centralized controller.

Theorem 4.1:Let CS deterministic supervisorsS =
S1||S2||..||Sn and Sj (j = 1, 2, .., n) be defined as
above. LetCj be the modular controller forSj , C′ =
comp(C1,C2, ..,Cn) be the composite controller, andC be
the centralized controller translated fromS;

thenC andC′ are output equivalent with respect toS.
Proof: See proof in [7].

V. FMS EXAMPLE

In this section we discuss an example based on the
untimed flexible manufacturing system (FMS) from Hill [10].
The system, shown in Fig. 5, is composed of six plant
components and five one slot buffers. We will treat the
buffers as specifications, requiring that they do not overflow
or underflow. The flow of material is illustrated in Fig. 5.

Table I below shows an explanation of the numeric event
labels used. Events labeled as numbers are directly from the
Hill example, where even numbers represent uncontrollable
events. For TDES, marked states are indicated by a gray
circle, and initial states have a thick outline.

TABLE I

MEANING OF EVENT LABELS

Label Meaning Label Meaning

921 Part enters system 922 Part enters B2
933 Robot takes from B2 934 Robot to B4
937 B4 to Robot for B6 939 B4 to Robot for B7
938 Robot to B6 930 Robot to B7
951 B4 to Lathe (A) 953 B4 to Lathe (B)
952 Lathe to B4 (A) 954 Lathe to B4 (B)
971 B7 to Con3 974 Con3 to B7
972 Con3 to B8 973 B8 to Con3
981 B8 to PM 982 PM to B8
961 Initialize AM 963 B6 to AM
965 B7 to AM 966 Finished from B7
964 Finished from B6

The plant components consist of two conveyors (Con2and
Con3), a handling robot (Robot), a lathe that can produce
two different parts (A and B), a painting machine (PM), and
a finishing machine (AM). In total, we have 10 plant TDES
and 15 modular supervisor TDES. Wang’s thesis [7] provides
complete details for each TDES, as well as a discussion
on how to apply the new SD controllability and related
definitions to the example. In this paper, we will focus on
translating the supervisors into SD controllers.

When we examine the supervisors from [7], we find that
supervisorsB4, B4Path, B6, and B7, shown at the top of
Fig. 6, are neither non-selfloop ALF nor CS deterministic.

For example, consider state 0 of supervisorB4. We see we
can do a934-tick sequence, a{934-951}*- tick sequence, and
a 934-951-934-tick sequence, among others. Not only would
our controller be nondeterministic, but these sequences pro-
vide us with numerous next-state conditions, many of which
are not possible in the system. Examining the plants and
supervisors in [7], we see that there will always be a

Con

937

939

952

954

Con2 Robot LatheB2 B4

921

922 933

934

B6

B7

AM

963

965

971974

Con3B8PM

973

972

982

981

966

964

937, 939 952, 954

951, 953

938

930

Fig. 5. Flexible Manufacturing System Overview

933,
tick

952

951,
953

937
934

939
954

1

2

3

0

B4
tick

tick

tick

937,
tick tick

963

938

0 1

B6

939,
973,
tick

974

971

965
930

1

20

B7 tick

tick

933,
tick tick

937, 939

934

0 1

B4Path

934

933,
tick

tick

0

NewB4Path

2

tick

937,
939

3

1

tick

933,
tick

tick

934

952

954

0

NewB4

5

6

7 tick

tick

tick

939

937

951,
953

2

1

3
8tick

tick

tick

938

937,
tick

tick

0

NewB6

3

tick

963

4

1

tick tick, 939, 973

tick

930

974

0

NewB7

5

7 tick

tick

965

971

1

2

6
tick

tick

Fig. 6. Corrected TDES Supervisors

tick event between events934and951, so we can add this to
our supervisor without restricting the closed-loop behavior
of our system. Making similar observations for the other
non-selfloop activity loops, we arrive at supervisorNewB4,
shown in Fig. 6, which is now non-selfloop ALF and CS
deterministic. Similarly, we derive replacement supervisors
NewB4Path, NewB6, andNewB7, also shown in Fig. 6.

We now convert these new supervisors into modular
controllers using the method described in Section IV-F. The
results are shown in Figure 7. To see the SD controllers for
the remaining supervisors for our system, please refer to [7].

FSM NewB7
[] [9]930 ! 74•

! 930 74•[] [9]

[971]

[965]

Reset State: 0

939 973

State: 1

971

DEF

State: 2

965

DEF

DEF

Reset

[934]

FSM NewB4Path

State: 1

939 937

State: 0

933

[937] + [939]

DEFDEF
[938]

[963]

Reset

FSM NewB6

State: 1

963

State: 0

937

DEFDEF

[937]

[939]

[951] + [953]

Reset
State: 0

933

951 953

State: 1

DEF

State: 2

937

DEF

State: 3

939

DEF

DEF

FSM NewB4

[] [952]934 ! ! 4• • [95]

![934 ! 4• •[95]] [952]

! 934 ! 4• • [95][] [952]

Fig. 7. FSM for New Supervisors
The controllers shown use a more compact notation than

that used in Fig. 3(b). At each state in the FSM, we only
list prohibitable events whose outputs are set to true. For
next-state conditions, we use Boolean equations to express
input conditions and we simplify them to only include input
events possible at that state. This is done to make the FSM
more compact and human readable.

For example, at state 0 of FSM NewB7 we see the next-
state condition[930]·![974] which means event930 occurred
in the last sampling period, but event974 did not. It will
match any input vector for which this is true. Here we are
representing logical AND as “·,” and logical negation as “!”.
We also represent logical OR as “+.”

To keep the diagrams for FSM NewB4Path and FSM
NewB4 simple, we took a couple of shortcuts. This was
done strictly for readability purposes, and would not be done
with an automated conversion process. Technically, the next-
state condition from state 1 to state 0 of FSM NewB4Path
should be([937]·![939])+(![937]·[939]). However, examining
the plant and other supervisors discussed in [7] we see that
events937 and939 can never occur in the same clock period
so we can safely simplify this condition to[937] + [939].

VI. CONCLUSIONS

In this paper, we establish a formal representation of an
SD controller as a Moore synchronous finite state machine
(FSM), and describe how to translate a TDES supervisor
to a FSM, as well as necessary properties to be able to
do so. We discuss how to construct a single centralized
controller as well as a set of modular controllers, and
show that they will produce equivalent output. Implementing
modular supervisors as a set of modular controllers provides
a compact implementation method.

We also discuss a flexible manufacturing system (FMS)
example that we had earlier applied the SD controllabil-
ity definition to and present some FSM translation issues
encountered, as well as the FSM version of some of the
system’s supervisors.

REFERENCES

[1] P. Ramadge and W. M. Wonham, “Supervisory control of a classof
discrete-event processes,”SIAM J. Control Optim, vol. 25, no. 1, pp.
206–230, 1987.

[2] W. M. Wonham and P. Ramadge, “On the supremal controllable
sublanguage of a given language,”SIAM J. Control Optim, vol. 25,
no. 3, pp. 637–659, May 1987.

[3] W. M. Wonham, Supervisory Control of Discrete-Event Systems,
Department of Elec and Comp Eng, University of Toronto, July 2008.

[4] W. Bolton, Programmable Logic Controllers, 4th ed. Elsevier, 2006.
[5] S. Brown and Z. Vranesic,Fundamentals of Digital Logic with VHDL

Design, 3rd ed. McGraw Hill Higher Education, 7 2008.
[6] B. Brandin and W. M. Wonham, “Supervisory control of timed

discrete-event systems,”IEEE Trans. on Auto Cont, pp. 329–342, Feb
1994.

[7] Y. Wang, “Sampled-data supervisory control,” Master’s thesis, Dept. of
Computing and Software, McMaster University, Hamilton, Ont,2009,
[ONLINE] http://www.cas.mcmaster.ca/˜ leduc/.

[8] R. J. Leduc and Y. Wang, “Sampled-data supervisory control,” in Proc.
of WODES 2010, Berlin, Germany, Aug. 2010, pp. 353–359.

[9] R. Leduc, “PLC implementation of a DES supervisor for a manufac-
turing testbed: An implementation perspective,” Master’s thesis, Dept.
of Elec and Comp Eng, University of Toronto, Toronto, Ont, 1996.

[10] R. C. Hill, “Modular verification and supervisory controller design for
discrete-event systems using abstraction and incremental construction,”
Ph.D. dissertation, Dept. of Mech Eng, University of Michigan, 2008.

	I Introduction
	II Preliminaries
	III Sampled-Data Setting
	IV Moore FSM
	IV-A Formal Model
	IV-B Translation Method Introduction
	IV-C Event Mapping Functions
	IV-D Centralized Translation Method
	IV-E Output Equivalence
	IV-F Modular Translation Method

	V FMS Example
	VI Conclusions
	References

