Sampled-Data Controller Implementation

Yu Wang and Ryan J. Leduc

Dept. of Computing and Software, McMaster University
email: wangy22@cas.mcmaster.ca, leduc@mcmaster.ca

Event 1

Abstract— The setting of this paper is the implementation
of timed discrete-event systems (TDES) as sampled-data (SD)

controllers. An SD controller is driven by a periodic clock and cok & LI TIT pata .
sees the system as a series of inputs and outputs. On each 1 [Sampled o 23
clock edge fick event), it samples its inputs, changes states, Frent -

and updates its outputs. e e Event 2

In this paper, we establish a formal representation of an SD
controller as a Moore synchronous finite state machine (FSM).
We describe how to translate a TDES supervisor to a FSM, o 1 23
as well as necessary properties to be able to do so. We discuss
how to construct a single centralized controller as well as a
set of modular controllers, and show that they will produce

equivalent output. . . .
We also discuss a flexible manufacturing system (FMS) Second, forcing and disablement decisions can only be

example and present some FSM translation issues encountered, made immediately after the clock edge and are constant till
as well as the FSM version of some of the system’s supervisors. the next clock edge. These issues raise concerns with tespec
|. INTRODUCTION to controllability, nonblocking, plant model correctneasd

In the area of Discrete-Event Systems (DES) [1], [2], [3]. eEhe SD controllers ability to determine which state the TDES

. .System currently is in.
lot of effort has been devoted to studying standard progerti . - -
such as nonblocking and controllability in a theoretical se In [7], [8], we identified a number of existing TDES

ting. However, limited effort has been made in investigatin properties as well as introduced some new properties, in

what an implementation of a DES supervisor would be "keoarticular SD controllability, to address issues related t
A good implementation method for DES supervisoréiming delay and concurrency inherent in an implementation

would be asampled-data (SD) controllerin SD controller and to make the translation from a TDES supervisor to an SD

is driven by a periodic clock and sees the system as a seriescgptroller easier. For a discussion on how SD controligbili

inputs and outputs. On each clock edge, it samples its inpuf@mpa_res to earlier vyorks, see [8]. .

changes state, and updates its outputs. An example of an SO this paper, we will focus on formalizing SD controllers
controller might be a programmable logic controller (PLC2Nd defining how to translate a TDES supervisor into an SD
[4] or a Moore synchronous finite state machine (FSM) [5]pontroller. We establish a formal representation of an SD

We are particularly interested in implementing timed pegontroller as a Moore synchronous finite state machine, and
(TDES) [6] as SD controllers. describe how to translate a TDES supervisor to an FSM, as

When we are using an SD controller to manage a giveWe" as necessary properties to be able to do so. We discuss
system, we associate an input with each event, and an OutMN to construct a single centralized controller as well as a
with each controllable event. We consider an event to hawst of modular controllers, and show that they will produce
occurred when its corresponding input has gone true durifgiuivalent output. _ .

a given clock period. We consider a controllable event to We Wwill also discuss a erX|pIe ma'nufactunng system
be enabled when its corresponding output has been set tifid1S) example that we had earlier applied the SD controlla-
by the controller, disabled otherwise. Finally, we assecia bility definition to and present some FSM translation issues

the clock edge that drives the SD controller with the TDEgNCountered, as well as the FSM version of some of the
tick (7) event. system’s supervisors.

These definitions have several ramifications. First, an SD In Sectio_ri—ll,_ we discuss TDES preliminaries. Sec@ M
controller does not know an event has occurred until th@ives a quick introduction to the sampled-data setting. In
next clock edge, and then it has no information on th&ection IV, we introduce a formal representation for SD

order or number of occurrences of events. The only orderirgPntrollers as FSM, and present a centralized and modular
information that remains is whickampling period(clock ~conversion method from TDES supervisors to FSM. Next,

period) a given event occurred in. in Section_V we discuss the flexible manufacturing system
As an example, consider Fig. 1. We see on the third risingxample and FSM implementations.

edge of the clock, the SD controller knows that both events

el and e2 have occurred, but not which came first. This

means that the SD controller can't tell the difference betwe Below, we present a summary of the DES terminology

the stringsel-e2+, e2-els, or el-e2-elr. that we use in this paper.

Fig. 1. Sampling Events

Il. PRELIMINARIES

Let ¥ be a finite set of distinct symbolg\enty, =+ the (Vg € Q,)(Vs € 21.,)d(q,5) # q
set of finite sequences of events, anitd= X1 U {¢}, where We require that our closed-loop system be ALF, but it
€ is the empty string.Let L C ¥* be alanguageover . does not make sense to require our supervisors to be ALF
A string t € ¥* is a prefix of s € ¥* (written ¢t < s) if as they may contain selfloops of prohibitable events in order
s = tu, for someu € X*. The prefix closureof language to be more compact. However, selfloops provide enablement
L is defined asl, = {t € ¥* |t < sfor somes € L}. Let information but do not contain useful next-state inforroati
Pwr(X) denote the set of all possible subsetbfWe will for SD controllers, so we can ignore them for translation

use the notatiorE*.c to stand for the set of all stringer purposes. We now introduce the definition below that will

for somes € ¥*. make supervisors easier to translate.
For Q2 C ¥, natural projectionPy,: X* — Q* denotes the Definition 2.5: Let G = (Q,%,9, g0, @) be a TDES,
operation that deletes all events not(infrom strings. and letG’ be G with all activity event selfloops removed.

Definition 2.1: The Nerode equivalence relatioover ¥* G is non-selfloop activity-loop-fred G’ is ALF.
mod L is defined fors,t € X* as:s =, ¢ iff (Vu € X*)su €
Lo tucl. [1l. SAMPLED-DATA SETTING

Timed DES (TDES) [6] extends untimed DES theory by In this section, we introduce the sampled-data setting from
adding a newtick (r) event, corresponding to the tick of a[7], [8]. We will take ¥ to be our system event set. For SD
global clock. The event set of a TDES containstibk event ~controllers, we make the following assumptions about our
as well as other notiek events calledhctivity event{X,.;). System. Itis the designer’s responsibility to ensure thayt

A TDES automaton is represented as a 5-tufle= are met.
(Q,%,0,q, Q) Where@ is the state se. = X, U {7} 1) The set of prohibitable events is exactly equal to the set
is the event set, the partial function: Q@ x ¥ — @ is of forcible events for our system. This is a reasonable
the transition functiong, is the initial state, and),,, is the assumption that will greatly simplify things.
set of marked states. We exteddo § : Q x ¥* — @ in 2) Enabling a prohibitable event means we should force the
the natural way. The notatiofi(¢, s)! means the transition event during the current clock period. We only allow it
is defined. Theclosed behaviorof G is defined to be to occur once per clock period.
L(G) := {s € ¥*| 6(¢go,s)!}. The marked behavioris 3) We assume an event has “occurred” when its input goes
defined asl,,(G) := {s € L(G)| 6(¢0,5) € Qum }- true unless this occurs so close to the clock edge, it
Definition 2.2: A DES G is said to benonblockingif shows up in the next sampling period. In that case, it
Lin(G) = L(G) “occurs” imm_ediately after the clock edge. This should
TDES containforcible (X;,,), and prohibitable events be reflected in the system model.

(Ship). Forcible events are natick events which can be 4) The length of a given input pulse for an event is such
relied upon to preempiick, when needed. Prohibitable events that the controller will never miss it, or interpret the
are nontick events that can be disabled. The set of control- ~ €vent as occurring in the wrong clock period.
lable events ar&c, = ¥,,,U {7}, and the uncontrollable For SD controllers, we identify tick event with the clock
events areZ,, = X\ 3. edge that the SD controller uses for sampling and state
The reachable state subset of DESis @, := {¢ € change. This means the strings an SD controller can observe
Q| (3s € ¥*)d(q0,8) = q}. A DES G is reachableif aree and strings ending with ick. We refer to these strings
Q. = Q. We will always assume that a DES is reachablegs sampled stringsdefined asl gy = X*.7 U {€}.

has a finite state and event set, and is deterministic. An SD controller changes state after each clock edge
Definition 2.3: For G; = (Qi,%:,0i,¢0,i,Qm,) (@ = (tick). Its next state is determined by all the strings that can

1,2), we define thesynchronous produdt, |G, of the two occur containing a singliéck event at the end, since the last

DES as: tick event. We refer to such strings a&sncurrent strings

Q1 X Q2,%1 U X2,0,(¢o,1,40,2), Qm,1 X Qm,2), defined acone = Sier T C Loamp:

(@ 2l _2 (o _ 2) ! 2) For TDES supervisorS = (X,%,§,z,,X,,), States
whered((q1,¢2), o) is only defined and equals reached from the initial state by sampled strings represent
(@),) if 0 € (S1N%2),81(q1,0) =), 02(q2,0) = dl; states inS that are at least partlially obs.ervable. We refer to
(¢).q) if 0 €51 —Xo,61(q1,0) = ¢, such states asampled stategdefined as:

(q1,q%) if 0 € X —X1,82(q2,0) = qb. KXsamp = {z € Xz = £(x,, s) for somes € L(S)NLsamp }

For the definitions given in this paper, we assume that , , ,
our plantG and supervisoB are always combined with the However, if two strings contain the exact same events but

synchronous product operator, thus our closed-loop systdf different order and/or number, they are indistinguiseab
is GJ[S. to the controller. To capture this uncertainty, we define the

We now introduce an existing TDES conditions that willoccurrenceoperator. It takes a string and returns the set of
be useful. It ensures that TDES do not allovick event to €vents (theoccurrence imagethat make up the string.
be indefinitely preempted by activity events. Definition 3.1: For 5 € _E*, the occurrence operator,
Definition 2.4: TDES G = (Q,%, 6, qo, Q) is activity- Occu: X — Pwr(%), is defined as:
loop-free (ALF)if Occys) :={oc € X|s € X".0.2"}

Clearly, we would have a problem translating a supervisatefinition of the controller, yet a FSM still allows a variety
if two concurrent strings with the same occurrence image a physical implementations such as a programmable logic
possible at a given sampled state, but they lead to differecontroller (PLC) [4] program, using digital logic [5], or as
states inS. This would mean our controller would becomesoftware program on a computer.
nondeterministic. To ensure this doesn’'t happen, we requifh Formal Model

our TDES beconcurrent string deterministic _ -
Definition 3.2: A TDES S = (X, %, ¢, 20, X,n) IS CON- Before we give a formal definition of an SD controller,

current string (CS) deterministidf \é\{e first_ neeéj tcl) discusst sorrtmﬁ Potﬁltion. We W(I::| oﬁen bt(ra]
iscussing Boolean vectors that change periodically wi
(Vs € L(S) N Lsamp) (V5", 8" € Leonc) respect to some clock. A Boolean vector is a vector whose
[ss, 85" € L(S) A Oceus’) = Oceus”)] = individual elements can only be assigned the valuesusf
[ss" =p(s) 88" Nss' =, () 88" NE(20,85") = E(20,55")] (1) or false (0) We say “at timek” to indicate the point of
In Fig. [2(a), we see part of a TDES that is not C3ime at whichk clock ticks have gone by since our starting
deterministic. For this e.g., we can merge statéand z” reference point at = 0. For any vectow = [vy,va, ..., U],
and use the minimal version for our translation. This resultwe write “v(k)” and “v;(k)” to denote the value of and
in the TDES we see in Fig.l 2(b), which is CS deterministicv; (j € {1,...,n}) at timek. As our indexk takes on new
If the two states were not equivalent, we wouldn’t be ablealues, our vectow defines a sequence with respect to ticks

to translate the supervisor. of our clock, which we define to bgv(k)|k = 0,1, ...}, and
is denoted agv(k)} as a shorthand. When we are discussing
s an SD controller, we can think df = 0 as representing the

O——+@—- N time when the controller has just been turned on or reset. For
""" TDES systems, a “clock tick” corresponds to the occurrence
*@- of atick event.

: We define an SD controlle€ as the tupple

O_—‘_ C= (I,Z,Q,Q,@,qres)

' where

0w minimized supenisor () minimized supervior o I is the set of possible Boolean vectors that the in-

puts to our controller can take on. Each vecio=

[ig, %1, ..,39—1] € I hasv input variables. Each element

of i corresponds to a unique activity event in our

Fig. 2. CS Deterministic Example
We now can define for a given TDES rext-sampling- X)
statefunction. This represents how a TDES will move from system. When an element is set Ipthis means the
sampling state to sampling state via concurrent strings. corrgspondlng eve_nt has occ_urre_d_at least once in the
Definition 3.3: For CS deterministic TDES = (X, %, previous clock period, (_)therW|se Itis setao
¢,2,, Xn), we define thenext-sampling-statartial func- o Z is the set of possible Boolean vectors that the

tion, A : Xyamp X PW{(Zaet) — Xsamp, @S follows. For controller outputs can take on. Each vectar =
reX C X andY C oo [20, 21, .., 2r—1] € Z hasr output variables. Each ele-
samp = = acts

£(z, s) if (35 € Logne)E(,) & ment ofz corresponds to a unique prohi_bitable event in
Az, Y) = { OceU(s) N Saer = X our system. When an element is sefltdhis means that
undefined otherwise corresponding event is enabled and that the controller
We use the notatiom(z, ¥')! to indicate thatA(z, X') should make the event occur before the next clock tick,
is defined. As function\ is only used for CS deterministic ~ Where0 means it is disabled.
TDES, it's easy to see that it is well defined. o Q is the set of possible Boolean vectors that the
We define forS a prohibited actionfunction that captures state of our controller can take on. Each veatpr=
which prohibitable events are disabled at the sampled.state (90,91, -, q1-1] € @ hasl state variables.
Definition 3.4: For TDES supervisoS = (X,3,¢, z,, * Qres IS the initial fese) state for when the controller
X,,), theprohibited actiorfunction¢ : Xamp — PWI(Zpip) starts operating or is reset. We ta#ft)) = qes.
is defined forz € X,qm, C X as follows: « 2:Qx I — Qis anext-state function which takes the
C(x) = {o € Dhap|é(z,)1} current statey(k) € @ and an input vector(k+1) € I,
and returns the next statggk+1) = Q(q(k),i(k+1)).
IV. MOOREFSM o ®:Q — Zis the state-to-output map. For staje= Q,

In this section, we introduce a formal representation for the outputz € Z at this state i = ®(q).
SD controllers and a translation method for TDES supervi- For a specific run of our controller, we would receive a
sors. We will model SD controllers as Moore synchronouspecific sequence of inputd(k)}, starting at timek = 0.
finite state machine (FSM) [5]. Our choice to do so isThis sequence, combined with.;, and Q, will uniquely
based on the work of Leduc [9] who implemented, in amlefine our current sequence of statgg,k)}. In turn,{q(k)}
ad hoc fashion, untimed DES as FSM. Using FSM to definand ® will uniquely define our current sequence of outputs,
SD controllers is a good choice as it provides a concretgz(k)}.

B. Translation Method Introduction an FSM on a programmable logic controller, see [9].

Informally, to convert TDESS = (X, 3, &, 20, X,n) into To be able to translate a TDES supervisor into an SD
SD controllerC — (1.2,0.9,8,q)’ we take the sam- controller, we only require that it be CS deterministic to
pled states o8 as the states df. The initial (ese) state of €NSure that the resulting FSM will be deterministic. In
C would be the initial state 0. We then determine which Practice, we also require that the TDES be non-selfloop ALF
concurrent strings are possible from a given sampled stafs® @ design aid. This makes it more likely that the TDES be
The occurrence image of these concurrent strings woulgS deterministic and typlca!ly makes the translation easie
then define our next-state conditions. For stgtef C, an and more compact as we will see in Section V. .
output (enablement of some € %,,;3) is set totrue if the Although the CS deterministic property is a sufficient

corresponding event is possible at the corresponding m,mplcondltlon to do the translation, !t is not suff|C|ent' to eresur
statez in S, else set tdalse that the resultant controller applied to the plant will fesu

As an example, consider the TDES shown in Fig. 3(d e d_esired enfiblement, for_cing, and nonblocking behgvior
where arrows with slashes indicate prohibitable events. discussed in [7], [8], this requires that our supervisor
see that its sampled states arginitial state), W and D S be SD .control.lable for ou.r.planG, G have proper
(only other states with incomintick event). We thus equate time behavior,S-singular prohibitable behavior, th& be

the states of our FSM in 3(b) tg,.. = [0,0] = 7, 0,1 = W complete forS, and that our closed-loop system be ALF
and[1,0] = D.)t 0.0} 0. 1] and nonblocking. Please see [7], [8] for an explanation of

these properties and a discussion of the results.

C. Event Mapping Functions

As we will often be discussing vectors whose elements
refer to specific events ift,., we need a way to map
events to a vector's elements and vice versa. Get=
(Y,%,6,y,,Ym) be the TDES plant to be controlled and
let S = (X,3s,&, 70, X,m) be a CS deterministic TDES
supervisor forG. Let C = (1,7,Q,Q,®,q,.s) be the SD
controller forS. We will take 3 to be our system event set

with Ysg C 3.
(a) Original TDES (b) FSM Translation As we could have multiple controllers, each using their
own event orderings, we first need define a default bijective
Fig. 3. FSM Translation Example map,y,, between our activity event set and a default index

For our FSM, our ordering for the input variables isS€t that we will use for labeling the events. To simplify
= [ou, a0, i1, 2, 3,A] and for our outputs it isz = things, we will require the event mapping functions for each

i S :
a1, i, ju1, 2], Our outputs for each state of the Fsmcontroller to respect the event ordering imposedypyThis

is determined by the prohibitable events possible at tH8€ans that, will induce a single way to define the various
corresponding sampled state of the TDES. As amjyand Mapping functions for our controller.
a, are possible at statg only these outputs are set to 1 at Definition 4.1: Let bijective mapy, : Yot — {0,...,
state[0,0]. Similarly, all outputs are set to O at stdte1] | >act|—1} be thecanonical event mapping functidar X,.;.
and onlyy, and i, outputs are set to 1 at staite 0. We now define |npu_t and_output mapping funct_lons for our

Examining state, we see that the only concurrent S,[ringscontroller. Each functlon vylll map events tq _the index value
leaving it are ayasr and asair. They have the same for the corresponding variable in the specified vectbiof
concurrent image «y, as, 7} and both take us to staté’. Z)
Our next-state condition is thus when only and a, have ! L
occurred, we go to stat, 1] as shown in 3(b). AL is a defln_ed to be a bijective map: XsNX4et — {0,1,...,0—
total function and¢ is a partial function, we usually have to 1} with v = [N Tact| such that
add aDEF, or default transition, to cover input combinations(Vo1, 02 € ¥sNXact)v4(01) < vg(02) = ~(01) < ¥(02)
that we have not explicitly specified (i.e. it matches all Definition 4.3: The output event mapping functidor C
remaining unspecified input combinations). We determiee this defined to be a bijective map: SsN X, — {0,1,..,7—
next-state conditions for the remaining sampled states in1g with r = |Xg N X4, such that
similar fashion. (Vor, 02 € BsNEhin)Ve(01) < 74(02) = n(o1) < 1n(02)

The operation of our FSM is that at system reset, it starts o S b Tel o) = No oL =

] > Ll ' As these functions are bijective, their inverse functions

operating at statey,.; = [0, 0] with its outputs set to enable 5y ays exist. We can thus use their inverse functions to map

only a; and az. At each clock tick, it samples its inputs 4, jndex value to its corresponding activity event.
creating a new input vectai, which is matched to the current

state’s next-state conditions to determine its new stateeh D- Centralized Translation Method
changes to the new state, updates its outputs, and then wait¥Ve will now discuss how to translate a TDES super-
for the next clock tick. For an example of how to implemenvwisor into a single centralized controller. Let TDES =

Definition 4.2: Theinput event mapping functidior C is

(X,%,€,24,X,,) be CS deterministic. To translaginto a Xoamp * PWI(E) —Be Xy —e PWI(Z11)
controllerC = (1,Z7,Q,Q, ®,q,.s), we need to determine
values for the members of the tupple.

We will start with I, Z, and Q. As they represent all
possible assignments of Boolean vectors, we first need to Al Ty Al Iz
define the size (number of elements/variables) of each vecto
The size of each input vectdre [is defined to bev =

|Z.ct|- The size of each output vectare Z is defined to o o ® ;
ber = |Zhib|- Q 1
We now specify). We need to define the size of the state Fig. 4. Centralized Control Equivalence Diagram

vectors,l, so that a state vector is large enough to encode
a value for each sampled statec X,,,,, C X. We thus

choosel to satisfy2!~! < | Xeump| < 2. E. Output Equ|vz.:1Ience . .
To complete our definition of, Z, andQ, we now need Before we define a modular translation method, we first

to associate activity events with individual input variegl Nneed to consider how to determine if two different contrslle
prohibitable events with individual output variables, andvould produce equivalent output (i.e. enablement informa-
sampled states with state assignmentg)of tion) for the same input sequence. The problem is that the

Definition 4.4: Let v be the input event mapping function controllers could be defined over different sets of inpunése
for controller C. We define forC the input set mapping and might use different event ordering for their vectors.
bijective function,I'; : Pwr(Xae) — I, as follows. For To handle different input requirements, we will assume
Y C Yaer, we havel';(X') = [ig, i1, ..,iy—1] Such that for that we have a system input vectiy, containing all activity

j=0,1,..,0—1, events and ordered with respect to the canonical event
. 1 if (GoeX)y(o)=j mapping function,y,. We call {i;(k)} a canonical input
4= otherwise sequenceand i, € {iz(k)} a canonical input vector We

can then map each, to a corresponding input vector for

tion for controllerC. We define forC the output set mapping €ach controller usingy, and the controllers own output
bijective function,I'; : Pwr(y,) — Z, as follows. For ©Vent mapping functiony. For example, we can mai =

¥ C Ypip, we havel'z(X') = 20, 21, .., 2-—1] Such that for ig,050g,1 - lg0,—1] (Vg = [Bact|) 101 = [0, 01, .. dp—1] DY

Definition 4.5: Let n be the output event mapping func-

i=01,.r—1 settingi; = i, for 1 =0,...,v—1, with I’ = ~,((v(1))).
' B ' .) In particular, we are mterested in comparing two con-
1 if (JoeX = . .
2= 3 (Uotherv)v?s(,g) J trollers C; and C, that have been defined relative to the

same CS deterministic supervisBr = (X, 3, &, z,, X.n).
We are thus only interested in determining if they generate
the same output with respect to input sequences that represe
valid input strings toS (i.e. s € L(S) N Lsqmyp)-

Definition 4.9: A canonical input sequencéi,(k)} is
input valid for S, if
(Vk/ S {1, 2,.. })(3317 89,...,S8k € Lconc)

[s182...8k € L(S)|A[(Vn € {1,2,...,k'}) (Vo € Eyer)

Definition 4.6: We define for controllerC the state set
mapping function, A : X,y — @, to be an arbitrary
injective function of the designer’s choice.

We can now define the reset state @rasq,.; = A(z,).
Next, we define the next-state and state-to-output maps.

Definition 4.7: Let A be the next-sampling-state partial
function for supervisoS. For stateq € Q and inputi € I,
the next-statefunction, Q is defined to be

A(A(z, D71 (0)) if (32 € Xuamp)a = Alz) & lg.5y(0)(n) = 1 iff o € OccUs,)] -
Q(q. i) Az, T7(3))! Essentially in the above definition, we are requiring the
arbitrary ot7heIrwise sequencdi,(k)} to correspond to a sequence of concurrent

Definition 4.8: Let ¢ be theprohibited actionfunction for ~ Strings that supervisds will accept.
supervisorS. For stateq € , the state-to-output mag is Definition 4.10: Let C; = (I}, Z;,Q;, 2, ®;, qres,;) be

defined to be an SD controller with output mapping functiom;, j =
_JTz((2) if Gz € Xsamp)a = A(z) 1,2. We sayC; and C, are output equivalent with re-
®(q) == T(0) otherwise spect toS if for any canonical input sequencéi,(k)}

We now have completely defined our controlir for that is input valid forS, and induced outputs; (k') =
TDES supervisoB. As long asS is CS deterministic, then its [25.1(K'), 2j.2(K'), .., 2., (K')] € Z; (j = 1,2) at time k" =
next-sampling-state functioh will be well defined, allowing {0:1,2, ...}, the follow conditions are satisfied:
us to do the translation. Based on the above definitions, it isl) 1 = r
easy to see that fot’ C %, andx € Xam,p, if Az, X)), 2) (VO < i <r)ny (i) =0yt (3)
then the diagram in Fig./4 commutes. 3) (VK €{0,1,..})z1 (k') = z2(K)

So far we have assumed our supervisor's event Bt [§ Points 1 and 2 require the outputs of the two controllers to
our supervisor is defined over a sub3gf C X, we would be of the same size, and event ordering. Point 3 requires that
simply add to every state of our supervisor selfloops for eaame controller enables a prohibitable event if and only é th
o € ¥\ Xg and use this new supervisor for the translationother does, for the same value it

F. Modular Translation Method Theorem 4.1:Let CS deterministic supervisor§ =

For large systems, we typically define modular supervisofa!|/S2/l-[[S» and 8; (= 1,2,..n) be defmeld as
rather than a single centralised supervisor. We would like {aoove. LetC; be the modular cor_1troller fos;, C' =
translate each supervisor into their own modular controllec®MP(C1, Cz, .., Cy) be the composite controller, aitd be
and then combine their outputs to produce the equivaleme centralized controller translated frcf
enablement information of a centralized controller. thenC and C’ are output equivalent with respect

Let TDES'S = S,|Sz]|..|[S. be a CS deterministic Proof: See proof in [7]. u
supervisor where each modular superviSor= (X, %;,&;,
Zoj, Xm,j)J =1,2,..,n,is also CS deterministic. Lét; = V. FMS ExAMPLE
Yact ;U{7}, Bhiv,j := Zhiv N Baer,j, andy = U . In this section we discuss an example based on the

i i)) le{1,2,.,n} untimed flexible manufacturing system (FMS) from Hill [10].

For the following discussion, we will define the logical The system, shown in Fig.| 5, is composed of six plant
AND of vectorsu = [uy, ug, .., u,,] andv = [Ulav27_~7”m] components and five one slot buffers. We will treat the
asuAv = [ur Avy,ug A vz, .., um A vm]. We define the yfrers as specifications, requiring that they do not overflo

concatenation of vectorss = [uy,uz,..,um,] @nd v = o ynderflow. The flow of material is illustrated in Fig. 5.
[01,v2, .., U,] BSUV = [_“1’“2’ -+ Umy, U1, U2, ':;};UWLQ]' Table/ | below shows an explanation of the numeric event
Definition 4.11: For j = 1,2,..,n, the j™* modular |3pe|s used. Events labeled as numbers are directly from the

translation of CS deterministic supervis8; to modular Hjj| example, where even numbers represent uncontrollable

controller C; = (I}, Zj, Qj, €Y, ®;, dres ;) i performed events. For TDES, marked states are indicated by a gray
using the method defined in Section IV-D after replacingircle, and initial states have a thick outline.
Yact BY Eger,j, and Xy with Xp,;p 5 in the definitions.

To define how we combine the individual outputs of the TABLE |
modular controllers together, we need to define the composit MEANING OF EVENT LABELS
controller of ourn modular controllers. - .

Definition 4.12: The composite controller forCy, Cs, ’ Label ‘ Meaning H Label ‘ Meaning
..,Cn, C = (I,Z,Q,9Q,9,qres) = comp(Cy,Cs, ..., 921 Part enters system 922 Part enters B2
C.,), is defined as follows: 933 Robot takes from B2|| 934 Robot to B4

« The size of each input vectdre I is defined to be | 937 | B4to Robotfor B6 || 939 | B4 to Robot for B7

v = |Xqct|- The size of each output vectarc Z is | 938 | Robot to B6 930 | Robot to B7
defined to ber = [X;;|. Let v to be the input event | 951 B4 to Lathe (A) 953 B4 to Lathe (B)
mapping function forC andn to be the output event | 952 Lathe to B4 (A) 954 Lathe to B4 (B)
mapping function. 971 B7 to Con3 974 Con3 to B7

« The number of state variables for vectajse Q@ is 972 Con3 to B8 973 B8 to Con3

defined to bel = >°"_, I;, wherel; is the number of | 981 | B8 to PM 982 | PMto B8

state variables fotp;. The reset state is defined to be| 961 | Initialize AM 963 | B6to AM

Qres = Qres,1res,2 - - - Ares,n - 965 B7 to AM 966 Finished from B7
o The next-state functior) is defined such that, for | 964 Finished from B6

a(k) = qu(k)qz2(k)..qn(k) € Q andi(k + 1) € I, .

a(k+1) = Q(q(k),i(k + 1)) The plant components consist of two conveyd@sif2 and

=W (q(k),ir(k+1) ... Qu(an(k), in(k + 1)) Con3), a handling robotRobot), a lathe that can produce

two different parts (A and B), a painting machire\), and
a finishing machineAM). In total, we have 10 plant TDES
and 15 modular supervisor TDES. Wang’s thesis [7] provides
complete details for each TDES, as well as a discussion
on how to apply the new SD controllability and related
definitions to the example. In this paper, we will focus on

where input vectori(k + 1) in canonical form with
respect toy,, was mapped to input vectds(k + 1)
(j =1,...,n) as described in Section IV-E.

o The state-to-output mag is defined as follows. For

q =4q192..9, € Q, letz; = ®;(q;) = [25,0,2j,15---»

izf[j;[g‘l,} _e [Zf’ J= 1 ; ’n']FngesanjihV;te translate translating the supervisors into SD controllers.
25 T 155,00 25,00 By ' When we examine the supervisors from [7], we find that
(Yo € Sniy)?! _) Zimi(o) if o€ E;}ib,j SL_JpervisorSB4_, B4Path, B6, and B7, shown at the top Qf
vb)<j,n(o) 1 otherwise Fig./6, are neither non-selfloop ALF nor CS deterministic.
_ For example, consider state 0 of superviBdr We see we
We can now define: can do a34tick sequence, §934-951}*-tick sequence, and
d(q) = /\ z;. a 934-951-934tick sequence, among others. Not only would
jefL,2,..,n} our controller be nondeterministic, but these sequences pr

The following theorem essentially states that the enableide us with numerous next-state conditions, many of which
ment information of the composite controller is equivalenare not possible in the system. Examining the plants and
to that of the centralized controller. supervisors in [7], we see that there will always be a

937,939 952, 954
922 933 Ty
[Conz] 22 (w2 2ofRobui | (4]
. |
L 934 951,953

938

Fig. 5. Flexible Manufacturing System Overview
B4 ik 3T B6

933,

tick ? 938

tick o 9% !
933, B4Pgih
.. tick tic]
ick 934
°T 937,939
933, 937, 933, NewB4 (ytick
[tick “ 1:;{“’]36 fidk g5y 7 Ofaic™ P
)0 0 92,0 NG Au:iN
934 937, 938] gg3 A 93z fick g7
: 99k SN) Otacn 953
tick tick tick
N B:P " ok tick, 939, 973
ew. a NewB7 tick
974 Eg 965
0 7 tick 2 fick
930 M
tick 5Ctick1

Fig. 6. Corrected TDES Supervisors

that used in Fig. 3(b). At each state in the FSM, we only
list prohibitable events whose outputs are set to true. For
next-state conditions, we use Boolean equations to express
input conditions and we simplify them to only include input
events possible at that state. This is done to make the FSM
more compact and human readable.

For example, at state 0 of FSM NewB7 we see the next-
state conditior{930]-![974] which means evert30 occurred
in the last sampling period, but evefit4 did not. It will
match any input vector for which this is true. Here we are
representing logical AND as,” and logical negation asl™.
We also represent logical OR ag-~

To keep the diagrams for FSM NewB4Path and FSM
NewB4 simple, we took a couple of shortcuts. This was
done strictly for readability purposes, and would not beedon
with an automated conversion process. Technically, th& nex
state condition from state 1 to state 0 of FSM NewB4Path
should bg([937]-1[939])+(1[937]-[939]). However, examining
the plant and other supervisors discussed in [7] we see that
events937 and939 can never occur in the same clock period
so we can safely simplify this condition {637] + [939].

VI. CONCLUSIONS

In this paper, we establish a formal representation of an
SD controller as a Moore synchronous finite state machine
(FSM), and describe how to translate a TDES supervisor
to a FSM, as well as necessary properties to be able to
do so. We discuss how to construct a single centralized
controller as well as a set of modular controllers, and
show that they will produce equivalent output. Implememtin

tick event between even@384and951, so we can add this to modular supervisors as a set of modular controllers pravide
our supervisor without restricting the closed-loop bebavi @ compact implementation method.

of our system. Making similar observations for the other We also discuss a flexible manufacturing system (FMS)
non-selfloop activity loops, we arrive at supervidéewB4,
shown in Fig, 6, which is now non-selfloop ALF and CSity definition to and present some FSM translation issues
deterministic. Similarly, we derive replacement supessss encountered, as well as the FSM version of some of the

NewB4Path NewB6, andNewB7, also shown in Fig. 6.

We now convert these new supervisors into modular
controllers using the method described in Section IV-F. Theyj
results are shown in Figure 7. To see the SD controllers for
the remaining supervisors for our system, please refer]to [7 2]

FSM NewB4 DEF

Reset

|
w
«

FSM NewB7

[934]-1[952]-1[954] DEF

[951] +[953]

[930] - 1[974]
[971]

DEF

State: 1
951 953

DEF

State: 0 Reset

)

State: 2
937

DEF

ATAL [9341-[952]-1[954]

[937]

1[934]1[952]-[954]
[939]

e
939

w
e
g

DEF

State: 1
971

DEF

D SM NewB4Path per FSMNewB6 -
s [034] s StO S s 1
Reset _ | State: 0 State: 1 Reset
ElE w1 . | os
[937] +[939] [963]
Fig. 7. FSM for New Supervisors

The controllers shown use a more compact notation than

example that we had earlier applied the SD controllabil-

system’s supervisors.
REFERENCES

P. Ramadge and W. M. Wonham, “Supervisory control of a class
discrete-event processe§TIAM J. Control Optimvol. 25, no. 1, pp.
206-230, 1987.

W. M. Wonham and P. Ramadge, “On the supremal controllable

sublanguage of a given languag&lAM J. Control Optimvol. 25,

no. 3, pp. 637-659, May 1987.

[3] W. M. Wonham, Supervisory Control of Discrete-Event Systems
Department of Elec and Comp Eng, University of Toronto, Jul§&0

[4] W. Bolton, Programmable Logic Controllersith ed. Elsevier, 2006.

[5] S. Brown and Z. Vranesid;undamentals of Digital Logic with VHDL
Design 3rd ed. McGraw Hill Higher Education, 7 2008.

[6] B. Brandin and W. M. Wonham, “Supervisory control of timed
discrete-event systemdEEE Trans. on Auto Conpp. 329-342, Feb
1994.

[7] Y. Wang, “Sampled-data supervisory control,” Mastehegis, Dept. of
Computing and Software, McMaster University, Hamilton, G109,
[ONLINE] http://www.cas.mcmaster.caéeduc/.

[8] R.J.Leduc and Y. Wang, “Sampled-data supervisory cohtroProc.
of WODES 2010Berlin, Germany, Aug. 2010, pp. 353-359.

[9] R. Leduc, “PLC implementation of a DES supervisor for a mawuf

turing testbed: An implementation perspective,” Master&stl, Dept.

of Elec and Comp Eng, University of Toronto, Toronto, Ont, 699

R. C. Hill, “Modular verification and supervisory contter design for

discrete-event systems using abstraction and incrememtsiraation,”

Ph.D. dissertation, Dept. of Mech Eng, University of Micig 2008.

[10]

	I Introduction
	II Preliminaries
	III Sampled-Data Setting
	IV Moore FSM
	IV-A Formal Model
	IV-B Translation Method Introduction
	IV-C Event Mapping Functions
	IV-D Centralized Translation Method
	IV-E Output Equivalence
	IV-F Modular Translation Method

	V FMS Example
	VI Conclusions
	References

