Generalised

Robi Malik
Department of Computer Science
University of Waikato, Hamilton, New Zealand
robi @s. wai kat o. ac. nz

Abstract— This paper studies the nonblocking check used in
supervisory control of discrete event systems and its limitations.
Different examples with different liveness requirements are
discussed. It is shown that the standard nonblocking check can
be used to specify most requirements of interest, but that it lacks
expressive power in a few cases. A generalised nonblocking
check is proposed to overcome the weakness, and its relationship

Nonblocking

Ryan Leduc
Department of Computing and Software
McMaster University, Hamilton, Canada
| educ@rcnast er. ca

to cover all the examples, and results about synthesis and
compositional verification are given. Finally, Sect. V cains
some concluding remarks.

Il. PRELIMINARIES
In this paper, discrete event systems are modelled using

to standard nonblocking is explored. Results suggest that gener- Nondeterministic automata. While most of the concepts con-
alised nonblocking, while having the same useful properties with cerning nonblocking can be explained using deterministic
respect to synthesis and compositional verification, can provide gutomata, nondeterminism is needed for compositional ver-

for more concise problem representations in some cases.

I. INTRODUCTION

Blocking or conflicts are common faults in the design
of concurrent programs that can be very subtle and ha

to detect [1], [2]. They have long been studied in thé

field of discrete event systeni3], [4], which is applied to
the modelling of complex, safety-critical systems [5]-[7]

To improve the reliability of such systems, techniques arg

needed to facilitate the design of nonblocking systems.

A discrete event system is nonblocking if, from everyA

reachable state, all involved componentn cooperatively

reach a terminal state. It is not required that a termindksta

is necessarily reached on eve ossible execution , 0N) .
! 'y very possi xecution paty T%: (3, X,—,X° X™) whereX is a finite set ofevents

that there exists an execution path to a terminal state. T
weak liveness condition has been used very successfully
the synthesis ofliscrete event systeni3], [4], [8]. Other

works investigate the compositional semantics [9], [10] of®

nonblocking and its compositional verification [11], [12].

Despite its widespread use, the expressive powers of no
blocking are limited. To overcome some of the weaknesse%,

nonblocking has been generalised to handle multiple mar

ing conditions [13], [14]. During their attempts to develop
compositional verification methods for the conditions of

hierarchical interface-based supervisory contfil5], the
authors discovered a nonblocking-like verification praile
that still is difficult to cast into standard nonblocking.

In an attempt to pave the way for compositional verifica

tion [11] of a wider range of properties, this paper proposes X
[11] g prop Paper prop gons to manipulate languages and automata. Synchronous

a more general nonblocking condition, which includes th
original nonblocking condition as a special case. Sect.
introduces the notation for finite-state automata and a&brm
definition of the nonblocking property. Sect. Il present

four examples of liveness verifications problems that occu
in discrete event systems modelling and discusses ho
nonblocking can be used to address them. In Sect. 1V, the

ification in Sect. IV-E.
Event sequences and languages are a simple means to
describe system behaviours. Their basic building blocks ar

leﬁventswhich are taken from a finitalphabet>:. In addition,

e silent eventr ¢ X is used, with the notatiort, =

Su{r}.

¥* denotes the set of all finitestrings of the form

102 ...0, Of events fromX, including theempty stringe.

he concatenatiorof two stringss, ¢ € ¥* is written asst.
subset C ¥* is called alanguage For ©2 C ¥, natural

projection Py: ¥* — Q* denotes the operation that deletes

all events not inQ2 from strings.

Definition 1: A (nondeterministic)automatonis a tuple

is a set ofstates — C X x X, x X is thestate transition

relation, X° C X is the set ofinitial states and X™ C X

js the set ofmarked states

Definition 2: An automatonG = (X, X, — , X°, X™) is

gi_aterministicif X° is a singletonz % y; andz 2
ways impliesy; = y», and— contains nor-transitions.

. The transition relation is written in infix notation Sy,

and is extended to strings iR} in the standard way. For

tate sets\;, X, C X, the notationX; = X, denotes the

existence oft; € X; andzy € X, such that; = z5. Also,

x — y denotes the existence of a stringe X* such that

S

z > y, andz = denotes the existence of a states X

such thatr % y. Finally, G — z stands forX° — x.

Synchronous compositicemd hiding are common opera-

omposition models parallel execution and is done using
ock-step synchronisation in the style of [16]. Hiding is an

Selementary operation of abstraction.

Definition 3: Let G; = (¥,X;,—;, X7, X7") and
= (X5, X5, —,, X5, X5") be two automata. Theyn-
chronous producty; || G2 of G; andG» is

generalised nonblocking property is introduced and shown (EUX0, X X X, —, X7 x X5, X" x XTI (D)

winner_white
winner_black
draw

where

o

(z1,22) = (y1,92) if 0 € (Z1NB2), 21 =1 Y1, 22 2 Ya;
(1‘1,.132) Z (yl,xg) if o€ (21 U {T}) \ Yo, T1 i>1 Y1;
(3717552) Z (xl,yg) if o€ (ZQ U {T}) \ Y, To i>2 Ya.

Definition 4: Let @ = (E,X,—> ’Xo’Xm> be an au- Fig. 1. \Verifying the simple game nonblocking.
tomaton, and leff C 3. The result ofhiding T in G is

idle wait

G\T = (Z\T1,X,—\T,X° X™), 2 In this example, a single nonblocking check is not enough
])] to verify the liveness requirements of a system. The possi-
where — \ T is obtained from— by replacing all events pjjiry of handling multiple termination conditions simatte-

in T with the silent event. _ ously and its use in synthesis is discussed in [14].
It is a desirable property that every execution of an au-

tomaton can be completed by reaching a marked state’tn B. Simple Game
otherwiselivelock or deadlockmay occur. In discrete event Assume that a simple board game is to be modelled. Two
systems theory, an automaton that is unable to terminaptayers are taking their moves in turn, modifying the game
in this way is calledblocking This concept becomes more state with each move. It is a desired liveness property sf thi
interesting when several automata are running in parallel-system that the game can always end, i.e., it should always
in this case the ternconflicting is also used [4]. The be possible that one player wins, or that a draw is declared.
following extends the standard definition [4] to the case of This can easily be achieved by marking all the states where
nondeterministic automata considered in this paper. one player has won, or the game is over without a winner.
Definition 5: An automatonG = (X, X, —,X°, X™)is Then a standard nonblocking check can be carried out to
callednonblocking if for all statesz € X such thatz — «, verify the desired property that the game can always end.
it also holds thatt — X™. To complicate the example slightly, a reset feature is added
In order to be nonblocking, it is sufficient that a terminalto the model: an additional everdset is introduced which
state can be reached in every possible situation. This igan always be executed and resets the game to its initiel stat
equivalent to termination under an implictrong fairness With this addition, the standard nonblocking check be-
assumption stating that “whenever a transition can occwomes much less expressive. Indeed, there may be states
infinitely often, it occurs infinitely often” [17]. where one player refuses to perform any further move, so the
game cannot end. However, due the omnipresent possibility
I1l. APPLICATIONS of reset, the system is still nonblocking as long as there is
This section discusses four examples where nonblockinghly some way of ending the game from its initial state.
checks are used to verify liveness properties of interest. In this modified model, it is much more interesting to
verify whether‘the game can always end, evenrifset is not
used.” This stronger property can be verified using a standard
The dining philosophers problem [18] is an illustrativengnplocking check, if the model is modified by adding the
example of a common computing problem in concurrencyytomaton in Fig. 1. Herep is a new event that does not
Five philosophers are sitting at a circular table with a éargyeeyr anywhere in the model, and which therefore can occur
bowl of spaghetti in the centre. A fork is placed between eacky any time. This event is used only for the nonblocking
pair of philosophers, and it is assumed that each philosophgneck. It can be understood as an observer, who at any time

must eat with the two forks next to him. Each philosophegan temporarily disableeset in order to check whether the
can be eithethinkingor eating and the objective is to ensure gysiem can terminate successfully without it.

that every philosopher can eventually get a chance to eat.
The simplest approach to verify the absence of starvatida- Nonblocking under Control
in this system is to consider the state where all philosapher A similar verification problem is discussed in [1]. When
are thinking as the success state. Yet, this is a much tomodelling reactive systems, there typically are two types o
weak property, since a system in which all philosophers keegventscontrollableevents that are in some way produced by
thinking indefinitely would be nonblocking. the control software, andncontrollableevents that sponta-
The desired liveness property in this system is that eaafeously occur in the system to be controlled.
philosopher can always enter tleating state. However, the In this context, a nonblocking check is used to verify
dynamics of the systems does not permit all philosophers tghether the controlled system can always terminate. How-
be eating at the same time. Yet, it is possible to consider tlever, it may be desirable to rule out certain unlikely be-
set of states, where philosopher 1 is eating (independenthaviours and require that termination can always be actlieve
of the states of the other philosophers) as success statks, Ay “expected” or “normal” behaviour. In [1], it is considere
perform a nonblocking check with respect to this markinginlikely that uncontrollable events occur while the coliéo
condition. By repeating the same check for each of the fivis in the process of sending a sequence of commands. More
philosophers, the absence of starvation in the entire systdormally, termination is required to be achievable by means
can be verified. of a completesequence of events.

A. Dining Philosophers

Definition 6: Let G = (%, X,—,X° X™) be a deter- G Gy Gi:
ministic automaton, and Ief. C . The path

o1 09 o1 02 01 02
20D a B B, ©
is calledX.-completein G, if for eachi = 1,...,n it holds g1 2 91 72 9 02
that eithero; € X, or there does not exist any € ¥, such
g
thatz; | —. Fig. 2. Generalised nonblocking vs. standard nonblocking.

Definition 7: Let G = (X, X,—, X°, X™) be a deter-
ministic automaton, and leE, C X. G is said to be
nonblocking undei:.-control if for all statesz € X such differentcoloursor propositions Afterwards, the generalised
thatG — z, there exists &.-complete pathx — X™ in G. nonblocking condition is defined using these propositions.
It is discussed in [7] how this property can be expressed Definition 9: A multi-coloured automatois a tupleG =
and verified using a standard nonblocking check. Essentiall(s: 1T, X', — , X°, =) whereX. is a finite set ofeventsII is
a similar translation as in the previous example is used, bt finite set ofpropositionsor colours — C X x ¥, x X
with more sophisticated modelling to restrict the possiblgs the state transition relation X° C X is the set ofinitial
behaviours to b&.-complete once thg event has occurred. states and=:11 — 2¥ defines the set of marked states for

D. Hierarchical Interface-Based Supervisory Control each proposition ifl.
. P y . . This definition allows different sets of marked states for
Yet another type of nonblocking property occurs in hi-

‘ . A : each proposition. The concept is similar to that of Kripke-
erarchical interface-based supervisory control [15]. W8t g ,ctyres [19], but the above definition is inspired by [14]
context, systems are decomposed ihigh-level and low-

_ ;) . The main difference to [14] is the colouring maj which
level modules in a master-slave relationship. An interfac

. ,) ‘Cthaps propositions to state sets and not vice versa, to allow
between the modules is defined, and properties are verifigg, slightly more concise notation in this paper.

by considering only one r’nodyle gnd the interface ata Fime. An automaton without colourj = (£, X, —, X°, X™),

One of these properties is given in the following def|n|t|ontam be considered as a multi-coloured automaton with a

For a full discussio_n of the remaining _properties and thgingle propositionu by defining= (w) = X™. Most standard

conte>_<t,. Fhe reader Is referrgd to'Def. 5 in [15]. notations and definitions for automata such as state tran-
Definition 8: Let ¥ =X UX, UXy, and et/ = (XU gjtiong, languages, and hiding are naturally lifted to #ult

X4, Xp =, {x_?}’),(}n> andL = (%, X, -, ,{x%}’XZL> coloured automata. In synchronous composition, marking fo
be two deterministic automatd. and L are said to satisfy all colours needs to be considered

Serial Interface Consistency (SIC) Property it/ for all Definition 10: Let G; = (1,11, X, —,, X, Z,) and
. * . - s 4y 1> 1> 12=1
stringss € ¥* and all eventp € Xy such thatsp € L(I||L), Gy = (59,11, Xy, — , X3,Z,) be two multi-coloured au-

and for all eventsr € ¥4 such thatPs,,us, (s)po € L(I), .
. , tomata. Th h duct@f andG
there exists € X3 such thatspto € £(I || L). omata. The synchronous product@f and ¢z is

The definition says that, after the occurrenceafuest, G| Gy = (1L X — , X°, =) (4)
all answerso that are possible according to the interfate
must somehow be possible to occur in the system. HowevayhereX, X, —, andX° are given as in Def. 3, ard(r) =
once the request has occurred, the low leieinay make =1(m) x Za(w) for eachr € II.
decisions and evolve in ways that preclude the occurrenceThe generalised nonblocking property uses two propo-
of some of the answers that were originally possible. sitions, calleda and w. The intended meaning is that
SIC property V is similar to the standard nonblockingrepresents terminal states and corresponds to the traalitio
property if states where answer evemtis possible are marked states, while. specifies a set of states from which
considered as marked states. However, instead of requaringnarked states are required to be reachable.
path from all reachable states to these states, such a path i®efinition 11: LetG = (3,11, X, — , X°, Z) with a,w €
required only from stateBnmediatelyafter request event 1T be a multi-coloured automatort; is called («, w)-non-
Thus, although the property clearly is related to nonblockblocking if for all statesz € X such thatG — =z and
ing, it is weaker than standard nonblocking, and cannat € Z(«) it also holds thatr — E(w).
be expressed easily as a standard nonblocking problem.Generalised nonblocking requires that, from all reachable
The following section proposes the generalised nonblarkinstates markedy, it is possible to reach a state marked
condition that can be used to cover this property also. Clearly, if an automaton is standard nonblocking (Def. 5),
it is also («, w)-nonblocking. The following example shows
o the the converse is not true in general.
A. Formal Definition Example 1:Consider the automata in Fig. 2. States
To model more general nonblocking properties, it isnarked « are grey, and states marked are black. Only
convenient to specify different state sets of automata araitomatonGs is (a,w)-blocking, althoughGs and G5 are
define relationships between them. Therefore, automata dmcking according to Def. 5 if all states marked are
extended tanulti-colouredautomata by labelling states with considered as terminal states.

IV. GENERALISEDNONBLOCKING

B. Relationship to Standard Nonblocking can be constructed such that <> » € Z(a). Sinced is

Generalised nonblocking includes standard nonblockingy, w)-nonblocking,r = y € Z(w) for somet € $*. Thus,
as a special case. Clearly, if all states of an automaton 3 . w .
are marked by the proposition, then («, w)-nonblocking (#,7) =cont (1,7) =cont (4,7) =cont (¥, L) € Xegnr (6)
.reqmrr]es t:at a state m:_:lrkad ItS)| res_che_d f:]om every ?tatef, by construction, i.e.(cous is nonblocking.
i.e., that the automaton is nonblocking in the sense o Dg -9 gecond leGont be nonblocking, and lef = = € =(a).
This translation from standard nonblocking to generahseﬂ ;

N ! -l follows by construction that

nonblocking is straightforward and does not change the size
or complexity of the automaton translated. Geont ~cont (T, L) Beont (z,2) . @)

The reverse translation from generalised nonblocking to. _ .) .
standard nonblocking is much more involved. For such &NC€Gcont IS nonltzlockmg, there existse (SU{a, 6, w})
translation to be of interest, it should be applicable to 8Uch that(z,z) —conr X[By Construction, ¢ must
set of composed automata without first constructing thefontain the eventy and can be written as = t'wu’ for
synchronous product, and without first checking thew)- ~ Somet’ € (XU {3})". This means that
nonblocking property. The following translation can be eon W w
in a modular way and highlights the major problems that (@, &) =cont (4, %) =cont (¥, L) (8)
need to be overcome.

Definition 12: Let G = (%, 11, X, — , X°, =) be a multi-
coloured automaton witky, w € II. The conflict-automaton

for somey € Z(w). If ¢’ € ¥*, it follows immediately that

s hye E(w). Otherwise,t’ contains the event and can
be written ast’ = u”3t"” for somet” € ¥*. Then

Geont = <ZC0nf7Xconf7—>COnf’X(?Onf’Xanf> for G is con-
structed as follows. (2, 2) u—ﬂ>conf (2, 2) L (0 2) Seont (1, L) 5 (9)
o Yeont = LU {a, B,w}, whereo, f,w ¢ %; .
o Xeont =X x (E(a) U{L}), where L ¢ X; which impliesz & y. In both casesy € Z(w) can be
» —cont CONsists of the following transitions: reached fromz, i.e., G is («,w)-nonblocking. [
o TR The translation from generalised nonblocking to standard
() o oont (. 7), nr—ys nonblocking given above increases the number of states by
(z, 1) ;C"nf (w,z), i zeE(); a factor proportional to the number of states marked
(z,7) =cont (1), fr# L in the original automaton. It is unknown to the authors
(z,7) Deont (z, 1), if z€Z(w)andr# L ; whether there exists a more efficient translation with the
¢ X = {(@)]s € X}, = ot possible. This s in e win sl reeuts about
e X o={(x,1)|ze X} P '

‘ . o __automata on infinite words [20], [21].

The idea of this translation is as follows. Propositions on the other hand, generalised nonblocking can be verified
a and w are introduced as events, enabled in the statg§ |east as easily as standard nonblocking: it suffices to
transitions to an unmarked state are only possible viaan each reachable state for standard nonblocking) that a state
event, and after the occurrencea@fa marked state can only marked w can be reached. This suggests that verifying
be reached whem occurs. However, to ensure that only thegeneralised nonblocking directly is preferable to tratista

statesimmediatelyafter o are checked for nonblocking, the o standard nonblocking with the associated blow-up.
reset evenps is added to all states reached later and provides

a transition back to the state immediately afterIn this C. Expressing SIC Property V

way, it is ensgred that automatd@s, in Fig. 2 is translated SIC Property V can be expressed directly using gener-

to a nonblocking automaton, and onfi; is translated t0 @ gjised nonblocking. This is achieved by marking precisely

blocking automaton. _ those statesy that are entered immediately after a request

Proposition 1: Let G = (X,II, X, — , X°,E) be a multi- oyent.

coloured automaton witly,w € TI. ThenG is (o, w)-non- More precisely, let automata and I and eventr € ¥4

blocking if and only if Geont is nonblocking. be given as in Def. 8. Then multi-coloured automdty
Prtgof: First let G be (a,w)-nonblocking, and let L7, andT* are constructed such that || L7 || T7 is (a, w)-

Geonf —conf (5667 r). It r = 1, then (z,7) € X7; and ponplocking if and only if SIC Property V is satisfied for

therefore(z, r) —cont X(g,s- Otherwise, ifr 7 L, the string the given answes. The construction is as follows.

s must contain the event by construction and can be written . I is obtained froml by adding propositions andw

ass = s'at’ for somet’ € (JU{5})". Again by construction, such that all states with enabled are marked, and

all states are marked. If I = (Xp U X4, X,;, —;,
X9, X, thenI® = (SR US4 IL X, —;, X3,E,)
wherer € Z(«). By removing all maximal substringss, with T = {o,w}, Z7(a) = {z € X; | = 2}, and
u € ¥*, and alla andw events froms’, a strings” € ¥* Er(w) = Xr.

s’ t
Gconf ﬂconf (7“, T) —conf (.’E,’I") (5)

D. Synthesis

Having defined the concept 6f, w)-nonblocking, it is of
interest to study its properties. A crucial question in supe
visory control theory is whether synthesis is feasible.daiv
a languagec’, the problem ofsynthesisconsists of finding
a sublanguagé&’ C L that satisfies particular properties of
Fig. 3. The automatori™” for translating SIC Property V intdo, w)- interest such as controllability or nonblocking [4].
nonblocking. To discuss synthesis in the context of nondeterministic
automata, the concept of subautomata and union of automata

) _)) are used. The following definitions are adapted from [23].
o L7 is obtained fromL by marking all states with both pefinition 13: Let G = (1L X,—,X°,2) and G’ =

o andw. If L = (¥, Xy, =, X, X['), then L7 = (53 11 X, —,, X¢,,E) be two automata with the same
(2,10, Xy =, X, =Zp) with = (@) =21 (w) = X1. alphabets and state se. is asubautomatorf G, written
* Tla :2 (3,10, X, {wT%7_)T’:T> with XTOZ _{$T7 G CG,if - C— and X&, C X°.
op, 27}, Er(e) = {orp}) and2p(w) = {a7} is the pefinition 14: Let G; = (5,11, X, -, , X2,), j € J be
nondeterministic multi-coloured automaton in Fig. 3. 5 family of automata all having the same alphabets and state
Proposition 2: Let ¥ = Y3 UX 4 UX}, and let automata sets. Theunion of the automata’; is defined as

I and L be given as in Def. 8. For each e ¥4 construct

multi-coloured automata”, L7, and7? as explained above. U Gj = (511X, U i U X5.E) (10)
I and L satisfy SIC Property V if and only if || L° || T i€t jes e
is (o, w)-nonblocking for eaclr € X 4. To simplify notation, all automata are assumed to have the

Proof: First, let I and L satisfy SIC Property V. Let same state sets and markings. This is exactly the situation
o € ¥4 such thatl? || L? || 77 3 (z7,zr,27) € Z1(a) x ~ €encountered in synthesis. Unreachable states can always be
Er(a) x Zr(a). SinceZr(a) = {zL} by construction, it removed, but this is not discussed here.
holds thatz;. = x1. and s = s'p for somes’ € ¥* andp € Given an automatol, there typically are several subau-
Yr.AlsoI| L 2 (x7,21), and sincer; € Z;(a), it holds by tomataG’ that qualify as a solution to a particular synthesis
problem, and the question arises which one to choose. Here
it is desirable to identify anost generabr least restrictive
solution, which can be used as a unique synthesis result.
sto — sipto € £(I || L). Since L is deterministic, there The _obvious candidate for this i_s _the union of all soluti_ons,

. o te provided that the result of combining two or more solutions
existsyy, € Xp = :tLa(w) such thatry = yr. F.urthermore, to the synthesis problem still is a solution. This requirame
note thatv, = z3 = o € Er(w) for any stringt € 37. js known to be satisfied for controllability and for nonbleck
Therefore, (x7, 1, 27) % Z;(w) x Z(w) x Er(w), €., ing of deterministic automata [4]. It is easy to show that it

. P ;
construction thaf ZR&‘(&) z; > y; for somey; € X; =

Er(w). Therefore,s’p = s € L(I || L) and Ps,,ux, (s)po €
L(I). By SIC Property V, there exists € X% such that

17 || L7 || T is (a,w)-nonblocking. also holds for generalised nonblocking of nondetermiaisti
Second, lef || L || T be («,w)-nonblocking for allo € automata.
Ya.Llets € %, p € g, ando € ¥4 be such thatp € L(I|| Proposition 3: Let G; = (5,IL X, —;, X7, =5), j € J

L) and Px,us, (s)po € L(I). Then there exist states; € be a family of automata with, w € II such that eacls; is
X; andzy, € X, such thatr “n4"Y 4 % andr % (a,w)-nonblocking. TherJ, ., G; is (e, w)-nonblocking.
zr. Also, T° % zL. by construction of7™*, and therefore Every nondeterministic automaton has a maxirwlw)-

sp nonblocking subautomaton. This result can be combined with

I°| L || T° 5 (z,2p,2%) € Er(a) x ZL(a) x Zp(). " X
SinceI” || L7 || T° Iis (Z,wT)—nonblocking, there exists € results about controllability or other properties [4], [2d
used to build synthesis algorithms.

¥* such that(z,,x;,z%) = Z7(w) x Ep(w) x Er(w). By
construction of7?, and sinceZr(w) = {24}, there exists g Compositional Verification

to

a prefix to of w such thatt € ¥; and (z,,z,,z}) =,
i.e., spto € L(I| L). Sinces, p, ando have been chosen
arbitrarily, I and L satisfy SIC Property V.

The above construction can be performed modularly, i.e.,
if 7 and L are composed of several automata, then the cors («,w)-nonblocking consists of explicitly constructing
struction can be applied to the individual components. kénli the synchronous composition and checking whether a state
Def. 12, the state space is only increased by a constant factoarkedw can be reached from every state markedThis
of three. This is a small price for a construction that makesan be done using CTL model checking, and models of sub-
SIC Property V amenable to compositional verification astantial size can be analysed if the state space is repegsent
in [11]—to the best of the authors’ knowledge, this propertysymbolically [19]. Yet, the technique remains limited bgth
so far has only been verified using explicit or symbolic stateamount of memory available to store representations of the
space exploration [22]. synchronous product.

The straightforward approach to verify whether a com-
posed system
GillGz| -l Gn (11)

As an alternative, compositional reasoning [10] attempts
to rewrite individual components of a composed system suclm
as (11) and, e.g., replagg, by a simpler versiorG}, and
then analyse the simpler system

(2]

G2l 1 Gn 12)

Such compositional reasoning requires tGatand G, are
related in some way. An appropriate notion of equivalencds3l
has been identified for nonblocking verification in [10], and 4]
these results can easily be adapted to the casgvab)-

nonblocking considered in this paper. (5]
Definition 15: Let G; and G5 be two multi-coloured

automata withn, w € TI. ThenG; and G, are called(«, w)-

nonblocking equivalentwritten Gy ~(, .y Go, if for any 6l

multi-coloured automatofi’ with the same proposition sEt,
it holds thatG1 ||T is (a, w)-nonblocking if and only ifGs || T
is (o, w)-nonblocking. [7]
To be feasible for compositional verification as discussed
above, the equivalence used must be well-behaved witfs]
respect to synchronous composition and hiding. These so-
calledcongruenceproperties can easily be shown far, w)-

9
nonblocking equivalence. o
Proposition 4: Let G1, G5, T be multi-coloured automata [10]
with a,w € 1L If Gq (a,w) G, thenGy || T ~(a,w) G || T.
Proposition 5: Let G = (3,11, X, — , X°, Z) be a multi- [11]
coloured automaton witly,w € II, and letY C X. Then
G is (a,w)-nonblocking if and only ifG \ T is (a,w)-non- [12]
blocking.
Note that, if given two automaté& and H such thatH
does not use any events in alphafietthen (G || H)\ T = [13]

(G\Y) | H. In combination with Prop. 5 this means that
abstractions can be applied in a compositional way, as long,
as only events local to the subsystem considered are ab-
stracted away. Subsystems can be simplified individually or
composed as needed, and the verification and simplificati(f{g]
strategies outlined in [10], [11] can be used.

Observation equivalen¢evhich comes with efficient sim-
plification algorithms [24], can be shown to presefwew)- [16]
nonblocking equivalence. Furthermore, the fact that gener
alised nonblocking is a weaker property than standard nof-7]
blocking can make more aggressive simplification possiblﬁs]
than for standard nonblocking.

(19]

V. CONCLUSIONS [20]

A generalised nonblocking condition has been introduced
as a simple extension of standard nonblocking that makesjt;
possible to express certain other nonblocking-like progsr
concisely. Generalised nonblocking permits synthesis arté?!
compositional verification like standard nonblocking does
and can be verified with the same computational effort. The
framework for compositional verification outlined in this [23]
paper is the first known method to make SIC property V [15]
amenable to modular verification. This framework can novig4]
be used to develop a unified approach for standard nonblock-
ing, as well as other properties such as SIC property V and
controllability [23].

REFERENCES

P. Dietrich, R. Malik, W. M. Wonham, and B. A. Brandin, “Irgshen-
tation considerations in supervisory control,”@ynthesis and Control
of Discrete Event Systen. Caillaud, P. Darondeau, L. Lavagno, and
X. Xie, Eds. Kluwer, 2002, pp. 185-201.

K. C. Wong, J. G. Thistle, R. P. Malhame, and H.-H. Hoangy-‘S
pervisory control of distributed systems: Conflict resajutf Discrete
Event Dynamic Systems: Theory and Applicatiord. 10, pp. 131—
186, 2000.

C. G. Cassandras and S. Laforturietroduction to Discrete Event
Systems Kluwer, Sept. 1999.

P. J. G. Ramadge and W. M. Wonham, “The control of discreanev
systems,"Proc. IEEE vol. 77, no. 1, pp. 81-98, Jan. 1989.

S. Balemi, G. J. Hoffmann, P. Gyugyi, H. Wong-Toi, and G. F.
Franklin, “Supervisory control of a rapid thermal multipreser,”
IEEE Trans. Automat. Contrvol. 38, no. 7, pp. 1040-1059, July
1993.

B. Brandin and F. Charbonnier, “The supervisory contail the
automated manufacturing system of the AIP,"Rmoc. Rensselaer’s
4th Int. Conf. Computer Integrated Manufacturing and Auition
Technology Troy, NY, USA, 1994, pp. 319-324.

P. Malik, “From supervisory control to nonblocking coollers for dis-
crete event systems,” Ph.D. dissertation, University ofsKelautern,
Kaiserslautern, Germany, 2003.

Y.-L. Chen, S. Lafortune, and F. Lin, “Design of nonblaey modular
supervisors using event priority functionslEEE Trans. Automat.
Contr, vol. 45, no. 3, pp. 432-452, Mar. 2000.

R. Kumar and M. A. Shayman, “Non-blocking supervisory gohbf
nondeterministic discrete event systems,”Hroc. American Control
Conf, Baltimore, MD, USA, 1994, pp. 1089-1093.

R. Malik, D. Streader, and S. Reeves, “Conflicts and tiagting,” Int.
J. Found. Comput. Scivol. 17, no. 4, pp. 797-813, 2006.

H. Flordal and R. Malik, “Modular nonblocking verifidah using
conflict equivalence,” inProc. 8th Int. Workshop on Discrete Event
Systems, WODES'0@&nn Arbor, MI, USA, July 2006, pp. 100-106.
P. N. Pena, J. E. R. Cury, and S. Lafortune, “New resuttgesting
modularity of local supervisors using abstractions,Pic. 11th IEEE
Int. Conf. Emerging Technologies and Factory Automatioff-A’06,
Prague, Czech Republic, Sept. 2006, pp. 950-956.

M. Fabian and R. Kumar, “Mutually nonblocking supervrisaontrol
of discrete event systems,” iRroc. 36th IEEE Conf. Decision and
Control, CDC'97, San Diego, CA, USA, 1997, pp. 2970-2975.

] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, “Multi-

tasking supervisory control of discrete-event systems,Pic. 7th
Int. Workshop on Discrete Event Systems, WODESR@Ims, France,
Sept. 2004, pp. 175-180.

R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham,
“Hierarchical interface-based supervisory control—pa8erial case,”
IEEE Trans. Automat. Contrvol. 50, no. 9, pp. 1322-1335, Sept.
2005.

C. A. R. HoareCommunicating Sequential ProcesseBrentice-Hall,
1985.

A. Arnold, Finite Transitions Systems: Semantics of Communicating
Systems Prentice-Hall, 1994.

E. W. Dijkstra, “Hierarchical ordering of sequentiatggesses,Acta
Inf., vol. 1, no. 2, pp. 115-138, 1971.

E. M. Clarke, Jr., O. Grumberg, and D. A. Pelédpdel Checking
MIT Press, 1999.

Q. Yan, “Lower bounds for complementation of-automata via
the full automata techniquel’ogical Methods in Computer Science
vol. 4, no. 1.5, pp. 1-20, 2008.

S. Safra, “On the complexity ofv-automata,” Ph.D. dissertation,
Weizmann Inst. of Science, Rehovot, Israel, 1989.

R. Song and R. J. Leduc, “Symbolic synthesis and verificabf
hierarchical interface-based supervisory control,” Fmoc. 8th Int.
Workshop on Discrete Event Systems, WODESAIé Arbor, MI,
USA, July 2006, pp. 419-426.

H. Flordal and R. Malik, “Supervision equivalence,” froc. 8th Int.
Workshop on Discrete Event Systems, WODESAIé Arbor, MI,
USA, July 2006, pp. 155-160.

R. Paige and R. E. Tarjan, “Three partition refinemenbgthms,”
SIAM J. Computingvol. 16, no. 6, pp. 973-989, 1987.

