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Abstract: Hierarchical Interface-based Supervisory Control (HISC) decomposes a discrete-
event system into a high-level subsystem which communicates through interfaces with several
low-level subsystems. The framework provides a set of local conditions that can be checked for
each subsystem individually to conclude global conditions such as nonblocking and controllabil-
ity. The size of HISC systems that can be verified automatically is primarily limited by the size of
the largest subsystem. To overcome this limitation, this paper proposes the use of compositional
verification. Most of the HISC conditions can be verified efficiently using existing methods for
compositional verification, but a few are more challenging. This paper shows how these more
challenging conditions can be expressed equivalently as generalized nonblocking problems, so
the compositional approach for generalized nonblocking developed by the authors in (Malik
and Leduc, 2009) is applicable. This makes all the HISC conditions amenable for compositional
verification, considerably increasing the size of systems that can be handled using the framework.
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1. INTRODUCTION

In the area of Discrete-Event Systems (DES), two common
tasks are to verify that a composite system is (i) nonblock-
ing and (ii) controllable (Ramadge and Wonham, 1989).
The main obstacle to performing these tasks is the combi-
natorial explosion of the synchronous product state space.

The framework of Hierarchical Interface-based Supervi-
sory Control (HISC) was proposed in (Leduc, 2002; Leduc
et al., 2005a; Leduc et al., 2005b; Leduc et al., 2006;
Leduc, 2009) to alleviate the state explosion problem.
The HISC approach decomposes a system into a high-
level subsystem which communicates with one or more
parallel low-level subsystems through separate interfaces
that restrict the interaction of the subsystems. It provides
a set of local conditions that can be used to verify global
conditions such as nonblocking and controllability. As each
local condition can be verified considering only a single
subsystem, the complete system model never needs to be
stored in memory, offering potentially significant savings
in computational resources.

When checking the per-subsystem HISC conditions, each
subsystem is treated as a flat system. The system size
that can be handled is thus limited by the size of the
largest subsystem. As typically each level is defined using
several automata, it is appealing to verify these conditions
by compositional verification, which has been used with
considerable success for safety and nonblocking verifica-
tion (Brandin et al., 2004; Ware and Malik, 2008; Flordal
and Malik, 2009). This avoids the explicit construction

of the complete state space of each subsystem and thus
increases the complexity of the subsystems that can be
handled.

Although many of the HISC conditions can be directly ex-
pressed as a standard controllability or nonblocking prob-
lem, the LD interface consistency points 5 and 6 cannot.
However, they are tantalizingly similar to standard non-
blocking. Instead of requiring that every reachable state
have a path to a marked state (coreachable), they only
require that a subset of states be coreachable. This inspired
the authors to come up with the generalized nonblocking
condition, introduced in (Malik and Leduc, 2008). They
then extended the compositional verification results for
standard nonblocking to this new setting in (Malik and
Leduc, 2009).

Our approach to develop an HISC compositional verifi-
cation method is to first cast the required HISC condi-
tions for a given subsystem as a generalized nonblock-
ing problem, and then show that this new representation
is equivalent. We then use our compositional approach
for generalized nonblocking (Malik and Leduc, 2009) to
check these conditions. In essence, we perform a hybrid
hierarchical-compositional verification. Instead of check-
ing controllability and nonblocking on the entire system
directly, we first use the HISC method to break the system
down into subsystems, and then we use the compositional
method to check the HISC conditions for each subsystem.
This allows us to leverage the hierarchical and information
hiding structure.



Sect. 2 introduces the necessary background of nondeter-
ministic automata and defines the generalized nonblocking
property, and Sect. 3 provides an introduction to Hier-
archical Interface-based Supervisory Control. Next, Sect. 4
presents our new results where the HISC definitions are
expressed as generalized nonblocking problems and we
provide equivalence proofs. Sect. 5 adds some concluding
remarks.

2. PRELIMINARIES

2.1 Events and Languages

In this paper, discrete event systems are modeled using
nondeterministic automata. While most concepts required
for this paper can be explained using deterministic auto-
mata, nondeterminism is needed for compositional verifi-
cation.

Event sequences and languages are a simple means to
describe system behaviors. Their basic building blocks
are events, which are taken from a finite alphabet Σ. In
addition, the silent event τ /∈ Σ is used, with the notation
Στ = Σ ∪ {τ}.

Σ∗ denotes the set of all finite strings of the form
σ1σ2 . . . σn of events from Σ, including the empty string ε.
The catenation of s, t ∈ Σ∗ is written as st. A subset
L ⊆ Σ∗ is called a language. For Ω ⊆ Σ, natural projection
PΩ : Σ∗ → Ω∗ denotes the operation that deletes all events
not in Ω from strings. For language L ⊆ Σ∗ and s ∈ Σ∗,
the set of eligible events is EligL(s) := {σ ∈ Σ | sσ ∈ L }.

Definition 1. A (nondeterministic) automaton is a tuple
G = 〈Σ,X ,→,X◦,Xm〉 where Σ is a finite set of events,
X is a set of states, → ⊆ X×Στ ×X is the state transition
relation, X◦ ⊆ X is the set of initial states, and Xm ⊆ X
is the set of marked states.

Definition 2. An automaton G = 〈Σ,X ,→,X◦,Xm〉 is

deterministic if X◦ is a singleton, x
σ
→ y1 and x

σ
→ y2

always implies y1 = y2, and → contains no τ -transitions.

The transition relation is written in infix notation x
σ
→ y,

and is extended to strings in Σ∗
τ in the standard way. For

state sets X1,X2 ⊆ X, the notation X1
s
→ X2 denotes the

existence of x1 ∈ X1 and x2 ∈ X2 such that x1
s
→ x2. Also,

x → y denotes the existence of a string s ∈ Σ∗
τ such that

x
s
→ y, and x

s
→ denotes the existence of a state y ∈ X

such that x
s
→ y. Finally, G → x stands for X◦ → x.

To support silent events, another transition relation ⇒ ⊆

X × Σ∗ × X is introduced. Then x
s
⇒ y, with s =

σ1σ2 . . . σn ∈ Σ∗, denotes the existence of a string t ∈

τ∗σ1τ
∗σ2τ

∗ · · · τ∗σnτ∗ such that x
t
→ y. That is, x

s
→ y

denotes a path with exactly the events in s, while x
s
⇒ y

denotes a path with an arbitrary number of τ events

shuffled with the events of s. Notations such as X1
s
⇒ X2,

x ⇒ y, and x
s
⇒ are defined analogously to →.

We denote the closed behavior of automaton G to be
L(G) = { s ∈ Σ∗ | X◦ s

⇒}, and the marked behavior to be

Lm(G) = { s ∈ Σ∗ | X◦ s
⇒ Xm }.

Synchronous composition models the parallel execution
of two or more automata, and is done using lock-step
synchronization in the style of (Hoare, 1985).

Definition 3. Let G1 = 〈Σ1,X1,→1,X
◦
1 ,Xm

1 〉 and G2 =
〈Σ2,X2,→2,X

◦
2 ,Xm

2 〉 be two automata. The synchronous
product G1 ‖ G2 of G1 and G2 is

〈Σ1 ∪ Σ2,X1 × X2,→,X◦
1 × X◦

2 ,Xm
1 × Xm

2 〉 (1)

where

(x1, x2)
σ
→ (y1, y2) if σ ∈ (Σ1 ∩ Σ2), x1

σ
→1 y1, x2

σ
→2 y2;

(x1, x2)
σ
→ (y1, x2) if σ ∈ (Σ1 ∪ {τ}) \ Σ2, x1

σ
→1 y1;

(x1, x2)
σ
→ (x1, y2) if σ ∈ (Σ2 ∪ {τ}) \ Σ1, x2

σ
→2 y2.

For deterministic automata, we now define controllability.
We start by assuming the standard event partition Σ =
Σu ∪̇ Σc, splitting the alphabet into uncontrollable and
controllable events. To control a given plant G1 = 〈Σ1,
X1,→1, {x

◦
1},X

m
1 〉, we define a supervisor represented as

an automaton S = 〈ΣS,XS ,→S , {x◦
S},X

m
S 〉.

Definition 4. Let Σ := Σ1 ∪ ΣS, P1 : Σ∗ → Σ∗
1, and

PS : Σ∗ → Σ∗
S. Define L1 := P−1

1 (L(G1)) and LS :=

P−1
S (L(S)). Supervisor S is controllable for plant G1 if

LSΣu∩L1 ⊆ LS or, equivalently, (∀s ∈ L1∩LS) EligL1
(s)∩

Σu ⊆ EligLS
(s).

2.2 Generalized Nonblocking

It is a desirable property that every execution of an
automaton can be completed by reaching a marked
state in Xm, otherwise livelock or deadlock may occur.
The following extends the standard nonblocking defini-
tion (Ramadge and Wonham, 1989) to the case of non-
deterministic automata considered in this paper.

Definition 5. An automaton G = 〈Σ,X ,→,X◦,Xm〉 is
called (standard) nonblocking, if for all states x ∈ X such
that G⇒x, it also holds that x⇒Xm.

Standard nonblocking requires that all reachable states
be coreachable, i.e., that a marked state can be reached
from each reachable state (Ramadge and Wonham, 1989).
The generalized nonblocking property introduced in (Malik
and Leduc, 2008) weakens this condition by only requiring
a subset of states to be coreachable. This is expressed
formally using multi-colored automata, extending the tra-
ditional concept of marked states to multiple simultaneous
marking conditions by labeling states with different col-
ors or propositions. The following definition is introduced
in (Malik and Leduc, 2008), and is based on similar ideas
in (Clarke et al., 1999; de Queiroz et al., 2004).

Definition 6. A multi-colored automaton is a tuple G =
〈Σ,Π,X ,→,X◦,Ξ〉 where Σ is a finite set of events, Π is
a finite set of propositions or colors, → ⊆ X × Στ × X is
the state transition relation, X◦ ⊆ X is the set of initial
states, and Ξ : Π → 2X defines the set of marked states for
each proposition in Π.

Definition 7. Let G1 = 〈Σ1,Π,X1,→1,X
◦
1 ,Ξ1〉 and G2 =

〈Σ2,Π,X2,→2,X
◦
2 ,Ξ2〉 be two multi-colored automata.

The synchronous product of G1 and G2 is

G1 ‖ G2 = 〈Σ,Π,X→,X◦,Ξ〉 (2)

where Σ, X, →, and X◦ are given as in Def. 3, and
Ξ(π) = Ξ1(π) × Ξ2(π) for each π ∈ Π.

For generalized nonblocking, we first define propositions α
and ω. The intended meaning is that ω represents terminal
states and corresponds to the marked state set Xm, while



Fig. 1. Interface Block Diagram.

α specifies a set of states from which terminal states are
required to be reachable.

Definition 8. Let G = 〈Σ,Π,X ,→,X◦,Ξ〉 with α, ω ∈ Π
be a multi-colored automaton. G is (α, ω)-nonblocking, if
for all states x ∈ Ξ(α) such that G ⇒ x it also holds that
x ⇒ Ξ(ω).

Standard nonblocking can be expressed using generalized
nonblocking simply by taking Ξ(α) = X. The relationship
between generalized nonblocking and standard nonblock-
ing along with some applications is discussed in (Malik
and Leduc, 2008).

3. HISC WITH LOW DATA EVENTS

This section gives a brief introduction to Hierarchical
Interface-based Supervisory Control (HISC). For an illus-
trative example please see (Leduc et al., 2005a), and for
more detailed explanation and justification please refer
to (Leduc et al., 2005b; Leduc et al., 2006).

An HISC system (Leduc, 2009) is a two-level system which
includes one high-level subsystem and one or more low-
level subsystems. The high-level subsystem communicates
with each low-level subsystem through a separate inter-
face. HISC systems are defined using only deterministic
automata.

In HISC there is a master-slave relationship. The high-
level subsystem sends a command to a particular low-level
subsystem, which then performs the indicated task and
returns an answer. Fig. 1 shows the conceptual structure
and information flow of the system. This style of interac-
tion is enforced by an interface that mediates communica-
tion between the two subsystems. All system components,
including the interfaces, are modeled as automata.

In order to restrict information flow and decouple the sub-
systems, the system alphabet is partitioned into pairwise
disjoint alphabets:

Σ := ΣH ∪̇
⋃̇

j=1,...,n

(ΣLj
∪̇ ΣRj

∪̇ ΣAj
∪̇ ΣLDj

) (3)

The events in ΣH are called high-level events, and the
events in ΣLj

are the jth low-level events (j = 1, . . . , n), as

these events appear only in the high-level and jth low-level

S3

S1

S4

S0 S2

notDone

done

start

notDone

isDone
done

start

isDone

Fig. 2. Example LD Interface.

subsystem models, GH and GLj
respectively. We then

have the high-level subsystem GH defined over event set
ΣH ∪̇ (∪̇j∈{1,...,n}[ΣRj

∪̇ΣAj
∪̇ΣLDj

]) and the jth low-level
subsystem GLj

defined over event set ΣLj
∪̇ ΣRj

∪̇ ΣAj
∪̇

ΣLDj
. We model the jth interface by DES GIj

, which is
defined over the event set ΣRj

∪̇ΣAj
∪̇ΣLDj

. We define the
flat system to be G = GH ‖ GI1

‖ GL1
‖ · · · ‖GIn

‖ GLn
.

As the jth interface GIj
is only concerned with communi-

cation between the subsystems, it is defined only over the
events that are common to both levels of the hierarchy. The
events in ΣRj

are called request events and represent com-

mands sent from the high-level subsystem to the jth low-
level subsystem. The events in ΣAj

are answer events and
represent the low-level subsystem’s responses to the re-
quest events. The events in ΣLDj

are called low data events.
These events were introduced in (Leduc, 2009) to produce
more general and more powerful interfaces than the orig-
inal HISC architecture. Low data events provide a means
for a low-level to send information (data) through the
interface, independently of the standard request-answer
pattern. Request, answer, and low data events are col-
lectively known as the set of interface events, defined as
ΣI := ∪̇

n
j=1(ΣRj

∪̇ ΣAj
∪̇ ΣLDj

).

In order to enforce the serialization of requests and an-
swers, we restrict the interfaces to the subclass of LD
interfaces defined below. Fig. 2 shows an example of an LD
interface, where ΣRj

= {isDone, start}, ΣAj
= {done},

and ΣLDj
= {notDone}. It could correspond to a machine

at the low-level with an effective internal buffer of two.

Definition 9. A deterministic automaton GI = 〈ΣI ,X ,
→, {x◦},Xm〉 is an LD interface for the alphabet partition
ΣI = ΣR ∪̇ ΣA ∪̇ ΣLD if the following conditions are
satisfied.

(i) x◦ ∈ Xm;

(ii) If x
σ
→ y for some x ∈ Xm, then σ ∈ ΣR , or σ ∈ ΣLD

and y ∈ Xm.

(iii) If x
σ
→ y for some x /∈ Xm, then σ ∈ ΣLD , or σ ∈ ΣA

and y ∈ Xm.

To simplify notation, we bring in the following event
sets, natural projections, and languages. In particular,
languages such as H represent the behavior of a given DES
extended over Σ∗.

ΣIj
:= ΣRj

∪̇ ΣAj
∪̇ ΣLDj

, PIj
: Σ∗ → Σ∗

Ij

ΣILj
:= ΣLj

∪ ΣIj
, PILj

: Σ∗ → Σ∗
ILj

ΣIH := ΣH ∪
⋃

j∈{1,...,n}

ΣIj
, PIH : Σ∗ → Σ∗

IH

ΣLD :=
⋃

j∈{1,...,n}

ΣLDj



H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

I :=
⋂

j∈{1,...,n}

Ij , Im :=
⋂

j∈{1,...,n}

Imj

The following interface consistency properties are neces-
sary to ensure that the high and low-level subsystems
interact with the interfaces correctly.

Definition 10. The nth degree interface system composed
of DES GH ,GI1

,GL1
, . . . ,GIn

,GLn
is LD interface con-

sistent (LDIC) with respect to the alphabet partition (3),
if for all j ∈ {1, . . . , n}, the following conditions are
satisfied:

Multi-level Properties

(1) The event set of GH is ΣIH, and the event set of GLj

is ΣILj
.

(2) GIj
is an LD interface.

High-Level Property

(3) (∀s ∈ H ∩ I) EligIj
(s) ∩ (ΣAj

∪̇ ΣLDj
) ⊆ EligH(s)

Low-Level Properties

(4) (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

(5) (∀s ∈ Lj ∩ Ij)(∀ρ ∈ ΣRj
)(∀σ ∈ ΣAj

)
if sρσ ∈ Ij then (∃l ∈ Σ∗

Lj
) sρlσ ∈ Lj ∩ Ij

(6) (∀s ∈ Lj ∩ Ij)
if s ∈ Imj

then (∃l ∈ Σ∗
Lj

) sl ∈ Lmj
∩ Imj

.

The conditions in Def. 10 are referred to as the LD inter-
face consistency (LDIC) properties in the following. They
are local conditions of individual subsystems, designed
to capture the way an HISC subsystem should behave
to ensure correct communication with other subsystems.
LDIC properties 1 and 2 are syntactic properties ensur-
ing that all DES use the correct alphabet, and that all
interfaces have the appropriate structure for HISC. LDIC
property 3 is a controllability-like property that requires
the high-level always to be ready to accept any answer
or low data event the low-levels may produce according
to the interfaces. Similarly, LDIC property 4 requires the
low-levels always to be capable of accepting requests that
may come from the high-level. Finally, LDIC properties
5 and 6 are nonblocking-like requirements to be satisfied
by the low-level, discussed in more detail in Sect. 4 below.
Essentially, the low-level is required to be able to eventu-
ally execute all answers possible according to the interface
and to terminate, but only immediately after the interface
has entered particular states. For more details, please refer
to (Leduc, 2009; Leduc et al., 2009).

3.1 Local Conditions for Global Nonblocking

If the following level-wise nonblocking properties are satis-
fied in addition to interface consistency, this is enough to
conclude that the flat system is to be nonblocking.

Definition 11. The nth degree interface system composed
of DES GH ,GI1

,GL1
, . . . ,GIn

,GLn
is said to be LD level-

wise nonblocking (LDLWNB) if the following conditions
are satisfied:

(I) LD-nonblocking at the high-level :
(∀s ∈ H ∩ I)(∃s′ ∈ (Σ \ ΣLD)∗) ss′ ∈ Hm ∩ Im

(II) nonblocking at the low-level :
GLj

‖ GIj
is nonblocking for each j = 1, . . . , n.

Theorem 1. (Leduc, 2009) If the nth degree (n ≥ 1) in-
terface system composed of deterministic DES GH ,GI1

,
GL1

, . . . ,GIn
,GLn

, is LD level-wise nonblocking and LD
interface consistent with respect to the alphabet parti-
tion (3), then G = GH ‖ GL1

‖ GI1
‖ · · · ‖ GLn

‖ GIn

is nonblocking.

3.2 Local Conditions for Global Controllability

For controllability, we need to split the subsystems into
their plant and supervisor components. We define the high-
level plant to be G

p
H , and the high-level supervisor to be

SH (both defined over event set ΣIH). Similarly, the jth

low-level plant and supervisor are G
p
Lj

and SLj
(defined

over ΣILj
). The high-level subsystem and the jth low-level

subsystem are then GH := G
p
H‖SH and GLj

:= G
p
Lj
‖SLj

,

respectively.

We can now define our flat supervisor and plant as well as
some useful languages as follows:

Plant := G
p
H ‖ G

p
L1

‖ · · · ‖ G
p
Ln

Sup := SH ‖ SL1
‖ · · · ‖ SLn

‖ GI1
‖ . . . ‖ GIn

Hp := P−1
IH L(Gp

H), SH := P−1
IH L(SH) ⊆ Σ∗

Lp
j := P−1

ILj
L(Gp

Lj
), SLj

:= P−1
ILj

L(SLj
) ⊆ Σ∗

We now provide the controllability requirements that each
level must satisfy. For a discussion of the individual points
of Def. 12, please refer to (Leduc et al., 2006).

Definition 12. The nth degree interface system composed
of DES G

p
H ,SH ,Gp

L1
,SL1

,GI1
, . . . ,Gp

Ln
,SLn

,GIn
is LD

level-wise controllable (LDLWC) with respect to the al-
phabet partition (3), if for all j ∈ {1, . . . , n} the following
conditions hold:

(I) The alphabet of G
p
H and SH is ΣIH, the alphabet of

G
p
Lj

and SLj
is ΣILj

, and the alphabet of GIj
is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj

∩ Ij) EligLp

j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s)

(III) (∀s ∈ Hp ∩ I ∩ SH) EligHp∩I(s) ∩ Σu ⊆ EligSH
(s)

Theorem 2. (Leduc, 2009) If the nth degree (n ≥ 1)
interface system composed of DES G

p
H ,SH ,Gp

L1
,SL1

,

GI1
, . . . ,Gp

Ln
,SLn

,GIn
is LD level-wise controllable with

respect to the alphabet partition given by (3), then
(∀s ∈ L(Plant) ∩ L(Sup))

EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

4. COMPOSITIONAL VERIFICATION OF HISC

This section explains how to compositionally verify the
HISC conditions for nonblocking and controllability.

To verify that an HISC system is nonblocking, it must
be shown to satisfy LDIC Properties 1–6 (Def. 10) and
LDLWNB Properties I–II (Def. 11). First, LDIC Proper-
ties 1 and 2 are syntactical conditions that can be checked
easily by inspecting each automaton individually. LDIC
Properties 3 and 4 are essentially controllability prop-
erties, once suitable definitions of plant, supervisor, and



uncontrollable events have been made. These properties
can be checked efficiently using methods for composi-
tional verification of safety properties such as (Brandin et
al., 2004; Ware and Malik, 2008). LDLWNB Property II is
a standard nonblocking property, which can be checked
directly using the compositional approach for standard
nonblocking in (Flordal and Malik, 2009), or by con-
verting the property into generalized nonblocking (Malik
and Leduc, 2008) and using compositional verification of
generalized nonblocking (Malik and Leduc, 2009).

To verify that an HISC system is controllable, it is enough
to verify LDLWC Properties I–III (Def. 12), which are
either syntactical (LDLWC Property I) or can be treated
as standard controllability verification problems (LDLWC
Property II and III).

We thus only need to provide compositional methods to
check LDIC Properties 5 and 6, and LDLWNB Property I.
In the following, each of these three remaining properties
is addressed in a subsection of its own.

4.1 LDIC Property 5

LDIC Property 5 is similar to standard nonblocking if
states where answer event σ is possible are considered
as marked states. However, instead of requiring a path
to these states from all reachable states as in standard
nonblocking, such a path is required only from states
immediately after request eventρ. Also, we require that the
path to a marked state only contains low-level events. This
property can be expressed using generalized nonblocking
by marking precisely those states α that are entered
immediately after request event ρ, and introducing a new
DES to restrict the occurrence of interface events while
testing whether a given answer σ can occur.

The following definition and result generalizes the solution
from (Malik and Leduc, 2008) to include low data events.
To verify that an nth order HISC system satisfies LDIC
Property 5, we have to check the property for each of the
n subsystems. To keep things simple, we give definitions
for a single low level GL = GLj

and interface GI = GIj

(j ∈ {1, . . . , n}), with associated event sets ΣR = ΣRj
,

ΣA = ΣAj
, ΣLD = ΣLDj

, and ΣL = ΣLj
.

Definition 13. Let Σ = ΣR ∪̇ ΣA ∪̇ ΣLD ∪̇ ΣL , ΣI =
ΣR ∪ ΣA ∪ ΣLD and let GI = 〈ΣI ,XI ,→I , {x

◦
I},X

m
I 〉

and GL = 〈Σ,XL,→L, {x◦
L},X

m
L 〉 be two deterministic

automata. GI and GL satisfy LDIC Property 5 if, for
all strings s ∈ Σ∗ and all events ρ ∈ ΣR such that
sρ ∈ L(GI ‖ GL), and for all events σ ∈ ΣA such
that PΣI

(s)ρσ ∈ L(GI), there exists t ∈ Σ∗
L such that

sρtσ ∈ L(GI ‖ GL).

For automata GI and GL and answer event σ ∈ ΣA , we
construct the multi-colored automata Gσ

I , Gσ
L , and Tσ

such that Gσ
I ‖ Gσ

L ‖ Tσ is (α, ω)-nonblocking if and only
if LDIC Property 5 is satisfied for the given answer σ. The
construction is as follows.

• Gσ
I is obtained from GI by adding propositions

α and ω such that all states with σ enabled are
marked α, and all states are marked ω. If GI =
〈ΣI ,XI ,→I , {x

◦
I},X

m
I 〉, then Gσ

I = 〈ΣI , {α, ω},XI ,

→I , {x
◦
I},ΞI〉 with ΞI(α) = {x ∈ XI | x

σ
→} and

ΞI(ω) = XI .

σ

σΣ

ΣR

ΣL

ΣL

x0
T

x1
T

x2
T

Fig. 3. The automaton Tσ for translating LDIC Property 5
into (α, ω)-nonblocking.

• Gσ
L is obtained from GL by marking all states both

α and ω. If GL = 〈Σ,XL,→L, {x◦
L},X

m
L 〉, then

Gσ
L = 〈Σ, {α, ω},XL,→L, {x◦

L},ΞL〉 with ΞL(α) =
ΞL(ω) = XL.

• Tσ = 〈Σ, {α, ω},XT , {x0
T },→T ,ΞT 〉 with XT = {x0

T ,
x1

T , x2
T }, ΞT (α) = {x1

T }, and ΞT (ω) = {x0
T } is the

nondeterministic multi-colored automaton in Fig. 3.

Proposition 3. For each σ ∈ ΣA construct multi-colored
automata Gσ

I , Gσ
L , and Tσ as explained above. GI

and GL satisfy LDIC Property 5 if and only if Gσ
I ‖G

σ
L‖T

σ

is (α, ω)-nonblocking for each σ ∈ ΣA .

Proof. First, let GI and GL satisfy LDIC Property 5. Let

σ ∈ ΣA such that Gσ
I ‖Gσ

L ‖Tσ s
→ (xI , xL, xT ) ∈ ΞI(α)×

ΞL(α) × ΞT (α). Since ΞT (α) = {x1
T } by construction, it

holds that xT = x1
T and s = s′ρ for some s′ ∈ Σ∗ and

ρ ∈ ΣR . Also GI ‖ GL
s
→ (xI , xL), and since xI ∈ ΞI(α),

it holds by construction that GI

PΣI
(s)

−→ xI
σ
→ yI for some

yI ∈ XI = ΞI(ω). Therefore, s′ρ = s ∈ L(GI ‖ GL)
and PΣI

(s′)ρσ ∈ L(GI). By LDIC Property 5, there exists
t ∈ Σ∗

L such that stσ = s′ρtσ ∈ L(GI ‖ GL). Since GL is
deterministic, there exists yL ∈ XL = ΞL(ω) such that

xL
tσ
→ yL. Furthermore, note that xT = x1

T

tσ
→ x0

T ∈

ΞT (ω) for any string t ∈ Σ∗
L . Therefore, (xI , xL, xT )

tσ
→

ΞI(ω) × ΞL(ω) × ΞT (ω), i.e., Gσ
I ‖ Gσ

L ‖ Tσ is (α, ω)-
nonblocking.

Second, let Gσ
I ‖ Gσ

L ‖ Tσ be (α, ω)-nonblocking for all
σ ∈ ΣA . Let s ∈ Σ∗, ρ ∈ ΣR , and σ ∈ ΣA be such
that sρ ∈ L(GI ‖GL) and PΣI

(s)ρσ ∈ L(GI). Then there

exist states xI ∈ XI and xL ∈ XL such that GI

PΣI
(s)ρ

−→

xI
σ
→ and GL

sρ
→ xL. Also, Tσ sρ

→ x1
T by construction

of Tσ, and therefore Gσ
I ‖ Gσ

L ‖ Tσ sρ
→ (xI , xL, x1

T ) ∈
ΞI(α) × ΞL(α) × ΞT (α). Since Gσ

I ‖ Gσ
L ‖ Tσ is (α, ω)-

nonblocking, there exists u ∈ Σ∗ such that (xI , xL, x1
T )

u
⇒

ΞI(ω)×ΞL(ω)×ΞT (ω). By construction of Tσ, and since
ΞT (ω) = {x0

T }, there exists a prefix tσ of u such that

t ∈ Σ∗
L and (xI , xL, x1

T )
tσ
⇒, i.e., sρtσ ∈ L(GI ‖GL). Since

s,ρ, and σ have been chosen arbitrarily, GI and GL satisfy
LDIC Property 5. 2

After this construction, the compositional approach for
generalized nonblocking (Malik and Leduc, 2009) can
be used to verify LDIC property 5. The construction
can be performed modularly and therefore is feasible for
composed systems: if GI and GL are composed of several
automata, then the construction can be applied to each
automaton individually. Furthermore, the construction
typically produces systems where the majority of states are
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Fig. 4. The automaton Tvi for translating LDIC Prop-
erty 6 into (α, ω)-nonblocking.

not marked α. This is important since several of the more
powerful generalized nonblocking-preserving abstractions
presented in (Malik and Leduc, 2009) require states that
are not marked α.

4.2 LDIC Property 6

LDIC Property 6 is similar to the standard nonblocking
property except that we only require states marked by the
interface, but not necessarily the corresponding low level,
to be coreachable. Also, we require that the path to a
marked state only contains low-level events.

To verify that an nth order HISC system satisfies LDIC
Property 6, we have to check the property for each of the n
subsystems. Again, we give definitions for a single low level
GL = GLj

and interface GI = GIj
, with associated event

sets ΣR = ΣRj
, ΣA = ΣAj

, ΣLD = ΣLDj
, and ΣL = ΣLj

.

Definition 14. Let Σ = ΣR ∪̇ ΣA ∪̇ ΣLD ∪̇ ΣL , ΣI =
ΣR ∪ ΣA ∪ ΣLD , and let GI = 〈ΣI ,XI ,→I , {x

◦
I},X

m
I 〉

and GL = 〈Σ,XL,→L, {x◦
L},X

m
L 〉 be two deterministic

automata. GI and GL satisfy LDIC Property 6 if for all

strings s ∈ Σ∗ such that GI‖GL
s
⇒ (xI , xL) and xI ∈ Xm

I ,

there exists l ∈ Σ∗
L such that (xI , xL)

l
⇒ Xm

I × Xm
L .

LDIC Property 6 can be expressed directly using gener-
alized nonblocking. This is achieved by marking precisely
those states α in GI ‖GL that are marked by GI . Multi-
colored automata Gvi

I , Gvi
L , and Tvi are constructed such

that Gvi
I ‖Gvi

L ‖Tvi is (α, ω)-nonblocking if and only if GI

and GL satisfy LDIC Property 6:

• From GI , we define Gvi
I = 〈ΣI , {α, ω},XI ,→I , {x

◦
I},

Ξvi
I 〉 where Ξvi

I (α) = Ξvi
I (ω) = Xm

I .
• From GL , we define Gvi

L = 〈Σ, {α, ω},XL,→L, {x◦
L},

Ξvi
L 〉 where Ξvi

L (α) = XL and Ξvi
L (ω) = Xm

L .
• We define Tvi = 〈ΣI , {α, ω}, {x1

T , x2
T },→T , {x1

T },
Ξvi

T 〉, with →T = {(x1
T , τ, x2

T )} ∪
⋃

σ∈ΣI
{(x1

T , σ, x1
T )}

and Ξvi
T (α) = Ξvi

T (ω) = {x2
T }, to be the nondetermin-

istic multi-colored automaton in Fig. 4.

Proposition 4. GI and GL satisfy LDIC Property 6 if and
only if Gvi

I ‖ Gvi
L ‖ Tvi is (α, ω)-nonblocking.

Proof. First assume that GI and GL satisfy LDIC

Property 6, and let Gvi
I ‖ Gvi

L ‖ Tvi s
⇒ (xI , xL, xT ) ∈

Ξvi
I (α)×Ξvi

L (α)×Ξvi
T (α). Then by construction GI

PΣI
(s)

=⇒

xI ∈ Ξvi
I (α) = Xm

I , i.e., GI‖GL
s
⇒ (xI , xL) and xI ∈ Xm

I .
As GI and GL satisfy LDIC Property 6, there exists

l ∈ Σ∗
L such that (xI , xL)

l
⇒ (yI , yL) ∈ Xm

I × Xm
L . It

follows that

• in Gvi
I : xI

PΣI
(l)

=⇒ yI ∈ Ξvi
I (ω) as Ξvi

I (ω) = Xm
I .

ΣLD

τ

x1
T x2

T

Fig. 5. The automaton TLD for translating LD nonblock-
ing into standard nonblocking.

• in Gvi
L : xL l

⇒ yL ∈ Ξvi
L (ω) as Ξvi

L (ω) = Xm
L .

• in Tvi : xT
PΣI

(l)
=⇒ x2

T ∈ Ξvi
T (ω) by construction of Tvi

as PΣI
(l) = ε.

Thus, Gvi
I ‖ Gvi

L ‖ Tvi s
⇒ (xI , xL, xT )

l
⇒ (yI , yL, x2

T ) ∈

Ξvi
I (ω) × Ξvi

L (ω) × Ξvi
T (ω), i.e., Gvi

I ‖ Gvi
L ‖ Tvi is (α, ω)-

nonblocking.

Second, assume that Gvi
I ‖Gvi

L ‖Tvi is (α, ω)-nonblocking.

Let s ∈ Σ∗, GI ‖ GL
s
⇒ (xI , xL), and xI ∈ Xm

I . Then

by construction Gvi
I

PΣI
(s)

=⇒ xI ∈ Xm
I = Ξvi

I (α) and

Gvi
L

s
⇒ xL ∈ XL = Ξvi

L (α) and Tvi
PΣI

(s)
−→ x1

T

τ
→ x2

T , i.e.,

Tvi
PΣI

(s)
=⇒ x2

T ∈ Ξvi
T (α). It follows that Gvi

I ‖ Gvi
L ‖ Tvi s

⇒

(xI , xL, x2
T ) ∈ Ξvi

I (α)×Ξvi
L (α)×Ξvi

T (α). Since Gvi
I ‖Gvi

L ‖

Tvi is (α, ω)-nonblocking, there exists t ∈ Σ∗ such that

(xI , xL, x2
T )

t
⇒ (yI , yL, yT ) ∈ Ξvi

I (ω) × Ξvi
L (ω) × Ξvi

T (ω).

Then x2
T

PΣI
(t)

=⇒ , which by construction of Tvi implies
PΣI

(t) = ε, i.e., t ∈ Σ∗
L. Furthermore yI ∈ Ξvi

I (ω) = Xm
I

and yL ∈ Ξvi
L (ω) = Xm

L , which means that (xI , xL)
t
⇒

Xm
I × Xm

L with t ∈ Σ∗
L. Thus, GI and GL satisfy LDIC

Property 6. 2

Like in the case of LDIC property 5, this construction
can be performed modularly and produces a large number
of states not marked α, making it well suited for the
compositional approach in (Malik and Leduc, 2009).

4.3 LDLWNB Property I

LDLWNB Property I is very similar to standard non-
blocking. Every reachable state of the high-level must be
coreachable, only the path to a marked state must not
contain any low data events. To verify that an nth order
HISC system satisfies LDLWNB Property I, it is sufficient
to verify that G = GH ‖ GI1

‖ · · · ‖ GIn
satisfies the LD-

nonblocking definition below, with ΣLD set to the HISC
system’s low data events.

Definition 15. Let G = 〈Σ,X ,→,X◦,Xm〉 and ΣLD ⊆ Σ.
Then G is called LD-nonblocking, if for all s ∈ Σ∗ and all

x ∈ X such that G
s
⇒ x, there exists t ∈ (Σ \ ΣLD)∗ such

that x
t
⇒ Xm.

The following result shows how this LD-nonblocking condi-
tion can be rewritten equivalently as a standard nonblock-
ing property. This makes it possible to verify LDLWNB
Property I using the compositional approach for standard
nonblocking (Flordal and Malik, 2009) or (after conver-
sion) for generalized nonblocking (Malik and Leduc, 2009).

Proposition 5. Let G = 〈Σ,X ,→,X◦,Xm〉 be an au-
tomaton, and ΣLD ⊆ Σ. Furthermore, let TLD = 〈ΣLD ,



{x1
T , x2

T },→T , {x1
T }, {x

2
T }〉 where →T = {(x1

T , τ, x2
T )} ∪⋃

σ∈ΣLD
{(x1

T , σ, x1
T )} be the nondeterministic automaton

in Fig. 5. Then G is LD-nonblocking if and only if G‖TLD

is nonblocking.

Proof. Let G be LD-nonblocking, and let G ‖ TLD s
⇒

(x, xT ). Then G
s
⇒ x, and since G is LD-nonblocking,

there exists t ∈ (Σ \ ΣLD)∗ such that G
s
⇒ x

t
⇒ Xm.

Given that t ∈ (Σ \ ΣLD)∗, it follows that PΣLD
(t) = ε, so

TLD
PΣLD

(s)
=⇒ xT

PΣLD
(t)

=⇒ xT
ε
⇒ x2

T ∈ Xm
T .

Therefore, G ‖TLD s
⇒ (x, xT )

t
⇒ Xm ×Xm

T , i.e., G ‖TLD

is nonblocking.

Now assume that G ‖TLD is nonblocking, and let G
s
⇒ x.

Clearly by construction

TLD
PΣLD

(s)
=⇒ x1

T

τ
→ x2

T ,

and therefore G ‖ TLD s
⇒ (x, x2

T ). Since G ‖ TLD is

nonblocking, there exists t ∈ Σ∗ such that (x, x2
T )

t
⇒

Xm × Xm
T . So the string PΣLD

(t) is enabled in state x2
T

of TLD, but by construction no event in ΣLD is enabled
in this state. Therefore, PΣLD

(t) = ε, or equivalently

t ∈ (Σ \ ΣLD)∗. Thus, G
s
⇒ x

t
⇒ Xm for t ∈ (Σ \ ΣLD)∗,

i.e., G is LD-nonblocking. 2

5. CONCLUSIONS

This paper proposes a hybrid approach to the modeling
and verification of large-scale discrete event systems. Large
models are first structured into subsystems according to
the principle of Hierarchical Interface-based Supervisory
Control (HISC), and then the subsystems are analyzed
individually using compositional verification.

This paper shows how the individual conditions to be
checked for each HISC subsystem can be verified using
compositional verification. The size of the systems that
HISC can handle is primarily limited by the size of
the largest subsystem. By evaluating the per-subsystem
conditions using compositional verification, the explicit
construction of the complete state space of each subsystem
is avoided, making it possible to analyze larger HISC
systems overall.

In addition to the improved model structure provided by
HISC, the hybrid approach also has computational advan-
tages over straightforward use of compositional methods.
These advantages follow from the compartmentalization
into subsystems that HISC provides, and the fact that all
properties can be checked by considering only one sub-
system at a time. Even though compositional verification
may be able to identify subsystems automatically in some
cases, this identification often remains a challenge. The
user-defined subsystem structure reduces the choice of au-
tomata to be composed, making compositional verification
much easier or even possible.

Furthermore, the hybrid method provides a means to
easily parallelise the method. Each property of each sub-
system can be evaluated individually, producing several
independent tasks that can be run in parallel.
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