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Abstract

The Hierarchical Interface-Based Supervisory Control (HISC) framework was pro-
posed to address challenges inherent in modeling the behavior of large, complex
systems. Such systems are often characterized by decentralized or distributed
architectures, where agents have only a partial view of the system behavior and
cooperate to achieve the control objective, aspects unsupported by HISC. We intro-
duce the Hierarchical Interface-Based Decentralized Supervisory Control (HIDSC)
framework that extends HISC to decentralized control.

In decentralized control, the speci�cation must satisfy a property called co-
observability. The veri�cation of co-observability requires the (possibly intractable)
construction of the complete system. To adapt this property for HIDSC, we pro-
pose a per-component de�nition of co-observability along with a veri�cation strat-
egy that does not require the construction of the complete system. We provide
and prove the necessary and su�cient conditions for supervisor existence in this
new framework and illustrate our approach with an example.

Keywords: discrete-event systems, supervisory control, decentralized control, Hi-
erarchical Interface-based Supervisory Control
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1 Introduction

One of the main challenges in the control of Discrete Event Systems (DES) is the combinatorial
explosion of the product state space. The Hierarchical Interface-Based Supervisory Control
(HISC) framework proposed in [4, 6, 5] can alleviate the state-space explosion problem. HISC
provides a set of local properties that can be used to verify global properties, such as non-
blocking and controllability, so that the complete system model never needs to be constructed.
The su�cient conditions of HISC allow the independent design and veri�cation of di�erent
levels, ensuring that a change to one level of the hierarchy will not impact the others.

However, the current HISC framework does not support decentralized control problems
which arise naturally through the investigation of a large variety of distributed systems, such
as communication networks, integrated sensor networks, networked control systems and au-
tomated guided vehicular system. These systems have many controllers that jointly control
the distributed architecture. Further, these controllers may be supervisors with only a partial
observation of the system. Also, due to the distributed nature of the system, controllers at
di�erent sites in the distributed system may see the e�ect of di�erent sets of sensors and may
control di�erent sets of controllable events. The controllers must coordinate the disabling and
enabling of events to realize the legal or desired behavior.

Decentralized control of DES focuses on problems where multiple agents each control and
observe some events in a system and must together achieve some prescribed goal. The synthesis
of decentralized supervisors requires that the speci�cation satis�es a decentralized property
called co-observability [10]. Nevertheless, when the system is very large and composed of many
sub-systems, checking co-observability using the existing monolithic method [9] requires the
construction of the complete system model, which may be intractable due to the state-space
explosion problem.

To address the above problems, we propose an approach called the Hierarchical Interface-
Based Decentralized Supervisory Control (HIDSC) framework that allows HISC to manage
decentralized control problems. The proposed HIDSC framework is a scalable method which
can mitigate the product state-space explosion problem, and make decentralized control scale
better. We introduce a per-component co-observability veri�cation, which does not require
the synchronization of all the components. We then prove that if a system is level-wise co-
observable then it is globally co-observable. This should allow more large problems to be
solved. Further, we provide and prove the necessary and su�cient conditions for supervisor
existence in HIDSC. We then apply our HIDSC approach to an illustrative example.

This paper is organized as followed. Section 2 presents a summary of the DES terminology
that we will use in this paper. Section 3 discusses the HISC architecture. In Section 4, a
new framework called the HIDSC architecture is introduced. Section 5 introduces the new
level-wise co-observability de�nition, global co-observability de�nition, and the HIDSC global
co-observability theorem. Section 6 provides and proves a supervisor existence theorem. In
Section 7, we illustrate our HIDSC approach with an example. We present conclusions in
Section 8.

2 Preliminaries

This section provides a review of the key concepts used in this paper. Readers unfamiliar with
the notation and de�nitions may refer to [2].
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Event sequences and languages are simple ways to describe DES behavior. Let Σ be a
�nite set of distinct symbols (events), and Σ∗ be the set of all �nite sequences of events plus
ε, the empty string. A language L over Σ is any subset L ⊆ Σ∗.

The concatenation of two strings s, t ∈ Σ∗, is written as st. Languages and alphabets can
also be concatenated. For L ⊆ Σ∗ and Σ′ ⊆ Σ, we can de�ne the concatenation of the language
and event set as LΣ′ := {sσ|s ∈ L, σ ∈ Σ′}. For strings s, t ∈ Σ∗, we say that t is a pre�x of s
(written t ≤ s) if s = tu, for some u ∈ Σ∗. We also say that t can be extended to s. The pre�x
closure L of a language L ⊆ Σ∗ is de�ned as follows: L := {t ∈ Σ∗|t ≤ s for some s ∈ L}. A
language L is said to be pre�x-closed if L = L.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1, and L2 ⊆ Σ∗2. For i ∈ {1, 2}, s ∈ Σ∗, and σ ∈ Σ. To capture
the notion of partial observation, we de�ne the natural projection Pi : Σ∗ → Σ∗i according to:

Pi(ε) := ε

Pi(σ) :=

{
ε, if σ /∈ Σi

σ, if σ ∈ Σi

Pi(sσ) := Pi(s)Pi(σ)
Given any language L ⊆ Σ∗, the natural projection of a language L, is Pi(L) :={Pi(s) | s ∈

L}.
The inverse projection P−1i : Pwr(Σ∗i ) → Pwr(Σ∗) is de�ned over subsets of languages,

where Pwr(Σ∗i ) and Pwr(Σ
∗) denote all subsets of Σ∗i and Σ∗, respectively. Given any Li ⊆

Σ∗i , the inverse projection of Li is de�ned as: P−1i (Li) := {s | Pi(s) ∈ Li}.
A DES is represented as a tuple: G := (Q, Σ, δ, q0, Qm), with �nite state set Q, �nite

alphabet set Σ, partial transition function δ : Q × Σ → Q, initial state q0, and the set of
marker states Qm. We use δ(q, σ)! to represent that δ is de�ned for σ ∈ Σ at state q ∈ Q.
Function δ can be extended to Σ∗ by de�ning δ(q, ε) := q and δ(q, sσ) := δ(δ(q, s), σ),
provided that q′ = δ(q, s)! and δ(q′, σ)!, for s ∈ Σ∗ and q ∈ Q. We will always assume that a
DES has a �nite state and event set, and is deterministic.

For DES G, its closed behavior is denoted by L(G) := {s ∈ Σ∗|δ(q0, s)!}. The marked

behavior of G, is de�ned as Lm(G) := {s ∈ L(G)| δ(qo, s) ∈ Qm}. A DES G is said to be
nonblocking if Lm(G) = L(G).

Let K ⊆ Lm(G) ⊆ Σ∗. We say that the language K is Lm(G)−closed if K = K ∩ Lm(G).
Thus K is Lm(G)-closed if it contains all of its pre�xes that belong to Lm(G).

The synchronous product of languages L1 and L2, denoted by L1||L2, is de�ned to be:
L1||L2 := P−11 (L1) ∩ P−12 (L2).

If both L1 and L2 are over the same event set Σ, then their languages have the following
property: L1||L2= P−11 (L1) ∩ P−12 (L2)= L1 ∩ L2.

Let Gi = (Qi, Σi, δi, q0,i, Qmi), i = 1, 2. We de�ne the synchronous product G1||G2 as:
(Q1 ×Q2, Σ1 ∪ Σ2, δ, (q0,1, q0,2), Qm1 ×Qm2), where δ((q1, q2), σ) is de�ned as:

(δ1(q1, σ), δ2(q2, σ)), ifσ ∈ Σ1 ∩ Σ2, δ1(q1, σ)!, δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1\Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2\Σ1 and δ2(q2, σ)!.

.

In supervisory control, the event set Σ is partitioned into two disjoint sets: the controllable
event set Σc and the uncontrollable event set Σuc. Controllable events can be prevented from
happening (disabled) by a supervisor, while uncontrollable events cannot be disabled.

Let K and L = L be languages over event set Σ. K is said to be controllable with respect
to L and Σuc if and only if, KΣuc ∩ L ⊆ K.
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For decentralized control, there is an index set ofN decentralized controllers,D = {1, ..., N}.
These controllers have only a partial view of the system behavior and control only a subset of
the controllable events. To describe events that each decentralized controller i ∈ D controls,
we use the notation Σc,i ⊆ Σc, where ∪Ni=1Σc,i = Σc. We refer to the set of controllers that
control σ ∈ Σc as Dc (σ) := {i ∈ D |σ ∈ Σc,i}.

To describe events that each decentralized controller i ∈ D observes, we use the notation
Σo,i ⊆ Σo, where ∪Ni=1Σo,i = Σo. We refer to the set of controllers that observe e ∈ Σo by
Do (e) := {i ∈ D |e ∈ Σo,i}. Correspondingly, the natural projection describing the partial
view of each controller is denoted by Pi : Σ∗ → Σ∗o,i, for i ∈ D.

For decentralized control with a conjunctive architecture [10], the fusion rule is the con-
junction of all local control decisions, .i.e, an event is globally enabled if not locally disabled.
We use the conjunctive architecture in this paper.

We now present a set of de�nitions for decentralized supervisory controls.

De�nition 2.1. Let K ⊆ Σ∗ be the desired language, i ∈ D, and t ∈ L(G). Then the

decision rule for a local partial-observation decentralized supervisor is a function: SPi(t) :=
(Σ\Σc,i) ∪ {σ ∈ Σc,i | P−1i [Pi(t)]σ ∩K ∩ L(G) 6= ∅}. The conjunction of SPi, i ∈ D, denoted

by SCon, is de�ned as: SCon(t) := ∩Ni=1SPi(t) = ∩Ni=1SPi(Pi(t)).

We note that SPi(t) = SPi(Pi(t)) as the natural projection is idempotent, i.e., Pi(t) =
Pi(Pi(t)).

We now de�ne the closed behavior for the closed-loop system of G under the control of
SCon.

De�nition 2.2. Given G and SCon, the resulting closed-loop system is denoted by SCon/G.

The system's closed behavior L(SCon/G), is recursively de�ned as follows:

I) ε ∈ L(SCon/G)
II) t ∈ L(SCon/G), σ ∈ SCon(t), and tσ ∈ L(G) if and only if tσ ∈ L(SCon/G).

The following is the de�nition of decentralized supervisory control.

De�nition 2.3. Given G and SCon, we say SCon is a decentralized supervisory control if the
decision rule is de�ned as in De�nition 2.1, and the resulting closed-loop system and closed

behavior is de�ned as in De�nition 2.2.

The following is the de�nition of nonblocking decentralized supervisory control.

De�nition 2.4. We say that SCon is a nonblocking decentralized supervisory control (NDSC)
for G if Lm(SCon/G) = L(SCon/G) where Lm(SCon/G) := L(SCon/G) ∩ Lm(G).

It is useful to introduce a generalization of NDSC in which the supervisory action also
includes marking as well as control, since allowing supervisors to add marking behavior makes
them more expressive.

De�nition 2.5. Let K ⊆ Lm(G). We say that Scon is a marking nonblocking decentralized
supervisory control (MNDSC) for (K, G) if Lm(SCon/G) = L(SCon/G) where Lm(Scon/G) :=
L(Scon/G) ∩ K.

The following is the de�nition of the equivalent MNDSC behavior.
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De�nition 2.6. Let SCon be a MNDSC for plantG = (Q, Σ, δ, q0, Qm), with Lm(SCon/G) =
L(Scon/G) ∩ K and L(SCon/G) = K. Let H = (X, Σ, ξ, x0, Xm) be a speci�cation au-

tomaton. We say that H||G has the equivalent MNDSC behavior with SCon/G, if K =
Lm(H) ∩ Lm(G) and K = L(H) ∩ L(G). Alternatively, H is an equivalent theoretical
implementation of MNDSC SCon for G.

In this paper, we focus on MNDSC which is a more general supervisory control paradigm.
In particular, it will allow us to later introduce a decentralized supervisor existence result that
relies on an closed-loop system (H||G) to be nonblocking, instead of the existing results that
require K to be Lm(G)-closed. This is essential to adapting decentralized control to the HISC
approach as HISC provides a scalable method to verify nonblocking but not Lm(G)-closed.

We note that in decentralized control, there is no real implementation of the centralized
supervisor H. The above MNDSC SCon, de�ned as the control policy of the conjunction of a
group of decentralized supervisors, ∩Ni=1SPi(t), is the real supervisory control. Further, for an
HISC system, H will correspond to the theoretical �at supervisor of the system, and will be
used to determine if the �at system is nonblocking.

The following is the de�nition of co-observability adapted from [10, 1, 8]. Co-observability
is a necessary condition to synthesize decentralized controllers which ensure that the supervised
system generates exactly the behavior in the speci�cation K.

De�nition 2.7. Let K, L = L be languages over event set Σ. Let D = {1, ..., N} be an index

set. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of controllable and observable events, respectively, for

i ∈ D, where Σc = ∪Ni=1Σc,i and Dc (σ) := {i ∈ D |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗o,i be a natural

projection. A language K is said to be co-observable with respect to L, Σo,i, Σc,i, i ∈ D, if

and only if,

(∀t ∈ K ∩ L) (∀σ ∈ Σc) tσ ∈ L\K ⇒ (∃i ∈ Dc (σ)) P−1i [Pi(t)]σ ∩K ∩ L = ∅.

Note that, when D = {1}, this property is called observability [7]. Since in practice the
speci�cationK is not necessarily a subset of L, we do not require thatK ⊆ L as in traditionally
done. Instead of checking all strings in K, we check all strings in K ∩ L.

If an event σ needs to be disabled (i.e., t ∈ K, tσ ∈ L\K), then at least one of the
controllers that control σ must unambiguously know that it must disable the event σ (i.e.,
P−1i [Pi(t)]σ ∩K ∩ L = ∅). So, from this supervisor's viewpoint, disabling σ does not prevent
any string in K ∩ L. For all other controllers that are uncertain about whether they should
disable the event σ, they will enable the event σ, and the �nal fusion rule used here is the
conjunction of all the decisions of controllers.

In the following when there is no ambiguity, instead of saying that K is co-observable with
respect to L, Σo,i, Σc,i, i ∈ D, we will say that K is co-observable w.r.t. L.

3 HISC Architecture

The HISC approach decomposes a system into a high-level subsystem which communicates
with n ≥ 1 parallel low-level subsystems through separate interfaces that restrict the interac-
tion of the subsystems. The high-level subsystem communicates with each low-level subsystem
through a separate interface.

In HISC there is a master-slave relationship. A high-level subsystem sends a command to a
particular low-level subsystem, which then performs the indicated task and returns a response
(answer). Figure 1 shows conceptually the structure and information �ow of the system. This
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Figure 1: Interface Block Diagram with Low Data Events.

style of interaction is enforced by an interface that mediates communication between the two
subsystems. All system components, including the interfaces, are modeled as automata.

To restrict information �ow and decouple the subsystems, the system alphabet is parti-
tioned into pairwise disjoint alphabets:

Σ := ΣH ∪̇
⋃̇

j=1,...,n

[ΣLj ∪̇ΣRj ∪̇ΣAj ∪̇ΣLDj ] (1)

The events in ΣH are called high-level events and the events in ΣLj are the jth low-level

events (j = 1, . . . , n) as these events appear only in the high-level and jth low-level subsystem
models, GH and GLj , respectively.

Subsystem GH de�ned over event set ΣH ∪̇(∪̇j∈{1,...,n}[ΣRj ∪̇ΣAj ∪̇ΣLDj ]) and GLj de�ned

over event set ΣLj ∪̇ΣRj ∪̇ΣAj ∪̇ΣLDj . We model the jth interface by DES GIj , which is de-
�ned over event set ΣRj ∪̇ΣAj ∪̇ΣLDj . We de�ne our �at system to be G = GH ||GI1 ||GL1 ||
. . . ||GIn ||GLn . By �at system we mean the equivalent DES if we ignore the interface struc-
ture. For the remainder of this paper, the index j has range {1, . . . , n}. Note that we use ∪̇
to represent disjoint union.

The jth interface, GIj , is de�ned over events that are common to both levels of the
hierarchy. The events in ΣRj , called request events, represent commands sent from the high-

level subsystem to the jth low-level subsystem. The events in ΣAj are answer events and
represent the low-level subsystem's responses to the request events. The events in ΣLDj are
called low data events which provide a means for a low-level to send information (data) through
the interface. Request, answer, and low data events are collectively known as the set of LD
interface events, de�ned as ΣI := ∪̇k∈{1,...,n}[ΣRk

∪̇ΣAk
∪̇ΣLDk

], and GIj is an LD interface[5].
To simplify notation in our exposition, we bring in the following event sets, natural pro-

jections, and languages.
ΣIj := ΣRj ∪̇ΣAj ∪̇ΣLDj , PIj : Σ∗ → Σ∗Ij ,
ΣILj := ΣLj ∪ΣIj , PILj : Σ∗ → Σ∗ILj

,

ΣIH := ΣH ∪
⋃

k∈{1,...,n}ΣIk , PIH : Σ∗ → Σ∗IH ,

H := P−1IH (L(GH)),Lj := P−1ILj
(L(GLj )) ⊆ Σ∗,

I := ∩k∈{1,...,n}Ik, Ij := P−1Ij
(L(GIj )).
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We de�ne the high-level plant to be Gp
H , and the high-level supervisor to be SH (both

de�ned over event set ΣIH). Similarly, the jth low-level plant and supervisor are Gp
Lj

and

SLj (de�ned over ΣILj ). The high-level subsystem and the jth low-level subsystem are then
GH := Gp

H ||SH and GLj := Gp
Lj
||SLj , respectively. We note that in HISC systems, interfaces

are always supervisors.
We can now de�ne our �at supervisor and plant as well as some other useful languages as

follows:
Plant := Gp

H ||G
p
L1
|| . . . ||Gp

Ln
,

Sup := SH ||SL1 || . . . ||SLn ||GI1 || . . . ||GIn ,
Hp := P−1IHL(Gp

H), SH := P−1IHL(SH) ⊆ Σ∗,
Lpj := P−1ILj

L(Gp
Lj

), SLj := P−1ILj
L(SLj ) ⊆ Σ∗.

4 HIDSC Architecture

In Section 3, we described a system composed of plant DES Gp
H , G

p
L1
, . . . , Gp

Ln
, supervisor

DES SH , SL1 , . . . ,SLn , and interface DES GI1 , . . . ,GIn as an nth degree interface system.

When we specify an nth degree interface system and give modular supervisors (as opposed to

speci�cations and decentralized controllers), we will refer to such a system as an nth degree

modular supervisor interface system. These modular supervisors have full observation of all
the events in Σ, and can control all the controllable events in Σc. However, the level-wise
controllability condition [4, 6, 5] does e�ectively limit the high-level supervisor to events in
ΣIH , and the j

th low-level supervisor to events in ΣILj . We note that there are no such modular
supervisors in decentralized architectures. To support decentralized control, we now introduce
the Hierarchical Interface-based Decentralized Supervisory Control (HIDSC) architecture.

HIDSC is an extension of HISC from centralized control to a decentralized architecture.
In the HIDSC framework, all the HISC supervisors are replaced by corresponding speci�cation
DES, which are our requirements of the legal behavior of the system. In HIDSC, we will replace
supervisor SH by speci�cation DES FH (de�ned over ΣIH), and we will replace supervisor
SLj by speci�cation DES FLj (de�ned over ΣILj ). Typically, FH will express system-wide
constraints about how the components interact and what tasks the low-levels should perform.
FLj expresses how the jth low-level will perform the tasks (requests) given to it by the high-
level. For each component, there is a di�erent index set of decentralized controllers. We will

now give a de�nition for an nth degree decentralized speci�cation interface system.

De�nition 4.1. The nth degree decentralized speci�cation interface system with respect to

the alphabet partition given by (1) is composed of plant DES Gp
H , G

p
L1
, . . . ,Gp

Ln
, speci�cation

DES FH , FL1 , . . . ,FLn, interface DES GI1 , . . . ,GIn, and high-level and low-level decentralized

controllers. The event set for Gp
H , FH and the corresponding decentralized controllers is ΣIH .

The high-level decentralized controllers have an index set DH := {NH,1, . . . , NH,n0}. For i ∈
DH , ΣH,c,i ⊆ Σc∩ΣIH and ΣH,o,i ⊆ Σo∩ΣIH are the corresponding controllable and observable

event subsets for the high-level decentralized controllers. For j ∈ {1, . . . , n}, the event set of

each low-level component Gp
Lj
, FLj and the corresponding decentralized controllers is ΣILj .

Each low-level component has an index set DLj := {NLj ,1, . . . , NLj ,nj} for its own decentralized

controllers. For i ∈ DLj , ΣLj ,c,i ⊆ Σc ∩ ΣILj and ΣLj ,o,i ⊆ Σo ∩ ΣILj are the corresponding

controllable and observable event subsets for the low-level decentralized controllers. The index

set for all decentralized controllers in the system is D := DH ∪̇
⋃̇n

j=1DLj = {1, ..., N}.

6



For the rest of this section, we will refer to such an nth degree decentralized speci�cation
interface system as Ψ. Note that in Ψ, we do not specify the index of decentralized controllers
by {1, ..., n0}, {1, ..., nj}, etc., because once combined together they would overlap. We create
the system index set using disjoint union.

The �at system G is the synchronization of all the plant, speci�cation, and interface
components in the whole system together, i.e. G = Gp

H || G
p
L1
|| . . . || Gp

Ln
|| FH || FL1 || . . .

|| FLn || GI1 || . . . || GIn . We use the term "�at system" to mean the overall system ignoring
the HIDSC structure.

5 HIDSC Co-observability De�nition and Theorem

The main focus here is to verify co-observability in an HIDSC system Ψ without explicitly con-
structing the �at system. We will only perform a per-component co-observability veri�cation,
but guarantee that the whole system is co-observable.

To aid in de�ning our per-component co-observability de�nition and HIDSC co-observability
theorem, we specify some decentralized notations for Ψ.

We use ΣH,c,i ⊆ Σc∩ΣIH to represent the event set in the high-level that the decentralized
controller i ∈ DH controls, and use DH,c (σ) := {i ∈ DH |σ ∈ ΣH,c,i} to denote the set of
decentralized controllers in the high-level that can control the event σ.

We use ΣH,o,i ⊆ Σo∩ΣIH to represent the event set in the high-level that the decentralized
controller i ∈ DH observes, and use DH,o (e) := {i ∈ DH |e ∈ ΣH,o,i} to denote the set of
decentralized controllers in the high-level that can observe the event e. Correspondingly,
PH,i : Σ∗ → (ΣH,o,i)

∗ is the natural projection describing the partial view of controller
i ∈ DH .

For j ∈ {1, . . . , n}, ΣLj ,c,i ⊆ Σc ∩ ΣILj is the event set that the decentralized controller
i ∈ DLj controls, and DLj ,c (σ) :=

{
i ∈ DLj |σ ∈ ΣLj ,c,i

}
is the set of decentralized controllers

in the jth low-level component that can control the event σ.
For j ∈ {1, . . . , n}, ΣLj ,o,i ⊆ Σo ∩ ΣILj is the event set that the decentralized controller

i ∈ DLj observes, and DLj ,o (e) :=
{
i ∈ DLj |e ∈ ΣLj ,o,i

}
is the set of decentralized controllers

in the jth low-level component that can observe the event e. Correspondingly, PLj ,i : Σ∗ →
(ΣLj ,o,i)

∗ is the natural projection describing the partial view of controller i ∈ DLj .
Further, we introduce a few languages used for the HIDSC co-observability de�nition and

theorem.
FH := P−1IH (L(FH)), FLj := P−1ILj

(L(FLj )),

F := FH ∩ FL1 ∩ . . . ∩ FLn , P := Hp ∩ Lp1 ∩ . . . ∩ L
p
n.

Language FH represents the behavior of the speci�cation automata in the high-level subsys-
tem, while FLj represents the behavior of the speci�cation automata for component j in the
low-level subsystem. Language F represents the global speci�cation of the �at system, and P
represents the behavior of the �at plant.

5.1 HIDSC Co-observability De�nition

We now present the per-component level-wise co-observability de�nition for HIDSC system
Ψ.

De�nition 5.1. Let Ψ be an HIDSC nth degree decentralized speci�cation interface system.

Then Ψ is level-wise co-observable if for all j ∈ {1, . . . , n} the following conditions hold:

7



I) (∀t ∈ FH ∩Hp ∩ I)(∀σ ∈ Σc)tσ ∈ (Hp ∩ I)\FH⇒
(∃i ∈ DH,c (σ)) P−1H,i[PH,i(t)]σ ∩ FH ∩Hp ∩ I = ∅
II) (∀t ∈ FLj ∩ Ij ∩ L

p
j )(∀σ ∈ Σc)tσ ∈ Lpj\(FLj ∩ Ij)⇒

(∃i ∈ DLj ,c (σ))P−1Lj ,i
[PLj ,i(t)]σ ∩ FLj ∩ Ij ∩ L

p
j = ∅.

De�nition 5.1 states that HIDSC system Ψ is level-wise co-observable if the system is
co-observable at the high-level component and at each low-level component. Note that the
interfaces are treated as speci�cations in the high-level and treated as plants in the low-level.
This allows for more general behavior.

De�nition 5.2. Let Ψ be an HIDSC nth degree decentralized speci�cation interface system.

Then Ψ is globally co-observable if
(∀t ∈ F ∩ I ∩ P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I)⇒(∃i ∈ Dc (σ))P−1i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅.

De�nition 5.2 states that for HIDSC system Ψ, if the global speci�cation F synchronized
with interface I is co-observable with respect to the �at plant system P, then Ψ is globally
co-observable.

Note that De�nition 5.2 is the property we want to verify but we will do so by using our
per-component co-observability de�nition. We do not need to combine the �at speci�cations,
interfaces and plant components together. This potentially saves computation and helps to
alleviate the state-space explosion problem.

5.2 HIDSC Co-observability Theorem

The following is the HIDSC co-observability theorem which states that the level-wise co-
observability property is su�cient to guarantee that the �at system is co-observable.

Theorem 5.1. Let Ψ be an HIDSC nth degree decentralized speci�cation interface system. If

Ψ is level-wise co-observable then Ψ is globally co-observable.

Proof. Let Ψ be an HIDSC nth degree decentralized speci�cation interface system.
Assume Ψ is level-wise co-observable. We will now show that Ψ is globally co-observable.
Su�cient to show that:
(∀t ∈ F ∩ I ∩ P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I)⇒(∃i ∈ Dc (σ))P−1i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅.
Let t ∈ F ∩ I ∩ P and σ ∈ Σc.
Assume tσ ∈ P\(F ∩ I).
As F = FH∩FL1∩. . .∩FLn , P = Hp∩Lp1∩. . .∩L

p
n, I = I1∩. . .∩In and their corresponding

component languages are all pre�x-closed by de�nition, we conclude from t ∈ F ∩ I ∩P that:
t ∈ FH ∩ Hp ∩ I, (∀j ∈ {1, . . . , n}) t ∈ FLj ∩ Ij ∩ L

p
j , and (∀j ∈ {1, . . . , n}) t ∈ Ij ∩ Lpj ,

(Result 1).
As tσ ∈ P\(F ∩ I), we have: tσ ∈ P and tσ /∈ F ∩ I.
⇒ tσ /∈ FH ∩ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In, by de�nition of F and I.
⇒ tσ ∈ P and tσ /∈ FH , or tσ ∈ P and (∃j ∈ {1, . . . , n}) tσ /∈ FLj ∩ Ij , (Result 2).
Case 1) (∃j ∈ {1, . . . , n}) tσ /∈ FLj ∩ Ij .
Let j ∈ {1, . . . , n}.
We also have t ∈ FLj ∩ Ij ∩ L

p
j , by (Result 1).

⇒ t ∈ FLj ∩ Ij ∩ L
p
j , tσ ∈ L

p
j and tσ /∈ FLj ∩ Ij as tσ ∈ P and P = Hp ∩ Lp1 ∩ . . . ∩ L

p
n.

As Ψ is level-wise co-observable, we have:
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(∃i ∈ DLj ,c (σ)) P−1Lj ,i
[PLj ,i(t)]σ ∩ FLj ∩ Ij ∩ L

p
j = ∅.

⇒ (∃i ∈ Dc (σ)) P−1Lj ,i
[PLj ,i(t)]σ ∩ FLj ∩ Ij ∩ L

p
j = ∅, as DLj ,c (σ) ⊆ Dc (σ).

Let i ∈ Dc (σ).
⇒ P−1i [Pi(t)]σ∩FLj ∩Ij∩L

p
j = ∅, as PLj ,i(t) : Σ∗ → (ΣLj ,o,i)

∗ and Pi(t) : Σ∗ → (ΣLj ,o,i)
∗.

We note that the above i ∈ DLj ,c(σ) represents the same decentralized supervisor as the
i ∈ Dc(σ). They thus have the same set of observable events, thus PLj ,i = Pi.

⇒ P−1i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅, as F ∩ I ∩ P⊆ FLj ∩ Ij ∩ L
p
j , thus s ∈ F ∩ I ∩ P ⇒ s ∈

FLj ∩ Ij ∩ L
p
j which would cause a contradiction.

Case 2) (∀j ∈ {1, . . . , n}) tσ ∈ FLj ∩ Ij .
From earlier we have: tσ ∈ P and tσ /∈ FH ∩ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In.
As (∀j ∈ {1, . . . , n}) tσ ∈ FLj ∩ Ij , we have tσ ∈ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In.
⇒ tσ /∈ FH and tσ ∈ I.
⇒ tσ /∈ FH and tσ ∈ Hp ∩ I, as P = Hp ∩ Lp1 ∩ . . . ∩ L

p
n ⊆ Hp.

We also have t ∈ FH ∩Hp ∩ I by (Result 1).
As Ψ is level-wise co-observable, we have:

(∃i ∈ DH,c (σ)) P−1H,i[PH,i(t)]σ ∩ FH ∩ I ∩Hp = ∅.
⇒ (∃i ∈ Dc (σ)) P−1H,i[PH,i(t)]σ ∩ FH ∩ I ∩Hp = ∅, as DH,c (σ) ⊆ Dc (σ).
Let i ∈ Dc (σ).
⇒ P−1i [Pi(t)]σ ∩ FH ∩ I ∩Hp = ∅, as PH,i(t): Σ∗ → (ΣH,o,i)

∗ and Pi(t): Σ∗ → (ΣH,o,i)
∗.

We note that the above i ∈ DH,c(σ) represents the same decentralized supervisor as the
i ∈ Dc(σ). They thus have the same set of observable events, thus PH,i = Pi.
⇒ P−1i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅, as F ∩ I ∩ P ⊆ FH ∩ I ∩Hp, thus s ∈ F ∩ I ∩ P ⇒ s ∈

FH ∩ I ∩Hp which would cause a contradiction.
By Case 1) and 2), we have: (∃i ∈ Dc (σ)) P−1i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅.
As t ∈ F ∩ I ∩ P and σ ∈ Σc are chosen arbitrarily, we conclude that Ψ is globally

co-observable.

6 MNDSC Supervisor Existence Theorem

We now present the marking nonblocking decentralized supervisory control (MNDSC) exis-
tence theorem, which shows that there exists an MNDSC to achieve the speci�cation if and
only if K is controllable and co-observable.

Theorem 6.1. Let Plant := (Q, Σ, δ, q0, Qm), K ⊆ Lm(Plant), and K 6= ∅. There

exists an MNDSC SCon for (K, Plant) such that Lm(SCon/Plant) = K if and only if K is

controllable and co-observable with respect to L(Plant).

Proof. Let K ⊆ Lm(Plant), K 6= ∅.
(If part)

Assume K is controllable and co-observable with respect to L(Plant).
We will show that there exists a marking nonblocking decentralized supervisory control

SCon for (K, Plant) such that Lm(SCon/Plant) = K.
We must �rst construct a suitable decentralized supervisory control SCon for Plant.
For each i ∈ D and t ∈ L(Plant), we de�ne the local decentralized supervisory control as

follows:
SPi(t) := Σuc ∪ (Σc\Σc,i) ∪ {σ ∈ Σc,i | P−1i [Pi(t)]σ ∩K ∩ L(Plant) 6= ∅}.
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SPi enables all events in Σuc ∪ (Σc\Σc,i) and events in {σ ∈ Σc,i | P−1i [Pi(t)]σ ∩ K ∩
L(Plant) 6= ∅}. Only events in {σ ∈ Σc,i | P−1i [Pi(t)]σ∩K ∩L(Plant) = ∅} are not in SPi(t),
for each i ∈ D.

The global decentralized supervisory control policy SCon is de�ned as the conjunction of
SPi , i ∈ D, described as follows: SCon(t) := ∩Ni=1SPi(t).

The language L(SCon/Plant) is de�ned in De�nition 2.2.
Clearly, SCon is a decentralized supervisory control as de�ned in De�nition 2.3.
We will now show that Lm(SCon/Plant) = K and that SCon is nonblocking.
To do this, our �rst step is to show that L(SCon/Plant) = K.
Step 1.1) Show that L(SCon/Plant) = K.
We will show that L(SCon/Plant) ⊆ K and K ⊆ L(SCon/Plant).
A) Show that L(SCon/Plant) ⊆ K.
Let t ∈ L(SCon/Plant).
We will now prove by induction on the length of string t that t ∈ K.
Base case: t = ε.
We know that ε ∈ L(SCon/Plant) by de�nition. Further, ε ∈ K since K 6= ∅ by assump-

tion. We thus have t ∈ K.
Inductive step: For σ ∈ Σ, we assume tσ ∈ L(SCon/Plant) and t ∈ K.
We will now show this implies tσ ∈ K .
⇒ t ∈ L(SCon/Plant), (∀i ∈ D)σ ∈ SPi(t), and tσ ∈ L(Plant), by de�nition of

L(SCon/Plant).
We note that we also have t ∈ K, by inductive assumption.
We have two cases: σ ∈ Σuc or σ ∈ Σc.
Case A.1) σ ∈ Σuc.
From above, we have: t ∈ K, σ ∈ Σuc, and tσ ∈ L(Plant).
As K is controllable, we have: KΣuc ∩ L(Plant) ⊆ K.
⇒ tσ ∈ K.
Case A.2) σ ∈ Σc.
From above, we have:

t ∈ K, σ ∈ Σc, (∀i ∈ D)σ ∈ SPi(t), and tσ ∈ L(Plant).
We will show tσ ∈ K using proof by contradiction.
Assume tσ /∈ K.
⇒ tσ ∈ L(Plant)\K.
As K is co-observable with respect to L(Plant), we have:
(∃i ∈ Dc (σ)) P−1i [Pi(t)]σ ∩K ∩ L(Plant) = ∅.
⇒ (∃i ∈ Dc (σ))σ /∈ SPi(t).
⇒ (∃i ∈ D)σ /∈ SPi(t).
⇒ σ /∈ SCon(t), by de�nition of SCon(t).
⇒ tσ /∈ L(SCon/Plant).
This is a contradiction.
We thus conclude that tσ ∈ K.
This completes the proof for the inductive step.
We thus conclude by induction that L(SCon/Plant) ⊆ K.
This completes the proof for part A).
B) Show that K ⊆ L(SCon/Plant).
Let t ∈ K.
We will prove by induction on the length of string t that t ∈ L(SCon/Plant).
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Base case: t = ε.
We know that ε ∈ K since K 6= ∅ by assumption. Further, we have ε ∈ L(SCon/Plant)

by de�nition. We thus have t ∈ L(SCon/Plant).
Inductive step: For σ ∈ Σ, we assume tσ ∈ K and t ∈ L(SCon/Plant).
We will now show this implies tσ ∈ L(SCon/Plant).
We thus have:

t ∈ K and tσ ∈ L(Plant) by the assumption that K ⊆ Lm(Plant) ⊆ L(Plant).
We note that we also have t ∈ L(SCon/Plant) by the inductive assumption.
We have two cases: σ ∈ Σuc or σ ∈ Σc.
Case B.1) σ ∈ Σuc.
⇒ σ ∈ SCon(t), as uncontrollable events are enabled by default for supervisor SCon(t).
From above we have:

t ∈ L(SCon/Plant), σ ∈ SCon(t) and tσ ∈ L(Plant).
⇒ (∀i ∈ D)σ ∈ SPi(t) by de�nition of SCon(t).
⇒ tσ ∈ L(SCon/Plant) by de�nition of L(SCon/Plant).
Case B.2) σ ∈ Σc.
From above we have: t ∈ L(SCon/Plant), t ∈ K, tσ ∈ K, σ ∈ Σc, and tσ ∈ L(Plant).
From the de�nition of L(SCon/Plant), to show that tσ ∈ L(SCon/Plant), it is su�cient

to show that (∀i ∈ D)σ ∈ SPi(t).
Let i ∈ D.
If σ /∈ Σc,i, we immediately have: σ ∈ SPi(t) as σ ∈ Σc\Σc,i.
We now consider σ ∈ Σc,i. It is su�cient to show that: P−1i [Pi(t)]σ ∩K ∩ L(Plant) 6= ∅.
We �rst note that: t ∈ P−1i [Pi(t)] := {s ∈ Σ∗|Pi(s) ∈ {Pi(t)}}
⇒ tσ ∈ P−1i [Pi(t)]σ.
As we have tσ ∈ K and tσ ∈ L(Plant) from above, we have:
tσ ∈ P−1i [Pi(t)]σ ∩K ∩ L(Plant).
⇒ P−1i [Pi(t)]σ ∩K ∩ L(Plant) 6= ∅.
We thus conclude tσ ∈ L(SCon/Plant).
This completes the proof for the inductive step.
We thus conclude by induction that K ⊆ L(SCon/Plant).
This completes the proof for part B).
By part A) and part B), we have L(SCon/Plant) = K.
This completes the proof for Step 1.1).
Step 1.2) Show that Lm(SCon/Plant) = K.
By the de�nition of marking nonblocking decentralized supervisory control, we have:

Lm(SCon/Plant) = L(SCon/Plant) ∩ K.
Substituting L(SCon/Plant) = K (by the result of Step 1.1), we have:

Lm(SCon/Plant) = K ∩ K = K.
Step 1.3) Show that SCon is nonblocking.
It is su�cient to show that Lm(SCon/Plant) = L(SCon/Plant).
The result is automatic since by Step 1.1) L(SCon/Plant) = K and by Step 1.2) Lm(SCon/Plant) =

K.
By Steps 1.1), 1.2) and 1.3), we conclude that there exists a marking nonblocking decen-

tralized supervisory control SCon for Plant such that Lm(SCon/Plant) = K.
(If part) is complete.
(Only if part)
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Assume there exists a marking nonblocking decentralized supervisory control SCon for (K,
Plant) such that Lm(SCon/Plant) = K.

We will now show this implies that K is controllable and co-observable with respect to
L(Plant).

We �rst note that as SCon is nonblocking, K = Lm(SCon/Plant) = L(SCon/Plant).
Step 2.1) Show that K is controllable with respect to L(Plant).
Su�cient to show that KΣuc∩L(Plant)⊆K.
Let t ∈ K, σ ∈ Σuc and tσ ∈ L(Plant).
⇒ t ∈ L(SCon/Plant) and σ ∈ SCon(t), as L(SCon/Plant) = K and by the de�nition of

SCon(t).
⇒ tσ ∈ L(SCon/Plant), by de�nition of L(SCon/Plant).
⇒ tσ ∈ K, as L(SCon/Plant) = K.
⇒ KΣu∩L(Plant)⊆K.
This completes the proof that K is controllable with respect to L(Plant).
Step 2.2) Show that K is co-observable with respect to L(Plant).
Su�cient to show that:

(∀t ∈ K ∩ L(Plant)) (∀σ ∈ Σc) tσ ∈ L(Plant)\K ⇒ (∃i ∈ Dc (σ)) P−1i [Pi(t)]σ ∩K ∩
L(Plant) = ∅.

Let t ∈ K ∩ L(Plant), σ ∈ Σc and tσ ∈ L(Plant)\K.
⇒ tσ ∈ L(Plant) and tσ /∈ K.
⇒ tσ /∈ L(SCon/Plant) as L(SCon/Plant) = K.
⇒ (∃i ∈ D)σ /∈ SPi(t)), by the de�nition of L(SCon/Plant).
⇒ (∃i ∈ D) (σ ∈ Σc,i), (P−1i [Pi(t)]σ ∩K ∩ L(Plant) = ∅), by the de�nition of SPi(t), as

only events in {σ ∈ Σc,i | P−1i [Pi(t)]σ ∩K ∩ L(Plant) = ∅} are not in SPi(t).
⇒ (∃i ∈ Dc (σ)) P−1i [Pi(t)]σ ∩K ∩ L(Plant) = ∅, by the de�nition of Dc (σ).
This completes the proof that K is co-observable with respect to L(Plant).
By Step 2.1) and Step 2.2) we conclude that K is controllable and co-observable with

respect to L(Plant).
(Only if part) is complete.
By (If part) and (Only if part), we conclude that there exists a marking nonblocking

decentralized supervisory control SCon for (K, Plant) such that Lm(SCon/Plant) = K if and
only if K is controllable and co-observable with respect to L(Plant).

Note that in Theorem 6.1 we do not require that K be Lm(G)-closed which is assumed
by traditional decentralized control [2]. This will allow us to apply the result to our HIDSC
system as we have an HISC nonblocking result but not an HISC Lm(G)-closed result.

We will now relate Theorem 6.1 to our HIDSC system and nonblocking. In essence, we are
requiring Ψ to have equivalent MNDSC behavior with SCon/Plant, which ensures our HIDSC
system implementation will be nonblocking.

Corollary 6.1. Let Ψ be an HIDSC nth degree decentralized speci�cation interface system. Let

Plant := Gp
H ||G

p
L1
|| . . . ||Gp

Ln
, Spec := FH ||FL1 || . . . ||FLn ||GI1 || . . . ||GIn . Let Lm(Spec) ∩

Lm(Plant) 6= ∅. There exists an MNDSC SCon for (Lm(Spec) ∩ Lm(Plant), Plant)
such that Lm(SCon/Plant) = Lm(Spec) ∩ Lm(Plant), and L(SCon/Plant) = L(Spec) ∩
L(Plant), if and only if Lm(Spec) ∩ Lm(Plant) is controllable and co-observable with respect

to L(Plant), and Lm(Spec) ∩ Lm(Plant) = L(Spec) ∩ L(Plant).

12



Proof. (If part)

Assume Lm(Spec) ∩ Lm(Plant) is nonblocking, controllable and co-observable with re-
spect to L(Plant), and Lm(Spec) ∩ Lm(Plant) = L(Spec) ∩ L(Plant).

Take K = Lm(Spec) ∩ Lm(Plant) and we have by Theorem 6.1 there exists an MNDSC
SCon for (Lm(Spec) ∩ Lm(Plant), Plant) such that Lm(SCon/Plant) = Lm(Spec) ∩
Lm(Plant).

As SCon is nonblocking by Theorem 6.1, we have:
Lm(Spec) ∩ Lm(Plant) = Lm(SCon/Plant) = L(SCon/Plant).
As Lm(Spec) ∩ Lm(Plant) = L(Spec) ∩ L(Plant) by assumption, we have:
L(SCon/Plant) = L(Spec) ∩ L(Plant).
(Only if part)

Assume There exists an MNDSC SCon for (Lm(Spec) ∩ Lm(Plant), Plant) such that
Lm(SCon/Plant) = Lm(Spec) ∩ Lm(Plant).

Take K = Lm(Spec) ∩ Lm(Plant) and we have by Theorem 6.1 that Lm(Spec) ∩
Lm(Plant) is controllable and co-observable with respect to L(Plant).

As SCon is nonblocking, we have:
Lm(Spec) ∩ Lm(Plant) = Lm(SCon/Plant) = L(SCon/Plant) = L(Spec) ∩ L(Plant).

For HIDSC system Ψ, Corollary 6.1 tells us that the marked behavior of our MNDSC and
�at plant is equal to Lm(Spec) ∩ Lm(Plant) and their closed behavior is equal to L(Spec) ∩
L(Plant). To apply Corollary 6.1, we need to �rst show that Ψ is co-observable, nonblocking,
and controllable. For scalability, we want to verify all these global properties using only per-
component properties. Theorem 5.1 shows us that level-wise co-observability gives us global co-
observability. From [4, 6, 5], we know that the HISC LD level-wise nonblocking, LD interface
consistent, and level-wise controllability properties together imply that our �at system is
nonblocking and controllable. We can thus verify all needed global properties using per-
component check. As we never need to construct the full system model, this o�ers potentially
great computational savings.

7 Example

7.1 Small Manufacturing System

To demonstrate the HIDSC method, we adapt a small manufacturing system from [4], that
was originally modeled as an HISC system, shown in Figure 2. The system is composed of
three manufacturing units running in parallel, a testing unit, material feedback, a packaging
unit, plus three bu�ers to insure the proper �ow of material.

Figure 3 shows which DES belong to the high level subsystem (GH), high-level plant (GH),
the high-level speci�cation automata (SH), the jth low-level subsystem (GLj ), the j

th low-level

plant (GLj ), the j
th low-level speci�cation automata (SLj ), and the jth interface DES (GIj ),

j = I, II, III. We note that the three low-level subsystems shown in Figure 3 are identical up
to relabeling. Figure 4 shows the low-level subsystems in detail.
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7.2 Co-observability Veri�cation for the Decentralized System

Originally this example was used as an HISC system. We will now adapt it to an HIDSC
system. Typically, we would only do this if the system had an inherent distributed nature
forcing us to implement supervisors with partial observations and partial controllability beyond
the compartmentalized limitation imposed by the HISC structure.

We de�ne the alphabet partition Σ := [∪̇k∈{I,II,III}(ΣLk
∪̇ΣRk

∪̇ΣAk
)] ∪̇ ΣH as below:

ΣH = {take_item, package, allow_exit ,
new_part , part_f_obu� , part_passes,

part_fails, ret_inbu� , deposit_part}

ΣRj = {part_ent-j}

ΣAj = {�n_exit-j}

ΣLj = {start_pol-j , attch_ptA-j , attch_ptB-j ,
start_case-j , comp_pol-j , �nA_attch-j ,

�nB_attch-j , compl_case− j, part_arr1− j,
part_lv1− j, partLvExit− j, str_exit− j,
part_arr2− j, recog_A− j, recog_B − j,
part_lv2− j, part_arr3− j, part_lv3− j,
take_pt− j, str_ptA− j, str_ptB − j,
compl_A− j, compl_B − j, ret_pt− j,
dip_acid− j, polish− j, str_rlse− j}

Controllable events are those with a slash on the transition, marked states are states with
an unlabeled incoming arrow, and initial states are states with an unlabeled outgoing arrow.

Our �rst step is to replace the existing supervisors with speci�cation automata. We de�ne
FH = SH and FLj = SLj , j = I, II, III.

Next, we design �ve partially observable and partially controllable decentralized controllers
(H1, H2, L1, L2 and L3) to achieve the decentralized control problem.

Controller H1 can only observe interface events, and can only disable the controllable
interface events (i.e., Σc ∩ΣI). Hence events in ΣH ∪ΣLI

∪ΣLII
∪ΣLIII

are all unobservable
and uncontrollable to H1, therefore can be safely ignored.

Controller H2 can only observe events in ΣH , and can only disable the controllable events
in ΣH . Therefore, events in the low-level components and interfaces can be safely ignored.

In each low-level subsystem, a controller can only observe and control events in its own
subsystem. For example, controller L1 can only observe and control events in GLI

and GII ,
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i.e., events in ΣILI
. Therefore high-level events and other low-levels can be safely ignored.

Analogously, this is also true for controllers L2 and L3.
The index sets of decentralized controllers for each component are: DH={H1, H2},DLI

={L1},
DLII

={L2}, DLIII
={L3}.

We now de�ne the �at system, the �at plant, and the �at speci�cation automata as follows:
Plant := GH ||GL

I
||GL

II
||GL

III

Spec := FH ||FLI
||FLII

||FLIII
||GI

I
||GI

II
||GI

III

We need to verify whether Lm(Spec) is co-observable w.r.t. L(Plant). We can then
conclude, in combination with checking controllability, by Theorem 6.1 that there exists an
MNDSC decentralized supervisory control. By Theorem 5.1, we know it is su�cient to verify
level-wise co-observability.

The following steps for level-wise co-observability veri�cation are:

Step 1. Verify whether the �rst low-level subsystem satis�es its portion of the level-wise
co-observable de�nition, i.e., whether L(FL

I
||GI

I
) is co-observable w.r.t. L(GL

I
),ΣL,c,i,

ΣL,o,i for i ∈ DLI
.

L1 is the only decentralized supervisor for DLI
. We �nd that controller L1 can observe all the

events in the �rst low-level subsystem, i.e., ΣL1,o,1 = {part_ent-I, �n_exit-I}∪̇ΣLI
= ΣILI

.
Further, controller L1 can control all the events in the �rst low-level subsystem, i.e., ΣL1,c,1 =
{part_ent-I}∪̇ΣLI

∩Σc = ΣILI
∩Σc. Therefore, the �rst low-level component trivially satis�es

its portion of the level-wise co-observable de�nition.

Step 2. Verify whether the second low-level subsystem satis�es its portion of the level-wise
co-observable de�nition, i.e., whether L(FL

II
||GI

II
) is co-observable w.r.t. L(GL

II
),

ΣL,c,i, ΣL,o,i for i ∈ DLII
. We note that since the second low-level subsystem is identical

up to relabeling with the �rst one, this step does not need to be veri�ed.

Step 3. Verify whether the third low-level subsystem satis�es its portion of the level-wise
co-observable de�nition. Similar to Step 2, this step does not need to be veri�ed.

Step 4. Verify whether the high-level subsystem satis�es its portion of the level-wise co-
observable de�nition, i.e., verifying whether L(FH) is co-observable w.r.t. L(GH ||GI

I
||GI

II
||GI

III
),

ΣH,c,i, ΣH,o,i, for i ∈ DH .

DH contains two decentralized controllers for the high-level subsystem, i.e., controllers H1
and H2. Controller H1 can observe all events in ΣI , and can control all events in Σc ∩ΣI , i.e.,
{part_ent-I, part_ent-II, part_ent-III}. Further, controller H2 can observe all events in ΣH

and can control all events in ΣH ∩Σc. In other words, ΣH,c,1 ∩ΣH,c,2 = ∅, ΣH,o,1 ∩ΣH,o,2 = ∅.
This means that each controllable event in ΣIH can be controlled by either H1 or H2, but not
both.

Observability is a special case of co-observability, and if a system is observable for each
controller independently, then it is de�nitely co-observable [10, 2]. This means the problem
can be reduced to whether the high-level is observable for H1 and H2 separately.

Using the DES design software TCT [11], we �nd that the high-level is observable for H1
and H2 separately. When we verify H1 by TCT, we specify that all controllable and observable
events are within ΣI . Correspondingly, when we verify H2, we specify that events in ΣI are
all uncontrollable and unobservable. We thus conclude that the high-level satis�es its portion
of the level-wise co-observable de�nition.
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By completing Steps 1-4, we conclude that the decentralized system is level-wise co-
observable, thus globally co-observable by Theorem 5.1.

Using our software tool DESpot [3], we veri�ed that the system is level-wise controllable,
LD level-wise nonblocking, and LD interface consistent. We can thus conclude by [5] that our
�at system is controllable and nonblocking. We conclude by Corollary 6.1 that there exists a
marking nonblocking decentralized supervisory control SCon for Plant, and that Spec||Plant
has equivalent MNDSC behavior with SCon/Plant. This means that since Spec||Plant is
nonblocking, SCon/Plant is also nonblocking.

8 Conclusion

The existing HISC method does not support decentralized control. In this paper, we extended
HISC to the decentralized architecture HIDSC. We introduced per-component co-observability
veri�cation which avoids the explicit construction of the complete system model. We then
proved that if a system is level-wise co-observable, it is also globally co-observable. This veri-
�cation method should be very useful for decentralized systems with many components, and
should allow us to work with large distributed systems. Further, we provided a supervisory
control existence theorem for HIDSC systems, and proved the necessary and su�cient con-
ditions for decentralized control in HIDSC. Finally, we use an example to demonstrate the
HIDSC approach.
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