
Department of Computing and Software
Faculty of Engineering — McMaster University

Decentralized Control Using the Hierarchical
Interface-based Supervisory Control Approach

v 1.1

by

Huailiang Liu, Ryan J. Leduc, and S. L. Ricker

CAS Report Series CAS-14-10-RL
Department of Computing and Software December 2015
Information Technology Building
McMaster University
1280 Main Street West Hamilton, Ontario, Canada L8S 4K1

Copyright © 2015

Deentralized Control Using the Hierarhial

Interfae-based Supervisory Control Approah

v 1.1

Huailiang Liu1, Ryan J. Ledu1, and S. L. Riker2

1 Department of Computing and Software, Faulty of Engineering,

MMaster University, Hamilton, Ontario, Canada
2 Department of Mathematis and Computer Siene

Mount Allison University, Sakville, NB E4L 1E6, Canada

Tehnial Report CAS-14-10-RL

Department of Computing and Software

MMaster University

January 28, 2016

Abstrat

In deentralized ontrol, agents have only a partial view and partial ontrol of the

system and must ooperate to ahieve the ontrol objetive. To synthesize a deen-

tralized ontrol solution, a spei�ation must satisfy the o-observability property.

Existing o-observability veri�ation methods require the (possibly intratable)

onstrution of the omplete system.

To inrease the salability of deentralized ontrol, we introdue the Hierarhi-

al Interfae-Based Deentralized Supervisory Control (HIDSC) framework that

extends the existing Hierarhial Interfae-Based Supervisory Control (HISC) ap-

proah.

To adapt o-observability for HIDSC, we propose a per-omponent de�nition

of o-observability along with a veri�ation strategy that requires examination of

only a single omponent at a time. Finally, we provide and prove the neessary

and su�ient onditions for supervisory ontrol existene in the HIDSC framework

and illustrate our approah with an example. As the entire system model never

needs to be onstruted, HIDSC an provide signi�ant omputational savings.

Keywords: disrete-event systems, supervisory ontrol, deentralized ontrol, Hi-

erarhial Interfae-based Supervisory Control

Contents

1 Introdution 1

2 Preliminaries 2

2.1 Languages and DES . 2

2.2 Deentralized Control . 4

2.3 Deentralized Control with Marking . 5

3 HISC Arhiteture 6

4 Hierarhial Interfae-Based Deentralized Supervisory Control 10

4.1 HIDSC Co-observability De�nition and Theorem 12

4.2 MNDSC Supervisor Existene Theorem . 14

5 Manufaturing Example 15

5.1 Manufaturing System as an HIDSC System . 15

5.2 Co-observability Veri�ation for System . 18

5.3 Complexity Analysis for the Deentralized System 19

6 Conlusions and Future Work 19

7 Proofs 20

i

1 Introdution

One of the main hallenges in the ontrol of disrete-event systems (DES) [CL08, RW87,

WR87, Won14℄ is the ombinatorial explosion of the produt state spae. The Hierarhial

Interfae-Based Supervisory Control (HISC) framework proposed in [HJDQ+10, Led02, Led09,

LBLW05, LLD06, LLW05℄ an help alleviate the state-spae explosion problem. HISC provides

a set of loal properties that an be used to verify global properties, suh as nonbloking and

ontrollability, so that the omplete system model never needs to be onstruted. The su�ient

onditions of HISC allow the independent design and veri�ation of di�erent levels, ensuring

that a hange to one level of the hierarhy will not impat the others.

However, the urrent HISC framework does not support deentralized ontrol problems

that arise naturally through the investigation of a large variety of distributed systems, suh

as ommuniation networks, integrated sensor networks, networked ontrol systems and au-

tomated guided vehiular systems. Deentralized ontrol of DES fouses on problems where

multiple agents eah ontrol and observe some events in a system and must together ahieve

some presribed goal. A deentralized approah is used when the physial system is suh that

ontrollers implemented at di�erent loations would naturally only be able to see and a�et

events ourring in their loal viinity, and have no aess to other events. The goal is to be

able to implement a set of deentralized ontrollers that produe the same ontrol ations as

a entralized ontroller with full view and ontrol of the system.

The synthesis of deentralized supervisors requires that the spei�ation satis�es a de-

entralized property alled o-observability [RW92℄. Nevertheless, when the system is very

large and omposed of many sub-systems, heking o-observability using the existing mono-

lithi method [RW95℄ requires the onstrution of the omplete system model, whih may be

intratable due to the state-spae explosion problem.

In supervisory ontrol of DES, the omputation and omplexity for many of the ontrol

solutions entail only polynomial e�ort in the model's state size. The omputation and om-

plexity is worse in the ase of ontrol with partial observations: some problems with full

observation are polynomial; however, they are exponential when the situation is partially

observable [RYL03, RW95, TL09, Tri04, Tsi89, YL02℄.

In [Liu15, LLMR14℄, we introdued an inremental approah for heking o-observability

based on the work of Brandin et al. [BMM04℄ for verifying ontrollability. Our method greatly

inreased the size of systems that ould be veri�ed, but it also struggled as the state size and

number of deentralized ontrollers inreased.

To address the above issue, we propose an approah alled the Hierarhial Interfae-

Based Deentralized Supervisory Control (HIDSC) framework that extends HISC to manage

deentralized ontrol problems. We introdue a per-omponent o-observability de�nition

whih does not require the synhronization of all omponents. We then prove that if a system

satis�es the per-omponent o-observability de�nition, it is globally o-observable. Further, we

provide and prove the neessary and su�ient onditions for supervisor existene in HIDSC.

Most of the material in this paper �rst appeared in our onferene paper [LLR15℄. The urrent

paper adds full proofs, a more ompliated example as well as experimental results.

To the best of our knowledge, there is no existing work where HISC supports deentralized

disrete-event ontrol arhiteture. Although there is some literature proposing hierarhial

ontrol of �deentralized� disrete-event systems [SB11, SM06, SMP08℄, these approahes as-

sume full observation and thus they are �deentralized� in terms of arhiteture, not in terms

of observations.

1

This paper is organized as follows. In Setion 2 we review the relevant de�nitions and

results from supervisory ontrol theory. Setion 3 reviews the HISC arhiteture. In Setion

4, we introdue our new HIDSC framework. In Setion 5, we illustrate our HIDSC approah

with an example. We then present onlusions and future work in Setion 6.

2 Preliminaries

This setion provides a brief review of the key DES onepts used in this paper. For more

details please refer to [CL08, Won14℄.

2.1 Languages and DES

Event sequenes and languages are simple ways to desribe DES behaviour. Let Σ be a �nite

set of distint symbols (events), and let Σ+ be the set of all �nite nonempty sequenes of

events. Let Σ∗ := Σ+ ∪{ǫ} be the set of all �nite sequenes of events plus ǫ, the empty string.

A language L over Σ is any subset L ⊆ Σ∗.

The onatenation of two strings s, t ∈ Σ∗, is written as st. Languages and alphabets an

also be onatenated. For L ⊆ Σ∗ and Σ′ ⊆ Σ, the onatenation of language L and event set

Σ′ is de�ned as LΣ′ := {sσ|s ∈ L, σ ∈ Σ′}.
For strings s, t ∈ Σ∗, we say that t is a pre�x of s (written t ≤ s) if s = tu, for some u ∈ Σ∗.

We also say that t an be extended to s. The pre�x losure L of a language L ⊆ Σ∗ is de�ned

as follows: L := {t ∈ Σ∗|t ≤ s for some s ∈ L}. A language L is said to be pre�x-losed if

L = L.
Let Pwr(Σ) denote the power set of Σ (i.e., the set of all subsets of Σ). For language L, the

eligibility operator EligL : Σ∗ → Pwr(Σ) is given by EligL(s) := {σ ∈ Σ |sσ ∈ L} for s ∈ Σ∗.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗
1, and L2 ⊆ Σ∗

2. Let i ∈ {1, 2}, s ∈ Σ∗, and σ ∈ Σ. To apture

the notion of partial observation, we de�ne the natural projetion Pi : Σ∗ → Σ∗
i aording to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ, if σ 6∈ Σi;
σ, if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

Given any language L ⊆ Σ∗, the natural projetion of a language L is Pi(L) := {Pi(s) | s ∈ L}.
This is sometimes abbreviated to Pi L.

The inverse projetion P−1
i : Pwr(Σ∗

i) → Pwr(Σ∗) is de�ned over subsets of languages.

Given any L ⊆ Σ∗
i , the inverse projetion of L is de�ned as: P−1

i (L) := {s | Pi(s) ∈ L}.
A DES is represented as a tuple G := (Q, Σ, δ, q0, Qm), with state set Q, alphabet

set Σ, partial transition funtion δ : Q × Σ → Q, initial state q0, and set of marker states

Qm. We use δ(q, σ)! to represent that δ is de�ned for σ ∈ Σ at state q ∈ Q. Funtion δ
an be extended to Σ∗ by de�ning δ(q, ǫ) := q and δ(q, sσ) := δ(δ(q, s), σ), provided that

q′ = δ(q, s)! and δ(q′, σ)!, for s ∈ Σ∗ and q ∈ Q. We will always assume that a DES has

a �nite state and event set, and is deterministi. By deterministi, we mean the DES has a

single initial state and at most one transition de�ned at a given state for any σ ∈ Σ.
For DES G, its losed behaviour is denoted by L(G) := {s ∈ Σ∗|δ(q0, s)!} and its marked

behaviour by Lm(G) := {s ∈ L(G)| δ(qo, s) ∈ Qm}.

De�nition 2.1. A DES G is said to be nonbloking if

2

Lm(G) = L(G).

The above is a simple form of deadlok heking.

De�nition 2.2. Let K ⊆ Lm(G) ⊆ Σ∗. We say that the language K is Lm(G)-losed if

K = K ∩ Lm(G).

We note that K being Lm(G)-losed means it ontains all of its pre�xes that belong to Lm(G).
The synhronous produt of languages L1 and L2, denoted by L1||L2, is de�ned to be

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2). If both L1 and L2 are over the same event set Σ, then

L1||L2 = L1 ∩ L2.

De�nition 2.3. Let Gi = (Qi, Σi, δi, q0,i, Qmi), i = 1, 2. We de�ne the synhronous

produt of G1 and G2 as:

G1||G2 = (Q1 × Q2, Σ1 ∪ Σ2, δ, (q0,1, q0,2), Qm1 × Qm2),

where δ((q1, q2), σ) is de�ned as:

(δ1(q1, σ), δ2(q2, σ)), ifσ ∈ Σ1 ∩ Σ2, δ1(q1, σ)!, δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1\Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2\Σ1 and δ2(q2, σ)!;

unde�ned, otherwise.

We thus have for DESG = G1||G2 that Lm(G) = Lm(G1)||Lm(G2), and L(G) = L(G1)||L(G2).
In supervisory ontrol, the event set Σ is partitioned into two disjoint sets: the ontrollable

event set Σc and the unontrollable event set Σuc. Controllable events an be prevented from

happening (disabled) by a supervisor, while unontrollable events annot be disabled. The

following de�nition heks to see if we an ensure our system stays within the behavior spei�ed

by K.

De�nition 2.4. Let K and L = L be languages over event set Σ. K is said to be ontrollable

with respet to L and Σuc if

KΣuc ∩ L ⊆ K.

We will de�ne a supervisory ontrol whih is an abstrat way to desribe ontrol behavior.

First we need to de�ne ontrol patterns.

De�nition 2.5. A ontrol pattern is a subset of Σ that ontains all unontrollable events. It

represents the events to be urrently enabled. The set of all ontrol patterns is:

Γ := {γ ∈ Pwr(Σ)| γ ⊇ Σuc}.

De�nition 2.6. A supervisory ontrol for plant G is any map

V : L(G) → Γ.

3

2.2 Deentralized Control

For deentralized ontrol, there is an index set of N > 1 deentralized ontrollers, D =
{1, ..., N}. These ontrollers have only a partial view of the system behaviour and ontrol

only a subset of the ontrollable events. To desribe events that eah deentralized ontroller

i ∈ D ontrols, we use the notation Σc,i ⊆ Σc, where ∪N
i=1Σc,i = Σc. We refer to the set of

ontrollers that ontrol σ ∈ Σc as Dc (σ) := {i ∈ D |σ ∈ Σc,i}.
To desribe events that eah deentralized ontroller i ∈ D observes, we use the notation

Σo,i ⊆ Σo, where ∪N
i=1Σo,i = Σo. We refer to the set of ontrollers that observe σ ∈ Σo by

Do (σ) := {i ∈ D |σ ∈ Σo,i}. Correspondingly, the natural projetion desribing the partial

view of eah ontroller is denoted by Pi : Σ∗ → Σ∗
o,i, for i ∈ D.

For deentralized ontrol with a onjuntive arhiteture [RW92℄, the fusion rule is the

onjuntion of all loal ontrol deisions, i.e., an event is globally enabled if not loally disabled.

We use the onjuntive arhiteture in this paper.

For deentralized ontrol, we de�ne a group of loal partial-observation deentralized su-

pervisors to exerise ontrol over the plant. The following de�nition desribes the deision

rules of individual deentralized supervisors and the onjuntion rule that ombines their loal

ontrol deisions into global ontrol deisions.

De�nition 2.7. Let K ⊆ Σ∗ be the desired behavior and let i ∈ D. Then the deision rule for

a loal partial-observation deentralized supervisor for G is a map SPi
: L(G) → Γ de�ned for

t ∈ L(G) as SPi
(t) := (Σ\Σc,i) ∪ {σ ∈ Σc,i | P−1

i [Pi(t)]σ ∩ K ∩ L(G) 6= ∅}. The onjuntion

of the SPi
, denoted by SCon : L(G) → Γ, is de�ned as: SCon(t) := ∩N

i=1SPi
(t).

We note that SCon is a supervisory ontrol for G and that SPi
(t) = SPi

(Pi(t)) as the

natural projetion is idempotent, i.e., Pi(t) = Pi(Pi(t)).
We now de�ne the losed behaviour for the losed-loop system of G under the ontrol of

SCon.

De�nition 2.8. Given G and SCon, the resulting losed-loop system is denoted by SCon/G.

The system's losed behaviour L(SCon/G), is reursively de�ned as follows:

I) ǫ ∈ L(SCon/G)
II) t ∈ L(SCon/G), σ ∈ SCon(t), and tσ ∈ L(G) if and only if tσ ∈ L(SCon/G).

The following is the de�nition of deentralized supervisory ontrol.

De�nition 2.9. Given G and SCon, we say SCon is a deentralized supervisory ontrol for

G if the deision rule is de�ned as in De�nition 2.7, and the resulting losed-loop system and

losed behaviour is de�ned as in De�nition 2.8.

The following is the de�nition of nonbloking deentralized supervisory ontrol. It states

that the marked language of the losed-loop system is the set of strings marked by G and still

possible in the system's losed-loop behaviour.

De�nition 2.10. We say that SCon is a nonbloking deentralized supervisory ontrol (NDSC)

for G if Lm(SCon/G) = L(SCon/G) where Lm(SCon/G) := L(SCon/G) ∩ Lm(G).

We now state the o-observability property whih was introdued in [RW92℄. The following

is the de�nition of o-observability adapted from [BL00, RW92℄. As we will see in Theorem 2.1,

o-observability is a key property to ensure that we an synthesize deentralized ontrollers

that ooperate to ensure that the supervised system generates the behaviour spei�ed by

language K.

4

De�nition 2.11. Let K, L = L be languages over event set Σ. Let D = {1, ..., N} be an index

set. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of ontrollable and observable events, respetively, for

i ∈ D, where Σc = ∪N
i=1Σc,i and Dc (σ) := {i ∈ D |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗

o,i be natural

projetions. A language K is said to be o-observable with respet to L, Σo,i, Σc,i, i ∈ D, if

(∀t ∈ K ∩ L) (∀σ ∈ Σc) tσ ∈ L\K ⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ K ∩ L = ∅.

In essene, o-observability states that if K disables event σ ∈ Σc whih is possible in L
after string t, there must exist at least one deentralized ontroller that an disable σ and

do so unambiguously. Note that in the de�nition of o-observability, when there is only one

ontroller, i.e., D = {1}, the property is alled observability [LW88℄. Sine the spei�ation K
is not neessarily a subset of L, unlike the original de�nition, we do not require that K ⊆ L.
Instead of heking all strings in K, we hek all strings in K ∩ L.

In the following setions, when there is no ambiguity, instead of saying that K is o-

observable with respet to L, Σo,i, Σc,i, i ∈ D, we will say that K is o-observable w.r.t.

L.
Theorem 2.1 states the standard nonbloking deentralized supervisory ontrol existene

theorem that requires that K be Lm(G)-losed.

Theorem 2.1 ([CL08℄). Consider DES G = (Q, Σ, δ, q0, Qm), where Σuc ⊆ Σ is the set

of unontrollable events, Σc = Σ\Σuc is the set of ontrollable events, and Σo ⊆ Σ is the set

of observable events. For eah site i, where i = 1, ..., N onsider the set of ontrollable events

Σc,i and the set of observable events Σo,i; overall,
⋃N

i=1 Σc,i = Σc and
⋃N

i=1 Σo,i = Σo. Let

Pi be the natural projetion from Σ∗ to Σ∗
o,i, where i = 1, ..., N . Consider also the language

K ⊆ Lm(G), where K 6= ∅. There exists a nonbloking deentralized supervisor Scon for G

suh that Lm(Scon/G) = K and L(Scon/G) = K if and only if the following three onditions

hold:

1. K is ontrollable with respet to L(G) and Σuc;

2. K is o-observable with respet to L(G), Σo,i, and Σc,i, i = 1, ..., N ;

3. K is Lm(G)-losed.

2.3 Deentralized Control with Marking

We will now extend the existing work by introduing a generalization of NDSC in whih the

supervisory ation also inludes marking as well as ontrol. This will allow supervisors to

add marking information whih makes them more expressive. The marked language of the

losed-loop system is now de�ned to be the set of strings marked by K ⊆ Lm(G) that are

still possible in the system's losed-loop behaviour. This new de�nition will allow us to later

introdue a deentralized supervisory ontrol existene result whih does not require that K
be Lm(G)-losed.

De�nition 2.12. Let K ⊆ Lm(G). We say that Scon is a marking nonbloking deentralized

supervisory ontrol (MNDSC) for (K, G) if Lm(SCon/G) = L(SCon/G) where Lm(Scon/G) :=
L(Scon/G) ∩ K.

The next de�nition reates an equivalene between theoretial deentralized supervisory

ontrols and DES supervisors. The idea is that the marking and ontrol information of SCon

is represented by spei�ation H, and that the losed-loop behaviour of H||G is equivalent to

Scon/G.

5

De�nition 2.13. Let SCon be a MNDSC for plant G = (Q, Σ, δ, q0, Qm) and K ⊆ Lm(G),
with Lm(SCon/G) = L(Scon/G) ∩ K and L(SCon/G) = K. Let H = (X, Σ, ξ, x0, Xm) be a

spei�ation automaton. We say that H||G has equivalent MNDSC behaviour with SCon/G,

if K = Lm(H)∩Lm(G) and K = L(H)∩L(G). Alternatively, we say that H is an equivalent

theoretial implementation of MNDSC SCon for G.

In this paper, we will fous on MNDSC. In partiular, it will allow us to later introdue

a deentralized supervisor existene result that relies on the losed-loop system H||G to be

nonbloking, instead of the existing results that require K to be Lm(G)-losed. This is

essential to adapting deentralized ontrol to the HISC approah as HISC provides a salable

method to verify nonbloking, but not Lm(G)-losure.
We note that in deentralized ontrol, there is no real implementation of the entralized

supervisor H. The above MNDSC SCon, de�ned as the ontrol poliy of the onjuntion of

a group of deentralized supervisors, is the real supervisor. We also note that for an HISC

system, H will orrespond to the theoretial �at supervisor of the system de�ned in Setion

3, and will be used to determine if the �at system is nonbloking.

3 HISC Arhiteture

The HISC [Led02, Led09, LBLW05, LLD06, LLW05℄ approah deomposes a system into a

high-level subsystem whih ommuniates with n ≥ 1 parallel low-level subsystems through

separate interfaes that restrit the interation of the subsystems. The high-level subsystem

ommuniates with eah low-level subsystem through a separate interfae.

In HISC there is a master-slave relationship. A high-level subsystem sends a ommand to a

partiular low-level subsystem, whih then performs the indiated task and returns a response

(answer). Figure 1 shows oneptually the struture and information �ow of the system. The

overall struture of the system is shown in Figure 2. This style of interation is enfored by an

interfae that mediates ommuniation between the two subsystems. All system omponents,

inluding the interfaes, are modeled as automata.

Figure 1: Interfae Blok Diagram with Low Data Events.

6

High-Level

Low-Level 1

GL1

GH

GI1

Low-Level n

GLn

GIn

Figure 2: Two Tiered Struture of Parallel System

To restrit information �ow and deouple the subsystems, the system alphabet is parti-

tioned into pairwise disjoint alphabets:

Σ := ΣH ∪̇
˙⋃

j=1,...,n

[ΣLj
∪̇ΣRj

∪̇ΣAj
∪̇ΣLDj

] (1)

where we use ∪̇ to represent disjoint union.

The events in ΣH are alled high-level events and the events in ΣLj
are the jth low-

level events (j = 1, . . . , n) as these events appear only in the high level and jth low-level

subsystem models, GH and GLj
respetively. We then have GH de�ned over event set

ΣH ∪̇(∪̇j∈{1,...,n}[ΣRj
∪̇ΣAj

∪̇ΣLDj
]) and GLj

de�ned over event set ΣLj
∪̇ΣRj

∪̇ΣAj
∪̇ΣLDj

. We

model the jth interfae by DES GIj
, whih is de�ned over event set ΣRj

∪̇ΣAj
∪̇ΣLDj

. For the

remainder of this paper, we assume j ∈ {1, . . . , n}.
The events in ΣRj

, alled request events, represent ommands sent from the high-level

subsystem to the jth low-level subsystem. The events in ΣAj
are answer events and represent

the low-level subsystem's responses to the request events. The events in ΣLDj
are alled

low data events whih provide a means for a low level to send information (data) through

the interfae. Request, answer, and low data events are olletively known as the set of LD

interfae events, de�ned as ΣI := ∪̇k∈{1,...,n}[ΣRk
∪̇ΣAk

∪̇ΣLDk
], and GIj

is an LD interfae as

de�ned below.

De�nition 3.1. The jth interfae DES GIj
= (Xj , ΣIj

, ξj , xoj
, Xmj

) is an LD interfae if the

following properties are satis�ed:

1. xoj
∈ Xmj

2. (∀x ∈ Xmj
)(∀σ ∈ ΣIj

) ξj(x, σ)! ⇒ [σ ∈ ΣRj
] ∨ [σ ∈ ΣLDj

∧ ξj(x, σ) ∈ Xmj
]

3. (∀x ∈ Xj − Xmj
)(∀σ ∈ ΣIj

) ξj(x, σ)! ⇒
[σ ∈ ΣAj

∧ ξj(x, σ) ∈ Xmj
] ∨ [σ ∈ ΣLDj

]

Figure 3 shows an example of an LD interfae. It ould orrespond to a mahine at the

low level with an e�etive internal bu�er of two. In this diagram, the initial state an be

reognized by a thik outline, and marked states are �lled.

To simplify notation in our exposition, we bring in the following event sets, natural pro-

jetions, and languages.

7

GIj
start

done

isD
on

e

no
tD

on
e

start

done

isD
on

e

no
tD

on
e

0

1

3 4

2

SRj={isDone,start},SAj={done},SLDj={notDone}

Figure 3: Example LD Interfae

ΣIj
:= ΣRj

∪̇ΣAj
∪̇ΣLDj

, PIj
: Σ∗ → Σ∗

Ij

ΣILj
:= ΣLj

∪ΣIj
, PILj

: Σ∗ → Σ∗
ILj

ΣIH := ΣH ∪
⋃

k∈{1,...,n}

ΣIk
, PIH : Σ∗ → Σ∗

IH

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj
)), Imj

:= P−1
Ij

(Lm(GIj
)) ⊆ Σ∗

I := ∩k∈{1,...,n}Ik, Im := ∩k∈{1,...,n}Imk

ΣLD :=
⋃

k∈{1,...,n}

ΣLDk

We de�ne our �at system to be G = GH ||GI1 ||GL1
|| . . . ||GIn

||GLn
. By �at system we

mean the equivalent DES if we ignored the interfae struture.

We now present the properties that an HISC system must satisfy to ensure that it interats

with the interfaes orretly.

De�nition 3.2. The nth degree (n ≥ 1) interfae system omposed of DES GH ,GI1 ,
GL1

, . . . ,GIn
,GLn

, is LD interfae onsistent with respet to the alphabet partition given by

(1), if for all j ∈ {1, . . . , n}, the following onditions are satis�ed:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GLj
is ΣILj

.

2. GIj
is a LD interfae.

High-Level Property

3. (∀s ∈ H ∩ I) EligIj
(s) ∩ (ΣAj

∪̇ΣLDj
) ⊆ EligH(s)

Low-Level Properties

4. (∀s ∈ Lj ∩ Ij) EligIj
(s) ∩ ΣRj

⊆ EligLj
(s)

8

5. (∀s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij)

EligLj ∩Ij
(sΣ∗

Lj
) ∩ ΣAj

= EligIj
(s) ∩ ΣAj

where

EligLj∩Ij
(sΣ∗

Lj
) :=

⋃

l∈Σ∗

Lj

EligLj∩Ij
(sl)

6. (∀s ∈ Lj ∩ Ij)
s ∈ Imj

⇒ (∃l ∈ Σ∗
Lj

) sl ∈ Lmj
∩ Imj

.

We now provide an additional set of properties that the system must satisfy if the �at

system G is to be nonbloking.

De�nition 3.3. The nth degree (n ≥ 1) interfae system omposed of DES GH ,GI1 , GL1
, . . . ,

GIn
,GLn

, is said to be LD level-wise nonbloking if the following onditions are satis�ed:

(I) LD nonbloking at the high level:

(∀s ∈ H ∩ I)(∃s′ ∈ (Σ − ΣLD)∗)
ss′ ∈ Hm ∩ Im

(II) nonbloking at the low level:

(∀j ∈ {1, . . . , n})Lmj
∩ Imj

= Lj ∩ Ij

The theorem bellow states that verifying the LD level-wise nonbloking and LD interfae

onsistent onditions is su�ient to verify that our �at system is nonbloking.

Theorem 3.1 ([Led09℄). If the nth degree (n ≥ 1) interfae system omposed of DES

GH ,GI1 , GL1
, . . . ,GIn

,GLn
, is LD level-wise nonbloking and LD interfae onsistent with

respet to the alphabet partition given by (1), then

L(G) = Lm(G) where G = GH ||GL1
||GI1 || . . . ||GLn

||GIn
.

Sine heking that the LD level-wise nonbloking and LD interfae onsistent onditions

only require a single omponent at a time, we note that we an evaluate eah level indepen-

dently. This means we do not need to onstrut the entire system model.

For ontrollability, we need to separate the subsystems into their plant and supervisor

sub-omponents (see Figure 4). We de�ne the high-level plant to be G
p
H , and the high-

level supervisor to be SH (de�ned over event set ΣIH). We de�ne the jth low-level plant

and supervisor to be G
p
Lj

and SLj
(de�ned over ΣILj

) respetively. We next de�ne the

high-level subsystem to be GH := G
p
H ||SH , and de�ne the jth low-level subsystem to be

GLj
:= G

p
Lj
||SLj

. We note that in HISC systems, interfaes are always supervisors.

We an now de�ne our �at supervisor and plant as well as some other languages as follows:

Plant := G
p
H ||Gp

L1
|| . . . ||Gp

Ln
,

Sup := SH ||SL1
|| . . . ||SLn

||GI1 || . . . ||GIn
,

Hp := P−1
IH L(Gp

H), SH := P−1
IH L(SH) ⊆ Σ∗,

Lp
j := P−1

ILj
L(Gp

Lj
), SLj

:= P−1
ILj

L(SLj
) ⊆ Σ∗.

The ontrollability requirements that eah level must satisfy are given in the following

de�nition.

De�nition 3.4. The nth degree (n ≥ 1) interfae system omposed of DES G
p
H ,SH , Gp

L1
,SL1

,
GI1 , . . . ,G

p
Ln

,SLn
,GIn

, is LD level-wise ontrollable with respet to the alphabet partition

given by (1), if for all j ∈ {1, . . . , n} the following onditions hold:

9

High level

Low level

G G SL L L= ||
p

G
p

L SL

GI

G G SH H H= ||
p

G
p

H SH

Figure 4: Plant and Supervisor Subplant Deomposition

(I) The alphabet of G
p
H and SH is ΣIH , the alphabet of G

p
Lj

and SLj
is ΣILj

, and the

alphabet of GIj
is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj

∩ Ij)EligLp
j
(s) ∩ Σu ⊆ EligSLj

∩Ij
(s)

(III) (∀s ∈ Hp ∩ I ∩ SH)EligHp∩I(s) ∩ Σu ⊆ EligSH
(s)

The theorem below states that verifying LD level-wise ontrollable is su�ient to verify

that the �at supervisor is ontrollable for the �at plant.

Theorem 3.2 ([Led09℄). If nth degree (n ≥ 1) interfae system omposed of DES G
p
H ,SH ,

G
p
L1

,SL1
,GI1 , . . . ,G

p
Ln

,SLn
,GIn

is LD level-wise ontrollable with respet to the alphabet par-

tition given by (1), then

(∀s ∈ L(Plant) ∩ L(Sup))EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

Sine heking that the LD level-wise ontrollable ondition only requires at most a single

omponent at a time, we note that we an evaluate eah level independently.

4 Hierarhial Interfae-Based Deentralized Supervisory Con-

trol

In Setion 3, we desribed a system omposed of plant DES G
p
H , G

p
L1

, . . . , G
p
Ln

, supervisor

DES SH , SL1
, . . . ,SLn

, and interfae DES GI1 , . . . ,GIn
. Although the level-wise ontrollabil-

ity ondition [Led02, Led09℄ does e�etively limit the high-level supervisor to events in ΣIH ,

and the jth low-level supervisor to events in ΣILj
, it requires the HISC struture and does not

allow further restritions outside of this struture. In order to allow deentralized supervisors

within omponents, we need to extend the HISC struture.

10

We now introdue the Hierarhial Interfae-based Deentralized Supervisory Control (HIDSC)

arhiteture. HIDSC is an extension of HISC from entralized ontrol to a deentralized ar-

hiteture by allowing deentralized supervisors within a subsystem, but without additional

HISC restritions.

In the HIDSC framework, all the HISC supervisors are replaed by orresponding spei�a-

tion DES. In deentralized ontrol, these spei�ation DES represent the ontrol behaviours we

wish to implement as deentralized ontrollers, not spei�ations for synthesizing a entralized

maximally permissive supervisor.

For HIDSC, we will replae supervisor SH by spei�ation DES FH (de�ned over ΣIH),

and we will replae supervisor SLj
by spei�ation DES FLj

(de�ned over ΣILj
). Typially,

FH will express system-wide onstraints about how the omponents interat and what tasks

the low levels should perform. FLj
expresses how the jth low level will perform the tasks

(requests) given to it by the high level. For eah omponent, there is a di�erent index set of

deentralized ontrollers.

We are now ready to de�ne the struture of an HIDSC system.

De�nition 4.1. The nth degree deentralized spei�ation interfae system with respet to

the alphabet partition given by (1) is omposed of plant DES G
p
H , G

p
L1

, . . . ,Gp
Ln

, spei�ation

DES FH , FL1
, . . . ,FLn

, interfae DES GI1 , . . . ,GIn
, and high-level and low-level deentralized

ontrollers. The system has the following struture.

High level:

• The high-level deentralized ontrollers have an index set DH := {NH,1, . . . , NH,n0
}.

• The event set for G
p
H , FH and the orresponding deentralized ontrollers is ΣIH .

• For i ∈ DH , ΣH,c,i ⊆ Σc∩ΣIH and ΣH,o,i ⊆ Σo∩ΣIH are the orresponding ontrollable

and observable event subsets for the high-level deentralized ontrollers.

Low level:

• For j ∈ {1, . . . , n}, the jth low-level omponent has an index set DLj
:= {NLj ,1, . . . , NLj ,nj

}
for its own deentralized ontrollers.

• The event set of eah low-level omponent G
p
Lj
, FLj

and the orresponding deentralized

ontrollers is ΣILj
.

• For i ∈ DLj
, ΣLj ,c,i ⊆ Σc ∩ ΣILj

and ΣLj ,o,i ⊆ Σo ∩ ΣILj
are the orresponding ontrol-

lable and observable event subsets for the low-level deentralized ontrollers.

Multi-level:

• The index set for all deentralized ontrollers in the system is D := DH ∪̇ ˙⋃n

j=1DLj
=

{1, ..., N}.

• ∪N
i=1Σc,i = Σc and ∪N

i=1Σo,i = Σo

For the rest of this setion, we will refer to suh a system as an nth degree deentralized

spei�ation interfae system Ψ, or simply Ψ. Note that in Ψ, we do not speify the index

11

of deentralized ontrollers by {1, ..., n0}, {1, ..., nj}, et., beause one ombined they would

overlap. We reate the system index set using disjoint union.

The �at system G is the synhronization of all the plant, spei�ation, and interfae

omponents in the system, i.e., G = G
p
H || G

p
L1

|| . . . || G
p
Ln

|| FH || FL1
|| . . . || FLn

|| GI1

|| . . . || GIn
. We use the term �at system to mean the overall system ignoring the HIDSC

struture.

It is important to note that for an HIDSC system, we would �rst design level-wise super-

visors for the original HISC system while ignoring any deentralized restritions. We would

then use the HISC struture to verify that the system is nonbloking and ontrollable. We

would next use these level-wise supervisors (whih inlude the system's interfae DES) as

�spei�ations" for the design of the per-omponent deentralized supervisors spei�ed by the

HIDSC system. The �nal system would not ontain any of these spei�ation DES, just the

resulting deentralized ontrollers that would provide us with equivalent losed-loop behaviour

(see Corollary 4.1 in Setion 4.2).

4.1 HIDSC Co-observability De�nition and Theorem

The main fous of this setion is to verify o-observability in an HIDSC system Ψ without

expliitly onstruting the �at system. We will only perform a per-omponent o-observability

veri�ation, but guarantee that the whole system is o-observable.

To aid in de�ning our per-omponent o-observability de�nition and HIDSC o-observability

theorem, we speify some deentralized notations for Ψ.

We use DH,c (σ) := {i ∈ DH |σ ∈ ΣH,c,i} to denote the set of deentralized ontrollers

in the high level that an ontrol the event σ. We use DH,o (σ) := {i ∈ DH |σ ∈ ΣH,o,i} to

denote the set of deentralized ontrollers in the high level that an observe the event σ.
Correspondingly, PH,i : Σ∗ → Σ∗

H,o,i is the natural projetion desribing the partial view of

ontroller i ∈ DH .

For j ∈ {1, . . . , n}, DLj ,c (σ) :=
{

i ∈ DLj
|σ ∈ ΣLj ,c,i

}

is the set of deentralized on-

trollers in the jth low-level omponent that an ontrol the event σ. We use DLj ,o (σ) :=
{

i ∈ DLj
|σ ∈ ΣLj ,o,i

}

to represent the set of deentralized ontrollers in the jth low-level

omponent that an observe the event σ. Correspondingly, PLj ,i : Σ∗ → Σ∗
Lj ,o,i is the natural

projetion desribing the partial view of ontroller i ∈ DLj
.

We use Dc (σ) := {i ∈ D |σ ∈ Σc,i} to denote the set of deentralized ontrollers in the

system that an ontrol the event σ.
Further, we introdue a few languages used for the HIDSC o-observability de�nition and

theorem.

FH := P−1
IH (L(FH)), FLj

:= P−1
ILj

(L(FLj
))

F := FH ∩ FL1
∩ . . . ∩ FLn

, P := Hp ∩ Lp
1 ∩ . . . ∩ Lp

n

Language FH represents the behaviour of the spei�ation automata in the high-level

subsystem, while FLj
represents the behaviour of the spei�ation automata for the jth low-

level subsystem. Language F represents the global spei�ation for the �at system, and P
represents the behaviour of the �at plant.

We now present the per-omponent level-wise o-observability de�nition for HIDSC system

Ψ. We note that eah individual ondition needs at most a single subsystem for its veri�a-

12

tion, thus we do not need to onstrut the entire system model. This an save signi�ant

omputation and an help to alleviate the state-spae explosion problem.

De�nition 4.2. Let Ψ be an HIDSC nth degree deentralized spei�ation interfae system.

Then Ψ is level-wise o-observable if for all j ∈ {1, . . . , n} the following onditions hold:

I) (∀t ∈ FH ∩Hp ∩ I)(∀σ ∈ Σc) tσ ∈ (Hp ∩ I)\FH ⇒
(∃i ∈ DH,c (σ)) P−1

H,i[PH,i(t)]σ ∩ FH ∩Hp ∩ I = ∅,

II) (∀t ∈ FLj
∩ Ij ∩ Lp

j)(∀σ ∈ Σc) tσ ∈ Lp
j\(FLj

∩ Ij) ⇒

(∃i ∈ DLj ,c (σ))P−1
Lj ,i[PLj ,i(t)]σ ∩ FLj

∩ Ij ∩ Lp
j = ∅.

De�nition 4.2 states that HIDSC system Ψ is level-wise o-observable if the high-level

omponent is o-observable and eah low-level omponent is o-observable.

We note that the interfaes are treated as spei�ations at the low level and treated as

plants at the high level. This is done this way beause interfaes represent the behaviour

provided by its low level and the information needed to verify that it is o-observable is

typially present at the low level but not the high level. To avoid having to repeat this

information at the high level, we use the results of [LLMR14℄ that allow us to treat supervisors

as if they are plants one we verify they are o-observable. By treating interfaes as plants

at the high level, we allow the high-level supervisor to be more permissive in general as there

will typially be fewer strings that an ause the o-observability veri�ation to fail.

We now restate the o-observability de�nition in terms of our HIDSC system. We note

that from their de�nition, we know that languages F , I, and P are pre�x-losed. We also

note that aording to De�nition 4.2, eah i ∈ D represents some i1 ∈ DH or some i2 ∈ DLj
,

j ∈ {1, ..., n}.

De�nition 4.3. Let Ψ be an HIDSC nth degree deentralized spei�ation interfae system.

Let D = {1, ..., N} =DH ∪̇ ˙⋃n

j=1DLj
be the index set for Ψ. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets

of ontrollable and observable events, respetively, for i ∈ D, where Dc(σ) = {i ∈ D |σ ∈ Σc,i}.
Let Pi : Σ∗ → Σ∗

o,i, i ∈ D, be natural projetions. Then Ψ is globally o-observable if

(∀t ∈ F ∩ I ∩ P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I) ⇒
(∃i ∈ Dc (σ))P−1

i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅.

We note that De�nition 4.3 is the property we want to verify but we will do so by using

our per-omponent o-observability de�nition.

The theorem below states that the level-wise o-observability property is su�ient to

guarantee that the �at system is o-observable. This means that o-observability for the

system an be veri�ed while only onstruting a single omponent at a time.

Theorem 4.1. Let Ψ be an HIDSC nth degree deentralized spei�ation interfae system. If

Ψ is level-wise o-observable then Ψ is globally o-observable.

Proof. See Appendix.

We now examine the omplexity of our approah. In monolithi veri�ation, the n low-

level subsystems are omposed diretly with the high-level system without using the interfae

struture. The size of the state spae for the monolithi method is the size of the produt

state spae of GH || GL1
|| . . . || GLn

. If the size of the state spae of GH is bounded by

NH , and the size of the state spae for eah GLj
is bounded by NL, then the size of the state

spae of the monolithi method is bounded by NHNn
L .

13

Our method veri�es eah omponent separately, therefore the size of the state spae is

bounded by the size of the omponent ombined with its interfae. For j = 1, ..., n, if we
assume that the size of the state spae of GIj

is bounded by NI , then eah low-level subsystem

GLj
||GIj

is bounded by NLNI . The high-level subsystem GH ||GI1 || . . . ||GIn
is bounded by

NHNn
I . Therefore, our method is bounded by the larger of NHNn

I and NLNI . Typially in

an HIDSC design, the size of the high level is the limiting fator. This means that as long as

NI ≪ NL, we should ahieve signi�ant omputational savings.

4.2 MNDSC Supervisor Existene Theorem

We now present the marking nonbloking deentralized supervisory ontrol (MNDSC) exis-

tene theorem, whih shows that there exists an MNDSC to ahieve the spei�ation if and

only if K is ontrollable and o-observable.

4 slot
input
buffer

4 slot
output
buffer

packaging
unit

4 slot
package
buffer

test
unit

source

manufacturing unit I

Attach Case to Assembly-j

start_case

A
ttch

_
case

compl_case

Polish Part-j

start_pol

dip_acid,

polish

str_
rlse

compl_pol

Attach Part to Assembly-j

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Define New Events-j

attch_ptA, attch_ptB,

finA_attch, finB_attch

Path Flow Model-j

part_ent part_arr1 part_lv1

str_exitfin_exit

part_arr2

partLvExit

part_lv2part_arr3 recog_A

recog_B

part_lv3

manufacturing unit II

Attach Case to Assembly-j

start_case

A
ttch

_
case

compl_case

Polish Part-j

start_pol

dip_acid,

polish

str_
rlse

compl_pol

Attach Part to Assembly-j

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Define New Events-j

attch_ptA, attch_ptB,

finA_attch, finB_attch

Path Flow Model-j

part_ent part_arr1 part_lv1

str_exitfin_exit

part_arr2

partLvExit

part_lv2part_arr3 recog_A

recog_B

part_lv3

manufacturing unit III

Attach Case to Assembly-j

start_case

A
ttch

_
case

compl_case

Polish Part-j

start_pol

dip_acid,

polish

str_
rlse

compl_pol

Attach Part to Assembly-j

take_pt

str_ptA

str_ptB

cmpl_A

cmpl_B

ret_pt

Define New Events-j

attch_ptA, attch_ptB,

finA_attch, finB_attch

Path Flow Model-j

part_ent part_arr1 part_lv1

str_exitfin_exit

part_arr2

partLvExit

part_lv2part_arr3 recog_A

recog_B

part_lv3

Figure 5: Blok Diagram of Parallel Plant System.

Note that in Theorem 4.2 below we do not require that K be Lm(G)-losed whih is

assumed by traditional deentralized ontrol [CL08℄. This will allow us to apply the result to

our HIDSC system as we have an HISC nonbloking result but not an HISC Lm(G)-losed
result.

Theorem 4.2. Let Plant := (Q, Σ, δ, q0, Qm), K ⊆ Lm(Plant), and K 6= ∅. There

exists an MNDSC SCon for (K, Plant) suh that Lm(SCon/Plant) = K if and only if K is

ontrollable and o-observable with respet to L(Plant).

Proof. See Appendix.

14

We will now relate Theorem 4.2 to our HIDSC system and nonbloking. In essene, we

are requiring Ψ to have equivalent MNDSC behaviour with SCon/Plant, whih ensures our

HIDSC system implementation will be nonbloking.

Corollary 4.1. Let Ψ be an HIDSC nth degree deentralized spei�ation interfae system.

Let Plant := G
p
H ||Gp

L1
|| . . . ||Gp

Ln
, and Spe := FH ||FL1

|| . . . ||FLn
||GI1 || . . . ||GIn

. Let

Lm(Spe) ∩ Lm(Plant) 6= ∅. There exists an MNDSC SCon for (Lm(Spe) ∩ Lm(Plant),
Plant) suh that Lm(SCon/ Plant) = Lm(Spe) ∩ Lm(Plant), and L(SCon/Plant) =
L(Spe)∩L(Plant), if and only if Lm(Spe) ∩ Lm(Plant) is ontrollable and o-observable

with respet to L(Plant), and Lm(Spe) ∩ Lm(Plant) = L(Spe) ∩ L(Plant).

Proof. See Appendix.

For HIDSC system Ψ, Corollary 4.1 tells us that the marked behaviour of our MNDSC

and �at plant is equal to Lm(Spe) ∩ Lm(Plant) and their losed behaviour is equal to

L(Spe) ∩ L(Plant). To apply Corollary 4.1, we need to �rst show that Ψ is o-observable,

nonbloking, and ontrollable. For salability, we want to verify all these global properties

using only per-omponent properties.

Theorem 4.1 states that level-wise o-observability gives us global o-observability. Theo-

rems 3.1 and 3.2 state that the HISC LD level-wise nonbloking, LD interfae onsistent, and

LD level-wise ontrollability properties together imply that our �at system is nonbloking and

ontrollable. We an thus verify all needed global properties using per-omponent heks. As

we never need to onstrut the full system model, this o�ers potentially great omputational

savings.

5 Manufaturing Example

To demonstrate the HIDSC method, we adapt a small manufaturing system from [Led02℄

that was originally modeled as an HISC system. The system, shown in Figure 5, is omposed

of three manufaturing units running in parallel, a testing unit, material feedbak, a pakaging

unit, and three bu�ers to insure the proper �ow of material.

Figure 6 shows whih DES belong to the high-level subsystem (GH), the high-level plant

(GH), the high-level spei�ation automata (SH), the jth low-level subsystem (GLj
), the jth

low-level plant (GLj
), the jth low-level spei�ation automata (SLj

), and the jth interfae

DES (GIj
), j = I, II, III. We note that the three low-level subsystems shown in Figure 6 are

idential up to relabeling. Figure 7 shows the low-level subsystems in more detail.

In the diagrams, ontrollable events are those with a slash on the transition arrow, marked

states are states with an unlabeled inoming arrow, and initial states are states with an

unlabeled outgoing arrow.

5.1 Manufaturing System as an HIDSC System

Originally this example was modeled as an HISC system. We will now adapt it as an HIDSC

system. Typially, we would only do this if the system had an inherent distributed nature

foring us to implement supervisors with partial observations and partial ontrollability beyond

the ompartmentalized limitations imposed by the HISC struture.

We de�ne the alphabet partition Σ := ∪̇j∈{I,II,III}(ΣLj
∪̇ ΣRj

∪̇ΣAj
) ∪̇ ΣH below:

15

High level Subsystem

GH

SH

new_part

Source Sink

allow_exit

Packaging System

take_item

p
ack

ag
e

allow_exit

Test Unit

part_f_obuff part_passes

p
art_

fails

ret_inbuff

deposit_part

GH

Low Level Subsystem I Low Level Subsystem IIILow Level Subsystem II

GI-I part_ent-I

fin_exit-I

GI-II part_ent-II

fin_exit-II

GI-III part_ent-III

fin_exit-III

G , j = IL-I G , j = IIL-II
G , j = IIIL-III

G L-I

S L-I

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o

lish
-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-II

S L-II

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o

lish
-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-III

S L-III

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o

lish
-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

in_buff ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

package
buffer deposit_part deposit_part deposit_part deposit_part

take_item take_item take_item take_item

out_buff

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

part_ent-I,
part_ent-II,
part_ent-III

part_ent-I,
part_ent-II,
part_ent-III

part_f_obuff part_f_obuff part_f_obuff part_f_obuff

Ensure_matFb
new_part new_part new_part new_part

part_passes part_passes part_passes part_passes

Figure 6: Complete Parallel System.

16

GLj

GLj

SLj

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p
o
l-j

co
m

p
l_

p
o
l-j

GI (j , i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j
p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

Figure 7: Low-Level Subsystem j.

ΣH = {take_item, pakage, allow_exit ,new_part , part_fails,

part_f_obu� , part_passes, ret_inbu� , deposit_part}

ΣRj
= {part_ent-j}

ΣAj
= {�n_exit-j}

ΣLj
= {start_pol-j , atth_ptA-j , atth_ptB-j , start_ase-j

omp_pol-j ,�nA_atth-j ,�nB_atth-j , ompl_ase-j ,

part_arr1-j , part_lv1-j , partLvExit-j , str_exit-j ,

part_arr2-j , reog_A-j , reog_B-j , part_lv2-j ,

part_arr3-j , part_lv3-j , take_pt-j , str_ptA-j , str_ptB-j ,

ompl_A-j , ompl_B-j , ret_pt-j , dip_aid-j , polish-j ,

str_rlse-j ,Atth_ase-j}

Our �rst step is to replae the existing supervisors with spei�ation automata; thus let

17

FH = SH and FLj
= SLj

, j = I, II, III.
We next design deentralized ontrollers (H1, H2, LI1 , LI2 , LII1 , LII2 , LIII1 , LIII2) to

de�ne our HIDSC problem.

For the high-level subsystem, the observable and ontrollable alphabet for ontroller H1
is spei�ed as:

ΣH,o,1 = ΣI ∪ {new_part , ret_inbu� , part_f_obu� }

ΣH,c,1 = (ΣI ∩ Σc) ∪ {part_f_obu� }

The observable and ontrollable alphabet for ontroller H2 is spei�ed as:

ΣH,o,2 = (ΣI ∩ Σuc) ∪ {take_item, pakage, allow_exit ,

new_part , part_passes, part_fails, ret_inbu� ,

deposit_part}

ΣH,c,2 = {take_item, allow_exit ,new_part , part_f_obu� ,

part_passes, ret_inbu� , deposit_part}

For the jth low-level subsystem (j = I, II, III), the observable alphabet for ontrollers Lj1

and Lj2 is spei�ed as:

ΣL,o,j1 = {part_ent-j ,�n_exit-j , start_pol-j , part_arr1-j}

ΣL,o,j2 = ΣLj

The ontrollable alphabet for ontrollers Lj1 and Lj2 is spei�ed as:

ΣL,c,j1 = {part_ent-j , start_pol-j}

ΣL,c,j2 = (ΣLj
∩ Σc) \ {start_pol-j}

The index sets of deentralized ontrollers for eah omponent are: DH={H1, H2},
DLI

={LI1 , LI2}, DLII
={LII1 , LII2}, and DLIII

={LIII1 , LIII2}.

We now de�ne the �at plant, and the �at spei�ation automata as follows:

Plant := GH ||GLI ||GLII ||GLIII

Spe := FH ||FLI
||FLII

||FLIII
||GII ||GIII ||GIIII

5.2 Co-observability Veri�ation for System

We now need to verify whether Lm(Spe) is o-observable w.r.t. L(Plant). We an then

onlude, in ombination with heking ontrollability and nonbloking, by Corollary 4.1 that

there exists an MNDSC and that its resulting losed-loop behaviour is the same as that of the

�at system of our HIDSC system. By Theorem 4.1, we know that to hek o-observability of

the HIDSC system, it is su�ient to verify level-wise o-observability.

The following steps for level-wise o-observability veri�ation are:

Step 1. Verify whether the �rst low-level subsystem satis�es its portion of the level-wise o-

observable de�nition, i.e., whether L(FLI ||GII) is o-observable w.r.t. L(GLI), ΣL,c,i,

ΣL,o,i for i ∈ DLI
.

18

Step 2. Step 1 is su�ient to verify all three low levels as they are idential up to relabeling.

Step 3. Verify whether the high-level subsystem satis�es its portion of the level-wise o-

observable de�nition, i.e., verifying whether L(FH) is o-observable w.r.t. L(GH ||GII
||GIII ||GIIII), ΣH,c,i, ΣH,o,i, for i ∈ DH .

Using our software researh tool, we veri�ed that the �rst low-level omponent satis�es its

portion of the level-wise o-observable de�nition. The monolithi veri�ation ran for 5 hours

without ompleting, so we stopped it. The run time of our inremental veri�ation algorithm

[Liu15, LLMR14℄ was 4.76 seonds. The low-level model ontained 550 states.

We next veri�ed that the high-level omponent satis�es its portion of the level-wise o-

observable de�nition. The run time of our inremental veri�ation algorithm was 424.78

seonds. The high-level model ontained 3,120 states.

After ompleting steps 1-3, we onlude that the deentralized system is level-wise o-

observable, thus globally o-observable by Theorem 4.1. The total veri�ation run time was

429.54 seonds for a system whose omplete system model has 2.78 × 1010 states.

We applied our inremental veri�ation algorithm to the entire system model (i.e., to the

�at system), but our software failed to omplete after 5 hours.

Using our software tool DESpot [DES14℄, we veri�ed that the system is LD level-wise

ontrollable, LD level-wise nonbloking, and LD interfae onsistent. We an thus onlude

by Theorem 3.1 and Theorem 3.2 that our �at system is nonbloking and ontrollable. We

onlude by Corollary 4.1 that there exists a marking nonbloking deentralized supervi-

sory ontrol SCon for Plant, and that Spe||Plant has equivalent MNDSC behaviour with

SCon/Plant. This means that sine Spe||Plant is nonbloking, SCon/Plant is also non-

bloking.

5.3 Complexity Analysis for the Deentralized System

Applying DESpot to the small manufaturing system example, we found that the state size of

the entire system was 2.78×1010. However, the high-level state size was 3120 and the low-level

state size was 550. As an HIDSC hek only requires onstruting a single omponent at a

time, this is a potential savings of about seven orders of magnitude.

The omputational omplexity to verify o-observability using the monolithi approah in

[RW95℄ is O(|Σ||Y |2(N+2)), where Σ is the event set, Y is the state spae, and N is the number

of deentralized ontrollers. Substituting in for the small manufaturing system example, we

found that verifying o-observability using the above method gives a omputation bounded

by |42||2.78 × 1010|2(8+2) = 3.19 × 10210. Using our method, the omputation is bounded by

|15||3120|2(2+2) = 1.35×1029. The potential omputational saving is a 180 order of magnitude

redution.

6 Conlusions and Future Work

In deentralized ontrol, agents have only a partial view and partial ontrol of the system and

must ooperate to ahieve the ontrol objetive. In order to synthesize a deentralized ontrol

solution, a spei�ation must satisfy the o-observability property. Existing o-observability

veri�ation methods require the possibly intratable onstrution of the omplete system.

19

To address this issue, we adapted the existing HISC approah to support deentralized

ontrol. We introdued the HIDSC framework that inluded a per-omponent de�nition of

o-observability. This allows o-observability to be evaluated using only a single omponent at

a time. As a result, the entire system model never needs to be onstruted whih an provide

signi�ant savings. Finally, we provided and proved the neessary and su�ient onditions

for supervisory ontrol existene in the HIDSC framework.

We applied our approah to a small manufaturing example. It ontained a high level with

3120 states, three low levels with 550 states eah, and a �at model with 2.78 × 1010 states.

We veri�ed the per-omponent o-observability property in 429.54 seonds. We tried to verify

the HIDSC system as a �at model but our software failed to omplete after 5 hours.

For future work, we suggest extending HIDSC from the urrent two level approah to a

multi-level method to allow HIDSC handle even larger systems. We also suggest introduing

ommuniation to allow ertain events to be observable [BL00, RC11, WVS96℄ when a given

omponent fails to be o-observable.

7 Proofs

Theorem 4.1:

Proof. Assume Ψ is level-wise o-observable. We will now show that Ψ is globally o-observable.

Su�ient to show that:

(∀t ∈ F ∩ I∩P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I) ⇒ (∃i ∈ Dc (σ))P−1
i [Pi(t)]σ∩F ∩ I∩P = ∅

Let t ∈ F ∩ I ∩ P and σ ∈ Σc. Assume tσ ∈ P\(F ∩ I).
As F = FH ∩ FL1

∩ . . . ∩ FLn
, P = Hp ∩ Lp

1 ∩ . . . ∩ Lp
n, and I = I1 ∩ . . . ∩ In, we an

onlude that: t ∈ FH ∩Hp ∩ I, and (∀j ∈ {1, . . . , n}) t ∈ FLj
∩ Ij ∩ Lp

j (1)

As tσ ∈ P\(F ∩ I), we have: tσ ∈ P and tσ /∈ F ∩ I.
⇒ tσ /∈ FH ∩ FL1

∩ . . . ∩ FLn
∩I1 ∩ . . . ∩ In, by de�nition of F and I

⇒ tσ ∈ P and tσ /∈ FH , or tσ ∈ P and (∃j ∈ {1, . . . , n}) tσ /∈ FLj
∩ Ij

Case 1) (∃j ∈ {1, . . . , n}) tσ /∈ FLj
∩ Ij

Let j ∈ {1, . . . , n} suh that tσ /∈ FLj
∩ Ij . We also have t ∈ FLj

∩ Ij ∩ Lp
j , by (1).

⇒ t ∈ FLj
∩ Ij ∩ Lp

j , tσ ∈ Lp
j and tσ /∈ FLj

∩ Ij as tσ ∈ P

As Ψ is level-wise o-observable, we have: (∃i ∈ DLj ,c (σ)) P−1
Lj ,i[PLj ,i(t)]σ∩FLj

∩Ij∩L
p
j = ∅

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ∩FLj

∩Ij ∩Lp
j = ∅, as DLj ,c (σ) ⊆ Dc (σ) and thus PLj ,i = Pi

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅, as F ∩ I ∩ P⊆ FLj

∩ Ij ∩ Lp
j

Case 2) (∀j ∈ {1, . . . , n}) tσ ∈ FLj
∩ Ij

From earlier we have: tσ ∈ P and tσ /∈ FH ∩ FL1
∩ . . . ∩ FLn

∩I1 ∩ . . . ∩ In

As (∀j ∈ {1, . . . , n}) tσ ∈ FLj
∩ Ij , we have tσ ∈ FL1

∩ . . . ∩ FLn
∩I1 ∩ . . . ∩ In.

⇒ tσ /∈ FH and tσ ∈ I
⇒ tσ /∈ FH and tσ ∈ Hp ∩ I, as P ⊆ Hp

We also have t ∈ FH ∩Hp ∩ I by (1).

As Ψ is level-wise o-observable, we have: (∃i ∈ DH,c (σ)) P−1
H,i[PH,i(t)]σ∩FH ∩I ∩Hp = ∅

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ FH ∩ I ∩Hp = ∅, as DH,c (σ) ⊆ Dc (σ) and thus PH,i = Pi

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅, as F ∩ I ∩ P ⊆ FH ∩ I ∩ Hp

By Cases (1) and (2), we have: (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅

20

As t ∈ F ∩ I ∩ P and σ ∈ Σc are hosen arbitrarily, we onlude that Ψ is globally

o-observable.

Theorem 4.2:

Proof. Let K ⊆ Lm(Plant), K 6= ∅.

If part) Assume K is ontrollable and o-observable with respet to L(Plant).
We will show this implies that there exists a marking nonbloking deentralized supervisory

ontrol SCon for (K, Plant) suh that Lm(SCon/Plant) = K.

We must �rst onstrut a suitable deentralized supervisory ontrol SCon for Plant.

For eah i ∈ D and t ∈ L(Plant), we de�ne the loal deentralized supervisory ontrol as

follows: SPi
(t) := (Σ\Σc,i) ∪ {σ ∈ Σc,i | P−1

i [Pi(t)]σ ∩ K ∩ L(Plant) 6= ∅}.
The global deentralized supervisory ontrol poliy SCon is de�ned as follows: SCon(t) :=

∩N
i=1SPi

(t).
The language L(SCon/Plant) is de�ned in De�nition 2.8. Clearly, SCon is a deentralized

supervisory ontrol as de�ned in De�nition 2.9.

We will now show that Lm(SCon/Plant) = K (Step 1.2) and that SCon is nonbloking

(Step 1.3). To do this, our �rst step is to show that L(SCon/Plant) = K (Step 1.1).

Step 1.1) Show that L(SCon/Plant) = K.

We will now show that (A) L(SCon/Plant) ⊆ K and (B) K ⊆ L(SCon/Plant).

Part A) Show that L(SCon/Plant) ⊆ K.

Let t ∈ L(SCon/Plant). We will now prove by indution on the length of string t that

t ∈ K.

Base ase: t = ǫ
We know that ǫ ∈ L(SCon/Plant) by de�nition. Further, ǫ ∈ K sine K 6= ∅ by assump-

tion. We thus have t ∈ K.

Indutive step: For σ ∈ Σ, we assume tσ ∈ L(SCon/Plant) and t ∈ K. We will now show

this implies tσ ∈ K .

We have t ∈ L(SCon/Plant), (∀i ∈ D)σ ∈ SPi
(t), and tσ ∈ L(Plant), by de�nition of

L(SCon/Plant) and SCon.

We have two ases: (A.1) σ ∈ Σuc or (A.2) σ ∈ Σc.

Case A.1) σ ∈ Σuc

From above, we have: t ∈ K, σ ∈ Σuc, and tσ ∈ L(Plant).
As K is ontrollable, we have: KΣuc ∩ L(Plant) ⊆ K.

⇒ tσ ∈ K
Case A.2) σ ∈ Σc

From above, we have: t ∈ K, σ ∈ Σc, (∀i ∈ D)σ ∈ SPi
(t), and tσ ∈ L(Plant).

We will show tσ ∈ K using proof by ontradition. Assume tσ /∈ K.

⇒ tσ ∈ L(Plant)\K
As K is o-observable with respet to L(Plant), we have: (∃i ∈ Dc (σ)) P−1

i [Pi(t)]σ∩K ∩
L(Plant) = ∅.

⇒ (∃i ∈ Dc (σ))σ /∈ SPi
(t)

⇒ (∃i ∈ D)σ /∈ SPi
(t)

⇒ σ /∈ SCon(t), by de�nition of SCon

⇒ tσ /∈ L(SCon/Plant)

21

This is a ontradition. We thus onlude that tσ ∈ K.

By Cases (A.1) and (A.2), we have tσ ∈ K.

This ompletes the indutive step. We thus onlude by indution that L(SCon/Plant) ⊆
K.

Part B) Show that K ⊆ L(SCon/Plant).
Let t ∈ K. We will prove by indution on the length of string t that t ∈ L(SCon/Plant).

Base ase: t = ǫ
We know that ǫ ∈ K sine K 6= ∅ by assumption. Further, we have ǫ ∈ L(SCon/Plant)

by de�nition. We thus have t ∈ L(SCon/Plant).
Indutive step: For σ ∈ Σ, we assume tσ ∈ K and t ∈ L(SCon/Plant). We will now show

this implies tσ ∈ L(SCon/Plant).
We next note that we have tσ ∈ L(Plant) as tσ ∈ K and by the assumption that K ⊆

Lm(Plant) ⊆ L(Plant).
We have two ases: (B.1) σ ∈ Σuc or (B.2) σ ∈ Σc.

Case B.1) σ ∈ Σuc

⇒ σ ∈ SCon(t) as unontrollable events are enabled by default for SCon

From above we have: t ∈ L(SCon/Plant), σ ∈ SCon(t) and tσ ∈ L(Plant).
⇒ tσ ∈ L(SCon/Plant) by de�nition of L(SCon/Plant)

Case B.2) σ ∈ Σc

From above we have: t ∈ L(SCon/Plant), t ∈ K, tσ ∈ K, σ ∈ Σc, and tσ ∈ L(Plant)
From the de�nition of L(SCon/Plant) and SCon, to show that tσ ∈ L(SCon/Plant), it is

su�ient to show that (∀i ∈ D)σ ∈ SPi
(t).

Let i ∈ D. If σ /∈ Σc,i, we immediately have: σ ∈ SPi
(t) as σ ∈ Σc\Σc,i.

We now onsider σ ∈ Σc,i. It is su�ient to show that: P−1
i [Pi(t)]σ ∩ K ∩ L(Plant) 6= ∅.

We �rst note that: t ∈ P−1
i [Pi(t)] := {s ∈ Σ∗|Pi(s) ∈ {Pi(t)}}

⇒ tσ ∈ P−1
i [Pi(t)]σ

As we have tσ ∈ K and tσ ∈ L(Plant) from above, we have: tσ ∈ P−1
i [Pi(t)]σ ∩ K ∩

L(Plant).
⇒ P−1

i [Pi(t)]σ ∩ K ∩ L(Plant) 6= ∅
We thus onlude tσ ∈ L(SCon/Plant).

By Cases (B.1) and (B.2), we have tσ ∈ L(SCon/Plant).

This ompletes the indutive step. We thus onlude by indution that K ⊆ L(SCon/Plant).

By Parts (A) and (B), we have L(SCon/Plant) = K.

Step 1.2) Show that Lm(SCon/Plant) = K.

By the de�nition of marking nonbloking deentralized supervisory ontrol, we have:

Lm(SCon/Plant) = L(SCon/Plant) ∩ K.

Substituting L(SCon/Plant) = K (by Step (1.1)), we have: Lm(SCon/Plant) = K ∩ K =
K.

Step 1.3) Show that SCon is nonbloking.

It is su�ient to show that Lm(SCon/Plant) = L(SCon/Plant).
The result is automati as L(SCon/Plant) = K (by Step (1.1)) and Lm(SCon/Plant) = K

(by Step (1.2)).

By Steps (1.1), (1.2) and (1.3), we onlude that there exists a marking nonbloking

deentralized supervisory ontrol SCon for (K,Plant) suh that Lm(SCon/Plant) = K.

22

Only if part) Assume there exists a marking nonbloking deentralized supervisory ontrol

SCon for (K, Plant) suh that Lm(SCon/Plant) = K.

We will now show this implies that K is ontrollable (Step 2.1) and o-observable with

respet to L(Plant) (Step 2.2).

We �rst note that as SCon is nonbloking, K = Lm(SCon/Plant) = L(SCon/Plant).

Step 2.1) Show that K is ontrollable with respet to L(Plant). Su�ient to show that

KΣuc∩L(Plant)⊆K.

Let t ∈ K, σ ∈ Σuc and tσ ∈ L(Plant).
⇒ t ∈ L(SCon/Plant) and σ ∈ SCon(t), as L(SCon/Plant) = K and by the de�nition of

SCon

⇒ tσ ∈ L(SCon/Plant), by de�nition of L(SCon/Plant)
⇒ tσ ∈ K, as L(SCon/Plant) = K
⇒ KΣu∩L(Plant)⊆K

Step 2.2) Show that K is o-observable with respet to L(Plant).
Su�ient to show that: (∀t ∈ K ∩ L(Plant)) (∀σ ∈ Σc) tσ ∈ L(Plant)\K ⇒ (∃i ∈

Dc (σ)) P−1
i [Pi(t)]σ ∩ K ∩ L(Plant) = ∅.

Let t ∈ K ∩ L(Plant), σ ∈ Σc and tσ ∈ L(Plant)\K.

⇒ tσ ∈ L(Plant) and tσ /∈ K
⇒ tσ /∈ L(SCon/Plant) as L(SCon/Plant) = K
⇒ (∃i ∈ D)σ /∈ SPi

(t)), by the de�nition of L(SCon/Plant) and SCon

⇒ (∃i ∈ D) (σ ∈ Σc,i) ∧ (P−1
i [Pi(t)]σ ∩ K ∩ L(Plant) = ∅), by the de�nition of SPi

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ K ∩ L(Plant) = ∅, by the de�nition of Dc (σ).

By Steps (2.1) and (2.2), we onlude that K is ontrollable and o-observable with respet

to L(Plant).

By If and Only if part, we onlude that there exists a marking nonbloking deentralized

supervisory ontrol SCon for (K, Plant) suh that Lm(SCon/Plant) = K if and only if K is

ontrollable and o-observable with respet to L(Plant).

Corollary 4.1:

Proof.

If part) Assume Lm(Spe) ∩ Lm(Plant) is ontrollable and o-observable with respet to

L(Plant), and Lm(Spe) ∩ Lm(Plant) = L(Spe) ∩ L(Plant).
Take K = Lm(Spe) ∩ Lm(Plant) and we have by Theorem 4.2 there exists an MNDSC

SCon for (Lm(Spe) ∩ Lm(Plant), Plant) suh that Lm(SCon/Plant) = Lm(Spe) ∩
Lm(Plant).

As SCon is nonbloking by Theorem 4.2, we have:

Lm(Spe) ∩ Lm(Plant) = Lm(SCon/Plant) = L(SCon/Plant).
As Lm(Spe) ∩ Lm(Plant) = L(Spe) ∩ L(Plant) by assumption, we have:

L(SCon/Plant) = L(Spe) ∩ L(Plant).

Only if part) Assume there exists an MNDSC SCon for (Lm(Spe)∩Lm(Plant), Plant) suh
that Lm(SCon/Plant) = Lm(Spe)∩Lm(Plant) and L(SCon/Plant) = L(Spe)∩L(Plant).

Take K = Lm(Spe) ∩ Lm(Plant) and we have by Theorem 4.2 that Lm(Spe) ∩
Lm(Plant) is ontrollable and o-observable with respet to L(Plant).

23

As SCon is nonbloking, we have: Lm(Spe) ∩ Lm(Plant)
= Lm(SCon/Plant) = L(SCon/Plant) = L(Spe) ∩ L(Plant).

Referenes

[BL00℄ George Barrett and Stephane Lafortune. Deentralized supervisory ontrol

with ommuniating ontrollers. IEEE Transations on Automati Control,

45(9):1620�1638, 2000.

[BMM04℄ Bertil A Brandin, Robi Malik, and Petra Malik. Inremental veri�ation and syn-

thesis of disrete-event systems guided by ounter examples. IEEE Transations

on Control Systems Tehnology, 12(3):387�401, 2004.

[CL08℄ Christos G Cassandras and Stephane Lafortune. Introdution to disrete event

systems, 2nd edition. Springer, 2008.

[DES14℄ DESpot. The o�ial website for the DESpot projet. [Online℄ Available:

http://www.as.mmaster.a/~ledu/DESpot.html, 2014.

[HJDQ+10℄ R.C. Hill, Cury J.E.R., MH De Queiroz, DM Tilbury, and S Lafortune. Multi-level

hierarhial interfae-based supervisory ontrol. Automatia, 46(7):1152�1164,

2010.

[LBLW05℄ Ryan J. Ledu, Bertil A Brandin, Mark Lawford, and WMWonham. Hierarhial

interfae-based supervisory ontrol-part I: serial ase. IEEE Transations on

Automati Control, 50(9):1322�1335, 2005.

[Led02℄ R. J. Ledu. Hierarhial Interfae-based Supervisory Control. PhD thesis,

Department of Eletrial and Computer Engineering, University of Toronto,

Toronto, Ont., 2002.

[Led09℄ Ryan J. Ledu. Hierarhial interfae-based supervisory ontrol with data events.

International Journal of Control, 82(5):783�800, 2009.

[Liu15℄ Huailiang Liu. Hierarhial Interfae-Based Deentralized Supervisory Control.

PhD thesis, Department of Computing and Software, MMaster University,

Hamilton, Ont., 2015.

[LLD06℄ Ryan J. Ledu, Mark Lawford, and Pengheng Dai. Hierarhial interfae-based

supervisory ontrol of a �exible manufaturing system. IEEE Transations on

Control Systems Tehnology, 14(4):654�668, 2006.

[LLMR14℄ Huailiang Liu, Ryan J. Ledu, Robi Malik, and S. L. Riker. Inremental veri�-

ation of o-observability in disrete-event systems. In Pro. of 2014 Amerian

Control Conferene, pages 5446�5452, Portland, Oregon, USA, June 2014.

[LLR15℄ Huailiang Liu, Ryan J. Ledu, and S. L. Riker. Hierarhial interfae-based

deentralized supervisory ontrol. In Proeedings of 54th IEEE Conferene on

Deision and Control, pages 1693�1700, Osaka, Japan, Deember 2015.

24

[LLW05℄ Ryan J. Ledu, Mark Lawford, and W Murray Wonham. Hierarhial interfae-

based supervisory ontrol-part II: parallel ase. IEEE Transations on Automati

Control, 50(9):1336�1348, 2005.

[LW88℄ F. Lin and W. M. Wonham. On observability of disrete-event systems. Infoma-

tion Siiene, 44:173�198, 1988.

[RC11℄ Laurie Riker and Benoit Caillaud. Mind the gap: Expanding ommuniation

options in deentralized disrete-event ontrol. Automatia, 47(11):2364�2372,

2011.

[RW87℄ P. Ramadge and W. Murray Wonham. Supervisory ontrol of a lass of disrete-

event proesses. SIAM J. Control Optim, 25(1):206�230, 1987.

[RW92℄ Karen Rudie and W Murray Wonham. Think globally, at loally: Deentralized

supervisory ontrol. IEEE Transations on Automati Control, 37(11):1692�1708,

1992.

[RW95℄ Karen Rudie and Jan C Willems. The omputational omplexity of deentral-

ized disrete-event ontrol problems. IEEE Transations on Automati Control,

40(7):1313�1319, 1995.

[RYL03℄ Kurt Rohlo�, Tae-Si Yoo, and Stéphane Lafortune. Deiding o-observability is

PSPACE-omplete. IEEE Transations on Automati Control, 48(11):1995�1999,

2003.

[SB11℄ Klaus Shmidt and Christian Breindl. Maximally permissive hierarhial ontrol

of deentralized disrete event systems. IEEE Transations on Automati Control,

56(4):723�737, 2011.

[SM06℄ Klaus Shmidt and Thomas Moor. Marked-string aepting observers for the

hierarhial and deentralized ontrol of disrete event systems. In Proeedings

of 8th International Workshop on Disrete Event Systems, pages 413�418, Ann

Arbor, Mihigan, USA, July 2006.

[SMP08℄ Klaus Shmidt, Thomas Moor, and Sebastian Perk. Nonbloking hierarhial

ontrol of deentralized disrete event systems. IEEE Transations on Automati

Control, 53(10):2252�2265, 2008.

[TL09℄ JG Thistle and HM Lamouhi. E�etive ontrol synthesis for partially observed

disrete-event systems. SIAM Journal on Control and Optimization, 48(3):1858�

1887, 2009.

[Tri04℄ Stavros Tripakis. Undeidable problems of deentralized observation and ontrol

on regular languages. Information Proessing Letters, 90(1):21�28, 2004.

[Tsi89℄ John N Tsitsiklis. On the ontrol of disrete-event dynamial systems. Mathe-

matis of Control, Signals and Systems, 2(2):95�107, 1989.

[Won14℄ W.M. Wonham. Supervisory ontrol of disrete-event systems. Department of

Eletrial and Computer Engineering, University of Toronto, July 2014. [Online℄

Available: http://www.ontrol.toronto.edu/DES/.

25

[WR87℄ W. M. Wonham and P. Ramadge. On the supremal ontrollable sublanguage of

a given language. SIAM J. Control Optim, 25(3):637�659, May 1987.

[WVS96℄ KC Wong and JH Van Shuppen. Deentralized supervisory ontrol of disrete-

event systems with ommuniation. Report-Department of Operations Researh,

Statistis, and System Theory, (6):1�10, 1996.

[YL02℄ Tae-Si Yoo and Stephane Lafortune. NP-ompleteness of sensor seletion prob-

lems arising in partially observed disrete-event systems. IEEE Transations on

Automati Control, 47(9):1495�1499, 2002.

26

