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Abstract

In decentralized control, agents have only a partial view and partial control of the
system and must cooperate to achieve the control objective. To synthesize a decen-
tralized control solution, a specification must satisfy the co-observability property.
Existing co-observability verification methods require the (possibly intractable)
construction of the complete system.

To increase the scalability of decentralized control, we introduce the Hierarchi-
cal Interface-Based Decentralized Supervisory Control (HIDSC) framework that
extends the existing Hierarchical Interface-Based Supervisory Control (HISC) ap-
proach.

To adapt co-observability for HIDSC, we propose a per-component definition
of co-observability along with a verification strategy that requires examination of
only a single component at a time. Finally, we provide and prove the necessary
and sufficient conditions for supervisory control existence in the HIDSC framework
and illustrate our approach with an example. As the entire system model never
needs to be constructed, HIDSC can provide significant computational savings.

Keywords: discrete-event systems, supervisory control, decentralized control, Hi-
erarchical Interface-based Supervisory Control
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1 Introduction

One of the main challenges in the control of discrete-event systems (DES) |[CL08, RW87,
WRR7, Wonl4| is the combinatorial explosion of the product state space. The Hierarchical
Interface-Based Supervisory Control (HISC) framework proposed in [HJIDQ™ 10, Led02, Led09,
LBLWO05, LLD06, LLW05| can help alleviate the state-space explosion problem. HISC provides
a set of local properties that can be used to verify global properties, such as nonblocking and
controllability, so that the complete system model never needs to be constructed. The sufficient
conditions of HISC allow the independent design and verification of different levels, ensuring
that a change to one level of the hierarchy will not impact the others.

However, the current HISC framework does not support decentralized control problems
that arise naturally through the investigation of a large variety of distributed systems, such
as communication networks, integrated sensor networks, networked control systems and au-
tomated guided vehicular systems. Decentralized control of DES focuses on problems where
multiple agents each control and observe some events in a system and must together achieve
some prescribed goal. A decentralized approach is used when the physical system is such that
controllers implemented at different locations would naturally only be able to see and affect
events occurring in their local vicinity, and have no access to other events. The goal is to be
able to implement a set of decentralized controllers that produce the same control actions as
a centralized controller with full view and control of the system.

The synthesis of decentralized supervisors requires that the specification satisfies a de-
centralized property called co-observability [RW92]. Nevertheless, when the system is very
large and composed of many sub-systems, checking co-observability using the existing mono-
lithic method [RW95] requires the construction of the complete system model, which may be
intractable due to the state-space explosion problem.

In supervisory control of DES, the computation and complexity for many of the control
solutions entail only polynomial effort in the model’s state size. The computation and com-
plexity is worse in the case of control with partial observations: some problems with full
observation are polynomial; however, they are exponential when the situation is partially
observable [RYL03, RW95, TL09, Tri04, Tsi89, YL02|.

In [Liulb, LLMR14], we introduced an incremental approach for checking co-observability
based on the work of Brandin et al. [BMMO04] for verifying controllability. Our method greatly
increased the size of systems that could be verified, but it also struggled as the state size and
number of decentralized controllers increased.

To address the above issue, we propose an approach called the Hierarchical Interface-
Based Decentralized Supervisory Control (HIDSC) framework that extends HISC to manage
decentralized control problems. We introduce a per-component co-observability definition
which does not require the synchronization of all components. We then prove that if a system
satisfies the per-component co-observability definition, it is globally co-observable. Further, we
provide and prove the necessary and sufficient conditions for supervisor existence in HIDSC.
Most of the material in this paper first appeared in our conference paper [LLR15|. The current
paper adds full proofs, a more complicated example as well as experimental results.

To the best of our knowledge, there is no existing work where HISC supports decentralized
discrete-event control architecture. Although there is some literature proposing hierarchical
control of “decentralized” discrete-event systems [SB11, SM06, SMP08|, these approaches as-
sume full observation and thus they are “decentralized” in terms of architecture, not in terms
of observations.



This paper is organized as follows. In Section 2 we review the relevant definitions and
results from supervisory control theory. Section 3 reviews the HISC architecture. In Section
4, we introduce our new HIDSC framework. In Section 5, we illustrate our HIDSC approach
with an example. We then present conclusions and future work in Section 6.

2 Preliminaries

This section provides a brief review of the key DES concepts used in this paper. For more
details please refer to |CLO8, Won14].

2.1 Languages and DES

Event sequences and languages are simple ways to describe DES behaviour. Let X be a finite
set of distinct symbols (events), and let ©1 be the set of all finite nonempty sequences of
events. Let X* := X1 U {e} be the set of all finite sequences of events plus €, the empty string.
A language L over X is any subset L C X*,

The concatenation of two strings s, t € X*, is written as st. Languages and alphabets can
also be concatenated. For L C ¥* and ¥’ C 3, the concatenation of language L and event set
Y/ is defined as LY := {so|s € L, 0 € ¥'}.

For strings s, t € ¥*, we say that ¢ is a prefiz of s (written t < s) if s = tu, for some u € ¥*.
We also say that ¢ can be extended to s. The prefiz closure L of a language L C ¥* is defined
as follows: L := {t € ¥*|t < s for some s € L}. A language L is said to be prefiz-closed if
L=1L.

Let Pwr(3) denote the power set of ¥ (i.e., the set of all subsets of ). For language L, the
eligibility operator Elig; : ¥* — Pwr(X) is given by Elig; (s) := {0 € ¥|so € L} for s € ¥*.

Let ¥ =%, UX9, Ly €37, and Ly C 33. Let i € {1,2}, s € ¥* and o € . To capture
the notion of partial observation, we define the natural projection P; : ¥* — X7 according to:

R N E
P(so) = Pi(s)Pi(o)

Given any language L C ¥*, the natural projection of a language L is P;(L) := {P;(s) | s € L}.
This is sometimes abbreviated to P; L.
The inverse projection P ': Pwr(Xf) — Pwr(X*) is defined over subsets of languages.

Given any L C ¥, the inverse projection of L is defined as: P; (L) := {s | P,(s) € L}.

A DES is represented as a tuple G := (@, X, J, qo, @m), with state set @), alphabet
set X, partial transition function § : @ x X — (), initial state gp, and set of marker states
Qm. We use (g, o)! to represent that § is defined for o € ¥ at state ¢ € Q. Function §
can be extended to ¥* by defining §(q, €) := g and d(q, so) := 0(d(q, s), o), provided that
q = 0(q, s)! and §(¢, 0)!, for s € ¥* and ¢ € Q. We will always assume that a DES has
a finite state and event set, and is deterministic. By deterministic, we mean the DES has a
single initial state and at most one transition defined at a given state for any o € X.

For DES G, its closed behaviour is denoted by L(G) := {s € ¥*|d(qo, s)!} and its marked

behaviour by Ly, (G) :={s € L(G)| §(qo, $) € Qm}-

Definition 2.1. A DES G is said to be nonblocking if



Lin(G) = L(G).

The above is a simple form of deadlock checking.

Definition 2.2. Let K C L,,,(G) C ¥*. We say that the language K is L, (G)-closed if
K=K N Ly(G).

We note that K being L, (G)-closed means it contains all of its prefixes that belong to L,,(G).

The synchronous product of languages Li and Lg, denoted by Lq||Le, is defined to be
Li||Ly == P{'(L1) N PyY(Ly). Tf both L; and Ly are over the same event set ¥, then
L1HL2 = L1 N Lo.

Definition 2.3. Let G; = (Qi, Xi, i, qoi, Qmi), © = 1, 2. We define the synchronous
product of G1 and Go as:

G1]|G2 = (Q1 x Q2, X1 UX9, 0, (q0,1, §0,2); @m1 X Qm2),

where 6((q1,q2), o) is defined as:
((51((]1,0’),52((]2,0)), ifoeXin Ez,él(ql,a)!,ég(QQ,U)!;
(01(q1,0),q2), if o € ¥1\X2 and 61(q1,0);
(q1,62(q2,0)), if o € Xo\X1 and d2(q2,0)!;
undefined, otherwise.

We thus have for DES G = G1||Gg that L,,(G) = L, (G1)||Lin(Gz2), and L(G) = L(G1)||L(G2).
In supervisory control, the event set X is partitioned into two disjoint sets: the controllable
event set Y. and the uncontrollable event set ¥,.. Controllable events can be prevented from
happening (disabled) by a supervisor, while uncontrollable events cannot be disabled. The
following definition checks to see if we can ensure our system stays within the behavior specified

by K.

Definition 2.4. Let K and L = L be languages over event set ¥. K is said to be controllable
with respect to L and ¥y if

K¥Y,.,NnLCK.

We will define a supervisory control which is an abstract way to describe control behavior.
First we need to define control patterns.

Definition 2.5. A control pattern is a subset of % that contains all uncontrollable events. It
represents the events to be currently enabled. The set of all control patterns is:

I:={y € Pur(X)|y 2 Xy}
Definition 2.6. A supervisory control for plant G is any map

V:.L(G)—T.



2.2 Decentralized Control

For decentralized control, there is an index set of N > 1 decentralized controllers, D =
{1,..., N}. These controllers have only a partial view of the system behaviour and control
only a subset of the controllable events. To describe events that each decentralized controller
i € D controls, we use the notation ¥.; C ¥., where Ui]\LlEcﬂ- = Y.. We refer to the set of
controllers that control o € ¥. as D, (0) :={i € D |0 € ¥.;}.

To describe events that each decentralized controller ¢ € D observes, we use the notation
Yo,i C Yo, where UZ-]LZ(,J = 3,. We refer to the set of controllers that observe o € ¥, by
D, (o) :={i€ D |o€X,;}. Correspondingly, the natural projection describing the partial
view of each controller is denoted by F; : X* — X7, for i € D.

For decentralized control with a conjunctive architecture [RW92|, the fusion rule is the
conjunction of all local control decisions, i.e., an event is globally enabled if not locally disabled.
We use the conjunctive architecture in this paper.

For decentralized control, we define a group of local partial-observation decentralized su-
pervisors to exercise control over the plant. The following definition describes the decision
rules of individual decentralized supervisors and the conjunction rule that combines their local
control decisions into global control decisions.

Definition 2.7. Let K C X* be the desired behavior and let i € D. Then the decision rule for
a local partial-observation decentralized supervisor for G is a map Sp, : L(G) — T defined for
t € L(G) as Sp,(t) := (Z\Se;) U{o € B¢ | P P(H]e NEK N L(G) # 0}. The conjunction
of the Sp,, denoted by Scon : L(G) — T, is defined as: Scon(t) := NN, Sp,(t).

We note that Scop is a supervisory control for G and that Sp,(t) = Sp,(P;i(t)) as the
natural projection is idempotent, i.e., P;(t) = P;(P;(t)).

We now define the closed behaviour for the closed-loop system of G under the control of
SCon-

Definition 2.8. Given G and Scon, the resulting closed-loop system is denoted by Scon/G.
The system’s closed behaviour L(Scon/G), is recursively defined as follows:

I) e € L(Scon/G)

II)t € L(Scon/G), 0 € Scon(t), and to € L(G) if and only if to € L(Scon/G).

The following is the definition of decentralized supervisory control.

Definition 2.9. Given G and Scon, we say Scon 1S a decentralized supervisory control for
G if the decision rule is defined as in Definition 2.7, and the resulting closed-loop system and
closed behaviour is defined as in Definition 2.8.

The following is the definition of nonblocking decentralized supervisory control. It states
that the marked language of the closed-loop system is the set of strings marked by G and still
possible in the system’s closed-loop behaviour.

Definition 2.10. We say that Scop, is a nonblocking decentralized supervisory control (NDSC)
for G if Liyy(Scon/G) = L(Scon/G) where Ly, (Scon/G) := L(Scon/G) N Lin(G).

We now state the co-observability property which was introduced in [RW92|. The following
is the definition of co-observability adapted from [BL0OO, RW92|. As we will see in Theorem 2.1,
co-observability is a key property to ensure that we can synthesize decentralized controllers
that cooperate to ensure that the supervised system generates the behaviour specified by
language K.



Definition 2.11. Let K, L = L be languages over event set ¥. Let D = {1,..., N} be an index

set. Let Y.; C X and X,; C X be sets of controllable and observable events, respectively, for

1 € D, where ¥, = Uﬁ\;IEC,i and D.(0) :={ie€ D|oc € X.;}. Let P;: ¥* — ZZ,i be natural

projections. A language K is said to be co-observable with respect to L, ¥4, X, 1 € D, if
(Vte KNL) (Yo €X,)toe L\K = (3ie D, (0)) PLP(t)lcNKNL=0.

)

In essence, co-observability states that if K disables event o € ¥, which is possible in L
after string ¢, there must exist at least one decentralized controller that can disable ¢ and
do so unambiguously. Note that in the definition of co-observability, when there is only one
controller, i.e., D = {1}, the property is called observability [LW88|. Since the specification K
is not necessarily a subset of L, unlike the original definition, we do not require that K C L.
Instead of checking all strings in K, we check all strings in K N L.

In the following sections, when there is no ambiguity, instead of saying that K is co-
observable with respect to L, ¥,;, Y.;, ¢ € D, we will say that K is co-observable w.r.t.
L.

Theorem 2.1 states the standard nonblocking decentralized supervisory control existence
theorem that requires that K be L,,(G)-closed.

Theorem 2.1 (|CL08|). Consider DES G = (Q, X, 0, qo, Qm), where ¥, C X is the set
of uncontrollable events, ¥, = X\Xy. is the set of controllable events, and ¥, C X is the set
of observable events. For each site i, where i = 1,..., N consider the set of controllable events
Y and the set of observable events X, ;; overall, Uf\il Yei = X and Uf\il Yoi = Xo. Let
P; be the natural projection from ¥* to X7 ;. where i = 1,...,N. Consider also the language
K C L, (G), where K # 0. There exists a nonblocking decentralized supervisor Seon for G
such that Ly, (Seon/G) = K and L(Seon/G) = K if and only if the following three conditions

hold:
1. K is controllable with respect to L(G) and Xy.;

2. K is co-observable with respect to L(G), ¥, and Xc;, i =1,...,N;
3. K is Ly (G)-closed.

2.3 Decentralized Control with Marking

We will now extend the existing work by introducing a generalization of NDSC in which the
supervisory action also includes marking as well as control. This will allow supervisors to
add marking information which makes them more expressive. The marked language of the
closed-loop system is now defined to be the set of strings marked by K C L,,(G) that are
still possible in the system’s closed-loop behaviour. This new definition will allow us to later
introduce a decentralized supervisory control existence result which does not require that K
be L, (G)-closed.

Definition 2.12. Let K C L,,,(G). We say that Scopn, is a marking nonblocking decentralized
supervisory control (MNDSC) for (K, G) if Ly,(Scon/G) = L(Scon/G) where Ly, (Scon/G) ==
L(Scon/G) N K.

The next definition creates an equivalence between theoretical decentralized supervisory
controls and DES supervisors. The idea is that the marking and control information of Scoy,
is represented by specification H, and that the closed-loop behaviour of H||G is equivalent to
Seon/G.



Definition 2.13. Let Scon be a MNDSC for plant G = (Q, X,9,qo, Qm) and K C L,,(G),
with Ly (Scon/G) = L(Seon/G) N K and L(Scon/G) = K. Let H = (X, 3,&, 29, Xm) be a
specification automaton. We say that H||G has equivalent MNDSC behaviour with Scon/G,
if K = Ly (H)N Ly (G) and K = LIH)NL(G). Alternatively, we say that H is an equivalent
theoretical implementation of MNDSC S¢,,, for G.

In this paper, we will focus on MNDSC. In particular, it will allow us to later introduce
a decentralized supervisor existence result that relies on the closed-loop system H||G to be
nonblocking, instead of the existing results that require K to be L,,(G)-closed. This is
essential to adapting decentralized control to the HISC approach as HISC provides a scalable
method to verify nonblocking, but not L,,(G)-closure.

We note that in decentralized control, there is no real implementation of the centralized
supervisor H. The above MNDSC S¢,y,, defined as the control policy of the conjunction of
a group of decentralized supervisors, is the real supervisor. We also note that for an HISC
system, H will correspond to the theoretical flat supervisor of the system defined in Section
3, and will be used to determine if the flat system is nonblocking.

3 HISC Architecture

The HISC |Led02, Led09, LBLWO05, LLD06, LLWO05| approach decomposes a system into a
high-level subsystem which communicates with n > 1 parallel low-level subsystems through
separate interfaces that restrict the interaction of the subsystems. The high-level subsystem
communicates with each low-level subsystem through a separate interface.

In HISC there is a master-slave relationship. A high-level subsystem sends a command to a
particular low-level subsystem, which then performs the indicated task and returns a response
(answer). Figure 1 shows conceptually the structure and information flow of the system. The
overall structure of the system is shown in Figure 2. This style of interaction is enforced by an
interface that mediates communication between the two subsystems. All system components,
including the interfaces, are modeled as automata.

High-Level 2oy

Ay . Ay .
VZR] ZA]UZLDI szn ZAnUZLDn
| Interface , | ooe] Interface ,
Ay . Ay .
ZR] Z"A]UZ:LDI VZRn Z"AnUXDLDn
Low-Level , Low-Level ,

I

Figure 1: Interface Block Diagram with Low Data Events.




G, High-Level

i iLow-Level ,
GLn

Low-Level |
GLI

Figure 2: Two Tiered Structure of Parallel System

To restrict information flow and decouple the subsystems, the system alphabet is parti-
tioned into pairwise disjoint alphabets:

Y=y U U [B1, U8k, US4, USLp,] (1)
Jj=1,..,n
where we use U to represent disjoint union.

The events in Xy are called high-level events and the events in X, are the Gt low-
level events (j = 1,...,n) as these events appear only in the high level and j** low-level
subsystem models, Gy and Gg, respectively. We then have Gp defined over event set
YaU(Ujeq,. ny[XR;U¥4,ULp,]) and Gr, defined over event set Xp,U¥r U¥4,UXLp,. We
model the j* interface by DES G 1;, which is defined over event set ¥z, U¥4,USLp,. For the
remainder of this paper, we assume j € {1,...,n}.

The events in Yp,, called request events, represent commands sent from the high-level
subsystem to the j** low-level subsystem. The events in ¥ A; are answer events and represent
the low-level subsystem’s responses to the request events. The events in Xpp; are called
low data events which provide a means for a low level to send information (data) through
the interface. Request, answer, and low data events are collectively known as the set of LD
interface events, defined as X1 := Upeqr,. o} [XR,UXa,UX LD, ], and Gy,is an LD interface as
defined below.

Definition 3.1. The j** interface DES Gy, = (Xj,21,,85,To;, Xm,) is an LD interface if the
following properties are satisfied:

1. Zo; € ij
2. (Vo € X )(Vo € Bp;) &j(w,0)! = [0 € BR,] V [0 € Xpp; Nj(w,0) € Xy ]
3. (Vo € Xj — X, ) (Vo € Xp,) §(z,0)! =
[O’ € EAj Aﬁj(x,a) S ij] V [0’ S ELDj]
Figure 3 shows an example of an LD interface. It could correspond to a machine at the
low level with an effective internal buffer of two. In this diagram, the initial state can be
recognized by a thick outline, and marked states are filled.

To simplify notation in our exposition, we bring in the following event sets, natural pro-
jections, and languages.



2y ={isDone,start}, 2, ={done}, 2, ,,={notDone}

Figure 3: Example LD Interface

Sp, = Sp,USa, U8 p,,  Pry 5 - 5
EILj = EL].UZ[]., PILj :E*%ETLJ'
Yig:=Xg U U E[k, P[HZ*HZ?H
ke{l,...,n}
H:= Py (L(Gn)),  Hm = Pry(Lm(Gp)) € &*
Lj:= Py (L(GL),  Lm, =P (Ln(Gr,)) €37
T, i= PLMLG)). Ty o= Py (Ln(Gr))) €5
7:= mkG{l,...,n}Iky Ly = mke{l,.‘.,n}z_mk

YLp = U X LD,
ke{l,...,n}
We define our flat system to be G = Ggl||Gp||GL,|| ... ||Gr,||GL,. By flat system we

mean the equivalent DES if we ignored the interface structure.
We now present the properties that an HISC system must satisfy to ensure that it interacts
with the interfaces correctly.

Definition 3.2. The nth degree (n > 1) interface system composed of DES Gy, Gy,
Gr,,...,Gy,, Gy, , is LD interface consistent with respect to the alphabet partition given by
(1), if for all j € {1,...,n}, the following conditions are satisfied:

Multi-level Properties

1. The event set of Gy is Xy, and the event set of Gr,; is Xy, .
2. Gy, is a LD interface.

High-Level Property
3. (Vs € HNI) Eligy (s) N (X4;,USLp;) C Eligy(s)

Low-Level Properties

4. (Vs € ﬁj ﬁIj) Eligl—j (s) N ERj - El’igﬁj (s)



d. (VS S E*.ZRJ. ﬂﬁj ﬂIj)
Elige; n1, (SEEj) N Y4, = Eligr, (s) N X4, where

Ehgﬁjﬂl—j (822]) = U Eligﬁjﬁlj (Sl)
lEEEj
6. (VS S ﬁj ﬂIj)
s€Ln, = (Jl e E’ij) sl € Lyn; NIy,

We now provide an additional set of properties that the system must satisfy if the flat
system G is to be nonblocking.

Definition 3.3. The n!" degree (n > 1) interface system composed of DES Gy, Gr,, Gr,,- -,
Gy, , Gy, , is said to be LD level-wise nonblocking if the following conditions are satisfied:

(I) LD nonblocking at the high level:
(VS eH ﬂI)(HS/ S (Z — ZLD)*)
ss' € Hm NIy,

(II) nonblocking at the low level:
(V5 € {1,. ,n})ﬁm] ﬂImj =L;NZ;
The theorem bellow states that verifying the LD level-wise nonblocking and LD interface

consistent conditions is sufficient to verify that our flat system is nonblocking.

Theorem 3.1 (|Led09]|). If the nth degree (n > 1) interface system composed of DES
Gy,Gr, Gr,,...,Gy1,,GL,, is LD level-wise nonblocking and LD interface consistent with
respect to the alphabet partition given by (1), then

L(G) = Ly (GQ) where G = Gyl|Gr,||Gr || - - - |GL,||G1, -

Since checking that the LD level-wise nonblocking and LD interface consistent conditions
only require a single component at a time, we note that we can evaluate each level indepen-
dently. This means we do not need to construct the entire system model.

For controllability, we need to separate the subsystems into their plant and supervisor
sub-components (see Figure 4). We define the high-level plant to be GY%;, and the high-

level supervisor to be Sy (defined over event set Xjp). We define the jth low-level plant
and supervisor to be Gzzj and SLj (defined over ZILj) respectively. We next define the

high-level subsystem to be Gy := G%||Sy, and define the jth low-level subsystem to be
Gp, = Gij||S ;- We note that in HISC systems, interfaces are always supervisors.

We can now define our flat supervisor and plant as well as some other languages as follows:

Plant := GI;IHGI;JlH . ||G7£n,

Sup :=Syl[Sp, |- [ISL, [IGrl- - ||Gr,,

HP = P;; L(GY,), Sy :== P;; L(Sy) C &,

L= P;Lle(ng), Sp, = PI_LEL(SLJ.) C B

The controllability requirements that each level must satisfy are given in the following
definition.

Definition 3.4. The n'? degree (n > 1) interface system composed of DES GI;I, Sy, Gil, Sr.,
Gh,...,Gin,SLn,GIn, is LD level-wise controllable with respect to the alphabet partition
given by (1), if for all j € {1,...,n} the following conditions hold:



G, =G, [ S,
High level
Low level

G =G [|S,

Figure 4: Plant and Supervisor Subplant Decomposition

(I) The alphabet of GY; and Sy is Xy, the alphabet of GIIJJJ, and S, is Xrr;, and the
alphabet of G, is Xy,

(II) (Vs € Eﬁ-’ NSy, ﬂIj)Elig£§(s) n¥, C EligSijIj(s)
(III) (Vs € H? NI N Sg)Eligypnz(s) N Xy, C Eligs,, (s)

The theorem below states that verifying LD level-wise controllable is sufficient to verify
that the flat supervisor is controllable for the flat plant.

Theorem 3.2 ([Led09]). If nth degree (n > 1) interface system composed of DES GY,, Sy,
Gﬁl, St G, ng, St,., Gr, is LD level-wise controllable with respect to the alphabet par-
tition given by (1), then

(Vs € L(Plant) N L(Sup)) Eligr,prant)(s) N Xu € Eligrsup)(s)

Since checking that the LD level-wise controllable condition only requires at most a single
component at a time, we note that we can evaluate each level independently.

4 Hierarchical Interface-Based Decentralized Supervisory Con-
trol

In Section 3, we described a system composed of plant DES G, G}]Zl, ey Gin, supervisor
DES Sy, Sz,,...,SL,, and interface DES Gy, ..., Gy,. Although the level-wise controllabil-
ity condition |[Led02, Led09]| does effectively limit the high-level supervisor to events in ¥,
and the j* low-level supervisor to events in ¥ IL;, it requires the HISC structure and does not
allow further restrictions outside of this structure. In order to allow decentralized supervisors
within components, we need to extend the HISC structure.

10



We now introduce the Hierarchical Interface-based Decentralized Supervisory Control (HIDSC)

architecture. HIDSC is an extension of HISC from centralized control to a decentralized ar-
chitecture by allowing decentralized supervisors within a subsystem, but without additional
HISC restrictions.

In the HIDSC framework, all the HISC supervisors are replaced by corresponding specifica-
tion DES. In decentralized control, these specification DES represent the control behaviours we
wish to implement as decentralized controllers, not specifications for synthesizing a centralized
maximally permissive supervisor.

For HIDSC, we will replace supervisor Sy by specification DES Fy (defined over ¥p),
and we will replace supervisor Sy, by specification DES F, (defined over X Lj). Typically,
Fy will express system-wide constraints about how the components interact and what tasks
the low levels should perform. Fp, expresses how the 4t low level will perform the tasks
(requests) given to it by the high level. For each component, there is a different index set of
decentralized controllers.

We are now ready to define the structure of an HIDSC system.

Definition 4.1. The nth degree decentralized specification interface system with respect to
the alphabet partition given by (1) is composed of plant DES G%, G’il, . ,Gin, specification
DESF¥yg,Fr,,...,Fr, , interface DES Gy, ..., Gy, , and high-level and low-level decentralized
controllers. The system has the following structure.

High level:

e The high-level decentralized controllers have an index set Dy := {Ng1,..., N n}-
o The event set for GE., Fy and the corresponding decentralized controllers is Y.

o foric€ Dy, X¥pgci CENErg and Xpo; € XoNXrH are the corresponding controllable
and observable event subsets for the high-level decentralized controllers.

Low level:

o Forjc{l,...,n}, the j*" low-level component has an index set Dp; :=={Np;1,---s N, n; }
for its own decentralized controllers.

e The event set of each low-level component Gzzj, F; and the corresponding decentralized
controllers is ZILJ..

e Fori e DL]., EL].’CJ- C¥.N E[Lj and ZL].’O,L» c¥X,nN E]Lj are the corresponding control-

lable and observable event subsets for the low-level decentralized controllers.
Multi-level:

o The index set for all decentralized controllers in the system is D = DHUU?:1DLj =
{1,...,N}.

) U,f\ilEcﬂ- = Y. and Uf\ilEoﬂ- =,

For the rest of this section, we will refer to such a system as an nth degree decentralized
specification interface system W, or simply W. Note that in ¥, we do not specify the index
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of decentralized controllers by {1,...,n0}, {1,...,n;}, etc., because once combined they would
overlap. We create the system index set using disjoint union.

The flat system G is the synchronization of all the plant, specification, and interface
components in the system, i.e., G = G [| G || ... [| G, [| Fa [| Fr, || ... || Fz, || G
|| ... || G1,- We use the term flat system to mean the overall system ignoring the HIDSC
structure.

It is important to note that for an HIDSC system, we would first design level-wise super-
visors for the original HISC system while ignoring any decentralized restrictions. We would
then use the HISC structure to verify that the system is nonblocking and controllable. We
would next use these level-wise supervisors (which include the system’s interface DES) as
“specifications" for the design of the per-component decentralized supervisors specified by the
HIDSC system. The final system would not contain any of these specification DES, just the
resulting decentralized controllers that would provide us with equivalent closed-loop behaviour
(see Corollary 4.1 in Section 4.2).

4.1 HIDSC Co-observability Definition and Theorem

The main focus of this section is to verify co-observability in an HIDSC system ¥ without
explicitly constructing the flat system. We will only perform a per-component co-observability
verification, but guarantee that the whole system is co-observable.

To aid in defining our per-component co-observability definition and HIDSC co-observability
theorem, we specify some decentralized notations for W.

We use Dy (o) := {i € Dy |0 € Ep;} to denote the set of decentralized controllers
in the high level that can control the event 0. We use Dy, (0) := {i € Dy |0 € ¥p,,} to
denote the set of decentralized controllers in the high level that can observe the event o.
Correspondingly, Py ; : X* — X7, is the natural projection describing the partial view of
controller 7 € Dp. o

For j € {1,....n}, Dr,.(0) :== {i € Dy, |0 € B, i} is the set of decentralized con-
trollers in the jth low-level component that can control the event 0. We use Dp,,(0) =

{i €Dy, loe X Lj,o,i} to represent the set of decentralized controllers in the jth low-level
component that can observe the event . Correspondingly, Pr,; : ¥* — 22j7 0. 18 the natural
projection describing the partial view of controller i € Dy,;.

We use D. (o) := {i € D |o € ¥.;} to denote the set of decentralized controllers in the
system that can control the event o.

Further, we introduce a few languages used for the HIDSC co-observability definition and
theorem.

Fu = PRi(L(Fg).  Fi =P (L(FL)
F = FgnF,,N...0NF,P:=H'nLin...ncP

Language Fp represents the behaviour of the specification automata in the high-level
subsystem, while F7,, represents the behaviour of the specification automata for the jth low-
level subsystem. Language F represents the global specification for the flat system, and P
represents the behaviour of the flat plant.

We now present the per-component level-wise co-observability definition for HIDSC system
V. We note that each individual condition needs at most a single subsystem for its verifica-
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tion, thus we do not need to construct the entire system model. This can save significant
computation and can help to alleviate the state-space explosion problem.

Definition 4.2. Let U be an HIDSC nth degree decentralized specification interface system.
Then W is level-wise co-observable if for all j € {1,...,n} the following conditions hold:
I) VMte FunHPNI)(Vo € 3;) to € (HPNI)\Fug =
(3i € Due (0)) Pgi[Pui(t)]lo N Fu NHP NI =0,
1) (Vt € Fr, NI; N LY) (Vo € ) to € LIN\(Fr, NZ;) =
(3i € D, ()P 5[Pr,a(t)]o N Fr, NZ;N LY = 0.

Definition 4.2 states that HIDSC system W is level-wise co-observable if the high-level
component is co-observable and each low-level component is co-observable.

We note that the interfaces are treated as specifications at the low level and treated as
plants at the high level. This is done this way because interfaces represent the behaviour
provided by its low level and the information needed to verify that it is co-observable is
typically present at the low level but not the high level. To avoid having to repeat this
information at the high level, we use the results of [LLMR14] that allow us to treat supervisors
as if they are plants once we verify they are co-observable. By treating interfaces as plants
at the high level, we allow the high-level supervisor to be more permissive in general as there
will typically be fewer strings that can cause the co-observability verification to fail.

We now restate the co-observability definition in terms of our HIDSC system. We note
that from their definition, we know that languages F, Z, and P are prefix-closed. We also
note that according to Definition 4.2, each i € D represents some i1 € Dy or some i3 € Dy,

jed{l,...,n}.

Definition 4.3. Let ¥ be an HIDSC nth degree decentralized specification interface system.
Let D ={1,...,N} :DHUU;-LleLj be the index set for U. Let ¥.; C 3 and X,; C X be sets
of controllable and observable events, respectively, fori € D, where D.(0) ={i € D |o € ¥.;}.
Let P;: ¥* — X7, i € D, be natural projections. Then U is globally co-observable if
Mte FNINP) (Voed)tce P\(FNI) =
(3i € D.(0))P Pi()]oNFNINP =0.

(2

We note that Definition 4.3 is the property we want to verify but we will do so by using
our per-component co-observability definition.

The theorem below states that the level-wise co-observability property is sufficient to
guarantee that the flat system is co-observable. This means that co-observability for the
system can be verified while only constructing a single component at a time.

Theorem 4.1. Let ¥ be an HIDSC n'? degree decentralized specification interface system. If
W s level-wise co-observable then W is globally co-observable.

Proof. See Appendix. O

We now examine the complexity of our approach. In monolithic verification, the n low-
level subsystems are composed directly with the high-level system without using the interface
structure. The size of the state space for the monolithic method is the size of the product
state space of Gy || G, || ... || Gr,- If the size of the state space of G is bounded by
Npg, and the size of the state space for each Gy, is bounded by Ny, then the size of the state
space of the monolithic method is bounded by Ny N}
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Our method verifies each component separately, therefore the size of the state space is
bounded by the size of the component combined with its interface. For j = 1,...,n, if we
assume that the size of the state space of Gy, is bounded by Ny, then each low-level subsystem
G1,||Gy, is bounded by NpN;. The high-level subsystem Gpy||Gp,||...||G, is bounded by
Ny N7. Therefore, our method is bounded by the larger of Ny N7 and N N;. Typically in
an HIDSC design, the size of the high level is the limiting factor. This means that as long as
Nj; <« Np, we should achieve significant computational savings.

4.2 MNDSC Supervisor Existence Theorem

We now present the marking nonblocking decentralized supervisory control (MNDSC) exis-
tence theorem, which shows that there exists an MNDSC to achieve the specification if and
only if K is controllable and co-observable.

manufacturing unit [

manufacturing unit II

v

4 slot 4 slot test 4 slot ackagin
input output [—>| = | > |package[—> P unﬁ g
—»| buffer buffer buffer

Figure 5: Block Diagram of Parallel Plant System.

Note that in Theorem 4.2 below we do not require that K be L,,(G)-closed which is
assumed by traditional decentralized control [CL0O8|. This will allow us to apply the result to
our HIDSC system as we have an HISC nonblocking result but not an HISC L,,(G)-closed
result.

Theorem 4.2. Let Plant := (Q, X, 6, qo, Qm), K C L (Plant), and K # 0. There
exists an MNDSC Scon for (K, Plant) such that Ly, (Scon/Plant) = K if and only if K is
controllable and co-observable with respect to L(Plant).

Proof. See Appendix. O
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We will now relate Theorem 4.2 to our HIDSC system and nonblocking. In essence, we
are requiring ¥ to have equivalent MNDSC behaviour with S¢,,/Plant, which ensures our
HIDSC system implementation will be nonblocking.

Corollary 4.1. Let ¥ be an HIDSC nth degree decentralized specification interface system.
Let Plant := G%HG’LH ...HGpn, and Spec := Fyl||Fr,||.. . ||F |IGnll---1|Gr,. Let
L, (Spec) N Ly, (Plant) # (. There exists an MNDSC Scon for (Lpm(Spec) N Ly, (Plant),
Plant) such that L, (Scon/ Plant) = L., (Spec) N L, (Plant), and L(Scon/Plant) =
L(Spec) N L(Plant), if and only if L,,(Spec) N L,,(Plant) is controllable and co-observable
with respect to L(Plant), and L,,(Spec) N L,,(Plant) = L(Spec) N L(Plant).

Proof. See Appendix. O

For HIDSC system W, Corollary 4.1 tells us that the marked behaviour of our MNDSC
and flat plant is equal to L,,(Spec) N L,,(Plant) and their closed behaviour is equal to
L(Spec) N L(Plant). To apply Corollary 4.1, we need to first show that ¥ is co-observable,
nonblocking, and controllable. For scalability, we want to verify all these global properties
using only per-component properties.

Theorem 4.1 states that level-wise co-observability gives us global co-observability. Theo-
rems 3.1 and 3.2 state that the HISC LD level-wise nonblocking, LD interface consistent, and
LD level-wise controllability properties together imply that our flat system is nonblocking and
controllable. We can thus verify all needed global properties using per-component checks. As
we never need to construct the full system model, this offers potentially great computational
savings.

5 Manufacturing Example

To demonstrate the HIDSC method, we adapt a small manufacturing system from [Led02]
that was originally modeled as an HISC system. The system, shown in Figure 5, is composed
of three manufacturing units running in parallel, a testing unit, material feedback, a packaging
unit, and three buffers to insure the proper flow of material.

Figure 6 shows which DES belong to the high-level subsystem (Gpr), the high-level plant
(Gx), the high-level specification automata (Sg), the %" low-level subsystem (G L,), the G
low-level plant (Gz,), the j™ low-level specification automata (Sg,), and the j™ interface
DES (Gy;), j = LILIII. We note that the three low-level subsystems shown in Figure 6 are
identical up to relabeling. Figure 7 shows the low-level subsystems in more detail.

In the diagrams, controllable events are those with a slash on the transition arrow, marked
states are states with an unlabeled incoming arrow, and initial states are states with an
unlabeled outgoing arrow.

5.1 Manufacturing System as an HIDSC System

Originally this example was modeled as an HISC system. We will now adapt it as an HIDSC
system. Typically, we would only do this if the system had an inherent distributed nature
forcing us to implement supervisors with partial observations and partial controllability beyond
the compartmentalized limitations imposed by the HISC structure.

We define the alphabet partition ¥ := Ujcq 1y (Br,U g,;U4;) U Xg below:

15



High level Subsystem

‘Z Packaging System Source Sink Test Unit
take_item new_part allow_exit pzr[ifiobu‘ff part_passes N
> =
B g
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ret_inbuff
allow_exit deposit_part
(4 in buff ret_inbuff, ret_inbuff, ret_inbuff, ret_inbuff,
- new_part new_part new_part new_part
part_ent-I, part_ent-I, part_ent-I, part_ent-I,
part_ent-I1, part_ent-II, part_ent-II, part_ent-II,
part_ent-IIT part_ent-I11 part_ent-IIT part_ent-I11
part_ent-I, part_ent-I,
part_ent-II, part_ent-II,
part_ent-111 part_ent-1II )
fin_exit-1, fin_exit-1, fin_exit-1, fin_exit-I,

fin_exit-II,
fin_exit-111

fin_exit-II, fin_exit-11,
fin_exit-I1T fin_exit-I1T

fin_exit-1II,

out_buff fin_exit-1IT

part_f obuff part_f obuff part_f obuff part_f obuff
package
buffer deposit_part deposit_part deposit_part deposit_part
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part_passes part_passes part_passes part_passes
GI-I part_ent-I GI-II part_ent-IT Gl-lll part_ent-I1I
fin_exit-I fin_exit-II fin_exit-IIT
Low Level Subsystem , Low Level Subsystem ,, Low Level Subsystem ,,
G, j=1 Gy j=1I G, j =11
G G G

Path Flow Model§ Attach Part to Assembly-j

Path Flow Model
o exiey. ar oxi

Attach Part to Assembly-j Path Flow Mode-§

Attach Part to Assembly-j
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Figure 6: Complete Parallel System.
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Figure 7: Low-Level Subsystem j.

= {take_item, package, allow_exit, new part, part_ fails,
part_f obuff, part_passes, ret_inbuff, deposit_part}

= {part_ent-j}

Ya, ={fin_exit-j}

= {start_pol-j, attch_ptA-j, attch_ptB-j, start_ case-j
comp_pol-j, finA_attch-j, finB_ attch-j, compl_case-j,
part arri-j,part lvi-j, partLvExit-, str exit-j,
part arr2-j, recog A-j,recog B-j,part [v2-j,
part_arr3-j, part_lv3-j, take_pt-j, str_ptA-j, str_ptB-j,
compl_A-j, compl_B-j,ret_pt-j, dip acid-j, polish-j,
str_rlse-j, Attch_case-j}

Our first step is to replace the existing supervisors with specification automata; thus let
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Fy =Sy and Fy, =Sy, j = LT, TIL
We next design decentralized controllers (H1, H2, Ly,, Ly,, Lyy,, Li1,, L1y, Li11,) to

define our HIDSC problem.
For the high-level subsystem, the observable and controllable alphabet for controller H1

is specified as:

Yuon = XrU{new part,ret inbuff,part f obuff}
Yae1 = (ErnXe)U{part f obuff}

The observable and controllable alphabet for controller H2 is specified as:

YHo2 = (X1N3y)U{take_item, package, allow_ exit,
new_part, part_passes, part_ fails, ret_inbuff,
deposit _part}

YHeo = {take item,allow exit,new part,part f obuff,
part_passes, ret_inbuff, deposit part}

For the j* low-level subsystem (j = L II,1II), the observable alphabet for controllers L;,
and Lj, is specified as:

YrLoj = A{part_ent-j, fin_ exit-j, start_pol-j, part_arri-j}

EL707j2 = ELJ

The controllable alphabet for controllers L;, and L, is specified as:

YLej = {part_ent-j,start_pol-j}
Siej = (Br,NXc)\ {start_pol-j}

The index sets of decentralized controllers for each component are: Dy—{H1, H2},
Dr,={Ln, L}, Dr;y={Lin,, L1}, and Dr;py={Lin,, Lirn}-
We now define the flat plant, and the flat specification automata as follows:

Plant := Ggl|Gr||GL;l|GLy,
Spec = Fyl|[FL|[Fr [|FL,, |GGGy,

5.2 Co-observability Verification for System

We now need to verify whether L,,(Spec) is co-observable w.r.t. L(Plant). We can then
conclude, in combination with checking controllability and nonblocking, by Corollary 4.1 that
there exists an MNDSC and that its resulting closed-loop behaviour is the same as that of the
flat system of our HIDSC system. By Theorem 4.1, we know that to check co-observability of
the HIDSC system, it is sufficient to verify level-wise co-observability.

The following steps for level-wise co-observability verification are:

Step 1. Verify whether the first low-level subsystem satisfies its portion of the level-wise co-
observable definition, i.e., whether L(Fr;[|Gp) is co-observable w.r.t. L(GL;), YL ¢,
EL,o,i for i € DLI-
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Step 2. Step 1 is sufficient to verify all three low levels as they are identical up to relabeling.

Step 3. Verify whether the high-level subsystem satisfies its portion of the level-wise co-
observable definition, i.e., verifying whether L(Fp) is co-observable w.r.t. L(Gu||Gp
NG lIGr)s Heir XH0,y for i € Dy

Using our software research tool, we verified that the first low-level component satisfies its
portion of the level-wise co-observable definition. The monolithic verification ran for 5 hours
without completing, so we stopped it. The run time of our incremental verification algorithm
|Liulb, LLMR14| was 4.76 seconds. The low-level model contained 550 states.

We next verified that the high-level component satisfies its portion of the level-wise co-
observable definition. The run time of our incremental verification algorithm was 424.78
seconds. The high-level model contained 3,120 states.

After completing steps 1-3, we conclude that the decentralized system is level-wise co-
observable, thus globally co-observable by Theorem 4.1. The total verification run time was
429.54 seconds for a system whose complete system model has 2.78 x 10'° states.

We applied our incremental verification algorithm to the entire system model (i.e., to the
flat system), but our software failed to complete after 5 hours.

Using our software tool DESpot |[DES14|, we verified that the system is LD level-wise
controllable, LD level-wise nonblocking, and LD interface consistent. We can thus conclude
by Theorem 3.1 and Theorem 3.2 that our flat system is nonblocking and controllable. We
conclude by Corollary 4.1 that there exists a marking nonblocking decentralized supervi-
sory control Sgop, for Plant, and that Spec||Plant has equivalent MNDSC behaviour with
Scon/Plant. This means that since Spec||Plant is nonblocking, Sco,/Plant is also non-
blocking.

5.3 Complexity Analysis for the Decentralized System

Applying DESpot to the small manufacturing system example, we found that the state size of
the entire system was 2.78 x 10'%. However, the high-level state size was 3120 and the low-level
state size was 550. As an HIDSC check only requires constructing a single component at a
time, this is a potential savings of about seven orders of magnitude.

The computational complexity to verify co-observability using the monolithic approach in
[RW95] is O(|X||Y |2V +2)), where X is the event set, Y is the state space, and N is the number
of decentralized controllers. Substituting in for the small manufacturing system example, we
found that verifying co-observability using the above method gives a computation bounded
by |42[|2.78 x 1019]2(+2) = 3.19 x 10?'°. Using our method, the computation is bounded by
15(|3120[2(>+2) = 1.35 x 10%. The potential computational saving is a 180 order of magnitude
reduction.

6 Conclusions and Future Work

In decentralized control, agents have only a partial view and partial control of the system and
must cooperate to achieve the control objective. In order to synthesize a decentralized control
solution, a specification must satisfy the co-observability property. Existing co-observability
verification methods require the possibly intractable construction of the complete system.
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To address this issue, we adapted the existing HISC approach to support decentralized
control. We introduced the HIDSC framework that included a per-component definition of
co-observability. This allows co-observability to be evaluated using only a single component at
a time. As a result, the entire system model never needs to be constructed which can provide
significant savings. Finally, we provided and proved the necessary and sufficient conditions
for supervisory control existence in the HIDSC framework.

We applied our approach to a small manufacturing example. It contained a high level with
3120 states, three low levels with 550 states each, and a flat model with 2.78 x 10'° states.
We verified the per-component co-observability property in 429.54 seconds. We tried to verify
the HIDSC system as a flat model but our software failed to complete after 5 hours.

For future work, we suggest extending HIDSC from the current two level approach to a
multi-level method to allow HIDSC handle even larger systems. We also suggest introducing
communication to allow certain events to be observable [BL00, RC11, WVS96| when a given
component fails to be co-observable.

7 Proofs

Theorem 4.1:

Proof. Assume W is level-wise co-observable. We will now show that W is globally co-observable.
Sufficient to show that:
(Vt € FNINP) (Vo € 8.) to € P\(FNI)= (i € D.(0) P [P()]oNFNINP =0
Let t € FNINP and o € X,.. Assume to € P\(FNI).
AsF=FgnFp,Nn..NFr,P=H,nLin...nLh,and T =71 N...NZI,, we can
conclude that: t € Fg NHP NZ, and (Vj € {1,...,n}) t € Fr, N ;N LY (1)
As to € P\(FNZ), we have: toc € P and tc ¢ FNZL.
=to¢ FuNFr,N...NFr,NI1N...NI,, by definition of F and 7
= tocPandto¢ Fy,ortoc € Pand (35 €{l,...,n}) to & Fr, NI;

Case 1) (3j € {1,...,n}) to ¢ Fr, NZ;
Let j € {1,...,n} such that to ¢ 1, NZ;. We also have t € Fr, NZ; ﬂﬁ?, by (1).
=te€Fr,NL;NLE to€ Ll and to ¢ Fr,,NTjasto € P
As W is level-wise co-observable, we have: (3i € D, . (7)) PL_;Z.[PL”(t)]UﬁfL]. NZ;NLY =0
= (Ji € D.(0)) Pi_l[B(t)]Jmej NZ; ﬂﬁ? =0,as Dp; . (0) € D (o) and thus Pf, ; = P;

= (Ji€ D.(0)) P P(D)]oNFNINP =0, as FNINPC Fr, NT;NLY

Case 2) (Vj € {1,...,n}) to € Fp,, NI
From earlier we have: toc € P and to ¢ FyuNFr, N...NFr,NI1N...N7I,
As (Vje{l,...,n}) to € Fr, NZj, we have to € Fr, N...NFr,NT1N...NL,.
= to ¢ Fg and toc € T
=to ¢ Fgandto €e HP NI, as P C HP
We also have t € Fg N'HP NZ by (1).
As ¥ is level-wise co-observable, we have: (3i € Dy (o)) P}}i [Pri(t)]ocNFgNINHP =0
= (3i € D.(0)) P Pi()]jo N Fg NI NHP =0, as Dy (0) € D, (o) and thus Pg; = P;

7

= (JieD.(0)) P P(t)]cNFNINP=0,as FNINP C Fyu NI NHP

)

By Cases (1) and (2), we have: (3i € D.(0)) P [Pi(t)jcNFNINP =0

)
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Ast € FNI NP and o € X, are chosen arbitrarily, we conclude that ¥ is globally
co-observable.

O
Theorem 4.2:

Proof. Let K C L,,(Plant), K # 0.

If part) Assume K is controllable and co-observable with respect to L(Plant).

We will show this implies that there exists a marking nonblocking decentralized supervisory
control Scp, for (K, Plant) such that L, (Scon/Plant) = K.

We must first construct a suitable decentralized supervisory control S¢,,, for Plant.

For each i € D and t € L(Plant), we define the local decentralized supervisory control as
follows: Sp,(t) := (S\Xei) U {0 € X, | P Y[Pi(t)]o N K N L(Plant) # 0}.

The global decentralized supervisory control policy Scop, is defined as follows: Scopn(t) 1=
mz’]\;ISPz‘ (t)

The language L(Scon/Plant) is defined in Definition 2.8. Clearly, Scoy, is a decentralized
supervisory control as defined in Definition 2.9.

We will now show that L,(Scon/Plant) = K (Step 1.2) and that Scoy, is nonblocking
(Step 1.3). To do this, our first step is to show that L(Sc,,/Plant) = K (Step 1.1).

Step 1.1) Show that L(Sco,/Plant) = K.
We will now show that (A) L(Scen/Plant) C K and (B) K C L(Scen/Plant).

Part A) Show that L(Sco,/Plant) C K.

Let t € L(Scon/Plant). We will now prove by induction on the length of string ¢ that
te K.
Base case: t =¢

We know that € € L(Sco,/Plant) by definition. Further, e € K since K # () by assump-
tion. We thus have ¢t € K.
Inductive step: For 0 € ¥, we assume to € L(Scon/Plant) and t € K. We will now show
this implies to € K .

We have t € L(Scon/Plant), (Vi € D)o € Sp,(t), and to € L(Plant), by definition of
L(Scon/Plant) and Scop,.

We have two cases: (A.1) 0 € ¥y or (A.2) 0 € X,.
Case A.l1) 0 € ¥

From above, we have: t € K, 0 € Yy, and to € L(Plant).

As K is controllable, we have: K¥,.N L(Plant) C K.

=tcc K
Case A.2) 0 € X,

From above, we have: t € K, 0 € %, (Vi € D)o € Sp,(t), and to € L(Plant).

We will show to € K using proof by contradiction. Assume to ¢ K.

= to € L(Plant)\K

As K is co-observable with respect to L(Plant), we have: (3i € D, (¢)) P, [P;(t)]oNEKN
L(Plant) = 0.

= (Ji € D.(0))o ¢ Sp,(t)

= (Jie D)o ¢ Sp,(t)

= 0 ¢ Scon(t), by definition of S¢op,

= to ¢ L(Scon/Plant)
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This is a contradiction. We thus conclude that to € K.
By Cases (A.1) and (A.2), we have to € K.

This completes the inductive step. We thus conclude by induction that L(Sc,,/Plant) C
K.

Part B) Show that K C L(Scon/Plant).

Let t € K. We will prove by induction on the length of string ¢ that ¢t € L(S¢,,/Plant).
Base case: t =¢

We know that € € K since K # () by assumption. Further, we have € € L(S¢,,/Plant)
by definition. We thus have ¢ € L(S¢o,/Plant).
Inductive step: For 0 € ¥, we assume to € K and t € L(Scon/Plant). We will now show
this implies to € L(Scon/Plant).

We next note that we have to € L(Plant) as tc € K and by the assumption that K C
L,,(Plant) C L(Plant).

We have two cases: (B.1) o € ¥, or (B.2) 0 € 3.
Case B.1) 0 € ¥,

= 0 € Scon(t) as uncontrollable events are enabled by default for Sgop,

From above we have: ¢t € L(Scon/Plant), o € Scon(t) and to € L(Plant).

= to € L(Scon/Plant) by definition of L(S¢con/Plant)
Case B.2) 0 € X,

From above we have: t € L(S¢on/Plant), t € K, to € K, 0 € X, and to € L(Plant)

From the definition of L(S¢,,/Plant) and Scop, to show that to € L(Sco,/Plant), it is
sufficient to show that (Vi € D)o € Sp,(t).

Let i € D. If 0 ¢ X.;, we immediately have: o € Sp,(t) as 0 € £\, ;.

We now consider o € X.;. It is sufficient to show that: P, '[P;(t)jo N K N L(Plant) # (.

We first note that: t € P, '[P,(t)] := {s € ©*|P;(s) € {P;(t)}}

= to € PP

As we have to € K and to € L(Plant) from above, we have: to € P, '[P(t)]o N K N
L(Plant).

= P Pi(t)]lo N K N L(Plant) #

We thus conclude to € L(S¢on/Plant).

By Cases (B.1) and (B.2), we have to € L(S¢co,/Plant).

This completes the inductive step. We thus conclude by induction that K C L(Scon/Plant).

By Parts (A) and (B), we have L(S¢,,/Plant) = K.
Step 1.2) Show that L,,(Scon/Plant) = K.

By the definition of marking nonblocking decentralized supervisory control, we have:
L,(Scon/Plant) = L(Scon/Plant) N K.

Substituting L(Scon/Plant) = K (by Step (1.1)), we have: L, (Scon/Plant) = K N K =
K.

Step 1.3) Show that Scyy, is nonblocking.
It is sufficient to show that L,,(Scon/Plant) = L(Scey,/Plant).

The result is automatic as L(S¢on/Plant) = K (by Step (1.1)) and Ly, (Scon/Plant) = K
(by Step (1.2)).

By Steps (1.1), (1.2) and (1.3), we conclude that there exists a marking nonblocking
decentralized supervisory control Scop, for (K, Plant) such that L, (Scon/Plant) = K.
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Only if part) Assume there exists a marking nonblocking decentralized supervisory control
Scon for (K, Plant) such that L,,(Scon/Plant) = K.

We will now show this implies that K is controllable (Step 2.1) and co-observable with
respect to L(Plant) (Step 2.2).

We first note that as Scop is nonblocking, K = L., (Scon/Plant) = L(S¢,,/Plant).

Step 2.1) Show that K is controllable with respect to L(Plant). Sufficient to show that
KYyu.NL(Plant)CK.

Lett € K, 0 € ¥y and to € L(Plant).

= t € L(Scon/Plant) and o € Scon(t), as L(Scon/Plant) = K and by the definition of
SC’on

= to € L(Scon/Plant), by definition of L(Sc.,/Plant)

= to € K, as L(Scon/Plant) = K

= K¥,NL(Plant)CK

Step 2.2) Show that K is co-observable with respect to L(Plant).

Sufficient to show that: (V¢ € K N L(Plant)) (Vo € %.) to € L(Plant)\K = (3i €
D.(0)) P, [P;(t)]oe N K N L(Plant) = 0.

Let t € K N L(Plant), o € ¥, and to € L(Plant)\K.

= to € L(Plant) and to ¢ K

= to ¢ L(Scon/Plant) as L(Scon/Plant) = K

= (Ji € D)o ¢ Sp,(t)), by the definition of L(Scon/Plant) and Scon

= (3i € D) (0 € Z¢;) A (P7HPi(t))o N K N L(Plant) = (), by the definition of Sp,

= (3i € D, (0)) P, '[P;(t)]o N K N L(Plant) = (), by the definition of D, (o).

)

By Steps (2.1) and (2.2), we conclude that K is controllable and co-observable with respect
to L(Plant).

By If and Only if part, we conclude that there exists a marking nonblocking decentralized
supervisory control Scoy, for (K, Plant) such that L,,(Scon/Plant) = K if and only if K is
controllable and co-observable with respect to L(Plant).

0

Corollary 4.1:

Proof.
If part) Assume L,,(Spec) N L,,(Plant) is controllable and co-observable with respect to
L(Plant), and L,,(Spec) N L,,(Plant) = L(Spec) N L(Plant).

Take K = L,,(Spec) N L,,(Plant) and we have by Theorem 4.2 there exists an MNDSC
Scon for (L, (Spec) N L,,(Plant), Plant) such that L,,(Scon/Plant) = L,,(Spec) N
L,,(Plant).

As Scon is nonblocking by Theorem 4.2, we have:

L,,(Spec) N L,,(Plant) = L,,(Scon/Plant) = L(S¢opn/Plant).

As L,,(Spec) N L,,(Plant) = L(Spec) N L(Plant) by assumption, we have:

L(Scon/Plant) = L(Spec) N L(Plant).
Only if part) Assume there exists an MNDSC Sco, for (L, (Spec)N L, (Plant), Plant) such
that Ly, (Scon/Plant) = L,,(Spec) N L, (Plant) and L(S¢.,/Plant) = L(Spec)NL(Plant).

Take K = L,,(Spec) N L, (Plant) and we have by Theorem 4.2 that L,,(Spec) N
L,,(Plant) is controllable and co-observable with respect to L(Plant).
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As Sciop, is nonblocking, we have: L,,(Spec) N L,,(Plant)

= L (Scon/Plant) = L(Scon/Plant) = L(Spec) N L(Plant).
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