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Abstract

In this paper we investigate the problem of fault tolerance in the framework of
discrete-event systems (DES). We introduce our setting, and then provide a set of
fault tolerant definitions designed to capture different types of fault scenarios and
to ensure that our system remains controllable and nonblocking in each scenario.
We then present algorithms to verify these properties followed by complexity anal-
yses and correctness proofs of the algorithms. Finally, examples are provided to
illustrate our approach.
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1 Introduction

Supervisory control theory, introduced by Ramadge and Wonham [1, 2, 3], provides a formal
framework for analysing discrete-event systems (DES). In this theory, automata are used to
model the system to be controlled and the specification for the desired system behaviour. The
theory provides methods and algorithms to obtain a supervisor that ensures the system will
produce the desired behaviour.

However, the above typically assumes that the system behavior does not contain faults
that would cause the actual system to deviate from the theoretical model. An example is a
sensor that detects the presence of an approaching train. If the supervisor relies on this sensor
to determine when the train should be stopped in order to prevent a collision, it could fail to
enforce its control law if the sensor failed. Our goal in this paper is to develop a way to add
fault events to the system’s plant model and to categorize some common fault scenarios. We
will then develop some properties that will allow us to determine if a supervisor will still be
controllable and nonblocking in these scenarios. This paper builds upon our earlier work in
Radel et al. [4].

Currently in the DES literature, the most common approach when a fault is detected is
to switch to a new supervisor to handle the system in its degraded mode. Such an approach
focuses on fault recovery as opposed to fault tolerance. This requires the construction of a
second supervisor, and requires that there be a means to detect the occurrence of the fault
in order to initiate the switch. In the approach we present in this paper, we use a single
supervisor that will behave correctly in the presence of the specified fault scenarios. This
method does not rely on detecting the fault, but on fault tolerant supervisors. We will now
discuss some relevant previous work.

Lin [5] discussed both robust and adaptive supervisory control in discrete-event systems,
including necessary and sufficient conditions for the existence of a robust supervisor. Based
on this condition, a robust supervisory control and observation approach for synthesizing a
supervisory control was developed. The goal of robust supervision is to synthesize a supervisor
that realizes a given desired behavior for all possible systems.

In Park et al. [6], they presented necessary and sufficient conditions for fault tolerant
robust supervisory control of discrete-event systems that belong to a set of models. When
these conditions are satisfied, fault tolerance can be achieved. In the paper, the results were
applied to the design, modelling, and control of a workcell consisting of arc welding (GMAW)
robots, a sensor, and a conveyor.

In Paoli et al. [7], the controller was updated based on the information provided by online
diagnostics. The supervisor needs to detect the malfunctioning component in the system in
order to achieve the desired specification. The authors proposed the idea of safe diagnosability
as a step to achieve the fault tolerant control. Two new notations were introduced in this
work (safe controllability) and (active fault tolerant system), to characterize the conditions
that must be satisfied when solving the fault tolerant control problem using this approach.

Qin Wen et al. [8] introduce a framework for fault-tolerant supervisory control of discrete-
event systems. In this framework, plants contain both normal behavior and behavior with
faults, as well as a submodel that contains only the normal behavior. The goal of fault-
tolerant supervisory control is to enforce a specification for the normal behavior of the plant
and to enforce another specification for the overall plant behavior. This includes ensuring



that the plant recovers from any fault within a bounded delay so that after the recovery, the
system state is equivalent to a state in the normal plant behavior. They formulate this notion
of fault-tolerant supervisory control and provide a necessary and sufficient condition for the
existence of such a supervisor. The condition involves notions of controllability, observability
and relative-closure together with the notion of stability.

This paper is organized as follows. Section 2 discusses DES preliminaries. Section 3 in-
troduces fault events and the fault scenarios to which they apply. Section 4 presents our
fault tolerant controllability definitions while Section 5 presents our fault tolerant nonblock-
ing definitions. Section 6 presents algorithms to verify the fault tolerant controllability and
nonblocking properties and provides a complexity analysis. Section 7 presents algorithm cor-
rectness proofs and Section 8 provides a manufacturing example to illustrate our approach.
Finally, Section 9 provides conclusions and future work.

2 Preliminaries

We now present a summary of the DES terminology that we use in this paper. For more
details, please refer to |2].

Let ¥ be a finite set of distinct symbols (events). Let X7 denote the set of all finite,
non-empty sequences of events, and X* be the set of all finite sequences of events including
€, the empty string. We can then define ¥*:—= Xt U {e}. For s € ¥*, |s| equals the length
(number of events) of the string.

Let L C ¥* be a language over ¥. A string t € ¥* is a prefix of s € ¥* (written ¢ < s)
if s = tu, for some u € ¥*. The prefiz closure of language L (denoted L) is defined as
L:={teX*|t<s for some s € L}. Let Pwr(X) denote the set of all possible subsets of %.
For language L, the eligibility operator, Elig; : ¥* — Pwr(X), is given by Elig; (s) := {0 €
Y |so € L} for s € ¥*.

A DES automaton is represented as a 5-tuple G = (Y, 3, 0, Yo, Yo ) where Y is the state set,
> is the event set, the partial function ¢ : Y x 3 — Y is the transition function, y, is the initial
state, and Y}, is the set of marker states. The function ¢ is extended to § : Y x ¥* — Y in the
natural way. The notation §(y, s)! means that ¢ is defined for s € ¥* at state y. For DES G,
the language generated is denoted by L(G), and is defined to be L(G) := {s € ¥*| §(y,, s)!}.
The marked behavior of G is defined as L,,(G) :={ s € L(G)| 6(y,, ) € Y;,}. The reachable
state subset of DES G, denoted Y, is Y, := {y € Y| (3s € ¥*)d(yo,$) = y}. A DES G is
reachable if Y. =Y. We will always assume G is reachable.

Let ¥ =31 UX9, L1 C X7, and Ly C ¥5. For i = 1,2, s € ¥*, and 0 € X, we define the
natural projection P; : ¥* — 37 according to:

eif o &%
cifocel;

Pi(e) = ¢, H(J):{
Pi(so) = Pi(s)Pi(0)

The map P! : Pwr(Xf) — Pwr(X*) is the inverse image of P; such that for LCX¥, P, 'L :=
{s € ¥*|P(s) € L}.

Definition 1. For Gi = (Q4, X4, 6i, Go,i, @m,i) (i = 1,2), we define the synchronous product



G = G1||Gz of the two DES as:
G = (Q1 X Q2,21 U¥2,0,(qo1,90,2), Qm1 X Qm.2),
where §((q1,q2),0) is only defined and equals:

(q1,a5) if o € (X1 NX2),01(q1,0) = q1,02(q2,0) = g5 or
(q1,q2) if 0 € 1 — X9,61(qu,0) = ¢jor
(q1,q5) if 0 € g — X1,02(q2,0) = ¢5.

It follows that L(G) = Py 'L(G1) NPy 'L(G2) and L, (G) = P ' Lyn(G1) NPy 'Ly (Ga).
We note that if 1 = ¥, we get L(G) = L(G1) N L(Gz2) and L, (G) = Ly, (G1) N Ly (G2).

For DES, the two main properties we want to check are nonblocking and controllability.

Definition 2. A DES G is said to be nonblocking if:
(Vs € L(GQ)) (3’ € &%) ss' € L, (G)

For controllability, we assume the standard event partition ¥ = X, UX,, splitting our
alphabet into uncontrollable and controllable events.

Definition 3. A supervisorS = (X, %, €, xo, Xi) is controllable for plant G = (Y, %, 8, Yo, Yim)

if:
(Vs € L(S)N L(G)) (Vo € Xy)s0 € L(G) = so € L(S)

We now provide some language definitions that will be useful for this paper. We start with
the language L*. This is the set of strings constructed from any k strings in L.

Definition 4. Let LCY* and k € {1,2,3,...}. We define the language L* to be:
Lk = {s € ¥¥|s = s182...5sk for some s1,52,...,8; € L}

We next define the notation for the language constructed from all possible ways to con-
catenate a string from language L1, followed by an event from ¥’, and a string from language
Lo.

Definition 5. Let Ly, LoCY* and X'CX. We define the language L1.X'.Ls to be:
L1.Y Ly :={s € X*|s = s108y for some s1 € L1,s9 € Ly,0 € X'}

3 Fault Tolerant Setting

In this section, we will introduce our concept of fault events and a consistency property that our
systems must satisfy. In the following section, we will assume that all DES are deterministic,
and that we are given plant G = (Y, X, 4, y,, Yy, ) and supervisor S = (X, 3, &, x5, Xon).

3.1 Fault Events

In this paper, our approach will be to add a set of uncontrollable events to our plant model to
represent the possible faults in the system. For example, if we had a sensor to detect when a



train passes, its plant model might originally contain an event such as trn_ sen( indicating a
train is present. We could add a new uncontrollable event, trnf sen0, that will occur instead
if the sensor fails to detect the train. This will allow us to model how the system will behave
after the occurrence of the fault. Our goal will be to design supervisors that will still behave
correctly even if a fault event occurs, even though they can’t detect the fault event directly.

We start by defining a group of m > 0 mutually exclusive sets of fault events.

Yp, CYyi=1,...,m

The idea here is to group related faults into sets such that faults of a given set represent
a common fault condition, while faults of a different set represent a different fault condition.
For example, two sensors in a row that could each be used to detect the train in time for a
given track segment might be in the same fault set, but a sensor in a different part of the
track would be in a different set.

Definition 6. We refer to faults in Xp,, i =1,...,m, collectively as standard fault events:

Yp o= U Y,

i=1,....m

We note that for m =0, Xp = 0.

The standard fault events are the faults that will be used to define the various fault
scenarios that our supervisors will need to be able to handle. However, there are two additional
types of faults that we need to define in order to handle two special cases. The first type is
called unrestricted fault events, denoted Yor C X,. These are faults that a supervisor can
always handle and thus are allowed to occur unrestricted.

The second type is called excluded fault events, denoted Xap C 3. These are faults that
can not be handled at all and thus are essentially ignored in our scenarios. The idea is that this
would allow us to still design a fault tolerant supervisory for the remaining faults. Typically,
most systems would have neither excluded or unrestricted faults, but we will include them in
our definitions for the systems that do.

For each fault set, ¥p, (¢ = 0,...,m), we also need to define a matching set of reset
events, denoted X7, C 3. These events will be explained in Section 3.3, when we describe the
resettable fault scenario.

3.2 Fault Tolerant Consistency

We now present a consistency requirement that our systems must satisfy.

Definition 7. A system, with plant G = (Y, 3,0, Yo, Ym), supervisor S = (X, %, &, 20, Xin),
and fault sets X, (1 =0,...,m), Xar, and Xqp, is fault tolerant (FT) consistent if:

1. XA UXorUXpr C X,
2. ¥ar, Xar, XF, (1=0,...,m), are pair-wise disjoint.

3. (Vi€l,...,m)Sy #0



4. (V’L € 1,...,m)EFl. N X7, =0
5. Supervisor S is deterministic.

6. (VCE € X)(VO’ S (EQF UXarp U EF))f(l',U) ==

Point (1) says that fault events are uncontrollable since allowing a supervisor to disable
fault events would be unrealistic. Point (2) requires that the indicated sets of faults be
disjoint since they must each be handled differently. Point (3) says that fault sets Xp, are
non-empty. Point (4) says a fault set must be disjoint from its corresponding set of reset
events so we can distinguish them.

Points (5) and (6) say that S is deterministic (single initial state and at most a single
transition leaving a given state for a given event) and that at every state in S, there is a selfloop
for each fault event in the system. This means a supervisor cannot change state (and thus
change enablement information) based on a fault event. This is a key concept as it effectively
makes fault events unobservable to supervisors. If S is defined over a subset ¥’ C ¥ instead,
we could equivalently require that ¥’ contain no fault events.

3.3 Fault Scenarios

In this paper, we will consider four fault scenarios. The first is the default fault scenario where
the supervisor must be able to handle any non-excluded fault event that occurs. The second
scenario is the N > 0 fault scenario where the supervisor is only required to handle at most
N, non-excluded fault events and all unrestricted fault events.

The next scenario is the non-repeatable N > 0 fault scenario where the supervisor is only
required to handle at most NV, non-excluded fault events and all unrestricted fault events, but
no more than one fault event from any given ¥Xp, (i = 0,...,m) fault set. This definition
allows the designer to group faults together in fault sets such that a fault occurring from one
set does not affect a supervisors ability to handle a fault from a different set. Particularly for
a situation where a supervisor could handle only one fault per fault set, this would allow m
faults to occur instead of only one using the previous scenario.

The last scenario we consider is the resettable fault scenario. This is designed to capture
the situation where at most one fault event from each ¥p, (i = 0,...,m) fault set can be
handled by the supervisor during each pass through a part of the system, but this ability
resets for the next pass. For this to work, we need to be able to detect when the current pass
has completed and it is safe for another fault event from the same fault set to occur. We use
the fault set’s corresponding set of reset events to achieve this. The idea is that once a reset
event has occurred, the current pass can be considered over and it is safe for another fault
event to occur.

4 Fault Tolerant Controllability Definitions

We will now develop some properties that will allow us to determine if a supervisor will still
be controllable in the four fault scenarios that we introduced in the previous section.



4.1 Fault Tolerant Controllability

The first fault tolerant property that we introduce is designed to handle the default fault
scenario. First, we need to define the language of excluded faults. This is the set of all strings
that include at least one fault from Yap.

Definition 8. We define the language of excluded faults as:
Lap =YX " YAp.X"

Definition 9. A system, with plant G = (Y, X, 6, Yo, Yin), supervisor S = (X, 3,&, o, Xpm),
and fault sets ¥p, (i = 0,...,m) and Xap, is fault tolerant (FT) controllable if it is FT
consistent and:

(Vs € L(S) N L(G)) (Vo € £,)
(so € L(G)) AN (s ¢ Lar) = so € L(S)

The above definition is essentially the standard controllability definition but ignores strings
that include excluded fault events. As the language L(S) N L(G) is prefix closed, prefixes
of these strings that do not contain excluded faults must be checked. This definition is
equivalent to blocking all excluded fault events from occurring in the system behavior and
then checking the standard controllability definition. This is the most powerful of the fault
tolerant definitions as the supervisor must be able to handle a potentially unlimited number
of faults that can occur in any order. We note that if XAz = (), then Definition 9 reduces to
the standard controllability definition as Lap reduces to Lap = 0.

Typically, the set of excluded faults for a given system is empty. When a system is FT
controllable and YA # ), we say that it is F'T controllable with excluded faults to emphasize
that it is less fault tolerant than if it passed the definition with YAr = (). We will use a similar
expression with the other fault tolerant definitions.

4.2 N-Fault Tolerant Controllability

The next fault tolerant property that we introduce is designed to handle the N > 0 fault
scenario. First, we need to define the language of N-fault events. This is the set of all strings
that include at most N faults from X, including those that contain no such faults.

Definition 10. We define the language of N-fault events as:

N
Ly =(2-3p) U | J((Z = Zp)* Sp.(2 — Zp)")F
k=1
Definition 11. A system, with plant G = (Y, %, 8, Yo, Yim), supervisor S = (X, 3, &, 2o, Xon),
and fault sets ¥, (i =0,...,m) and ¥ ap, ts N-fault tolerant (N-FT) controllable if it is F'T
consistent and:
(Vs € L(S) N L(G)) (Vo € %)
(sc € L(G)) A (s ¢ Lap) A (s € Lyp) = so € L(S)

The above definition is essentially the standard controllability definition but ignores strings
that include excluded fault events or more than N faults from fault sets g, (i = 0,...,m).



This definition is essentially weaker than the previous one since if we take N = oo we get the
FT controllability definition back. If we set N = 0, we get the controllability definition with
all fault events from Xp excluded as well since Lyp will simplify to Lyp = (X — Xp)*. We
also note that if m = 0, we get ¥ = (0. This means Lyp will simplify to Lypr = X* which
means Definition 11 will simplify to Definition 9.

Typically, the set of unrestricted faults for a given system is empty. When a system is
N-FT controllable and YXqor # 0, we say that it is N-FT controllable with unrestricted faults
to emphasize that it is more fault tolerant than if it passed the definition with Yqp = (. We
will use a similar expression with the other fault tolerant definitions.

4.3 Non-repeatable N-Fault Tolerant Controllability

The next fault tolerant property that we introduce is designed to handle the non-repeatable
N > 0 fault scenario. First, we need to define the language of non-repeatable fault events. This
is the set of all strings that include two or more faults from a single fault set X, (i =0,...,m).

Definition 12. We define the language of non-repeatable fault events as:

m

Lyrr = J(5* 252" 25,57
=1

Definition 13. A system, with plant G = (Y, %, 9, Yo, Yi), supervisor S = (X, %, €, 2o, Xp),
and fault sets ¥p, (i =0,...,m) and ¥ aF, is non-repeatable N-fault tolerant (NR-FT) con-
trollable, if it is F'T consistent and:

(Vs € L(S) N L(G)) (Yo € £)
(SO’ € L(G)) VAN (S ¢ LarpU LNRF) A (S € LNF) = SO € L(S)

The above definition is essentially the standard controllability definition, but ignores
strings that include excluded fault events, more than N faults from fault sets Xp (i =
0,...,m), or strings that include two or more faults from a single fault set. We note that
if m=0, we get ¥p = (. This means Lyp simplifies to Lyr = X* and Lygp simplifies to
Lygr = 0. This means Definition 13 simplifies to Definition 9.

4.4 Resettable Fault Tolerant Controllability

The next fault tolerant property that we introduce is designed to handle the resettable fault
scenario. First, we need to define the language of resettable fault events. This is the set of all
strings where two faults from the same fault set ¥, occur in a row without an event from the
corresponding set of reset events in between.

Definition 14. We define the language of resettable fault events as:

m

Lrr = J(Z*25.(2 - 53,)" 25 5%)
=1

Definition 15. A system, with plant G = (Y, %, 9, Yo, Vi), supervisor S = (X, 3., 2o, Xpn),
and fault sets Xp, (1 =0,...,m) and Xap, is resettable fault tolerant (T-FT) controllable if



it 1s F'T consistent and:

(Vs € L(S) N L(G)) (Vo € X,)
(so € L(G)) AN (s ¢ Larp U Lrr) = so € L(S)

The above definition is essentially the standard controllability definition, but ignores
strings that include excluded fault events and strings where we get two fault events from
the same fault set in a row without an event from the corresponding set of reset events in
between. We note that if m = 0, we get X = (0. This means Ly p simplifies to Lrr = () which
means Definition 15 simplifies to Definition 9.

5 Fault Tolerant Nonblocking Definitions

We will now develop some properties that will allow us to determine if a system will still be
nonblocking in the four scenarios that we introduced in Section 3.3.

We use the fault languages from Section 4 and a similar approach to add fault tolerant
principles to the standard nonblocking definition.

5.1 Fault Tolerant Nonblocking

The first fault tolerant nonblocking property that we introduce is designed to handle the
default fault scenario. We use the language of excluded faults from Section 4.1.

Definition 16. A system, with plant G = (Y, 3,9, Yo, Yim), supervisor S = (X, %2,€, o, Xom),
and fault sets ¥, (i = 0,...,m) and Xar, is fault tolerant (FT) nonblocking if it is FT
consistent and:
(Vs € L(S) N L(GQ))

(s ¢ Lap) = (38’ € *)(s8' € Liy(S) N L (G)) A (ss' & Larp)

We note that if XA = @), then Definition 16 reduces to the standard nonblocking definition.
Also, if m = 0 then Definitions 17, 18, and 19 all simplify to Definition 16.

5.2 N-Fault Tolerant Nonblocking

The next fault tolerant nonblocking property that we introduce is designed to handle the
N > 0 fault scenario. We use the language of excluded faults and the language of N-fault
events from Sections 4.1 and 4.2.

Definition 17. A system, with plant G = (Y, %, 8, Yo, Yim), supervisor S = (X, 3, &, 2o, Xon),

and fault sets ¥p, (i =0,...,m) and Xar, is N-fault tolerant (N-FT) nonblocking if it is F'T
consistent and:

(Vs € L(S)N L(G)) (s ¢ Lar) A (s € Lyp) =
(3s' € %) (88’ € Liy(S) N Lin(G)) A (88" & Lap) A (ss' € Lyr)

5.3 Non-repeatable N-Fault Tolerant Nonblocking

The next fault tolerant nonblocking property that we introduce is designed to handle the
non-repeatable N > 0 fault scenario. We use the language of excluded faults, the language of



N-fault events, and the language of non-repeatable fault events from Section 4.

Definition 18. A system, with plant G = (Y, %, 9, Yo, Yin), supervisor S = (X, ., 2o, Xpn),
and fault sets Xp, (1 =0,...,m) and XaF, is non-repeatable N-fault tolerant (NR-FT) non-
blocking, if it is F'T consistent and:

(VS S L(S) N L(G)) (S Qé Larp U LNRF) A (S € LNF) =
(3" € ¥*)(ss' € Liy(S) N Ly (G)) A (ss' ¢ Lap U Lyrr) A (ss’ € Lyrp)

5.4 Resettable Fault Tolerant Nonblocking

The next fault tolerant nonblocking property that we introduce is designed to handle the
resettable fault scenario. We use the language of excluded faults and the language of resettable
fault events from Section 4.

Definition 19. A system, with plant G = (Y, %, 9, Yo, Yy), supervisor S = (X, 5., 2o, Xpn),
and fault sets ¥, (i =0,...,m) and XA, is resettable fault tolerant (T-FT) nonblocking if
it 1s F'T consistent and:

(Vs € L(S)NL(G)) (s ¢ Lar U Lyp) =
(38" € ¥*)(s8' € Lin(S) N Ly (G)) A (ss' ¢ Lap U Lrg)

6 Algorithms

In this section, we will present algorithms to construct and verify the eight fault tolerant
controllability and nonblocking properties that we defined in Sections 4 and 5. We will not
present an algorithm for the FT consistency property as its individual points can easily be
checked by adapting various standard algorithms. We assume that our system consists of a
plant G = (Y, %, 9, Yo, Y ), supervisor S = (X, 3, &, xo, X)), and fault and reset sets X, X7
(1=0,...,m), Xar, and Xop.

Our approach will be to construct plant components to synchronize with our plant G
such that the new DES will restrict the occurrence of faults to match the given fault tolerant
controllability and nonblocking definitions. We can then synchronize the plant components to-
gether and then use a standard controllability or nonblocking algorithm to check the property.
This approach allows us to automatically take advantage of existing scalability methods such
as incremental 9] and binary decision diagram-based (BDD) algorithms |10, 11, 12, 13, 14, 15].

As the controllability, nonblocking, and synchronous product algorithms have already been
studied in the literature [16], we will assume that they are given to us. We will use the stan-
dard || symbol to indicate the synchronous product operation, vCont(Plant,Sup) to indicate
controllability verification, and vNonb(System) to indicate nonblocking verification. Func-
tions vCont and vNonb return true or false to indicate whether the verification passed or failed,
and the result will be stored in the Boolean variable pass.

In the sections that follow, we will first present algorithms to construct the new plant
components that will be shared by the fault tolerant controllable and nonblocking algorithms.
We then present the individual fault tolerant controllability and nonblocking algorithms.



6.1 Algorithms to Construct Plants

Algorithms 1 — 4 construct the needed plant components for the various fault tolerant algo-
rithms.

6.1.1 Construct Excluded Faults Plant

Algorithm 1 constructs Gag for fault set Yap. The algorithm constructs a new DES with
event set YA, but no transitions. It also contains only its initial state, which is marked. This
will have the effect of removing any XA p transitions from any DES it is synchronized with.

Please note that all of the constructed DES in these algorithms have every state marked
since their goal is to modify the closed behavior by restricting the occurrence of fault events as
needed; not to modify the marked behavior of the system directly. Also, when we define our
transition functions such as §, we will define them as a subset of Y x ¥ x Y for convenience.
For example, (y,,0,y1) € ¢ implies §(y,,0) = y1.

Algorithm 1 construct-Gar(Xar)
1 Y1 — {yo}
2: Ym,l —Y
3: (51 — (Z)
4: return (Y1, XAr, 01, Yo, Yin 1)

Figure 1 shows an example Gag. In the DES diagrams, circles represent unmarked states,
while filled circles represent marked states. Two concentric, unfilled circles represent the initial
state. If the initial state is also marked, the inner circle is filled. Note that if a transition is
labeled by an event set such as in Figure 2, this is a shorthand for a transition for each event
in the event set.

XF 2F 2r
@® @ —>0 >0 >0
0 0 1 2 3
Figure 1: Excluded Faults Plant Gag Figure 2: N-Fault Plant Gnp, N = 3
>
Fi
Y
Opmn 4 0 1
0 1 2T

Figure 3: Non-Repeatable N-Fault Plant Figure 4: Resettable Fault Plant G
GrF i

6.1.2 Construct N-Faults Plant

Algorithm 2 constructs Gng for max N faults, and standard fault set Xp. The algorithm
constructs a new DES with event set Xz and N states, each state marked. It then creates a
transition for each fault event in X from state y; to state y;1.1. As there are no transitions at
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state yy, synchronizing with this DES will allow at most N faults to occur, and then remove
any additional standard fault transitions. Figure 2 shows an example GnF for N = 3.

Algorithm 2 construct-Gng(N, Xr)
Y1 —{vo,y1,-- -, un}
Ym,l —Y
: 61 — @
s fori=0,..., N—-1

for o € X

o1« 01U {(i, 0, yi+1)}

end for
end for
return (Y1, Xr, 01, Yo, Ym,1)

© XD TR

We note that if m = 0, then Xz = (). This means that Gng will contain no events and
have unreachable states for N > 1. As a result, synchronizing with Gng will have no effect
on the closed and marked language of the system. This means that Algorithms 6, 7, 10, and
11 will still work correctly.

We next note that if N = 0, Gng will contain a single state, but no transitions. This will
have the desired effect of removing any > transitions from any DES synchronized with GNF.

6.1.3 Construct Non-repeatable N-Faults Plant

Algorithm 3 constructs Gg; for ¢ € {1,...,m} and fault set ¥p,. The algorithm constructs a
new DES with event set X, and two states, both states marked. It then creates a transition
for each fault event in ¥ g, from the initial state to state y;. As there are no transitions at
state y1, synchronizing with this DES will allow at most 1 fault event from the fault set to
occur and then remove any additional fault transitions from the fault set. Figure 3 shows an
example Gy ;.

Algorithm 3 construct-Gg (X, , )
}/i — {y()?yl}
Ym,i —Y;
0; — 0
for o € X,
0 — 6; U{(yo,0,91)}
end for
return (Y;, ZFz s (51', Yo, Ym,z)

6.1.4 Construct Resettable Faults Plant

Algorithm 4 constructs Gpg; for i € {1,...,m}, fault set Xp, and reset set ¥7,. The
algorithm constructs a new DES with event set ¥z, UX, and two states, both states marked.
It then creates a transition for each fault event in X, from the initial state to state y;. Next,
it creates a transition for each reset event in X7, from state y; to the initial state, as well as a

11



selfloop at the initial state for the event. Figure 4 shows an example Grr ;. Essentially, reset
events can occur unrestricted, but once a fault event occurs from Y, a second event from
the set is blocked until a reset event from X7, occurs. Synchronizing with this DES will have
the effect of restricting the plant’s fault behavior to that which the supervisor is required to
handle.

Algorithm 4 construct-Grr i(XF,, X1;, 1)
}/i — {y07y1}
Ym,i —Y;
for o € X,
0 — 0; U{(yo,0,y1)}
end for
for o € X,
57) — 52 U {(y(b g, y0)7 (yla g, yO)}
end for
return (Y;, X U X7, 6, Yo, Yim,i)

—
@

6.2 Verify Fault Tolerant Controllability

Algorithm 5 shows how to verify fault tolerant controllability for G and S. Line 1 constructs
the ezcluded fault plant, G ar, using Algorithm 1. Line 2 constructs the new plant G’. Line
3 checks that supervisor S is controllable for plant G’. As G aF is defined over event set XA r
and contains only a marked initial state and no transitions, synchronizing it with G creates
the original behavior with all excluded fault events removed. Checking that S is controllable
for the resulting behavior will have the effect of verifying fault tolerant controllability.

Algorithm 5 Verify fault tolerant controllability

1: GAF «— COnStI“uCt—GAF(EAF)
2: G/ — G||GAF

3: pass «— vCont(G/,S)

4: return pass

We note that if Yap = 0, Algorithm 5 will still produce the correct result. However, it
would be more efficient to just check that S is controllable for G directly.

6.3 Verify N-Fault Tolerant Controllability

Algorithm 6 shows how to verify N-fault tolerant controllability for G, and S. Line 1 constructs
the excluded fault plant, Gap. Line 2 constructs the N-fault plant, GNF, using Algorithm
2. Line 3 constructs the new plant G’. Line 4 checks that supervisor S is controllable for
plant G’. As Gaf removes any excluded fault transitions and Gng prevents strings from
containing more than N fault events, checking that S is controllable for the resulting behavior
will have the effect of verifying N-fault tolerant controllability.
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Algorithm 6 Verify N-fault tolerant controllability
GAF < Construct—GAF(EAF)

GnF < construct-Gnr(N, XF)

G’ — G||GaFr||GNF

pass < vCont(G’, S)

return pass

We note that if m =0, we have X = () and that synchronizing with Gng will have no
effect. We will still get the correct result but it would be more efficient to run Algorithm 5
directly instead.

6.4 Verify Non-repeatable N-Fault Tolerant Controllability

Algorithm 7 shows how to verify non-repeatable N-fault tolerant controllability for G and S.
Line 1 constructs the excluded fault plant, Gag. Line 2 constructs the N-fault plant, GNF.
For i € {1,...,m}, Line 4 constructs the non-repeatable N-fault plant, G ;, using Algorithm
3. Line 6 constructs the new plant G’. Line 7 checks that supervisor S is controllable for plant
G’. As GaFf removes any excluded fault transitions, Gng prevents strings from containing
more than N fault events, and each Gy ; allows at most one fault from their fault set to occur,
checking that S is controllable for the resulting behavior will have the effect of verifying non-
repeatable N-fault tolerant controllability. We note that if m < N, we can safely skip Line 2
(and remove GNF from line 6) as Lines 3-5 will ensure at most m faults can occur.

Algorithm 7 Verify non-repeatable N-fault tolerant controllability

1: GAF «— COIlStI“uct—GAF(EAF)

2: GNF < construct-GNp(N, Xp)

3: fori=1,...,m

4: Gy « construct-Gg ;(XF,, 0)

5: end for

6: G — G||GAF||GNF||GF,1H e ||GF,m
7. pass «— vCont(G’,S)

8: return pass

We note that if m =0, we have ¥p = (), that no Gg; will be constructed, and that
synchronizing with Gng will have no effect. This means G’ will simplify to G’ = G||GAaF
and we can just evaluate Algorithm 5 instead.

6.5 Verify Resettable Fault Tolerant Controllability

Algorithm 8 shows how to verify resettable fault tolerant controllability for G and S. Line 1
constructs the excluded fault plant, Gap. Fori € {1,...,m}, Line 3 constructs the resettable
fault plant Gy ;, using Algorithm 4. Line 5 constructs the new plant G’. Line 6 checks that
supervisor S is controllable for plant G’. As G af removes any excluded fault transitions, and
each Grg; only allows strings where fault events from ¥, are always separated by at least
one event from the corresponding set of reset events, X7,, checking that S is controllable for
the resulting behavior will have the effect of verifying resettable fault tolerant controllability.
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Algorithm 8 Verify resettable fault tolerant controllability

GAF < Construct—GAF(EAF)
sfori=1,...,m

GTF,i — COnStI‘uCt—GTF’i(EFi, ZT“Z')
end for
: G« G||Gar||GTF 1l [|GTF.m
: pass «— vCont(G/,S)
: return pass

We note that if m = 0, we have X = () and that no Grr i will be constructed. This means
G’ will simplify to G’ = G||Gar and we can just evaluate Algorithm 5 instead.

6.6 Verify Fault Tolerant Nonblocking

Algorithm 9 shows how to verify fault tolerant nonblocking for G and S. This algorithm is
essentially the same as Algorithm 5, except at Line 2 we calculate the closed loop system G/,
and then at Line 3 we verify that it is nonblocking.

Algorithm 9 Verify fault tolerant nonblocking

1: GAF < construct-Gar(Xar)
2: G/ — GHGAFHS

3: pass < vNonb(G’)

4: return pass

We note that if Yap = 0, Algorithm 9 will still produce the correct result. However, it
would be more efficient to just check that S||G is nonblocking directly.

6.7 Verify N-Fault Tolerant Nonblocking

Algorithm 10 shows how to verify N-fault tolerant nonblocking for G, and S. This algorithm
is essentially the same as Algorithm 6, except at Line 3 we calculate the closed loop system
G/, and then at Line 4 we verify that it is nonblocking.

Algorithm 10 Verify N-fault tolerant nonblocking
Gar < construct-Gar(Xar)

GnNF < construct-Gng(N, Xp)

G’ — G||Gar||GNrF|[S

pass < vNonb(G')

return pass

We note that if m =0, we have X = () and that synchronizing with Gng will have no
effect. We will still get the correct result but it would be more efficient to run Algorithm 9
directly instead.
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6.8 Verify Non-repeatable N-Fault Tolerant Nonblocking

Algorithm 11 shows how to verify non-repeatable N-fault tolerant nonblocking for G and S.
This algorithm is essentially the same as Algorithm 7, except at Line 6 we calculate the closed
loop system G’, and then at Line 7 we verify that it is nonblocking.

Algorithm 11 Verify non-repeatable N-fault tolerant nonblocking
GaFr <« construct-Gar(Xar)
GNF — COnStI“uCt—GNF(N, EF)
fori=1,....m
GFJ — Construct—GF’i(ZFi, Z)
end for
G' — G||GaF||GNF[|GFall - - [|GFm|[S
pass < vNonb(G')
return pass

We note that if m =0, we have X =0, that no Gy, will be constructed, and that
synchronizing with Gng will have no effect. This means G’ will simplify to G’ = G||GAaF||S
and we can just evaluate Algorithm 9 instead.

We also note that if N > m, the Gg; will ensure that no more than m events occur. We
thus do not need to add Gnr to G’, which should make the verification more efficient.

6.9 Verify Resettable Fault Tolerant Nonblocking

Algorithm 12 shows how to verify resettable fault tolerant nonblocking for G and S. This
algorithm is essentially the same as Algorithm 8, except at Line 5 we calculate the closed loop
system G', and then at Line 6 we verify that it is nonblocking.

Algorithm 12 Verify resettable fault tolerant nonblocking

GAr < construct-Gar(Xar)
cfori=1,...,m

Grr; < construct-Gori(Xp,, X1, 1)
end for
. G’ — G||Gar||Grrall - . [|GTrmlS
. pass « vNonb(G')
: return pass

We note that if m = 0, we have X = () and that no Gy will be constructed. This means
G’ will simplify to G’ = G||GaF||S and we can just evaluate Algorithm 9 instead.

6.10 Algorithm Complexity Analysis

In this section, we provide a complexity analysis for the fault tolerant controllability and
nonblocking algorithms. In the following subsections, we assume that our system consists of
a plant G = (Y, %, 9, Yo, Ym), supervisor S = (X, 3, &, z,, X;n), and fault and reset sets X,
ZTi (Z = 0, e ,m), EAF; and EQF.
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We will base our analysis on the complexity analysis from Cassandras et al. [17] that states
that both the controllability and nonblocking algorithms have a complexity of O(|X||Y||X]),
where |3] is the size of the system event set, |Y| is the size of the plant state set, and | X]| is
the size of the supervisor state set. In the analysis that follows, |Yar| is the size of the state
set for Gar (constructed by Algorithm 1), and |Yxp| is the size of the state set for GnF
(constructed by Algorithm 2).

We note that each FT algorithm first constructs and adds some additional plant compo-
nents to the system, and then it runs a standard controllability or nonblocking algorithm on
the resulting system. Our approach will be to take the standard algorithm’s complexity, and
replace the value for the state size of the plant with the worst case state size of G synchronized
with the new plant components. As all fault and reset events already belong to the system
event set, this means the size of the system event set does not increase.

In the following analysis, we will ignore the cost of constructing the new plant compo-
nents as they will be constructed in serial with the controllability or nonblocking verification
and should be negligible in comparison. We next note that as the base controllability and
nonblocking algorithms have the same complexity, the corresponding fault tolerant versions
will also have the same complexity (i.e. the FT controllability algorithm will have the same
complexity as the FT nonblocking algorithm). As such, we will only present analysis for the
FT controllability algorithms.

6.10.1 FT Controllability Algorithm

For Algorithm 5, we replace our plant DES by G’ = G||GaFr. This gives us a worst case state
space of |Y||Yar| for G'. Substituting this into our base algorithm’s complexity for the size
of our plant’s state set gives O(|X||Y||Yar||X]|). As |Yar| =1 by Algorithm 1, it follows that
our complexity is O(|X||Y||X|) which is the same as our base algorithm.

6.10.2 N-FT Controllability Algorithm

For Algorithm 6, we replace our plant DES by G’ = G||Gar||Gnr. This gives us a worst case
state space of |Y||Yar||Ynr| for G'. Substituting this into our base algorithm’s complexity
gives O([Z[[Y[[Yar|[Ynr||X]).

We note that |[Yar| = 1 by Algorithm 1, and |Yxr| = N+1 by Algorithm 2. Substituting in
for these values gives O((N + 1)|2||Y|| X]). It thus follows that verifying N-FT controllability
increases the complexity of verifying controllability by a factor of (N + 1).

6.10.3 Non-repeatable N-FT Controllability Algorithm

For Algorithm 7, we replace our plant DES by G’ = G||Gar||GNF||GF 1| -- .|| GFm. This
gives us a worst case state space of |Y||Yar||Ynr||YE,|...|YE,| for G', where |YE, | is the size
of the state set for Gg; (¢ = 0,...,m), which is constructed by Algorithm 3. Substituting
this into our base algorithm’s complexity gives O(|X||Y||Yar||[YnrE||YR |- |[YE, || X]).

We note that |Yar| = 1 by Algorithm 1, |Yxr| = N + 1 by Algorithm 2, and |Yg,| = 2
(t=0,...,m) by Algorithm 3. Substituting in for these values gives O(2™(N + 1)|X||Y||X]).
It thus follows that verifying non-repeatable N-F'T controllability increases the complexity of
verifying controllability by a factor of 2" (N + 1).
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We next note that if N > m, which we believe will often be the case, it is not necessary
to add GNF to G’. The complexity then reduces to O(2™|Z||Y]|X]).

6.10.4 Resettable FT Controllability Algorithm

For Algorithm 8, we replace our plant DES by G’ = G||GaF||GTF 1]l ... ||GTFm. This gives
us a worst case state space of |Y||Yar||Yre|...|YrE, | for G/, where |Yrg | is the size of the
state set for Gpg;i (1 =0, ..., m), which is constructed by Algorithm 4. Substituting this into
our base algorithm’s complexity gives O(|3||Y ||Yar||Yrr |- - |YrE, || X]).

We note that |Yap| = 1 by Algorithm 1, and |Yrg| =2 (i = 0,...,m) by Algorithm 4.
Substituting in for these values gives O(2™|X||Y'||X]). It thus follows that verifying resettable
FT controllability increases the complexity of verifying controllability by a factor of 2.

7 Algorithm Correctness

In this section, we introduce several propositions and theorems that show that the algorithms
introduced in Section 6 correctly verify that a fault tolerant consistent system satisfies the
specified fault tolerant controllability and nonblocking properties defined in Sections 4 and 5.

7.1 Fault Tolerant Propositions

The propositions in this section will be used to support the fault tolerant controllability
theorems in Section 7.2. Fault tolerant controllability definitions are essentially controllability
definitions with added restriction that a string s is only tested if it is satisfies the appropriate
fault tolerant property. The algorithms are intended to replace the original plant with a new
plant G’, such that G’ is restricted to strings with the desired property. Propositions 1 — 4
essentially assert that string s belongs to the closed behaviour of G’, if and only if s satisfies
properties of fault tolerant controllable, N-FT controllable, non-repeatable N-F'T controllable,
and resettable F'T' controllable, respectively. These propositions will also be used in the fault
tolerant nonblocking theorems in Section 7.3.

Proposition 1. Let system with supervisor S = (X, 3,&, x4, X ) and plant G = (Y, %, 6, Yo, Yim)
be F'T consistent, and let G’ be the plant constructed in Algorithm 5. Then:

(Vs € L(G))s ¢ Larp < s€ L(G')
Proof. See Appendix A. O

Proposition 2. Let system with supervisor S = (X, %, &, x4, Xy ) and plant G = (Y, 2,0, Yo, Yin)
be FT consistent, N > 0, and let G’ be the plant constructed in Algorithm 6. Then:

(Vs € L(G))(s ¢ Lar) A (s € Lyr) < s € L(G)
Proof. See Appendix A. O

Proposition 3. Let system with supervisor S = (X, 3,&, xo, X ) and plant G = (Y, %, 6, Yo, Yin)
be F'T consistent, N > 0, and let G’ be the plant constructed in Algorithm 7. Then:

(Vs € L(G))(s ¢ LApULNRF) N (s € Lyp) < s € L(G/)
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Proof. See Appendix A. O
Proposition 4. Let system with supervisor S = (X, 3,&, xo, X ) and plant G = (Y, %, 6, Yo, Yin)
be FT consistent, and let G’ be the plant constructed in Algorithm 8. Then:

(Vs € L(G))(s ¢ Lap U Lrp) <= se L(G')

Proof. See Appendix A. O

7.2 Fault Tolerant Controllable Theorems

In this section we present theorems that show the fault tolerant controllable algorithms in
Section 6 (Algorithms 5-8) will return ¢rue if and only if the fault tolerant consistent system
satisfies the corresponding fault tolerant controllability property.

Theorem 1. Let system with supervisor S = (X, %,&, x5, X, ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, and let G’ be the plant constructed in Algorithm 5. Then S is fault tolerant
controllable for G iff S is controllable for G'.

Proof. See Appendix B. O

Theorem 2. Let system with supervisor S = (X, %,&, 20, X)) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, N > 0, and let G’ be the plant constructed in Algorithm 6. Then S is N-fault
tolerant controllable for G iff S is controllable for G'.

Proof. See Appendix B. O

Theorem 3. Let system with supervisor S = (X, %, &, x4, X;n ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, N > 0, and let G’ be the plant constructed in Algorithm 7. Then S is non-
repeatable N-fault tolerant controllable for G iff S is controllable for G'.

Proof. See Appendix B. O

Theorem 4. Let system with supervisor S = (X, %,&, x5, X, ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, and let G’ be the plant constructed in Algorithm 8. Then S is resettable
fault tolerant controllable for G iff S is controllable for G'.

Proof. See Appendix B. O

7.3 Fault Tolerant Nonblocking Theorems

In this section we present theorems that show the fault tolerant nonblocking algorithms in
Section 6 (Algorithms 9-12) will return true if and only if the fault tolerant consistent system
satisfies the corresponding fault tolerant nonblocking property.

Theorem 5. Let system with supervisor S = (X, %, &, o, Xin ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, and let G’ be the system constructed in Algorithm 9. Then S and G are
fault tolerant nonblocking iff G’ is nonblocking.
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Proof. See Appendix B. O

Theorem 6. Let system with supervisor S = (X, %,&, 20, Xin) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, N > 0, and let G’ be the system constructed in Algorithm 10. Then S and
G are N-fault tolerant nonblocking iff G' is nonblocking.

Proof. See Appendix B. O

Theorem 7. Let system with supervisor S = (X, %, &, x4, X;n ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, N > 0, and let G’ be the system constructed in Algorithm 11. Then S and
G are non-repeatable N- fault tolerant nonblocking iff G’ is nonblocking.

Proof. See Appendix B. O

Theorem 8. Let system with supervisor S = (X, %,&, x5, X ) and plant G = (Y, X, 6, Yo, Yim)
be FT consistent, and let G’ be the system constructed in Algorithm 12. Then S and G are
resettable fault tolerant nonblocking iff G’ is nonblocking.

Proof. See Appendix B. O

8 Manufacturing Example

This example is based on the manufacturing testbed from Leduc [18]. The testbed was de-
signed to simulate a manufacturing workcell, in particular problems of routing and collision.
Figure 5 shows conceptually the structure of the testbed and sensors.
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In this paper, we will first focus on only a single track loop, shown in Figure 6. The loop
contains 8 sensors and two trains (train 1, train 2). Train 1 starts between sensors 9 and 10,
while train 2 starts between sensors 15 and 16. Both trains can only traverse the tracks in a
clockwise direction. We will use the simplified version to illustrate our method. We will then
report experimental results of applying the method to the full testbed model in Section 8.3.
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Figure 6: Single Train Loop Figure 7: Original Sensor Figure 8: Sensors 9, 10, and
Model 16 with Faults

8.1 Base Plant Models

The plant model for the portion of the testbed we are currently considering consists of the
following basic elements: sensors, trains and the relationship between sensors and trains.

8.1.1 Sensor Models

The sensor models indicate when a given train is present, and when no trains are present.
Also, they state that only one train can activate a given sensor at a time. Figure 7 shows the
original sensor model, for sensor J € {9,...,16}.

To add faults to the model, we assumed that sensors 9 10, and 16 could have an intermittent
fault; sometimes the sensor would detect the presence of a train, sometimes it would fail to do
so. We modelled this by adding to all the plant models a new event t1F atJ, J € {9,10,16},
for each t1 atJ event. For each tI atJ transition in a plant model, we added an identical
t1F atJ transition. The idea is we can now get the original detection event or the new fault
one instead. We made similar changes for train 2. Figure 8 shows the new sensor models with
the added fault events. All other sensors will use the original version shown in Figure 7.

For this example, Xap = Yor = 0. We also set m = 4, Xp, = {tIF at9,t1F at10},
Yp, = {tIF at16}, ¥p, = {t2F at9,t2F at10}, ¥p, = {t2F at16}, ¥y, = {t1_atll},
Y, ={t1 at14}, Xy, = {t2 at1l}, and 1, = {t2 at14}.

8.1.2 Sensor Interdependencies

This series of models show the sensor’s interdependencies with respect to a given train. With
respect to the starting position of a particular train (represented by the initial state), sensors
can only be reached in a particular order, dictated by their physical location on the track.
This is shown in Figures 9 and 10. Both DES already show the added fault events.
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Figure 9: Sensor Interdependencies For Train 1 Figure 10: Sensor Interdependencies For Train 2

8.1.3 Train Models

The train models are shown in Figure 11 for train K (K = 1,2). Train K can only move
when its enablement event en_ trainK occurs, and then it can move at most a single unit of
distance (event umv_trainkK), before another en_ trainK must occur. This allows a supervisor
to precisely control the movement of the train by enabling and disabling event en_ trainK as
needed.
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0 1 Iumv,_traink Tumv._traink

Figure 11: Train K Model Figure 12: Sensors and Train K Figure 13: Sensors and Train K
with Faults

8.1.4 Relationship Between Sensors and Trains Models

Figure 12 shows the relationship between train K’s (K = 1,2) movement, and a sensor de-
tecting the train. It captures the idea that a train can reach at most one sensor during a unit
movement, and no sensors if it is disabled. Figure 13 shows the replacement model with fault
events added. We now seen that our plant model contains 14 DES in total.

8.2 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent collisions
in the track sections with sensors 11-13, 15-16, 12-14, and 9-10. The idea is to ensure that
only one train uses this track section at a time. We will first introduce the original collision
protection supervisors that were designed with the assumption of no faults, and then we will
introduce new fault tolerant versions with added redundancy.
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8.2.1 Collision Protection Supervisors

Figure 14 shows the collision protection supervisor (CPS-11-13) for the track section con-
taining sensors 11 and 13. Once a train has reached sensor 11, the other train is stopped at
sensor 10 until the first train reaches sensor 15, which indicates it has left the protected area.
The stopped train is then allowed to continue. Figures 15, 16, and 17 show similar supervisors
for the remaining track sections. Supervisors CPS-15-16 and CPS-9-10 have nonstandard
initial states in order to reflect the starting locations of the two trains.

It’s easy to see that supervisor CPS-11-13 will not be fault tolerant as it relies solely on
sensor 10 to detect when a second train arrives. If sensor 10 fails, the train continues and
could collide with the first train. Supervisors CPS-9-10 and CPS-12-14 will also not be
fault tolerant because of sensor 10. A failure at sensor 10 could cause supervisor CPS-9-10
to miss a train entering the protected zone, and could cause supervisor CPS-12-14 to miss
a train leaving the protected zone. Using the DES research software tool, DESpot [19], we
verified that the system passes N = 0 FT controllability and nonblocking (i.e. if all faults are
ignored) and fails all eight fault tolerant controllability and nonblocking properties (N > 1).
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Figure 14: CPS-11-13 Supervisor Figure 15: CPS-15-16 Supervisor
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Figure 16: CPS-12-14 Supervisor Figure 17: CPS-9-10 Supervisor
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8.2.2 Collision Protection Fault Tolerant Supervisors

We next modified supervisor CPS-11-13 to make it more fault tolerant. The result is shown
in Figure 18. We have added at states 1 and 4 a check for either sensor 9 or sensor 10. That
way if sensor 10 fails but sensor 9 doesn’t, we can still stop the train at sensor 9 and avoid
the collision. We made similar changes to supervisors CPS-12-14, and CPS-9-10, as shown
in Figures 19, and 20. Supervisor CPS-15-16 did not require any changes as it did not rely
on any of the sensors that had faults.

Using DESpot, we can verify that the supervisor is not fault tolerant controllable or non-
blocking for the plant. The reason is that if both sensors 9 and 10 fail, the train will not be
detected. However, the system can be show to be N-fault tolerant controllable for N =1 (i.e.
sensor 10 fails but not sensor 9), non-repeatable N-fault tolerant controllable for N = 4, and
resettable fault tolerant controllable (as long as both sensors 9 and 10 don’t fail in a given
pass, all is well). The system also passes the corresponding FT nonblocking properties. It can
also be shown that the system fails N-fault tolerant controllable and nonblocking for NV = 2.
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Figure 20: CPS-9-10FT Supervisor
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Figure 19: CPS-12-14FT Supervisor

8.3 Complete System

We next considered the full plant model for the testbed, as described in Leduc [18]. This
model includes all three loops shown in Figure 5, including all of the sensors shown, as well
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as six switches for routing, and three cranes, located at sensors 2, 13, and 21, for loading the
trains. The full model includes collision protection supervisors for all track sections as well
as supervisors for routing trains and stopping each train for loading when they reach a crane.
The original system contains 29 supervisors, 110 plant components and has a state space of
7.33 x 107 states.

For this system, we used a similar approach to the one described earlier to add fault events
to sensors, and to add fault tolerance to the supervisors. See Dierikx [20] for complete details.
For this version of the example, we have Xor = 0 and Y¥ar = Ug=12(Ujer, {tKF_atj}),
where In = {2,8,13,21,27}. The excluded faults are for key portions of the track where a
decision (such as stopping a train in front of a given crane) needs to be made but there does
not exist a second physical sensor appropriately located that can be used as a backup. To
deal with faults from these sensors, we believe we would need to add additional sensors.

For fault and reset sets, we have m = 16. For train 1, we have fault sets ¥Xp, =
UjGIFn{tFI_ atj}v n = 17 s 87 where IFl = {07 174}a IFQ = {35 55 67 7}7 IF3 = {9) 105 11}a
IF4 = {12, 14}, IF5 = {15, 16}, IFG = {19,20,22}, IF7 = {23, 24}, and IFS = {25,26} Sets
Y r, — X, are analogous, except that they are for train 2.

For train 1, we have reset sets X7, = Ujer,, {t1_atj}, n=1,...,8, where Ig; = {6,7,27},
Iy = {0,1,19,20}, Irs = {15,16}, Irs = {8,9,10}, Irs = {12,14}, Irs = {23,24}, Ir7 =
{25,26}, and Irs = {12,14}. Sets X7, — X1, are analogous, except that they are for train 2.

Using our software research tool, DESpot [19], we were able to determine that the system is
N-FT controllable and nonblocking (N = 1), non-repeatable N-F'T controllable and nonblock-
ing (N = 16), and resettable FT controllable and nonblocking. We ran an FT controllable
check on the system but after 33 hours and 1.908 x 10° states and counting, we stopped the
computation. See Table 1 for verification times and project state sizes (includes added FT
plant components).

We also ran N-FT controllability and nonblocking checks for N = 2. The system passed
for controllability and failed for nonblocking. The reason that it passed N-FT controllability
is that a switch failed to change state due to a sensor fault and a train derailed taking it to
a noncoreachable state before an illegal event could occur. This suggests that the routing
supervisors could be made more expressive by adding the uncontrollable train derailing events
to their event sets, but without matching transitions.

Table 1: Verification Times for Full System

Verification Time (seconds)
Property State Size Controllability ‘ Nonblocking
fault tolerant 1.908 x 10°+ | - -
N-fault tolerant (N =1) | 368,548 654 P | 3178 p
N-fault tolerant (N = 2) | 1.961 x 10° 13,916 P | 26,249 F
nonrepeatable N-FT 1.275 x 1019 | 4,230 P | 10,956 P
resettable F'T 594,448 2,007 P | 7,645 P
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9 Conclusions and Future Work

In this paper we investigate the problem of fault tolerance (FT) in the framework of discrete-
event systems. We introduce a set of eight fault tolerant controllability and nonblocking
definitions designed to capture different types of fault scenarios and to ensure that our system
remains controllable and nonblocking in each scenario. This approach is different from the
typical fault tolerant methodology as the approach does not rely on detecting faults and
switching to a new supervisor; it requires a supervisor to work correctly under normal and
fault conditions.

We then present a set of algorithms to verify the fault tolerant properties. As these
algorithms involve adding new plant components and then checking standard controllability
and nonblocking properties, they can instantly take advantage of existing controllability and
nonblocking software, as well as scalability approaches such as incremental verification and
binary decision diagrams (BDD).

For each algorithm, we provide a complexity analysis showing that the FT algorithms
multiply the complexity of the standard algorithms by a factor of one, N +1 (N is the number
of allowed faults), 2™ (m is the number of fault sets) and 2™(N + 1). We then prove the
correctness of the algorithms.

We finish with a small manufacturing example that illustrates how the theory can be
applied, and then we report on applying our approach to a much larger example.

For future work, we would like to investigate additional fault scenarios as well as additional
ways to model faults in the system.
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Appendices

A Proofs of Selected Propositions

Proposition 1:

Proof. Assume initial conditions for proposition.

Let Pap: ¥* — ¥\ be a natural projection.

Let s € L(G). (P1.1)
Must show implies s ¢ Lap < s € L(G').

Sufficient to show (A) s ¢ Laor = s € L(G') and (B) s € L(G') = s ¢ Lar

First we note that by Algorithm 5, we have G’ = G||GAF-.

We thus have L(G') = L(G) N PA_},L(GAF) as Yar C X, and Gar is defined over Yapr by

Algorithm 1. (P1.2)
We next note that by Algorithm 1, Gap contains an initial state but no transitions. We thus
have: L(Gar) = {€} (P1.3)

Part A) Show s ¢ Lap = s € L(G')

Assume s ¢ Lap = X5 . Xap.2%.

Must show implies: s € L(G’) = L(G) N Px £ L(GaF)

As s € L(G) from (P1.1), sufficient to show s € PxrL(GAF).
As s ¢ X XAp.X*, it follows that Pap(s) =e.

= Par(s) € L(Gar), by (P1.3)

= s € PxrL(GAF), as required.

Part B) Show s € L(G') = s ¢ Larp

Assume s € L(G').

Must show implies: s ¢ Lap

We note that s € L(G') implies s € Py L(GaF), by (P1.2).
= Par(s) € L(GaF)

= Par(s) =€, by (P1.3)

This implies s does not contain any o € Yap.

= 5 ¢ X*3Ap.X*, as required.

By parts (A) and (B), we have: s ¢ Larp <= s € L(G/) O
Proposition 2:

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have X = () and the proof is identical to the proof of Propo-
sition 1. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Let Pap : ¥* — X3\ and Pp : ¥* — X7 be natural projections.
We next note that by Algorithm 6, we have G’ = G||GaFr||GNF-

As G defined over X, Gar over Yar (by Algorithm 1), and Gnr over X (by Algorithm 2),
we have: L(G') = L(G) N PxrL(GaF) N Py L(GNF) (P2.1)
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Let G be the plant constructed by Algorithm 1. We thus have: G1 = G||Gar

= L(G1) = L(G) N Py tL(GAF)

= L(G') C L(Gy) (P2.2)
Let s € L(G) (P2.3)
Must show implies: s ¢ Lap As € Lyp <= s € L(G)

Part A) Show s ¢ Lap As € Lyp = s € L(G')

Assume s ¢ Lap and s € Lyp. (P2.4)
Must show: s € L(G') = L(G) N PxrL(Gar)N Py L(GNF)

By (P2.3), (P2.4), and Proposition 1, we have: s € L(G1) = L(G) N PxzL(Gar)  (P2.5)
All the remains is to show s € Pn'L(GNF).

N
Ass€Lyr=(2—Xp)*U J (X - Zp)"2r.(X — Br)*)¥, there exists 0 < j < N, such that
k=1

[Pr(s)| = J.

We note that as Gnp contains an initial state, we have € € L(GNF).

If j = 0, we immediately have Pp(s) = € € L(GNF)-

For j > 1, we can conclude: (dog,...,0;-1 € ¥p)Pr(s) = 00,...,0j-1

As j < N, it is easy to see from Algorithm 2, that fori = 0,...,7 — 1, we have: 61(yi, 04, ¥it+1)!,
where 7 is the transition function for GNF.

= 51(y0, 00,y - ,O’j_l)!

= 91(yo, Pr(s))!

= Pr(s) € L(GNF)

= s € P,'L(GnF)

Combining with (P2.5), we have: s € L(G) N PxpL(GaFr) N Pr'L(GNF) = L(G')

Part B) Show s € L(G') = s ¢ Lap A s € Lyp

Assume s € L(G’). Must show implies s ¢ Lap and s € Lyp.

As s € L(G'), we have s € L(G1), by (P2.2).

We thus have by Proposition 1 that s ¢ Lap. (P2.6)
We now need to show s € Lyr.

As L(G') = L(G) N Py L(GaF) N P L(GNr) by (P2.1), we have s € Po' L(GNF).

= Pp(s) € L(GNF)

Let j = |Pp(s)]. If j =0, we have Pp(s) =€, thus s € (X — Xp)* C Lyp.

We thus consider j > 1.

= (doo,...,0j-1 € ¥p)Pr(s) = 00,...,0j-1

As Pp(s) € L(GNF), Algorithm 2 implies that for i =0,...,j — 1, we have: 01(yi, 04, ¥i+1)!,
where 91 is the transition function for GNr.

= 01(yo, Pr(s)) = y;

As GnF contains no loops and transitions occur in a strictly increasing order in terms of state
labels, we have j < N.

As we have that s contains at most N events from X, it is thus clear that:

s e (E - EF)* U kgl((E - ZF)*EF(E - ZF)*)k = LnF
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Combining with (P2.6), we have s ¢ Lap and s € Ly, as required.

By parts (A) and (B), we thus conclude: s ¢ Lap As € Lyp <= s € L(G/) O
Proposition 3:

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have X = () and the proof is identical to the proof of Propo-
sition 1. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Let Pap + X% — Yjp, Pr: X* — Y5, and P, @ ¥ — X5, ¢ = 1,...,m, be natural
projections.
We next note that by Algorithm 7, we have: G’ = G||Gar||GNF||GF 1]l ||GFm

As G is defined over X, Gaf over Yar by Algorithm 1, Gnr over X g by Algorithm 2, and
Gr;over Xp, (i =1,...,m) by Algorithm 3, we have:

L(G') = L(G) N PypL(Gar) N Pp' L(GNE)NPR ' L(GFa) N...N PR L(Gpm)  (P3.1)
Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||GaFr||GNF
= L(G1) = L(G) N PxtL(Gar) N Pr'L(GNE)
= L(G') C L(Gy) (P3.2)
Let s € L(G). (P3.3)
Must show implies: s ¢ Laop U LNyrr A s € Lyp <= s € L(G')

Part A) Show s ¢ Laop ULNpr As € Lyp = s € L(G')
Assume s ¢ Lap U Lygp and s € Lyp. (P3.4)
Must show s € L(G’).
By (P3.3), (P3.4), and Proposition 2, we have: s € L(G1)
All the remains is to show s € PIZilL(GFJ),z’ =1,...,m.
Let i € {1,...,m}.
As s ¢ Lygr = U (S-S5, 5% S5, 5%), it follows that |Pp,(s)| < 1.
j=1
As Gy has an initial state (by Algorithm 3), we have e € L(Gp ).
By Algorithm 3, we have that for all 0 € X, 0;(yo,0,y1)!. This implies 0 € L(Gg).
= Pr,(s) € L(Gr})
=s€ P},?ilL(GF’i), as required.
Part B) Show s € L(G,) =s¢ LapULNRp NS € Lyp
Assume s € L(G').
Must show implies s ¢ Laop U Lygr and s € Lyp.
As s € L(G’), we have s € L(G1), by (P3.2).
We can thus conclude by Proposition 2 that: s ¢ Lap and s € Lyp. (P3.5)
We now only need to show s ¢ Lygrp.
As s € L(G’), we have by (P3.1): s € PgilL(GF,i),i =1,....,m.
= Pr,(s) € L(Ggs),i=1,...,m.
= Pp,(s) =0 € Xp or Pp(s)=¢ (i=1,...,m), by Algorithm 3.

m

=S ¢ LNRF = U (E*EFZZ*ZFZE*)
=1
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Combining with (P3.5), we have s ¢ Lar U Lygr and s € Lyp, as required.

By parts (A) and (B), we thus conclude: s ¢ Lap ULNrp As € Lyp <= s € L(G/) O
Proposition 4:

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have X = () and the proof is identical to the proof of Propo-
sition 1. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Let Pap : ¥* — X3 p and Prp, : ¥* — (¥p, UX7p)*, @ = 1,...,m, be natural projections.
We next note that by Algorithm 8, we have: G’ = G||GaF||GTF 1]l ---|/GTFm
As G is defined over X, GaF over Y ar by Algorithm 1, and Gy ; over X5, U X7, by Algorithm
4, we have:

L(G') = L(G) N PypL(GaF) N Prp L(Grra)N. .. N Prj L(Grrm) (P4.1)
Let G1 be the plant constructed by Algorithm 1. We thus have: G1 = G||GAF
= L(G1) = L(G) N Py L(GaF)
= L(G') C L(Gy) (P4.2)
Let s € L(G). (P4.3)
Must show implies: s ¢ Lap U Lrp <= s € L(G')

Part A) Show s ¢ Lap U Lrp = s € L(G')

Assume s ¢ Larp U Lpp. (P4.4)
Must show s € L(G') = L(G) N Py L(GAF)N Py L(Grr1) N ... N Prp L(GTF m)-

By (P4.3), (P4.4) and Proposition 1, we have: s € L(G1) = L(G) N Px+L(GaF)

All that remains is to show s € Pf}iL(GTF’i), i=1,....,m.

m
Ass ¢ Lrp = |J (E*.2p.(2 — X1)*.Xg.X"), it follows that:
i=1
(Vl S {1, . ,m}) S ¢ E*.EFi.(E — ETi)*~ZF¢~E*~

Let i = {1,...,m}.

We will use proof by contrapositive.

Sufficient to show: Prg,(s) ¢ L(Gri) = s € X*.XF.(X— X7,)*.YF. 2"

Assume Prg,(s) ¢ L(Grtr)-

We note that by Algorithm 4 that e € L(Grr;), as Gor; has an initial state.

= (38’ € (EFi U ETZ.)*)(HO' S EFi @] ETZ.)SIO' < PTFZ'(S)/\SI S L(GTFi) As'o ¢ L(GTFi)

From Algorithm 4, it is clear that all o/ € ¥, U X7, are defined at state yg, all o’ € Xp, are
defined at state y1, and no o’ € X, are defined at state y;.

= 0i(v0,8") =11, and 0 € Xp,

Also, as the only way to reach state y; is from state yy via o’ € X, it follows that string s’
ends in an event from X g;.

= (3" € (Xp, UXq)*)(30’ € ) s"0'0 = s'o < Prg,(s)
=s5€ X" Yp.(X - X)". X5 X%, as required.

Part B) Show s € L(G') = s ¢ Lap U Lpp

Assume s € L(G'). Must show implies s ¢ Lap U Lyp.
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As s € L(G'), we have s € L(G1), by (P4.2).

We can thus conclude by Proposition 1 that: s ¢ Lap (P4.5)
We now need to show s ¢ Lpp.

As s € L(G’), we have by (P4.1): s € PZTI}’Z-L(GTFJ)’Z' =1,....m

= (VZ S {1, ey m})PTpl(s) € L(GTF,i)

We proceed by proof by contradiction.

Assume s € Lyp.

= (Fie{l,...,m})s € D"Dp.(5 — O7 )" By DF

Let i € {1,...,m} be the above index.

This implies string Prp,(s) contains two events from ¥ in a row, without a o € X7, in
between.

As it is clear from Algorithm 4 that Gg; would never allow two o € Y, to occur in a row,
this contradicts Prp,(s) € L(GtF.)-

We thus conclude s ¢ Lyp.

Combining with (P4.5) we have s ¢ Lap U Lpp, as required.

By parts (A) and (B), we thus conclude: s ¢ Lap U Lyp < s € L(G') O
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B Proofs of Selected Theorems

Theorem 1:

Proof. Assume initial conditions for theorem.

Must show S is fault tolerant controllable for G <= S is controllable for G'.
From Algorithm 5, we have: G’ = G||Gar

From Algorithm 1, we know that Gay is defined over YA p.

Let Pap : X* — X\ be a natural projection.

As G is defined over ¥, we have: L(G') = L(G) N PxrL(GAaF) (T1.1)
Part A) Show (=)

Assume 8 is fault tolerant controllable for G. (T1.2)
Must show implies: (Vs € L(S) N L(G'))(Vo € 3,) so € L(G') = so € L(S)

Let s € L(S)NL(G') and 0 € &,,. (T1.3)
Assume so € L(G'). (T1.4)

Must show implies so € L(S).
To apply (T1.2), we need to show that s € L(S) N L(G), so € L(G) and s ¢ Lap.

We first note that (T1.1), (T1.3) and (T1.4) imply:
s€ L(S), s € L(G), and so € L(G)

As s € L(G’) by (T1.3), we conclude by Proposition 1 that s ¢ Lap.
We can now conclude by (T1.2) that so € L(S), as required.

Part B) Show (<)
Assume S is controllable for G'. (T1.5)

Must show implies S and G are FT consistent (follows automatically from initial assumptions)
and that: (Vs € L(S) N L(G))(Vo € ¥,) soc € L(G) As ¢ Larp = so € L(S)

Let s € L(S)NL(G) and o € ¥,,. Assume so € L(G) and s ¢ Lap. (T1.6)
Must show implies so € L(S).
We have two cases: (1) 0 € ¥ar, and (2) 0 ¢ Xarp

Case 1) 0 € Xap
As the system is F'T' consistent, it follows that o is self-looped at every state in S.
As s € L(S) by (T1.6), it thus follows that so € L(S), as required.

Case 2) 0 ¢ Xar

To apply (T1.5), we still need to show s € L(S) N L(G'), and so € L(G').

We first note that by (T1.6) and Proposition 1, we can conclude: s € L(G') (T1.7)
= s € PxrL(GaF), by (T1.1)

= Par(s) € L(GaF)

As 0 ¢ Yap, we have Pap(o) = e.

= PAF(SO') = PAF(S)PAF(O') = PAF(S) S L(GAF)

= s0 € Pxj-L(GAF)

Combining with (T1.6), (T1.7), and (T1.1), we have: s € L(S) N L(G'), 0 € ¥,, and so € L(G’)
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We can thus conclude by (T1.5) that so € L(S), as required.
We thus conclude by cases (1) and (2), that so € L(S).

We can now conclude by parts (A) and (B) that S is fault tolerant controllable for G iff S is
controllable for G'. O

Theorem 2:

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ¥z = () and the proof is identical to the proof of Theorem
1. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Must show S is N-fault tolerant controllable for G <= S is controllable for G'.
From Algorithm 6, we have G’ = G||Gar||GNF-

From Algorithm 1, we know that GaF is defined over YA, and from Algorithm 2, we know
that Gnp is defined over Y p.

Let Pap : ¥* — ¥4 and Pp : ¥* — X7 be natural projections.

As G is defined over ¥, we have: L(G') = L(G) N PxtL(GaF) N Pn'L(GNF) (T2.1)
Part A) Show (=)

Assume S is N-fault tolerant controllable for G. (T2.2)
Must show implies: (Vs € L(S) N L(G'))(Vo € 3,) so € L(G') = so € L(S)

Let s € L(S)N L(G'), and 0 € ¥,,. (T2.3)
Assume so € L(G'). (T2.4)

Must show implies so € L(S).

To apply (T2.2), we need to show that s € L(S) N L(G), so € L(G) and s ¢ LAp A s € Lyp.
We first note that (T2.1), (T2.3) and (T2.4) imply s € L(S), s € L(G), and so € L(G).

As s € L(G’) by (T2.3), Proposition 2 implies that: s ¢ Lap A s € Lyp

We can now conclude by (T2.2) that so € L(S), as required.

Part B) Show (<)
Assume S is controllable for G'. (T2.5)
Must show implies S and G are FT consistent, (follows automatically from initial assumptions)
and that:

(Vs € L(S)NL(G))(Vo € ) so € L(G)ANs ¢ Lap ANs € Lyp = so € L(S)
Let s € L(S)NL(G), 0 € ¥,. Assume so € L(G) and s ¢ LaAp As € Lyp. (T2.6)
Must show implies so € L(S).
We have two cases: (1) 0 € Xap UXp, and (2) 0 ¢ Yap UXp

Case 1) 0 € SArp UXp

As the system is F'T consistent, it follows that o is self-looped at every state in S.

As s € L(S) by (T2.6), it thus follows that so € L(S), as required.

Case 2) 0 ¢ YArp UXp

To apply (T2.5), we still need to show s € L(S) N L(G’), and so € L(G’).

We first note that by (T2.6) and Proposition 2, we can conclude: s € L(G'). (T2.7)
= s € PxtL(Gar) N P L(GNF), by (T2.1)

34



= Par(s) € L(Gar) and Pr(s) € L(GNF)

As 0 ¢ ¥Ar, we have Pap(0) = €. As 0 ¢ ¥, we have Pp(0) = €.

= PAF(SO') = PAF(S)PAF(O') = PAF(S) S L(GAF)

= Pp(so) = Pr(s)Pp(o) = Pp(s) € L(GNF)

= so € P\pL(Gar) N Py L(GNr)

Combining with (T2.6), (T2.7), and (T2.1), we have: s € L(S) N L(G'), 0 € ¥, and so € L(G’).
We can thus conclude by (T2.5) that so € L(S), as required.

We thus conclude by cases (1) and (2), that so € L(S).

We can now conclude by parts (A) and (B), that S is N-fault tolerant controllable for G iff S
is controllable for G'. O

Theorem 3:

Proof. Assume initial conditions for theorem.
We first note that if m = 0, we have ¥ = () and the proof is identical to the proof of Theorem
1. We can thus assume m > 1 for the rest of the proof without any loss of generality.
Must show S is non-repeatable N-fault tolerant controllable for G <= S is controllable for
G'.
From Algorithm 7, we have: G’ = G||GaF||GNr||GFall-- . ||GFm
From Algorithm 1, we know that Gag is defined over ¥ap. From Algorithm 2, we know
that G is defined over X, and from Algorithm 3, we know that Gg; is defined over X,
1=1,...,m.
Let Pap + X% — Yjp, Pr: X* — X5, and P, @ ¥ — X5, ¢ = 1,...,m, be natural
projections.
As G is defined over X, we have that:

L(G') = L(G) N PypL(Gar) N Pr'L(GNr) N PR L(Gra) N ... N P L(Grm)  (T3.1)

Part A) Show (=)

Assume S is non-repeatable N-fault tolerant controllable for G. (T3.2)
Must show implies: (Vs € L(S)NL(G'))(Vo € ¥,)s0 € L(G') = so € L(S)

Let s € L(S)N L(G’), and 0 € ¥,,. (T3.3)
Assume so € L(G’). (T3.4)

Must show implies so € L(S).

To apply (T3.2), we need to show that s € L(S) N L(G), so € L(G), s ¢ Lar U Lyrr and
s € Lyp.

We first note that (T3.1), (T3.3) and (T3.4) imply s € L(S), s € L(G), and so € L(G).

As s € L(G’) by (T3.3), we conclude by Proposition 3 that: s ¢ Lap U Lygr As € Lyp
We can now conclude by (T3.2) that so € L(S), as required.

Part B) Show (<)

Assume S is controllable for G'. (T3.5)

Must show implies S and G are FT consistent (follows automatically from initial assumptions)
and that:
(VS € L(S) N L(G))(VO’ € Eu) SO € L(G) AN ¢ LAFULNRr NS E Lyp = so € L(S)
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Let s € L(S)NL(G), 0 € ¥,. Assume so € L(G), and s ¢ LApULnygr As € Lyp. (T3.6)
Must show implies so € L(S).
We have two cases: (1) 0 € ¥arUXp, and (2) 0 ¢ Ear UXE,

Case 1) 0 € EaArp UXp
As the system is F'T consistent, it follows that o is self-looped at every state in S.
As s € L(S) by (T3.6), it thus follows that so € L(S), as required.

Case 2) 0 ¢ Arp UXp

To apply (T3.5), we still need to show s € L(S) N L(G'), and so € L(G').

We first note that by (T3.6), and Proposition 3, we can conclude: s € L(G') (T3.7)
= 5 € PypL(Gar) N Pp'L(GNE) N PR L(Gr1) N ...N Pp L(GEm), by (T3.1)

= Parp(s) € L(GarF), Pr(s) € L(Gnr) and P (s) € L(Grg), i =1,...,m

As o ¢ YAarUXp, we have Pap(0) =¢,Pp(0) =€, and Pr (o) =¢,i=1,...,m.

This implies Pap(so) = Pap(s)Pap(0) = Par(s) € L(GAaF), and Pp(so) = Pp(s)Pp(o) =
Pr(s) € L(GNF), and Pr,(so) = Pf,(s)Pr,(0) = Pr,(s) € L(Ggs),i=1,...,m.

= 50 € PypL(Gar) N Pp' L(GNr) N PR L(Gr1) N ...N Py L(Gm)

Combining with (T3.6), (T3.7), and (T3.1), we have: s € L(S) N L(G'), 0 € ¥, and so € L(G’)
We can thus conclude by (T3.5) that so € L(S), as required.

We thus conclude by cases (1) and (2), that so € L(S).

We can now conclude by parts (A) and (B), that S is non repeatable N-fault tolerant control-
lable for G iff S is controllable for G'. O

Theorem 4:

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have X = () and the proof is identical to the proof of Theorem
1. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Must show S is resettable fault tolerant controllable for G <= S is controllable for G’.
From Algorithm 8, we have: G’ = G||GaF||GTF 1] --.||GTFm

From Algorithm 1, we know that GaF is defined over YA r, and from Algorithm 4, we know
that Gor; is defined over X g, UXy,, i =1,...,m.

Let Pap : ¥* — X3 and Prp, : ¥* — (¥p, UX7p)*, @ =1,...,m, be natural projections.
As G is defined over X, we have that:

L(G') = L(G) N PypL(Gar) N Prp L(Grra) N...N Prj L(GTFm) (T4.1)
Part A) Show (=)
Assume S is resettable fault tolerant controllable for G. (T4.2)
Must show implies: (Vs € L(S) N L(G'))(Vo € 3,) so € L(G') = so € L(S)
Let s € L(S)N L(G’), and 0 € &,,. (T4.3)
Assume so € L(G'). (T4.4)

Must show implies so € L(S).
To apply (T4.2), we need to show that s € L(S) N L(G), so € L(G) and s ¢ Larp U Lrp.
We first note that (T4.1), (T4.3) and (T4.4) imply s € L(S), s € L(G), and so € L(G).
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As s € L(G’) by (T4.3), we conclude by Proposition 4 that: s ¢ Lap U Lrp
We can now conclude by (T4.2) that so € L(S), as required.

Part B) Show (<)
Assume S is controllable for G'. (T4.5)
Must show implies S and G are FT consistent, (follows automatically from initial assumptions)
and that:

(Vs € L(S)N L(G))(Vo € 3,) so € L(G) As ¢ LApU Lrp = so € L(S)
Let s € L(S)NL(G), 0 € ¥,. Assume so € L(G) and s ¢ Larp U Lpp. (T4.6)
Must show implies so € L(S).
We have two cases: (1) 0 € ¥arpUXp, and (2) 0 ¢ SArUXp

Case 1) 0 € SArpUXp

As the system is FT consistent, it follows that o is self-looped at every state in S.
As s € L(S) by (T4.6), it thus follows that so € L(S), as required.

Case 2) 0 ¢ SArpUXFp

To apply (T4.5), we still need to show s € L(S) N L(G'), and so € L(G').

We first note that by (T4.6) and Proposition 4, we can conclude: s € L(G’) (T4.7)
= 5 € PxpL(GaF) N Prp L(Grra) N...N Prp L(Grrm), by (T4.1)
= PAF(S) S L(GAF) and PTFZ-(S) € L(GTF,i)a 1=1,...,m (T4.8)

As 0 ¢ ¥ap, we have Pap(o) = €.
= PAF(SO') = PAF(S)PAF(O') = PAF(S) S L(GAF)
= s0 € Px\rL(GaF) (T4.9)

m m
We now have two cases to consider: (a) o ¢ |J 7, and (b) 0 € | X,
i—1 =1

7 1=

Casea)o ¢ | X1,
=1

1=
m
Aso ¢ XpU | 1, we have Prp,(0) =€, 1 =1,...,m.
i=1
= PTFZ'(SU) = PTFZ-(S)PTFZ'(U) = PTFi(S) S L(GTF,i)7 1=1,....m
= 50 € Prp, L(Gtra) N...N Prp L(Grpm)

Case b) 0 € Lnj

i=1
We note that Algorithm 4 states that all o/ € Y, are defined at every state in GTF i
i=1,...,m.
Let j € {1,...,m}.
If o € X7;, we have PTFj(J) = ¢. We thus have PTFj(sa) = PTFj(S)J € L(Gtrj) as
PTFj (8) € L(GTFJ) by (T4.8).
Otherwise, 0 ¢ Y1,. As we also have o ¢ Y, it follows that Prg,(c) = e. We thus have
Prr,(so) = Prg;(s)Pre;(0) = Prr;(s) € L(Gtrj), by (T4.8).
= 50 € Pf}jL(GTF,j) for both cases.

= 50 € Prp, L(Grra) N...N Prp L(Gopm)
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By cases (a) and (b), we can conclude: so € PE}IL(GTFJ) Nn...N PT_;mL(GTEm)
Combining with (T4.9), we have:

SO € P&}L(GAF) N P';].%L(GTF,I) Nn...N PE}WLL(GTF,m)
Combining with (T4.6), (T4.7), and (T4.1), we have: s € L(S) N L(G'), o € ¥, and so € L(G’).
We can thus conclude by (T4.5) that so € L(S), as required.

We thus conclude by cases (1) and (2), that so € L(S).

We can now conclude by parts (A) and (B), that S is resettable fault tolerant controllable for
G iff S is controllable for G'. O

Theorem 5:

Proof. Assume initial conditions for theorem.

Must show S and G are fault tolerant nonblocking <= G’ is nonblocking.

From Algorithm 9, we have: G’ = G||Gar||S

From Algorithm 1, we know that Gar is defined over YA p.

Let Pap : ¥* — ¥\ be a natural projection.

As G and S are defined over ¥, we have that: L(G') = L(S) N L(G) N Px-L(GaF) and

Lin(G') = Ly (S) N Ly (G) N PxpLin(GAF)- (T5.1)
Part A) Show (=)

Assume S and G are fault tolerant nonblocking. (T5.2)
Must show implies: (Vs € L(G’))(3s' € ¥*)ss’ € L,,(G')

Let s € L(G').

= s € L(S)NL(G) N PxrL(GaF) (T5.3)

= s € L(G) N PxrL(GAF)
= s € L(G||Gar)
We can thus apply Proposition 1 and conclude that s ¢ Lap.
As we have s € L(S) N L(G) from (T5.3), we can apply (T5.2) and conclude that:
(38" € ¥*)ss’ € Liy(S) N Ly (G) A ss’ ¢ Lap (T5.4)
We now need to show that ss’ € L,,,(G').
Sufficient to show: ss' € Ly, (S) N Ly(G) N PxpLin(GAF)
From (T5.4), we have ss’ € L,,,(S) N L,,,(G), so only need to show ss’ € PA_I{ﬂLm(GAF).
We note from Algorithm 1 that since all states in Gap are marked, we have L(GaF) =
L, (GaF).
It is thus sufficient to show: ss’ € PxL(GAF)
As ss' € L,(G) by (T5.4), we have ss’ € L(G), since L,,(G) C L(G).
From (T5.4), we have: ss’ ¢ Lap
Applying Proposition 1, we can conclude that: ss’ € L(G||Gar) = L(G) N Px+L(GaF)
= ss' € P\ L(GaF)
We thus have that G’ is nonblocking, as required.
Part B) Show (<)
Assume G’ is nonblocking. (T5.5)
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Must show implies S and G are FT consistent (follows from initial assumptions) and that:
(Vs € L(S)NL(G)) s ¢ Larp = (3s' € ¥*) s’ € Ly (S) N Ly (G) A ss’ ¢ Lar
Let s € L(S) N L(G). (T5.6)
Assume s ¢ Lap. (T5.7)
To apply (T5.5), we need to show: s € L(G') = L(S) N L(G) N Px+L(GaF)
As we have s € L(S) N L(G) from (T5.6), we only still need to show s € Px+L(GAF).
By (T5.6) and (T5.7), we can apply Proposition 1 and conclude:
s € L(G||Gar) = L(G) N PypL(GaF)
We thus have s € L(G’). As G’ is nonblocking, we can conclude: (3s' € ¥*)ss’ € L,,(G')
= 88 € Lin(S) N Ly(G) N Py Lim(GaFr), by (T5.1)
We thus have ss’ € L,,,(S) N L,,,(G), and only need to show that ss’ ¢ Lap.
We first note that we have ss’ € L(G), as L,,(G) C L(G).

We next note that ss' € Px Ly (Gar) implies ss' € Px-L(GaF) as every state is marked in
GArF, by Algorithm 1.

= ss’ € L(G)N P&}L(GAF) = L(G||GaF)
We can now conclude by Proposition 1 that ss’ ¢ Lap.
We thus conclude that S and G are fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are fault tolerant nonblocking iff
G’ is nonblocking. 0

Theorem 6:

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have Xz = () and the proof is identical to the proof of Theorem
5. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Must show S and G are N-fault tolerant nonblocking <= G’ is nonblocking.
From Algorithm 10, we have: G’ = G||Gar||GNF||S

From Algorithm 1, we know that Gar is defined over YA r, and from Algorithm 2, we know
that Gnp is defined over Xp.

Let Pap : ¥* — ¥\ and Pr : ¥* — X7 be natural projections.
As G and S are defined over X, we have L(G') = L(S) N L(G) N Px£L(GaFr) N Pz L(GNF)

and Ly (G') = Lin(S) N Ly (G) N Py pLin(Gar)N Pr' Ly (Gr). (T6.1)
PartA) Show (=)

Assume S and G are N-fault tolerant nonblocking. (T6.2)
Must show implies: (Vs € L(G’))(3s' € ¥*)ss’ € L,,(G')

Let s € L(G').

= s € L(S)NL(G) N PxtL(GaF) N Pz L(GNF) (T6.3)

= s € L(G) N P&;L(GAF) N PElL(GNF)
= S c L(GHGAFHGNF)
We can thus apply Proposition 2 and conclude: s ¢ Lar A s € LyF.

As we have s € L(S) N L(G) from (T6.3), we can apply (T6.2) and conclude that:
(38" € )88’ € Liy(S) N Liy(G) A ss’ ¢ Lap A ss' € Lyp (T6.4)
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We now need to show that ss’ € L,,(G').
Sufficient to show: ss” € Ly,(S) N Lin(G) N Px L (GaF)NPr ' Ly (GNF).-
From (T6.4), we have ss’ € L, (S) N Ly, (G), so only need to show ss’ € PxpLm(Gar) N
P'L,,(GNF).
We note from Algorithm 1 that as all states in Gap are marked, we have L(Gar) =
L, (Gar). From Algorithm 2, we have that all states in GNg are marked, thus L(GnNF)
= L (GNF).
It is thus sufficient to show that: ss’ € PxpL(Gar) N Pp'L(GNF)
As ss' € L, (G) by (T6.4), we have ss’ € L(G), since L,,,(G) C L(G).
From (T6.4), we have: ss’ ¢ Lap A ss' € Lyp
Applying Proposition 2, we can conclude that:
ss' € L(G||Gar||Gnr) = L(G) N Pyt L(Gar)N Pr'L(GNF)
= ss' € PxpL(Gar) N Py 'L(GNF)
We thus have that G’ is nonblocking, as required.
Part B) Show (<)
Assume G’ is nonblocking. (T6.5)
Must show implies S and G are F'T consistent (follows from initial assumptions) and that:
(VS € L(S) N L(G)) S ¢ Lap ANs€ Lyp =
(38" € £*)ss’" € Liny(S) N Liy(G) AN ss’ ¢ Larp Ass' € Lyp
Let s € L(S) N L(G). (T6.6)
Assume s ¢ Laop N s € Lyp. (T6.7)
To apply (T6.5), we need to show: s € L(G') = L(S) N L(G) N P L(GaF) N Pr'L(GnNr)
As we have s € L(S) N L(G) from (T6.6), we only still need to show:
s € Py} L(Gar) N Pr'L(Gwr)
By (T6.6) and (T6.7), we can apply Proposition 2, and conclude:
s € L(G||GaF||Gnr) = L(G) N PypL(Gar)N Pr'L(Gnr)
We thus have s € L(G’). As G’ is nonblocking, we can conclude: (3s' € ¥*)ss’ € L,,(G')
= 55" € Ly(S) N Liy(G) N PxpLim(Gar) N PptL(GNr), by (T6.1)
We thus have ss’ € L,,,(S) N L,,,(G), and only need to show that ss’ ¢ LapAss’ € Lyp.
We first note that we have ss’ € L(G), as L,,(G) C L(G).

We next note that ss’ € P&},Lm(GAF) implies ss’ € P&}L(GAF) as every state is marked in
GAF, by Algorithm 1.

We also note that ss’ € PEle(GNF) implies ss’ € PElL(GNF) as every state is marked in
GnF, by Algorithm 2.

= ss' € L(G) N Py L(GaF) N P L(GnF) =L(G||GaF||GNF)
We can now conclude by Proposition 2 that ss’ ¢ Lap and that ss’ € Lyp.
We thus conclude that S and G are N-fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are N-fault tolerant nonblocking
iff G’ is nonblocking. O
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Theorem 7:

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have X = () and the proof is identical to the proof of Theorem
5. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Must show S and G are non-repeatable N-fault tolerant nonblocking <= G’ is nonblocking.
From Algorithm 11, we have: G’ = G||GaF||GnrF||Gr 1l .. ||GFm||S

From Algorithm 1, we know that Gag is defined over ¥ap. From Algorithm 2, we know
that GNF is defined over ¥, and from Algorithm 3, we know that Gg; is defined over
EF“i = 1,...,m.

Let Pap : X% — Yjp, Pr: X* — X5, and P, @ ¥ — X5, ¢ = 1,...,m, be natural
projections.

As G and S are defined over ¥, we have that L(G') = L(S) N L(G) N PxpL(GaF) N
Pp'L(GNF) N PR'L(Gra) N ... N Pl L(Grm) and Liy(G') = Ly(S) N Lin(G) N Pyp

Lim(GaF) N Pp' Lin(GNF) N Pp' Ly (Gpa) N ... N P! Ly (GF m)- (T7.1)
Part A) Show (=)

Assume S and G are non-repeatable N-fault tolerant nonblocking. (T7.2)
Must show implies: (Vs € L(G’))(3s' € ¥*)ss’ € L,,(G’)

Let s € L(G').

= 5 € L(S)NL(G) N PypL(Gar) N Pr' L(GNr) N PR L(GEa) N ...N Pp L(GEm) (T7.3)
= 5 € L(G) N PypL(Gar) N Pr' L(GNE) N PR L(Gr1) N... N Pp L(GFm)
= s E L(GHGAFHGNFHGF,lH . HGF,m)
We can thus apply Proposition 3 and conclude that: s ¢ Lap U Lygr As € LyF.
As we have s € L(S) N L(G) from (T7.3), we can apply (T7.2) and conclude that:

(3 € ¥*)ss’ € Liy(S)N Ly (G) AN ss' ¢ Lap ULNgr N ss' € Lyp (T7.4)
We now need to show that ss’ € L,,(G').
Sufficient to show:

ss' € Lm(S)ﬂLm(G)ﬂPA_};Lm(GAF)ﬂPF_le(GNF)ﬂPF_‘lle(GFJ)ﬂ. . -ﬁPE,iLm(GF,m)-
From (T7.4), we have ss’ € L,,(S) N L,,,(G), so only need to show:

ss' € PypLm(GAF) N Py Ly (GNF) N Pg' Ly (Gra) N ... N Py Ly (GFm)
We note from Algorithm 1 that as all states in Gap are marked, we have L(GaF)
L, (Gar). From Algorithm 2, we have that all states in Gnp are marked, thus L(GnNw
= Ly, (Gnr). From Algorithm 3, we have that all states in G ; are marked, thus L(Gg ;)
Lm(GRi),’i = 1, oo,
It is thus sufficient to show:

ss' € PxpL(Gar) N P L(GNr) N Py L(Gpa) N -+ N Pp ' L(GEm)
As ss' € L,(G) by (T7.4), we have ss’ € L(G), since L,,(G) C L(G).
From (T7.4), we have: ss' ¢ Lap U LygrpAss’ € Lyp
Applying Proposition 3, we can conclude that: ss’ € L(G||Gar||GNF||GF 1
= ss' € PypL(Gar) N Pp ' L(GNr) N PR L(Gra) N ... N Pp L(GEm)
We thus have that G’ is nonblocking, as required.

Part B) Show (<)

~—

... [|GFm)
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Assume G’ is nonblocking. (T7.5)
Must show implies S and G are FT consistent (follows from initial assumptions) and that:

(Vs € L(S)NL(G))s ¢ LAp ULNgr NS € LNp =

(38" € )88’ € Liy(S) N Liy(G) Ass’' € Lap U LNrp A ss' € Lyp

Let s € L(S) N L(G). (T7.6)
Assume s ¢ Lap U LNpp/As € L. (T7.7)
To apply (T7.5), we need to show:

s € L(G') = L(S)NL(G) N Py L(Gar) N Py L(GNF) N P L(Gpa) N... N Py L(GEm)
As we have s € L(S) N L(G) from (T7.6), we only still need to show:

s € PxpL(Gar) N P L(GNr) N PR L(Gpa) N ... N Ppl L(Gpm).
By (T7.6) and (T7.7), we can apply Proposition 3 and conclude:

s € L(G[|Gar||GNrl|Grall - - [|GF.m)
= 5 € L(G) N PypL(Gar) N Pr' L(GNE) N PR L(Gr1) N ... N Pp L(GFm)
We thus have s € L(G’). As G’ is nonblocking, we can conclude: (3s' € ¥*)ss’ € L,,(G')
= 55 € Ly(S) N Li(G) N Py pLin(Gar) N Pr' L(GNr) N PR L(GF1) N ... N Pp  L(GF m),
by (T7.1)
We thus have ss’ € L,,,(S) N L,,,(G) and only need to show that ss’ ¢ Lap U Lygrp and
ss' € Lyr.
We first note that we have ss’ € L(G), as L, (G) C L(G).

We next note that ss' € Px Ly (Gar) implies ss' € Px-L(GaF) as every state is marked in
GArF, by Algorithm 1.

We note that ss’ € Pgle(GNF) implies ss' € P L(GNF) as every state is marked in GNF,
by Algorithm 2.

Also, we note that ss’ € Péle(GF7i) implies ss’ € Pf?ilL(GF,i) as every state is marked in
Gri, i =1,...,m, by Algorithm 3.

= ss' € L(G) N Py L(Gar) N Pr' L(GNr) N P L(Gp1) N ... N P L(GEm)

= 55’ € L(GHGAFHGNF”GF,lH ... HGFJH)

We can now conclude by Proposition 3 that: ss’ ¢ Larp U Lygr, and ss’ € Lyp

We thus conclude that S and G are non-repeatable N-fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are non-repeatable N-fault tolerant
nonblocking iff G’ is nonblocking. O

Theorem 8:

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ¥ = () and the proof is identical to the proof of Theorem
5. We can thus assume m > 1 for the rest of the proof without any loss of generality.

Must show S and G are resettable fault tolerant nonblocking <= G’ is nonblocking.

From Algorithm 12, we have: G’ = G||GaF||GTF 1]l ---||/GTFml|S

From Algorithm 1, we know that Gap is defined over Xar. From Algorithm 4, we know that
Gy is defined over Xy, UXp,i=1,...,m.

Let Pap : ¥* — X3 and Prp, : ¥* — (¥F, UX7)*, i = 1,...,m, be natural projections.
As G is defined over %, we have that L(G') = L(S) N L(G) N Py L(GaF) N Prp L(Grr,1)
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N...NPrp L(Grrm) and Ly (G') = Lyn(S) N Lin(G) N PipLin(Gar) N Py L (Grr1) N

N Ppp Lin(Grrm). (T8.1)
Part A) Show (=)
Assume S and G are resettable fault tolerant nonblocking. (T8.2)
Must show implies: (Vs € L(G’))(3s' € ¥*)ss’ € L,,(G’)
Let s € L(G').
= 5 € L(S) N L(G) N Py L(Gar) N Prp L(Grr 1) N .. .NPrj L(GTFm) (T8.3)
= 5 € L(G) N PypL(Gar) N Prp L(Grra) N...N
PE;mL(GTF,m>
= S € L(GHGAFHGTF,IH R ||GTF,m)
We can thus apply Proposition 4 and conclude:
S Qé LAarp U Lrp
As we have s € L(S) N L(G) from (T8.3), we can apply (T8.2) and conclude:
(3s' € ¥*)ss’ € Ly (S) N Ly (G) A ss’ ¢ Lap U Lrp (T8.4)

We now need to show that ss’ € L,,(G').
Sufficient to show:
s5' € Lyn(8) N L (G) N PypLin(Gar) N Prpy L (Grra) N .. N Prp L (Grrm)
From (T8.4), we have ss’ € L, (S) N Ly, (G), so only need to show ss’ € PxpLim(Gar) N
P Lin(Grr1) N ... N Prp Lin(GrF,m)-
We note from Algorithm 1 that as all states in Gap are marked, we have L(Gar) =
L, (Gar). From Algorithm 4, we have that all states in Gg ; are marked, i = 1,...,m, thus
L(Gtri) = Lin(GTF,)-
It is thus sufficient to show:
ss' € PxpL(Gar) N Prp L(Grra) N ... N Prp L(Grrm)
As ss' € L, (G) by (T8.4), we have ss’ € L(G), since L,,(G) C L(G).
Also from (T8.4), we have: ss' ¢ Lap U Lrp
Applying Proposition 4, we can conclude that: ss’ € L(G||Gar||GTF1l|--.||GTFm)
= ss' € PypL(Gar) N Prp, L(Gtra) N...NPrp L(Grrm)
We thus have that G’ is nonblocking, as required.
Part B) Show (<)
Assume G’ is nonblocking. (T8.5)
Must show implies S and G are F'T consistent (follows from initial assumptions) and that:
(Vs € L(S)NL(G))s ¢ Larp U Lyp = (38’ € ¥*)ss’ € Ly (S) N Ly (G) A ss’ ¢ Lap U Lrp
Let s € L(S) N L(G). (T8.6)
Assume s ¢ Lap U Lpp. (T8.7)
To apply (T8.5), we need to show:
s € L(G') = L(S) N L(G) N Py, L(GaF) N Prj L(Grr) N ... N Prp L(GTFm)
As we have s € L(S) N L(G) from (T8.6), we only still need to show:
s € PxpL(Gar) N Prp L(Grra) N... N Prp L(GTFm)
By (T8.6) and (T8.7), we can conclude by Proposition 4: s € L(G||GaF||GTF 1]l ||GTFm)
= 5 € PypL(Gar) NPrp L(Grra) N...NPrp L(GTFm)
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We thus have s € L(G’). As G’ is nonblocking, we can conclude: (3s’ € ¥*)ss’ € L;,,(G')

= 55' € Lin(8) N Ly (G) N Py pLin(Gar) N Prf L(Grra) N... N Prg L(Grrm), by (T8.1)
We thus have ss’ € L;,,(S) N L,,(G) and only need to show that ss’ ¢ Lap U Lyp.

We first note that we have ss’ € L(G), as L,,(G) C L(G).

We next note that ss’ € PA_},Lm(GAF) implies ss’ € PA_};L(GAF) as every state is marked in
GAF, by Algorithm 1.

Also, we note that ss’ € Pf}iLm(GTFyi) implies ss’ € PT_;Z_L(GTFJ) as every state is marked
in Grr i, by Algorithm 4, fori=1,...,m.

= ss' € L(G) N PypL(GaF) N Prp, L(Gtra) N ... NPrp L(Grrm)

= ss' € L(G||Gar||GTFall--.||GTFm)

We can now conclude by Proposition 4 that: ss’ ¢ Larp U Lrp

We thus conclude that S and G are resettable fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are resettable fault tolerant
nonblocking iff G’ is nonblocking. O
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