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Abstra
t

In this paper we investigate the problem of fault toleran
e in the framework of

dis
rete-event systems (DES). We introdu
e our setting, and then provide a set of

fault tolerant de�nitions designed to 
apture di�erent types of fault s
enarios and

to ensure that our system remains 
ontrollable and nonblo
king in ea
h s
enario.

We then present algorithms to verify these properties followed by 
omplexity anal-

yses and 
orre
tness proofs of the algorithms. Finally, examples are provided to

illustrate our approa
h.

Keywords: Dis
rete-Event Systems; Supervisory 
ontrol; Fault tolerant.



Contents

1 Introdu
tion 1

2 Preliminaries 2

3 Fault Tolerant Setting 3

3.1 Fault Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Fault Tolerant Consisten
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.3 Fault S
enarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Fault Tolerant Controllability De�nitions 5

4.1 Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.2 N-Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 Non-repeatable N-Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . 7

4.4 Resettable Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . . . . . 7

5 Fault Tolerant Nonblo
king De�nitions 8

5.1 Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 N-Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.3 Non-repeatable N-Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . 8

5.4 Resettable Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . . . . . 9

6 Algorithms 9

6.1 Algorithms to Constru
t Plants . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1.1 Constru
t Ex
luded Faults Plant . . . . . . . . . . . . . . . . . . . . . . 10

6.1.2 Constru
t N-Faults Plant . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.1.3 Constru
t Non-repeatable N-Faults Plant . . . . . . . . . . . . . . . . . 11

6.1.4 Constru
t Resettable Faults Plant . . . . . . . . . . . . . . . . . . . . . 11

6.2 Verify Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . . . . . . . 12

6.3 Verify N-Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . . . . . . 12

6.4 Verify Non-repeatable N-Fault Tolerant Controllability . . . . . . . . . . . . . . 13

6.5 Verify Resettable Fault Tolerant Controllability . . . . . . . . . . . . . . . . . . 13

6.6 Verify Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . . . . . . . 14

6.7 Verify N-Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . . . . . . 14

6.8 Verify Non-repeatable N-Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . 15

6.9 Verify Resettable Fault Tolerant Nonblo
king . . . . . . . . . . . . . . . . . . . 15

6.10 Algorithm Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.10.1 FT Controllability Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 16

6.10.2 N-FT Controllability Algorithm . . . . . . . . . . . . . . . . . . . . . . . 16

6.10.3 Non-repeatable N-FT Controllability Algorithm . . . . . . . . . . . . . . 16

i



6.10.4 Resettable FT Controllability Algorithm . . . . . . . . . . . . . . . . . . 17

7 Algorithm Corre
tness 17

7.1 Fault Tolerant Propositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7.2 Fault Tolerant Controllable Theorems . . . . . . . . . . . . . . . . . . . . . . . 18

7.3 Fault Tolerant Nonblo
king Theorems . . . . . . . . . . . . . . . . . . . . . . . 18

8 Manufa
turing Example 19

8.1 Base Plant Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.1 Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.2 Sensor Interdependen
ies . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.1.3 Train Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.1.4 Relationship Between Sensors and Trains Models . . . . . . . . . . . . . 21

8.2 Modular Supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8.2.1 Collision Prote
tion Supervisors . . . . . . . . . . . . . . . . . . . . . . . 22

8.2.2 Collision Prote
tion Fault Tolerant Supervisors . . . . . . . . . . . . . . 23

8.3 Complete System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9 Con
lusions and Future Work 25

A Proofs of Sele
ted Propositions 28

B Proofs of Sele
ted Theorems 33

ii



1 Introdu
tion

Supervisory 
ontrol theory, introdu
ed by Ramadge and Wonham [1, 2, 3℄, provides a formal

framework for analysing dis
rete-event systems (DES). In this theory, automata are used to

model the system to be 
ontrolled and the spe
i�
ation for the desired system behaviour. The

theory provides methods and algorithms to obtain a supervisor that ensures the system will

produ
e the desired behaviour.

However, the above typi
ally assumes that the system behavior does not 
ontain faults

that would 
ause the a
tual system to deviate from the theoreti
al model. An example is a

sensor that dete
ts the presen
e of an approa
hing train. If the supervisor relies on this sensor

to determine when the train should be stopped in order to prevent a 
ollision, it 
ould fail to

enfor
e its 
ontrol law if the sensor failed. Our goal in this paper is to develop a way to add

fault events to the system's plant model and to 
ategorize some 
ommon fault s
enarios. We

will then develop some properties that will allow us to determine if a supervisor will still be


ontrollable and nonblo
king in these s
enarios. This paper builds upon our earlier work in

Radel et al. [4℄.

Currently in the DES literature, the most 
ommon approa
h when a fault is dete
ted is

to swit
h to a new supervisor to handle the system in its degraded mode. Su
h an approa
h

fo
uses on fault re
overy as opposed to fault toleran
e. This requires the 
onstru
tion of a

se
ond supervisor, and requires that there be a means to dete
t the o

urren
e of the fault

in order to initiate the swit
h. In the approa
h we present in this paper, we use a single

supervisor that will behave 
orre
tly in the presen
e of the spe
i�ed fault s
enarios. This

method does not rely on dete
ting the fault, but on fault tolerant supervisors. We will now

dis
uss some relevant previous work.

Lin [5℄ dis
ussed both robust and adaptive supervisory 
ontrol in dis
rete-event systems,

in
luding ne
essary and su�
ient 
onditions for the existen
e of a robust supervisor. Based

on this 
ondition, a robust supervisory 
ontrol and observation approa
h for synthesizing a

supervisory 
ontrol was developed. The goal of robust supervision is to synthesize a supervisor

that realizes a given desired behavior for all possible systems.

In Park et al. [6℄, they presented ne
essary and su�
ient 
onditions for fault tolerant

robust supervisory 
ontrol of dis
rete-event systems that belong to a set of models. When

these 
onditions are satis�ed, fault toleran
e 
an be a
hieved. In the paper, the results were

applied to the design, modelling, and 
ontrol of a work
ell 
onsisting of ar
 welding (GMAW)

robots, a sensor, and a 
onveyor.

In Paoli et al. [7℄, the 
ontroller was updated based on the information provided by online

diagnosti
s. The supervisor needs to dete
t the malfun
tioning 
omponent in the system in

order to a
hieve the desired spe
i�
ation. The authors proposed the idea of safe diagnosability

as a step to a
hieve the fault tolerant 
ontrol. Two new notations were introdu
ed in this

work (safe 
ontrollability) and (a
tive fault tolerant system), to 
hara
terize the 
onditions

that must be satis�ed when solving the fault tolerant 
ontrol problem using this approa
h.

Qin Wen et al. [8℄ introdu
e a framework for fault-tolerant supervisory 
ontrol of dis
rete-

event systems. In this framework, plants 
ontain both normal behavior and behavior with

faults, as well as a submodel that 
ontains only the normal behavior. The goal of fault-

tolerant supervisory 
ontrol is to enfor
e a spe
i�
ation for the normal behavior of the plant

and to enfor
e another spe
i�
ation for the overall plant behavior. This in
ludes ensuring
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that the plant re
overs from any fault within a bounded delay so that after the re
overy, the

system state is equivalent to a state in the normal plant behavior. They formulate this notion

of fault-tolerant supervisory 
ontrol and provide a ne
essary and su�
ient 
ondition for the

existen
e of su
h a supervisor. The 
ondition involves notions of 
ontrollability, observability

and relative-
losure together with the notion of stability.

This paper is organized as follows. Se
tion 2 dis
usses DES preliminaries. Se
tion 3 in-

trodu
es fault events and the fault s
enarios to whi
h they apply. Se
tion 4 presents our

fault tolerant 
ontrollability de�nitions while Se
tion 5 presents our fault tolerant nonblo
k-

ing de�nitions. Se
tion 6 presents algorithms to verify the fault tolerant 
ontrollability and

nonblo
king properties and provides a 
omplexity analysis. Se
tion 7 presents algorithm 
or-

re
tness proofs and Se
tion 8 provides a manufa
turing example to illustrate our approa
h.

Finally, Se
tion 9 provides 
on
lusions and future work.

2 Preliminaries

We now present a summary of the DES terminology that we use in this paper. For more

details, please refer to [2℄.

Let Σ be a �nite set of distin
t symbols (events). Let Σ+ denote the set of all �nite,

non-empty sequen
es of events, and Σ∗ be the set of all �nite sequen
es of events in
luding

ǫ, the empty string. We 
an then de�ne Σ∗:= Σ+ ∪ {ǫ}. For s ∈ Σ∗, |s| equals the length

(number of events) of the string.

Let L ⊆ Σ∗ be a language over Σ. A string t ∈ Σ∗ is a pre�x of s ∈ Σ∗ (written t ≤ s)
if s = tu, for some u ∈ Σ∗. The pre�x 
losure of language L (denoted L) is de�ned as

L := {t ∈ Σ∗ | t ≤ s for some s ∈ L}. Let Pwr(Σ) denote the set of all possible subsets of Σ.
For language L, the eligibility operator, EligL : Σ∗ → Pwr(Σ), is given by EligL(s) := {σ ∈
Σ |sσ ∈ L} for s ∈ Σ∗.

A DES automaton is represented as a 5-tuple G = (Y,Σ, δ, yo, Ym) where Y is the state set,

Σ is the event set, the partial fun
tion δ : Y ×Σ → Y is the transition fun
tion, yo is the initial

state, and Ym is the set of marker states. The fun
tion δ is extended to δ : Y ×Σ∗ → Y in the

natural way. The notation δ(y, s)! means that δ is de�ned for s ∈ Σ∗ at state y. For DES G,

the language generated is denoted by L(G), and is de�ned to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G is de�ned as Lm(G) := { s ∈ L(G)| δ(yo, s) ∈ Ym}. The rea
hable
state subset of DES G, denoted Yr, is Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}. A DES G is

rea
hable if Yr = Y . We will always assume G is rea
hable.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2, s ∈ Σ∗, and σ ∈ Σ, we de�ne the

natural proje
tion Pi : Σ∗ → Σ∗

i a

ording to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i ) → Pwr(Σ∗) is the inverse image of Pi su
h that for L⊆Σ∗

i , P−1
i L :=

{s ∈ Σ∗|Pi(s) ∈ L}.

De�nition 1. For Gi = (Qi, Σi, δi, qo,i, Qm,i) (i = 1, 2), we de�ne the syn
hronous produ
t
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G = G1||G2 of the two DES as:

G := (Q1 × Q2, Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 × Qm,2),

where δ((q1, q2), σ) is only de�ned and equals:

(q′1, q
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1or
(q1, q

′

2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

It follows that L(G) = P−1
1 L(G1)∩P−1

2 L(G2) and Lm(G) = P−1
1 Lm(G1)∩P−1

2 Lm(G2).
We note that if Σ1 = Σ2, we get L(G) = L(G1) ∩ L(G2) and Lm(G) = Lm(G1) ∩ Lm(G2).

For DES, the two main properties we want to 
he
k are nonblo
king and 
ontrollability.

De�nition 2. A DES G is said to be nonblo
king if:

(∀s ∈ L(G)) (∃s′ ∈ Σ∗) ss′ ∈ Lm(G)

For 
ontrollability, we assume the standard event partition Σ = Σu ∪̇Σc, splitting our

alphabet into un
ontrollable and 
ontrollable events.

De�nition 3. A supervisor S = (X, Σ, ξ, xo, Xm) is 
ontrollable for plant G = (Y,Σ, δ, yo, Ym)
if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ L(S)

We now provide some language de�nitions that will be useful for this paper. We start with

the language Lk. This is the set of strings 
onstru
ted from any k strings in L.

De�nition 4. Let L⊆Σ∗ and k ∈ {1, 2, 3, . . .}. We de�ne the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2 . . . sk for some s1, s2, . . . , sk ∈ L}

We next de�ne the notation for the language 
onstru
ted from all possible ways to 
on-


atenate a string from language L1, followed by an event from Σ′, and a string from language

L2.

De�nition 5. Let L1, L2⊆Σ∗ and Σ′⊆Σ. We de�ne the language L1.Σ
′.L2 to be:

L1.Σ
′.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈ L2, σ ∈ Σ′}

3 Fault Tolerant Setting

In this se
tion, we will introdu
e our 
on
ept of fault events and a 
onsisten
y property that our

systems must satisfy. In the following se
tion, we will assume that all DES are deterministi
,

and that we are given plant G = (Y,Σ, δ, yo, Ym) and supervisor S = (X, Σ, ξ, xo, Xm).

3.1 Fault Events

In this paper, our approa
h will be to add a set of un
ontrollable events to our plant model to

represent the possible faults in the system. For example, if we had a sensor to dete
t when a

3



train passes, its plant model might originally 
ontain an event su
h as trn_sen0 indi
ating a

train is present. We 
ould add a new un
ontrollable event, trnf_sen0, that will o

ur instead

if the sensor fails to dete
t the train. This will allow us to model how the system will behave

after the o

urren
e of the fault. Our goal will be to design supervisors that will still behave


orre
tly even if a fault event o

urs, even though they 
an't dete
t the fault event dire
tly.

We start by de�ning a group of m ≥ 0 mutually ex
lusive sets of fault events.

ΣFi
⊆ Σu, i = 1, . . . , m

The idea here is to group related faults into sets su
h that faults of a given set represent

a 
ommon fault 
ondition, while faults of a di�erent set represent a di�erent fault 
ondition.

For example, two sensors in a row that 
ould ea
h be used to dete
t the train in time for a

given tra
k segment might be in the same fault set, but a sensor in a di�erent part of the

tra
k would be in a di�erent set.

De�nition 6. We refer to faults in ΣFi
, i = 1, . . . , m, 
olle
tively as standard fault events:

ΣF :=
˙⋃

i=1,...,m

ΣFi

We note that for m = 0, ΣF = ∅.

The standard fault events are the faults that will be used to de�ne the various fault

s
enarios that our supervisors will need to be able to handle. However, there are two additional

types of faults that we need to de�ne in order to handle two spe
ial 
ases. The �rst type is


alled unrestri
ted fault events, denoted ΣΩF ⊆ Σu. These are faults that a supervisor 
an

always handle and thus are allowed to o

ur unrestri
ted.

The se
ond type is 
alled ex
luded fault events, denoted Σ∆F ⊆ Σu. These are faults that


an not be handled at all and thus are essentially ignored in our s
enarios. The idea is that this

would allow us to still design a fault tolerant supervisory for the remaining faults. Typi
ally,

most systems would have neither ex
luded or unrestri
ted faults, but we will in
lude them in

our de�nitions for the systems that do.

For ea
h fault set, ΣFi
(i = 0, . . . , m), we also need to de�ne a mat
hing set of reset

events, denoted ΣTi
⊆ Σ. These events will be explained in Se
tion 3.3, when we des
ribe the

resettable fault s
enario.

3.2 Fault Tolerant Consisten
y

We now present a 
onsisten
y requirement that our systems must satisfy.

De�nition 7. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m), Σ∆F , and ΣΩF , is fault tolerant (FT) 
onsistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F , ΣΩF , ΣFi
(i = 0, . . . , m), are pair-wise disjoint.

3. (∀i ∈ 1, . . . , m)ΣFi
6= ∅

4



4. (∀i ∈ 1, . . . , m)ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministi
.

6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF ))ξ(x, σ) = x

Point (1) says that fault events are un
ontrollable sin
e allowing a supervisor to disable

fault events would be unrealisti
. Point (2) requires that the indi
ated sets of faults be

disjoint sin
e they must ea
h be handled di�erently. Point (3) says that fault sets ΣFi
are

non-empty. Point (4) says a fault set must be disjoint from its 
orresponding set of reset

events so we 
an distinguish them.

Points (5) and (6) say that S is deterministi
 (single initial state and at most a single

transition leaving a given state for a given event) and that at every state in S, there is a sel�oop

for ea
h fault event in the system. This means a supervisor 
annot 
hange state (and thus


hange enablement information) based on a fault event. This is a key 
on
ept as it e�e
tively

makes fault events unobservable to supervisors. If S is de�ned over a subset Σ′ ⊂ Σ instead,

we 
ould equivalently require that Σ′ 
ontain no fault events.

3.3 Fault S
enarios

In this paper, we will 
onsider four fault s
enarios. The �rst is the default fault s
enario where

the supervisor must be able to handle any non-ex
luded fault event that o

urs. The se
ond

s
enario is the N ≥ 0 fault s
enario where the supervisor is only required to handle at most

N , non-ex
luded fault events and all unrestri
ted fault events.

The next s
enario is the non-repeatable N ≥ 0 fault s
enario where the supervisor is only

required to handle at most N , non-ex
luded fault events and all unrestri
ted fault events, but

no more than one fault event from any given ΣFi
(i = 0, . . . , m) fault set. This de�nition

allows the designer to group faults together in fault sets su
h that a fault o

urring from one

set does not a�e
t a supervisors ability to handle a fault from a di�erent set. Parti
ularly for

a situation where a supervisor 
ould handle only one fault per fault set, this would allow m
faults to o

ur instead of only one using the previous s
enario.

The last s
enario we 
onsider is the resettable fault s
enario. This is designed to 
apture

the situation where at most one fault event from ea
h ΣFi
(i = 0, . . . , m) fault set 
an be

handled by the supervisor during ea
h pass through a part of the system, but this ability

resets for the next pass. For this to work, we need to be able to dete
t when the 
urrent pass

has 
ompleted and it is safe for another fault event from the same fault set to o

ur. We use

the fault set's 
orresponding set of reset events to a
hieve this. The idea is that on
e a reset

event has o

urred, the 
urrent pass 
an be 
onsidered over and it is safe for another fault

event to o

ur.

4 Fault Tolerant Controllability De�nitions

We will now develop some properties that will allow us to determine if a supervisor will still

be 
ontrollable in the four fault s
enarios that we introdu
ed in the previous se
tion.
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4.1 Fault Tolerant Controllability

The �rst fault tolerant property that we introdu
e is designed to handle the default fault

s
enario. First, we need to de�ne the language of ex
luded faults. This is the set of all strings

that in
lude at least one fault from Σ∆F .

De�nition 8. We de�ne the language of ex
luded faults as:

L∆F = Σ∗.Σ∆F .Σ∗

De�nition 9. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT) 
ontrollable if it is FT


onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard 
ontrollability de�nition but ignores strings

that in
lude ex
luded fault events. As the language L(S) ∩ L(G) is pre�x 
losed, pre�xes

of these strings that do not 
ontain ex
luded faults must be 
he
ked. This de�nition is

equivalent to blo
king all ex
luded fault events from o

urring in the system behavior and

then 
he
king the standard 
ontrollability de�nition. This is the most powerful of the fault

tolerant de�nitions as the supervisor must be able to handle a potentially unlimited number

of faults that 
an o

ur in any order. We note that if Σ∆F = ∅, then De�nition 9 redu
es to

the standard 
ontrollability de�nition as L∆F redu
es to L∆F = ∅.

Typi
ally, the set of ex
luded faults for a given system is empty. When a system is FT


ontrollable and Σ∆F 6= ∅, we say that it is FT 
ontrollable with ex
luded faults to emphasize

that it is less fault tolerant than if it passed the de�nition with Σ∆F = ∅. We will use a similar

expression with the other fault tolerant de�nitions.

4.2 N-Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the N ≥ 0 fault

s
enario. First, we need to de�ne the language of N-fault events. This is the set of all strings

that in
lude at most N faults from ΣF , in
luding those that 
ontain no su
h faults.

De�nition 10. We de�ne the language of N-fault events as:

LNF = (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k

De�nition 11. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT) 
ontrollable if it is FT


onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard 
ontrollability de�nition but ignores strings

that in
lude ex
luded fault events or more than N faults from fault sets ΣFi
(i = 0, . . . , m).
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This de�nition is essentially weaker than the previous one sin
e if we take N = ∞ we get the

FT 
ontrollability de�nition ba
k. If we set N = 0, we get the 
ontrollability de�nition with

all fault events from ΣF ex
luded as well sin
e LNF will simplify to LNF = (Σ − ΣF )∗. We

also note that if m = 0, we get ΣF = ∅. This means LNF will simplify to LNF = Σ∗ whi
h

means De�nition 11 will simplify to De�nition 9.

Typi
ally, the set of unrestri
ted faults for a given system is empty. When a system is

N-FT 
ontrollable and ΣΩF 6= ∅, we say that it is N-FT 
ontrollable with unrestri
ted faults

to emphasize that it is more fault tolerant than if it passed the de�nition with ΣΩF = ∅. We

will use a similar expression with the other fault tolerant de�nitions.

4.3 Non-repeatable N-Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the non-repeatable

N ≥ 0 fault s
enario. First, we need to de�ne the language of non-repeatable fault events. This

is the set of all strings that in
lude two or more faults from a single fault set ΣFi
(i = 0, . . . , m).

De�nition 12. We de�ne the language of non-repeatable fault events as:

LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

De�nition 13. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT) 
on-

trollable, if it is FT 
onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard 
ontrollability de�nition, but ignores

strings that in
lude ex
luded fault events, more than N faults from fault sets ΣFi
(i =

0, . . . , m), or strings that in
lude two or more faults from a single fault set. We note that

if m = 0, we get ΣF = ∅. This means LNF simpli�es to LNF = Σ∗ and LNRF simpli�es to

LNRF = ∅. This means De�nition 13 simpli�es to De�nition 9.

4.4 Resettable Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the resettable fault

s
enario. First, we need to de�ne the language of resettable fault events. This is the set of all

strings where two faults from the same fault set ΣFi
o

ur in a row without an event from the


orresponding set of reset events in between.

De�nition 14. We de�ne the language of resettable fault events as:

LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗)

De�nition 15. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT) 
ontrollable if
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it is FT 
onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard 
ontrollability de�nition, but ignores

strings that in
lude ex
luded fault events and strings where we get two fault events from

the same fault set in a row without an event from the 
orresponding set of reset events in

between. We note that if m = 0, we get ΣF = ∅. This means LTF simpli�es to LTF = ∅ whi
h

means De�nition 15 simpli�es to De�nition 9.

5 Fault Tolerant Nonblo
king De�nitions

We will now develop some properties that will allow us to determine if a system will still be

nonblo
king in the four s
enarios that we introdu
ed in Se
tion 3.3.

We use the fault languages from Se
tion 4 and a similar approa
h to add fault tolerant

prin
iples to the standard nonblo
king de�nition.

5.1 Fault Tolerant Nonblo
king

The �rst fault tolerant nonblo
king property that we introdu
e is designed to handle the

default fault s
enario. We use the language of ex
luded faults from Se
tion 4.1.

De�nition 16. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT) nonblo
king if it is FT


onsistent and:

(∀s ∈ L(S) ∩ L(G))
(s /∈ L∆F ) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F )

We note that if Σ∆F = ∅, then De�nition 16 redu
es to the standard nonblo
king de�nition.

Also, if m = 0 then De�nitions 17, 18, and 19 all simplify to De�nition 16.

5.2 N-Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

N ≥ 0 fault s
enario. We use the language of ex
luded faults and the language of N-fault

events from Se
tions 4.1 and 4.2.

De�nition 17. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT) nonblo
king if it is FT


onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ) ∧ (ss′ ∈ LNF )

5.3 Non-repeatable N-Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

non-repeatable N ≥ 0 fault s
enario. We use the language of ex
luded faults, the language of
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N-fault events, and the language of non-repeatable fault events from Se
tion 4.

De�nition 18. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT) non-

blo
king, if it is FT 
onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LNRF ) ∧ (ss′ ∈ LNF )

5.4 Resettable Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

resettable fault s
enario. We use the language of ex
luded faults and the language of resettable

fault events from Se
tion 4.

De�nition 19. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT) nonblo
king if

it is FT 
onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LTF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LTF )

6 Algorithms

In this se
tion, we will present algorithms to 
onstru
t and verify the eight fault tolerant


ontrollability and nonblo
king properties that we de�ned in Se
tions 4 and 5. We will not

present an algorithm for the FT 
onsisten
y property as its individual points 
an easily be


he
ked by adapting various standard algorithms. We assume that our system 
onsists of a

plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . , m), Σ∆F , and ΣΩF .

Our approa
h will be to 
onstru
t plant 
omponents to syn
hronize with our plant G

su
h that the new DES will restri
t the o

urren
e of faults to mat
h the given fault tolerant


ontrollability and nonblo
king de�nitions. We 
an then syn
hronize the plant 
omponents to-

gether and then use a standard 
ontrollability or nonblo
king algorithm to 
he
k the property.

This approa
h allows us to automati
ally take advantage of existing s
alability methods su
h

as in
remental [9℄ and binary de
ision diagram-based (BDD) algorithms [10, 11, 12, 13, 14, 15℄.

As the 
ontrollability, nonblo
king, and syn
hronous produ
t algorithms have already been

studied in the literature [16℄, we will assume that they are given to us. We will use the stan-

dard || symbol to indi
ate the syn
hronous produ
t operation, vCont(Plant,Sup) to indi
ate


ontrollability veri�
ation, and vNonb(System) to indi
ate nonblo
king veri�
ation. Fun
-

tions vCont and vNonb return true or false to indi
ate whether the veri�
ation passed or failed,

and the result will be stored in the Boolean variable pass.

In the se
tions that follow, we will �rst present algorithms to 
onstru
t the new plant


omponents that will be shared by the fault tolerant 
ontrollable and nonblo
king algorithms.

We then present the individual fault tolerant 
ontrollability and nonblo
king algorithms.
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6.1 Algorithms to Constru
t Plants

Algorithms 1 − 4 
onstru
t the needed plant 
omponents for the various fault tolerant algo-

rithms.

6.1.1 Constru
t Ex
luded Faults Plant

Algorithm 1 
onstru
ts G∆F for fault set Σ∆F . The algorithm 
onstru
ts a new DES with

event set Σ∆F , but no transitions. It also 
ontains only its initial state, whi
h is marked. This

will have the e�e
t of removing any Σ∆F transitions from any DES it is syn
hronized with.

Please note that all of the 
onstru
ted DES in these algorithms have every state marked

sin
e their goal is to modify the 
losed behavior by restri
ting the o

urren
e of fault events as

needed; not to modify the marked behavior of the system dire
tly. Also, when we de�ne our

transition fun
tions su
h as δ, we will de�ne them as a subset of Y × Σ × Y for 
onvenien
e.

For example, (yo, σ, y1) ∈ δ implies δ(yo, σ) = y1.

Algorithm 1 
onstru
t-G∆F(Σ∆F )

1: Y1 ← {y0}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: return (Y1, Σ∆F , δ1, yo, Ym,1)

Figure 1 shows an example G∆F. In the DES diagrams, 
ir
les represent unmarked states,

while �lled 
ir
les represent marked states. Two 
on
entri
, un�lled 
ir
les represent the initial

state. If the initial state is also marked, the inner 
ir
le is �lled. Note that if a transition is

labeled by an event set su
h as in Figure 2, this is a shorthand for a transition for ea
h event

in the event set.

0

Figure 1: Ex
luded Faults Plant G∆F

∑F∑F ∑F ∑F

0 1 2 3

Figure 2: N-Fault Plant GNF, N = 3

∑Fi

00 1

Figure 3: Non-Repeatable N-Fault Plant

GF,i

∑Fi

∑Ti

∑Ti

0 1

Figure 4: Resettable Fault Plant GTF,i

6.1.2 Constru
t N-Faults Plant

Algorithm 2 
onstru
ts GNF for max N faults, and standard fault set ΣF . The algorithm


onstru
ts a new DES with event set ΣF and N states, ea
h state marked. It then 
reates a

transition for ea
h fault event in ΣF from state yi to state yi+1. As there are no transitions at
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state yN , syn
hronizing with this DES will allow at most N faults to o

ur, and then remove

any additional standard fault transitions. Figure 2 shows an example GNF for N = 3.

Algorithm 2 
onstru
t-GNF(N, ΣF )

1: Y1 ← {y0, y1, . . . , yN}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: for i = 0, . . . , N − 1
5: for σ ∈ ΣF

6: δ1 ← δ1 ∪ {(yi, σ, yi+1)}
7: end for

8: end for

9: return (Y1, ΣF , δ1, yo, Ym,1)

We note that if m = 0, then ΣF = ∅. This means that GNF will 
ontain no events and

have unrea
hable states for N ≥ 1. As a result, syn
hronizing with GNF will have no e�e
t

on the 
losed and marked language of the system. This means that Algorithms 6, 7, 10, and

11 will still work 
orre
tly.

We next note that if N = 0, GNF will 
ontain a single state, but no transitions. This will

have the desired e�e
t of removing any ΣF transitions from any DES syn
hronized with GNF.

6.1.3 Constru
t Non-repeatable N-Faults Plant

Algorithm 3 
onstru
ts GF,i for i ∈ {1, . . . , m} and fault set ΣFi
. The algorithm 
onstru
ts a

new DES with event set ΣFi
and two states, both states marked. It then 
reates a transition

for ea
h fault event in ΣFi
from the initial state to state y1. As there are no transitions at

state y1, syn
hronizing with this DES will allow at most 1 fault event from the fault set to

o

ur and then remove any additional fault transitions from the fault set. Figure 3 shows an

example GF,i.

Algorithm 3 
onstru
t-GF,i(ΣFi
, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: return (Yi, ΣFi
, δi, yo, Ym,i)

6.1.4 Constru
t Resettable Faults Plant

Algorithm 4 
onstru
ts GTF,i for i ∈ {1, . . . , m}, fault set ΣFi
, and reset set ΣTi

. The

algorithm 
onstru
ts a new DES with event set ΣFi
∪ΣTi

and two states, both states marked.

It then 
reates a transition for ea
h fault event in ΣFi
from the initial state to state y1. Next,

it 
reates a transition for ea
h reset event in ΣTi
from state y1 to the initial state, as well as a
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sel�oop at the initial state for the event. Figure 4 shows an example GTF,i. Essentially, reset

events 
an o

ur unrestri
ted, but on
e a fault event o

urs from ΣFi
, a se
ond event from

the set is blo
ked until a reset event from ΣTi
o

urs. Syn
hronizing with this DES will have

the e�e
t of restri
ting the plant's fault behavior to that whi
h the supervisor is required to

handle.

Algorithm 4 
onstru
t-GTF,i(ΣFi
, ΣTi

, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: for σ ∈ ΣTi

8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}
9: end for

10: return (Yi, ΣFi
∪ ΣTi

, δi, yo, Ym,i)

6.2 Verify Fault Tolerant Controllability

Algorithm 5 shows how to verify fault tolerant 
ontrollability for G and S. Line 1 
onstru
ts

the ex
luded fault plant, G∆F, using Algorithm 1. Line 2 
onstru
ts the new plant G
′. Line

3 
he
ks that supervisor S is 
ontrollable for plant G
′. As G∆F is de�ned over event set Σ∆F

and 
ontains only a marked initial state and no transitions, syn
hronizing it with G 
reates

the original behavior with all ex
luded fault events removed. Che
king that S is 
ontrollable

for the resulting behavior will have the e�e
t of verifying fault tolerant 
ontrollability.

Algorithm 5 Verify fault tolerant 
ontrollability

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: G

′ ← G||G∆F

3: pass ← vCont(G′,S)
4: return pass

We note that if Σ∆F = ∅, Algorithm 5 will still produ
e the 
orre
t result. However, it

would be more e�
ient to just 
he
k that S is 
ontrollable for G dire
tly.

6.3 Verify N-Fault Tolerant Controllability

Algorithm 6 shows how to verify N-fault tolerant 
ontrollability for G, and S. Line 1 
onstru
ts

the ex
luded fault plant, G∆F. Line 2 
onstru
ts the N-fault plant, GNF, using Algorithm

2. Line 3 
onstru
ts the new plant G
′. Line 4 
he
ks that supervisor S is 
ontrollable for

plant G
′. As G∆F removes any ex
luded fault transitions and GNF prevents strings from


ontaining more than N fault events, 
he
king that S is 
ontrollable for the resulting behavior

will have the e�e
t of verifying N-fault tolerant 
ontrollability.
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Algorithm 6 Verify N-fault tolerant 
ontrollability

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: GNF ← 
onstru
t-GNF(N, ΣF )
3: G

′ ← G||G∆F||GNF

4: pass ← vCont(G′,S)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that syn
hronizing with GNF will have no

e�e
t. We will still get the 
orre
t result but it would be more e�
ient to run Algorithm 5

dire
tly instead.

6.4 Verify Non-repeatable N-Fault Tolerant Controllability

Algorithm 7 shows how to verify non-repeatable N-fault tolerant 
ontrollability for G and S.

Line 1 
onstru
ts the ex
luded fault plant, G∆F. Line 2 
onstru
ts the N-fault plant, GNF.

For i ∈ {1, . . . , m}, Line 4 
onstru
ts the non-repeatable N-fault plant, GF,i, using Algorithm

3. Line 6 
onstru
ts the new plant G
′. Line 7 
he
ks that supervisor S is 
ontrollable for plant

G
′. As G∆F removes any ex
luded fault transitions, GNF prevents strings from 
ontaining

more than N fault events, and ea
h GF,i allows at most one fault from their fault set to o

ur,


he
king that S is 
ontrollable for the resulting behavior will have the e�e
t of verifying non-

repeatable N-fault tolerant 
ontrollability. We note that if m ≤ N , we 
an safely skip Line 2

(and remove GNF from line 6) as Lines 3-5 will ensure at most m faults 
an o

ur.

Algorithm 7 Verify non-repeatable N-fault tolerant 
ontrollability

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: GNF ← 
onstru
t-GNF(N, ΣF )
3: for i = 1, . . . , m
4: GF,i ← 
onstru
t-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m

7: pass ← vCont(G′,S)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be 
onstru
ted, and that

syn
hronizing with GNF will have no e�e
t. This means G
′ will simplify to G

′ = G||G∆F

and we 
an just evaluate Algorithm 5 instead.

6.5 Verify Resettable Fault Tolerant Controllability

Algorithm 8 shows how to verify resettable fault tolerant 
ontrollability for G and S. Line 1


onstru
ts the ex
luded fault plant, G∆F. For i ∈ {1, . . . , m}, Line 3 
onstru
ts the resettable

fault plant GTF,i, using Algorithm 4. Line 5 
onstru
ts the new plant G
′. Line 6 
he
ks that

supervisor S is 
ontrollable for plant G
′. As G∆F removes any ex
luded fault transitions, and

ea
h GTF,i only allows strings where fault events from ΣFi
are always separated by at least

one event from the 
orresponding set of reset events, ΣTi
, 
he
king that S is 
ontrollable for

the resulting behavior will have the e�e
t of verifying resettable fault tolerant 
ontrollability.
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Algorithm 8 Verify resettable fault tolerant 
ontrollability

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: for i = 1, . . . , m
3: GTF,i ← 
onstru
t-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m

6: pass ← vCont(G′,S)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be 
onstru
ted. This means

G
′ will simplify to G

′ = G||G∆F and we 
an just evaluate Algorithm 5 instead.

6.6 Verify Fault Tolerant Nonblo
king

Algorithm 9 shows how to verify fault tolerant nonblo
king for G and S. This algorithm is

essentially the same as Algorithm 5, ex
ept at Line 2 we 
al
ulate the 
losed loop system G
′,

and then at Line 3 we verify that it is nonblo
king.

Algorithm 9 Verify fault tolerant nonblo
king

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: G

′ ← G||G∆F||S
3: pass ← vNonb(G′)
4: return pass

We note that if Σ∆F = ∅, Algorithm 9 will still produ
e the 
orre
t result. However, it

would be more e�
ient to just 
he
k that S||G is nonblo
king dire
tly.

6.7 Verify N-Fault Tolerant Nonblo
king

Algorithm 10 shows how to verify N-fault tolerant nonblo
king for G, and S. This algorithm

is essentially the same as Algorithm 6, ex
ept at Line 3 we 
al
ulate the 
losed loop system

G
′, and then at Line 4 we verify that it is nonblo
king.

Algorithm 10 Verify N-fault tolerant nonblo
king

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: GNF ← 
onstru
t-GNF(N, ΣF )
3: G

′ ← G||G∆F||GNF||S
4: pass ← vNonb(G′)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that syn
hronizing with GNF will have no

e�e
t. We will still get the 
orre
t result but it would be more e�
ient to run Algorithm 9

dire
tly instead.
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6.8 Verify Non-repeatable N-Fault Tolerant Nonblo
king

Algorithm 11 shows how to verify non-repeatable N-fault tolerant nonblo
king for G and S.

This algorithm is essentially the same as Algorithm 7, ex
ept at Line 6 we 
al
ulate the 
losed

loop system G
′, and then at Line 7 we verify that it is nonblo
king.

Algorithm 11 Verify non-repeatable N-fault tolerant nonblo
king

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: GNF ← 
onstru
t-GNF(N, ΣF )
3: for i = 1, . . . , m
4: GF,i ← 
onstru
t-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m||S

7: pass ← vNonb(G′)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be 
onstru
ted, and that

syn
hronizing with GNF will have no e�e
t. This means G
′ will simplify to G

′ = G||G∆F||S
and we 
an just evaluate Algorithm 9 instead.

We also note that if N ≥ m, the GF,i will ensure that no more than m events o

ur. We

thus do not need to add GNF to G
′, whi
h should make the veri�
ation more e�
ient.

6.9 Verify Resettable Fault Tolerant Nonblo
king

Algorithm 12 shows how to verify resettable fault tolerant nonblo
king for G and S. This

algorithm is essentially the same as Algorithm 8, ex
ept at Line 5 we 
al
ulate the 
losed loop

system G
′, and then at Line 6 we verify that it is nonblo
king.

Algorithm 12 Verify resettable fault tolerant nonblo
king

1: G∆F ← 
onstru
t-G∆F(Σ∆F )
2: for i = 1, . . . , m
3: GTF,i ← 
onstru
t-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m||S
6: pass ← vNonb(G′)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be 
onstru
ted. This means

G
′ will simplify to G

′ = G||G∆F||S and we 
an just evaluate Algorithm 9 instead.

6.10 Algorithm Complexity Analysis

In this se
tion, we provide a 
omplexity analysis for the fault tolerant 
ontrollability and

nonblo
king algorithms. In the following subse
tions, we assume that our system 
onsists of

a plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
,

ΣTi
(i = 0, . . . , m), Σ∆F , and ΣΩF .
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We will base our analysis on the 
omplexity analysis from Cassandras et al. [17℄ that states

that both the 
ontrollability and nonblo
king algorithms have a 
omplexity of O(|Σ||Y ||X|),
where |Σ| is the size of the system event set, |Y | is the size of the plant state set, and |X| is
the size of the supervisor state set. In the analysis that follows, |Y∆F | is the size of the state

set for G∆F (
onstru
ted by Algorithm 1), and |YNF | is the size of the state set for GNF

(
onstru
ted by Algorithm 2).

We note that ea
h FT algorithm �rst 
onstru
ts and adds some additional plant 
ompo-

nents to the system, and then it runs a standard 
ontrollability or nonblo
king algorithm on

the resulting system. Our approa
h will be to take the standard algorithm's 
omplexity, and

repla
e the value for the state size of the plant with the worst 
ase state size of G syn
hronized

with the new plant 
omponents. As all fault and reset events already belong to the system

event set, this means the size of the system event set does not in
rease.

In the following analysis, we will ignore the 
ost of 
onstru
ting the new plant 
ompo-

nents as they will be 
onstru
ted in serial with the 
ontrollability or nonblo
king veri�
ation

and should be negligible in 
omparison. We next note that as the base 
ontrollability and

nonblo
king algorithms have the same 
omplexity, the 
orresponding fault tolerant versions

will also have the same 
omplexity (i.e. the FT 
ontrollability algorithm will have the same


omplexity as the FT nonblo
king algorithm). As su
h, we will only present analysis for the

FT 
ontrollability algorithms.

6.10.1 FT Controllability Algorithm

For Algorithm 5, we repla
e our plant DES by G
′ = G||G∆F. This gives us a worst 
ase state

spa
e of |Y ||Y∆F | for G
′. Substituting this into our base algorithm's 
omplexity for the size

of our plant's state set gives O(|Σ||Y ||Y∆F ||X|). As |Y∆F | = 1 by Algorithm 1, it follows that

our 
omplexity is O(|Σ||Y ||X|) whi
h is the same as our base algorithm.

6.10.2 N-FT Controllability Algorithm

For Algorithm 6, we repla
e our plant DES by G
′ = G||G∆F||GNF. This gives us a worst 
ase

state spa
e of |Y ||Y∆F ||YNF | for G
′. Substituting this into our base algorithm's 
omplexity

gives O(|Σ||Y ||Y∆F ||YNF ||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YNF | = N+1 by Algorithm 2. Substituting in

for these values gives O((N + 1)|Σ||Y ||X|). It thus follows that verifying N-FT 
ontrollability

in
reases the 
omplexity of verifying 
ontrollability by a fa
tor of (N + 1).

6.10.3 Non-repeatable N-FT Controllability Algorithm

For Algorithm 7, we repla
e our plant DES by G
′ = G||G∆F||GNF||GF,1|| . . . || GF,m. This

gives us a worst 
ase state spa
e of |Y ||Y∆F ||YNF ||YF1
| . . . |YFm

| for G
′, where |YFi

| is the size
of the state set for GF,i (i = 0, . . . , m), whi
h is 
onstru
ted by Algorithm 3. Substituting

this into our base algorithm's 
omplexity gives O(|Σ||Y ||Y∆F ||YNF ||YF1
| . . . |YFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, |YNF | = N + 1 by Algorithm 2, and |YFi
| = 2

(i = 0, . . . , m) by Algorithm 3. Substituting in for these values gives O(2m(N + 1)|Σ||Y ||X|).
It thus follows that verifying non-repeatable N-FT 
ontrollability in
reases the 
omplexity of

verifying 
ontrollability by a fa
tor of 2m(N + 1).
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We next note that if N ≥ m, whi
h we believe will often be the 
ase, it is not ne
essary

to add GNF to G
′. The 
omplexity then redu
es to O(2m|Σ||Y ||X|).

6.10.4 Resettable FT Controllability Algorithm

For Algorithm 8, we repla
e our plant DES by G
′ = G||G∆F||GTF,1|| . . . ||GTF,m. This gives

us a worst 
ase state spa
e of |Y ||Y∆F ||YTF1
| . . . |YTFm

| for G
′, where |YTFi

| is the size of the

state set for GTF,i (i = 0, . . . , m), whi
h is 
onstru
ted by Algorithm 4. Substituting this into

our base algorithm's 
omplexity gives O(|Σ||Y ||Y∆F ||YTF1
| . . . |YTFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YTFi
| = 2 (i = 0, . . . , m) by Algorithm 4.

Substituting in for these values gives O(2m|Σ||Y ||X|). It thus follows that verifying resettable

FT 
ontrollability in
reases the 
omplexity of verifying 
ontrollability by a fa
tor of 2m.

7 Algorithm Corre
tness

In this se
tion, we introdu
e several propositions and theorems that show that the algorithms

introdu
ed in Se
tion 6 
orre
tly verify that a fault tolerant 
onsistent system satis�es the

spe
i�ed fault tolerant 
ontrollability and nonblo
king properties de�ned in Se
tions 4 and 5.

7.1 Fault Tolerant Propositions

The propositions in this se
tion will be used to support the fault tolerant 
ontrollability

theorems in Se
tion 7.2. Fault tolerant 
ontrollability de�nitions are essentially 
ontrollability

de�nitions with added restri
tion that a string s is only tested if it is satis�es the appropriate

fault tolerant property. The algorithms are intended to repla
e the original plant with a new

plant G
′, su
h that G

′ is restri
ted to strings with the desired property. Propositions 1 − 4
essentially assert that string s belongs to the 
losed behaviour of G

′, if and only if s satis�es

properties of fault tolerant 
ontrollable, N-FT 
ontrollable, non-repeatable N-FT 
ontrollable,

and resettable FT 
ontrollable, respe
tively. These propositions will also be used in the fault

tolerant nonblo
king theorems in Se
tion 7.3.

Proposition 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the plant 
onstru
ted in Algorithm 5. Then:

(∀s ∈ L(G))s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the plant 
onstru
ted in Algorithm 6. Then:

(∀s ∈ L(G))(s /∈ L∆F ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the plant 
onstru
ted in Algorithm 7. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)
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Proof. See Appendix A.

Proposition 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the plant 
onstru
ted in Algorithm 8. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTF ) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

7.2 Fault Tolerant Controllable Theorems

In this se
tion we present theorems that show the fault tolerant 
ontrollable algorithms in

Se
tion 6 (Algorithms 5-8) will return true if and only if the fault tolerant 
onsistent system

satis�es the 
orresponding fault tolerant 
ontrollability property.

Theorem 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the plant 
onstru
ted in Algorithm 5. Then S is fault tolerant


ontrollable for G i� S is 
ontrollable for G
′.

Proof. See Appendix B.

Theorem 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the plant 
onstru
ted in Algorithm 6. Then S is N-fault

tolerant 
ontrollable for G i� S is 
ontrollable for G
′.

Proof. See Appendix B.

Theorem 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the plant 
onstru
ted in Algorithm 7. Then S is non-

repeatable N-fault tolerant 
ontrollable for G i� S is 
ontrollable for G
′.

Proof. See Appendix B.

Theorem 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the plant 
onstru
ted in Algorithm 8. Then S is resettable

fault tolerant 
ontrollable for G i� S is 
ontrollable for G
′.

Proof. See Appendix B.

7.3 Fault Tolerant Nonblo
king Theorems

In this se
tion we present theorems that show the fault tolerant nonblo
king algorithms in

Se
tion 6 (Algorithms 9-12) will return true if and only if the fault tolerant 
onsistent system

satis�es the 
orresponding fault tolerant nonblo
king property.

Theorem 5. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the system 
onstru
ted in Algorithm 9. Then S and G are

fault tolerant nonblo
king i� G
′ is nonblo
king.
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Proof. See Appendix B.

Theorem 6. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the system 
onstru
ted in Algorithm 10. Then S and

G are N-fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

Theorem 7. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, N ≥ 0, and let G

′ be the system 
onstru
ted in Algorithm 11. Then S and

G are non-repeatable N- fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

Theorem 8. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT 
onsistent, and let G

′ be the system 
onstru
ted in Algorithm 12. Then S and G are

resettable fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

8 Manufa
turing Example

This example is based on the manufa
turing testbed from Ledu
 [18℄. The testbed was de-

signed to simulate a manufa
turing work
ell, in parti
ular problems of routing and 
ollision.

Figure 5 shows 
on
eptually the stru
ture of the testbed and sensors.
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Figure 5: Sensors in the Testbed

19



In this paper, we will �rst fo
us on only a single tra
k loop, shown in Figure 6. The loop


ontains 8 sensors and two trains (train 1, train 2). Train 1 starts between sensors 9 and 10,

while train 2 starts between sensors 15 and 16. Both trains 
an only traverse the tra
ks in a


lo
kwise dire
tion. We will use the simpli�ed version to illustrate our method. We will then

report experimental results of applying the method to the full testbed model in Se
tion 8.3.

S9 S10

S15

S11

S13

S12

S16

S14

Figure 6: Single Train Loop
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Figure 8: Sensors 9, 10, and

16 with Faults

8.1 Base Plant Models

The plant model for the portion of the testbed we are 
urrently 
onsidering 
onsists of the

following basi
 elements: sensors, trains and the relationship between sensors and trains.

8.1.1 Sensor Models

The sensor models indi
ate when a given train is present, and when no trains are present.

Also, they state that only one train 
an a
tivate a given sensor at a time. Figure 7 shows the

original sensor model, for sensor J ∈ {9, . . . , 16}.

To add faults to the model, we assumed that sensors 9 10, and 16 
ould have an intermittent

fault; sometimes the sensor would dete
t the presen
e of a train, sometimes it would fail to do

so. We modelled this by adding to all the plant models a new event t1F_atJ, J ∈ {9, 10, 16},
for ea
h t1_atJ event. For ea
h t1_atJ transition in a plant model, we added an identi
al

t1F_atJ transition. The idea is we 
an now get the original dete
tion event or the new fault

one instead. We made similar 
hanges for train 2. Figure 8 shows the new sensor models with

the added fault events. All other sensors will use the original version shown in Figure 7.

For this example, Σ∆F = ΣΩF = ∅. We also set m = 4, ΣF1
= {t1F_at9, t1F_at10},

ΣF2
= {t1F_at16}, ΣF3

= {t2F_at9, t2F_at10}, ΣF4
= {t2F_at16}, ΣT1

= {t1_at11},
ΣT2

= {t1_at14}, ΣT3
= {t2_at11}, and ΣT4

= {t2_at14}.

8.1.2 Sensor Interdependen
ies

This series of models show the sensor's interdependen
ies with respe
t to a given train. With

respe
t to the starting position of a parti
ular train (represented by the initial state), sensors


an only be rea
hed in a parti
ular order, di
tated by their physi
al lo
ation on the tra
k.

This is shown in Figures 9 and 10. Both DES already show the added fault events.
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Figure 9: Sensor Interdependen
ies For Train 1
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Figure 10: Sensor Interdependen
ies For Train 2

8.1.3 Train Models

The train models are shown in Figure 11 for train K (K = 1, 2). Train K 
an only move

when its enablement event en_trainK o

urs, and then it 
an move at most a single unit of

distan
e (event umv_trainK), before another en_trainK must o

ur. This allows a supervisor

to pre
isely 
ontrol the movement of the train by enabling and disabling event en_trainK as

needed.
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Figure 11: Train K Model
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Figure 13: Sensors and Train K

with Faults

8.1.4 Relationship Between Sensors and Trains Models

Figure 12 shows the relationship between train K's (K = 1, 2) movement, and a sensor de-

te
ting the train. It 
aptures the idea that a train 
an rea
h at most one sensor during a unit

movement, and no sensors if it is disabled. Figure 13 shows the repla
ement model with fault

events added. We now seen that our plant model 
ontains 14 DES in total.

8.2 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent 
ollisions

in the tra
k se
tions with sensors 11-13, 15-16, 12-14, and 9-10. The idea is to ensure that

only one train uses this tra
k se
tion at a time. We will �rst introdu
e the original 
ollision

prote
tion supervisors that were designed with the assumption of no faults, and then we will

introdu
e new fault tolerant versions with added redundan
y.
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8.2.1 Collision Prote
tion Supervisors

Figure 14 shows the 
ollision prote
tion supervisor (CPS-11-13) for the tra
k se
tion 
on-

taining sensors 11 and 13. On
e a train has rea
hed sensor 11, the other train is stopped at

sensor 10 until the �rst train rea
hes sensor 15, whi
h indi
ates it has left the prote
ted area.

The stopped train is then allowed to 
ontinue. Figures 15, 16, and 17 show similar supervisors

for the remaining tra
k se
tions. Supervisors CPS-15-16 and CPS-9-10 have nonstandard

initial states in order to re�e
t the starting lo
ations of the two trains.

It's easy to see that supervisor CPS-11-13 will not be fault tolerant as it relies solely on

sensor 10 to dete
t when a se
ond train arrives. If sensor 10 fails, the train 
ontinues and


ould 
ollide with the �rst train. Supervisors CPS-9-10 and CPS-12-14 will also not be

fault tolerant be
ause of sensor 10. A failure at sensor 10 
ould 
ause supervisor CPS-9-10

to miss a train entering the prote
ted zone, and 
ould 
ause supervisor CPS-12-14 to miss

a train leaving the prote
ted zone. Using the DES resear
h software tool, DESpot [19℄, we

veri�ed that the system passes N = 0 FT 
ontrollability and nonblo
king (i.e. if all faults are

ignored) and fails all eight fault tolerant 
ontrollability and nonblo
king properties (N ≥ 1).
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Figure 14: CPS-11-13 Supervisor
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Figure 15: CPS-15-16 Supervisor
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Figure 16: CPS-12-14 Supervisor
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Figure 17: CPS-9-10 Supervisor
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8.2.2 Collision Prote
tion Fault Tolerant Supervisors

We next modi�ed supervisor CPS-11-13 to make it more fault tolerant. The result is shown

in Figure 18. We have added at states 1 and 4 a 
he
k for either sensor 9 or sensor 10. That

way if sensor 10 fails but sensor 9 doesn't, we 
an still stop the train at sensor 9 and avoid

the 
ollision. We made similar 
hanges to supervisors CPS-12-14, and CPS-9-10, as shown

in Figures 19, and 20. Supervisor CPS-15-16 did not require any 
hanges as it did not rely

on any of the sensors that had faults.

Using DESpot, we 
an verify that the supervisor is not fault tolerant 
ontrollable or non-

blo
king for the plant. The reason is that if both sensors 9 and 10 fail, the train will not be

dete
ted. However, the system 
an be show to be N-fault tolerant 
ontrollable for N = 1 (i.e.

sensor 10 fails but not sensor 9), non-repeatable N-fault tolerant 
ontrollable for N = 4, and
resettable fault tolerant 
ontrollable (as long as both sensors 9 and 10 don't fail in a given

pass, all is well). The system also passes the 
orresponding FT nonblo
king properties. It 
an

also be shown that the system fails N-fault tolerant 
ontrollable and nonblo
king for N = 2.
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Figure 18: CPS-11-13FT Supervisor
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Figure 19: CPS-12-14FT Supervisor
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Figure 20: CPS-9-10FT Supervisor

8.3 Complete System

We next 
onsidered the full plant model for the testbed, as des
ribed in Ledu
 [18℄. This

model in
ludes all three loops shown in Figure 5, in
luding all of the sensors shown, as well
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as six swit
hes for routing, and three 
ranes, lo
ated at sensors 2, 13, and 21, for loading the

trains. The full model in
ludes 
ollision prote
tion supervisors for all tra
k se
tions as well

as supervisors for routing trains and stopping ea
h train for loading when they rea
h a 
rane.

The original system 
ontains 29 supervisors, 110 plant 
omponents and has a state spa
e of

7.33 × 109 states.

For this system, we used a similar approa
h to the one des
ribed earlier to add fault events

to sensors, and to add fault toleran
e to the supervisors. See Dierikx [20℄ for 
omplete details.

For this version of the example, we have ΣΩF = ∅ and Σ∆F = ∪K=1,2(∪j∈I∆{tKF_atj}),
where I∆ = {2, 8, 13, 21, 27}. The ex
luded faults are for key portions of the tra
k where a

de
ision (su
h as stopping a train in front of a given 
rane) needs to be made but there does

not exist a se
ond physi
al sensor appropriately lo
ated that 
an be used as a ba
kup. To

deal with faults from these sensors, we believe we would need to add additional sensors.

For fault and reset sets, we have m = 16. For train 1, we have fault sets ΣFn
=

∪j∈IFn
{tF1_atj}, n = 1, . . . , 8, where IF1 = {0, 1, 4}, IF2 = {3, 5, 6, 7}, IF3 = {9, 10, 11},

IF4 = {12, 14}, IF5 = {15, 16}, IF6 = {19, 20, 22}, IF7 = {23, 24}, and IF8 = {25, 26}. Sets

ΣF9
− ΣF16

are analogous, ex
ept that they are for train 2.

For train 1, we have reset sets ΣTn
= ∪j∈IRn

{t1_atj}, n = 1, . . . , 8, where IR1 = {6, 7, 27},
IR2 = {0, 1, 19, 20}, IR3 = {15, 16}, IR4 = {8, 9, 10}, IR5 = {12, 14}, IR6 = {23, 24}, IR7 =
{25, 26}, and IR8 = {12, 14}. Sets ΣT9

−ΣT16
are analogous, ex
ept that they are for train 2.

Using our software resear
h tool, DESpot [19℄, we were able to determine that the system is

N-FT 
ontrollable and nonblo
king (N = 1), non-repeatable N-FT 
ontrollable and nonblo
k-

ing (N = 16), and resettable FT 
ontrollable and nonblo
king. We ran an FT 
ontrollable


he
k on the system but after 33 hours and 1.908 × 109 states and 
ounting, we stopped the


omputation. See Table 1 for veri�
ation times and proje
t state sizes (in
ludes added FT

plant 
omponents).

We also ran N-FT 
ontrollability and nonblo
king 
he
ks for N = 2. The system passed

for 
ontrollability and failed for nonblo
king. The reason that it passed N-FT 
ontrollability

is that a swit
h failed to 
hange state due to a sensor fault and a train derailed taking it to

a non
orea
hable state before an illegal event 
ould o

ur. This suggests that the routing

supervisors 
ould be made more expressive by adding the un
ontrollable train derailing events

to their event sets, but without mat
hing transitions.

Table 1: Veri�
ation Times for Full System

Veri�
ation Time (se
onds)

Property State Size Controllability Nonblo
king

fault tolerant 1.908 × 109+ - -

N-fault tolerant (N = 1) 368,548 654 P 3178 P

N-fault tolerant (N = 2) 1.961 × 106 13,916 P 26,249 F

nonrepeatable N-FT 1.275 × 1010 4,230 P 10,956 P

resettable FT 594,448 2,007 P 7,645 P
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9 Con
lusions and Future Work

In this paper we investigate the problem of fault toleran
e (FT) in the framework of dis
rete-

event systems. We introdu
e a set of eight fault tolerant 
ontrollability and nonblo
king

de�nitions designed to 
apture di�erent types of fault s
enarios and to ensure that our system

remains 
ontrollable and nonblo
king in ea
h s
enario. This approa
h is di�erent from the

typi
al fault tolerant methodology as the approa
h does not rely on dete
ting faults and

swit
hing to a new supervisor; it requires a supervisor to work 
orre
tly under normal and

fault 
onditions.

We then present a set of algorithms to verify the fault tolerant properties. As these

algorithms involve adding new plant 
omponents and then 
he
king standard 
ontrollability

and nonblo
king properties, they 
an instantly take advantage of existing 
ontrollability and

nonblo
king software, as well as s
alability approa
hes su
h as in
remental veri�
ation and

binary de
ision diagrams (BDD).

For ea
h algorithm, we provide a 
omplexity analysis showing that the FT algorithms

multiply the 
omplexity of the standard algorithms by a fa
tor of one, N +1 (N is the number

of allowed faults), 2m (m is the number of fault sets) and 2m(N + 1). We then prove the


orre
tness of the algorithms.

We �nish with a small manufa
turing example that illustrates how the theory 
an be

applied, and then we report on applying our approa
h to a mu
h larger example.

For future work, we would like to investigate additional fault s
enarios as well as additional

ways to model faults in the system.
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Appendi
es

A Proofs of Sele
ted Propositions

Proposition 1:

Proof. Assume initial 
onditions for proposition.

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

Let s ∈ L(G). (P1.1)

Must show implies s /∈ L∆F ⇐⇒ s ∈ L(G′).

Su�
ient to show (A) s /∈ L∆F ⇒ s ∈ L(G′) and (B) s ∈ L(G′) ⇒ s /∈ L∆F

First we note that by Algorithm 5, we have G
′ = G||G∆F.

We thus have L(G′) = L(G) ∩ P−1
∆F L(G∆F) as Σ∆F ⊆ Σ, and G∆F is de�ned over Σ∆F by

Algorithm 1. (P1.2)

We next note that by Algorithm 1, G∆F 
ontains an initial state but no transitions. We thus

have: L(G∆F) = {ǫ} (P1.3)

Part A) Show s /∈ L∆F ⇒ s ∈ L(G′)

Assume s /∈ L∆F = Σ∗.Σ∆F .Σ∗.

Must show implies: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)

As s ∈ L(G) from (P1.1), su�
ient to show s ∈ P−1
∆F L(G∆F).

As s /∈ Σ∗.Σ∆F .Σ∗, it follows that P∆F (s) = ǫ.

⇒ P∆F (s) ∈ L(G∆F), by (P1.3)

⇒ s ∈ P−1
∆F L(G∆F), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F

Assume s ∈ L(G′).

Must show implies: s /∈ L∆F

We note that s ∈ L(G′) implies s ∈ P−1
∆F L(G∆F), by (P1.2).

⇒ P∆F (s) ∈ L(G∆F)

⇒ P∆F (s) = ǫ, by (P1.3)

This implies s does not 
ontain any σ ∈ Σ∆F .

⇒ s /∈ Σ∗.Σ∆F .Σ∗, as required.

By parts (A) and (B), we have: s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proposition 2:

Proof. Assume initial 
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

We next note that by Algorithm 6, we have G
′ = G||G∆F||GNF.

As G de�ned over Σ, G∆F over Σ∆F (by Algorithm 1), and GNF over ΣF (by Algorithm 2),

we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (P2.1)
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Let G1 be the plant 
onstru
ted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P2.2)

Let s ∈ L(G) (P2.3)

Must show implies: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F and s ∈ LNF . (P2.4)

Must show: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)

By (P2.3), (P2.4), and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F) (P2.5)

All the remains is to show s ∈ P−1
F L(GNF).

As s ∈ LNF = (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k, there exists 0 ≤ j ≤ N , su
h that

|PF (s)| = j.

We note that as GNF 
ontains an initial state, we have ǫ ∈ L(GNF).

If j = 0, we immediately have PF (s) = ǫ ∈ L(GNF).

For j ≥ 1, we 
an 
on
lude: (∃σ0, . . . , σj−1 ∈ ΣF )PF (s) = σ0, . . . , σj−1

As j ≤ N , it is easy to see from Algorithm 2, that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition fun
tion for GNF.

⇒ δ1(y0, σ0, . . . , σj−1)!

⇒ δ1(y0, PF (s))!

⇒ PF (s) ∈ L(GNF)

⇒ s ∈ P−1
F L(GNF)

Combining with (P2.5), we have: s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) = L(G′)

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∧ s ∈ LNF

Assume s ∈ L(G′). Must show implies s /∈ L∆F and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P2.2).

We thus have by Proposition 1 that s /∈ L∆F . (P2.6)

We now need to show s ∈ LNF .

As L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) by (P2.1), we have s ∈ P−1
F L(GNF).

⇒ PF (s) ∈ L(GNF)

Let j = |PF (s)|. If j = 0, we have PF (s) = ǫ, thus s ∈ (Σ − ΣF )∗ ⊆ LNF .

We thus 
onsider j ≥ 1.

⇒ (∃σ0, . . . , σj−1 ∈ ΣF )PF (s) = σ0, . . . , σj−1

As PF (s) ∈ L(GNF), Algorithm 2 implies that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition fun
tion for GNF.

⇒ δ1(y0, PF (s)) = yj

As GNF 
ontains no loops and transitions o

ur in a stri
tly in
reasing order in terms of state

labels, we have j ≤ N .

As we have that s 
ontains at most N events from ΣF , it is thus 
lear that:

s ∈ (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k = LNF
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Combining with (P2.6), we have s /∈ L∆F and s ∈ LNF , as required.

By parts (A) and (B), we thus 
on
lude: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 3:

Proof. Assume initial 
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

We next note that by Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

As G is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, GNF over ΣF by Algorithm 2, and

GF,i over ΣFi
(i = 1, . . . , m) by Algorithm 3, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m) (P3.1)

Let G1 be the plant 
onstru
ted by Algorithm 2. We thus have: G1 = G||G∆F||GNF

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ L(G′) ⊆ L(G1) (P3.2)

Let s ∈ L(G). (P3.3)

Must show implies: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LNRF and s ∈ LNF . (P3.4)

Must show s ∈ L(G′).

By (P3.3), (P3.4), and Proposition 2, we have: s ∈ L(G1)

All the remains is to show s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

Let i ∈ {1, . . . , m}.

As s /∈ LNRF =
m
⋃

j=1

(Σ∗.ΣFj
.Σ∗.ΣFj

.Σ∗), it follows that |PFi
(s)| ≤ 1.

As GF,i has an initial state (by Algorithm 3), we have ǫ ∈ L(GF,i).

By Algorithm 3, we have that for all σ ∈ ΣFi
, δi(y0, σ, y1)!. This implies σ ∈ L(GF,i).

⇒ PFi
(s) ∈ L(GF,i)

⇒ s ∈ P−1
Fi

L(GF,i), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

Assume s ∈ L(G′).

Must show implies s /∈ L∆F ∪ LNRF and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P3.2).

We 
an thus 
on
lude by Proposition 2 that: s /∈ L∆F and s ∈ LNF . (P3.5)

We now only need to show s /∈ LNRF .

As s ∈ L(G′), we have by (P3.1): s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) = σ ∈ ΣFi

or PFi
(s) = ǫ (i = 1, . . . , m), by Algorithm 3.

⇒ s /∈ LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)
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Combining with (P3.5), we have s /∈ L∆F ∪ LNRF and s ∈ LNF , as required.

By parts (A) and (B), we thus 
on
lude: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 4:

Proof. Assume initial 
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

We next note that by Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

AsG is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, andGTF,i over ΣFi
∪ ΣTi

by Algorithm

4, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)∩ . . . ∩ P−1

TFm
L(GTF,m) (P4.1)

Let G1 be the plant 
onstru
ted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P4.2)

Let s ∈ L(G). (P4.3)

Must show implies: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LTF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LTF . (P4.4)

Must show s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m).

By (P4.3), (P4.4) and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

All that remains is to show s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m.

As s /∈ LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗), it follows that:

(∀i ∈ {1, . . . , m}) s /∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗.

Let i = {1, . . . , m}.

We will use proof by 
ontrapositive.

Su�
ient to show: PTFi
(s) /∈ L(GTF,i) ⇒ s ∈ Σ∗.ΣFi

.(Σ− ΣTi
)∗.ΣFi

.Σ∗

Assume PTFi
(s) /∈ L(GTF,i).

We note that by Algorithm 4 that ǫ ∈ L(GTF,i), as GTF,i has an initial state.

⇒ (∃s′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ ∈ ΣFi
∪ ΣTi

)s′σ ≤ PTFi
(s)∧s′ ∈ L(GTFi

) ∧ s′σ /∈ L(GTFi
)

From Algorithm 4, it is 
lear that all σ′ ∈ ΣFi
∪ ΣTi

are de�ned at state y0, all σ′ ∈ ΣTi
are

de�ned at state y1, and no σ′ ∈ ΣFi
are de�ned at state y1.

⇒ δi(y0, s
′) = y1, and σ ∈ ΣFi

Also, as the only way to rea
h state y1 is from state y0 via σ′ ∈ ΣFi
, it follows that string s′

ends in an event from ΣFi
.

⇒ (∃s′′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ′ ∈ ΣFi
) s′′σ′σ = s′σ ≤ PTFi

(s)

⇒ s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗, as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LTF

Assume s ∈ L(G′). Must show implies s /∈ L∆F ∪ LTF .
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As s ∈ L(G′), we have s ∈ L(G1), by (P4.2).

We 
an thus 
on
lude by Proposition 1 that: s /∈ L∆F (P4.5)

We now need to show s /∈ LTF .

As s ∈ L(G′), we have by (P4.1): s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m

⇒ (∀i ∈ {1, . . . , m})PTFi
(s) ∈ L(GTF,i)

We pro
eed by proof by 
ontradi
tion.

Assume s ∈ LTF .

⇒ (∃i ∈ {1, . . . , m})s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗

Let i ∈ {1, . . . , m} be the above index.

This implies string PTFi
(s) 
ontains two events from ΣFi

in a row, without a σ ∈ ΣTi
in

between.

As it is 
lear from Algorithm 4 that GTF,i would never allow two σ ∈ ΣFi
to o

ur in a row,

this 
ontradi
ts PTFi
(s) ∈ L(GTF,i).

We thus 
on
lude s /∈ LTF .

Combining with (P4.5) we have s /∈ L∆F ∪ LTF , as required.

By parts (A) and (B), we thus 
on
lude: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)
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B Proofs of Sele
ted Theorems

Theorem 1:

Proof. Assume initial 
onditions for theorem.

Must show S is fault tolerant 
ontrollable for G ⇐⇒ S is 
ontrollable for G
′.

From Algorithm 5, we have: G
′ = G||G∆F

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) (T1.1)

Part A) Show (⇒)

Assume S is fault tolerant 
ontrollable for G. (T1.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′) and σ ∈ Σu. (T1.3)

Assume sσ ∈ L(G′). (T1.4)

Must show implies sσ ∈ L(S).

To apply (T1.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F .

We �rst note that (T1.1), (T1.3) and (T1.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T1.3), we 
on
lude by Proposition 1 that s /∈ L∆F .

We 
an now 
on
lude by (T1.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is 
ontrollable for G
′. (T1.5)

Must show implies S and G are FT 
onsistent (follows automati
ally from initial assumptions)

and that: (∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G) and σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F . (T1.6)

Must show implies sσ ∈ L(S).

We have two 
ases: (1) σ ∈ Σ∆F , and (2) σ /∈ Σ∆F

Case 1) σ ∈ Σ∆F

As the system is FT 
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T1.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F

To apply (T1.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T1.6) and Proposition 1, we 
an 
on
lude: s ∈ L(G′) (T1.7)

⇒ s ∈ P−1
∆F L(G∆F), by (T1.1)

⇒ P∆F (s) ∈ L(G∆F)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F)

Combining with (T1.6), (T1.7), and (T1.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)
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We 
an thus 
on
lude by (T1.5) that sσ ∈ L(S), as required.

We thus 
on
lude by 
ases (1) and (2), that sσ ∈ L(S).

We 
an now 
on
lude by parts (A) and (B) that S is fault tolerant 
ontrollable for G i� S is


ontrollable for G
′.

Theorem 2:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is N-fault tolerant 
ontrollable for G ⇐⇒ S is 
ontrollable for G
′.

From Algorithm 6, we have G
′ = G||G∆F||GNF.

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T2.1)

Part A) Show (⇒)

Assume S is N-fault tolerant 
ontrollable for G. (T2.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T2.3)

Assume sσ ∈ L(G′). (T2.4)

Must show implies sσ ∈ L(S).

To apply (T2.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF .

We �rst note that (T2.1), (T2.3) and (T2.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T2.3), Proposition 2 implies that: s /∈ L∆F ∧ s ∈ LNF

We 
an now 
on
lude by (T2.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is 
ontrollable for G
′. (T2.5)

Must show implies S and G are FT 
onsistent, (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∧ s ∈ LNF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF . (T2.6)

Must show implies sσ ∈ L(S).

We have two 
ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT 
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T2.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T2.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T2.6) and Proposition 2, we 
an 
on
lude: s ∈ L(G′). (T2.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF), by (T2.1)
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⇒ P∆F (s) ∈ L(G∆F) and PF (s) ∈ L(GNF)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ. As σ /∈ ΣF , we have PF (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ PF (sσ) = PF (s)PF (σ) = PF (s) ∈ L(GNF)

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

Combining with (T2.6), (T2.7), and (T2.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We 
an thus 
on
lude by (T2.5) that sσ ∈ L(S), as required.

We thus 
on
lude by 
ases (1) and (2), that sσ ∈ L(S).

We 
an now 
on
lude by parts (A) and (B), that S is N-fault tolerant 
ontrollable for G i� S

is 
ontrollable for G
′.

Theorem 3:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is non-repeatable N-fault tolerant 
ontrollable for G ⇐⇒ S is 
ontrollable for

G
′.

From Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over ΣFi
,

i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) (T3.1)

Part A) Show (⇒)

Assume S is non-repeatable N-fault tolerant 
ontrollable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu)sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T3.3)

Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F ∪ LNRF and

s ∈ LNF .

We �rst note that (T3.1), (T3.3) and (T3.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T3.3), we 
on
lude by Proposition 3 that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

We 
an now 
on
lude by (T3.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is 
ontrollable for G
′. (T3.5)

Must show implies S and G are FT 
onsistent (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ sσ ∈ L(S)
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Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G), and s /∈ L∆F ∪ LNRF ∧ s ∈ LNF . (T3.6)

Must show implies sσ ∈ L(S).

We have two 
ases: (1) σ ∈ Σ∆F ∪ ΣFi
, and (2) σ /∈ Σ∆F ∪ ΣFi

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT 
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T3.6), and Proposition 3, we 
an 
on
lude: s ∈ L(G′) (T3.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m), by (T3.1)

⇒ P∆F (s) ∈ L(G∆F), PF (s) ∈ L(GNF) and PFi
(s) ∈ L(GF,i), i = 1, . . . , m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, PF (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . , m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PF (sσ) = PF (s)PF (σ) =
PF (s) ∈ L(GNF), and PFi

(sσ) = PFi
(s)PFi

(σ) = PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m)

Combining with (T3.6), (T3.7), and (T3.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)

We 
an thus 
on
lude by (T3.5) that sσ ∈ L(S), as required.

We thus 
on
lude by 
ases (1) and (2), that sσ ∈ L(S).

We 
an now 
on
lude by parts (A) and (B), that S is non repeatable N-fault tolerant 
ontrol-

lable for G i� S is 
ontrollable for G
′.

Theorem 4:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is resettable fault tolerant 
ontrollable for G ⇐⇒ S is 
ontrollable for G
′.

From Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 4, we know

that GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
TF1

L(GTF,1) ∩ . . .∩ P−1
TFm

L(GTF,m) (T4.1)

Part A) Show (⇒)

Assume S is resettable fault tolerant 
ontrollable for G. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T4.3)

Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∪ LTF .

We �rst note that (T4.1), (T4.3) and (T4.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).
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As s ∈ L(G′) by (T4.3), we 
on
lude by Proposition 4 that: s /∈ L∆F ∪ LTF

We 
an now 
on
lude by (T4.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is 
ontrollable for G
′. (T4.5)

Must show implies S and G are FT 
onsistent, (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F∪ LTF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF . (T4.6)

Must show implies sσ ∈ L(S).

We have two 
ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT 
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T4.6) and Proposition 4, we 
an 
on
lude: s ∈ L(G′) (T4.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m), by (T4.1)

⇒ P∆F (s) ∈ L(G∆F) and PTFi
(s) ∈ L(GTF,i), i = 1, . . . , m (T4.8)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F) (T4.9)

We now have two 
ases to 
onsider: (a) σ /∈
m
⋃

i=1

ΣTi
, and (b) σ ∈

m
⋃

i=1

ΣTi

Case a) σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PTFi

(σ) = ǫ, i = 1, . . . , m.

⇒ PTFi
(sσ) = PTFi

(s)PTFi
(σ) = PTFi

(s) ∈ L(GTF,i), i = 1, . . . , m

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Case b) σ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 4 states that all σ′ ∈ ΣTi
are de�ned at every state in GTF,i,

i = 1, . . . , m.

Let j ∈ {1, . . . , m}.

If σ ∈ ΣTj
, we have PTFj

(σ) = σ. We thus have PTFj
(sσ) = PTFj

(s)σ ∈ L(GTF,j) as

PTFj
(s) ∈ L(GTF,j) by (T4.8).

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF , it follows that PTFj

(σ) = ǫ. We thus have

PTFj
(sσ) = PTFj

(s)PTFj
(σ) = PTFj

(s) ∈ L(GTF,j), by (T4.8).

⇒ sσ ∈ P−1
TFj

L(GTF,j) for both 
ases.

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)
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By 
ases (a) and (b), we 
an 
on
lude: sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Combining with (T4.9), we have:

sσ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m)

Combining with (T4.6), (T4.7), and (T4.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We 
an thus 
on
lude by (T4.5) that sσ ∈ L(S), as required.

We thus 
on
lude by 
ases (1) and (2), that sσ ∈ L(S).

We 
an now 
on
lude by parts (A) and (B), that S is resettable fault tolerant 
ontrollable for

G i� S is 
ontrollable for G
′.

Theorem 5:

Proof. Assume initial 
onditions for theorem.

Must show S and G are fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 9, we have: G
′ = G||G∆F||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

As G and S are de�ned over Σ, we have that: L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) and

Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F). (T5.1)

Part A) Show (⇒)

Assume S and G are fault tolerant nonblo
king. (T5.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) (T5.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F)

⇒ s ∈ L(G||G∆F)

We 
an thus apply Proposition 1 and 
on
lude that s /∈ L∆F .

As we have s ∈ L(S) ∩ L(G) from (T5.3), we 
an apply (T5.2) and 
on
lude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F (T5.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)

From (T5.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F).

We note from Algorithm 1 that sin
e all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F).

It is thus su�
ient to show: ss′ ∈ P−1
∆F L(G∆F)

As ss′ ∈ Lm(G) by (T5.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T5.4), we have: ss′ /∈ L∆F

Applying Proposition 1, we 
an 
on
lude that: ss′ ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

⇒ ss′ ∈ P−1
∆F L(G∆F)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T5.5)
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Must show implies S and G are FT 
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ⇒ (∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F

Let s ∈ L(S) ∩ L(G). (T5.6)

Assume s /∈ L∆F . (T5.7)

To apply (T5.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)

As we have s ∈ L(S) ∩ L(G) from (T5.6), we only still need to show s ∈ P−1
∆F L(G∆F).

By (T5.6) and (T5.7), we 
an apply Proposition 1 and 
on
lude:

s ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we 
an 
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F), by (T5.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) = L(G||G∆F)

We 
an now 
on
lude by Proposition 1 that ss′ /∈ L∆F .

We thus 
on
lude that S and G are fault tolerant nonblo
king.

We 
an thus 
on
lude by parts (A) and (B), that S and G are fault tolerant nonblo
king i�

G
′ is nonblo
king.

Theorem 6:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are N-fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 10, we have: G
′ = G||G∆F||GNF||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

As G and S are de�ned over Σ, we have L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)
and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F Lm(G∆F)∩ P−1
F Lm(GNF). (T6.1)

PartA) Show (⇒)

Assume S and G are N-fault tolerant nonblo
king. (T6.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T6.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ s ∈ L(G||G∆F||GNF)

We 
an thus apply Proposition 2 and 
on
lude: s /∈ L∆F ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T6.3), we 
an apply (T6.2) and 
on
lude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF (T6.4)
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We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF).

From (T6.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
F Lm(GNF).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF).

It is thus su�
ient to show that: ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As ss′ ∈ Lm(G) by (T6.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T6.4), we have: ss′ /∈ L∆F ∧ ss′ ∈ LNF

Applying Proposition 2, we 
an 
on
lude that:

ss′ ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T6.5)

Must show implies S and G are FT 
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T6.6)

Assume s /∈ L∆F ∧ s ∈ LNF . (T6.7)

To apply (T6.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As we have s ∈ L(S) ∩ L(G) from (T6.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

By (T6.6) and (T6.7), we 
an apply Proposition 2, and 
on
lude:

s ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we 
an 
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

F L(GNF), by (T6.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F∧ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We also note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1

F L(GNF) as every state is marked in

GNF, by Algorithm 2.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) =L(G||G∆F||GNF)

We 
an now 
on
lude by Proposition 2 that ss′ /∈ L∆F and that ss′ ∈ LNF .

We thus 
on
lude that S and G are N-fault tolerant nonblo
king.

We 
an thus 
on
lude by parts (A) and (B), that S and G are N-fault tolerant nonblo
king

i� G
′ is nonblo
king.

40



Theorem 7:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are non-repeatable N-fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 11, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over

ΣFi
, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

As G and S are de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩

P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F

Lm(G∆F) ∩ P−1
F Lm(GNF) ∩ P−1

F1
Lm(GF,1) ∩ . . . ∩ P−1

Fm
Lm(GF,m). (T7.1)

Part A) Show (⇒)

Assume S and G are non-repeatable N-fault tolerant nonblo
king. (T7.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩L(G)∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩ P−1
F1

L(GF,1)∩ . . .∩ P−1
Fm

L(GF,m) (T7.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We 
an thus apply Proposition 3 and 
on
lude that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T7.3), we 
an apply (T7.2) and 
on
lude that:

(∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF (T7.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show:

ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF)∩P−1
F1

Lm(GF,1)∩. . .∩P−1
Fm

Lm(GF,m).

From (T7.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show:

ss′ ∈ P−1
∆F Lm(G∆F) ∩ P−1

F Lm(GNF) ∩ P−1
F1

Lm(GF,1) ∩ . . . ∩ P−1
Fm

Lm(GF,m)

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF). From Algorithm 3, we have that all states in GF,i are marked, thus L(GF,i) =
Lm(GF,i), i = 1, . . . , m.

It is thus su�
ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ · · · ∩ P−1
Fm

L(GF,m)

As ss′ ∈ Lm(G) by (T7.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T7.4), we have: ss′ /∈ L∆F ∪ LNRF∧ss′ ∈ LNF

Applying Proposition 3, we 
an 
on
lude that: ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)
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Assume G
′ is nonblo
king. (T7.5)

Must show implies S and G are FT 
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T7.6)

Assume s /∈ L∆F ∪ LNRF∧s ∈ LNF . (T7.7)

To apply (T7.5), we need to show:

s ∈ L(G′) = L(S)∩L(G)∩P−1
∆F L(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m)

As we have s ∈ L(S) ∩ L(G) from (T7.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m).

By (T7.6) and (T7.7), we 
an apply Proposition 3 and 
on
lude:

s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we 
an 
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m),
by (T7.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LNRF and

ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1L(GNF) as every state is marked in GNF,

by Algorithm 2.

Also, we note that ss′ ∈ P−1
Fi

Lm(GF,i) implies ss′ ∈ P−1
Fi

L(GF,i) as every state is marked in

GF,i, i = 1, . . . , m, by Algorithm 3.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We 
an now 
on
lude by Proposition 3 that: ss′ /∈ L∆F ∪ LNRF , and ss′ ∈ LNF

We thus 
on
lude that S and G are non-repeatable N-fault tolerant nonblo
king.

We 
an thus 
on
lude by parts (A) and (B), that S and G are non-repeatable N-fault tolerant

nonblo
king i� G
′ is nonblo
king.

Theorem 8:

Proof. Assume initial 
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We 
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are resettable fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 12, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 4, we know that

GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

As G is de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)
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∩ . . .∩P−1
TFm

L(GTF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩

. . . ∩ P−1
TFm

Lm(GTF,m). (T8.1)

Part A) Show (⇒)

Assume S and G are resettable fault tolerant nonblo
king. (T8.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m) (T8.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩

P−1
TFm

L(GTF,m)

⇒ s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We 
an thus apply Proposition 4 and 
on
lude:

s /∈ L∆F ∪ LTF

As we have s ∈ L(S) ∩ L(G) from (T8.3), we 
an apply (T8.2) and 
on
lude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF (T8.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩ . . . ∩ P−1

TFm
Lm(GTF,m)

From (T8.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
TF1

Lm(GTF,1) ∩ . . . ∩ P−1
TFm

Lm(GTF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 4, we have that all states in GTF,i are marked, i = 1, . . . , m, thus

L(GTF,i) = Lm(GTF,i).

It is thus su�
ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As ss′ ∈ Lm(G) by (T8.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

Also from (T8.4), we have: ss′ /∈ L∆F ∪ LTF

Applying Proposition 4, we 
an 
on
lude that: ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T8.5)

Must show implies S and G are FT 
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTF ⇒ (∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF

Let s ∈ L(S) ∩ L(G). (T8.6)

Assume s /∈ L∆F ∪ LTF . (T8.7)

To apply (T8.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As we have s ∈ L(S) ∩ L(G) from (T8.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

By (T8.6) and (T8.7), we 
an 
on
lude by Proposition 4: s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P

−1
TF1

L(GTF,1) ∩ . . . ∩ P
−1
TFm

L(GTF,m)

43



We thus have s ∈ L(G′). As G
′ is nonblo
king, we 
an 
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

TF1
L(GTF,1)∩ . . .∩P−1

TFm
L(GTF,m), by (T8.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LTF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
TFi

Lm(GTF,i) implies ss′ ∈ P−1
TFi

L(GTF,i) as every state is marked

in GTF,i, by Algorithm 4, for i = 1, . . . , m.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

⇒ ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We 
an now 
on
lude by Proposition 4 that: ss′ /∈ L∆F ∪ LTF

We thus 
on
lude that S and G are resettable fault tolerant nonblo
king.

We 
an thus 
on
lude by parts (A) and (B), that S and G are resettable fault tolerant

nonblo
king i� G
′ is nonblo
king.
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