
Department of Computing and Software
Faculty of Engineering — McMaster University

Fault Tolerant Controllability and Nonblocking

by

Aos Mulahuwaish, Simon Radel, Oriane Dierikx,
Amal Alsuwaidan, and Ryan J. Leduc

CAS Report Series CAS-15-12-RL
Department of Computing and Software December 2015
Information Technology Building
McMaster University
1280 Main Street West Hamilton, Ontario, Canada L8S 4K1

Copyright
© 2015

Fault Tolerant Controllability and Nonblo
king

Aos Mulahuwaish1, Simon Radel2, Oriane Dierikx3, Amal Alsuwaidan1, and Ryan J. Ledu
 1

1 Department of Computing and Software, Fa
ulty of Engineering,

M
Master University, Hamilton, Ontario, Canada
2 Department of Génie Mé
anique, ENS DE CACHAN, Fran
e

3 Department of Me
hani
al Engineering, Te
hni
al University of Eindhoven, The Netherlands

Te
hni
al Report CAS-15-12-RL

Department of Computing and Software

M
Master University

De
ember 21, 2015

Abstra
t

In this paper we investigate the problem of fault toleran
e in the framework of

dis
rete-event systems (DES). We introdu
e our setting, and then provide a set of

fault tolerant de�nitions designed to
apture di�erent types of fault s
enarios and

to ensure that our system remains
ontrollable and nonblo
king in ea
h s
enario.

We then present algorithms to verify these properties followed by
omplexity anal-

yses and
orre
tness proofs of the algorithms. Finally, examples are provided to

illustrate our approa
h.

Keywords: Dis
rete-Event Systems; Supervisory
ontrol; Fault tolerant.

Contents

1 Introdu
tion 1

2 Preliminaries 2

3 Fault Tolerant Setting 3

3.1 Fault Events . 3

3.2 Fault Tolerant Consisten
y . 4

3.3 Fault S
enarios . 5

4 Fault Tolerant Controllability De�nitions 5

4.1 Fault Tolerant Controllability . 6

4.2 N-Fault Tolerant Controllability . 6

4.3 Non-repeatable N-Fault Tolerant Controllability 7

4.4 Resettable Fault Tolerant Controllability . 7

5 Fault Tolerant Nonblo
king De�nitions 8

5.1 Fault Tolerant Nonblo
king . 8

5.2 N-Fault Tolerant Nonblo
king . 8

5.3 Non-repeatable N-Fault Tolerant Nonblo
king 8

5.4 Resettable Fault Tolerant Nonblo
king . 9

6 Algorithms 9

6.1 Algorithms to Constru
t Plants . 10

6.1.1 Constru
t Ex
luded Faults Plant . 10

6.1.2 Constru
t N-Faults Plant . 10

6.1.3 Constru
t Non-repeatable N-Faults Plant 11

6.1.4 Constru
t Resettable Faults Plant . 11

6.2 Verify Fault Tolerant Controllability . 12

6.3 Verify N-Fault Tolerant Controllability . 12

6.4 Verify Non-repeatable N-Fault Tolerant Controllability 13

6.5 Verify Resettable Fault Tolerant Controllability 13

6.6 Verify Fault Tolerant Nonblo
king . 14

6.7 Verify N-Fault Tolerant Nonblo
king . 14

6.8 Verify Non-repeatable N-Fault Tolerant Nonblo
king 15

6.9 Verify Resettable Fault Tolerant Nonblo
king 15

6.10 Algorithm Complexity Analysis . 15

6.10.1 FT Controllability Algorithm . 16

6.10.2 N-FT Controllability Algorithm . 16

6.10.3 Non-repeatable N-FT Controllability Algorithm 16

i

6.10.4 Resettable FT Controllability Algorithm 17

7 Algorithm Corre
tness 17

7.1 Fault Tolerant Propositions . 17

7.2 Fault Tolerant Controllable Theorems . 18

7.3 Fault Tolerant Nonblo
king Theorems . 18

8 Manufa
turing Example 19

8.1 Base Plant Models . 20

8.1.1 Sensor Models . 20

8.1.2 Sensor Interdependen
ies . 20

8.1.3 Train Models . 21

8.1.4 Relationship Between Sensors and Trains Models 21

8.2 Modular Supervisors . 21

8.2.1 Collision Prote
tion Supervisors . 22

8.2.2 Collision Prote
tion Fault Tolerant Supervisors 23

8.3 Complete System . 23

9 Con
lusions and Future Work 25

A Proofs of Sele
ted Propositions 28

B Proofs of Sele
ted Theorems 33

ii

1 Introdu
tion

Supervisory
ontrol theory, introdu
ed by Ramadge and Wonham [1, 2, 3℄, provides a formal

framework for analysing dis
rete-event systems (DES). In this theory, automata are used to

model the system to be
ontrolled and the spe
i�
ation for the desired system behaviour. The

theory provides methods and algorithms to obtain a supervisor that ensures the system will

produ
e the desired behaviour.

However, the above typi
ally assumes that the system behavior does not
ontain faults

that would
ause the a
tual system to deviate from the theoreti
al model. An example is a

sensor that dete
ts the presen
e of an approa
hing train. If the supervisor relies on this sensor

to determine when the train should be stopped in order to prevent a
ollision, it
ould fail to

enfor
e its
ontrol law if the sensor failed. Our goal in this paper is to develop a way to add

fault events to the system's plant model and to
ategorize some
ommon fault s
enarios. We

will then develop some properties that will allow us to determine if a supervisor will still be

ontrollable and nonblo
king in these s
enarios. This paper builds upon our earlier work in

Radel et al. [4℄.

Currently in the DES literature, the most
ommon approa
h when a fault is dete
ted is

to swit
h to a new supervisor to handle the system in its degraded mode. Su
h an approa
h

fo
uses on fault re
overy as opposed to fault toleran
e. This requires the
onstru
tion of a

se
ond supervisor, and requires that there be a means to dete
t the o

urren
e of the fault

in order to initiate the swit
h. In the approa
h we present in this paper, we use a single

supervisor that will behave
orre
tly in the presen
e of the spe
i�ed fault s
enarios. This

method does not rely on dete
ting the fault, but on fault tolerant supervisors. We will now

dis
uss some relevant previous work.

Lin [5℄ dis
ussed both robust and adaptive supervisory
ontrol in dis
rete-event systems,

in
luding ne
essary and su�
ient
onditions for the existen
e of a robust supervisor. Based

on this
ondition, a robust supervisory
ontrol and observation approa
h for synthesizing a

supervisory
ontrol was developed. The goal of robust supervision is to synthesize a supervisor

that realizes a given desired behavior for all possible systems.

In Park et al. [6℄, they presented ne
essary and su�
ient
onditions for fault tolerant

robust supervisory
ontrol of dis
rete-event systems that belong to a set of models. When

these
onditions are satis�ed, fault toleran
e
an be a
hieved. In the paper, the results were

applied to the design, modelling, and
ontrol of a work
ell
onsisting of ar
 welding (GMAW)

robots, a sensor, and a
onveyor.

In Paoli et al. [7℄, the
ontroller was updated based on the information provided by online

diagnosti
s. The supervisor needs to dete
t the malfun
tioning
omponent in the system in

order to a
hieve the desired spe
i�
ation. The authors proposed the idea of safe diagnosability

as a step to a
hieve the fault tolerant
ontrol. Two new notations were introdu
ed in this

work (safe
ontrollability) and (a
tive fault tolerant system), to
hara
terize the
onditions

that must be satis�ed when solving the fault tolerant
ontrol problem using this approa
h.

Qin Wen et al. [8℄ introdu
e a framework for fault-tolerant supervisory
ontrol of dis
rete-

event systems. In this framework, plants
ontain both normal behavior and behavior with

faults, as well as a submodel that
ontains only the normal behavior. The goal of fault-

tolerant supervisory
ontrol is to enfor
e a spe
i�
ation for the normal behavior of the plant

and to enfor
e another spe
i�
ation for the overall plant behavior. This in
ludes ensuring

1

that the plant re
overs from any fault within a bounded delay so that after the re
overy, the

system state is equivalent to a state in the normal plant behavior. They formulate this notion

of fault-tolerant supervisory
ontrol and provide a ne
essary and su�
ient
ondition for the

existen
e of su
h a supervisor. The
ondition involves notions of
ontrollability, observability

and relative-
losure together with the notion of stability.

This paper is organized as follows. Se
tion 2 dis
usses DES preliminaries. Se
tion 3 in-

trodu
es fault events and the fault s
enarios to whi
h they apply. Se
tion 4 presents our

fault tolerant
ontrollability de�nitions while Se
tion 5 presents our fault tolerant nonblo
k-

ing de�nitions. Se
tion 6 presents algorithms to verify the fault tolerant
ontrollability and

nonblo
king properties and provides a
omplexity analysis. Se
tion 7 presents algorithm
or-

re
tness proofs and Se
tion 8 provides a manufa
turing example to illustrate our approa
h.

Finally, Se
tion 9 provides
on
lusions and future work.

2 Preliminaries

We now present a summary of the DES terminology that we use in this paper. For more

details, please refer to [2℄.

Let Σ be a �nite set of distin
t symbols (events). Let Σ+ denote the set of all �nite,

non-empty sequen
es of events, and Σ∗ be the set of all �nite sequen
es of events in
luding

ǫ, the empty string. We
an then de�ne Σ∗:= Σ+ ∪ {ǫ}. For s ∈ Σ∗, |s| equals the length

(number of events) of the string.

Let L ⊆ Σ∗ be a language over Σ. A string t ∈ Σ∗ is a pre�x of s ∈ Σ∗ (written t ≤ s)
if s = tu, for some u ∈ Σ∗. The pre�x
losure of language L (denoted L) is de�ned as

L := {t ∈ Σ∗ | t ≤ s for some s ∈ L}. Let Pwr(Σ) denote the set of all possible subsets of Σ.
For language L, the eligibility operator, EligL : Σ∗ → Pwr(Σ), is given by EligL(s) := {σ ∈
Σ |sσ ∈ L} for s ∈ Σ∗.

A DES automaton is represented as a 5-tuple G = (Y,Σ, δ, yo, Ym) where Y is the state set,

Σ is the event set, the partial fun
tion δ : Y ×Σ → Y is the transition fun
tion, yo is the initial

state, and Ym is the set of marker states. The fun
tion δ is extended to δ : Y ×Σ∗ → Y in the

natural way. The notation δ(y, s)! means that δ is de�ned for s ∈ Σ∗ at state y. For DES G,

the language generated is denoted by L(G), and is de�ned to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G is de�ned as Lm(G) := { s ∈ L(G)| δ(yo, s) ∈ Ym}. The rea
hable
state subset of DES G, denoted Yr, is Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}. A DES G is

rea
hable if Yr = Y . We will always assume G is rea
hable.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2, s ∈ Σ∗, and σ ∈ Σ, we de�ne the

natural proje
tion Pi : Σ∗ → Σ∗

i a

ording to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i) → Pwr(Σ∗) is the inverse image of Pi su
h that for L⊆Σ∗

i , P−1
i L :=

{s ∈ Σ∗|Pi(s) ∈ L}.

De�nition 1. For Gi = (Qi, Σi, δi, qo,i, Qm,i) (i = 1, 2), we de�ne the syn
hronous produ
t

2

G = G1||G2 of the two DES as:

G := (Q1 × Q2, Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 × Qm,2),

where δ((q1, q2), σ) is only de�ned and equals:

(q′1, q
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1or
(q1, q

′

2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

It follows that L(G) = P−1
1 L(G1)∩P−1

2 L(G2) and Lm(G) = P−1
1 Lm(G1)∩P−1

2 Lm(G2).
We note that if Σ1 = Σ2, we get L(G) = L(G1) ∩ L(G2) and Lm(G) = Lm(G1) ∩ Lm(G2).

For DES, the two main properties we want to
he
k are nonblo
king and
ontrollability.

De�nition 2. A DES G is said to be nonblo
king if:

(∀s ∈ L(G)) (∃s′ ∈ Σ∗) ss′ ∈ Lm(G)

For
ontrollability, we assume the standard event partition Σ = Σu ∪̇Σc, splitting our

alphabet into un
ontrollable and
ontrollable events.

De�nition 3. A supervisor S = (X, Σ, ξ, xo, Xm) is
ontrollable for plant G = (Y,Σ, δ, yo, Ym)
if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ L(S)

We now provide some language de�nitions that will be useful for this paper. We start with

the language Lk. This is the set of strings
onstru
ted from any k strings in L.

De�nition 4. Let L⊆Σ∗ and k ∈ {1, 2, 3, . . .}. We de�ne the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2 . . . sk for some s1, s2, . . . , sk ∈ L}

We next de�ne the notation for the language
onstru
ted from all possible ways to
on-

atenate a string from language L1, followed by an event from Σ′, and a string from language

L2.

De�nition 5. Let L1, L2⊆Σ∗ and Σ′⊆Σ. We de�ne the language L1.Σ
′.L2 to be:

L1.Σ
′.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈ L2, σ ∈ Σ′}

3 Fault Tolerant Setting

In this se
tion, we will introdu
e our
on
ept of fault events and a
onsisten
y property that our

systems must satisfy. In the following se
tion, we will assume that all DES are deterministi
,

and that we are given plant G = (Y,Σ, δ, yo, Ym) and supervisor S = (X, Σ, ξ, xo, Xm).

3.1 Fault Events

In this paper, our approa
h will be to add a set of un
ontrollable events to our plant model to

represent the possible faults in the system. For example, if we had a sensor to dete
t when a

3

train passes, its plant model might originally
ontain an event su
h as trn_sen0 indi
ating a

train is present. We
ould add a new un
ontrollable event, trnf_sen0, that will o

ur instead

if the sensor fails to dete
t the train. This will allow us to model how the system will behave

after the o

urren
e of the fault. Our goal will be to design supervisors that will still behave

orre
tly even if a fault event o

urs, even though they
an't dete
t the fault event dire
tly.

We start by de�ning a group of m ≥ 0 mutually ex
lusive sets of fault events.

ΣFi
⊆ Σu, i = 1, . . . , m

The idea here is to group related faults into sets su
h that faults of a given set represent

a
ommon fault
ondition, while faults of a di�erent set represent a di�erent fault
ondition.

For example, two sensors in a row that
ould ea
h be used to dete
t the train in time for a

given tra
k segment might be in the same fault set, but a sensor in a di�erent part of the

tra
k would be in a di�erent set.

De�nition 6. We refer to faults in ΣFi
, i = 1, . . . , m,
olle
tively as standard fault events:

ΣF :=
˙⋃

i=1,...,m

ΣFi

We note that for m = 0, ΣF = ∅.

The standard fault events are the faults that will be used to de�ne the various fault

s
enarios that our supervisors will need to be able to handle. However, there are two additional

types of faults that we need to de�ne in order to handle two spe
ial
ases. The �rst type is

alled unrestri
ted fault events, denoted ΣΩF ⊆ Σu. These are faults that a supervisor
an

always handle and thus are allowed to o

ur unrestri
ted.

The se
ond type is
alled ex
luded fault events, denoted Σ∆F ⊆ Σu. These are faults that

an not be handled at all and thus are essentially ignored in our s
enarios. The idea is that this

would allow us to still design a fault tolerant supervisory for the remaining faults. Typi
ally,

most systems would have neither ex
luded or unrestri
ted faults, but we will in
lude them in

our de�nitions for the systems that do.

For ea
h fault set, ΣFi
(i = 0, . . . , m), we also need to de�ne a mat
hing set of reset

events, denoted ΣTi
⊆ Σ. These events will be explained in Se
tion 3.3, when we des
ribe the

resettable fault s
enario.

3.2 Fault Tolerant Consisten
y

We now present a
onsisten
y requirement that our systems must satisfy.

De�nition 7. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m), Σ∆F , and ΣΩF , is fault tolerant (FT)
onsistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F , ΣΩF , ΣFi
(i = 0, . . . , m), are pair-wise disjoint.

3. (∀i ∈ 1, . . . , m)ΣFi
6= ∅

4

4. (∀i ∈ 1, . . . , m)ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministi
.

6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF))ξ(x, σ) = x

Point (1) says that fault events are un
ontrollable sin
e allowing a supervisor to disable

fault events would be unrealisti
. Point (2) requires that the indi
ated sets of faults be

disjoint sin
e they must ea
h be handled di�erently. Point (3) says that fault sets ΣFi
are

non-empty. Point (4) says a fault set must be disjoint from its
orresponding set of reset

events so we
an distinguish them.

Points (5) and (6) say that S is deterministi
 (single initial state and at most a single

transition leaving a given state for a given event) and that at every state in S, there is a sel�oop

for ea
h fault event in the system. This means a supervisor
annot
hange state (and thus

hange enablement information) based on a fault event. This is a key
on
ept as it e�e
tively

makes fault events unobservable to supervisors. If S is de�ned over a subset Σ′ ⊂ Σ instead,

we
ould equivalently require that Σ′
ontain no fault events.

3.3 Fault S
enarios

In this paper, we will
onsider four fault s
enarios. The �rst is the default fault s
enario where

the supervisor must be able to handle any non-ex
luded fault event that o

urs. The se
ond

s
enario is the N ≥ 0 fault s
enario where the supervisor is only required to handle at most

N , non-ex
luded fault events and all unrestri
ted fault events.

The next s
enario is the non-repeatable N ≥ 0 fault s
enario where the supervisor is only

required to handle at most N , non-ex
luded fault events and all unrestri
ted fault events, but

no more than one fault event from any given ΣFi
(i = 0, . . . , m) fault set. This de�nition

allows the designer to group faults together in fault sets su
h that a fault o

urring from one

set does not a�e
t a supervisors ability to handle a fault from a di�erent set. Parti
ularly for

a situation where a supervisor
ould handle only one fault per fault set, this would allow m
faults to o

ur instead of only one using the previous s
enario.

The last s
enario we
onsider is the resettable fault s
enario. This is designed to
apture

the situation where at most one fault event from ea
h ΣFi
(i = 0, . . . , m) fault set
an be

handled by the supervisor during ea
h pass through a part of the system, but this ability

resets for the next pass. For this to work, we need to be able to dete
t when the
urrent pass

has
ompleted and it is safe for another fault event from the same fault set to o

ur. We use

the fault set's
orresponding set of reset events to a
hieve this. The idea is that on
e a reset

event has o

urred, the
urrent pass
an be
onsidered over and it is safe for another fault

event to o

ur.

4 Fault Tolerant Controllability De�nitions

We will now develop some properties that will allow us to determine if a supervisor will still

be
ontrollable in the four fault s
enarios that we introdu
ed in the previous se
tion.

5

4.1 Fault Tolerant Controllability

The �rst fault tolerant property that we introdu
e is designed to handle the default fault

s
enario. First, we need to de�ne the language of ex
luded faults. This is the set of all strings

that in
lude at least one fault from Σ∆F .

De�nition 8. We de�ne the language of ex
luded faults as:

L∆F = Σ∗.Σ∆F .Σ∗

De�nition 9. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT)
ontrollable if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard
ontrollability de�nition but ignores strings

that in
lude ex
luded fault events. As the language L(S) ∩ L(G) is pre�x
losed, pre�xes

of these strings that do not
ontain ex
luded faults must be
he
ked. This de�nition is

equivalent to blo
king all ex
luded fault events from o

urring in the system behavior and

then
he
king the standard
ontrollability de�nition. This is the most powerful of the fault

tolerant de�nitions as the supervisor must be able to handle a potentially unlimited number

of faults that
an o

ur in any order. We note that if Σ∆F = ∅, then De�nition 9 redu
es to

the standard
ontrollability de�nition as L∆F redu
es to L∆F = ∅.

Typi
ally, the set of ex
luded faults for a given system is empty. When a system is FT

ontrollable and Σ∆F 6= ∅, we say that it is FT
ontrollable with ex
luded faults to emphasize

that it is less fault tolerant than if it passed the de�nition with Σ∆F = ∅. We will use a similar

expression with the other fault tolerant de�nitions.

4.2 N-Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the N ≥ 0 fault

s
enario. First, we need to de�ne the language of N-fault events. This is the set of all strings

that in
lude at most N faults from ΣF , in
luding those that
ontain no su
h faults.

De�nition 10. We de�ne the language of N-fault events as:

LNF = (Σ − ΣF)∗ ∪
N
⋃

k=1

((Σ − ΣF)∗.ΣF .(Σ − ΣF)∗)k

De�nition 11. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT)
ontrollable if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F) ∧ (s ∈ LNF) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard
ontrollability de�nition but ignores strings

that in
lude ex
luded fault events or more than N faults from fault sets ΣFi
(i = 0, . . . , m).

6

This de�nition is essentially weaker than the previous one sin
e if we take N = ∞ we get the

FT
ontrollability de�nition ba
k. If we set N = 0, we get the
ontrollability de�nition with

all fault events from ΣF ex
luded as well sin
e LNF will simplify to LNF = (Σ − ΣF)∗. We

also note that if m = 0, we get ΣF = ∅. This means LNF will simplify to LNF = Σ∗ whi
h

means De�nition 11 will simplify to De�nition 9.

Typi
ally, the set of unrestri
ted faults for a given system is empty. When a system is

N-FT
ontrollable and ΣΩF 6= ∅, we say that it is N-FT
ontrollable with unrestri
ted faults

to emphasize that it is more fault tolerant than if it passed the de�nition with ΣΩF = ∅. We

will use a similar expression with the other fault tolerant de�nitions.

4.3 Non-repeatable N-Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the non-repeatable

N ≥ 0 fault s
enario. First, we need to de�ne the language of non-repeatable fault events. This

is the set of all strings that in
lude two or more faults from a single fault set ΣFi
(i = 0, . . . , m).

De�nition 12. We de�ne the language of non-repeatable fault events as:

LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

De�nition 13. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT)
on-

trollable, if it is FT
onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard
ontrollability de�nition, but ignores

strings that in
lude ex
luded fault events, more than N faults from fault sets ΣFi
(i =

0, . . . , m), or strings that in
lude two or more faults from a single fault set. We note that

if m = 0, we get ΣF = ∅. This means LNF simpli�es to LNF = Σ∗ and LNRF simpli�es to

LNRF = ∅. This means De�nition 13 simpli�es to De�nition 9.

4.4 Resettable Fault Tolerant Controllability

The next fault tolerant property that we introdu
e is designed to handle the resettable fault

s
enario. First, we need to de�ne the language of resettable fault events. This is the set of all

strings where two faults from the same fault set ΣFi
o

ur in a row without an event from the

orresponding set of reset events in between.

De�nition 14. We de�ne the language of resettable fault events as:

LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗)

De�nition 15. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT)
ontrollable if

7

it is FT
onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard
ontrollability de�nition, but ignores

strings that in
lude ex
luded fault events and strings where we get two fault events from

the same fault set in a row without an event from the
orresponding set of reset events in

between. We note that if m = 0, we get ΣF = ∅. This means LTF simpli�es to LTF = ∅ whi
h

means De�nition 15 simpli�es to De�nition 9.

5 Fault Tolerant Nonblo
king De�nitions

We will now develop some properties that will allow us to determine if a system will still be

nonblo
king in the four s
enarios that we introdu
ed in Se
tion 3.3.

We use the fault languages from Se
tion 4 and a similar approa
h to add fault tolerant

prin
iples to the standard nonblo
king de�nition.

5.1 Fault Tolerant Nonblo
king

The �rst fault tolerant nonblo
king property that we introdu
e is designed to handle the

default fault s
enario. We use the language of ex
luded faults from Se
tion 4.1.

De�nition 16. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT) nonblo
king if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))
(s /∈ L∆F) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F)

We note that if Σ∆F = ∅, then De�nition 16 redu
es to the standard nonblo
king de�nition.

Also, if m = 0 then De�nitions 17, 18, and 19 all simplify to De�nition 16.

5.2 N-Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

N ≥ 0 fault s
enario. We use the language of ex
luded faults and the language of N-fault

events from Se
tions 4.1 and 4.2.

De�nition 17. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT) nonblo
king if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F) ∧ (s ∈ LNF) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F) ∧ (ss′ ∈ LNF)

5.3 Non-repeatable N-Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

non-repeatable N ≥ 0 fault s
enario. We use the language of ex
luded faults, the language of

8

N-fault events, and the language of non-repeatable fault events from Se
tion 4.

De�nition 18. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT) non-

blo
king, if it is FT
onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LNRF) ∧ (ss′ ∈ LNF)

5.4 Resettable Fault Tolerant Nonblo
king

The next fault tolerant nonblo
king property that we introdu
e is designed to handle the

resettable fault s
enario. We use the language of ex
luded faults and the language of resettable

fault events from Se
tion 4.

De�nition 19. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT) nonblo
king if

it is FT
onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LTF) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LTF)

6 Algorithms

In this se
tion, we will present algorithms to
onstru
t and verify the eight fault tolerant

ontrollability and nonblo
king properties that we de�ned in Se
tions 4 and 5. We will not

present an algorithm for the FT
onsisten
y property as its individual points
an easily be

he
ked by adapting various standard algorithms. We assume that our system
onsists of a

plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . , m), Σ∆F , and ΣΩF .

Our approa
h will be to
onstru
t plant
omponents to syn
hronize with our plant G

su
h that the new DES will restri
t the o

urren
e of faults to mat
h the given fault tolerant

ontrollability and nonblo
king de�nitions. We
an then syn
hronize the plant
omponents to-

gether and then use a standard
ontrollability or nonblo
king algorithm to
he
k the property.

This approa
h allows us to automati
ally take advantage of existing s
alability methods su
h

as in
remental [9℄ and binary de
ision diagram-based (BDD) algorithms [10, 11, 12, 13, 14, 15℄.

As the
ontrollability, nonblo
king, and syn
hronous produ
t algorithms have already been

studied in the literature [16℄, we will assume that they are given to us. We will use the stan-

dard || symbol to indi
ate the syn
hronous produ
t operation, vCont(Plant,Sup) to indi
ate

ontrollability veri�
ation, and vNonb(System) to indi
ate nonblo
king veri�
ation. Fun
-

tions vCont and vNonb return true or false to indi
ate whether the veri�
ation passed or failed,

and the result will be stored in the Boolean variable pass.

In the se
tions that follow, we will �rst present algorithms to
onstru
t the new plant

omponents that will be shared by the fault tolerant
ontrollable and nonblo
king algorithms.

We then present the individual fault tolerant
ontrollability and nonblo
king algorithms.

9

6.1 Algorithms to Constru
t Plants

Algorithms 1 − 4
onstru
t the needed plant
omponents for the various fault tolerant algo-

rithms.

6.1.1 Constru
t Ex
luded Faults Plant

Algorithm 1
onstru
ts G∆F for fault set Σ∆F . The algorithm
onstru
ts a new DES with

event set Σ∆F , but no transitions. It also
ontains only its initial state, whi
h is marked. This

will have the e�e
t of removing any Σ∆F transitions from any DES it is syn
hronized with.

Please note that all of the
onstru
ted DES in these algorithms have every state marked

sin
e their goal is to modify the
losed behavior by restri
ting the o

urren
e of fault events as

needed; not to modify the marked behavior of the system dire
tly. Also, when we de�ne our

transition fun
tions su
h as δ, we will de�ne them as a subset of Y × Σ × Y for
onvenien
e.

For example, (yo, σ, y1) ∈ δ implies δ(yo, σ) = y1.

Algorithm 1
onstru
t-G∆F(Σ∆F)

1: Y1 ← {y0}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: return (Y1, Σ∆F , δ1, yo, Ym,1)

Figure 1 shows an example G∆F. In the DES diagrams,
ir
les represent unmarked states,

while �lled
ir
les represent marked states. Two
on
entri
, un�lled
ir
les represent the initial

state. If the initial state is also marked, the inner
ir
le is �lled. Note that if a transition is

labeled by an event set su
h as in Figure 2, this is a shorthand for a transition for ea
h event

in the event set.

0

Figure 1: Ex
luded Faults Plant G∆F

∑F∑F ∑F ∑F

0 1 2 3

Figure 2: N-Fault Plant GNF, N = 3

∑Fi

00 1

Figure 3: Non-Repeatable N-Fault Plant

GF,i

∑Fi

∑Ti

∑Ti

0 1

Figure 4: Resettable Fault Plant GTF,i

6.1.2 Constru
t N-Faults Plant

Algorithm 2
onstru
ts GNF for max N faults, and standard fault set ΣF . The algorithm

onstru
ts a new DES with event set ΣF and N states, ea
h state marked. It then
reates a

transition for ea
h fault event in ΣF from state yi to state yi+1. As there are no transitions at

10

state yN , syn
hronizing with this DES will allow at most N faults to o

ur, and then remove

any additional standard fault transitions. Figure 2 shows an example GNF for N = 3.

Algorithm 2
onstru
t-GNF(N, ΣF)

1: Y1 ← {y0, y1, . . . , yN}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: for i = 0, . . . , N − 1
5: for σ ∈ ΣF

6: δ1 ← δ1 ∪ {(yi, σ, yi+1)}
7: end for

8: end for

9: return (Y1, ΣF , δ1, yo, Ym,1)

We note that if m = 0, then ΣF = ∅. This means that GNF will
ontain no events and

have unrea
hable states for N ≥ 1. As a result, syn
hronizing with GNF will have no e�e
t

on the
losed and marked language of the system. This means that Algorithms 6, 7, 10, and

11 will still work
orre
tly.

We next note that if N = 0, GNF will
ontain a single state, but no transitions. This will

have the desired e�e
t of removing any ΣF transitions from any DES syn
hronized with GNF.

6.1.3 Constru
t Non-repeatable N-Faults Plant

Algorithm 3
onstru
ts GF,i for i ∈ {1, . . . , m} and fault set ΣFi
. The algorithm
onstru
ts a

new DES with event set ΣFi
and two states, both states marked. It then
reates a transition

for ea
h fault event in ΣFi
from the initial state to state y1. As there are no transitions at

state y1, syn
hronizing with this DES will allow at most 1 fault event from the fault set to

o

ur and then remove any additional fault transitions from the fault set. Figure 3 shows an

example GF,i.

Algorithm 3
onstru
t-GF,i(ΣFi
, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: return (Yi, ΣFi
, δi, yo, Ym,i)

6.1.4 Constru
t Resettable Faults Plant

Algorithm 4
onstru
ts GTF,i for i ∈ {1, . . . , m}, fault set ΣFi
, and reset set ΣTi

. The

algorithm
onstru
ts a new DES with event set ΣFi
∪ΣTi

and two states, both states marked.

It then
reates a transition for ea
h fault event in ΣFi
from the initial state to state y1. Next,

it
reates a transition for ea
h reset event in ΣTi
from state y1 to the initial state, as well as a

11

sel�oop at the initial state for the event. Figure 4 shows an example GTF,i. Essentially, reset

events
an o

ur unrestri
ted, but on
e a fault event o

urs from ΣFi
, a se
ond event from

the set is blo
ked until a reset event from ΣTi
o

urs. Syn
hronizing with this DES will have

the e�e
t of restri
ting the plant's fault behavior to that whi
h the supervisor is required to

handle.

Algorithm 4
onstru
t-GTF,i(ΣFi
, ΣTi

, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: for σ ∈ ΣTi

8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}
9: end for

10: return (Yi, ΣFi
∪ ΣTi

, δi, yo, Ym,i)

6.2 Verify Fault Tolerant Controllability

Algorithm 5 shows how to verify fault tolerant
ontrollability for G and S. Line 1
onstru
ts

the ex
luded fault plant, G∆F, using Algorithm 1. Line 2
onstru
ts the new plant G
′. Line

3
he
ks that supervisor S is
ontrollable for plant G
′. As G∆F is de�ned over event set Σ∆F

and
ontains only a marked initial state and no transitions, syn
hronizing it with G
reates

the original behavior with all ex
luded fault events removed. Che
king that S is
ontrollable

for the resulting behavior will have the e�e
t of verifying fault tolerant
ontrollability.

Algorithm 5 Verify fault tolerant
ontrollability

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: G

′ ← G||G∆F

3: pass ← vCont(G′,S)
4: return pass

We note that if Σ∆F = ∅, Algorithm 5 will still produ
e the
orre
t result. However, it

would be more e�
ient to just
he
k that S is
ontrollable for G dire
tly.

6.3 Verify N-Fault Tolerant Controllability

Algorithm 6 shows how to verify N-fault tolerant
ontrollability for G, and S. Line 1
onstru
ts

the ex
luded fault plant, G∆F. Line 2
onstru
ts the N-fault plant, GNF, using Algorithm

2. Line 3
onstru
ts the new plant G
′. Line 4
he
ks that supervisor S is
ontrollable for

plant G
′. As G∆F removes any ex
luded fault transitions and GNF prevents strings from

ontaining more than N fault events,
he
king that S is
ontrollable for the resulting behavior

will have the e�e
t of verifying N-fault tolerant
ontrollability.

12

Algorithm 6 Verify N-fault tolerant
ontrollability

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: GNF ←
onstru
t-GNF(N, ΣF)
3: G

′ ← G||G∆F||GNF

4: pass ← vCont(G′,S)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that syn
hronizing with GNF will have no

e�e
t. We will still get the
orre
t result but it would be more e�
ient to run Algorithm 5

dire
tly instead.

6.4 Verify Non-repeatable N-Fault Tolerant Controllability

Algorithm 7 shows how to verify non-repeatable N-fault tolerant
ontrollability for G and S.

Line 1
onstru
ts the ex
luded fault plant, G∆F. Line 2
onstru
ts the N-fault plant, GNF.

For i ∈ {1, . . . , m}, Line 4
onstru
ts the non-repeatable N-fault plant, GF,i, using Algorithm

3. Line 6
onstru
ts the new plant G
′. Line 7
he
ks that supervisor S is
ontrollable for plant

G
′. As G∆F removes any ex
luded fault transitions, GNF prevents strings from
ontaining

more than N fault events, and ea
h GF,i allows at most one fault from their fault set to o

ur,

he
king that S is
ontrollable for the resulting behavior will have the e�e
t of verifying non-

repeatable N-fault tolerant
ontrollability. We note that if m ≤ N , we
an safely skip Line 2

(and remove GNF from line 6) as Lines 3-5 will ensure at most m faults
an o

ur.

Algorithm 7 Verify non-repeatable N-fault tolerant
ontrollability

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: GNF ←
onstru
t-GNF(N, ΣF)
3: for i = 1, . . . , m
4: GF,i ←
onstru
t-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m

7: pass ← vCont(G′,S)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be
onstru
ted, and that

syn
hronizing with GNF will have no e�e
t. This means G
′ will simplify to G

′ = G||G∆F

and we
an just evaluate Algorithm 5 instead.

6.5 Verify Resettable Fault Tolerant Controllability

Algorithm 8 shows how to verify resettable fault tolerant
ontrollability for G and S. Line 1

onstru
ts the ex
luded fault plant, G∆F. For i ∈ {1, . . . , m}, Line 3
onstru
ts the resettable

fault plant GTF,i, using Algorithm 4. Line 5
onstru
ts the new plant G
′. Line 6
he
ks that

supervisor S is
ontrollable for plant G
′. As G∆F removes any ex
luded fault transitions, and

ea
h GTF,i only allows strings where fault events from ΣFi
are always separated by at least

one event from the
orresponding set of reset events, ΣTi
,
he
king that S is
ontrollable for

the resulting behavior will have the e�e
t of verifying resettable fault tolerant
ontrollability.

13

Algorithm 8 Verify resettable fault tolerant
ontrollability

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: for i = 1, . . . , m
3: GTF,i ←
onstru
t-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m

6: pass ← vCont(G′,S)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be
onstru
ted. This means

G
′ will simplify to G

′ = G||G∆F and we
an just evaluate Algorithm 5 instead.

6.6 Verify Fault Tolerant Nonblo
king

Algorithm 9 shows how to verify fault tolerant nonblo
king for G and S. This algorithm is

essentially the same as Algorithm 5, ex
ept at Line 2 we
al
ulate the
losed loop system G
′,

and then at Line 3 we verify that it is nonblo
king.

Algorithm 9 Verify fault tolerant nonblo
king

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: G

′ ← G||G∆F||S
3: pass ← vNonb(G′)
4: return pass

We note that if Σ∆F = ∅, Algorithm 9 will still produ
e the
orre
t result. However, it

would be more e�
ient to just
he
k that S||G is nonblo
king dire
tly.

6.7 Verify N-Fault Tolerant Nonblo
king

Algorithm 10 shows how to verify N-fault tolerant nonblo
king for G, and S. This algorithm

is essentially the same as Algorithm 6, ex
ept at Line 3 we
al
ulate the
losed loop system

G
′, and then at Line 4 we verify that it is nonblo
king.

Algorithm 10 Verify N-fault tolerant nonblo
king

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: GNF ←
onstru
t-GNF(N, ΣF)
3: G

′ ← G||G∆F||GNF||S
4: pass ← vNonb(G′)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that syn
hronizing with GNF will have no

e�e
t. We will still get the
orre
t result but it would be more e�
ient to run Algorithm 9

dire
tly instead.

14

6.8 Verify Non-repeatable N-Fault Tolerant Nonblo
king

Algorithm 11 shows how to verify non-repeatable N-fault tolerant nonblo
king for G and S.

This algorithm is essentially the same as Algorithm 7, ex
ept at Line 6 we
al
ulate the
losed

loop system G
′, and then at Line 7 we verify that it is nonblo
king.

Algorithm 11 Verify non-repeatable N-fault tolerant nonblo
king

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: GNF ←
onstru
t-GNF(N, ΣF)
3: for i = 1, . . . , m
4: GF,i ←
onstru
t-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m||S

7: pass ← vNonb(G′)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be
onstru
ted, and that

syn
hronizing with GNF will have no e�e
t. This means G
′ will simplify to G

′ = G||G∆F||S
and we
an just evaluate Algorithm 9 instead.

We also note that if N ≥ m, the GF,i will ensure that no more than m events o

ur. We

thus do not need to add GNF to G
′, whi
h should make the veri�
ation more e�
ient.

6.9 Verify Resettable Fault Tolerant Nonblo
king

Algorithm 12 shows how to verify resettable fault tolerant nonblo
king for G and S. This

algorithm is essentially the same as Algorithm 8, ex
ept at Line 5 we
al
ulate the
losed loop

system G
′, and then at Line 6 we verify that it is nonblo
king.

Algorithm 12 Verify resettable fault tolerant nonblo
king

1: G∆F ←
onstru
t-G∆F(Σ∆F)
2: for i = 1, . . . , m
3: GTF,i ←
onstru
t-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m||S
6: pass ← vNonb(G′)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be
onstru
ted. This means

G
′ will simplify to G

′ = G||G∆F||S and we
an just evaluate Algorithm 9 instead.

6.10 Algorithm Complexity Analysis

In this se
tion, we provide a
omplexity analysis for the fault tolerant
ontrollability and

nonblo
king algorithms. In the following subse
tions, we assume that our system
onsists of

a plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
,

ΣTi
(i = 0, . . . , m), Σ∆F , and ΣΩF .

15

We will base our analysis on the
omplexity analysis from Cassandras et al. [17℄ that states

that both the
ontrollability and nonblo
king algorithms have a
omplexity of O(|Σ||Y ||X|),
where |Σ| is the size of the system event set, |Y | is the size of the plant state set, and |X| is
the size of the supervisor state set. In the analysis that follows, |Y∆F | is the size of the state

set for G∆F (
onstru
ted by Algorithm 1), and |YNF | is the size of the state set for GNF

(
onstru
ted by Algorithm 2).

We note that ea
h FT algorithm �rst
onstru
ts and adds some additional plant
ompo-

nents to the system, and then it runs a standard
ontrollability or nonblo
king algorithm on

the resulting system. Our approa
h will be to take the standard algorithm's
omplexity, and

repla
e the value for the state size of the plant with the worst
ase state size of G syn
hronized

with the new plant
omponents. As all fault and reset events already belong to the system

event set, this means the size of the system event set does not in
rease.

In the following analysis, we will ignore the
ost of
onstru
ting the new plant
ompo-

nents as they will be
onstru
ted in serial with the
ontrollability or nonblo
king veri�
ation

and should be negligible in
omparison. We next note that as the base
ontrollability and

nonblo
king algorithms have the same
omplexity, the
orresponding fault tolerant versions

will also have the same
omplexity (i.e. the FT
ontrollability algorithm will have the same

omplexity as the FT nonblo
king algorithm). As su
h, we will only present analysis for the

FT
ontrollability algorithms.

6.10.1 FT Controllability Algorithm

For Algorithm 5, we repla
e our plant DES by G
′ = G||G∆F. This gives us a worst
ase state

spa
e of |Y ||Y∆F | for G
′. Substituting this into our base algorithm's
omplexity for the size

of our plant's state set gives O(|Σ||Y ||Y∆F ||X|). As |Y∆F | = 1 by Algorithm 1, it follows that

our
omplexity is O(|Σ||Y ||X|) whi
h is the same as our base algorithm.

6.10.2 N-FT Controllability Algorithm

For Algorithm 6, we repla
e our plant DES by G
′ = G||G∆F||GNF. This gives us a worst
ase

state spa
e of |Y ||Y∆F ||YNF | for G
′. Substituting this into our base algorithm's
omplexity

gives O(|Σ||Y ||Y∆F ||YNF ||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YNF | = N+1 by Algorithm 2. Substituting in

for these values gives O((N + 1)|Σ||Y ||X|). It thus follows that verifying N-FT
ontrollability

in
reases the
omplexity of verifying
ontrollability by a fa
tor of (N + 1).

6.10.3 Non-repeatable N-FT Controllability Algorithm

For Algorithm 7, we repla
e our plant DES by G
′ = G||G∆F||GNF||GF,1|| . . . || GF,m. This

gives us a worst
ase state spa
e of |Y ||Y∆F ||YNF ||YF1
| . . . |YFm

| for G
′, where |YFi

| is the size
of the state set for GF,i (i = 0, . . . , m), whi
h is
onstru
ted by Algorithm 3. Substituting

this into our base algorithm's
omplexity gives O(|Σ||Y ||Y∆F ||YNF ||YF1
| . . . |YFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, |YNF | = N + 1 by Algorithm 2, and |YFi
| = 2

(i = 0, . . . , m) by Algorithm 3. Substituting in for these values gives O(2m(N + 1)|Σ||Y ||X|).
It thus follows that verifying non-repeatable N-FT
ontrollability in
reases the
omplexity of

verifying
ontrollability by a fa
tor of 2m(N + 1).

16

We next note that if N ≥ m, whi
h we believe will often be the
ase, it is not ne
essary

to add GNF to G
′. The
omplexity then redu
es to O(2m|Σ||Y ||X|).

6.10.4 Resettable FT Controllability Algorithm

For Algorithm 8, we repla
e our plant DES by G
′ = G||G∆F||GTF,1|| . . . ||GTF,m. This gives

us a worst
ase state spa
e of |Y ||Y∆F ||YTF1
| . . . |YTFm

| for G
′, where |YTFi

| is the size of the

state set for GTF,i (i = 0, . . . , m), whi
h is
onstru
ted by Algorithm 4. Substituting this into

our base algorithm's
omplexity gives O(|Σ||Y ||Y∆F ||YTF1
| . . . |YTFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YTFi
| = 2 (i = 0, . . . , m) by Algorithm 4.

Substituting in for these values gives O(2m|Σ||Y ||X|). It thus follows that verifying resettable

FT
ontrollability in
reases the
omplexity of verifying
ontrollability by a fa
tor of 2m.

7 Algorithm Corre
tness

In this se
tion, we introdu
e several propositions and theorems that show that the algorithms

introdu
ed in Se
tion 6
orre
tly verify that a fault tolerant
onsistent system satis�es the

spe
i�ed fault tolerant
ontrollability and nonblo
king properties de�ned in Se
tions 4 and 5.

7.1 Fault Tolerant Propositions

The propositions in this se
tion will be used to support the fault tolerant
ontrollability

theorems in Se
tion 7.2. Fault tolerant
ontrollability de�nitions are essentially
ontrollability

de�nitions with added restri
tion that a string s is only tested if it is satis�es the appropriate

fault tolerant property. The algorithms are intended to repla
e the original plant with a new

plant G
′, su
h that G

′ is restri
ted to strings with the desired property. Propositions 1 − 4
essentially assert that string s belongs to the
losed behaviour of G

′, if and only if s satis�es

properties of fault tolerant
ontrollable, N-FT
ontrollable, non-repeatable N-FT
ontrollable,

and resettable FT
ontrollable, respe
tively. These propositions will also be used in the fault

tolerant nonblo
king theorems in Se
tion 7.3.

Proposition 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the plant
onstru
ted in Algorithm 5. Then:

(∀s ∈ L(G))s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the plant
onstru
ted in Algorithm 6. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ LNF) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the plant
onstru
ted in Algorithm 7. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF) ⇐⇒ s ∈ L(G′)

17

Proof. See Appendix A.

Proposition 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the plant
onstru
ted in Algorithm 8. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTF) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

7.2 Fault Tolerant Controllable Theorems

In this se
tion we present theorems that show the fault tolerant
ontrollable algorithms in

Se
tion 6 (Algorithms 5-8) will return true if and only if the fault tolerant
onsistent system

satis�es the
orresponding fault tolerant
ontrollability property.

Theorem 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the plant
onstru
ted in Algorithm 5. Then S is fault tolerant

ontrollable for G i� S is
ontrollable for G
′.

Proof. See Appendix B.

Theorem 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the plant
onstru
ted in Algorithm 6. Then S is N-fault

tolerant
ontrollable for G i� S is
ontrollable for G
′.

Proof. See Appendix B.

Theorem 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the plant
onstru
ted in Algorithm 7. Then S is non-

repeatable N-fault tolerant
ontrollable for G i� S is
ontrollable for G
′.

Proof. See Appendix B.

Theorem 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the plant
onstru
ted in Algorithm 8. Then S is resettable

fault tolerant
ontrollable for G i� S is
ontrollable for G
′.

Proof. See Appendix B.

7.3 Fault Tolerant Nonblo
king Theorems

In this se
tion we present theorems that show the fault tolerant nonblo
king algorithms in

Se
tion 6 (Algorithms 9-12) will return true if and only if the fault tolerant
onsistent system

satis�es the
orresponding fault tolerant nonblo
king property.

Theorem 5. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the system
onstru
ted in Algorithm 9. Then S and G are

fault tolerant nonblo
king i� G
′ is nonblo
king.

18

Proof. See Appendix B.

Theorem 6. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the system
onstru
ted in Algorithm 10. Then S and

G are N-fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

Theorem 7. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, N ≥ 0, and let G

′ be the system
onstru
ted in Algorithm 11. Then S and

G are non-repeatable N- fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

Theorem 8. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT
onsistent, and let G

′ be the system
onstru
ted in Algorithm 12. Then S and G are

resettable fault tolerant nonblo
king i� G
′ is nonblo
king.

Proof. See Appendix B.

8 Manufa
turing Example

This example is based on the manufa
turing testbed from Ledu
 [18℄. The testbed was de-

signed to simulate a manufa
turing work
ell, in parti
ular problems of routing and
ollision.

Figure 5 shows
on
eptually the stru
ture of the testbed and sensors.

S1A

S
2
7

A
S

1
1

A

S
1

2
A

S
1

4
A

S
1

3
A

S
8
A

S
2

1
A

S
2

4
A

S
2
7

B
S

1
1

B

S
1
2

B

S
1

4
B

S
1

3
B

S
8

B

S
2

1
B

S
2

2
A

S
2

2
B

S
2
3

A

S
2

3
B

S
2

4
B

S19A S20A

S26AS25AS15A S16A

S19B S20B

S26BS25BS15B S16B S17B

S18B

S6B S7B

S9B S10B

S17A

S18A

S6A S7A

S9A S10A

S0A

S
2

A

S
3

A
S

5
A

S
4

A

S1B

S0B

S
2

B

S
3

B
S

5
B

S
4

B

Figure 5: Sensors in the Testbed

19

In this paper, we will �rst fo
us on only a single tra
k loop, shown in Figure 6. The loop

ontains 8 sensors and two trains (train 1, train 2). Train 1 starts between sensors 9 and 10,

while train 2 starts between sensors 15 and 16. Both trains
an only traverse the tra
ks in a

lo
kwise dire
tion. We will use the simpli�ed version to illustrate our method. We will then

report experimental results of applying the method to the full testbed model in Se
tion 8.3.

S9 S10

S15

S11

S13

S12

S16

S14

Figure 6: Single Train Loop

_������

_������

_������
	 �

Figure 7: Original Sensor

Model

_������

_������

_���	����

_���	����

_
�����
� �

Figure 8: Sensors 9, 10, and

16 with Faults

8.1 Base Plant Models

The plant model for the portion of the testbed we are
urrently
onsidering
onsists of the

following basi
 elements: sensors, trains and the relationship between sensors and trains.

8.1.1 Sensor Models

The sensor models indi
ate when a given train is present, and when no trains are present.

Also, they state that only one train
an a
tivate a given sensor at a time. Figure 7 shows the

original sensor model, for sensor J ∈ {9, . . . , 16}.

To add faults to the model, we assumed that sensors 9 10, and 16
ould have an intermittent

fault; sometimes the sensor would dete
t the presen
e of a train, sometimes it would fail to do

so. We modelled this by adding to all the plant models a new event t1F_atJ, J ∈ {9, 10, 16},
for ea
h t1_atJ event. For ea
h t1_atJ transition in a plant model, we added an identi
al

t1F_atJ transition. The idea is we
an now get the original dete
tion event or the new fault

one instead. We made similar
hanges for train 2. Figure 8 shows the new sensor models with

the added fault events. All other sensors will use the original version shown in Figure 7.

For this example, Σ∆F = ΣΩF = ∅. We also set m = 4, ΣF1
= {t1F_at9, t1F_at10},

ΣF2
= {t1F_at16}, ΣF3

= {t2F_at9, t2F_at10}, ΣF4
= {t2F_at16}, ΣT1

= {t1_at11},
ΣT2

= {t1_at14}, ΣT3
= {t2_at11}, and ΣT4

= {t2_at14}.

8.1.2 Sensor Interdependen
ies

This series of models show the sensor's interdependen
ies with respe
t to a given train. With

respe
t to the starting position of a parti
ular train (represented by the initial state), sensors

an only be rea
hed in a parti
ular order, di
tated by their physi
al lo
ation on the tra
k.

This is shown in Figures 9 and 10. Both DES already show the added fault events.

20

f�������

f������

f�������

f��������

f�������

f������	

f������

f��������

f�������f�������

f������

���

�

�

	

�

Figure 9: Sensor Interdependen
ies For Train 1

f�������

f������

f�������

f������	

f�������

f������

f�������

f�������

f�������

f������

f�������

�

��

� 	

� �

�

Figure 10: Sensor Interdependen
ies For Train 2

8.1.3 Train Models

The train models are shown in Figure 11 for train K (K = 1, 2). Train K
an only move

when its enablement event en_trainK o

urs, and then it
an move at most a single unit of

distan
e (event umv_trainK), before another en_trainK must o

ur. This allows a supervisor

to pre
isely
ontrol the movement of the train by enabling and disabling event en_trainK as

needed.

���������

t
���������

 �

Figure 11: Train K Model

���������

t
���������

t�����65

t������

t�����66

t�����6�

t�����6�

t�����6�

t�����6�

t�����6�

t
���������

�5 6

Figure 12: Sensors and Train K

v�������	
�

v������

v������5�

v������54

v�����54

v�����

v�����55

v�����5e

v�����5�

v�����5�

v�����5�

v�����5�

v�������	
�

�
����	
�

4
5 e

Figure 13: Sensors and Train K

with Faults

8.1.4 Relationship Between Sensors and Trains Models

Figure 12 shows the relationship between train K's (K = 1, 2) movement, and a sensor de-

te
ting the train. It
aptures the idea that a train
an rea
h at most one sensor during a unit

movement, and no sensors if it is disabled. Figure 13 shows the repla
ement model with fault

events added. We now seen that our plant model
ontains 14 DES in total.

8.2 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent
ollisions

in the tra
k se
tions with sensors 11-13, 15-16, 12-14, and 9-10. The idea is to ensure that

only one train uses this tra
k se
tion at a time. We will �rst introdu
e the original
ollision

prote
tion supervisors that were designed with the assumption of no faults, and then we will

introdu
e new fault tolerant versions with added redundan
y.

21

8.2.1 Collision Prote
tion Supervisors

Figure 14 shows the
ollision prote
tion supervisor (CPS-11-13) for the tra
k se
tion
on-

taining sensors 11 and 13. On
e a train has rea
hed sensor 11, the other train is stopped at

sensor 10 until the �rst train rea
hes sensor 15, whi
h indi
ates it has left the prote
ted area.

The stopped train is then allowed to
ontinue. Figures 15, 16, and 17 show similar supervisors

for the remaining tra
k se
tions. Supervisors CPS-15-16 and CPS-9-10 have nonstandard

initial states in order to re�e
t the starting lo
ations of the two trains.

It's easy to see that supervisor CPS-11-13 will not be fault tolerant as it relies solely on

sensor 10 to dete
t when a se
ond train arrives. If sensor 10 fails, the train
ontinues and

ould
ollide with the �rst train. Supervisors CPS-9-10 and CPS-12-14 will also not be

fault tolerant be
ause of sensor 10. A failure at sensor 10
ould
ause supervisor CPS-9-10

to miss a train entering the prote
ted zone, and
ould
ause supervisor CPS-12-14 to miss

a train leaving the prote
ted zone. Using the DES resear
h software tool, DESpot [19℄, we

veri�ed that the system passes N = 0 FT
ontrollability and nonblo
king (i.e. if all faults are

ignored) and fails all eight fault tolerant
ontrollability and nonblo
king properties (N ≥ 1).

!t1_at11en_train1
!t1_at10
!t1_at15
!t2_at15
!t2_at10
en_train2

!t2_at11

!t1_at15
en_train1
en_train2

!t2_at10

!t2_at15

!t1_at10

en_train1
en_train2

!t1_at15

en_train1

!t2_at15

en_train2

0

2

1

3

4

Figure 14: CPS-11-13 Supervisor

en_train2

!t2_at14

!t2_at11

en_train1
en_train2!t1_at14

en_train1

!t1_at14

en_train1
en_train2

!t1_at11

!t2_at14

!t2_at14
!t1_at14
!t1_at11
!t2_at11
en_train1
en_train2

!t2_at15

!t1_at15

0

2

1

3

4

Figure 15: CPS-15-16 Supervisor

en_train2
en_train1

!t1_at15

!t2_at10

en_train2

!t2_at10

en_train1

!t1_at10

en_train2
en_train1

!t2_at15

!t1_at10

!t2_at15
!t1_at15
!t2_at10
en_train2
!t1_at10
en_train1

!t2_at14

!t1_at14

0

2

1

3

4

Figure 16: CPS-12-14 Supervisor

!t1_at14

en_train1
en_train2

!t2_at11

!t2_at11

en_train2

!t2_at14
en_train1
!t1_at14
en_train2
!t1_at11
!t2_at11

!t2_at10

!t1_at10

en_train1

!t1_at11

!t2_at14

en_train1
en_train2!t1_at11

0

2

1

3

4

Figure 17: CPS-9-10 Supervisor

22

8.2.2 Collision Prote
tion Fault Tolerant Supervisors

We next modi�ed supervisor CPS-11-13 to make it more fault tolerant. The result is shown

in Figure 18. We have added at states 1 and 4 a
he
k for either sensor 9 or sensor 10. That

way if sensor 10 fails but sensor 9 doesn't, we
an still stop the train at sensor 9 and avoid

the
ollision. We made similar
hanges to supervisors CPS-12-14, and CPS-9-10, as shown

in Figures 19, and 20. Supervisor CPS-15-16 did not require any
hanges as it did not rely

on any of the sensors that had faults.

Using DESpot, we
an verify that the supervisor is not fault tolerant
ontrollable or non-

blo
king for the plant. The reason is that if both sensors 9 and 10 fail, the train will not be

dete
ted. However, the system
an be show to be N-fault tolerant
ontrollable for N = 1 (i.e.

sensor 10 fails but not sensor 9), non-repeatable N-fault tolerant
ontrollable for N = 4, and
resettable fault tolerant
ontrollable (as long as both sensors 9 and 10 don't fail in a given

pass, all is well). The system also passes the
orresponding FT nonblo
king properties. It
an

also be shown that the system fails N-fault tolerant
ontrollable and nonblo
king for N = 2.

en_train1

!t1_at15

en_train2

!t2_at15

en_train2
en_train1

!t2_at9
!t2_at10

!t1_at15

!t1_at9
!t1_at15
!t2_at9
en_train2
!t1_at10
!t2_at15
!t2_at10
en_train1 !t2_at11

!t1_at11

en_train2
en_train1

!t1_at9
!t1_at10

!t2_at15

0

2

1

3

4

Figure 18: CPS-11-13FT Supervisor

en_train1

!t1_at9
!t1_at10

!t2_at10
!t2_at9

en_train2

en_train1
en_train2
!t2_at9!t1_at9

!t1_at10

!t2_at15

!t1_at15

!t1_at9
en_train1
en_train2

!t2_at10
!t2_at9

!t1_at9
en_train1
en_train2
!t1_at10
!t2_at10
!t1_at15
!t2_at9
!t2_at15

!t1_at14

!t2_at14

0

2

1

3

4

Figure 19: CPS-12-14FT Supervisor

!t2_at9
en_train2
en_train1

!t1_at14

!t2_at11

en_train1
!t1_at9

!t1_at11

en_train2
!t1_at14
en_train1
!t2_at11
!t2_at14
!t1_at11

!t2_at10
!t2_at9

!t1_at10
!t1_at9

!t2_at11

!t2_at9
en_train2

en_train2
en_train1
!t1_at9

!t2_at14

!t1_at11
0

2

1

3

4

Figure 20: CPS-9-10FT Supervisor

8.3 Complete System

We next
onsidered the full plant model for the testbed, as des
ribed in Ledu
 [18℄. This

model in
ludes all three loops shown in Figure 5, in
luding all of the sensors shown, as well

23

as six swit
hes for routing, and three
ranes, lo
ated at sensors 2, 13, and 21, for loading the

trains. The full model in
ludes
ollision prote
tion supervisors for all tra
k se
tions as well

as supervisors for routing trains and stopping ea
h train for loading when they rea
h a
rane.

The original system
ontains 29 supervisors, 110 plant
omponents and has a state spa
e of

7.33 × 109 states.

For this system, we used a similar approa
h to the one des
ribed earlier to add fault events

to sensors, and to add fault toleran
e to the supervisors. See Dierikx [20℄ for
omplete details.

For this version of the example, we have ΣΩF = ∅ and Σ∆F = ∪K=1,2(∪j∈I∆{tKF_atj}),
where I∆ = {2, 8, 13, 21, 27}. The ex
luded faults are for key portions of the tra
k where a

de
ision (su
h as stopping a train in front of a given
rane) needs to be made but there does

not exist a se
ond physi
al sensor appropriately lo
ated that
an be used as a ba
kup. To

deal with faults from these sensors, we believe we would need to add additional sensors.

For fault and reset sets, we have m = 16. For train 1, we have fault sets ΣFn
=

∪j∈IFn
{tF1_atj}, n = 1, . . . , 8, where IF1 = {0, 1, 4}, IF2 = {3, 5, 6, 7}, IF3 = {9, 10, 11},

IF4 = {12, 14}, IF5 = {15, 16}, IF6 = {19, 20, 22}, IF7 = {23, 24}, and IF8 = {25, 26}. Sets

ΣF9
− ΣF16

are analogous, ex
ept that they are for train 2.

For train 1, we have reset sets ΣTn
= ∪j∈IRn

{t1_atj}, n = 1, . . . , 8, where IR1 = {6, 7, 27},
IR2 = {0, 1, 19, 20}, IR3 = {15, 16}, IR4 = {8, 9, 10}, IR5 = {12, 14}, IR6 = {23, 24}, IR7 =
{25, 26}, and IR8 = {12, 14}. Sets ΣT9

−ΣT16
are analogous, ex
ept that they are for train 2.

Using our software resear
h tool, DESpot [19℄, we were able to determine that the system is

N-FT
ontrollable and nonblo
king (N = 1), non-repeatable N-FT
ontrollable and nonblo
k-

ing (N = 16), and resettable FT
ontrollable and nonblo
king. We ran an FT
ontrollable

he
k on the system but after 33 hours and 1.908 × 109 states and
ounting, we stopped the

omputation. See Table 1 for veri�
ation times and proje
t state sizes (in
ludes added FT

plant
omponents).

We also ran N-FT
ontrollability and nonblo
king
he
ks for N = 2. The system passed

for
ontrollability and failed for nonblo
king. The reason that it passed N-FT
ontrollability

is that a swit
h failed to
hange state due to a sensor fault and a train derailed taking it to

a non
orea
hable state before an illegal event
ould o

ur. This suggests that the routing

supervisors
ould be made more expressive by adding the un
ontrollable train derailing events

to their event sets, but without mat
hing transitions.

Table 1: Veri�
ation Times for Full System

Veri�
ation Time (se
onds)

Property State Size Controllability Nonblo
king

fault tolerant 1.908 × 109+ - -

N-fault tolerant (N = 1) 368,548 654 P 3178 P

N-fault tolerant (N = 2) 1.961 × 106 13,916 P 26,249 F

nonrepeatable N-FT 1.275 × 1010 4,230 P 10,956 P

resettable FT 594,448 2,007 P 7,645 P

24

9 Con
lusions and Future Work

In this paper we investigate the problem of fault toleran
e (FT) in the framework of dis
rete-

event systems. We introdu
e a set of eight fault tolerant
ontrollability and nonblo
king

de�nitions designed to
apture di�erent types of fault s
enarios and to ensure that our system

remains
ontrollable and nonblo
king in ea
h s
enario. This approa
h is di�erent from the

typi
al fault tolerant methodology as the approa
h does not rely on dete
ting faults and

swit
hing to a new supervisor; it requires a supervisor to work
orre
tly under normal and

fault
onditions.

We then present a set of algorithms to verify the fault tolerant properties. As these

algorithms involve adding new plant
omponents and then
he
king standard
ontrollability

and nonblo
king properties, they
an instantly take advantage of existing
ontrollability and

nonblo
king software, as well as s
alability approa
hes su
h as in
remental veri�
ation and

binary de
ision diagrams (BDD).

For ea
h algorithm, we provide a
omplexity analysis showing that the FT algorithms

multiply the
omplexity of the standard algorithms by a fa
tor of one, N +1 (N is the number

of allowed faults), 2m (m is the number of fault sets) and 2m(N + 1). We then prove the

orre
tness of the algorithms.

We �nish with a small manufa
turing example that illustrates how the theory
an be

applied, and then we report on applying our approa
h to a mu
h larger example.

For future work, we would like to investigate additional fault s
enarios as well as additional

ways to model faults in the system.

25

Referen
es

[1℄ P. Ramadge and W. M. Wonham, �Supervisory
ontrol of a
lass of dis
rete-event pro-

esses,� SIAM J. Control Optim, vol. 25, no. 1, pp. 206�230, 1987.

[2℄ W. M. Wonham, Supervisory Control of Dis
rete-Event Systems, Department of Ele
tri-

al and Computer Engineering, University of Toronto, July 2014, Monograph and TCT

software
an be downloaded at http://www.
ontrol.toronto.edu/DES/.

[3℄ W. M. Wonham and P. Ramadge, �On the supremal
ontrollable sublanguage of a given

language,� SIAM J. Control Optim, vol. 25, no. 3, pp. 637�659, May 1987.

[4℄ S. Radel, A. Mulahuwaish, and R. J. Ledu
, �Fault tolerant
ontrollability,� in Pro
. of

2015 Ameri
an Control Conferen
e, Chi
ago, USA, July 2015, pp. 1603�1610.

[5℄ F. Lin, �Robust and adaptive supervisory
ontrol of dis
rete event systems,� IEEE Trans.

Automati
 Control, vol. 38, no. 12, pp. 1848�1852, De
. 1993.

[6℄ S.-J. Park and J.-T. Lim, �Fault-tolerant robust supervisor for dis
rete event systems with

model un
ertainty and its appli
ation to a work
ell,� IEEE Transa
tions on Roboti
s and

Automation, vol. 15, no. 2, pp. 386�391, 1999.

[7℄ A. Paoli, M. Sartini, and S. Lafortune, �A
tive fault tolerant
ontrol of dis
rete event

systems using online diagnosti
s,� Automati
a, vol. 47, no. 4, pp. 639�649, 2011.

[8℄ Q. Wen, R. Kumar, J. Huang, and H. Liu, �A framework for fault-tolerant
ontrol of

dis
rete event systems,� IEEE Trans. on Automati
 Control, vol. 53, pp. 1839�1849,

2008.

[9℄ B. A. Brandin, R. Malik, and P. Malik, �In
remental veri�
ation and synthesis of dis
rete-

event systems guided by
ounter-examples,� IEEE Trans. on Control Systems Te
hnology,

vol. 12, no. 3, pp. 387�401, May 2004.

[10℄ A. E. Bryant, �Symboli
 boolean manipulation with ordered binary-de
ision diagrams,�

ACM Computing Surveys, vol. 24, pp. 293�318, 1992.

[11℄ C. Ma, �Nonblo
king supervisory
ontrol of state tree stru
tures,� Ph.D. dissertation,

Department of Ele
tri
al and Computer Engineering, University of Toronto, 2004.

[12℄ R. Song, �Symboli
 synthesis and veri�
ation of hierar
hi
al interfa
e-based supervisory

ontrol,� Master's thesis, Dept. of Comput. and Softw., M
Master University, Hamilton,

Ont, 2006.

[13℄ A. Vahidi, B. Lennartson, and M. Fabian, �E�
ient analysis of large dis
rete-event sys-

tems with binary de
ision diagrams,� in Pro
. of the 44th IEEE Conf. De
ision Contr.

and and 2005 European Contr. Conf., Seville, Spain, 2005, pp. 2751�2756.

[14℄ Y. Wang, �Sampled-data supervisory
ontrol,� Master's thesis, Dept. of Computing and

Software, M
Master University, Hamilton, Ont, 2009.

[15℄ Z. Zhang, �Smart TCT: an e�
ient algorithm for supervisory
ontrol design.� Master's

thesis, Dept. of Ele
tri
al and Computer Engineering, University of Toronto, Toronto,

Ont, 2001.

26

[16℄ K. Rudie, �Software for the
ontrol of dis
rete-event systems: A
omplexity study,�

Master's thesis, Dept. of Ele
tri
al and Computer Engineering, University of Toronto,

Toronto, Ont, 1988.

[17℄ C. G. Cassandras and S. Lafortune, Introdu
tion to Dis
rete Event Systems, 2nd ed.

Springer, 2009.

[18℄ R. Ledu
, �PLC implementation of a DES supervisor for a manufa
turing testbed: An

implementation perspe
tive,� Master's thesis, Dept. of Ele
 and Comp Eng, University

of Toronto, Toronto, Ont, 1996.

[19℄ DESpot, �www.
as.m
master.
a/� ledu
/DESpot.html. The o�
ial website for the

DESpot proje
t,� 2013.

[20℄ O. Dierikx, �Fault-toleran
e of a DES supervisor for a manufa
turing testbed,� Te
hni
al

University of Eindhoven, The Netherlands, Te
h. Rep., Feb. 2015.

27

Appendi
es

A Proofs of Sele
ted Propositions

Proposition 1:

Proof. Assume initial
onditions for proposition.

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

Let s ∈ L(G). (P1.1)

Must show implies s /∈ L∆F ⇐⇒ s ∈ L(G′).

Su�
ient to show (A) s /∈ L∆F ⇒ s ∈ L(G′) and (B) s ∈ L(G′) ⇒ s /∈ L∆F

First we note that by Algorithm 5, we have G
′ = G||G∆F.

We thus have L(G′) = L(G) ∩ P−1
∆F L(G∆F) as Σ∆F ⊆ Σ, and G∆F is de�ned over Σ∆F by

Algorithm 1. (P1.2)

We next note that by Algorithm 1, G∆F
ontains an initial state but no transitions. We thus

have: L(G∆F) = {ǫ} (P1.3)

Part A) Show s /∈ L∆F ⇒ s ∈ L(G′)

Assume s /∈ L∆F = Σ∗.Σ∆F .Σ∗.

Must show implies: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)

As s ∈ L(G) from (P1.1), su�
ient to show s ∈ P−1
∆F L(G∆F).

As s /∈ Σ∗.Σ∆F .Σ∗, it follows that P∆F (s) = ǫ.

⇒ P∆F (s) ∈ L(G∆F), by (P1.3)

⇒ s ∈ P−1
∆F L(G∆F), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F

Assume s ∈ L(G′).

Must show implies: s /∈ L∆F

We note that s ∈ L(G′) implies s ∈ P−1
∆F L(G∆F), by (P1.2).

⇒ P∆F (s) ∈ L(G∆F)

⇒ P∆F (s) = ǫ, by (P1.3)

This implies s does not
ontain any σ ∈ Σ∆F .

⇒ s /∈ Σ∗.Σ∆F .Σ∗, as required.

By parts (A) and (B), we have: s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proposition 2:

Proof. Assume initial
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

We next note that by Algorithm 6, we have G
′ = G||G∆F||GNF.

As G de�ned over Σ, G∆F over Σ∆F (by Algorithm 1), and GNF over ΣF (by Algorithm 2),

we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (P2.1)

28

Let G1 be the plant
onstru
ted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P2.2)

Let s ∈ L(G) (P2.3)

Must show implies: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F and s ∈ LNF . (P2.4)

Must show: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)

By (P2.3), (P2.4), and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F) (P2.5)

All the remains is to show s ∈ P−1
F L(GNF).

As s ∈ LNF = (Σ − ΣF)∗ ∪
N
⋃

k=1

((Σ − ΣF)∗.ΣF .(Σ − ΣF)∗)k, there exists 0 ≤ j ≤ N , su
h that

|PF (s)| = j.

We note that as GNF
ontains an initial state, we have ǫ ∈ L(GNF).

If j = 0, we immediately have PF (s) = ǫ ∈ L(GNF).

For j ≥ 1, we
an
on
lude: (∃σ0, . . . , σj−1 ∈ ΣF)PF (s) = σ0, . . . , σj−1

As j ≤ N , it is easy to see from Algorithm 2, that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition fun
tion for GNF.

⇒ δ1(y0, σ0, . . . , σj−1)!

⇒ δ1(y0, PF (s))!

⇒ PF (s) ∈ L(GNF)

⇒ s ∈ P−1
F L(GNF)

Combining with (P2.5), we have: s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) = L(G′)

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∧ s ∈ LNF

Assume s ∈ L(G′). Must show implies s /∈ L∆F and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P2.2).

We thus have by Proposition 1 that s /∈ L∆F . (P2.6)

We now need to show s ∈ LNF .

As L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) by (P2.1), we have s ∈ P−1
F L(GNF).

⇒ PF (s) ∈ L(GNF)

Let j = |PF (s)|. If j = 0, we have PF (s) = ǫ, thus s ∈ (Σ − ΣF)∗ ⊆ LNF .

We thus
onsider j ≥ 1.

⇒ (∃σ0, . . . , σj−1 ∈ ΣF)PF (s) = σ0, . . . , σj−1

As PF (s) ∈ L(GNF), Algorithm 2 implies that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition fun
tion for GNF.

⇒ δ1(y0, PF (s)) = yj

As GNF
ontains no loops and transitions o

ur in a stri
tly in
reasing order in terms of state

labels, we have j ≤ N .

As we have that s
ontains at most N events from ΣF , it is thus
lear that:

s ∈ (Σ − ΣF)∗ ∪
N
⋃

k=1

((Σ − ΣF)∗.ΣF .(Σ − ΣF)∗)k = LNF

29

Combining with (P2.6), we have s /∈ L∆F and s ∈ LNF , as required.

By parts (A) and (B), we thus
on
lude: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 3:

Proof. Assume initial
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

We next note that by Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

As G is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, GNF over ΣF by Algorithm 2, and

GF,i over ΣFi
(i = 1, . . . , m) by Algorithm 3, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m) (P3.1)

Let G1 be the plant
onstru
ted by Algorithm 2. We thus have: G1 = G||G∆F||GNF

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ L(G′) ⊆ L(G1) (P3.2)

Let s ∈ L(G). (P3.3)

Must show implies: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LNRF and s ∈ LNF . (P3.4)

Must show s ∈ L(G′).

By (P3.3), (P3.4), and Proposition 2, we have: s ∈ L(G1)

All the remains is to show s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

Let i ∈ {1, . . . , m}.

As s /∈ LNRF =
m
⋃

j=1

(Σ∗.ΣFj
.Σ∗.ΣFj

.Σ∗), it follows that |PFi
(s)| ≤ 1.

As GF,i has an initial state (by Algorithm 3), we have ǫ ∈ L(GF,i).

By Algorithm 3, we have that for all σ ∈ ΣFi
, δi(y0, σ, y1)!. This implies σ ∈ L(GF,i).

⇒ PFi
(s) ∈ L(GF,i)

⇒ s ∈ P−1
Fi

L(GF,i), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

Assume s ∈ L(G′).

Must show implies s /∈ L∆F ∪ LNRF and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P3.2).

We
an thus
on
lude by Proposition 2 that: s /∈ L∆F and s ∈ LNF . (P3.5)

We now only need to show s /∈ LNRF .

As s ∈ L(G′), we have by (P3.1): s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) = σ ∈ ΣFi

or PFi
(s) = ǫ (i = 1, . . . , m), by Algorithm 3.

⇒ s /∈ LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

30

Combining with (P3.5), we have s /∈ L∆F ∪ LNRF and s ∈ LNF , as required.

By parts (A) and (B), we thus
on
lude: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 4:

Proof. Assume initial
onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Propo-

sition 1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

We next note that by Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

AsG is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, andGTF,i over ΣFi
∪ ΣTi

by Algorithm

4, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)∩ . . . ∩ P−1

TFm
L(GTF,m) (P4.1)

Let G1 be the plant
onstru
ted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P4.2)

Let s ∈ L(G). (P4.3)

Must show implies: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LTF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LTF . (P4.4)

Must show s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m).

By (P4.3), (P4.4) and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

All that remains is to show s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m.

As s /∈ LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗), it follows that:

(∀i ∈ {1, . . . , m}) s /∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗.

Let i = {1, . . . , m}.

We will use proof by
ontrapositive.

Su�
ient to show: PTFi
(s) /∈ L(GTF,i) ⇒ s ∈ Σ∗.ΣFi

.(Σ− ΣTi
)∗.ΣFi

.Σ∗

Assume PTFi
(s) /∈ L(GTF,i).

We note that by Algorithm 4 that ǫ ∈ L(GTF,i), as GTF,i has an initial state.

⇒ (∃s′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ ∈ ΣFi
∪ ΣTi

)s′σ ≤ PTFi
(s)∧s′ ∈ L(GTFi

) ∧ s′σ /∈ L(GTFi
)

From Algorithm 4, it is
lear that all σ′ ∈ ΣFi
∪ ΣTi

are de�ned at state y0, all σ′ ∈ ΣTi
are

de�ned at state y1, and no σ′ ∈ ΣFi
are de�ned at state y1.

⇒ δi(y0, s
′) = y1, and σ ∈ ΣFi

Also, as the only way to rea
h state y1 is from state y0 via σ′ ∈ ΣFi
, it follows that string s′

ends in an event from ΣFi
.

⇒ (∃s′′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ′ ∈ ΣFi
) s′′σ′σ = s′σ ≤ PTFi

(s)

⇒ s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗, as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LTF

Assume s ∈ L(G′). Must show implies s /∈ L∆F ∪ LTF .

31

As s ∈ L(G′), we have s ∈ L(G1), by (P4.2).

We
an thus
on
lude by Proposition 1 that: s /∈ L∆F (P4.5)

We now need to show s /∈ LTF .

As s ∈ L(G′), we have by (P4.1): s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m

⇒ (∀i ∈ {1, . . . , m})PTFi
(s) ∈ L(GTF,i)

We pro
eed by proof by
ontradi
tion.

Assume s ∈ LTF .

⇒ (∃i ∈ {1, . . . , m})s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗

Let i ∈ {1, . . . , m} be the above index.

This implies string PTFi
(s)
ontains two events from ΣFi

in a row, without a σ ∈ ΣTi
in

between.

As it is
lear from Algorithm 4 that GTF,i would never allow two σ ∈ ΣFi
to o

ur in a row,

this
ontradi
ts PTFi
(s) ∈ L(GTF,i).

We thus
on
lude s /∈ LTF .

Combining with (P4.5) we have s /∈ L∆F ∪ LTF , as required.

By parts (A) and (B), we thus
on
lude: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

32

B Proofs of Sele
ted Theorems

Theorem 1:

Proof. Assume initial
onditions for theorem.

Must show S is fault tolerant
ontrollable for G ⇐⇒ S is
ontrollable for G
′.

From Algorithm 5, we have: G
′ = G||G∆F

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) (T1.1)

Part A) Show (⇒)

Assume S is fault tolerant
ontrollable for G. (T1.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′) and σ ∈ Σu. (T1.3)

Assume sσ ∈ L(G′). (T1.4)

Must show implies sσ ∈ L(S).

To apply (T1.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F .

We �rst note that (T1.1), (T1.3) and (T1.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T1.3), we
on
lude by Proposition 1 that s /∈ L∆F .

We
an now
on
lude by (T1.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is
ontrollable for G
′. (T1.5)

Must show implies S and G are FT
onsistent (follows automati
ally from initial assumptions)

and that: (∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G) and σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F . (T1.6)

Must show implies sσ ∈ L(S).

We have two
ases: (1) σ ∈ Σ∆F , and (2) σ /∈ Σ∆F

Case 1) σ ∈ Σ∆F

As the system is FT
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T1.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F

To apply (T1.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T1.6) and Proposition 1, we
an
on
lude: s ∈ L(G′) (T1.7)

⇒ s ∈ P−1
∆F L(G∆F), by (T1.1)

⇒ P∆F (s) ∈ L(G∆F)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F)

Combining with (T1.6), (T1.7), and (T1.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)

33

We
an thus
on
lude by (T1.5) that sσ ∈ L(S), as required.

We thus
on
lude by
ases (1) and (2), that sσ ∈ L(S).

We
an now
on
lude by parts (A) and (B) that S is fault tolerant
ontrollable for G i� S is

ontrollable for G
′.

Theorem 2:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is N-fault tolerant
ontrollable for G ⇐⇒ S is
ontrollable for G
′.

From Algorithm 6, we have G
′ = G||G∆F||GNF.

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T2.1)

Part A) Show (⇒)

Assume S is N-fault tolerant
ontrollable for G. (T2.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T2.3)

Assume sσ ∈ L(G′). (T2.4)

Must show implies sσ ∈ L(S).

To apply (T2.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF .

We �rst note that (T2.1), (T2.3) and (T2.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T2.3), Proposition 2 implies that: s /∈ L∆F ∧ s ∈ LNF

We
an now
on
lude by (T2.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is
ontrollable for G
′. (T2.5)

Must show implies S and G are FT
onsistent, (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∧ s ∈ LNF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF . (T2.6)

Must show implies sσ ∈ L(S).

We have two
ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T2.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T2.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T2.6) and Proposition 2, we
an
on
lude: s ∈ L(G′). (T2.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF), by (T2.1)

34

⇒ P∆F (s) ∈ L(G∆F) and PF (s) ∈ L(GNF)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ. As σ /∈ ΣF , we have PF (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ PF (sσ) = PF (s)PF (σ) = PF (s) ∈ L(GNF)

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

Combining with (T2.6), (T2.7), and (T2.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We
an thus
on
lude by (T2.5) that sσ ∈ L(S), as required.

We thus
on
lude by
ases (1) and (2), that sσ ∈ L(S).

We
an now
on
lude by parts (A) and (B), that S is N-fault tolerant
ontrollable for G i� S

is
ontrollable for G
′.

Theorem 3:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is non-repeatable N-fault tolerant
ontrollable for G ⇐⇒ S is
ontrollable for

G
′.

From Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over ΣFi
,

i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) (T3.1)

Part A) Show (⇒)

Assume S is non-repeatable N-fault tolerant
ontrollable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu)sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T3.3)

Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F ∪ LNRF and

s ∈ LNF .

We �rst note that (T3.1), (T3.3) and (T3.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T3.3), we
on
lude by Proposition 3 that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

We
an now
on
lude by (T3.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is
ontrollable for G
′. (T3.5)

Must show implies S and G are FT
onsistent (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ sσ ∈ L(S)

35

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G), and s /∈ L∆F ∪ LNRF ∧ s ∈ LNF . (T3.6)

Must show implies sσ ∈ L(S).

We have two
ases: (1) σ ∈ Σ∆F ∪ ΣFi
, and (2) σ /∈ Σ∆F ∪ ΣFi

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T3.6), and Proposition 3, we
an
on
lude: s ∈ L(G′) (T3.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m), by (T3.1)

⇒ P∆F (s) ∈ L(G∆F), PF (s) ∈ L(GNF) and PFi
(s) ∈ L(GF,i), i = 1, . . . , m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, PF (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . , m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PF (sσ) = PF (s)PF (σ) =
PF (s) ∈ L(GNF), and PFi

(sσ) = PFi
(s)PFi

(σ) = PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m)

Combining with (T3.6), (T3.7), and (T3.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)

We
an thus
on
lude by (T3.5) that sσ ∈ L(S), as required.

We thus
on
lude by
ases (1) and (2), that sσ ∈ L(S).

We
an now
on
lude by parts (A) and (B), that S is non repeatable N-fault tolerant
ontrol-

lable for G i� S is
ontrollable for G
′.

Theorem 4:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

1. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is resettable fault tolerant
ontrollable for G ⇐⇒ S is
ontrollable for G
′.

From Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 4, we know

that GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
TF1

L(GTF,1) ∩ . . .∩ P−1
TFm

L(GTF,m) (T4.1)

Part A) Show (⇒)

Assume S is resettable fault tolerant
ontrollable for G. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T4.3)

Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∪ LTF .

We �rst note that (T4.1), (T4.3) and (T4.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

36

As s ∈ L(G′) by (T4.3), we
on
lude by Proposition 4 that: s /∈ L∆F ∪ LTF

We
an now
on
lude by (T4.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is
ontrollable for G
′. (T4.5)

Must show implies S and G are FT
onsistent, (follows automati
ally from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F∪ LTF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF . (T4.6)

Must show implies sσ ∈ L(S).

We have two
ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT
onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T4.6) and Proposition 4, we
an
on
lude: s ∈ L(G′) (T4.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m), by (T4.1)

⇒ P∆F (s) ∈ L(G∆F) and PTFi
(s) ∈ L(GTF,i), i = 1, . . . , m (T4.8)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F) (T4.9)

We now have two
ases to
onsider: (a) σ /∈
m
⋃

i=1

ΣTi
, and (b) σ ∈

m
⋃

i=1

ΣTi

Case a) σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PTFi

(σ) = ǫ, i = 1, . . . , m.

⇒ PTFi
(sσ) = PTFi

(s)PTFi
(σ) = PTFi

(s) ∈ L(GTF,i), i = 1, . . . , m

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Case b) σ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 4 states that all σ′ ∈ ΣTi
are de�ned at every state in GTF,i,

i = 1, . . . , m.

Let j ∈ {1, . . . , m}.

If σ ∈ ΣTj
, we have PTFj

(σ) = σ. We thus have PTFj
(sσ) = PTFj

(s)σ ∈ L(GTF,j) as

PTFj
(s) ∈ L(GTF,j) by (T4.8).

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF , it follows that PTFj

(σ) = ǫ. We thus have

PTFj
(sσ) = PTFj

(s)PTFj
(σ) = PTFj

(s) ∈ L(GTF,j), by (T4.8).

⇒ sσ ∈ P−1
TFj

L(GTF,j) for both
ases.

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

37

By
ases (a) and (b), we
an
on
lude: sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Combining with (T4.9), we have:

sσ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m)

Combining with (T4.6), (T4.7), and (T4.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We
an thus
on
lude by (T4.5) that sσ ∈ L(S), as required.

We thus
on
lude by
ases (1) and (2), that sσ ∈ L(S).

We
an now
on
lude by parts (A) and (B), that S is resettable fault tolerant
ontrollable for

G i� S is
ontrollable for G
′.

Theorem 5:

Proof. Assume initial
onditions for theorem.

Must show S and G are fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 9, we have: G
′ = G||G∆F||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural proje
tion.

As G and S are de�ned over Σ, we have that: L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) and

Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F). (T5.1)

Part A) Show (⇒)

Assume S and G are fault tolerant nonblo
king. (T5.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) (T5.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F)

⇒ s ∈ L(G||G∆F)

We
an thus apply Proposition 1 and
on
lude that s /∈ L∆F .

As we have s ∈ L(S) ∩ L(G) from (T5.3), we
an apply (T5.2) and
on
lude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F (T5.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)

From (T5.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F).

We note from Algorithm 1 that sin
e all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F).

It is thus su�
ient to show: ss′ ∈ P−1
∆F L(G∆F)

As ss′ ∈ Lm(G) by (T5.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T5.4), we have: ss′ /∈ L∆F

Applying Proposition 1, we
an
on
lude that: ss′ ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

⇒ ss′ ∈ P−1
∆F L(G∆F)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T5.5)

38

Must show implies S and G are FT
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ⇒ (∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F

Let s ∈ L(S) ∩ L(G). (T5.6)

Assume s /∈ L∆F . (T5.7)

To apply (T5.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)

As we have s ∈ L(S) ∩ L(G) from (T5.6), we only still need to show s ∈ P−1
∆F L(G∆F).

By (T5.6) and (T5.7), we
an apply Proposition 1 and
on
lude:

s ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we
an
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F), by (T5.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) = L(G||G∆F)

We
an now
on
lude by Proposition 1 that ss′ /∈ L∆F .

We thus
on
lude that S and G are fault tolerant nonblo
king.

We
an thus
on
lude by parts (A) and (B), that S and G are fault tolerant nonblo
king i�

G
′ is nonblo
king.

Theorem 6:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are N-fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 10, we have: G
′ = G||G∆F||GNF||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural proje
tions.

As G and S are de�ned over Σ, we have L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)
and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F Lm(G∆F)∩ P−1
F Lm(GNF). (T6.1)

PartA) Show (⇒)

Assume S and G are N-fault tolerant nonblo
king. (T6.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T6.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ s ∈ L(G||G∆F||GNF)

We
an thus apply Proposition 2 and
on
lude: s /∈ L∆F ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T6.3), we
an apply (T6.2) and
on
lude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF (T6.4)

39

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF).

From (T6.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
F Lm(GNF).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF).

It is thus su�
ient to show that: ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As ss′ ∈ Lm(G) by (T6.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T6.4), we have: ss′ /∈ L∆F ∧ ss′ ∈ LNF

Applying Proposition 2, we
an
on
lude that:

ss′ ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T6.5)

Must show implies S and G are FT
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T6.6)

Assume s /∈ L∆F ∧ s ∈ LNF . (T6.7)

To apply (T6.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As we have s ∈ L(S) ∩ L(G) from (T6.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

By (T6.6) and (T6.7), we
an apply Proposition 2, and
on
lude:

s ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we
an
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

F L(GNF), by (T6.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F∧ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We also note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1

F L(GNF) as every state is marked in

GNF, by Algorithm 2.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) =L(G||G∆F||GNF)

We
an now
on
lude by Proposition 2 that ss′ /∈ L∆F and that ss′ ∈ LNF .

We thus
on
lude that S and G are N-fault tolerant nonblo
king.

We
an thus
on
lude by parts (A) and (B), that S and G are N-fault tolerant nonblo
king

i� G
′ is nonblo
king.

40

Theorem 7:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are non-repeatable N-fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 11, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over

ΣFi
, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

proje
tions.

As G and S are de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩

P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F

Lm(G∆F) ∩ P−1
F Lm(GNF) ∩ P−1

F1
Lm(GF,1) ∩ . . . ∩ P−1

Fm
Lm(GF,m). (T7.1)

Part A) Show (⇒)

Assume S and G are non-repeatable N-fault tolerant nonblo
king. (T7.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩L(G)∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩ P−1
F1

L(GF,1)∩ . . .∩ P−1
Fm

L(GF,m) (T7.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We
an thus apply Proposition 3 and
on
lude that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T7.3), we
an apply (T7.2) and
on
lude that:

(∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF (T7.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show:

ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF)∩P−1
F1

Lm(GF,1)∩. . .∩P−1
Fm

Lm(GF,m).

From (T7.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show:

ss′ ∈ P−1
∆F Lm(G∆F) ∩ P−1

F Lm(GNF) ∩ P−1
F1

Lm(GF,1) ∩ . . . ∩ P−1
Fm

Lm(GF,m)

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF). From Algorithm 3, we have that all states in GF,i are marked, thus L(GF,i) =
Lm(GF,i), i = 1, . . . , m.

It is thus su�
ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ · · · ∩ P−1
Fm

L(GF,m)

As ss′ ∈ Lm(G) by (T7.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

From (T7.4), we have: ss′ /∈ L∆F ∪ LNRF∧ss′ ∈ LNF

Applying Proposition 3, we
an
on
lude that: ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

41

Assume G
′ is nonblo
king. (T7.5)

Must show implies S and G are FT
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T7.6)

Assume s /∈ L∆F ∪ LNRF∧s ∈ LNF . (T7.7)

To apply (T7.5), we need to show:

s ∈ L(G′) = L(S)∩L(G)∩P−1
∆F L(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m)

As we have s ∈ L(S) ∩ L(G) from (T7.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m).

By (T7.6) and (T7.7), we
an apply Proposition 3 and
on
lude:

s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have s ∈ L(G′). As G
′ is nonblo
king, we
an
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m),
by (T7.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LNRF and

ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1L(GNF) as every state is marked in GNF,

by Algorithm 2.

Also, we note that ss′ ∈ P−1
Fi

Lm(GF,i) implies ss′ ∈ P−1
Fi

L(GF,i) as every state is marked in

GF,i, i = 1, . . . , m, by Algorithm 3.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We
an now
on
lude by Proposition 3 that: ss′ /∈ L∆F ∪ LNRF , and ss′ ∈ LNF

We thus
on
lude that S and G are non-repeatable N-fault tolerant nonblo
king.

We
an thus
on
lude by parts (A) and (B), that S and G are non-repeatable N-fault tolerant

nonblo
king i� G
′ is nonblo
king.

Theorem 8:

Proof. Assume initial
onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is identi
al to the proof of Theorem

5. We
an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are resettable fault tolerant nonblo
king ⇐⇒ G
′ is nonblo
king.

From Algorithm 12, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 4, we know that

GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural proje
tions.

As G is de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)

42

∩ . . .∩P−1
TFm

L(GTF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩

. . . ∩ P−1
TFm

Lm(GTF,m). (T8.1)

Part A) Show (⇒)

Assume S and G are resettable fault tolerant nonblo
king. (T8.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m) (T8.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩

P−1
TFm

L(GTF,m)

⇒ s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We
an thus apply Proposition 4 and
on
lude:

s /∈ L∆F ∪ LTF

As we have s ∈ L(S) ∩ L(G) from (T8.3), we
an apply (T8.2) and
on
lude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF (T8.4)

We now need to show that ss′ ∈ Lm(G′).

Su�
ient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩ . . . ∩ P−1

TFm
Lm(GTF,m)

From (T8.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
TF1

Lm(GTF,1) ∩ . . . ∩ P−1
TFm

Lm(GTF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 4, we have that all states in GTF,i are marked, i = 1, . . . , m, thus

L(GTF,i) = Lm(GTF,i).

It is thus su�
ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As ss′ ∈ Lm(G) by (T8.4), we have ss′ ∈ L(G), sin
e Lm(G) ⊆ L(G).

Also from (T8.4), we have: ss′ /∈ L∆F ∪ LTF

Applying Proposition 4, we
an
on
lude that: ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

We thus have that G
′ is nonblo
king, as required.

Part B) Show (⇐)

Assume G
′ is nonblo
king. (T8.5)

Must show implies S and G are FT
onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTF ⇒ (∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF

Let s ∈ L(S) ∩ L(G). (T8.6)

Assume s /∈ L∆F ∪ LTF . (T8.7)

To apply (T8.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As we have s ∈ L(S) ∩ L(G) from (T8.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

By (T8.6) and (T8.7), we
an
on
lude by Proposition 4: s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P

−1
TF1

L(GTF,1) ∩ . . . ∩ P
−1
TFm

L(GTF,m)

43

We thus have s ∈ L(G′). As G
′ is nonblo
king, we
an
on
lude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

TF1
L(GTF,1)∩ . . .∩P−1

TFm
L(GTF,m), by (T8.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LTF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
TFi

Lm(GTF,i) implies ss′ ∈ P−1
TFi

L(GTF,i) as every state is marked

in GTF,i, by Algorithm 4, for i = 1, . . . , m.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

⇒ ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We
an now
on
lude by Proposition 4 that: ss′ /∈ L∆F ∪ LTF

We thus
on
lude that S and G are resettable fault tolerant nonblo
king.

We
an thus
on
lude by parts (A) and (B), that S and G are resettable fault tolerant

nonblo
king i� G
′ is nonblo
king.

44

