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Abstrat

In this paper we investigate the problem of fault tolerane in the framework of

disrete-event systems (DES). We introdue our setting, and then provide a set of

fault tolerant de�nitions designed to apture di�erent types of fault senarios and

to ensure that our system remains ontrollable and nonbloking in eah senario.

We then present algorithms to verify these properties followed by omplexity anal-

yses and orretness proofs of the algorithms. Finally, examples are provided to

illustrate our approah.
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1 Introdution

Supervisory ontrol theory, introdued by Ramadge and Wonham [1, 2, 3℄, provides a formal

framework for analysing disrete-event systems (DES). In this theory, automata are used to

model the system to be ontrolled and the spei�ation for the desired system behaviour. The

theory provides methods and algorithms to obtain a supervisor that ensures the system will

produe the desired behaviour.

However, the above typially assumes that the system behavior does not ontain faults

that would ause the atual system to deviate from the theoretial model. An example is a

sensor that detets the presene of an approahing train. If the supervisor relies on this sensor

to determine when the train should be stopped in order to prevent a ollision, it ould fail to

enfore its ontrol law if the sensor failed. Our goal in this paper is to develop a way to add

fault events to the system's plant model and to ategorize some ommon fault senarios. We

will then develop some properties that will allow us to determine if a supervisor will still be

ontrollable and nonbloking in these senarios. This paper builds upon our earlier work in

Radel et al. [4℄.

Currently in the DES literature, the most ommon approah when a fault is deteted is

to swith to a new supervisor to handle the system in its degraded mode. Suh an approah

fouses on fault reovery as opposed to fault tolerane. This requires the onstrution of a

seond supervisor, and requires that there be a means to detet the ourrene of the fault

in order to initiate the swith. In the approah we present in this paper, we use a single

supervisor that will behave orretly in the presene of the spei�ed fault senarios. This

method does not rely on deteting the fault, but on fault tolerant supervisors. We will now

disuss some relevant previous work.

Lin [5℄ disussed both robust and adaptive supervisory ontrol in disrete-event systems,

inluding neessary and su�ient onditions for the existene of a robust supervisor. Based

on this ondition, a robust supervisory ontrol and observation approah for synthesizing a

supervisory ontrol was developed. The goal of robust supervision is to synthesize a supervisor

that realizes a given desired behavior for all possible systems.

In Park et al. [6℄, they presented neessary and su�ient onditions for fault tolerant

robust supervisory ontrol of disrete-event systems that belong to a set of models. When

these onditions are satis�ed, fault tolerane an be ahieved. In the paper, the results were

applied to the design, modelling, and ontrol of a workell onsisting of ar welding (GMAW)

robots, a sensor, and a onveyor.

In Paoli et al. [7℄, the ontroller was updated based on the information provided by online

diagnostis. The supervisor needs to detet the malfuntioning omponent in the system in

order to ahieve the desired spei�ation. The authors proposed the idea of safe diagnosability

as a step to ahieve the fault tolerant ontrol. Two new notations were introdued in this

work (safe ontrollability) and (ative fault tolerant system), to haraterize the onditions

that must be satis�ed when solving the fault tolerant ontrol problem using this approah.

Qin Wen et al. [8℄ introdue a framework for fault-tolerant supervisory ontrol of disrete-

event systems. In this framework, plants ontain both normal behavior and behavior with

faults, as well as a submodel that ontains only the normal behavior. The goal of fault-

tolerant supervisory ontrol is to enfore a spei�ation for the normal behavior of the plant

and to enfore another spei�ation for the overall plant behavior. This inludes ensuring
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that the plant reovers from any fault within a bounded delay so that after the reovery, the

system state is equivalent to a state in the normal plant behavior. They formulate this notion

of fault-tolerant supervisory ontrol and provide a neessary and su�ient ondition for the

existene of suh a supervisor. The ondition involves notions of ontrollability, observability

and relative-losure together with the notion of stability.

This paper is organized as follows. Setion 2 disusses DES preliminaries. Setion 3 in-

trodues fault events and the fault senarios to whih they apply. Setion 4 presents our

fault tolerant ontrollability de�nitions while Setion 5 presents our fault tolerant nonblok-

ing de�nitions. Setion 6 presents algorithms to verify the fault tolerant ontrollability and

nonbloking properties and provides a omplexity analysis. Setion 7 presents algorithm or-

retness proofs and Setion 8 provides a manufaturing example to illustrate our approah.

Finally, Setion 9 provides onlusions and future work.

2 Preliminaries

We now present a summary of the DES terminology that we use in this paper. For more

details, please refer to [2℄.

Let Σ be a �nite set of distint symbols (events). Let Σ+ denote the set of all �nite,

non-empty sequenes of events, and Σ∗ be the set of all �nite sequenes of events inluding

ǫ, the empty string. We an then de�ne Σ∗:= Σ+ ∪ {ǫ}. For s ∈ Σ∗, |s| equals the length

(number of events) of the string.

Let L ⊆ Σ∗ be a language over Σ. A string t ∈ Σ∗ is a pre�x of s ∈ Σ∗ (written t ≤ s)
if s = tu, for some u ∈ Σ∗. The pre�x losure of language L (denoted L) is de�ned as

L := {t ∈ Σ∗ | t ≤ s for some s ∈ L}. Let Pwr(Σ) denote the set of all possible subsets of Σ.
For language L, the eligibility operator, EligL : Σ∗ → Pwr(Σ), is given by EligL(s) := {σ ∈
Σ |sσ ∈ L} for s ∈ Σ∗.

A DES automaton is represented as a 5-tuple G = (Y,Σ, δ, yo, Ym) where Y is the state set,

Σ is the event set, the partial funtion δ : Y ×Σ → Y is the transition funtion, yo is the initial

state, and Ym is the set of marker states. The funtion δ is extended to δ : Y ×Σ∗ → Y in the

natural way. The notation δ(y, s)! means that δ is de�ned for s ∈ Σ∗ at state y. For DES G,

the language generated is denoted by L(G), and is de�ned to be L(G) := {s ∈ Σ∗| δ(yo, s)!}.
The marked behavior of G is de�ned as Lm(G) := { s ∈ L(G)| δ(yo, s) ∈ Ym}. The reahable
state subset of DES G, denoted Yr, is Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}. A DES G is

reahable if Yr = Y . We will always assume G is reahable.

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2, s ∈ Σ∗, and σ ∈ Σ, we de�ne the

natural projetion Pi : Σ∗ → Σ∗

i aording to:

Pi(ǫ) = ǫ, Pi(σ) =

{

ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i ) → Pwr(Σ∗) is the inverse image of Pi suh that for L⊆Σ∗

i , P−1
i L :=

{s ∈ Σ∗|Pi(s) ∈ L}.

De�nition 1. For Gi = (Qi, Σi, δi, qo,i, Qm,i) (i = 1, 2), we de�ne the synhronous produt
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G = G1||G2 of the two DES as:

G := (Q1 × Q2, Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 × Qm,2),

where δ((q1, q2), σ) is only de�ned and equals:

(q′1, q
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1or
(q1, q

′

2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

It follows that L(G) = P−1
1 L(G1)∩P−1

2 L(G2) and Lm(G) = P−1
1 Lm(G1)∩P−1

2 Lm(G2).
We note that if Σ1 = Σ2, we get L(G) = L(G1) ∩ L(G2) and Lm(G) = Lm(G1) ∩ Lm(G2).

For DES, the two main properties we want to hek are nonbloking and ontrollability.

De�nition 2. A DES G is said to be nonbloking if:

(∀s ∈ L(G)) (∃s′ ∈ Σ∗) ss′ ∈ Lm(G)

For ontrollability, we assume the standard event partition Σ = Σu ∪̇Σc, splitting our

alphabet into unontrollable and ontrollable events.

De�nition 3. A supervisor S = (X, Σ, ξ, xo, Xm) is ontrollable for plant G = (Y,Σ, δ, yo, Ym)
if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ L(S)

We now provide some language de�nitions that will be useful for this paper. We start with

the language Lk. This is the set of strings onstruted from any k strings in L.

De�nition 4. Let L⊆Σ∗ and k ∈ {1, 2, 3, . . .}. We de�ne the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2 . . . sk for some s1, s2, . . . , sk ∈ L}

We next de�ne the notation for the language onstruted from all possible ways to on-

atenate a string from language L1, followed by an event from Σ′, and a string from language

L2.

De�nition 5. Let L1, L2⊆Σ∗ and Σ′⊆Σ. We de�ne the language L1.Σ
′.L2 to be:

L1.Σ
′.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈ L2, σ ∈ Σ′}

3 Fault Tolerant Setting

In this setion, we will introdue our onept of fault events and a onsisteny property that our

systems must satisfy. In the following setion, we will assume that all DES are deterministi,

and that we are given plant G = (Y,Σ, δ, yo, Ym) and supervisor S = (X, Σ, ξ, xo, Xm).

3.1 Fault Events

In this paper, our approah will be to add a set of unontrollable events to our plant model to

represent the possible faults in the system. For example, if we had a sensor to detet when a
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train passes, its plant model might originally ontain an event suh as trn_sen0 indiating a

train is present. We ould add a new unontrollable event, trnf_sen0, that will our instead

if the sensor fails to detet the train. This will allow us to model how the system will behave

after the ourrene of the fault. Our goal will be to design supervisors that will still behave

orretly even if a fault event ours, even though they an't detet the fault event diretly.

We start by de�ning a group of m ≥ 0 mutually exlusive sets of fault events.

ΣFi
⊆ Σu, i = 1, . . . , m

The idea here is to group related faults into sets suh that faults of a given set represent

a ommon fault ondition, while faults of a di�erent set represent a di�erent fault ondition.

For example, two sensors in a row that ould eah be used to detet the train in time for a

given trak segment might be in the same fault set, but a sensor in a di�erent part of the

trak would be in a di�erent set.

De�nition 6. We refer to faults in ΣFi
, i = 1, . . . , m, olletively as standard fault events:

ΣF :=
˙⋃

i=1,...,m

ΣFi

We note that for m = 0, ΣF = ∅.

The standard fault events are the faults that will be used to de�ne the various fault

senarios that our supervisors will need to be able to handle. However, there are two additional

types of faults that we need to de�ne in order to handle two speial ases. The �rst type is

alled unrestrited fault events, denoted ΣΩF ⊆ Σu. These are faults that a supervisor an

always handle and thus are allowed to our unrestrited.

The seond type is alled exluded fault events, denoted Σ∆F ⊆ Σu. These are faults that

an not be handled at all and thus are essentially ignored in our senarios. The idea is that this

would allow us to still design a fault tolerant supervisory for the remaining faults. Typially,

most systems would have neither exluded or unrestrited faults, but we will inlude them in

our de�nitions for the systems that do.

For eah fault set, ΣFi
(i = 0, . . . , m), we also need to de�ne a mathing set of reset

events, denoted ΣTi
⊆ Σ. These events will be explained in Setion 3.3, when we desribe the

resettable fault senario.

3.2 Fault Tolerant Consisteny

We now present a onsisteny requirement that our systems must satisfy.

De�nition 7. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m), Σ∆F , and ΣΩF , is fault tolerant (FT) onsistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F , ΣΩF , ΣFi
(i = 0, . . . , m), are pair-wise disjoint.

3. (∀i ∈ 1, . . . , m)ΣFi
6= ∅
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4. (∀i ∈ 1, . . . , m)ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministi.

6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF ))ξ(x, σ) = x

Point (1) says that fault events are unontrollable sine allowing a supervisor to disable

fault events would be unrealisti. Point (2) requires that the indiated sets of faults be

disjoint sine they must eah be handled di�erently. Point (3) says that fault sets ΣFi
are

non-empty. Point (4) says a fault set must be disjoint from its orresponding set of reset

events so we an distinguish them.

Points (5) and (6) say that S is deterministi (single initial state and at most a single

transition leaving a given state for a given event) and that at every state in S, there is a sel�oop

for eah fault event in the system. This means a supervisor annot hange state (and thus

hange enablement information) based on a fault event. This is a key onept as it e�etively

makes fault events unobservable to supervisors. If S is de�ned over a subset Σ′ ⊂ Σ instead,

we ould equivalently require that Σ′ ontain no fault events.

3.3 Fault Senarios

In this paper, we will onsider four fault senarios. The �rst is the default fault senario where

the supervisor must be able to handle any non-exluded fault event that ours. The seond

senario is the N ≥ 0 fault senario where the supervisor is only required to handle at most

N , non-exluded fault events and all unrestrited fault events.

The next senario is the non-repeatable N ≥ 0 fault senario where the supervisor is only

required to handle at most N , non-exluded fault events and all unrestrited fault events, but

no more than one fault event from any given ΣFi
(i = 0, . . . , m) fault set. This de�nition

allows the designer to group faults together in fault sets suh that a fault ourring from one

set does not a�et a supervisors ability to handle a fault from a di�erent set. Partiularly for

a situation where a supervisor ould handle only one fault per fault set, this would allow m
faults to our instead of only one using the previous senario.

The last senario we onsider is the resettable fault senario. This is designed to apture

the situation where at most one fault event from eah ΣFi
(i = 0, . . . , m) fault set an be

handled by the supervisor during eah pass through a part of the system, but this ability

resets for the next pass. For this to work, we need to be able to detet when the urrent pass

has ompleted and it is safe for another fault event from the same fault set to our. We use

the fault set's orresponding set of reset events to ahieve this. The idea is that one a reset

event has ourred, the urrent pass an be onsidered over and it is safe for another fault

event to our.

4 Fault Tolerant Controllability De�nitions

We will now develop some properties that will allow us to determine if a supervisor will still

be ontrollable in the four fault senarios that we introdued in the previous setion.
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4.1 Fault Tolerant Controllability

The �rst fault tolerant property that we introdue is designed to handle the default fault

senario. First, we need to de�ne the language of exluded faults. This is the set of all strings

that inlude at least one fault from Σ∆F .

De�nition 8. We de�ne the language of exluded faults as:

L∆F = Σ∗.Σ∆F .Σ∗

De�nition 9. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT) ontrollable if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard ontrollability de�nition but ignores strings

that inlude exluded fault events. As the language L(S) ∩ L(G) is pre�x losed, pre�xes

of these strings that do not ontain exluded faults must be heked. This de�nition is

equivalent to bloking all exluded fault events from ourring in the system behavior and

then heking the standard ontrollability de�nition. This is the most powerful of the fault

tolerant de�nitions as the supervisor must be able to handle a potentially unlimited number

of faults that an our in any order. We note that if Σ∆F = ∅, then De�nition 9 redues to

the standard ontrollability de�nition as L∆F redues to L∆F = ∅.

Typially, the set of exluded faults for a given system is empty. When a system is FT

ontrollable and Σ∆F 6= ∅, we say that it is FT ontrollable with exluded faults to emphasize

that it is less fault tolerant than if it passed the de�nition with Σ∆F = ∅. We will use a similar

expression with the other fault tolerant de�nitions.

4.2 N-Fault Tolerant Controllability

The next fault tolerant property that we introdue is designed to handle the N ≥ 0 fault

senario. First, we need to de�ne the language of N-fault events. This is the set of all strings

that inlude at most N faults from ΣF , inluding those that ontain no suh faults.

De�nition 10. We de�ne the language of N-fault events as:

LNF = (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k

De�nition 11. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT) ontrollable if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard ontrollability de�nition but ignores strings

that inlude exluded fault events or more than N faults from fault sets ΣFi
(i = 0, . . . , m).
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This de�nition is essentially weaker than the previous one sine if we take N = ∞ we get the

FT ontrollability de�nition bak. If we set N = 0, we get the ontrollability de�nition with

all fault events from ΣF exluded as well sine LNF will simplify to LNF = (Σ − ΣF )∗. We

also note that if m = 0, we get ΣF = ∅. This means LNF will simplify to LNF = Σ∗ whih

means De�nition 11 will simplify to De�nition 9.

Typially, the set of unrestrited faults for a given system is empty. When a system is

N-FT ontrollable and ΣΩF 6= ∅, we say that it is N-FT ontrollable with unrestrited faults

to emphasize that it is more fault tolerant than if it passed the de�nition with ΣΩF = ∅. We

will use a similar expression with the other fault tolerant de�nitions.

4.3 Non-repeatable N-Fault Tolerant Controllability

The next fault tolerant property that we introdue is designed to handle the non-repeatable

N ≥ 0 fault senario. First, we need to de�ne the language of non-repeatable fault events. This

is the set of all strings that inlude two or more faults from a single fault set ΣFi
(i = 0, . . . , m).

De�nition 12. We de�ne the language of non-repeatable fault events as:

LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

De�nition 13. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT) on-

trollable, if it is FT onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard ontrollability de�nition, but ignores

strings that inlude exluded fault events, more than N faults from fault sets ΣFi
(i =

0, . . . , m), or strings that inlude two or more faults from a single fault set. We note that

if m = 0, we get ΣF = ∅. This means LNF simpli�es to LNF = Σ∗ and LNRF simpli�es to

LNRF = ∅. This means De�nition 13 simpli�es to De�nition 9.

4.4 Resettable Fault Tolerant Controllability

The next fault tolerant property that we introdue is designed to handle the resettable fault

senario. First, we need to de�ne the language of resettable fault events. This is the set of all

strings where two faults from the same fault set ΣFi
our in a row without an event from the

orresponding set of reset events in between.

De�nition 14. We de�ne the language of resettable fault events as:

LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗)

De�nition 15. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT) ontrollable if
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it is FT onsistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)
(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF ) ⇒ sσ ∈ L(S)

The above de�nition is essentially the standard ontrollability de�nition, but ignores

strings that inlude exluded fault events and strings where we get two fault events from

the same fault set in a row without an event from the orresponding set of reset events in

between. We note that if m = 0, we get ΣF = ∅. This means LTF simpli�es to LTF = ∅ whih

means De�nition 15 simpli�es to De�nition 9.

5 Fault Tolerant Nonbloking De�nitions

We will now develop some properties that will allow us to determine if a system will still be

nonbloking in the four senarios that we introdued in Setion 3.3.

We use the fault languages from Setion 4 and a similar approah to add fault tolerant

priniples to the standard nonbloking de�nition.

5.1 Fault Tolerant Nonbloking

The �rst fault tolerant nonbloking property that we introdue is designed to handle the

default fault senario. We use the language of exluded faults from Setion 4.1.

De�nition 16. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is fault tolerant (FT) nonbloking if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G))
(s /∈ L∆F ) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F )

We note that if Σ∆F = ∅, then De�nition 16 redues to the standard nonbloking de�nition.

Also, if m = 0 then De�nitions 17, 18, and 19 all simplify to De�nition 16.

5.2 N-Fault Tolerant Nonbloking

The next fault tolerant nonbloking property that we introdue is designed to handle the

N ≥ 0 fault senario. We use the language of exluded faults and the language of N-fault

events from Setions 4.1 and 4.2.

De�nition 17. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is N-fault tolerant (N-FT) nonbloking if it is FT

onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ) ∧ (ss′ ∈ LNF )

5.3 Non-repeatable N-Fault Tolerant Nonbloking

The next fault tolerant nonbloking property that we introdue is designed to handle the

non-repeatable N ≥ 0 fault senario. We use the language of exluded faults, the language of
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N-fault events, and the language of non-repeatable fault events from Setion 4.

De�nition 18. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is non-repeatable N-fault tolerant (NR-FT) non-

bloking, if it is FT onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LNRF ) ∧ (ss′ ∈ LNF )

5.4 Resettable Fault Tolerant Nonbloking

The next fault tolerant nonbloking property that we introdue is designed to handle the

resettable fault senario. We use the language of exluded faults and the language of resettable

fault events from Setion 4.

De�nition 19. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm),
and fault sets ΣFi

(i = 0, . . . , m) and Σ∆F , is resettable fault tolerant (T-FT) nonbloking if

it is FT onsistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LTF ) ⇒
(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LTF )

6 Algorithms

In this setion, we will present algorithms to onstrut and verify the eight fault tolerant

ontrollability and nonbloking properties that we de�ned in Setions 4 and 5. We will not

present an algorithm for the FT onsisteny property as its individual points an easily be

heked by adapting various standard algorithms. We assume that our system onsists of a

plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . , m), Σ∆F , and ΣΩF .

Our approah will be to onstrut plant omponents to synhronize with our plant G

suh that the new DES will restrit the ourrene of faults to math the given fault tolerant

ontrollability and nonbloking de�nitions. We an then synhronize the plant omponents to-

gether and then use a standard ontrollability or nonbloking algorithm to hek the property.

This approah allows us to automatially take advantage of existing salability methods suh

as inremental [9℄ and binary deision diagram-based (BDD) algorithms [10, 11, 12, 13, 14, 15℄.

As the ontrollability, nonbloking, and synhronous produt algorithms have already been

studied in the literature [16℄, we will assume that they are given to us. We will use the stan-

dard || symbol to indiate the synhronous produt operation, vCont(Plant,Sup) to indiate

ontrollability veri�ation, and vNonb(System) to indiate nonbloking veri�ation. Fun-

tions vCont and vNonb return true or false to indiate whether the veri�ation passed or failed,

and the result will be stored in the Boolean variable pass.

In the setions that follow, we will �rst present algorithms to onstrut the new plant

omponents that will be shared by the fault tolerant ontrollable and nonbloking algorithms.

We then present the individual fault tolerant ontrollability and nonbloking algorithms.
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6.1 Algorithms to Construt Plants

Algorithms 1 − 4 onstrut the needed plant omponents for the various fault tolerant algo-

rithms.

6.1.1 Construt Exluded Faults Plant

Algorithm 1 onstruts G∆F for fault set Σ∆F . The algorithm onstruts a new DES with

event set Σ∆F , but no transitions. It also ontains only its initial state, whih is marked. This

will have the e�et of removing any Σ∆F transitions from any DES it is synhronized with.

Please note that all of the onstruted DES in these algorithms have every state marked

sine their goal is to modify the losed behavior by restriting the ourrene of fault events as

needed; not to modify the marked behavior of the system diretly. Also, when we de�ne our

transition funtions suh as δ, we will de�ne them as a subset of Y × Σ × Y for onveniene.

For example, (yo, σ, y1) ∈ δ implies δ(yo, σ) = y1.

Algorithm 1 onstrut-G∆F(Σ∆F )

1: Y1 ← {y0}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: return (Y1, Σ∆F , δ1, yo, Ym,1)

Figure 1 shows an example G∆F. In the DES diagrams, irles represent unmarked states,

while �lled irles represent marked states. Two onentri, un�lled irles represent the initial

state. If the initial state is also marked, the inner irle is �lled. Note that if a transition is

labeled by an event set suh as in Figure 2, this is a shorthand for a transition for eah event

in the event set.

0

Figure 1: Exluded Faults Plant G∆F

∑F∑F ∑F ∑F

0 1 2 3

Figure 2: N-Fault Plant GNF, N = 3

∑Fi

00 1

Figure 3: Non-Repeatable N-Fault Plant

GF,i

∑Fi

∑Ti

∑Ti

0 1

Figure 4: Resettable Fault Plant GTF,i

6.1.2 Construt N-Faults Plant

Algorithm 2 onstruts GNF for max N faults, and standard fault set ΣF . The algorithm

onstruts a new DES with event set ΣF and N states, eah state marked. It then reates a

transition for eah fault event in ΣF from state yi to state yi+1. As there are no transitions at
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state yN , synhronizing with this DES will allow at most N faults to our, and then remove

any additional standard fault transitions. Figure 2 shows an example GNF for N = 3.

Algorithm 2 onstrut-GNF(N, ΣF )

1: Y1 ← {y0, y1, . . . , yN}
2: Ym,1 ← Y1

3: δ1 ← ∅
4: for i = 0, . . . , N − 1
5: for σ ∈ ΣF

6: δ1 ← δ1 ∪ {(yi, σ, yi+1)}
7: end for

8: end for

9: return (Y1, ΣF , δ1, yo, Ym,1)

We note that if m = 0, then ΣF = ∅. This means that GNF will ontain no events and

have unreahable states for N ≥ 1. As a result, synhronizing with GNF will have no e�et

on the losed and marked language of the system. This means that Algorithms 6, 7, 10, and

11 will still work orretly.

We next note that if N = 0, GNF will ontain a single state, but no transitions. This will

have the desired e�et of removing any ΣF transitions from any DES synhronized with GNF.

6.1.3 Construt Non-repeatable N-Faults Plant

Algorithm 3 onstruts GF,i for i ∈ {1, . . . , m} and fault set ΣFi
. The algorithm onstruts a

new DES with event set ΣFi
and two states, both states marked. It then reates a transition

for eah fault event in ΣFi
from the initial state to state y1. As there are no transitions at

state y1, synhronizing with this DES will allow at most 1 fault event from the fault set to

our and then remove any additional fault transitions from the fault set. Figure 3 shows an

example GF,i.

Algorithm 3 onstrut-GF,i(ΣFi
, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: return (Yi, ΣFi
, δi, yo, Ym,i)

6.1.4 Construt Resettable Faults Plant

Algorithm 4 onstruts GTF,i for i ∈ {1, . . . , m}, fault set ΣFi
, and reset set ΣTi

. The

algorithm onstruts a new DES with event set ΣFi
∪ΣTi

and two states, both states marked.

It then reates a transition for eah fault event in ΣFi
from the initial state to state y1. Next,

it reates a transition for eah reset event in ΣTi
from state y1 to the initial state, as well as a
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sel�oop at the initial state for the event. Figure 4 shows an example GTF,i. Essentially, reset

events an our unrestrited, but one a fault event ours from ΣFi
, a seond event from

the set is bloked until a reset event from ΣTi
ours. Synhronizing with this DES will have

the e�et of restriting the plant's fault behavior to that whih the supervisor is required to

handle.

Algorithm 4 onstrut-GTF,i(ΣFi
, ΣTi

, i)

1: Yi ← {y0, y1}
2: Ym,i ← Yi

3: δi ← ∅
4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}
6: end for

7: for σ ∈ ΣTi

8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}
9: end for

10: return (Yi, ΣFi
∪ ΣTi

, δi, yo, Ym,i)

6.2 Verify Fault Tolerant Controllability

Algorithm 5 shows how to verify fault tolerant ontrollability for G and S. Line 1 onstruts

the exluded fault plant, G∆F, using Algorithm 1. Line 2 onstruts the new plant G
′. Line

3 heks that supervisor S is ontrollable for plant G
′. As G∆F is de�ned over event set Σ∆F

and ontains only a marked initial state and no transitions, synhronizing it with G reates

the original behavior with all exluded fault events removed. Cheking that S is ontrollable

for the resulting behavior will have the e�et of verifying fault tolerant ontrollability.

Algorithm 5 Verify fault tolerant ontrollability

1: G∆F ← onstrut-G∆F(Σ∆F )
2: G

′ ← G||G∆F

3: pass ← vCont(G′,S)
4: return pass

We note that if Σ∆F = ∅, Algorithm 5 will still produe the orret result. However, it

would be more e�ient to just hek that S is ontrollable for G diretly.

6.3 Verify N-Fault Tolerant Controllability

Algorithm 6 shows how to verify N-fault tolerant ontrollability for G, and S. Line 1 onstruts

the exluded fault plant, G∆F. Line 2 onstruts the N-fault plant, GNF, using Algorithm

2. Line 3 onstruts the new plant G
′. Line 4 heks that supervisor S is ontrollable for

plant G
′. As G∆F removes any exluded fault transitions and GNF prevents strings from

ontaining more than N fault events, heking that S is ontrollable for the resulting behavior

will have the e�et of verifying N-fault tolerant ontrollability.
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Algorithm 6 Verify N-fault tolerant ontrollability

1: G∆F ← onstrut-G∆F(Σ∆F )
2: GNF ← onstrut-GNF(N, ΣF )
3: G

′ ← G||G∆F||GNF

4: pass ← vCont(G′,S)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that synhronizing with GNF will have no

e�et. We will still get the orret result but it would be more e�ient to run Algorithm 5

diretly instead.

6.4 Verify Non-repeatable N-Fault Tolerant Controllability

Algorithm 7 shows how to verify non-repeatable N-fault tolerant ontrollability for G and S.

Line 1 onstruts the exluded fault plant, G∆F. Line 2 onstruts the N-fault plant, GNF.

For i ∈ {1, . . . , m}, Line 4 onstruts the non-repeatable N-fault plant, GF,i, using Algorithm

3. Line 6 onstruts the new plant G
′. Line 7 heks that supervisor S is ontrollable for plant

G
′. As G∆F removes any exluded fault transitions, GNF prevents strings from ontaining

more than N fault events, and eah GF,i allows at most one fault from their fault set to our,

heking that S is ontrollable for the resulting behavior will have the e�et of verifying non-

repeatable N-fault tolerant ontrollability. We note that if m ≤ N , we an safely skip Line 2

(and remove GNF from line 6) as Lines 3-5 will ensure at most m faults an our.

Algorithm 7 Verify non-repeatable N-fault tolerant ontrollability

1: G∆F ← onstrut-G∆F(Σ∆F )
2: GNF ← onstrut-GNF(N, ΣF )
3: for i = 1, . . . , m
4: GF,i ← onstrut-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m

7: pass ← vCont(G′,S)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be onstruted, and that

synhronizing with GNF will have no e�et. This means G
′ will simplify to G

′ = G||G∆F

and we an just evaluate Algorithm 5 instead.

6.5 Verify Resettable Fault Tolerant Controllability

Algorithm 8 shows how to verify resettable fault tolerant ontrollability for G and S. Line 1

onstruts the exluded fault plant, G∆F. For i ∈ {1, . . . , m}, Line 3 onstruts the resettable

fault plant GTF,i, using Algorithm 4. Line 5 onstruts the new plant G
′. Line 6 heks that

supervisor S is ontrollable for plant G
′. As G∆F removes any exluded fault transitions, and

eah GTF,i only allows strings where fault events from ΣFi
are always separated by at least

one event from the orresponding set of reset events, ΣTi
, heking that S is ontrollable for

the resulting behavior will have the e�et of verifying resettable fault tolerant ontrollability.
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Algorithm 8 Verify resettable fault tolerant ontrollability

1: G∆F ← onstrut-G∆F(Σ∆F )
2: for i = 1, . . . , m
3: GTF,i ← onstrut-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m

6: pass ← vCont(G′,S)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be onstruted. This means

G
′ will simplify to G

′ = G||G∆F and we an just evaluate Algorithm 5 instead.

6.6 Verify Fault Tolerant Nonbloking

Algorithm 9 shows how to verify fault tolerant nonbloking for G and S. This algorithm is

essentially the same as Algorithm 5, exept at Line 2 we alulate the losed loop system G
′,

and then at Line 3 we verify that it is nonbloking.

Algorithm 9 Verify fault tolerant nonbloking

1: G∆F ← onstrut-G∆F(Σ∆F )
2: G

′ ← G||G∆F||S
3: pass ← vNonb(G′)
4: return pass

We note that if Σ∆F = ∅, Algorithm 9 will still produe the orret result. However, it

would be more e�ient to just hek that S||G is nonbloking diretly.

6.7 Verify N-Fault Tolerant Nonbloking

Algorithm 10 shows how to verify N-fault tolerant nonbloking for G, and S. This algorithm

is essentially the same as Algorithm 6, exept at Line 3 we alulate the losed loop system

G
′, and then at Line 4 we verify that it is nonbloking.

Algorithm 10 Verify N-fault tolerant nonbloking

1: G∆F ← onstrut-G∆F(Σ∆F )
2: GNF ← onstrut-GNF(N, ΣF )
3: G

′ ← G||G∆F||GNF||S
4: pass ← vNonb(G′)
5: return pass

We note that if m = 0, we have ΣF = ∅ and that synhronizing with GNF will have no

e�et. We will still get the orret result but it would be more e�ient to run Algorithm 9

diretly instead.
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6.8 Verify Non-repeatable N-Fault Tolerant Nonbloking

Algorithm 11 shows how to verify non-repeatable N-fault tolerant nonbloking for G and S.

This algorithm is essentially the same as Algorithm 7, exept at Line 6 we alulate the losed

loop system G
′, and then at Line 7 we verify that it is nonbloking.

Algorithm 11 Verify non-repeatable N-fault tolerant nonbloking

1: G∆F ← onstrut-G∆F(Σ∆F )
2: GNF ← onstrut-GNF(N, ΣF )
3: for i = 1, . . . , m
4: GF,i ← onstrut-GF,i(ΣFi

, i)
5: end for

6: G
′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m||S

7: pass ← vNonb(G′)
8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be onstruted, and that

synhronizing with GNF will have no e�et. This means G
′ will simplify to G

′ = G||G∆F||S
and we an just evaluate Algorithm 9 instead.

We also note that if N ≥ m, the GF,i will ensure that no more than m events our. We

thus do not need to add GNF to G
′, whih should make the veri�ation more e�ient.

6.9 Verify Resettable Fault Tolerant Nonbloking

Algorithm 12 shows how to verify resettable fault tolerant nonbloking for G and S. This

algorithm is essentially the same as Algorithm 8, exept at Line 5 we alulate the losed loop

system G
′, and then at Line 6 we verify that it is nonbloking.

Algorithm 12 Verify resettable fault tolerant nonbloking

1: G∆F ← onstrut-G∆F(Σ∆F )
2: for i = 1, . . . , m
3: GTF,i ← onstrut-GTF,i(ΣFi

, ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m||S
6: pass ← vNonb(G′)
7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be onstruted. This means

G
′ will simplify to G

′ = G||G∆F||S and we an just evaluate Algorithm 9 instead.

6.10 Algorithm Complexity Analysis

In this setion, we provide a omplexity analysis for the fault tolerant ontrollability and

nonbloking algorithms. In the following subsetions, we assume that our system onsists of

a plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
,

ΣTi
(i = 0, . . . , m), Σ∆F , and ΣΩF .
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We will base our analysis on the omplexity analysis from Cassandras et al. [17℄ that states

that both the ontrollability and nonbloking algorithms have a omplexity of O(|Σ||Y ||X|),
where |Σ| is the size of the system event set, |Y | is the size of the plant state set, and |X| is
the size of the supervisor state set. In the analysis that follows, |Y∆F | is the size of the state

set for G∆F (onstruted by Algorithm 1), and |YNF | is the size of the state set for GNF

(onstruted by Algorithm 2).

We note that eah FT algorithm �rst onstruts and adds some additional plant ompo-

nents to the system, and then it runs a standard ontrollability or nonbloking algorithm on

the resulting system. Our approah will be to take the standard algorithm's omplexity, and

replae the value for the state size of the plant with the worst ase state size of G synhronized

with the new plant omponents. As all fault and reset events already belong to the system

event set, this means the size of the system event set does not inrease.

In the following analysis, we will ignore the ost of onstruting the new plant ompo-

nents as they will be onstruted in serial with the ontrollability or nonbloking veri�ation

and should be negligible in omparison. We next note that as the base ontrollability and

nonbloking algorithms have the same omplexity, the orresponding fault tolerant versions

will also have the same omplexity (i.e. the FT ontrollability algorithm will have the same

omplexity as the FT nonbloking algorithm). As suh, we will only present analysis for the

FT ontrollability algorithms.

6.10.1 FT Controllability Algorithm

For Algorithm 5, we replae our plant DES by G
′ = G||G∆F. This gives us a worst ase state

spae of |Y ||Y∆F | for G
′. Substituting this into our base algorithm's omplexity for the size

of our plant's state set gives O(|Σ||Y ||Y∆F ||X|). As |Y∆F | = 1 by Algorithm 1, it follows that

our omplexity is O(|Σ||Y ||X|) whih is the same as our base algorithm.

6.10.2 N-FT Controllability Algorithm

For Algorithm 6, we replae our plant DES by G
′ = G||G∆F||GNF. This gives us a worst ase

state spae of |Y ||Y∆F ||YNF | for G
′. Substituting this into our base algorithm's omplexity

gives O(|Σ||Y ||Y∆F ||YNF ||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YNF | = N+1 by Algorithm 2. Substituting in

for these values gives O((N + 1)|Σ||Y ||X|). It thus follows that verifying N-FT ontrollability

inreases the omplexity of verifying ontrollability by a fator of (N + 1).

6.10.3 Non-repeatable N-FT Controllability Algorithm

For Algorithm 7, we replae our plant DES by G
′ = G||G∆F||GNF||GF,1|| . . . || GF,m. This

gives us a worst ase state spae of |Y ||Y∆F ||YNF ||YF1
| . . . |YFm

| for G
′, where |YFi

| is the size
of the state set for GF,i (i = 0, . . . , m), whih is onstruted by Algorithm 3. Substituting

this into our base algorithm's omplexity gives O(|Σ||Y ||Y∆F ||YNF ||YF1
| . . . |YFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, |YNF | = N + 1 by Algorithm 2, and |YFi
| = 2

(i = 0, . . . , m) by Algorithm 3. Substituting in for these values gives O(2m(N + 1)|Σ||Y ||X|).
It thus follows that verifying non-repeatable N-FT ontrollability inreases the omplexity of

verifying ontrollability by a fator of 2m(N + 1).
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We next note that if N ≥ m, whih we believe will often be the ase, it is not neessary

to add GNF to G
′. The omplexity then redues to O(2m|Σ||Y ||X|).

6.10.4 Resettable FT Controllability Algorithm

For Algorithm 8, we replae our plant DES by G
′ = G||G∆F||GTF,1|| . . . ||GTF,m. This gives

us a worst ase state spae of |Y ||Y∆F ||YTF1
| . . . |YTFm

| for G
′, where |YTFi

| is the size of the

state set for GTF,i (i = 0, . . . , m), whih is onstruted by Algorithm 4. Substituting this into

our base algorithm's omplexity gives O(|Σ||Y ||Y∆F ||YTF1
| . . . |YTFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YTFi
| = 2 (i = 0, . . . , m) by Algorithm 4.

Substituting in for these values gives O(2m|Σ||Y ||X|). It thus follows that verifying resettable

FT ontrollability inreases the omplexity of verifying ontrollability by a fator of 2m.

7 Algorithm Corretness

In this setion, we introdue several propositions and theorems that show that the algorithms

introdued in Setion 6 orretly verify that a fault tolerant onsistent system satis�es the

spei�ed fault tolerant ontrollability and nonbloking properties de�ned in Setions 4 and 5.

7.1 Fault Tolerant Propositions

The propositions in this setion will be used to support the fault tolerant ontrollability

theorems in Setion 7.2. Fault tolerant ontrollability de�nitions are essentially ontrollability

de�nitions with added restrition that a string s is only tested if it is satis�es the appropriate

fault tolerant property. The algorithms are intended to replae the original plant with a new

plant G
′, suh that G

′ is restrited to strings with the desired property. Propositions 1 − 4
essentially assert that string s belongs to the losed behaviour of G

′, if and only if s satis�es

properties of fault tolerant ontrollable, N-FT ontrollable, non-repeatable N-FT ontrollable,

and resettable FT ontrollable, respetively. These propositions will also be used in the fault

tolerant nonbloking theorems in Setion 7.3.

Proposition 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the plant onstruted in Algorithm 5. Then:

(∀s ∈ L(G))s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the plant onstruted in Algorithm 6. Then:

(∀s ∈ L(G))(s /∈ L∆F ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

Proposition 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the plant onstruted in Algorithm 7. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)
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Proof. See Appendix A.

Proposition 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the plant onstruted in Algorithm 8. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTF ) ⇐⇒ s ∈ L(G′)

Proof. See Appendix A.

7.2 Fault Tolerant Controllable Theorems

In this setion we present theorems that show the fault tolerant ontrollable algorithms in

Setion 6 (Algorithms 5-8) will return true if and only if the fault tolerant onsistent system

satis�es the orresponding fault tolerant ontrollability property.

Theorem 1. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the plant onstruted in Algorithm 5. Then S is fault tolerant

ontrollable for G i� S is ontrollable for G
′.

Proof. See Appendix B.

Theorem 2. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the plant onstruted in Algorithm 6. Then S is N-fault

tolerant ontrollable for G i� S is ontrollable for G
′.

Proof. See Appendix B.

Theorem 3. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the plant onstruted in Algorithm 7. Then S is non-

repeatable N-fault tolerant ontrollable for G i� S is ontrollable for G
′.

Proof. See Appendix B.

Theorem 4. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the plant onstruted in Algorithm 8. Then S is resettable

fault tolerant ontrollable for G i� S is ontrollable for G
′.

Proof. See Appendix B.

7.3 Fault Tolerant Nonbloking Theorems

In this setion we present theorems that show the fault tolerant nonbloking algorithms in

Setion 6 (Algorithms 9-12) will return true if and only if the fault tolerant onsistent system

satis�es the orresponding fault tolerant nonbloking property.

Theorem 5. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the system onstruted in Algorithm 9. Then S and G are

fault tolerant nonbloking i� G
′ is nonbloking.
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Proof. See Appendix B.

Theorem 6. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the system onstruted in Algorithm 10. Then S and

G are N-fault tolerant nonbloking i� G
′ is nonbloking.

Proof. See Appendix B.

Theorem 7. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, N ≥ 0, and let G

′ be the system onstruted in Algorithm 11. Then S and

G are non-repeatable N- fault tolerant nonbloking i� G
′ is nonbloking.

Proof. See Appendix B.

Theorem 8. Let system with supervisor S = (X, Σ, ξ, xo, Xm) and plant G = (Y,Σ, δ, yo, Ym)
be FT onsistent, and let G

′ be the system onstruted in Algorithm 12. Then S and G are

resettable fault tolerant nonbloking i� G
′ is nonbloking.

Proof. See Appendix B.

8 Manufaturing Example

This example is based on the manufaturing testbed from Ledu [18℄. The testbed was de-

signed to simulate a manufaturing workell, in partiular problems of routing and ollision.

Figure 5 shows oneptually the struture of the testbed and sensors.
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Figure 5: Sensors in the Testbed
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In this paper, we will �rst fous on only a single trak loop, shown in Figure 6. The loop

ontains 8 sensors and two trains (train 1, train 2). Train 1 starts between sensors 9 and 10,

while train 2 starts between sensors 15 and 16. Both trains an only traverse the traks in a

lokwise diretion. We will use the simpli�ed version to illustrate our method. We will then

report experimental results of applying the method to the full testbed model in Setion 8.3.

S9 S10

S15

S11
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Figure 6: Single Train Loop
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Figure 8: Sensors 9, 10, and

16 with Faults

8.1 Base Plant Models

The plant model for the portion of the testbed we are urrently onsidering onsists of the

following basi elements: sensors, trains and the relationship between sensors and trains.

8.1.1 Sensor Models

The sensor models indiate when a given train is present, and when no trains are present.

Also, they state that only one train an ativate a given sensor at a time. Figure 7 shows the

original sensor model, for sensor J ∈ {9, . . . , 16}.

To add faults to the model, we assumed that sensors 9 10, and 16 ould have an intermittent

fault; sometimes the sensor would detet the presene of a train, sometimes it would fail to do

so. We modelled this by adding to all the plant models a new event t1F_atJ, J ∈ {9, 10, 16},
for eah t1_atJ event. For eah t1_atJ transition in a plant model, we added an idential

t1F_atJ transition. The idea is we an now get the original detetion event or the new fault

one instead. We made similar hanges for train 2. Figure 8 shows the new sensor models with

the added fault events. All other sensors will use the original version shown in Figure 7.

For this example, Σ∆F = ΣΩF = ∅. We also set m = 4, ΣF1
= {t1F_at9, t1F_at10},

ΣF2
= {t1F_at16}, ΣF3

= {t2F_at9, t2F_at10}, ΣF4
= {t2F_at16}, ΣT1

= {t1_at11},
ΣT2

= {t1_at14}, ΣT3
= {t2_at11}, and ΣT4

= {t2_at14}.

8.1.2 Sensor Interdependenies

This series of models show the sensor's interdependenies with respet to a given train. With

respet to the starting position of a partiular train (represented by the initial state), sensors

an only be reahed in a partiular order, ditated by their physial loation on the trak.

This is shown in Figures 9 and 10. Both DES already show the added fault events.
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Figure 9: Sensor Interdependenies For Train 1
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Figure 10: Sensor Interdependenies For Train 2

8.1.3 Train Models

The train models are shown in Figure 11 for train K (K = 1, 2). Train K an only move

when its enablement event en_trainK ours, and then it an move at most a single unit of

distane (event umv_trainK), before another en_trainK must our. This allows a supervisor

to preisely ontrol the movement of the train by enabling and disabling event en_trainK as

needed.
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with Faults

8.1.4 Relationship Between Sensors and Trains Models

Figure 12 shows the relationship between train K's (K = 1, 2) movement, and a sensor de-

teting the train. It aptures the idea that a train an reah at most one sensor during a unit

movement, and no sensors if it is disabled. Figure 13 shows the replaement model with fault

events added. We now seen that our plant model ontains 14 DES in total.

8.2 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent ollisions

in the trak setions with sensors 11-13, 15-16, 12-14, and 9-10. The idea is to ensure that

only one train uses this trak setion at a time. We will �rst introdue the original ollision

protetion supervisors that were designed with the assumption of no faults, and then we will

introdue new fault tolerant versions with added redundany.
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8.2.1 Collision Protetion Supervisors

Figure 14 shows the ollision protetion supervisor (CPS-11-13) for the trak setion on-

taining sensors 11 and 13. One a train has reahed sensor 11, the other train is stopped at

sensor 10 until the �rst train reahes sensor 15, whih indiates it has left the proteted area.

The stopped train is then allowed to ontinue. Figures 15, 16, and 17 show similar supervisors

for the remaining trak setions. Supervisors CPS-15-16 and CPS-9-10 have nonstandard

initial states in order to re�et the starting loations of the two trains.

It's easy to see that supervisor CPS-11-13 will not be fault tolerant as it relies solely on

sensor 10 to detet when a seond train arrives. If sensor 10 fails, the train ontinues and

ould ollide with the �rst train. Supervisors CPS-9-10 and CPS-12-14 will also not be

fault tolerant beause of sensor 10. A failure at sensor 10 ould ause supervisor CPS-9-10

to miss a train entering the proteted zone, and ould ause supervisor CPS-12-14 to miss

a train leaving the proteted zone. Using the DES researh software tool, DESpot [19℄, we

veri�ed that the system passes N = 0 FT ontrollability and nonbloking (i.e. if all faults are

ignored) and fails all eight fault tolerant ontrollability and nonbloking properties (N ≥ 1).
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Figure 14: CPS-11-13 Supervisor
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Figure 15: CPS-15-16 Supervisor
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Figure 16: CPS-12-14 Supervisor
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Figure 17: CPS-9-10 Supervisor
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8.2.2 Collision Protetion Fault Tolerant Supervisors

We next modi�ed supervisor CPS-11-13 to make it more fault tolerant. The result is shown

in Figure 18. We have added at states 1 and 4 a hek for either sensor 9 or sensor 10. That

way if sensor 10 fails but sensor 9 doesn't, we an still stop the train at sensor 9 and avoid

the ollision. We made similar hanges to supervisors CPS-12-14, and CPS-9-10, as shown

in Figures 19, and 20. Supervisor CPS-15-16 did not require any hanges as it did not rely

on any of the sensors that had faults.

Using DESpot, we an verify that the supervisor is not fault tolerant ontrollable or non-

bloking for the plant. The reason is that if both sensors 9 and 10 fail, the train will not be

deteted. However, the system an be show to be N-fault tolerant ontrollable for N = 1 (i.e.

sensor 10 fails but not sensor 9), non-repeatable N-fault tolerant ontrollable for N = 4, and
resettable fault tolerant ontrollable (as long as both sensors 9 and 10 don't fail in a given

pass, all is well). The system also passes the orresponding FT nonbloking properties. It an

also be shown that the system fails N-fault tolerant ontrollable and nonbloking for N = 2.
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Figure 18: CPS-11-13FT Supervisor
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Figure 19: CPS-12-14FT Supervisor

!t2_at9
en_train2
en_train1

!t1_at14

!t2_at11

en_train1
!t1_at9

!t1_at11

en_train2
!t1_at14
en_train1
!t2_at11
!t2_at14
!t1_at11

!t2_at10
!t2_at9

!t1_at10
!t1_at9

!t2_at11

!t2_at9
en_train2

en_train2
en_train1
!t1_at9

!t2_at14

!t1_at11
0

2

1

3

4

Figure 20: CPS-9-10FT Supervisor

8.3 Complete System

We next onsidered the full plant model for the testbed, as desribed in Ledu [18℄. This

model inludes all three loops shown in Figure 5, inluding all of the sensors shown, as well
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as six swithes for routing, and three ranes, loated at sensors 2, 13, and 21, for loading the

trains. The full model inludes ollision protetion supervisors for all trak setions as well

as supervisors for routing trains and stopping eah train for loading when they reah a rane.

The original system ontains 29 supervisors, 110 plant omponents and has a state spae of

7.33 × 109 states.

For this system, we used a similar approah to the one desribed earlier to add fault events

to sensors, and to add fault tolerane to the supervisors. See Dierikx [20℄ for omplete details.

For this version of the example, we have ΣΩF = ∅ and Σ∆F = ∪K=1,2(∪j∈I∆{tKF_atj}),
where I∆ = {2, 8, 13, 21, 27}. The exluded faults are for key portions of the trak where a

deision (suh as stopping a train in front of a given rane) needs to be made but there does

not exist a seond physial sensor appropriately loated that an be used as a bakup. To

deal with faults from these sensors, we believe we would need to add additional sensors.

For fault and reset sets, we have m = 16. For train 1, we have fault sets ΣFn
=

∪j∈IFn
{tF1_atj}, n = 1, . . . , 8, where IF1 = {0, 1, 4}, IF2 = {3, 5, 6, 7}, IF3 = {9, 10, 11},

IF4 = {12, 14}, IF5 = {15, 16}, IF6 = {19, 20, 22}, IF7 = {23, 24}, and IF8 = {25, 26}. Sets

ΣF9
− ΣF16

are analogous, exept that they are for train 2.

For train 1, we have reset sets ΣTn
= ∪j∈IRn

{t1_atj}, n = 1, . . . , 8, where IR1 = {6, 7, 27},
IR2 = {0, 1, 19, 20}, IR3 = {15, 16}, IR4 = {8, 9, 10}, IR5 = {12, 14}, IR6 = {23, 24}, IR7 =
{25, 26}, and IR8 = {12, 14}. Sets ΣT9

−ΣT16
are analogous, exept that they are for train 2.

Using our software researh tool, DESpot [19℄, we were able to determine that the system is

N-FT ontrollable and nonbloking (N = 1), non-repeatable N-FT ontrollable and nonblok-

ing (N = 16), and resettable FT ontrollable and nonbloking. We ran an FT ontrollable

hek on the system but after 33 hours and 1.908 × 109 states and ounting, we stopped the

omputation. See Table 1 for veri�ation times and projet state sizes (inludes added FT

plant omponents).

We also ran N-FT ontrollability and nonbloking heks for N = 2. The system passed

for ontrollability and failed for nonbloking. The reason that it passed N-FT ontrollability

is that a swith failed to hange state due to a sensor fault and a train derailed taking it to

a nonoreahable state before an illegal event ould our. This suggests that the routing

supervisors ould be made more expressive by adding the unontrollable train derailing events

to their event sets, but without mathing transitions.

Table 1: Veri�ation Times for Full System

Veri�ation Time (seonds)

Property State Size Controllability Nonbloking

fault tolerant 1.908 × 109+ - -

N-fault tolerant (N = 1) 368,548 654 P 3178 P

N-fault tolerant (N = 2) 1.961 × 106 13,916 P 26,249 F

nonrepeatable N-FT 1.275 × 1010 4,230 P 10,956 P

resettable FT 594,448 2,007 P 7,645 P
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9 Conlusions and Future Work

In this paper we investigate the problem of fault tolerane (FT) in the framework of disrete-

event systems. We introdue a set of eight fault tolerant ontrollability and nonbloking

de�nitions designed to apture di�erent types of fault senarios and to ensure that our system

remains ontrollable and nonbloking in eah senario. This approah is di�erent from the

typial fault tolerant methodology as the approah does not rely on deteting faults and

swithing to a new supervisor; it requires a supervisor to work orretly under normal and

fault onditions.

We then present a set of algorithms to verify the fault tolerant properties. As these

algorithms involve adding new plant omponents and then heking standard ontrollability

and nonbloking properties, they an instantly take advantage of existing ontrollability and

nonbloking software, as well as salability approahes suh as inremental veri�ation and

binary deision diagrams (BDD).

For eah algorithm, we provide a omplexity analysis showing that the FT algorithms

multiply the omplexity of the standard algorithms by a fator of one, N +1 (N is the number

of allowed faults), 2m (m is the number of fault sets) and 2m(N + 1). We then prove the

orretness of the algorithms.

We �nish with a small manufaturing example that illustrates how the theory an be

applied, and then we report on applying our approah to a muh larger example.

For future work, we would like to investigate additional fault senarios as well as additional

ways to model faults in the system.
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Appendies

A Proofs of Seleted Propositions

Proposition 1:

Proof. Assume initial onditions for proposition.

Let P∆F : Σ∗ → Σ∗

∆F be a natural projetion.

Let s ∈ L(G). (P1.1)

Must show implies s /∈ L∆F ⇐⇒ s ∈ L(G′).

Su�ient to show (A) s /∈ L∆F ⇒ s ∈ L(G′) and (B) s ∈ L(G′) ⇒ s /∈ L∆F

First we note that by Algorithm 5, we have G
′ = G||G∆F.

We thus have L(G′) = L(G) ∩ P−1
∆F L(G∆F) as Σ∆F ⊆ Σ, and G∆F is de�ned over Σ∆F by

Algorithm 1. (P1.2)

We next note that by Algorithm 1, G∆F ontains an initial state but no transitions. We thus

have: L(G∆F) = {ǫ} (P1.3)

Part A) Show s /∈ L∆F ⇒ s ∈ L(G′)

Assume s /∈ L∆F = Σ∗.Σ∆F .Σ∗.

Must show implies: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)

As s ∈ L(G) from (P1.1), su�ient to show s ∈ P−1
∆F L(G∆F).

As s /∈ Σ∗.Σ∆F .Σ∗, it follows that P∆F (s) = ǫ.

⇒ P∆F (s) ∈ L(G∆F), by (P1.3)

⇒ s ∈ P−1
∆F L(G∆F), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F

Assume s ∈ L(G′).

Must show implies: s /∈ L∆F

We note that s ∈ L(G′) implies s ∈ P−1
∆F L(G∆F), by (P1.2).

⇒ P∆F (s) ∈ L(G∆F)

⇒ P∆F (s) = ǫ, by (P1.3)

This implies s does not ontain any σ ∈ Σ∆F .

⇒ s /∈ Σ∗.Σ∆F .Σ∗, as required.

By parts (A) and (B), we have: s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proposition 2:

Proof. Assume initial onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Propo-

sition 1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projetions.

We next note that by Algorithm 6, we have G
′ = G||G∆F||GNF.

As G de�ned over Σ, G∆F over Σ∆F (by Algorithm 1), and GNF over ΣF (by Algorithm 2),

we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (P2.1)
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Let G1 be the plant onstruted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P2.2)

Let s ∈ L(G) (P2.3)

Must show implies: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F and s ∈ LNF . (P2.4)

Must show: s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)

By (P2.3), (P2.4), and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F) (P2.5)

All the remains is to show s ∈ P−1
F L(GNF).

As s ∈ LNF = (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k, there exists 0 ≤ j ≤ N , suh that

|PF (s)| = j.

We note that as GNF ontains an initial state, we have ǫ ∈ L(GNF).

If j = 0, we immediately have PF (s) = ǫ ∈ L(GNF).

For j ≥ 1, we an onlude: (∃σ0, . . . , σj−1 ∈ ΣF )PF (s) = σ0, . . . , σj−1

As j ≤ N , it is easy to see from Algorithm 2, that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition funtion for GNF.

⇒ δ1(y0, σ0, . . . , σj−1)!

⇒ δ1(y0, PF (s))!

⇒ PF (s) ∈ L(GNF)

⇒ s ∈ P−1
F L(GNF)

Combining with (P2.5), we have: s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) = L(G′)

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∧ s ∈ LNF

Assume s ∈ L(G′). Must show implies s /∈ L∆F and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P2.2).

We thus have by Proposition 1 that s /∈ L∆F . (P2.6)

We now need to show s ∈ LNF .

As L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) by (P2.1), we have s ∈ P−1
F L(GNF).

⇒ PF (s) ∈ L(GNF)

Let j = |PF (s)|. If j = 0, we have PF (s) = ǫ, thus s ∈ (Σ − ΣF )∗ ⊆ LNF .

We thus onsider j ≥ 1.

⇒ (∃σ0, . . . , σj−1 ∈ ΣF )PF (s) = σ0, . . . , σj−1

As PF (s) ∈ L(GNF), Algorithm 2 implies that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,
where δ1 is the transition funtion for GNF.

⇒ δ1(y0, PF (s)) = yj

As GNF ontains no loops and transitions our in a stritly inreasing order in terms of state

labels, we have j ≤ N .

As we have that s ontains at most N events from ΣF , it is thus lear that:

s ∈ (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k = LNF
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Combining with (P2.6), we have s /∈ L∆F and s ∈ LNF , as required.

By parts (A) and (B), we thus onlude: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 3:

Proof. Assume initial onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Propo-

sition 1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

projetions.

We next note that by Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

As G is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, GNF over ΣF by Algorithm 2, and

GF,i over ΣFi
(i = 1, . . . , m) by Algorithm 3, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m) (P3.1)

Let G1 be the plant onstruted by Algorithm 2. We thus have: G1 = G||G∆F||GNF

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ L(G′) ⊆ L(G1) (P3.2)

Let s ∈ L(G). (P3.3)

Must show implies: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LNRF and s ∈ LNF . (P3.4)

Must show s ∈ L(G′).

By (P3.3), (P3.4), and Proposition 2, we have: s ∈ L(G1)

All the remains is to show s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

Let i ∈ {1, . . . , m}.

As s /∈ LNRF =
m
⋃

j=1

(Σ∗.ΣFj
.Σ∗.ΣFj

.Σ∗), it follows that |PFi
(s)| ≤ 1.

As GF,i has an initial state (by Algorithm 3), we have ǫ ∈ L(GF,i).

By Algorithm 3, we have that for all σ ∈ ΣFi
, δi(y0, σ, y1)!. This implies σ ∈ L(GF,i).

⇒ PFi
(s) ∈ L(GF,i)

⇒ s ∈ P−1
Fi

L(GF,i), as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

Assume s ∈ L(G′).

Must show implies s /∈ L∆F ∪ LNRF and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P3.2).

We an thus onlude by Proposition 2 that: s /∈ L∆F and s ∈ LNF . (P3.5)

We now only need to show s /∈ LNRF .

As s ∈ L(G′), we have by (P3.1): s ∈ P−1
Fi

L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ PFi
(s) = σ ∈ ΣFi

or PFi
(s) = ǫ (i = 1, . . . , m), by Algorithm 3.

⇒ s /∈ LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)
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Combining with (P3.5), we have s /∈ L∆F ∪ LNRF and s ∈ LNF , as required.

By parts (A) and (B), we thus onlude: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Proposition 4:

Proof. Assume initial onditions for proposition.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Propo-

sition 1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural projetions.

We next note that by Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

AsG is de�ned over Σ, G∆F over Σ∆F by Algorithm 1, andGTF,i over ΣFi
∪ ΣTi

by Algorithm

4, we have:

L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)∩ . . . ∩ P−1

TFm
L(GTF,m) (P4.1)

Let G1 be the plant onstruted by Algorithm 1. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

⇒ L(G′) ⊆ L(G1) (P4.2)

Let s ∈ L(G). (P4.3)

Must show implies: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LTF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LTF . (P4.4)

Must show s ∈ L(G′) = L(G) ∩ P−1
∆F L(G∆F)∩P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m).

By (P4.3), (P4.4) and Proposition 1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆F L(G∆F)

All that remains is to show s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m.

As s /∈ LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗), it follows that:

(∀i ∈ {1, . . . , m}) s /∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗.

Let i = {1, . . . , m}.

We will use proof by ontrapositive.

Su�ient to show: PTFi
(s) /∈ L(GTF,i) ⇒ s ∈ Σ∗.ΣFi

.(Σ− ΣTi
)∗.ΣFi

.Σ∗

Assume PTFi
(s) /∈ L(GTF,i).

We note that by Algorithm 4 that ǫ ∈ L(GTF,i), as GTF,i has an initial state.

⇒ (∃s′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ ∈ ΣFi
∪ ΣTi

)s′σ ≤ PTFi
(s)∧s′ ∈ L(GTFi

) ∧ s′σ /∈ L(GTFi
)

From Algorithm 4, it is lear that all σ′ ∈ ΣFi
∪ ΣTi

are de�ned at state y0, all σ′ ∈ ΣTi
are

de�ned at state y1, and no σ′ ∈ ΣFi
are de�ned at state y1.

⇒ δi(y0, s
′) = y1, and σ ∈ ΣFi

Also, as the only way to reah state y1 is from state y0 via σ′ ∈ ΣFi
, it follows that string s′

ends in an event from ΣFi
.

⇒ (∃s′′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ′ ∈ ΣFi
) s′′σ′σ = s′σ ≤ PTFi

(s)

⇒ s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗, as required.

Part B) Show s ∈ L(G′) ⇒ s /∈ L∆F ∪ LTF

Assume s ∈ L(G′). Must show implies s /∈ L∆F ∪ LTF .
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As s ∈ L(G′), we have s ∈ L(G1), by (P4.2).

We an thus onlude by Proposition 1 that: s /∈ L∆F (P4.5)

We now need to show s /∈ LTF .

As s ∈ L(G′), we have by (P4.1): s ∈ P−1
TFi

L(GTF,i), i = 1, . . . , m

⇒ (∀i ∈ {1, . . . , m})PTFi
(s) ∈ L(GTF,i)

We proeed by proof by ontradition.

Assume s ∈ LTF .

⇒ (∃i ∈ {1, . . . , m})s ∈ Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗

Let i ∈ {1, . . . , m} be the above index.

This implies string PTFi
(s) ontains two events from ΣFi

in a row, without a σ ∈ ΣTi
in

between.

As it is lear from Algorithm 4 that GTF,i would never allow two σ ∈ ΣFi
to our in a row,

this ontradits PTFi
(s) ∈ L(GTF,i).

We thus onlude s /∈ LTF .

Combining with (P4.5) we have s /∈ L∆F ∪ LTF , as required.

By parts (A) and (B), we thus onlude: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

32



B Proofs of Seleted Theorems

Theorem 1:

Proof. Assume initial onditions for theorem.

Must show S is fault tolerant ontrollable for G ⇐⇒ S is ontrollable for G
′.

From Algorithm 5, we have: G
′ = G||G∆F

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural projetion.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) (T1.1)

Part A) Show (⇒)

Assume S is fault tolerant ontrollable for G. (T1.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′) and σ ∈ Σu. (T1.3)

Assume sσ ∈ L(G′). (T1.4)

Must show implies sσ ∈ L(S).

To apply (T1.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F .

We �rst note that (T1.1), (T1.3) and (T1.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T1.3), we onlude by Proposition 1 that s /∈ L∆F .

We an now onlude by (T1.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is ontrollable for G
′. (T1.5)

Must show implies S and G are FT onsistent (follows automatially from initial assumptions)

and that: (∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G) and σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F . (T1.6)

Must show implies sσ ∈ L(S).

We have two ases: (1) σ ∈ Σ∆F , and (2) σ /∈ Σ∆F

Case 1) σ ∈ Σ∆F

As the system is FT onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T1.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F

To apply (T1.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T1.6) and Proposition 1, we an onlude: s ∈ L(G′) (T1.7)

⇒ s ∈ P−1
∆F L(G∆F), by (T1.1)

⇒ P∆F (s) ∈ L(G∆F)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F)

Combining with (T1.6), (T1.7), and (T1.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)
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We an thus onlude by (T1.5) that sσ ∈ L(S), as required.

We thus onlude by ases (1) and (2), that sσ ∈ L(S).

We an now onlude by parts (A) and (B) that S is fault tolerant ontrollable for G i� S is

ontrollable for G
′.

Theorem 2:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is N-fault tolerant ontrollable for G ⇐⇒ S is ontrollable for G
′.

From Algorithm 6, we have G
′ = G||G∆F||GNF.

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projetions.

As G is de�ned over Σ, we have: L(G′) = L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T2.1)

Part A) Show (⇒)

Assume S is N-fault tolerant ontrollable for G. (T2.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T2.3)

Assume sσ ∈ L(G′). (T2.4)

Must show implies sσ ∈ L(S).

To apply (T2.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF .

We �rst note that (T2.1), (T2.3) and (T2.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T2.3), Proposition 2 implies that: s /∈ L∆F ∧ s ∈ LNF

We an now onlude by (T2.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is ontrollable for G
′. (T2.5)

Must show implies S and G are FT onsistent, (follows automatially from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∧ s ∈ LNF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF . (T2.6)

Must show implies sσ ∈ L(S).

We have two ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T2.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T2.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T2.6) and Proposition 2, we an onlude: s ∈ L(G′). (T2.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF), by (T2.1)
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⇒ P∆F (s) ∈ L(G∆F) and PF (s) ∈ L(GNF)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ. As σ /∈ ΣF , we have PF (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ PF (sσ) = PF (s)PF (σ) = PF (s) ∈ L(GNF)

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

Combining with (T2.6), (T2.7), and (T2.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We an thus onlude by (T2.5) that sσ ∈ L(S), as required.

We thus onlude by ases (1) and (2), that sσ ∈ L(S).

We an now onlude by parts (A) and (B), that S is N-fault tolerant ontrollable for G i� S

is ontrollable for G
′.

Theorem 3:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is non-repeatable N-fault tolerant ontrollable for G ⇐⇒ S is ontrollable for

G
′.

From Algorithm 7, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over ΣFi
,

i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

projetions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) (T3.1)

Part A) Show (⇒)

Assume S is non-repeatable N-fault tolerant ontrollable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu)sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T3.3)

Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F ∪ LNRF and

s ∈ LNF .

We �rst note that (T3.1), (T3.3) and (T3.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T3.3), we onlude by Proposition 3 that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

We an now onlude by (T3.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is ontrollable for G
′. (T3.5)

Must show implies S and G are FT onsistent (follows automatially from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ sσ ∈ L(S)
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Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G), and s /∈ L∆F ∪ LNRF ∧ s ∈ LNF . (T3.6)

Must show implies sσ ∈ L(S).

We have two ases: (1) σ ∈ Σ∆F ∪ ΣFi
, and (2) σ /∈ Σ∆F ∪ ΣFi

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T3.6), and Proposition 3, we an onlude: s ∈ L(G′) (T3.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m), by (T3.1)

⇒ P∆F (s) ∈ L(G∆F), PF (s) ∈ L(GNF) and PFi
(s) ∈ L(GF,i), i = 1, . . . , m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, PF (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . , m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PF (sσ) = PF (s)PF (σ) =
PF (s) ∈ L(GNF), and PFi

(sσ) = PFi
(s)PFi

(σ) = PFi
(s) ∈ L(GF,i), i = 1, . . . , m.

⇒ sσ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m)

Combining with (T3.6), (T3.7), and (T3.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′)

We an thus onlude by (T3.5) that sσ ∈ L(S), as required.

We thus onlude by ases (1) and (2), that sσ ∈ L(S).

We an now onlude by parts (A) and (B), that S is non repeatable N-fault tolerant ontrol-

lable for G i� S is ontrollable for G
′.

Theorem 4:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

1. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S is resettable fault tolerant ontrollable for G ⇐⇒ S is ontrollable for G
′.

From Algorithm 8, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 4, we know

that GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural projetions.

As G is de�ned over Σ, we have that:
L(G′) = L(G) ∩ P−1

∆F L(G∆F) ∩ P−1
TF1

L(GTF,1) ∩ . . .∩ P−1
TFm

L(GTF,m) (T4.1)

Part A) Show (⇒)

Assume S is resettable fault tolerant ontrollable for G. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′) ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T4.3)

Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∪ LTF .

We �rst note that (T4.1), (T4.3) and (T4.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).
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As s ∈ L(G′) by (T4.3), we onlude by Proposition 4 that: s /∈ L∆F ∪ LTF

We an now onlude by (T4.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is ontrollable for G
′. (T4.5)

Must show implies S and G are FT onsistent, (follows automatially from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F∪ LTF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF . (T4.6)

Must show implies sσ ∈ L(S).

We have two ases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT onsistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We �rst note that by (T4.6) and Proposition 4, we an onlude: s ∈ L(G′) (T4.7)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m), by (T4.1)

⇒ P∆F (s) ∈ L(G∆F) and PTFi
(s) ∈ L(GTF,i), i = 1, . . . , m (T4.8)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆F L(G∆F) (T4.9)

We now have two ases to onsider: (a) σ /∈
m
⋃

i=1

ΣTi
, and (b) σ ∈

m
⋃

i=1

ΣTi

Case a) σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PTFi

(σ) = ǫ, i = 1, . . . , m.

⇒ PTFi
(sσ) = PTFi

(s)PTFi
(σ) = PTFi

(s) ∈ L(GTF,i), i = 1, . . . , m

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Case b) σ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 4 states that all σ′ ∈ ΣTi
are de�ned at every state in GTF,i,

i = 1, . . . , m.

Let j ∈ {1, . . . , m}.

If σ ∈ ΣTj
, we have PTFj

(σ) = σ. We thus have PTFj
(sσ) = PTFj

(s)σ ∈ L(GTF,j) as

PTFj
(s) ∈ L(GTF,j) by (T4.8).

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF , it follows that PTFj

(σ) = ǫ. We thus have

PTFj
(sσ) = PTFj

(s)PTFj
(σ) = PTFj

(s) ∈ L(GTF,j), by (T4.8).

⇒ sσ ∈ P−1
TFj

L(GTF,j) for both ases.

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)
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By ases (a) and (b), we an onlude: sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Combining with (T4.9), we have:

sσ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m)

Combining with (T4.6), (T4.7), and (T4.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and sσ ∈ L(G′).

We an thus onlude by (T4.5) that sσ ∈ L(S), as required.

We thus onlude by ases (1) and (2), that sσ ∈ L(S).

We an now onlude by parts (A) and (B), that S is resettable fault tolerant ontrollable for

G i� S is ontrollable for G
′.

Theorem 5:

Proof. Assume initial onditions for theorem.

Must show S and G are fault tolerant nonbloking ⇐⇒ G
′ is nonbloking.

From Algorithm 9, we have: G
′ = G||G∆F||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural projetion.

As G and S are de�ned over Σ, we have that: L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) and

Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F). (T5.1)

Part A) Show (⇒)

Assume S and G are fault tolerant nonbloking. (T5.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) (T5.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F)

⇒ s ∈ L(G||G∆F)

We an thus apply Proposition 1 and onlude that s /∈ L∆F .

As we have s ∈ L(S) ∩ L(G) from (T5.3), we an apply (T5.2) and onlude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F (T5.4)

We now need to show that ss′ ∈ Lm(G′).

Su�ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)

From (T5.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F).

We note from Algorithm 1 that sine all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F).

It is thus su�ient to show: ss′ ∈ P−1
∆F L(G∆F)

As ss′ ∈ Lm(G) by (T5.4), we have ss′ ∈ L(G), sine Lm(G) ⊆ L(G).

From (T5.4), we have: ss′ /∈ L∆F

Applying Proposition 1, we an onlude that: ss′ ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

⇒ ss′ ∈ P−1
∆F L(G∆F)

We thus have that G
′ is nonbloking, as required.

Part B) Show (⇐)

Assume G
′ is nonbloking. (T5.5)
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Must show implies S and G are FT onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ⇒ (∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F

Let s ∈ L(S) ∩ L(G). (T5.6)

Assume s /∈ L∆F . (T5.7)

To apply (T5.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)

As we have s ∈ L(S) ∩ L(G) from (T5.6), we only still need to show s ∈ P−1
∆F L(G∆F).

By (T5.6) and (T5.7), we an apply Proposition 1 and onlude:

s ∈ L(G||G∆F) = L(G) ∩ P−1
∆F L(G∆F)

We thus have s ∈ L(G′). As G
′ is nonbloking, we an onlude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F), by (T5.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) = L(G||G∆F)

We an now onlude by Proposition 1 that ss′ /∈ L∆F .

We thus onlude that S and G are fault tolerant nonbloking.

We an thus onlude by parts (A) and (B), that S and G are fault tolerant nonbloking i�

G
′ is nonbloking.

Theorem 6:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

5. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are N-fault tolerant nonbloking ⇐⇒ G
′ is nonbloking.

From Algorithm 10, we have: G
′ = G||G∆F||GNF||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F , and from Algorithm 2, we know

that GNF is de�ned over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projetions.

As G and S are de�ned over Σ, we have L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F)∩P−1

F L(GNF)
and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F Lm(G∆F)∩ P−1
F Lm(GNF). (T6.1)

PartA) Show (⇒)

Assume S and G are N-fault tolerant nonbloking. (T6.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) (T6.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

⇒ s ∈ L(G||G∆F||GNF)

We an thus apply Proposition 2 and onlude: s /∈ L∆F ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T6.3), we an apply (T6.2) and onlude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF (T6.4)
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We now need to show that ss′ ∈ Lm(G′).

Su�ient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF).

From (T6.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
F Lm(GNF).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF).

It is thus su�ient to show that: ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As ss′ ∈ Lm(G) by (T6.4), we have ss′ ∈ L(G), sine Lm(G) ⊆ L(G).

From (T6.4), we have: ss′ /∈ L∆F ∧ ss′ ∈ LNF

Applying Proposition 2, we an onlude that:

ss′ ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

We thus have that G
′ is nonbloking, as required.

Part B) Show (⇐)

Assume G
′ is nonbloking. (T6.5)

Must show implies S and G are FT onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T6.6)

Assume s /∈ L∆F ∧ s ∈ LNF . (T6.7)

To apply (T6.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

As we have s ∈ L(S) ∩ L(G) from (T6.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)

By (T6.6) and (T6.7), we an apply Proposition 2, and onlude:

s ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆F L(G∆F)∩ P−1

F L(GNF)

We thus have s ∈ L(G′). As G
′ is nonbloking, we an onlude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

F L(GNF), by (T6.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F∧ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We also note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1

F L(GNF) as every state is marked in

GNF, by Algorithm 2.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) =L(G||G∆F||GNF)

We an now onlude by Proposition 2 that ss′ /∈ L∆F and that ss′ ∈ LNF .

We thus onlude that S and G are N-fault tolerant nonbloking.

We an thus onlude by parts (A) and (B), that S and G are N-fault tolerant nonbloking

i� G
′ is nonbloking.
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Theorem 7:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

5. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are non-repeatable N-fault tolerant nonbloking ⇐⇒ G
′ is nonbloking.

From Algorithm 11, we have: G
′ = G||G∆F||GNF||GF,1|| . . . ||GF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 2, we know

that GNF is de�ned over ΣF , and from Algorithm 3, we know that GF,i is de�ned over

ΣFi
, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . , m, be natural

projetions.

As G and S are de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩

P−1
F L(GNF) ∩ P−1

F1
L(GF,1) ∩ . . . ∩ P−1

Fm
L(GF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1

∆F

Lm(G∆F) ∩ P−1
F Lm(GNF) ∩ P−1

F1
Lm(GF,1) ∩ . . . ∩ P−1

Fm
Lm(GF,m). (T7.1)

Part A) Show (⇒)

Assume S and G are non-repeatable N-fault tolerant nonbloking. (T7.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩L(G)∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF)∩ P−1
F1

L(GF,1)∩ . . .∩ P−1
Fm

L(GF,m) (T7.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We an thus apply Proposition 3 and onlude that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T7.3), we an apply (T7.2) and onlude that:

(∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF (T7.4)

We now need to show that ss′ ∈ Lm(G′).

Su�ient to show:

ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F Lm(GNF)∩P−1
F1

Lm(GF,1)∩. . .∩P−1
Fm

Lm(GF,m).

From (T7.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show:

ss′ ∈ P−1
∆F Lm(G∆F) ∩ P−1

F Lm(GNF) ∩ P−1
F1

Lm(GF,1) ∩ . . . ∩ P−1
Fm

Lm(GF,m)

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 2, we have that all states in GNF are marked, thus L(GNF)
= Lm(GNF). From Algorithm 3, we have that all states in GF,i are marked, thus L(GF,i) =
Lm(GF,i), i = 1, . . . , m.

It is thus su�ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ · · · ∩ P−1
Fm

L(GF,m)

As ss′ ∈ Lm(G) by (T7.4), we have ss′ ∈ L(G), sine Lm(G) ⊆ L(G).

From (T7.4), we have: ss′ /∈ L∆F ∪ LNRF∧ss′ ∈ LNF

Applying Proposition 3, we an onlude that: ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have that G
′ is nonbloking, as required.

Part B) Show (⇐)
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Assume G
′ is nonbloking. (T7.5)

Must show implies S and G are FT onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒
(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T7.6)

Assume s /∈ L∆F ∪ LNRF∧s ∈ LNF . (T7.7)

To apply (T7.5), we need to show:

s ∈ L(G′) = L(S)∩L(G)∩P−1
∆F L(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m)

As we have s ∈ L(S) ∩ L(G) from (T7.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m).

By (T7.6) and (T7.7), we an apply Proposition 3 and onlude:

s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have s ∈ L(G′). As G
′ is nonbloking, we an onlude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

F L(GNF)∩P−1
F1

L(GF,1)∩ . . .∩P−1
Fm

L(GF,m),
by (T7.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LNRF and

ss′ ∈ LNF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

We note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1L(GNF) as every state is marked in GNF,

by Algorithm 2.

Also, we note that ss′ ∈ P−1
Fi

Lm(GF,i) implies ss′ ∈ P−1
Fi

L(GF,i) as every state is marked in

GF,i, i = 1, . . . , m, by Algorithm 3.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We an now onlude by Proposition 3 that: ss′ /∈ L∆F ∪ LNRF , and ss′ ∈ LNF

We thus onlude that S and G are non-repeatable N-fault tolerant nonbloking.

We an thus onlude by parts (A) and (B), that S and G are non-repeatable N-fault tolerant

nonbloking i� G
′ is nonbloking.

Theorem 8:

Proof. Assume initial onditions for theorem.

We �rst note that if m = 0, we have ΣF = ∅ and the proof is idential to the proof of Theorem

5. We an thus assume m ≥ 1 for the rest of the proof without any loss of generality.

Must show S and G are resettable fault tolerant nonbloking ⇐⇒ G
′ is nonbloking.

From Algorithm 12, we have: G
′ = G||G∆F||GTF,1|| . . . ||GTF,m||S

From Algorithm 1, we know that G∆F is de�ned over Σ∆F . From Algorithm 4, we know that

GTF,i is de�ned over ΣFi
∪ ΣTi

, i = 1, . . . , m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . , m, be natural projetions.

As G is de�ned over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1)
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∩ . . .∩P−1
TFm

L(GTF,m) and Lm(G′) = Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩

. . . ∩ P−1
TFm

Lm(GTF,m). (T8.1)

Part A) Show (⇒)

Assume S and G are resettable fault tolerant nonbloking. (T8.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m) (T8.3)

⇒ s ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩

P−1
TFm

L(GTF,m)

⇒ s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We an thus apply Proposition 4 and onlude:

s /∈ L∆F ∪ LTF

As we have s ∈ L(S) ∩ L(G) from (T8.3), we an apply (T8.2) and onlude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF (T8.4)

We now need to show that ss′ ∈ Lm(G′).

Su�ient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆F Lm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩ . . . ∩ P−1

TFm
Lm(GTF,m)

From (T8.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆F Lm(G∆F) ∩

P−1
TF1

Lm(GTF,1) ∩ . . . ∩ P−1
TFm

Lm(GTF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 4, we have that all states in GTF,i are marked, i = 1, . . . , m, thus

L(GTF,i) = Lm(GTF,i).

It is thus su�ient to show:

ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As ss′ ∈ Lm(G) by (T8.4), we have ss′ ∈ L(G), sine Lm(G) ⊆ L(G).

Also from (T8.4), we have: ss′ /∈ L∆F ∪ LTF

Applying Proposition 4, we an onlude that: ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ ss′ ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

We thus have that G
′ is nonbloking, as required.

Part B) Show (⇐)

Assume G
′ is nonbloking. (T8.5)

Must show implies S and G are FT onsistent (follows from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTF ⇒ (∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF

Let s ∈ L(S) ∩ L(G). (T8.6)

Assume s /∈ L∆F ∪ LTF . (T8.7)

To apply (T8.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As we have s ∈ L(S) ∩ L(G) from (T8.6), we only still need to show:

s ∈ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

By (T8.6) and (T8.7), we an onlude by Proposition 4: s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ s ∈ P−1
∆F L(G∆F) ∩ P

−1
TF1

L(GTF,1) ∩ . . . ∩ P
−1
TFm

L(GTF,m)
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We thus have s ∈ L(G′). As G
′ is nonbloking, we an onlude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆F Lm(G∆F)∩P−1

TF1
L(GTF,1)∩ . . .∩P−1

TFm
L(GTF,m), by (T8.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LTF .

We �rst note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆F Lm(G∆F) implies ss′ ∈ P−1

∆F L(G∆F) as every state is marked in

G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
TFi

Lm(GTF,i) implies ss′ ∈ P−1
TFi

L(GTF,i) as every state is marked

in GTF,i, by Algorithm 4, for i = 1, . . . , m.

⇒ ss′ ∈ L(G) ∩ P−1
∆F L(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

⇒ ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We an now onlude by Proposition 4 that: ss′ /∈ L∆F ∪ LTF

We thus onlude that S and G are resettable fault tolerant nonbloking.

We an thus onlude by parts (A) and (B), that S and G are resettable fault tolerant

nonbloking i� G
′ is nonbloking.
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