
Department of Computing and Software
Faculty of Engineering — McMaster University

Verifying Co-observability in Discrete-event Systems using
an Incremental Approach

by

Huailiang Liu, Ryan J. Leduc, Robi Malik, and S. L. Ricker

CAS Report Series CAS-13-06-RL
Department of Computing and Software November 2013
Information Technology Building
McMaster University
1280 Main Street West Hamilton, Ontario, Canada L8S 4K1

Copyright c© 2013

Verifying Co-observability in Discrete-event Systems
using an Incremental Approach

Huailiang Liu1, Ryan J. Leduc1, Robi Malik2, and S. L. Ricker3

1 Department of Computing and Software, Faculty of Engineering,
McMaster University, Hamilton, Ontario, Canada

2 Department of Computer Science
University of Waikato, Private Bag 3105, Hamilton, New Zealand

3 Department of Mathematics and Computer Science
Mount Allison University, Sackville, NB E4L 1E6, Canada

Technical Report CAS-13-06-RL
Department of Computing and Software

McMaster University

November 22, 2013

Abstract

Existing strategies for verifying co-observability, one of the properties that must be
satisfied for synthesizing solutions to decentralized supervisory control problems,
require the construction of the complete system model. When the system is com-
posed of many subsystems, these monolithic approaches may be impractical due
to the state-space explosion problem. To address this issue, we introduce an incre-
mental verification of co-observability approach. Selected subgroups of the system
are evaluated individually, until verification of co-observability is complete. The
new method is potentially much more efficient than the monolithic approaches, in
particular for systems composed of many subsystems, allowing for some intractable
state-space explosion problems to be manageable. Properties of this new strategy
are presented, along with a corresponding algorithm and an example.

Keywords: discrete-event systems, supervisory control, decentralized control, in-
cremental verification, co-observability

Contents

1 Introduction 1

2 Preliminaries 1

3 Incremental Verification of Co-observability 4

4 Algorithm 9

5 Incremental Verification of Co-observability for the Sequence Transmission
Protocol 10
5.1 The Sequence Transmission Problem . 11
5.2 Protocol Model . 11
5.3 Verification for the Protocol . 14

6 Conclusion 15

i

1 Introduction

One of the main challenges in the control of discrete-event systems (DES) is the combinatorial
explosion of the product state space. The state-space explosion problem becomes a bottle-
neck for the application of supervisory control of DES. To address the state-space explosion
problem, an incremental method has been successfully used in verification of controllability
without considering nonblocking [3]. Nonblocking verification has been addressed using the
compositional approach [12, 6], in which the global system is constructed incrementally using
abstraction in order to reduce the complexity of verification. A different type of abstraction
appears in [7] based on supervision equivalence to incrementally construct the monolithic
supervisor for a system.

All the above literature using incremental methods assume that a supervisor has full
observation, and none of them consider the setting of decentralized control [15], in which
each supervisor can access only partial information and is allowed to disable only a subset of
controllable events. The supervisors must coordinate the disabling and enabling of events in
order to realize the legal or desired behavior.

Existing work on decentralized supervisory control of DES focuses on problems where
decentralized controllers each control and observe some events in a system and must together
achieve some prescribed goal. The synthesis of decentralized supervisors requires that the
specification satisfies a property called co-observability [15]. Nevertheless, when the system
is very large and composed of many subsystems, verifying co-observability using existing
monolithic methods requires the construction of the complete system model which may be
intractable in practice due to the state-space explosion problem.

To address this problem, we introduce a new approach called incremental verification of
co-observability. Using this method, verifying co-observability is done incrementally by evalu-
ating selected subgroups of the system individually, until the entire system has been shown to
be co-observable. Properties of incremental verification of co-observability, the corresponding
algorithm, and a verification example for a classical communication protocol are presented.
Compared to traditional monolithic methods, the new method is potentially much more effi-
cient for very large systems composed of many subsystems, rendering some intractable state-
space explosion problems to be manageable. To the best of our knowledge, no existing work
explores incremental verification of co-observability.

This paper is organized as follows. Section 2 reviews some related concepts of super-
visory control in DES. Section 3 provides the details for the incremental verification of co-
observability. Section 4 provides an algorithm for incremental verification of co-observability
guided by counter examples. Section 5 applies this algorithm to verify a classical communi-
cation protocol. Finally, Section 6 provides conclusions and future work.

2 Preliminaries

This section provides a brief review of the key concepts used in this paper. Readers unfamiliar
with the notation and definitions may refer to [4].

Event sequences and languages are simple ways to describe DES behaviors. Let Σ be a
finite set of distinct symbols (events), and Σ∗ be the set of all finite sequences of events plus
ε, the empty string. A language L over Σ is any subset L ⊆ Σ∗.

The concatenation of two strings s, t ∈ Σ∗, is written as st. Languages and alphabets can

1

also be concatenated as: Lσ := {sσ ∈ Σ∗|s ∈ L, σ ∈ Σ}.
For strings s, t ∈ Σ∗, we say that t is a prefix of s (written t ≤ s) if s = tu, for some

u ∈ Σ∗. In this case, we also say that t can be extended to s.
The prefix closure L of a language L ⊆ Σ∗ is defined as follows:
L := {t ∈ Σ∗|t ≤ s for some s ∈ L}.
A language L is said to be prefix-closed if L = L. In this paper, we are not concerned with

nonblocking, thus we assume that all languages are prefix-closed.
Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1, and L2 ⊆ Σ∗2. For i ∈ {1, 2}, s ∈ Σ∗, and σ ∈ Σ, to capture

the notion of partial observation, we define the natural projection Pi : Σ∗ → Σ∗i according to:
Pi(ε) := ε

Pi(σ) :=

{
σ, if σ ∈ Σi;

ε, otherwise.

Pi(sσ) := Pi(s)Pi(σ)
For convienence in the above definition, we only define for i ∈ {1, 2}. In fact, projection works
for any subset of Σ∗.

The inverse projection P−1
i is the mapping Pwr(Σ∗i)→ Pwr(Σ∗) defined on sets of strings

(or languages), where Pwr(Σ∗i) and Pwr(Σ∗) denote all subsets of Σ∗i and Σ∗ respectively.
Given any Li ∈ Σ∗i , the inverse projection P

−1
i (Li) is defined as: P−1

i (Li) := {s ∈ Σ∗ | Pi(s) ∈
Li}.

A DES automaton is represented as a tuple: G := (Q, Σ, δ, q0), with finite state set Q,
finite alphabet set Σ, partial transition function δ : Q× Σ→ Q and initial state q0.

We will always assume that a DES has a finite state and event set, and is deterministic.
The closed behavior for a DES G is denoted by a regular language L(G), and is defined to be:
L(G) := {s ∈ Σ∗|δ(q0, s)!}, where δ(q0, s)! means that δ is defined for s ∈ Σ∗ at state q0. The
reachable state subset of G, denoted as Qr, is defined as: Qr := {q ∈ Q|(∃s ∈ Σ∗)δ(q0, s) = q}.
We say that G is reachable if Qr = Q.

Let G1 = (Q1, Σ1, δ1, q0,1) and G2 = (Q2, Σ2, δ2, q0,2) be two automata. Their
synchronous product is a DES G over event set Σ = Σ1 ∪ Σ2 , G := G1||G2 = (Q1 ×
Q2, Σ, δ, (q0,1, q0,2)). For (q1, q2) ∈ Q1 ×Q2, we define:

δ((q1, q2), σ):=

(δ1(q1, σ), δ2(q2, σ)), if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ)! and δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1\Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2\Σ1 and δ2(q2, σ)!.

The synchronous product of languages L1 and L2, denoted by L1||L2, is defined to be:
L1||L2 := P−1

1 (L1) ∩ P−1
2 (L2). If both L1 and L2 are over the same event set Σ, then their

languages have the following property: L = L1||L2= P−1
1 (L1) ∩ P−1

2 (L2)= L1 ∩ L2. In this
paper, for convenience, we assume the synchronous product is defined over the same event
set Σ. If we are given an automaton defined over a subset of Σ, we can simply self-loop the
missing events at each state.

In supervisory control, the event set Σ is partitioned into two disjoint sets: the controllable
event set Σc and the uncontrollable event set Σuc. Controllable events can be prevented from
happening, or disabled, by a supervisor S, while uncontrollable events cannot.

Let K and L = L be languages over event set Σ, and Σuc ⊆ Σ be the uncontrollable event
set. K is said to be controllable with respect to L and Σuc if, KΣuc ∩ L ⊆ K.

The property of co-observability was introduced in [15], and a verification algorithm was
introduced in [14]. The following is the definition of co-observability adapted from [15, 1].

2

Definition 2.1. Let K, L = L be languages over event set Σ. Let I = {1, ..., n} be an index
set. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of controllable and observable events, respectively, for
i ∈ I, where Σc = ∪ni=1Σc,i and Ic (σ) := {i ∈ I |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗o,i be a natural
projection. A language K is said to be co-observable with respect to L, Σo,i, Σc,i, i ∈ I, if,

(∀t ∈ K ∩ L) (∀σ ∈ Σc) tσ ∈ L\K ⇒ (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

Notice that in definition 2.1, when there is only one controller, I = {1}, the property is
called observability [10]. To apply the definition to languages represented by plant G and
specification S, we use L = L(G) and K = L(S).

Since in practice the specification K is not necessarily a subset of L, we do not require that
K ⊆ L as in the original definition. Instead of checking all strings in K, reasonably, we check
all strings in K ∩L. This makes co-observability easier to apply in an incremental algorithm.

To solve the control problem, decentralized controllers take local control decisions based on
their partial observations. When the system leaves K (i.e., tσ ∈ L\K, where tσ ∈ L and tσ /∈
K) there must be at least one controller (i.e., ∃i ∈ Ic (σ)) that has sufficient information from
its own view of the system to take the correct control decision (i.e., disable σ). Note that, by
default, a controller i ∈ I will enable all events σ ∈ Σ\Σc,i.

If an event σ needs to be disabled (i.e., t ∈ K, tσ ∈ L\K), then at least one of the con-
trollers that control σ must unambiguously know that σ must be disabled (i.e., P−1

i [Pi(t)]σ ∩
K∩L = ∅). From this controller’s viewpoint, disabling σ does not prevent any string in K∩L.
For all other controllers that are uncertain about whether they should disable the event σ,
they will enable the event σ, and the final fusion rule used here is the conjunction of all the
decisions of controllers.

We can synthesize decentralized controllers that ensure the supervised system generates
exactly the behavior in the specification K, if K is controllable and satisfies co-observability
[15].

In the following, when there is no ambiguity, instead of saying that K is co-observable
with respect to L, Σo,i, Σc,i, i ∈ I, we will say that K is co-observable w.r.t. L.

To show that the system fails to satisfy co-observability, we give the definition of a counter
example for co-observability.

Definition 2.2. Let K, L = L be languages over event set Σ. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be
sets of controllable and observable events, respectively, for i ∈ I, Ic (σ) :={i ∈ I |σ ∈ Σc,i}. Let
Pi : Σ∗ → Σ∗o,i be a natural projection. A co-observability counter example for the specification
K and the plant L is a tuple C =(σ, t,t1, ..., tn) where
- σ ∈ Σc;
- t ∈ K ∩ L and tσ ∈ L\K;
- (∀i ∈ Ic (σ)) tiσ ∈ K ∩ L;
- (∀i ∈ Ic (σ)) Pi(t) = Pi(ti).

Please note that for i ∈ I\Ic(σ), the corresponding controllers cannot disable σ, therefore
these ti in C cannot affect whether Definition 2.2 is satisfied or not. As such, these ti in C
can be safely ignored.

To show that a specification rejects a co-observability counter example, we give the fol-
lowing definition. The intention is that if we replace K in Definition 2.2 by K ∩K ′, then C
will no longer be a valid counter example.

3

Definition 2.3. If C = (σ, t, t1, ..., tn) is a co-observability counter example for the spec-
ification K = K and the plant L = L, we say that specification K ′ = K ′ ⊆ Σ∗ rejects C,
if:
- t /∈ K ′, or
- (∃i ∈ Ic(σ)) tiσ /∈ K ′.

Analogously, we give the definition bellow for when a plant rejects a co-observability
counter example. The intention here is that if we replace L in Definition 2.2 by L ∩ L′,
then C will no longer be a valid counter example.

Definition 2.4. If C = (σ, t, t1, ..., tn) is a co-observability counter example for the specifi-
cation K = K and the plant L = L, we say that plant L′ = L′ ⊆ Σ∗ rejects C, if:
- tσ /∈ L′, or
- (∃i ∈ Ic(σ)) tiσ /∈ L′.

3 Incremental Verification of Co-observability

In practice, the synchronous product of the plant L = L1||...||Lm and the specification K =
K1||...||Kr may be very large, and it is difficult to verify co-observability due to the state-
space explosion problem. Therefore, we introduce an incremental verification method for
co-observability.

Recall that if languages are over the same event set Σ, then the above synchronous product
of L and K have the following property: L = L1||...||Lm = L1 ∩ ... ∩ Lm, K = K1||...||Kr =
K1 ∩ ... ∩Kr. This is why we use the intersection of the languages in this section.

Proposition 3.1. Let K, L = L,M = M , be languages over event set Σ. If K is co-observable
with respect to M and L ⊆M , then K is co-observable with respect to L.

Proof. Assume K is co-observable w.r.t. M and L ⊆M .
Must show K is co-observable w.r.t. L.
Let t ∈ K ∩ L.
Let σ ∈ Σc.
Assume tσ ∈ L\K.
Sufficient to show (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
As L ⊆M and t ∈ K ∩ L, we have: t ∈ K ∩M .
As tσ ∈ L\K, we have: tσ ∈ L and tσ /∈ K.
⇒ tσ ∈M and tσ /∈ K, as L ⊆M .
⇒ tσ ∈M\K.
Then t ∈ K ∩M and tσ ∈M\K.
As K is co-observable w.r.t. M , we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩M = ∅.
As L ⊆M , we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
As t ∈ K ∩ L and σ ∈ Σc were chosen arbitrarily, we conclude that K is co-observable

w.r.t. L.

Proposition 3.1 is a fundamental proposition which can be paraphrased as follows: if a
specification language is co-observable w.r.t. a language M , then it must be co-observable
w.r.t. all the prefix-closed sublanguages of M . We also know that if L1 and L2 are prefix-
closed, so is L = L1 ∩ L2.

4

Corollary 3.1. Let K, L1 = L1, and L2 = L2 be languages over event set Σ. If K is
co-observable with respect to L1 then K is co-observable with respect to L = L1 ∩ L2.

Proof. As K is co-observable w.r.t. L1 and L = L1 ∩ L2 ⊆ L1, by Proposition 3.1, we have:
K is co-observable w.r.t. L.

If we want to verify whether K is co-observable w.r.t. L = L1 ∩ ... ∩Lm, it is sufficient to
show that there exists a subset of indexes {j1, ..., jk} ⊆ {1, ...,m} such that K is co-observable
w.r.t. L′ = Lj1 ∩ ... ∩ Ljk . This follows from Corollary 3.1.

Proposition 3.2. Let K1, K2 and L be prefix-closed languages over event set Σ. If both K1

and K2 are, respectively, co-observable with respect to L, then K = K1 ∩K2 is co-observable
with respect to L.

Proof. Assume K1, K2 and L are prefix-closed languages over event set Σ.
Assume K1 is co-observable w.r.t. L.
Assume K2 is co-observable w.r.t. L.
Must show K is co-observable w.r.t. L.
Let t ∈ K ∩ L.
Let σ ∈ Σc.
Assume tσ ∈ L\K.
Sufficient to show (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
As K = K1 ∩K2, K1 and K2 are prefix-closed, we have: K = K1 ∩K2 = K1 ∩K2.
As t ∈ K ∩ L, we have: t ∈ K1 ∩K2 ∩ L.
⇒ t ∈ K1 ∩ L and t ∈ K2 ∩ L.
As tσ ∈ L\K, we have: tσ ∈ L and tσ /∈ K.
As tσ /∈ K, and prefix-closed languages K = K1 ∩K2, we have: tσ /∈ K1 or tσ /∈ K2.
⇒ tσ /∈ K1 and tσ ∈ L or tσ /∈ K2 and tσ ∈ L.
Case 1) tσ /∈ K1 and tσ ∈ L.
Then t ∈ K1 ∩ L, tσ /∈ K1 and tσ ∈ L.
⇒ t ∈ K1 ∩ L, tσ ∈ L\K1.
As K1 is co-observable w.r.t. L, we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K1 ∩ L = ∅.
As K ⊆ K1, we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
Case 2) tσ /∈ K2 and tσ ∈ L.
Then t ∈ K2 ∩ L, tσ /∈ K2 and tσ ∈ L.
⇒ t ∈ K2 ∩ L, tσ ∈ L\K2.
As K2 is co-observable w.r.t. L, we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K2 ∩ L = ∅.
As K ⊆ K2, we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩ L = ∅.
As s ∈ K and σ ∈ Σc are chosen arbitrarily, we can conclude by case 1) and 2) that

K = K1 ∩K2 is co-observable w.r.t. L.

Proposition 3.2 can be extended to an arbitrary number of specification languages.
In the incremental verification of co-observability, given a specification language K =

K1 ∩ ...∩Kr and a language L, if we want to verify whether K is co-observable w.r.t. L, it is
enough to simply show that for each j ∈ {1, ..., r}, Kj is co-observable w.r.t. L. Combining
this with Proposition 3.1, we see that we can use a component L′ instead of the global system
L for the verification.

5

Proposition 3.3. Let K1, K2, M1, and M2 be prefix-closed languages over event set Σ. If
K1 is co-observable w.r.t. M1, and K2 is co-observable with respect to M2, then K = K1 ∩K2

is co-observable with respect to M = M1 ∩M2.

Proof. Assume K1, K2, M1, and M2 are prefix-closed.
Assume K1 is co-observable w.r.t. M1.
Assume K2 is co-observable w.r.t. M2.
Must show K is co-observable w.r.t. M .
As M = M1 ∩M2, we have: M ⊆M1 and M ⊆M2.
As K1 is co-observable w.r.t. the prefix-closed language M1, and M ⊆ M1, we have: K1

is co-observable w.r.t. M , by Proposition 3.1.
As K2 is co-observable w.r.t. the prefix-closed language M2, and M ⊆ M2, we have: K2

is co-observable w.r.t. M , by Proposition 3.1.
As K1 and K2 are both co-observable w.r.t. M , respectively, and as K1, K2, and M are

prefix-closed, we have: K = K1 ∩K2 is co-observable w.r.t. M by Proposition 3.2.

Proposition 3.3 is useful for verifying co-observability in large decentralized systems. As
described above, to verify whether a specification language K = K1 ∩ K2 is co-observable
w.r.t. a language M = M1 ∩M2, we can simply show that K1 is co-observable w.r.t. M1, and
K2 is co-observable w.r.t. M2. The results of Proposition 3.3 can be extended to an arbitrary
number of specification and plant component languages.

Proposition 3.4. Let K, L be prefix-closed languages over event set Σ. If K ⊇ L then K is
co-observable w.r.t. L.

Proof. Assume K ⊇ L.
Then every string in L is also in K.
⇒ L\K = ∅.
Therefore the pre-condition of co-observability, tσ ∈ L\K, is always false.
As there does not exist tσ ∈ L\K satisfying the precondition of definition 2.1, the result

that K is co-observable w.r.t. L is trivially true.
We thus conclude that K is co-observable w.r.t. L.

Proposition 3.4 indicates that any language is co-observable w.r.t. all its sub-languages.

Proposition 3.5. Let K1, K2 and M be prefix-closed languages over event set Σ. If K1

is co-observable w.r.t. M ∩ K2, and K2 is co-observable w.r.t. M , then K = K1 ∩ K2 is
co-observable w.r.t. M .

Proof. Assume K1 is co-observable w.r.t. M ∩K2.
Assume K2 is co-observable w.r.t. M .
Assume K1, K2 and M are prefix-closed.
Must show K is co-observable w.r.t. M .
Let t ∈ K ∩M .
Let σ ∈ Σc.
Assume tσ ∈M\K.
Sufficient to show (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩M = ∅.

6

As t ∈ K∩M andK = K1 ∩K2 = K1∩K2 for prefix-closed languages, we have: t ∈ K1∩M
and t ∈ K2 ∩M .

As tσ ∈M\K, we have: tσ ∈M and tσ /∈ K.
⇒ tσ ∈M and (tσ /∈ K1 or tσ /∈ K2) for prefix-closed languages.
⇒ (tσ ∈M and tσ /∈ K1) or (tσ ∈M and tσ /∈ K2).
Case 1) tσ ∈M and tσ /∈ K2.
Then tσ ∈M\K2.
⇒t ∈ K2 ∩M and tσ ∈M\K2.
As K2 is co-observable w.r.t. M , we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K2 ∩M = ∅.
As K = K1 ∩K2 ⊆ K2, we have: (∃i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩M = ∅.
Case 2) tσ ∈M and tσ /∈ K1.
Under this case, there are still two cases: tσ /∈ K2 or tσ ∈ K2.
As tσ /∈ K2 is the same as case 1), we only consider tσ ∈ K2.
⇒ tσ ∈M and tσ /∈ K1 and tσ ∈ K2.
We will use the assumption that K1 is co-observable w.r.t. M ∩K2 to prove the result.
We will thus look on K1 as a specification, and M ∩K2 as a plant.
As tσ ∈M and tσ /∈ K1 and tσ ∈ K2, we have: tσ ∈M ∩K2 and tσ /∈ K1.
⇒ tσ ∈ (M ∩K2)\K1.
As t ∈ K1 ∩M and t ∈ K2 ∩M , we have: t ∈ K1 ∩ (M ∩K2).
⇒ t ∈ K1 ∩ (M ∩K2) and tσ ∈ (M ∩K2)\K1.
AsK1 is co-observable w.r.t. M∩K2, we have: (∃i ∈ Ic(σ)) P−1

i [Pi (t)]σ∩K1∩(M∩K2) =
∅.
⇒ (∃i ∈ Ic(σ)) P−1

i [Pi (t)]σ ∩ (K1 ∩K2 ∩M) = ∅.
As K = K1∩K2 for prefix-closed languages, we have: (∃i ∈ Ic(σ)) P−1

i [Pi (t)]σ∩K∩M =
∅.

As t ∈ K and σ ∈ Σc are chosen arbitrarily, we conclude by cases 1) and 2), that K is
co-observable w.r.t. M .

Proposition 3.5 is used to show co-observability when K2 is co-observable w.r.t. M and
K1 is not co-observable w.r.t. M . However, we still have that K = K1 ∩K2 is co-observable
w.r.t. M if K1 is co-observable w.r.t. the extended system M ∩K2, according to Proposition
3.5. Essentially, Proposition 3.5 allows us to treat specification K2 as a plant component.

Proposition 3.6. Let K1, K2, M1 and M2 be prefix-closed languages over event set Σ. If
K1 is co-observable w.r.t. M1 ∩K2, and K2 is co-observable w.r.t. M2, then K = K1 ∩K2 is
co-observable w.r.t. M = M1 ∩M2.

Proof. Assume K1 is co-observable w.r.t. M1 ∩K2.
Assume K2 is co-observable w.r.t. M2.
Assume K1, K2, M1 and M2 are prefix-closed.
Must show K is co-observable w.r.t. M .
As M = M1 ∩M2 ⊆M1, we have: M ∩K2 ⊆M1 ∩K2.
As K1 is co-observable w.r.t. M1 ∩K2, we have: K1 is co-observable w.r.t. M ∩K2, by

Proposition 3.1.
As K2 is co-observable w.r.t. M2, and M = M1 ∩M2 ⊆M2, we have: K2 is co-observable

w.r.t. M , by Proposition 3.1.
⇒ K1 is co-observable w.r.t. M ∩K2, and K2 is co-observable w.r.t. M .

7

We thus have that K = K1 ∩K2 is co-observable w.r.t. M , for prefix-closed languages, by
Proposition 3.5.

Compared to Proposition 3.5, Proposition 3.6 provides us with a more general way to
incrementally verify co-observability, especially for systems composed of a large number of
subsystems.

Here, the plant language M = M1 ∩M2 has only two components. In fact, the system can
have an arbitrary number of components, which is also true for the number of components of
the specification languages.

Proposition 3.7. Let K1, K2 and M be prefix-closed languages over event set Σ. If K1 is
not co-observable w.r.t. M ∩K2, then K = K1 ∩K2 is not co-observable w.r.t. M .

Proof. Assume K1, K2, and M are prefix-closed.
Assume K1 is not co-observable w.r.t. M ∩K2.
Must show K is not co-observable w.r.t. M .
Sufficient to show (∃t ∈ K ∩M) (∃σ ∈ Σc) tσ ∈M\K and (∀i ∈ Ic (σ)) P−1

i [Pi(t)]σ∩K ∩
M 6= ∅.

We will use the condition that K1 is not co-observable w.r.t. M ∩K2 to prove the result.
We thus look on K1 as a specification, and M ∩K2 as a plant.
As K1 is not co-observable w.r.t. M ∩K2, it follows that: (∃t ∈ K1 ∩ (M ∩K2)) (∃σ ∈

Σc) tσ ∈ (M ∩K2)\K1 and (∀i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩ (M ∩K2) 6= ∅.

⇒ (∃t ∈ K1 ∩ (M ∩K2)) (∃σ ∈ Σc) tσ ∈M ∩K2, tσ /∈ K1 and (∀i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩

K1 ∩ (M ∩K2) 6= ∅.
⇒ (∃t ∈ K1 ∩ (M ∩ K2)) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 and (∀i ∈ Ic (σ)) (∃ti ∈

K1 ∩ (M ∩K2)) Pi(t) = Pi(ti), tiσ ∈ K1 ∩ (M ∩K2).
⇒ (∃t ∈ K1∩K2∩M) (∃σ ∈ Σc) tσ ∈M∩K2, tσ /∈ K1 and (∀i ∈ Ic (σ)) (∃ti ∈ K1∩K2∩M)

Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M .
⇒ (∃t ∈ K1∩K2∩M) (∃σ ∈ Σc) tσ ∈M∩K2, tσ /∈ K1 and (∀i ∈ Ic (σ)) (∃ti ∈ K1∩K2∩M)

Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M , as K2 is prefix-closed.
⇒ (∃t ∈ K1 ∩ K2 ∩ M) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 ∩ K2 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M .
⇒ (∃t ∈ K ∩M) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K and (∀i ∈ Ic (σ)) (∃ti ∈ K ∩M)

Pi(t) = Pi(ti), tiσ ∈ K ∩M , as K = K1 ∩K2 = K1 ∩K2, since K1 and K2 are prefix-closed.
⇒ (∃t ∈ K∩M) (∃σ ∈ Σc) tσ ∈M , tσ /∈ K and (∀i ∈ Ic (σ)) (∃ti ∈ K∩M), Pi(t) = Pi(ti),

tiσ ∈ K ∩M , as M ∩K2 ⊆M .
⇒ (∃t ∈ K ∩M) (∃σ ∈ Σc) tσ ∈ M\K and (∀i ∈ Ic (σ)) (∃ti ∈ K ∩M) Pi(t) = Pi(ti),

tiσ ∈ K ∩M .
⇒ (∃t ∈ K ∩M) (∃σ ∈ Σc) tσ ∈M\K and (∀i ∈ Ic (σ)) P−1

i [Pi(t)]σ ∩K ∩M 6= ∅.
We thus conclude that K is not co-observable w.r.t. M .

Proposition 3.7 is used for incremental verification to determine the failure of co-observability.
If we can show that K1 is not co-observable w.r.t. M ∩ K2, then we can conclude that
K = K1 ∩K2 is not co-observable w.r.t. M .

In the incremental verification of co-observability, we can use each proposition provided
in this paper independently, and we also can combine any of the above propositions to verify
co-observability in a very flexible way.

8

Algorithm 1 Incremental Coobservability Verification
1: input plants L = {L1, . . . , Lm},

specifications K = {K1, . . . ,Kr};
2: while K 6= ∅ do
3: Pick a Ki ∈ K;
4: Let K′ = {Ki}, L′ = ∅;
5: while K′ is not co-observable w.r.t. L′ do
6: Let C be a counter example showing that K′ is not co-observable w.r.t. L′;
7: Find a component Lj ∈ L \ L′ or Kh ∈ K \ K′ which does not accept C;
8: if there is no such a component then
9: stop “K = {K1, . . . ,Kr} is not co-observable w.r.t. L = {L1, . . . , Lm}, counter

example: C”;
10: else if the component found in line 7 is a plant then
11: Let L′ = L′ ∪ {Lj};
12: else
13: Let K′ = K′ ∪ {Kh};
14: end if
15: end while
16: Let K = K \ K′, L = L ∪ K′;
17: end while
18: stop “K = {K1, . . . ,Kr} is co-observable w.r.t. L = {L1, . . . , Lm}”;

4 Algorithm

In this section, we give an algorithm on how to do incremental verification of co-observability
guided by counter examples.

The plant is L = L1||...||Lm, and the specification is K = K1||...||Kr, all over the same
event set Σ. We want to verify whether K is co-observable w.r.t. L.

Algorithm 1 describes incremental verification of co-observability guided by counter exam-
ples. The general idea is:

(1) If each Ki, where i ∈ {1, ..., r}, is co-observable w.r.t. a component of L, then K is
co-observable w.r.t. L according to Propositions 3.2 and 3.3.

(2) IfK ′ =Ki1 ||...||Kia where {i1, ..., ia} ⊆ {1, ..., r} is co-observable w.r.t. L′ = Lj1 ||...||Ljb

where {j1, ..., jb} ⊆ {1, ...,m}, then K ′ is co-observable w.r.t. L, according to Proposition 3.1
and Corollary 3.1. This is a compensation used when some Ki in (1) is not co-observable
w.r.t. L.

(3) If Ki, where i ∈ {1, ..., r}, is co-observable w.r.t. a component of L, then Ki can be
treated as a plant to be synchronized with L, according to Propositions 3.5 and 3.6.

(4) If there is a counter example which shows that Ki is not co-observable w.r.t. L||K1||...||
Ki−1||Ki+1||...||Kr, then we can conclude that K is not co-observable w.r.t. L, according to
Proposition 3.7.

To understand the abstract description of Algorithm 1, we need to define the relationship
of the set of plants L = {L1, ..., Lm} and the language L = L1||...||Lm, and the set of specifi-
cations K = {K1, ...,Kr} and the language K = K1||...||Kr. The set L is represented as the
language L, and similarly the set K is represented as the language K.

We can define the meaning of line 5. When we say that K′ = {Ki1 , ...,Kia} is not co-

9

observable w.r.t. L′ = {Lj1 , ..., Ljb}, what we mean is that a component K ′ = Ki1 ||...||Kia

where {i1, ..., ia} ⊆ {1, ..., r} is co-observable w.r.t. a component system L′ = Lj1 ||...||Ljb

where {j1, ..., jb} ⊆ {1, ...,m}.
In practice, the plant and specification are all represented as DES: L = L1||...||Lm is

represented as L(G) = L(G1)||...||L(Gm), and the specification K = K1||...||Kr is represented
as L(S) = L(S1)||...||L(Sm).

Notice that on line 4, we assign L′ = ∅, which thus means that the corresponding language
L′ = Σ∗. We say that L′ = ∅ represent the language of the automaton for the empty set of
plants. We represent L′ = Σ∗ as the language for the automaton GΣ∗ defined over Σ, which
is an automaton with only an initial state at which every event in Σ is self-looped. We thus
have L(GΣ∗) = Σ∗. This means that for any auomaton G defined over Σ, G||GΣ∗ = G, and
thus L(G||GΣ∗) = L(G). In other words, we initially verify whether K ′ is co-observable w.r.t.
Σ∗.

On line 2, if K is initially empty then the specification K = Σ∗ will be co-observable w.r.t
L, which is trivially true. This is because K = Σ∗ is a superset of all languages over Σ and is
co-observable w.r.t. every language over Σ according to Proposition 3.4.

If K is not empty, then on line 3, one component Ki ∈ K = {K1, ...,Kr}, where i ∈
{1, ..., r}, will be picked to verify whether Ki is co-observable w.r.t. L. If each component
of Ki, where i ∈ {1, ..., r}, is co-observable w.r.t. L, then according to Propositions 3.2 or
3.3, K will be co-observable w.r.t. L. In fact, the following steps will use only one or some
components of L ={L1, ..., Lm}, because if Ki is co-observable w.r.t. some components of L,
then it will be co-observable w.r.t. L according to Proposition 3.1 and Corollary 3.1.

On line 6, a counter example C =(σ, t,t1, ..., tn) will be picked to show that K ′ is not
co-observable w.r.t. L′ according to Definition 2.2. If there are many counter examples, then
the shortest one will be selected. Some other heuristics can also be used to select counter
examples.

On line 7, a component Lj in L\L′ or Kh in K\K′ which does not accept C is selected
according to Definition 2.3 or Definiton 2.4, respectively.

Lines 8 and 9 demonstrate that if there is no such a component, then we know that every
other component accepts the counter example C. Thus we can give the counter example C
which shows that that K is not co-observable w.r.t. plant L by Proposition 3.7.

Lines 10 and 11 incrementally add a plant component Lj to L′ where j ∈ {1, ...,m}.
Lines 12 and 13 incrementally add a specification component Kh to K′ where h ∈ {1, ..., r}.
If the subsystem consisting of specifications K′ and plants L′ is found to be co-observable,

then line 16 removes the specifications K′ from K and adds them to L, so they are treated
as plants for the remainder of the algorithm, according to Proposition 3.5. The algorithm
terminates when the set K of specifications to be checked is empty in which case it asserts
co-observability on line 18.

5 Incremental Verification of Co-observability for the Sequence
Transmission Protocol

In this section, we demonstrate the incremental verification of co-observability for the sequence
transmission protocol which is a classical network protocol that occurs at the data link layer
of the ISO OSI Reference Model [8, 16].

10

5.1 The Sequence Transmission Problem

The sequence transmission problem is widely used in the literature of communication protocols
[9], most often referred to by the name of its most famous solution: the Alternating Bit
Protocol [2]. The Alternating Bit Protocol is one type of stop-and-wait protocols which are
discussed in detail in [16].

The sequence transmission problem can be stated in this way [9]: consider two agents,
called the sender and the receiver. The sender will transmit in steps an arbitrarily long
sequence of data messages to the receiver. The receiver must print out the sequence in the
correct order and without duplicates.

This problem clearly has a trivial solution if we assume that messages sent by the sender
can not be lost, corrupted, duplicated, or reordered. However, once we consider a faulty
communication medium, the problem becomes far more complicated.

One typical solution to the sequence transmission problem is the stop-and-wait protocol
[16], where the sender adds a sequence number as control bits to each data frame sent, and
the receiver returns a request number which serves as an acknowledgment. Since the input
sequence can be arbitrarily long, it is possible that the sequence number and the request
number can become arbitrarily large. Lynch [11] conjectured that at least two control bits
are required for any adequate scheme of this sort, and that only one control bit will never do.
Less than a year later, Bartlett et al [2] proved Lynch wrong by producing their well-known
solution using only one control bit, now called the Alternating Bit Protocol.

In the supervisory control framework, the sequence transmission problem is modeled in
[5, 13]. The sequence transmission protocol modeled in this paper is adapted from [13]. Here,
the physical requirements are: the sender and the receiver can only communicate via message
exchanges, communication is asynchronous, all messages are transmitted over a half-duplex
channel (i.e., bidirectional channel which may be used only in one direction at a time), the
channel may lose messages, the sender may append one control bit 0 or 1 to data messages,
and the receiver may transmit acknowledgements of one bit 0 or 1.

5.2 Protocol Model

The set Σ of all possible events is given by
Σ = {g, s0, s1, ra0 , ra1 , l, a0, a1, rs0 , rs1 , p}

where
g := get new data,
s0 := send data with control bit set to 0,
s1 := send data with control bit set to 1,
rs0 := receive data with control bit set to 0,
rs1 := receive data with control bit set to 1,
p := print data received,
a0 := acknowledge data with control bit set to 0,
a1 := acknowledge data with control bit set to 1,
ra0 := receive acknowledgement with control bit set to 0,
ra1 := receive acknowledgement with control bit set to 1,
l := contents of channel are lost.
In this model, Σc = {g, s0, s1, a0, a1, p}.

11

Figure 1 is the behavior of the plant component SENDER. The behavior of SENDER
is: SENDER gets new data and sends it; a loss causes it to re-send some data; receiving an
acknowledgement can cause it to re-send the same data or some new data; receiving some
acknowledgements can also cause it to get new data; then it repeats all the above actions.

Note that each automaton self-loops all events in Σ that are not shown in its diagram.

Figure 1: The plant component SENDER

Figure 2 is the behavior of the plant component RECEIVER. The behavior of RECEIVER
is: RECEIVER receives new data; prints it and acknowledges it; then it may continually
receive some data, and acknowledge it or print it followed by an acknowledgement; after that
the above actions are repeated.

Figure 2: The plant component RECEIVER

Figure 3 illustrates the behavior of the plant component CHANNEL, which is a buffer
with capacity one. The behavior of CHANNEL is: CHANNEL is either empty in state one, or
contains data s0, s1, a0, or a1 respectively in state two, three, four, or five. When CHANNEL
is full, it can only return to the empty state if the message in it is either received or the content
is lost.

Figure 3: The plant component CHANNEL

Figure 4 is the specification requirement SpecSNDR. The behavior of SpecSNDR is:
SpecSNDR gets new data and sends it with the control bit set to 0; detecting a loss or
receiving the acknowledgement with the control bit set to 1 causes it to re-send the same
data. Receiving the acknowledgement with the control bit set to 0 causes it to get new data,
and to send it with the control bit set to 1, followed by similar behavior of sending with a
control bit set to 0.

12

Figure 4: The Specification of SENDER

Figure 5 is the the specification requirement SpecRCVR. The behavior of SpecRCVR is:
SpecRCVR receives new data with control bit set to 0, prints it and acknowledges it with
control bit set to 0; then it may continually receive the same data and acknowledge it in the
same way, until it receives data with control bit set to 1. It then follows similar behavior as
when receiving data with control bit set to 0.

Figure 5: The Specification of RECEIVER

Figure 6 is the specification automaton SpecSEQ for the sequence transmission require-
ment. The behavior of SpecSEQ requires that the sequence printed out should equal the input
sequence. The language of SpecSEQ shows that g and p must alternate, which captures the
legal requirement of the sequence transmission problem.

Figure 6: The Specification of Sequence

There exist two decentralized controllers in this protocol: the controller on the sender
side, called controller one, and the controller on the receiver side, called controller two. Both
decentralized controllers have limited controllable and observable event subsets.

From the sender side, controller one can only observe the following events:
Σo,1:={g, s0, s1, ra0 , ra1 , l}.
Therefore, the events on the receiver side are unobservable for controller one. We assume

that there is a long enough timeout mechanism, which allows controller one to recognize that
a data frame has been lost. In practice, this can be done by setting a time-to-live limit in the
frame. After the time limit expires, if the required data is not received, then it disappears
from the channel and will never reach the other side.

13

The set of controllable events for controller one is, Σc,1 := {g, s0, s1}. Namely, controller
one can only control “get data” and “send data”, and cannot control “receive data”, “lose data”
and all the events on the receiver side.

From the receiver side, controller two can only observe the following events, Σo,2 :=
{a0, a1, rs0 , rs1 , p}. The set of controllable events for controller two is, Σc,2 := {a0, a1, p}.

The behavior of the whole plant system is represented by the synchronous product of
all the plant components G1=SENDER, G2=RECEIVER, and G3=CHANNEL. Therefore,
the whole plant system is G := G1||G2||G3. The language generated by plant system G is
L(G) := L(G1||G2||G3) = L(G1)||L(G2)||L(G3).

The languages of the specifications are: K1=L(SpecSNDR), K2=L(SpecRCVR), and
K3=L(SpecSEQ). Therefore the global specification K is represented by K := K1||K2||K3.

5.3 Verification for the Protocol

We need to verify whether the global specification K is co-observable w.r.t. L(G). According
to Propositions 3.2 and 3.3, if each component requirement K1, K2 and K3 is co-observable
w.r.t. L(G), then K is co-observable w.r.t. L(G). According to Proposition 3.1, it is enough
to only consider a subsystem L(G′) instead of the whole system L(G).

1. Verification for whether K1=L(SpecSNDR) is co-observable w.r.t. L(G).
Step 1.1, we start from the empty subset of G, i.e., we let G′ = GΣ∗ , and verify whether

K1 is co-observable w.r.t. L(GΣ∗) = Σ∗. Fortunately, by examining the strings in K1, we find
that K1 is co-observable w.r.t. Σ∗.

Thus we conclude that K1 is co-observable w.r.t. L(G) by Proposition 3.1 and Corollary
3.1.

2. Verification for whether K2=L(SpecRCVR) is co-observable w.r.t. L(G).
Step 2.1, we start from the empty subset of G, i.e., we let G′ = GΣ∗ , and verify whether

K2 is co-observable w.r.t. L(GΣ∗) = Σ∗. This is true.
Thus we conclude that K2 is co-observable w.r.t. L(G) by Proposition 3.1 and Corollary

3.1.
3. Verification for whether K3=L(SpecSEQ) is co-observable w.r.t. L(G).
Step 3.1, we start from the empty subset of G, i.e., we let G′ = GΣ∗ , and verify whether

K3 is co-observable w.r.t. L(GΣ∗) = Σ∗.
It is easy to find that K3 is not co-observable w.r.t. Σ∗. There is a very short counter

example t = ε ∈ K3 ∩ L(G′), σ = p ∈ Σc,2, tσ = p ∈ L(G′)\K3, t′ = g, P2(t) = P2(t′) = ε,
t′σ = gp ∈ K3 ∩ L(G′). Controller two cannot distinguish between tσ = p and t′σ = gp, thus
σ = p cannot be disabled. Since σ = p /∈ Σc,1, controller one cannot disable p either.

Step 3.2, check whether this counter example string tσ = p is accepted by all the other com-
ponents. It can be found that neither the plant subsystem RECEIVER nor the specification
automaton SpecRCVR accept this counter example. We select SpecRCVR. Since SpecRCVR
has already been verified to be co-observable in Step 2.1, we can thus add it to plants according
to Proposition 3.5. Then G′ = GΣ∗ becomes G′ = GΣ∗ ||SpecRCVR=SpecRCVR.

Step 3.3, verify whether K3 is co-observable w.r.t. L(G′)=L(SpecRCVR)=K2.
It is also easy to find that K3 is not co-observable w.r.t. L(G′)=L(SpecRCVR). Counter

example: t = g ∈ K3 ∩L(G′), σ = g ∈ Σc,1, tσ = gg ∈ L(G′)\K3, t′ = grs0p, P1(t) = P1(t′) =
g, t′σ = grs0pg ∈ K3 ∩ L(G′). For controller one, it cannot distinguish between tσ = gg and
t′σ = grs0pg, thus σ = g cannot be disabled. For controller two, σ = g /∈ Σc,2, hence σ = g
cannot be disabled either.

14

Step 3.4, check whether this counter example string tσ = gg is accepted by all the other
components. It can be found that both the plant subsystem SENDER and the specification
automaton SpecSNDR do not accept this counter example. We select SpecSNDR. Since
SpecSNDR has already been verified to be co-observable in Step 1.1, we can thus add it to
plants according to Proposition 3.5. ThenG′=SpecRCVR becomesG′=SpecRCVR||SpecSNDR.

Step 3.5, verify whether K3 is co-observable w.r.t. L(G′)=L(SpecRCVR||SpecSNDR)=
K2||K1.

It is also not hard to find that K3 is not co-observable w.r.t. L(G′)=L(SpecRCVR||
SpecSNDR). Counter example: t = gs0ra0 ∈ K3 ∩ L(G′), σ = g ∈ Σc,1, tσ = gs0ra0g ∈
L(G′)\K3, t′ = gs0rs0pa0ra0 , P1(t) = P1(t′) = gs0ra0 , t′σ = gs0rs0pa0ra0g ∈ K3 ∩ L(G′).
For controller one, it cannot distinguish between tσ = gs0ra0g and t′σ = gs0rs0pa0ra0g, thus
σ = g cannot be disabled. For controller two, σ = g /∈ Σc,2, hence σ = g cannot be disabled
either.

Step 3.6: check whether this counter example string tσ=gs0ra0g is accepted by all the other
components. It can be found that only the plant subsystem CHANNEL does not accept this
counter example. Thus G′=SpecRCVR||SpecSNDR becomes G′=SpecRCVR||SpecSNDR||
CHANNEL.

Step 3.7: verify whether K3 is co-observable w.r.t. L(G′)=L(SpecRCVR||SpecSNDR||
CHANNEL)=K2||K1||L(G3).

It can be found that K3 is co-observable w.r.t. L(G′)=K2||K1||L(G3).
Since K2 and K1 are both co-observable w.r.t. L(G), we thus conclude that K =

K1||K2||K3 is co-observable w.r.t. L(G) by Propositions 3.5 and 3.6.
In the above example, we verify each specification component individually, and we never

have to use more than a single plant component at a time. In addition, only one out of three
plant components needed to be considered. Further, the complete plant does not need to be
composed together.

6 Conclusion

In this paper, we introduce an approach called incremental verification of co-observability.
We present results that provide the technical foundation of the method. We then present our
algorithm and a classical communication example. This new approach allows decentralized
control to be applied to larger systems, as it allows co-observability to be verified using only
a portion of the system at a given time.

Future work will further demonstrate this approach using more examples, and develop
heuristics to determine how best to select the next component of the system to verify in our
incremental verification algorithm.

References

[1] G. Barrett and S. Lafortune. Decentralized supervisory control with communicating
controllers. Automatic Control, IEEE Transactions on, 45(9):1620–1638, 2000.

[2] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkinson. A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12(5):260–261, 1969.

15

[3] B. A. Brandin, R. Malik, and P. Malik. Incremental verification and synthesis of discrete-
event systems guided by counter examples. Control Systems Technology, IEEE Transac-
tions on, 12(3):387–401, 2004.

[4] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems (second edi-
tion). Springer, 2008.

[5] R. Cieslak, C. Desclaux, A. S. Fawaz, and P. Varaiya. Supervisory control of discrete-
event processes with partial observations. Automatic Control, IEEE Transactions on,
33(3):249–260, 1988.

[6] H. Flordal and R. Malik. Compositional verification in supervisory control. SIAM Journal
on Control and Optimization, 48(3):1914–1938, 2009.

[7] H. Flordal, R. Malik, M. Fabian, and K. Åkesson. Compositional synthesis of maximally
permissive supervisors using supervision equivalence. Discrete Event Dynamic Systems,
17(4):475–504, 2007.

[8] B. T. Hailpern. Verifying concurrent processes using temporal logic, volume 129. Springer,
1982.

[9] J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. Journal of the ACM (JACM),
39(3):449–478, 1992.

[10] F. Lin and W. M. Wonham. On observability of discrete-event systems. Info. Sci.,
44:173–198, 1988.

[11] W. C. Lynch. Reliable full-duplex file transmission over half duplex telephone lines.
Communications of the ACM, 11(6):407–410, 1968.

[12] P. N. Pena, J. E. Cury, and S. Lafortune. Testing modularity of local supervisors: An
approach based on abstractions. In Discrete Event Systems, 2006 8th International Work-
shop on, pages 107–112. IEEE, 2006.

[13] K. Rudie. Decentralized Control of Discrete-event Systems. PhD thesis, Department of
Electrical and Computer Engineering, University of Toronto, Toronto, Ont., 1992.

[14] K. Rudie and J. C. Willems. The computational complexity of decentralized discrete-
event control problems. Automatic Control, IEEE Transactions on, 40(7):1313–1319,
1995.

[15] K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized supervisory
control. Automatic Control, IEEE Transactions on, 37(11):1692–1708, 1992.

[16] A. S. Tanenbaum. Computer Networks (fourth edition). Englewood Cliffs, NJ: Prentice
Hall, 2003.

16

