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Introduction

◮ There are two main approaches for modelling and design of
feedback control systems.

◮ So far, we have considered only the frequency-domain
technique.

◮ This approach unfortunately can only be applied to
single-input, single-output, linear, time-invariant systems or
ones that can be approximated by one.

◮ The more modern, flexible approach is called the state space
representation (also called time-domain technique).

◮ This method can also be applied to nonlinear systems,
time-varying systems, as well as multiple-input, multiple
output systems.
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State Space Representation
◮ For t ≥ to and initial conditions x(to), the state space

representation of a system is:

ẋ = A x + B u state equations (1)

y = C x + D u output equations (2)

State equations: for an nth order system, this is a set of n
simultaneous, first-order differential equations with n
variables, that can be solved to determine the
system’s n state variables.

For a linear, time-invariant, second order system with a single input
v(t), the state equations could have the form:

dx1

dt
= a11x1 + a12x2 + b1v(t)

dx2

dt
= a21x1 + a22x2 + b2v(t)
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State Space Representation - II

ẋ = A x + B u state equations

y = C x + D u output equations

System variables: variables that respond to a system input, or
the system’s initial conditions.

Linearly independent: if no variables of a set can be written as a
linear combination of the other variables, then the set
of variables are said to be linearly independant.

State variables: smallest set of linearly independent system
variables such that the initial values of these variables
(at time to) plus any known forcing functions
completely determines the future values of all system
variables.

State vector: x = [x1, x2, . . . , xn] where x1, x2, . . . , xn are the
system’s n state variables.

c©2006-2012 R.J. Leduc 4



State Space Representation - III

ẋ = A x + B u state equations

y = C x + D u output equations

First derivatives: ẋ = d
dt

x = [dx1

dt
, dx2

dt
, . . . , dxn

dt
]

Output vector: y = [y1, y2, . . . , yp]

Input or control vector: u = [u1, u2, . . . , um]

System matrix: A

Input matrix: B

Output matrix: C

Feedforward matrix: D
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State Space Representation eg.
◮ Derive the state space representation for the system below:

◮ Using Kirchoff’s voltage law, we can write the loop equation:

L
di

dt
+ Ri +

1

C

∫

idt = v(t) (3)

◮ If we use i(t) = dq
dt

, we can see that the system is a second
order system:

L
d2q

dt2
+ R

dq

dt
+

1

C
q = v(t) (4)

◮ If we take our state variables to be
i(t) and q(t), we can convert
equation 4 into two first order
differential equations.

Figure 3.2
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State Space Representation eg. II
◮ We can take the first equation to be:

dq

dt
= i (5)

◮ We can get the second eqn by substituting
∫

idt = q into
equation 3 and solving for di

dt
gives:

di

dt
= −

1

LC
q −

R

L
i +

1

L
v(t) (6)

◮ As our output, we can take the voltage across the inductor,
vL(t).

◮ Using equation 6 and the relation
vL(t) = Ldi

dt
, we get:

vL(t) = −
1

C
q − Ri + v(t) (7)

Figure 3.2
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State Space Representation eg. III
◮ We thus have our state equations:

dq

dt
= i

di

dt
= −

1

LC
q −

R

L
i +

1

L
v(t)

which can be represented as ẋ = Ax + B u, where

ẋ =

[

dq/dt
di/dt

]

; A =

[

0 1
−1/LC −R/L

]

x =

[

q
i

]

; B =

[

0
1/L

]

; u = v(t)

◮ and our output equation vL(t) = − 1
C

q − Ri + v(t) which can
be represented as y = C x + Du, where

y = vL(t); C = [−1/C − R]; D = 1;

c©2006-2012 R.J. Leduc 8



Applying State Space Representation

◮ First step is to select the state vector.

◮ In choosing the state vector, one must make sure
1. The state variables are linearly independent.

2. A minimum number of state variables must be chosen that is
sufficient to completely describe the system.

The minimum number is the order of the differential equation
that describes the system.

This is equivalent to the order of the denominator of the
transfer function after cancelling any common factors in both
the numerator and denominator.

The number needed is usually equal to the number of
independent storage elements.
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Representing an Electrical Network eg.
◮ Find a state space representation for the network below with

output iR(t), the current through the resistor.

1. Label branch currents in network (iL, iR, iC).
2. Write derivative equations for all energy storing elements.

Select state variables to be the quantities that are
differentiated.

3. Rewrite the derivative equations in terms of the state
variables.

4. Solve for the output in terms of input and state variables.

5. Express in state space form.

Figure 3.5
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Representing a Translational Mechanical System eg.

◮ Find a state space representation for the system below, if the
output is x2(t).

◮ For mechanical systems, it is easier to use equations of
motions to derive state variables.

◮ For state variables, use the position and velocity of each
linearly independent point of motion.

◮ Use relations
d2x

dt2
=

dv

dt
, and v =

dx

dt
.

Figure 3.7
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Converting a Transfer Function to State Space

◮ So far, we have derived state space representations directly
from the physical system.

◮ We now examine how to derive a state space representation if
we are given a transfer function representation of a system.

◮ We will use the phase variable approach.

◮ Assume you are given a differential equation of the form
below, where y is the system’s output, and u is the system’s
input.

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = b0u (8)

◮ We choose y and its n− 1 derivatives as our n state variables.
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Converting a Transfer Function to State Space - II

◮ Thus for our state variables x1, . . . , xn, we get:

x1 = y, x2 =
dy

dt
, x3 =

d2y

dt2
, · · · , xn =

dn−1y

dtn−1
(9)

◮ Taking the derivatives of both sides of these equations gives:

ẋ1 =
dy

dt
, ẋ2 =

d2y

dt2
, ẋ3 =

d3y

dt3
, · · · , ẋn =

dny

dtn
(10)

◮ Substituting into equation 10 from equation 9, as well as

solving for ẋn =
dny

dtn
in equation 8 gives:

ẋ1 = x2, ẋ2 = x3, ẋ3 = x4, · · · , ẋn−1 = xn, (11)

ẋn = −aox1 − a1x2 · · · − an−1xn + b0u
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Converting a Transfer Function to State Space - III
◮ Putting the state equations in matrix form gives:

◮ Using that our ouput y(t) equals x1, gives:

dny

dtn
+ an−1

dn−1y

dtn−1
+ · · · + a1

dy

dt
+ a0y = b0u
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Transfer Function to State Space eg.
◮ Convert the transfer function below into a state space

representation.
◮ As numerator is not a constant, we need to first split the

transfer function into two cascading boxes, such that the first
has a constant numerator.

◮ We can now apply the phase variable approach to the first
box, with X1(s) as its output.

◮ To determine the system’s output equation, solve for C(s) in
terms of the state variables by evaluating output of second
block.
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Transfer Function to State Space eg. - I
◮ Figure shows the state space representation as a block

diagram by using integrator blocks.

Figure 3.12.

ẋ3 = −24x1 − 26x2 − 9x3 + r, y = 2x1 + 7x2 + x3
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Converting from State Space to a Transfer Function
◮ We now examine how to derive a transfer function if we are

given a state space representation of a system.
◮ We assume we are given the state and output equations below

ẋ = A x + B u state equations

y = C x + D u output equations

◮ We first note that

L{x(t)} = L

















x1(t)
...

xn(t)

















=







L{x1(t)}
...

L{xn(t)}







◮ Taking the Laplace transform of both sides, assuming zero
initial conditions gives:

sX(s) = A X(s) + B U(s) (12)

Y (s) = C X(s) + D U(s) (13)

c©2006-2012 R.J. Leduc 17



Converting from State Space ... - II
◮ Collecting X(s) terms in equation 12 gives:

(sI − A)X(s) = B U(s) (14)

where I is the identity matrix.
◮ Solving for X(s) gives:

X(s) = (sI − A)−1B U(s) (15)

◮ substituting into our output equation, gives:

Y (s) = C(sI − A)−1B U(s) + D U(s) (16)

= [C(sI − A)−1B + D]U(s) (17)

◮ If we have a single input, single output system, we get the
transfer function:

G(s) =
Y (s)

U(s)
= C(sI − A)−1B + D (18)
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Converting from State Space eg.

◮ Given the system below, find the transfer function Y (s)
U(s) .

ẋ =





0 1 0
0 0 1

−24 −26 −9



 x +





0
0
1



 u

y = [2 7 1]x
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Matrix Review - Cofactors

◮ Given the matrix below, we say the minor of entry aij ,
denoted by Mij , is the determinant of the matrix that remains
after row i and column j are deleted.





a11 a12 a13

a21 a22 a23

a31 a32 a33





◮ For example, M11 =

∣

∣

∣

∣

a22 a23

a32 a33

∣

∣

∣

∣

and M32 =

∣

∣

∣

∣

a11 a13

a21 a23

∣

∣

∣

∣

.

◮ We define the cofactor of entry aij , denoted Cij , to be the
number (−1)i+jMij .
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Matrix Review - Cofactor Expansion

A =





a11 a12 a13

a21 a22 a23

a31 a32 a33





Definition
The determinant of an n × n matrix A can be computed by
multiplying the entries in any row (or column) by their cofactors
and adding the resulting products. We thus have for 1 ≤ i ≤ n and
1 ≤ j ≤ n,
cofactor expansion along the jth column

det(A) = a1jC1j + a2jC2j + · · · + anjCnj

cofactor expansion along the ith row

det(A) = ai1Ci1 + ai2Ci2 + · · · + ainCin
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Matrix Review - Adjoints

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
an1 an2 · · · ann











Definition
If A is any n × n matrix and Cij is the cofactor for aij , then the
matrix of cofactors from A is











C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

...
Cn1 Cn2 · · · Cnn











The adjoint of A, denoted adj(A), is the transpose of the above
matrix.
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Matrix Review - Inverses

Definition
The inverse (if it exists) of a n × n matrix A, denoted A

−1, is the
matrix that makes the following equation true: AA

−1 = I

Theorem
If A is an invertible matrix, then

A
−1 =

adj(A)

det(A)
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Linearization and Case Studies

◮ Please read Section 3.7 (Linearization) on your own.
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