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Introduction

◮ The root locus technique shows graphically how the
closed-loop poles change as a system parameter is varied.

◮ Used to analyze and design systems for stability and transient
response.

◮ Shows graphically the effect of varying the gain on things like
percent overshoot, and settling time.

◮ Also shows graphically how stable a system is; shows ranges of
stability, instability, and when system will start oscillating.
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The Control System Problem
◮ The poles of the open-loop transfer function are typically easy

to find and do not depend on the gain, K.

◮ It is thus easy to determine stability and transient response for
an open-loop system.

◮ Let G(s) =
NG(s)

DG(s)
and H(s) =

NH(s)

DH(s)
.

Figure 8.1.
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The Control System Problem - II
◮ Our closed transfer function is thus

T (s) =

K
NG(s)

DG(s)

1 + K
NG(s)

DG(s)

NH(s)

DH(s)

(1)

=
KNG(s)DH(s)

DG(s)DH(s) + KNG(s)NH(s)
(2)

◮ We thus see that we have to factor the denominator of T (s)
to find the closed-loop poles, and they will be a function of K.

Figure 8.1(b).
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The Control System Problem - III

◮ For example, if G(s) =
s + 1

s(s + 2)
and H(s) =

s + 3

s + 4
, our

closed-loop transfer function is:

T (s) =
K(s + 1)(s + 4)

s(s + 2)(s + 4) + K(s + 1)(s + 3)
(3)

=
K(s + 1)(s + 4)

s3 + (6 + K)s2 + (8 + 4K)s + 3K
(4)

◮ To find the poles, we would have to factor the polynomial for
a specific value of K.

◮ The root-locus will give us a picture of how the poles will vary
with K.

c©2006-2012 R.J. Leduc 5



Vector Representation of Complex Numbers
◮ Any complex number, σ + jω, can be represented as a vector.
◮ It can be represented in polar form with magnitude M , and an

angle θ, as M∠θ.
◮ If F (s) is a complex function, setting s = σ + jω produces a

complex number. For F (s) = (s + a), we would get
(σ + a) + jω .

Figure 8.2.
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Vector Representation of Complex Numbers - II
◮ If we note that function F (s) = (s + a) has a zero at s = −a,

we can alternately represent F (σ + jω) as originating at
s = −a, and terminating at σ + jω.

◮ To multiply and divide the polar form complex numbers,
z1 = M1∠θ1 and z2 = M2∠θ2, we get

z1z2 = M1M2∠(θ1 + θ2)
z1

z2
=

M1

M2
∠(θ1 − θ2) (5)
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Polar Form and Transfer Functions

◮ For a transfer function, we have:

G(s) =
(s + z1) · · · (s + zm)

(s + p1) · · · (s + pn)
=

∏m
i=1(s + zi)

∏n
i=1(s + pi)

= MG∠θG

(6)

where

MG =

∏m
i=1 |(s + zi)|

∏n
i=1 |(s + pi)|

=

∏m
i=1 Mzi

∏n
i=1 Mpi

(7)

and

θG = Σzero angles − Σpole angles (8)

= Σm
i=1∠(s + zi) − Σn

j=1∠(s + pj) (9)
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Polar Form and Transfer Functions eg.

◮ Use Equation 6 to evaluate F (s) =
(s + 1)

s(s + 2)
at s = −3 + j4.

Figure 8.3.
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Root Locus Introduction
◮ System below can automatically track subject wearing infrared

sensors.

◮ Solving for the poles using the
quadratic equation, we can create
the table below for different values
of K.

Table 8.1.
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Root Locus Introduction - II

◮ We can plot the poles from Table 8.1. labelled by their
corresponding gain.

Table 8.1.

Figure: 8.5
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Root Locus Introduction - III
◮ We can go a step further, and replace the individual poles

with their paths.
◮ We refer to this graphical representation of the path of the

poles as we vary the gain, as the root locus.
◮ We will focus our discussion on K ≥ 0.
◮ For pole σD + jωD, Ts = 4

σD
, Tp = π

ωD
, and ζ = |σD|

ωn
.
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Root Locus Properties
◮ For second-order systems, we can easily factor a system and

draw the root locus.

◮ We do not want to have to factor for higher-order systems
(5th, 10th etc.) for multiple values of K!

◮ We will develop properties of the root locus that will allow us
to rapidly sketch the root locus of higher-order systems.

◮ Consider the closed-loop transfer function below:

T (s) =
KG(s)

1 + KG(s)H(s)

◮ A pole exists when

KG(s)H(s) = −1 = 1∠(2k + 1)180o k = 0,±1,±2, . . .
(10)
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Root Locus Properties - II

◮ Equation 10 is equivalent to

|KG(s)H(s)| = 1 (11)

and

∠KG(s)H(s) = (2k + 1)180o (12)

◮ Equation 12 says that any s′ that makes the angle of
KG(s)H(s) be an odd multiple of 180o is a pole for some
value of K.

◮ Given s′ above, the value of K that s′ is a pole of T (s) for is
found from Equation 11 as follows:

K =
1

|G(s)||H(s)| (13)
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Root Locus Properties eg.

◮ For system below, consider s = −2 + j3 and
s = −2 + j(

√
2/2).

Figures 8.6 and 8.7.
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Sketching Root Locus
◮ Now give a set of rules so that we can quickly sketch a root

locus, and then we can calculate exactly just those points of
particular interest.

1. Number of branches: a branch is the path a single pole
traverses. The number of branches thus equals the number of
poles.

2. Symmetry: As complex poles occur in conjugate pairs, a root
locus must be symmetric about the real axis.

Figure 8.5.
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Sketching Root Locus - II
3. Real-axis segments: For K > 0, the root locus only exists

on the real axis to the left of an odd number of finite
open-loop poles and/or zeros, that are also on the real axis.

Why? By Equation 12, the angles must add up to an odd
multiple of 180.

◮ A complex conjugate pair of open-loop zeros or poles will
contribute zero to this angle.

◮ An open-loop pole or zero on the real axis, but to the left of
the respective point, contributes zero to the angle.

◮ The number must be odd, so they add to an odd multiple of
180, not an even one.

Figure 8.8.
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Sketching Root Locus - III

4. Starting and ending points: The root locus begins at the
finite and infinite poles of G(s)H(s) and ends at the finite
and infinite zeros of G(s)H(s).

Why? Consider the transfer function below

T (s) =
KNG(s)DH(s)

DG(s)DH(s) + KNG(s)NH(s)

◮ The root locus begins at zero gain, thus for small K, our
denominator is

DG(s)DH(s) + ǫ (14)

◮ The root locus ends as K approaches infinity, thus our
denominator becomes

ǫ + KNG(s)NH(s)
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Infinite Poles and Zeros
◮ Consider the open-loop transfer function below

KG(s)H(s) =
K

s(s + 1)(s + 2)
(15)

◮ From point 4, we would expect our three poles to terminate
at three zeros, but there are no finite zeros.

◮ A function can have an infinite zero if the function approaches
zero as s approaches infinity. ie. G(s) = 1

s .
◮ A function can have an infinite pole if the function approaches

infinity as s approaches infinity. ie. G(s) = s.
◮ When we include infinite poles and zeros, every function has

an equal number of poles and zeros

lim
s→∞

KG(s)H(s) = lim
s→∞

K

s(s + 1)(s + 2)
≈ K

s · s · s (16)

How do we locate where these zeros at infinity are so we can
terminate our root locus?
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Sketching Root Locus - IV

5. Behavior at Infinity: As the locus approaches infinity, it
approaches straight lines as asymptotes.

The asymptotes intersect the real-axis at σa, and depart at
angles θa, as follows:

σa =
Σfinite poles − Σfinite zeros

#finite poles − #finite zeros
(17)

θa =
(2k + 1)π

#finite poles − #finite zeros
(18)

where k = 0,±1,±2,±3, and the angle is in radians relative
to the positive real axis.
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Sketching Root Locus eg. 1

◮ Sketch the root locus for system below.

Figure 8.11.
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Real-axis Breakaway and Break-in Points
◮ Consider root locus below.

◮ We want to be able to calculate at what points on the real
axis does the locus leave the real-axis (breakaway point), and
at what point we return to the real-axis (break-in point).

◮ At breakaway/break-in points, the branches form an angle of
180o/n with the real axis where n is number of poles
converging on the point.

Figure 8.13.c©2006-2012 R.J. Leduc 22



Real-axis Breakaway and Break-in Points - II
◮ Breakaway points occur at maximums in the gain for that part

of the real-axis.

◮ Break-in points occur at minimums in the gain for that part of
the real-axis.

◮ We can thus determine the breakaway and break-in points by
setting s = σ, and setting the derivative of equation below
equal to zero:

K =
−1

G(σ)H(σ)
(19)
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The jω-Axis Crossings
◮ For systems like the one below, finding the jω-axis crossing is

important as it is the value of the gain where the system goes
from stable to unstable.

◮ Can use the Routh-Hurwitz criteria to find crossing:
1. Force a row of zeros to get gain
2. Determine polynomial for row above to get ω, the frequency of

oscillation.

Figure 8.12.
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The jω-Axis Crossing eg.
◮ For system below, find the frequency and gain for which the

system crosses the jω-axis.

Figures 8.11 and 8.12.
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Angles of Departure and Arrival
◮ We can refine our sketch by determining at which angles we

depart from complex poles, and arrive at complex zeros.
◮ Net angle from all open-loop poles and zeros to a point on

root access must satisfy:

Σzero angles − Σpole angles = (2k + 1)180o (20)

◮ To find angle θ1, we choose a point ǫ on root locus near
complex pole, and assume all angles except θ1 are to the
complex pole instead of ǫ. Can then use Equation 20 to solve
for θ1.

Figure 8.15.c©2006-2012 R.J. Leduc 26



Angles of Departure and Arrival - II
◮ For example in Figure 8.15a, we can solve for θ1 in equation

below:

θ2 + θ3 + θ6 − (θ1 + θ4 + θ5) = (2k + 1)180o (21)

◮ Similar approach can be used to find angle of arrival of
complex zero in figure below.

◮ Simply solve for θ2 in Equation 21.

Figure 8.15.c©2006-2012 R.J. Leduc 27



Angles of Departure and Arrival eg.
◮ Find angle of departure for complex poles, and sketch root

locus.

Figures 8.16 and 8.17.
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Plotting and Calibrating Root Locus
◮ Once sketched, we may wish to accurately locate certain

points and their associated gain.

◮ For example, we may wish to determine the exact point the
locus crosses the 0.45 damping ratio line in figure below.

◮ From Figure 4.17, we see that cos(θ) =
adj

hyp
=

ζωn

ωn
= ζ.

◮ We then use computer program to try sample radiuses,
calculate the value of s at that point, and then test if point
satisfies angle requirement.

Figures 4.17 and 8.18.c©2006-2012 R.J. Leduc 29



Plotting and Calibrating Root Locus - II
◮ Once we have found our point we can use the equation below

to solve for the required gain, K.

K =
1

|G(s)||H(s)| =

∏m
i=1 Mpi

∏n
i=1 Mzi

(22)

◮ Uses labels in Figure 8.18, we would have for our example:

K =
ACDE

B
(23)

Figures 4.17 and 8.18.
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Transient Response Design via Gain Adjustment
◮ We want to be able to apply our transient response

parameters and equations for second-order underdamped
systems to our root locuses.

◮ These are only accurate for second-order systems with no
finite zeros, or systems that can be approximated by them.

◮ In order that we can approximate higher-order systems as
second-order systems, the higher-order closed-loop poles must
be more than five times farther to the left than the two
dominant poles.

◮ In order to approximate systems with zeros, the following
must be true:

1. The closed-loop zeros near the two dominant closed-loop poles
must be nearly canceled by higher-order poles near them.

2. Closed-loop zeros not cancelled, must be far away from the
two dominant closed-loop poles.
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Transient Response Design via Gain Adjustment - II

◮ Let G(s) =
NG(s)

DG(s)
and H(s) =

NH(s)

DH(s)
.

◮ We saw earlier, that our closed-loop transfer equals:

T (s) =
KNG(s)DH(s)

DG(s)DH(s) + KNG(s)NH(s)
(24)

Figure 8.20.
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Defining Parameters on Root Locus
◮ We have already seen that as ζ = cos θ, vectors from the

origin are lines of constant damping ratio.

◮ As percent overshoot is solely a function of ζ, these lines are
also lines of constant %OS.

◮ From diagram we can see that the real part of a pole is
σd = ζωn, and the imaginary part is ωd = ωn

√

1 − ζ2.

◮ As Ts =
4

ζωn
=

4

σd
, vertical lines have constant values of Ts.

Figure 4.17.
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Defining Parameters on Root Locus - II

◮ As Tp =
π

ωn

√

1 − ζ2
=

π

ωd
, horizontal lines thus have

constant peak time.

◮ We thus choose a line with the desired property, and test to
find where it intersects our root locus.

Figure 4.17.
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Design Procedure For Higher-order Systems

1. Sketch root locus for system.

2. Assume system has no zeros and is second-order. Find gain
that gives desired transient response.

3. Check that systems satisfies criteria to justify our
approximation.

4. Simulate system to make sure transient response is acceptable.
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Third-order System Gain Design eg.
◮ For system below, design the value of gain, K, that will give

1.52% overshoot. Also estimate the settling time, peak time,
and steady-state error.

◮ First step is to sketch the root locus below.

◮ We next assume system can be approximated by second-order

system, and solve for ζ using ζ = − ln(%OS/100)
q

π2+ln2(%OS/100)
.

Figures 8.21 and 8.22.c©2006-2012 R.J. Leduc 36



Third-order System Gain Design eg. - II
◮ This gives ζ = 0.8. Our angle is thus θ = cos−1(0.8)

= 36.87o.
◮ We then use root locus to search values along this line to see

if they satisfy the angle requirement.
◮ The program finds three conjugate pairs on the locus and our

ζ = 0.8 line. They are −0.87 ± j0.66, −1.19 ± j0.90,
−4.6 ± j3.45 with respective gains of K = 7.36, 12.79, and
39.64.

◮ We will use Tp =
π

ωd
, and Ts =

4

σd
.

Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - III
◮ For steady-state error, we have:

Kv = lim
s→0

sG(s) = lim
s→0

s
K(s + 1.5)

s(s + 1)(s + 10)
=

K(1.5)

(1)(10)
(25)

◮ To test to see if our approximation of a second-order system is
valid, we calculate the location of the third pole for each value
of K we found.

◮ The table below shows the results of our calculations.

Table 8.4.
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Third-order System Gain Design eg. - IV

◮ We now simulate to see how good our result is:

Figure 8.23.
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