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Introduction

» The root locus technique shows graphically how the
closed-loop poles change as a system parameter is varied.

» Used to analyze and design systems for stability and transient
response.

» Shows graphically the effect of varying the gain on things like
percent overshoot, and settling time.

» Also shows graphically how stable a system is; shows ranges of
stability, instability, and when system will start oscillating.
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The Control System Problem
» The poles of the open-loop transfer function are typically easy
to find and do not depend on the gain, K.

> |t is thus easy to determine stability and transient response for
an open-loop system.

> Let G(s) = gzgz; and H(s) =
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Figure 8.1.
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The Control System Problem - |l
» Our closed transfer function is thus
Ng(s)

D¢ (s)
No(s) Na ) )

Dc(s) Du(s)

T(s) =
1+ K

B KNg(s)Dg(s)
= ()
Dc(s)Dr(s) + KNg(s) N (s)
» We thus see that we have to factor the denominator of 7'(s)
to find the closed-loop poles, and they will be a function of K.

R(s) KG(s) C(s)
1+ KG(s)H(s)

Figure 8.1(b).
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The Control System Problem - Il

s+1 s+3
d H(s) = ,
s(s+2) and H{(s) sra o

closed-loop transfer function is:

» For example, if G(s) =

B K(s+1)(s+4)
T(s) = s(s+2)(s+4) +K(s+1)(s+3) 3

_ K(s+1)(s+4) ()
s34+ (64 K)s? + (8 4+ 4K)s + 3K

» To find the poles, we would have to factor the polynomial for
a specific value of K.

» The root-locus will give us a picture of how the poles will vary
with K.
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Vector Representation of Complex Numbers

» Any complex number, ¢ + jw, can be represented as a vector.

» |t can be represented in polar form with magnitude M, and an
angle 6, as M /0.

» If F(s) is a complex function, setting s = o + jw produces a
complex number. For F(s) = (s + a), we would get

(c+a)+jw.
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Figure 8.2.
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Vector Representation of Complex Numbers - |l
» If we note that function F'(s) = (s + a) has a zero at s = —q,
we can alternately represent F'(o + jw) as originating at

§ = —a, and terminating at o + jw.
» To multiply and divide the polar form complex numbers,

z1 = M1Z61 and zo = M5 /65, we get

z M
2172 = MlMQZ(Ql + (92) ;; = ﬁié(el — (92) (5)

jo

L
ota

(d)
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Polar Form and Transfer Functions

» For a transfer function, we have:

(s4+z1) - (s+zm) Tl (s+2)
G(s) = = == = M¢gZ0
O = rp) o p) M rp) 0%
(6)
where
IL% (s +2)  T[E M,
Mg = =% = =n : (7)
[T (s +pi)l [[i2, My,
and
0c = Xzero angles — Ypole angles (8)
= X% Z(s + 2i) — X1 4(s + pj) (9)
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Polar Form and Transfer Functions eg.

. s+1 ,
» Use Equation 6 to evaluate F'(s) = (s+1) at s = -3 + j4.
s(s+2)
jo
4 j4
/3 s-plane
© 42
(s+1)
(s+2) 11
I & o
-3 -2 -1 0

Figure 8.3.
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Root Locus Introduction

» System below can automatically track subject wearing infrared
Sensors.

» Solving for the poles using the
quadratic equation, we can create
the table below for different values

of K.
Table 8.1.

K Pole 1 Pole 2 s Motor Camera
position  Sensors  Amplifier camera position

0 -10 0 LR~ @

5 —9.47 —0.53

10 —8.87 -1.13

15 —8.16 —1.84 ®

20 —7.24 —2.76

25 =5 -

30 —5+,2.24 —5—j2.24 Re) _X <0

35 -5+3.16 -5-3.16 4105 4K

40 =5 +,3.87 -5-,3.87 where K = KK,

45 —5+ 447 —5-5j447 ©

50 —5475 -5-75
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Root Locus Introduction - |l

» We can plot the poles from Table 8.1. labelled by their

corresponding gain.

Table 8.1.
K Pole 1 Pole 2
0 -10 0
5 -9.47 —0.53
10 —8.87 -1.13
15 -8.16 —1.84
20 -7.24 =276
25 -5 -5
30 -5+ j2.24 —5—j2.24
35 -5+j3.16 -5-j3.16
40 -5+ j3.87 -5—-j3.87
45 =5+ j4.47 -5 —j4.47
50 =5+/5 -5-j5
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Root Locus Introduction - |11

» We can go a step further, and replace the individual poles
with their paths.

» We refer to this graphical representation of the path of the
poles as we vary the gain, as the root locus.

» We will focus our discussion on K > 0.

. 4 s lopl
» For p0|e oD +jCUD, TS_E' TP_E’ and C— on
jo Jjo
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Root Locus Properties
» For second-order systems, we can easily factor a system and

draw the root locus.

» We do not want to have to factor for higher-order systems
(5th, 10th etc.) for multiple values of K!

» We will develop properties of the root locus that will allow us
to rapidly sketch the root locus of higher-order systems.

» Consider the closed-loop transfer function below:
KG
1+ KG(s)H(s)
» A pole exists when

KG(s)H(s) = —1 = 1/(2k +1)180°  k=0,£1,+2,...
(10)
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Root Locus Properties - Il

» Equation 10 is equivalent to
[KG(s)H(s)] =1 (11)
and
LKG(s)H(s) = (2k + 1)180° (12)

» Equation 12 says that any s’ that makes the angle of
KG(s)H(s) be an odd multiple of 180° is a pole for some
value of K.

» Given s’ above, the value of K that s’ is a pole of T'(s) for is
found from Equation 11 as follows:

1
K= a@naEs) (13)
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Root Locus Properties eg.

» For system below, consider s = —2 + 33 and

s = —2+5(v2/2).

s-plane

C(s)

R(s)+8 K(s+3)(s+4)
(s+1)(s+2)
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Figures 8.6 and 8.7.
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Sketching Root Locus

» Now give a set of rules so that we can quickly sketch a root
locus, and then we can calculate exactly just those points of
particular interest.

1. Number of branches: a branch is the path a single pole
traverses. The number of branches thus equals the number of
poles.

2. Symmetry: As complex poles occur in conjugate pairs, a root
locus must be symmetric about the real axis.

Jjo

s-plane 40 174
1

452

1/
K=0 510 15 20 25 2015 105 [0-K
g 2 0P I 5
10 -9 8 7 -6 -5 —4 -3 2 -1 |0
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Sketching Root Locus - Il

3. Real-axis segments: For K > 0, the root locus only exists
on the real axis to the left of an odd number of finite
open-loop poles and/or zeros, that are also on the real axis.

Why? By Equation 12, the angles must add up to an odd
multiple of 180.
» A complex conjugate pair of open-loop zeros or poles will
contribute zero to this angle.
> An open-loop pole or zero on the real axis, but to the left of
the respective point, contributes zero to the angle.
» The number must be odd, so they add to an odd multiple of
180, not an even one.

Figure 8.8.
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Sketching Root Locus - Il

4. Starting and ending points: The root locus begins at the
finite and infinite poles of G(s)H (s) and ends at the finite
and infinite zeros of G(s)H (s).

Why? Consider the transfer function below

KNg(S)DH(S)

T(s) = D¢ (s)Dy(s) + KNg(s)Ng(s)

» The root locus begins at zero gain, thus for small K, our
denominator is

De(s)Dp(s) +e€ (14)

» The root locus ends as K approaches infinity, thus our
denominator becomes

€+ KNg(S)NH(S)
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Infinite Poles and Zeros

» Consider the open-loop transfer function below
K
s(s+1)(s+2)

» From point 4, we would expect our three poles to terminate
at three zeros, but there are no finite zeros.

» A function can have an infinite zero if the function approaches
zero as s approaches infinity. ie. G(s) = %

» A function can have an infinite pole if the function approaches
infinity as s approaches infinity. ie. G(s) = s.

» When we include infinite poles and zeros, every function has
an equal number of poles and zeros

. . K K
slggo KG(s)H(s) = slggo s(s+1)(s+2) s-5-5 (16)

KG(s)H(s) = (15)

How do we locate where these zeros at infinity are so we can
terminate our root locus?
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Sketching Root Locus - IV

5. Behavior at Infinity: As the locus approaches infinity, it
approaches straight lines as asymptotes.

The asymptotes intersect the real-axis at o, and depart at
angles 0, as follows:

_ Xfinite poles — Xfinite zeros

Ta = #finite poles — #finite zeros
B (2k+ 1)

“ " 4Hfinite poles — #finite zeros

(17)

(18)

where k = 0,£1,£2, 43, and the angle is in radians relative
to the positive real axis.

(©2006-2012 R.J. Leduc
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Sketching Root Locus eg. 1

» Sketch the root locus for system below.

R(s) + K(s +3) C(s)
A S5+ Dls +2)(s +4)

Figure 8.11.

(©2006-2012 R.J. Leduc 21



Real-axis Breakaway and Break-in Points

» Consider root locus below.

» We want to be able to calculate at what points on the real
axis does the locus leave the real-axis (breakaway point), and
at what point we return to the real-axis (break-in point).

» At breakaway/break-in points, the branches form an angle of
180°/n with the real axis where n is number of poles
converging on the point.

(©2006-2012 R.J. Leduc Figure 8.13.
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Real-axis Breakaway and Break-in Points - Il

» Breakaway points occur at maximums in the gain for that part
of the real-axis.

» Break-in points occur at minimums in the gain for that part of
the real-axis.

» We can thus determine the breakaway and break-in points by
setting s = o, and setting the derivative of equation below
equal to zero:

K=— " (19)

(©2006-2012 R.J. Leduc ? Figure 8.13.



The jw-Axis Crossings

» For systems like the one below, finding the jw-axis crossing is

important as it is the value of the gain where the system goes
from stable to unstable.

» Can use the Routh-Hurwitz criteria to find crossing:
1. Force a row of zeros to get gain

2. Determine polynomial for row above to get w, the frequency of
oscillation.

jo
453

s-plane
Asymptote /|

Asymptote

L
4 3 2 1 0 1

Asymptote \ |

Figure 8.12.
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The jw-Axis Crossing eg.

» For system below, find the frequency and gain for which the
system crosses the jw-axis.

jo
/3
s-plane
Asymptote /| 2
t
’jl
s Ks+3) ) Asymptote
~ S(s+1)(s+2)(s +4) . . . ) .
-4 -3 -2 1 0 1 2
41
N 2
Asymptote ES
13

Figures 8.11 and 8.12.
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Angles of Departure and Arrival

» We can refine our sketch by determining at which angles we
depart from complex poles, and arrive at complex zeros.

» Net angle from all open-loop poles and zeros to a point on
root access must satisfy:

Y.zero angles — Ypole angles = (2k + 1)180° (20)

» To find angle 81, we choose a point € on root locus near
complex pole, and assume all angles except 61 are to the
complex pole instead of e. Can then use Equation 20 to solve
for 91.

o

6+ 60+ 05 — 0= 05+ 0= (2k+ 1)180°

(©2006-2012 R.J. Leduc Figure 8.15. 26




Angles of Departure and Arrival - 1l

» For example in Figure 8.15a, we can solve for 6 in equation
below:

fo + 03 + 0 — (91 + 04+ 95) = (2]45 + 1)1800 (21)

» Similar approach can be used to find angle of arrival of
complex zero in figure below.

» Simply solve for 65 in Equation 21.

—0,+0,+ 0y — 0, O+ 0= (2k+ 1)180°

(©2006-2012 R.J. Leduc Figure 8.15. 27



Angles of Departure and Arrival eg.

» Find angle of departure for complex poles, and sketch root

locus.

K(s+2)

C(s)

R(s) + %

(s+3)(s2+25+2)

(©2006-2012 R.J. Leduc

Figures 8.16 and 8.17.
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Plotting and Calibrating Root Locus

» Once sketched, we may wish to accurately locate certain
points and their associated gain.

» For example, we may wish to determine the exact point the
locus crosses the 0.45 damping ratio line in figure below.

. adj w
» From Figure 4.17, we see that cos(f) = 2dj _ Cwn _ C.
hyp  wn
» We then use computer program to try sample radiuses,
calculate the value of s at that point, and then test if point

satisfies angle requirement.

o V1- 2 =jo, Radius
o s-plane " | (degrees)

—~158.4
—180.0
-199.9
-230.4
-251.5

—jo,V1- 2 =jo,

(©2006-2012 R.J. Leduc Figures 4.17 and 8.18. 29



Plotting and Calibrating Root Locus - Il

» Once we have found our point we can use the equation below
to solve for the required gain, K.

m
K = ! = H:'fl Mo, (22)
IG)IH(s)| TTizy M,
» Uses labels in Figure 8.18, we would have for our example:
ACDE
== (23)
jo
o F oV - 82 =jog Radius | 7 Y
i Dn s-plane " (degrees) j2
} _ 6 o 8:347 s-planc
Ton=o o
| 15 Jt
| 20
D b —o,V1-=—jo,
b5
o

-4 -3 2 -1 0

Figures 4.17 and 8.18.
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Transient Response Design via Gain Adjustment

» We want to be able to apply our transient response
parameters and equations for second-order underdamped
systems to our root locuses.

» These are only accurate for second-order systems with no
finite zeros, or systems that can be approximated by them.

» In order that we can approximate higher-order systems as
second-order systems, the higher-order closed-loop poles must
be more than five times farther to the left than the two
dominant poles.

» In order to approximate systems with zeros, the following
must be true:
1. The closed-loop zeros near the two dominant closed-loop poles
must be nearly canceled by higher-order poles near them.
2. Closed-loop zeros not cancelled, must be far away from the
two dominant closed-loop poles.

(©2006-2012 R.J. Leduc
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Transient Response Design via Gain Adjustment - |l
> Let G(s) = Na(s) and H(s) = Ni(s)

Dq(s) ~ Dpl(s)’
» We saw earlier, that our closed-loop transfer equals:
KN, D
T(s) = c(s)Du(s) (24)
Dg(S)DH(S) + KNg(S)NH(S)
s-plane ” ‘ | s-plane L
A £
r3 P P3 N
X Open-loop pole
(@) (b)

X Closed-loop pole

s-plane O Closed-loop zero

()

Figure 8.20.
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Defining Parameters on Root Locus

» We have already seen that as { = cos @, vectors from the
origin are lines of constant damping ratio.

» As percent overshoot is solely a function of (, these lines are
also lines of constant %0S.

» From diagram we can see that the real part of a pole is
04 = Cwp, and the imaginary part is wy = wp/1 — (2.

4 4 . .
» As T, = —— = —, vertical lines have constant values of T%.
Cwn 0d
jo
HoV1- ¢ =jo,
Dy s-planc
il o
fw, =0y
—joV1- 2=—jo,

Figure 4.17.
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Defining Parameters on Root Locus - |l

> AT, = ——

constant peak time.

w1 — (2 -

T ) .
—, horizontal lines thus have
wd

» We thus choose a line with the desired property, and test to
find where it intersects our root locus.

jo

o,

%)

HjoV1- ¢ =joy

s-plane

~w,=—0y
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Figure 4.17.
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Design Procedure For Higher-order Systems

1. Sketch root locus for system.

2. Assume system has no zeros and is second-order. Find gain
that gives desired transient response.

3. Check that systems satisfies criteria to justify our
approximation.

4. Simulate system to make sure transient response is acceptable.
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Third-order System Gain Design eg.

» For system below, design the value of gain, K, that will give
1.52% overshoot. Also estimate the settling time, peak time,
and steady-state error.

» First step is to sketch the root locus below.

» We next assume system can be approximated by second-order
0
system, and solve for ¢ using ¢ = —In(%05/100)
\/72+1n2(%0S/100)

jo

£=08

4.6+ /345, K= 39.64 45
s-plane

4

1.19 +j0.90, K= 12.79
~0.87 +0.66, K = 7.36

K(s +1.5)
s(s+ (s + 10)

M L L L L L L L L o
10 9 8 7 6 5 4 3 1.5 -1 0

1
X = Closed-loop pole

X = Open-loop pole 42
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Third-order System Gain Design eg. - Il

» This gives ¢ = 0.8. Our angle is thus § = cos~1(0.8)
= 36.87°.

» We then use root locus to search values along this line to see
if they satisfy the angle requirement.

» The program finds three conjugate pairs on the locus and our
¢ = 0.8 line. They are —0.87 + 50.66, —1.19 &£ 50.90,
—4.6 4 53.45 with respective gains of K = 7.36,12.79, and

. ™ 4
» We will use T}, = —, and Ty = —.
Wq o4
=08
/4
464345, K=39.64 145
s-plane
1.19 + j0.90, K = 12.79
0.87 + j0.66, K =7.36
qu7<‘54xUn
X = Closed-loop pole
X = Open-loop pole -2

Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - Il
» For steady-state error, we have:

, i K(s+1.5) K(1.5)
K,=1 G(s)=1 = 25
v = msGls) = s G+ 10) ~ mao) &)
» To test to see if our approximation of a second-order system is
valid, we calculate the location of the third pole for each value

of K we found.

» The table below shows the results of our calculations.

Third Settling Peak
Case Closed-loop poles Closed-loop zero Gain closed-loop pole time time K,
1 —0.87 = j0.66 —1.5+,0 7.36 -9.25 4.60 476 1.1
2 —1.19 =0.90 —1.5+,0 12.79 —8.61 3.36 349 19
3 —4.60 = j3.45 —1.5+,0 39.64 —1.80 0.87 091 59
Table 8.4.

(©2006-2012 R.J. Leduc
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Third-order System Gain Design eg. - IV

» We now simulate to see how good our result is:

Case 2 response

12+ 12r
Lot Lor
08 — Third-order, K = 39.64
0.8 - o
2 2
g o6l 2 06 — Second-order, K = 39.64
g — Third-order, K = 12.79 &
= 04 - 04 -
) — Second-order, K = 12.79
02 0.2
o/ 0.0
0 05 1 15 2 25 3 35 4 45 5 005 1 1.5 2 25 3 35 4 45 5
Time (seconds) Time (seconds)
(a) (b)
Figure 8.23.
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