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Introduction

◮ Root locus graphically displays both transient response and
stability information.

◮ The root locus allows us to choose the needed gain to get the
desired transient response.

◮ Problem: when we choose different gains, we can only achieve
responses that correspond to roots that are actually on the
root locus.

◮ By adding a controller in series with the original system, we
can add new poles to the system, located at the desired spot.
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Improving Transient Response

◮ If point B in Fig. 9.1 represented
our desired transient response,
represented by desired percent
overshoot and settling time, we
are out of luck.

◮ Using gain response, we can
achieve the desired percent
overshoot, but only the settling
time at point A.

Figure 9.1
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Improving Transient Response II

◮ Replacing original system would be expensive and may be
difficult to find system with correct response and still satisfy
other needed properties such as speed, power, durability etc.

◮ Instead we augment, or compensate, system by adding
additional poles and zeros to get desired behavior.

◮ Disadvantage: Method increases order of system, which can
also affect the response.

◮ Our design process will determine the location of the
second-order closed-loop poles but not the higher-order ones.

◮ Must always evaluate response via simulation at end to ensure
that actual higher-order system behaves as desired.
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Improving Steady State Error (SSE)

◮ Can also add compensators to improve steady state error.

◮ Typically, increasing gain produces smaller steady state error,
but larger overshoot.

◮ When we optimize gain for transient response, we can make
steady state error worse.

◮ We can improve steady state error separate from gain by
adding a compensator with an integrator (1

s ) in feed forward
path.
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Compensator Terminology

◮ Proportional control systems are compensators that feed the
error signal directly to the plant.

◮ Integral control systems feed the integral of the error to the
plant.

◮ Derivative control systems feed the derivative of the error to
the plant.
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Configurations
◮ Two main configurations are cascade compensators and

feedback compensators.
◮ Both methods can be used to change the open-loop poles and

zeros location, and thus the root locus.

Figure 9.2.
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Improving SSE via Cascade Compensation

◮ Two approaches: ideal integral compensation and lag
compensation.

◮ First method will produce zero steady state error, but requires
active circuit such as an op amp circuit.

◮ Second method will only reduce the error, but can be realized
using passive circuits.
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Ideal Integral Compensation

◮ Method involves adding an integrator (1
s ) in feed forward path.

◮ Increases system type, causing error to go to zero.

◮ As implementation of method consists of both feeding the
error and its integral to the plant, we use term
proportional-plus-integral (PI) controller.
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Ideal Integral Compensation: II
◮ Simply adding a pole at the origin would change the transient

response of the original system.

◮ We see in example below, the desired pole location at A is
now no longer on the root locus.

Figure 9.3.
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Ideal Integral Compensation: Add Zero too!

◮ Fix this by adding a zero near
the origin at s = −a.

◮ The angular contribution of the
two effectively cancel.

◮ Require gain (K) is about the
same as the ratio of the pole and
zero magnitudes is about unity.

Figure 9.3
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Ideal Integral Compensation: Implementation

◮ Can implement controller as

Gc(s) = K1 +
K2

s
=

K1s

s
+

K2

s
=

K1(s + K2

K1
)

s

◮ Example of a proportional-plus-integral controller.

Figure 9.8.

c©2006-2012 R.J. Leduc 12



Effect of Ideal Integral Compensation

◮ In example below, can we add the compensator shown to
reduce SSE to zero but have small effect on the transient
response?

Figure 9.4.
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Effect of Ideal Integral Compensation II

◮ Figure shows uncompensated
system and desired dominant
poles.

◮ Specification was for damping
ratio of 0.174, thus angle
100.02◦ = 180o

− cos−1(0.174).

◮ System has Kp = 8.23 which
gives ess = 1

1+Kp
= 0.108.

Figure 9.5
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Effect of Ideal Integral Compensation III

◮ Figure shows system with
added compensator.

◮ System responds to step
input with zero error. Has
gain and original three poles
very close to previous values.

◮ Fourth closed loop pole at
s = −0.0902 so essentially
cancels with zero at
s = −0.1.

Figure 9.6

c©2006-2012 R.J. Leduc 15



Effect of Compensation: Output Simulation
◮ Figure shows step response of original and compensated

system.

◮ Original system takes 6 seconds to reach ±2% of final value
while compensated system takes 18 seconds.

◮ Compensated system reaches ±2% of original final value in
about same time. Extra time is to reach new final value.
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Lag Compensation

◮ Require active circuit to put
pole at origin.

◮ Passive circuits can only put a
pole near origin, but can still
improve steady state error.

Figure 9.9
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Lag Compensation II

◮ For type one system shown,
ess = 1

Kv
.

◮ For original system we have
KvO

= Kz1z2···

p1p2···
.

◮ For compensated system, we
have KvN

= (Kz1z2··· )(zc)
(p1p2··· )(pc)

=

KvO
×

zc

pc
.

◮ Increasing Kv will decrease
SSE.

Figure 9.9
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Lag Compensation III

◮ New steady state error is
essO

×
pc

zc
.

◮ Need to maximize zc

pc
ratio to

reduce SSE, but need the
zero and pole to be close
together so their effect
cancels.

◮ Means zc and pc must both
be small, thus close to the
origin.

Figure 9.9
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Improving Transient Response via Compensation

◮ Goal: design system with desired percent overshoot, but
better settling time than uncompensated system.

◮ Two approaches: ideal derivative compensation and lead
compensation.

◮ Involves adding a zero (differentiator) to the forward path.

◮ Differentiation is noisy. Can add a large unwanted signal.
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Ideal Derivative Compensation

◮ Adding only a zero to forward path requires active circuit.

◮ As implementation of method consists of both feeding the
error and its derivative to the plant, we use term
proportional-plus-derivative (PD) controller.

◮ Goal is to reshape root locus so that desired closed loop pole
is on root locus.
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Ideal Derivative Compensation II

◮ To add a zero to forward path, we add compensator of form:

Gc(s) = s + zc

◮ Choosing the right location for the zero can quicken the
response of the original system.

◮ For step input and position control, system responds to
sudden large change in input.

◮ This means that the derivative of this quick change will
produce an even larger signal, driving the system even faster
forward.
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Ideal Derivative Compensation Design
◮ We first identify location of closed-loop poles with desired

overshoot and settling time.

◮ The difference between 180o and ∠KG(s)H(s) to this pole
location is the needed angular contribution of the
compensator zero.

◮ For system below, design PD controller to yield 16%
overshoot, and a threefold reduction in settling time.

Figure 9.17.
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Ideal Derivative Compensation Design II
◮ 16% overshoot corresponds to ζ = 0.504, thus angle

120.26o = 180o
− cos−1(0.504).

◮ Searching along this line of damping ratio discovers closed
loop poles at −1.205 ± j2.064 with gain K = 43.35.

◮ Settling time of system is Ts = 4
ζωn

= 4
1.205 = 3.320.

Figure 9.18.
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Ideal Derivative Compensation Design III
◮ Gain of K = 43.35 gives us a third closed loop pole at

s = −7.59 which is more than six times farther from the jω

axis than dominant poles.

◮ Our 2nd order approximation is thus valid for overshoot and
settling time.

Figure 9.18.
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Ideal Derivative Compensation Design IV
◮ Desired settling time is 3.320

3 = 1.107.

◮ Real part of desired pole is σ = 4
Ts

= 4
1.107 = 3.613.

◮ Imaginary part is ωd = 3.613 tan(180o
− 120.26o) = 6.193.

Figure 9.19.
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Ideal Derivative Compensation Design V
◮ For a point to be on locus, must satisfy ∠KG(s)H(s)

= (2k + 1)180o.

◮ For s = −3.613+ j6.193, we get sum of angles to be −275.6o.

◮ Zero must contribute
θ = 275.6o

− 180o = 95.6o.

◮ Location of zero must satisfy
tan(180o

− 95.6o) =
opp
adj

=

6.193
3.613−σ .

◮ We thus need a zero at
s = −3.006.

Figure 9.20
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Ideal Derivative Compensation Design VI
◮ To get desired dominant poles, we need a gain of K = 47.54.

◮ At this gain, we get a third pole at s = −2.755.

◮ Second order approximation may not be valid as not close
enough to get good pole-zero cancellation.
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Ideal Derivative Compensation Design VII

Table 9.3.
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Ideal Derivative Compensation Design VIII
◮ Figure shows step response of uncompensated and

compensated system.

Figure 9.22.
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PD Controller
◮ We implement an ideal derivative controller as a PD controller

shown below.

◮ It has transfer function

Gc(s) = K2s + K1 = K2(s +
K1

K2
)

◮ Choose K2 to contribute to the required gain, and choose K1

K2

to position the zero at the correct place.

Figure 9.23.
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Lead Compensation

◮ Advantages of a passive lead compensator
◮ doesn’t require additional power supply
◮ reduced noise due to differentiation

◮ Approximates ideal derivative compensator by adding a zero
and a pole.

◮ As long as pole farther to the left than zero, net angular
contribution is still positive.
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Lead Compensation II
◮ As for a PD controller, we first determine the location of the

closed loop dominant poles with desired properties.

◮ The angular contribution of zero, zc, is θ2 and contribution of
pole, pc, is θ1.

◮ Net contribution of pole-zero pair is thus θc = θ2 − θ1.

◮ Choose θ1 and θ2 such that θ2 − θ1 − θ3 − θ4 + θ5 =
(2k + 1)180o

Figure 9.24.
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Lead Compensation III

◮ Have infinite possible pole-zero combinations that would work.

◮ Compensators differ in such things as static error constants,
required gain, quality of 2nd order approximation, and the
shape of actual transient response.

Figure 9.25.
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Improving SSE and Transient Response

◮ To improve both transient response and steady state error, we
can:

◮ First design an active PD controller, and then an active PI
controller. Called a proportional-plus-integral-plus-derivative
(PID) controller.

◮ First design a passive lead compensator, then design a passive
lag compensator. Called a lag-lead compensator.
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PID Controller
◮ Transfer function of controller is

Gc(s) = K1 +
K2

s
+ K3s =

K3(s
2 + K1

K3
s + K2

K3
)

s

◮ System has two zeros plus a pole at origin.

Figure 9.30.
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PID Controller Design

1. Evaluate performance of original system.

2. Design PD controller for transient response improvement.

3. Simulate system to be sure requirements met.

4. Redesign if simulation shows they are not.

5. Design PI controller for steady state error requirement.

6. Determine gains K1, K2, K3.

7. Simulate system to be sure all conditions met.

8. Redesign if not met.
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PID Controller Design Example

1. Design PID controller so system has 20% overshoot, zero
steady state error for step input, and peak time that is 2

3 that
of original system.

Figure 9.31.
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PID Controller Design Example II
◮ 20% overshoot gives us ζ = 0.456 at a line at 117.13o.

◮ Gives dominant poles at s = −5.415 ± j10.57, third pole at
s = −8.169, and estimated peak time of 0.297 seconds.

◮ Desired pole has imaginary part
ωd = π

Tp
= π

(2/3)(0.297) = 15.87.

◮ Real part is thus at σ = ωd

tan(180o
−117.13o)

= 8.13.

◮ Our desired dominant poles are thus at
s = −8.13 ± j15.87, which requires gain
K = 5.34.

Figure 9.32
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PID Controller Design Example III

◮ Sum of angles to s = −8.13 + j15.87 is currently −198.37o.

◮ Zero contribution is thus θz = 198.370
− 180o = 18.37o.

◮ This means we need a zero at s = −55.92.

◮ Our PD controller is thus
GPD = (s + 55.92).

Figure 9.35
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PID Controller Design Example IV
◮ We choose our PI controller to be GPI = (s+0.5)

s

◮ This gives dominant poles at s = −7.516 ± j14.67 at gain
K = 4.6.

◮ Combining PI and PD to create PID controller, we need to
determine gains K1, K2, and K3.

◮ GPID(s) = K(s+55.92)(s+0.5)
s =

4.6(s2+56.42s+27.96)
s

◮ Equating with PID controller
equation, we have K3 = 4.6,
K1

K3
= 56.42, and K2

K3
= 27.96.

◮ Thus K1 = 259.5 and
K2 = 128.6.

Figure 9.36
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PID Controller Design Example V

◮ Simulation compares original, PD compensated, and PID
compensated system.

◮ PID compensated system takes 3
seconds to get to unity.

◮ If need faster, redesign PD
controller.

Figure 9.35
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Lag-Lead Compensator Design

1. Evaluate performance of original system.

2. Design lead compensator for transient response improvement.

3. Simulate system to be sure requirements met.

4. Redesign if simulation shows they are not.

5. Evaluate steady state error performance of lead compensated
system.

6. Design lag compensator for steady state error requirement.

7. Simulate system to be sure all conditions met.

8. Redesign if not met.
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