
∗

Parallel Computers

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc



Why Parallel Computing?

• Many areas require great computational speed:

ie. numerical modelling, and simulation of

scientific and engineering problems .

• Require repetitive computations on large

amounts of data.

• Must complete in a “reasonable” time.

– For manufacturing, engineering calcula-

tions and simulation must only take sec-

onds or minutes.

– A simulation that takes two weeks is too

long. A designer requires a quick an-

swer, so they can try different ideas and

fix errors.

c©2002-2004 R. Leduc 1



– Some problems have a specific deadline.

ie. weather forecasting

• Grand challenge problems, like global weather

forcasting and modelling large DNA struc-

tures, are problems that can not be handled

in a “reasonable” time by today’s comput-

ers.

• Such problems are always pushing the en-

velope.

c©2002-2004 R. Leduc



N-body Problem

• Predicting the motion of astronomical bod-

ies in space requires a large number of cal-

culations.

• Each body attracted to each other body

by gravitational forces.

• These forces can be calculated and the

movement of each body predicted. Re-

quires calculating total force acting on each

body.

• For N bodies, there will be N −1 forces to

calculate. Approx N
2 calculations.

• A galaxy might have 1011 stars. That’s

1022 calculations!

c©2002-2004 R. Leduc 2



• Assuming each calculation took 10−6 sec-

onds, even an efficient N log2N approxi-

mate algorithm would take almost a year!

• Split the computation across 1000 proces-

sors, and that time could reduce to about

9 hours.

• A lot easier to get 1000 processors than

build one processor 1000 times as fast.

c©2002-2004 R. Leduc



1
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.1 Astrophysical N-body
simulation by Scott Linssen (undergraduate
University of North Carolina at Charlotte
[UNCC] student).

c©2002-2004 R. Leduc 3



Parallel Computers

• A parallel computer consists of multiple pro-

cessors operating together to solve a sin-

gle problem. This provides an effective and

relatively inexpensive means to solve prob-

lems requiring large computation speed.

• To use a parallel computer, one must split

the problem into parts, each to be per-

formed on a separate processor in parallel.

• Parallel programming is the art of writing

programs of this form.

• The idea is that n processors can provide

up to n times the speed.

• Ideal situation. Rarely achieved in practice.

c©2002-2004 R. Leduc 4



– Problems can’t always be divided per-

fectly into independent parts.

– Interaction required for data transfer and

synchronization (overhead).

• Parallel computers offer the advantage of

more memory: The aggregate memory is

larger than the memory for a single proces-

sor.

• Because of speed and memory increase,

parallel computers often allow larger or more

precise solutions to be solved.

• Multi-processor computers are becoming the

norm. IBM, HP, AMD, and Intel are de-

signing processors that can execute multi-

ple threads/programs in parallel on a single

chip.

c©2002-2004 R. Leduc



Types of Parallel Computers

Parallel computers are either specially designed

computer systems containing multiple proces-

sors or multiple independent computers inter-

connected.

We will discuss three types of parallel comput-

ers:

• Shared memory multiprocessor systems

• Message-Passing multicomputers

• Distributed shared memory systems

c©2002-2004 R. Leduc 5



Shared Memory Multiprocessor Sys-
tems

Conventional Computer consists of a single pro-

cessor executing program stored in memory.

Each memory location has an address from 0

to 2n
− 1 where the address has n bits.

See Figure 1.2.

c©2002-2004 R. Leduc 6



2
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.2 Conventional computer having
a single processor and memory.

Main memory

Processor

Instructions (to processor)
Data (to or from processor)

c©2002-2004 R. Leduc 7



Multiprocessor system extends this by having

multiple processors and multiple memory mod-

ules connected through an interconnection net-

work.

See Figure 1.3.

Each processor can access each module. Called

“shared memory” configuration.

Employs a single address space. Each memory

location has unique address, and processors all

use same address.

c©2002-2004 R. Leduc 8



3
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.3 Traditional shared memory
multiprocessor model.Processors

Interconnection
network

Memory modules
One
address
space

c©2002-2004 R. Leduc 9



Programming Shared Memory Mul-
tiprocessor Systems

Each processor has its own executable code

stored in memory to execute.

Data for each processor is stored in memory,

and thus accessible to all.

Can use a “parallel programming language”

with special constructs and statements. ie.

“FORTRAN 90” or “high performance FOR-

TRAN.” See chapter 13 of High Performance

Computing. Rely on compilers.

Can also use “threads.” A multi-threaded pro-

gram has regular code sequences for each pro-

cessor. Communicate through shared memory

locations. We will examine the POSIX stan-

dard “Pthreads.”

c©2002-2004 R. Leduc 10



Types of Shared Memory Systems

Two main types of shared memory multipro-

cessor systems:

• Uniform Memory Access (UMA)

• Nonuniform memory access (NUMA) sys-

tems.

In a UMA system, each processor can access

each memory module in the same amount of

time.

A common example is a Symmetric multipro-

cessing (SMP) system such as a duo processor

Pentium III computer.

Does not scale well above 64 processors. Ex-

pensive to have same access time to multiple

memory modules and processors due to physi-

cal distance and number of interconnects.

c©2002-2004 R. Leduc 11



NUMA Systems

NUMA systems solve this by having hierarchi-

cal or distributed memory structure.

Processors can access physically nearby mem-

ory locations faster than distant locations.

∗

Can scale to 100’s and 1000’s of processors.

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 12



Message-Passing Multicomputers

A shared memory multiprocessor is a special

designed computer system.

Alternately, can can create multiprocessor by

connecting complete computers through inter-

connection network. See Fig 1.4.

• Each computer has a processor and local

memory not accessible to other processors

• Each computer has its own address space.

• A processor can only access a location in

own memory.

c©2002-2004 R. Leduc 13



4
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Processor

Interconnection
network

Local

Computers

Messages

Figure 1.4 Message-passing
multiprocessor model (multicomputer).

memory

c©2002-2004 R. Leduc 14



Message-Passing Multicomputers Cont.

Interconnection network is used to send mes-

sages between processors.

Messages may be instructions, synchronization

info, as well as data other processors need for

computations.

Systems of this type are called message-passing

multiprocessors or multicomputers.

Examples: network of workstations (NOW),

beowulf clusters.

Message-passing multiprocessors scale better

than shared memory multiprocessor systems.

Cheaper and more flexible to construct. De-

sign more open. Easy to extend.

c©2002-2004 R. Leduc 15



Programming Multicomputers

Problem divided into parts intended to be ex-

ecuted simultaneously on each processor.

Typically, we have multiple independent pro-

cesses running in parallel to solve problem. Can

be on same processor or not.

Messages carry data between processes as dic-

tated by program.

Use message-passing library routines linked to

sequential programs. We will examine the message-

passing interface (MPI) libraries.

c©2002-2004 R. Leduc 16



Pros/cons of Message-Passing Model

Advantages:

Universality: Can be used with multiple pro-

cessors connected by a (fast/slow) com-

munication network. ie. either a multipro-

cessor or network of workstations.

Ease of Debugging: Prevents accidental over-

writing of memory. Model only allows one

process to directly access to a specific mem-

ory location.

The fact that no special mechanisms are

required to control concurrent access to

data can greatly decrease execution time.

Performance: Associates data with specific pro-

cessor and memory. Makes cache-management

and compilers work better. Applications

can exhibit superlinear speedup.

c©2002-2004 R. Leduc 17



Pros/cons Cont.

Disadvantages:

Requires programmers to use explicit program

calls to pass messages. Error prone and has

been compared to low-level assembly language

programming.

Data can not be shared. It must be copied.

Problem if need to do many tasks using a lot

of data.

c©2002-2004 R. Leduc 18



Distributed Shared Memory

Gives the programming flexibility of shared mem-

ory with the hardware flexibility of Message-

Passing Multicomputers.

Each processor has access to entire memory

using a single common address space.

Memory access to a location not local to a

processor is done using message passing in an

automated fashion. Called shared virtual mem-

ory.

See Figure 1.5.

c©2002-2004 R. Leduc 19



5
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Processor

Interconnection
network

Shared

Computers

Messages

Figure 1.5 Shared memory multiprocessor
implementation.

memory

c©2002-2004 R. Leduc 20



Flynn Computer Classifications

SISD: For single processor computer, have a

single stream of instructions operating on

a single stream of data. Called a single in-

struction stream - single data stream (SISD)

computer.

MIMD: In a multiprocessor system, each pro-

cessor has a stream of instructions act-

ing upon a separate set of data. Called a

multiple instruction stream - multiple data

stream (MIMD) computer. See Figure 1.6.

SIMD: This is when a single program gener-

ates a single stream of instructions which

are broadcast to multiple processors who

execute the same instruction in synchro-

nism, but on different data. Called a single

instruction stream - multiple data stream

(SIMD) computer.

c©2002-2004 R. Leduc 21



6
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.6 MPMD structure.

Program

Processor

Data

Program

Processor

Data

InstructionsInstructions

c©2002-2004 R. Leduc 22


