
∗

Pipelined Computations

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc



Pipeline Technique

To use this method, problem must be divided

into sequence of tasks.

Each task will be executed on a different pro-

cessor, in the specified order. See Figure 5.1.

Refer to each process as a pipeline stage.

Each stage performs part of problem, and passes

on information to the next stage.

c©2002-2004 R. Leduc 1



Frequency Filter Example

An example of how a problem could be decom-

posed into stages is a frequency filter. Goal is

to remove specific frequencies (f0, f1, f2, and

f3) from a digitized signal f(t)

Signal f(t) represents sequence of values, f(0),
f(1), . . . Each value must be processed in

turn by each stage. Each stage removes one

frequency.

Once pipeline is filled, will output results once

per time unit (time unit is time for one stage

to process a value).

c©2002-2004 R. Leduc 2



Pipeline Structural Conditions

Assuming that our problem can be decomposed

into a sequence of tasks. . .

Potential for speedup in the following cases

(types):

1) When more than one instance of a complete

problem must be processed. ie. an instruction

pipeline of a computer where multiple instruc-

tions (problems) must be processed.

2) When a series of data elements must be

processed, and multiple operations must be ap-

plied to each element. ie. image transforma-

tions for computer graphics.

3) When the information for the next stage to

begin executed is available, before the current

stage has completed. See Section 5.3.4 of text

for an example.

c©2002-2004 R. Leduc 3



Type 1 Problem

Figure 5.4 illustrates a type 1 pipeline using a

space-time diagram.

In this example, each instance of the problem

requires 6 stages to be processed.

Diagram assumes process for each stage re-

quires same time to complete task.

Will refer to the time for a process to finish

with one instance as one pipeline cycle.

c©2002-2004 R. Leduc 4



Type 1 Problem Cont.

After 5 cycles, we get one instance completed

per cycle.

Let p be the number of processes in pipeline,

and m be the number of instances of the prob-

lem.

Cycles required to complete all m instances is:

Cycles = m + p − 1

Average cycle time = (m + p − 1)/m

c©2002-2004 R. Leduc 5



Type 2 Problem

For this type of problem , multiple operations

must be applied sequentially to each element

in a series of data.

We have n data elements and p processes in

our pipeline, as shown in Figure 5.6.

Again, we have: Cycles = n + p − 1

c©2002-2004 R. Leduc 6



c©2002-2004 R. Leduc 7



Type 3 Problem

This type used when one instance of problem,

but information can be passed forward before

current processing is complete.

Figure 5.7 shows space-time diagram illustrat-

ing this.

c©2002-2004 R. Leduc 8



Partitioning Stages

If more stages than processors, then assign

groups to each processor as in Figure 5.8.

Stages wthin a given processor would be per-

formed sequentially.

c©2002-2004 R. Leduc 9



Computing Platforms

For pipelines to work well, we need to be able

to send messages between adjacent processors.

Implies we need direct links between adjacent

processors.

Best interconnection structure is host system

connected to processors organized in a line or

ring such as Figure 5.9.

c©2002-2004 R. Leduc 10



Computing Platforms Cont.

As lines/rings can be perfectly embedded into

meshes/toruses and hypercubes, these work

well also.

Bus structure topology doesn’t work well, as

only one processor could transmit at a time.

Will assume at least to be able to have si-

multaneous communication between adjacent

processes.

c©2002-2004 R. Leduc 11



Adding numbers Example

Want to add a set of n numbers with p pro-

cesses. Type 1 problem.

One solution is when each processor adds one

number (that it holds) to an accumulating sum.

See Figure 5.10.

If (process > 0) {

recv(&accumulation, Pi-1);

accumulation = accumulation + number;

}

If (process < p-1) send(&accumulation, Pi+1);

c©2002-2004 R. Leduc 12



Adding numbers Example Cont.

We will assume that process 0 has two num-

bers, adds them, then sends the sum.

If we have more numbers than processes, each

process will add a group together, then pass

on sum.

We assume that each process performs simi-

lar actions so we calulate the number of steps

required per cycle.

m = # of problem instances

Total execution time calculated as:

ttotal = (time for one pipeline cycle)(number of cycles)

ttotal = (tcomp + tcomm)(m + p − 1)

Average time to calculate a sum:

tavg =
ttotal

m

c©2002-2004 R. Leduc 13



Single Instance of Problem

Assume at first only one addition per process,

thus n = p + 1.

Single instance, so m = 1.

Time for one cycle determined by one addition

and two communications (to left and to right

neighbour).

tcomp = 1; tcomm = 2(tstartup + tdata)

ttotal = (2(tstartup + tdata) + 1)p

= (2(tstartup + tdata) + 1)(n − 1)

Time complexity is O(n).

c©2002-2004 R. Leduc 14



Multiple Instances of Problem

If have m groups of n numbers to add.

Cycle time is the same, but now have more
cycles.

ttotal = (2(tstartup + tdata) + 1)(m + p − 1)

= (2(tstartup + tdata) + 1)(m + n − 2)

For large m, average time for one problem
instance:

tavg =
ttotal

m
≈ 2(tstartup + tdata) + 1

For serial algorithm, time for one sum is al-
ways:

ts = n − 1 = p

To gain an advantage, requires:

2(tstartup + tdata) + 1 < p

For tstartup = 8333 and tdata = 55, we get:

16,777 < p

c©2002-2004 R. Leduc 15



Data Partitioning and Multiple Instances

Now consider that each process does d addi-

tions.

That means each process has d numbers to

add (plus incoming sum) except Process 0 which

had d + 1.

Total numbers are n = p · d + 1

tcomp = d; tcomm = 2(tstartup + tdata)

ttotal = (2(tstartup + tdata) + d)(m + p − 1)

For large m, average time for one problem in-
stance:

tavg =
ttotal

m
≈ 2(tstartup + tdata) + d

c©2002-2004 R. Leduc 16



Data Partitioning and Multiple Instances

Cont.

For serial algorithm, time for one sum is al-

ways:

ts = n − 1 = p · d

To gain an advantage, requires:

2(tstartup + tdata) + d < p · d

2(tstartup + tdata)

d
+ 1 < p

For d = 5000 tstartup = 8333 and tdata = 55,
we get:

4.3552 < p

c©2002-2004 R. Leduc 17


