
∗

Load Balancing and

Termination Detection

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc



Intro to Load Balancing

Originally, we divide the problem into a fixed

number of processes.

Each process has an equal portion of the tasks

with no consideration for different CPU types

or speeds.

Could result in some processors completing tasks

early and becoming idle.

Cause: Work load unevenly divided (ie, some

portions take longer to process) or faster pro-

cessor or combination.

Goal: want all processors working continuously

on tasks such that we get minimal runtime.

Achieving this goal by distributing tasks uni-

formally amongst the processors is referred to

as load balancing.

c©2002-2004 R. Leduc 1



Load Balancing

In Mandelbrot example, we dealt with special

case without interprocess communication (ex-

cept master with slave processes).

Will now extend it to include communication

between processes.

Figure 7.1 shows an example of perfect load

balancing.

Assume sequential run time took k clock cycles

to process a problem, thus ts = k.

We achieve perfect load balancing when our

parallel execution time is:

tp = k/p

c©2002-2004 R. Leduc 2



133
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P4

P5

P0

P1

P2

P3

P4

P5

P2
P1
P0

P3

Time

(b) Perfect load balancing

(a) Imperfect load balancing leading

t

Figure 7.1 Load balancing.

to increased execution time

Processors

Processors

c©2002-2004 R. Leduc 3



Static Load Balancing

Static approaches are when task division is per-

formed before program is executed.

Often referred to as the mapping problem or

scheduling problem.

Theory developed using optimization methods,

knowledge of interdependencies of parts of the

problem, and estimates of their runtimes.

Proposed techniques:

• Round Robin Algorithm: gives out tasks

in sequential order, then returning to first

process and repeats.

• Randomized Algorithm: chooses process

at random to perform tasks.

c©2002-2004 R. Leduc 4



Static Load Balancing Cont.

• Recursive Bisection: divides problem up re-

cursively into tasks of equal effort, while

minimizing communication.

• Simulated Annealing, and Genetic Algo-

rithm: two optimization techniques.

c©2002-2004 R. Leduc 5



Mapping Problem

If processors are connected by static links, want

to map communicating processes to processors

with direct links to reduce communication de-

lay.

Key aspect of “mapping” processes to the phys-

ical system.

Likely require different mapping for different

networks.

In general, problem is NP-complete.

Normally, heuristics are used to choose which

processes are to run on which processors.

c©2002-2004 R. Leduc 6



Problems with Static Approach

1) Hard to create acurate estimates of execu-

tion time of parts of a program without actu-

ally executing the code.

Practically guarantees that scheduling and map-

ping will be suboptimal.

2) Systems may have communication delays

that change depending on circumstances. Hard

to incorporate in a static approach

3) Some problems have an indeterminate num-

ber of steps to arrive at solution. ie search

algorithms.

4) Mapping of processes to processors is sys-

tem dependent. Not very portable.

5) Even with perfect knowledge, choosing the

correct mapping is usually complicated.

c©2002-2004 R. Leduc 7



Dynamic Load Balancing

To address the problems with static approach,

and to make one’s program more adaptable,

people often use dynamic load balancing (DLB).

In DLB, division of load is decided based upon

the execution of individual parts, as they are

being executed.

Increases overhead while executing, but much

more adaptive.

For DLB, individual tasks are allocated to pro-

cessors while program is running.

Two main DLB classifications:

- Centralized DLB.

- Decentralized DLB.

c©2002-2004 R. Leduc 8



Centralized DLB

In centralized approach, tasks are distributed

from centralized location.

Have a master process that has the group of

tasks to be performed and sends them to slave

processes.

When a slave has completed its task, it re-

quests another.

Basic work pool or processor farm approach.

Can be applied to problems with uniform tasks

sizes or problems with tasks of different sizes

and difficulty levels.

In latter case, best to hand out large/difficult

tasks first.

Allows the smaller tasks to even out the work

load once the large ones have been completed.

c©2002-2004 R. Leduc 9



Varying Size Work Pools

For some problems, the size of work pool is

not known in advance.

For eg, a search algorithm. Processing a task

may generate new tasks to process, adding to

the work pool.

Eventually, there must be no new tasks gener-

ated, so that the pool of tasks can be emptied,

completing the problem.

c©2002-2004 R. Leduc 10



Ordering Tasks

List of tasks to be processed is often stored in

a queue, as in Figure 7.2.

If tasks are of equal size/importance, a FIFO

would probably work.

If some tasks are considered more important,

they can be put at front of queue.

The master process might keep additional in-

formation, such as the current best solution.

c©2002-2004 R. Leduc 11



134
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Queue
Work pool

Slave “worker” processes

Master
process

Figure 7.2 Centralized work pool.

Tasks

Request task

Send task

(and possibly
submit new tasks)

c©2002-2004 R. Leduc 12



Centralized Termination

One of the difficult aspects of dynamic load

balancing is detecting when the computation

is complete. Called termination detection.

Advantage of centralized approach is often easy

for master to detect termination.

When tasks taken from a queue, computation

is complete when:

1) Task Queue is empty.

2) All Process have requested a new task and

no new tasks have been generated.

Can’t just quite when task queue is empty,

because running process might generate new

tasks for the queue.

Once termination detected by master, each

slave sent termination signal.

c©2002-2004 R. Leduc 13



Slaves Detecting Termination

In some cases, termination might be detected

by slave processes which reach a local condi-

tion.

ie. search algorithm, and slave finds desired

item.

Slave would announce this to master, who would

then send signal to other slaves.

For some applications, each slave might need

to reach local condition.

ie. convergence of local solution such as in

Heat Distribution Problem.

In this situation, master must receive termina-

tion signal from all slaves.

c©2002-2004 R. Leduc 14



Problem with Centralized DLB

Limitation of centralized approach is that you

have single process dispersing tasks one at a

time.

Potential for bottleneck and loss of parelliza-

tion when multiple slaves request tasks simul-

taneously.

Works well if few slaves, and tasks are compu-

tationally intensive.

If many slaves, and tasks have finer granularity,

then may get better performance by distribut-

ing the work pool across multiple processes.

c©2002-2004 R. Leduc 15



Decentralized DLB

In decentralized load balancing, groups of pro-

cesses work on the problem, exchanging infor-

mation with each other, ultimately reporting

to a single process.

A worker might receive tasks from other work-

ers, and may send tasks to other workers which

may perform the task, or pass it on as they see

fit.

Typically we have multiple work queues dis-

tributed amongst the processes, with some mech-

anism to disperse tasks throughout the system,

as well as detect termination.

c©2002-2004 R. Leduc 16



Mini-master Approach

In this approach, the master process divides

it’s initial work pool into sections, and sends

each to a set of processes that function as

“mini-masters (M0 to Mn−1.”

Each mini-master would have its own group

of slave processes to dole tasks out to. See

Figure 7.3.

If doing an optimization problem, could have

each mini-master find local optimum value, then

pass results to master to determine global value.

c©2002-2004 R. Leduc 17



135
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process M0 Process Mn−1

Master, Pmaster

Slaves

Initial tasks

Figure 7.3 A distributed work pool.

c©2002-2004 R. Leduc 18



Fully Distributed Work Pool

Particularly when processes not only execute

tasks, but generate new ones, it may be worth-

while to have each process have its own task

queue.

In this approach, a process needing a task could

request one from any other process. See Fig-

ure 7.4.

Two main transfer methods:

1) The receiver-initiated

2) The sender-initiated

c©2002-2004 R. Leduc 19



136
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process

Requests/tasks

Process
Process

Process

Figure 7.4 Decentralized work pool.

c©2002-2004 R. Leduc 20



Task Transfer Methods

In the receiver-initiated approach, a process

chooses which processes to request tasks from.

Typically, when a process is out of tasks (or

close to it), it will request more from other

processes.

Works well under high load.

In the sender-initiated method, the sending pro-

cess selects which processes to send tasks to.

In general, a process that is heavily loaded will

pass on some of its tasks to other processes

than are willing to accept them.

Works well under light load.

Could do a mixture of both, but doing load

calculations is costly.

c©2002-2004 R. Leduc 21



Load balancing

Consider load balancing for receiver-initiated

method.

Strategies usually depend on network intercon-

nect.

If using ring interconnect, processes then re-

quest tasks from its neighbours.

For hypercube, can request from any process

with a direct interconnect.

Must make sure you don’t just pass on the

same task you just received.

c©2002-2004 R. Leduc 22



Process Selection

Without specific topology, all process are equiv-

alent, thus could select any other process to

send/request tasks to/from.

Each process would have local selection algo-

rithm (See Figure 7.5), which could be applied

to all possible processes or specific subsets.

For round robin algorithm, process requests a

task from each other process in turn, then re-

peats.

In random polling algorithm, process pi requests

a task from process px, where x ∈ {0,1, . . . , n−

1} is selected randomly (n processes, and x 6=

i).

c©2002-2004 R. Leduc 23



137
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 7.5 Decentralized selection algorithm requesting tasks between slaves.

Requests
Slave Pi

Local
selection
algorithm

Requests
Slave Pj

Local
selection
algorithm

c©2002-2004 R. Leduc 24



Load balancing using Line Structure

Technique designed to be used when proces-

sors are constructed in line structure.

Creates a task queue, with individual processes

accessing specific locations. See Figure 7.6.

Tasks are fed in from the left, and are shifted

down the queue.

When a process detects a task at its queue

location and it’s idle, it takes the task to pro-

cess.

Tasks then shuffle down from the left until the

space is filled, and a new task is inserted on

the far left.

Can put larger/higher priority tasks into queue

first.

c©2002-2004 R. Leduc 25



138
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Master
process

P1 P2 P3 Pn−1

P0

Figure 7.6  Load balancing using a pipeline structure.

c©2002-2004 R. Leduc 26



Shifting Tasks

Shifting performed by exchanging messages be-

tween adjacent processes.

Use two subprocesses (see Figure 7.7):

- Left and right communication (Pcomm).

- Performs current tasks (Ptask).

To implement these two processes on single

processor, use threads.

If not available, see time sharing example at

end of Section 7.2.3.

Could create similar structure using binary tress.

See Figure 7.8.

c©2002-2004 R. Leduc 27



139
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

If buffer empty,
make request

Receive task
from request

If free,
request
task

Receive
task from
request

If buffer full,
send task

Request for task

Figure 7.7 Using a communication process in line load balancing.

Ptask

Pcomm

c©2002-2004 R. Leduc 28



140
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0

P1

P3

P2

P6P4P5

Figure 7.8 Load balancing using a tree.

Task
when
requested

c©2002-2004 R. Leduc 29



Decentralized Termination Conditions

For distributed approaches, it is usually hard

to know when to terminate unless the prob-

lem type is such that one process reaches a

solution.

Distributed termination at time t needs to sat-

isfy these two conditions:

1) At time t, local (application specific) ter-

mination conditions have been satisfied at each

process.

2) There are no in transit messages between

process at time t.

c©2002-2004 R. Leduc 30



Decentralized Termination Conditions Cont.

Condition 1 is easy to determine. Each pro-

cess could send message to Master when local

condition met.

Second difficult as time to send message be-

tween processes not known in advance.

Could wait for a “long” period to allow all mes-

sages to be received, but code wouldn’t be

portable.

c©2002-2004 R. Leduc 31



Acknowledgement Messages

Method to detect distributed termination using

request and acknowledgement messages. See

Figure 7.9.

Every process can be in two possible states:

inactive or active.

A given process (say Pi) is initially in the inac-

tive state. When it is sent a task from another

process (say Pj), it goes to the active state,

and Pj becomes its parent.

If process Pi passess a task to an inactive pro-

cess (say Pk), it becomes Pk’s parent.

Creates a tree of processes, each with a unique

parent.

An active process could receive tasks from pro-

cesses other than its parent, but these pro-

cesses do NOT become its parent.

c©2002-2004 R. Leduc 32



141
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Inactive

Active

Parent

First task

Other processes

Final
acknowledgment

Process

Task
Acknowledgment

Figure 7.9 Termination using message
acknowledgments.

c©2002-2004 R. Leduc 33



Sending Acknowledgements

Whenever a process sends a task to a proces-

sor, it expects an acknowledgment back.

When a process (say Pi) receives a task from

a process that is not its parent, Pi immediately

sends an acknowledgment.

When Pi receives a task from its parent, Pi only

sends an acknowledgement when it becomes

inactive.

A process becomes inactive when:

• Process has reached its local termination

condition (all tasks finished).

• It has sent all its acknowledgements for

tasks it received.

• It has received all acknowledgements for

tasks that it sent out.

c©2002-2004 R. Leduc 34



Acknowledgement Messages: Final Condi-

tion

Conditions for inactive, means that a processes’

children must become inactive before it can.

Computation terminates when root process be-

comes inactive.

Best method to use as very general and has

been proven to be sound.

c©2002-2004 R. Leduc 35



Ring Termination Algorithms

Processes are organized in ring structure for

termination. See Figure 7.10.

First consider a single-pass ring algorithm. Here,

a process can not be reactivated after reaching

local termination condition.

Algorithm works as follows:

• When process P0 terminates, it creates a

token that it passes to process P1.

• When process Pi (1 ≤ i < n) gets the to-

ken, it passes it on to Pi+1 if it has already

reached its termination condition. Other-

wise, it waits until it satisfies its local con-

ditions, then passes the token on.

c©2002-2004 R. Leduc 36



Ring Termination Algorithms Cont.

• Process Pn−1 passes the token to P0.

• When P0 gets the token, it knows everyone

has terminated and can send a message (if

necessary) to each process to notify them

of global termination.

c©2002-2004 R. Leduc 37



142
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0 P2P1 Pn−1

Token passed to next processor

Figure 7.10 Ring termination detection algorithm.

when reached local termination condition

c©2002-2004 R. Leduc 38



Multi-pass Ring Algorithm

this algorithm can handle processes being re-

activated, but may require two or more passes

around the ring.

A reactivation occurs when a process Pi passes

a task to process Pj, with j < i and the token

has already passed Pj. See Figure 7.12.

This means the token must make another pass

to handle this.

To differentiate, we have a black or a white

token, and can have black or white processes.

Algorithm works as follows:

• When process P0 terminates, it becomes

white and passes a white token to P1.

c©2002-2004 R. Leduc 39



144
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

P0 PiPj Pn−1

Figure 7.12 Passing task to previous processes.

Task

c©2002-2004 R. Leduc 40



Multi-pass Algorithm Cont.

• The token is passed along the ring as each

process, in turn, terminates.

• If Pi passes a task to process Pj, with j < i,

process Pi becomes black otherwise it is a

white process.

• A black process colors a token black, passes

it on, and then becomes a white process. A

white process passes on the token without

changing the token’s color.

• If P0 receives a black token it passes on a

white one. When it receives a white token,

then all processes have terminated.

c©2002-2004 R. Leduc 41



Tree Algorithm

Can use a similar concept for a tree intercon-

nection network.

When a leaf node has met its local termination

conditions, it passes a token to its parent node.

When a non leaf node has reached its termina-

tion conditions, and has received a token from

all of its children nodes, it sends a token to its

parent. See Figure 7.13.

When the root node has received a token from

all its children nodes and has itself terminated,

global termination has occurred.

The root node then informs the other pro-

cesses.

c©2002-2004 R. Leduc 42



145
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Terminated

AND

Terminated

AND Terminated

AND

Figure 7.13 Tree termination.

c©2002-2004 R. Leduc 43


