
∗

Matrix Multiplication

∗Material based on Chapter 10, Numerical Algorithms,
of B. Wilkinson et al., “PARALLEL PROGRAMMING.
Techniques and Applications Using Networked Work-
stations and Parallel Computers”

c©2002-2004 R. Leduc

Matrix Review

A matrix is a two dimensional array of num-

bers.

An n × m matrix has n rows, and m columns.

See Figure 10.1.

To add matrices A and B (same dimensions)
gives:

C = A + B where ci,j = ai,j + bi,j (0 ≤ i < n,0 ≤ j < m)

Multiplying two matrices A (n×l) and B(l×m)
produces a matrix C (n × m) defined as:

C = A×B where ci,j =

l−1∑

k=0

ai,k+bk,j (0 ≤ i < n,0 ≤ j < m)

See Figure 10.2.

c©2002-2004 R. Leduc 1

198
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

a0,0 a0,1

a1,0

a0,m−2

an−1,0

a0,m−1

an−2,0

an−1,m−1an−1,m−2

an−2,m−1

a1,1 a1,m−2 a1,m−1

an−2,1 an−2,m-2

an−1,1

Row

Column

Figure 10.1 An n × m matrix.

c©2002-2004 R. Leduc 2

199
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

× =A B C

Figure 10.2 Matrix multiplication, C = A × B.

i

j

ci,j

Row

Column
Multiply Sum

results

c©2002-2004 R. Leduc 3

Sequential Matrix Multiplication Algorithm

We will assume that we are always dealing with

square n × n matrices.

for (i = 0; i < n ; i++)
for (j = 0; j < n; j++) {

sum = 0;
for (k = 0; k < n; k++)

sum = sum + a[i][k] * b[k][j];

c[i][j] = sum;
}

Requires n3 additions and n3 multiplications

and has time complexity O(n3).

c©2002-2004 R. Leduc 4

Parallelizing the Algorithm

Easy to see that each iteration of two outer

loops are independent. ie the calculation of

every c[i][j] can be parallelized.

For computation, if we have n2 processors,

each can evaluate a single c[i][j] element in

2n steps thus O(n).

This is cost optimal (see chapter 2) as:

Cost = 2n × n2 = 2n3 = ts

Could even parallelize the computation of the

inner loop.

c©2002-2004 R. Leduc 5

Partitioning into Submatrices

Typically we want to use much less than n

processors with an n×n matrix due to its large

size.

To partition the matrix, we divide it into blocks

called submatrices.

We can then treat these blocks as if they were

matrix elements.

We will divide a matrix A into s2 submatrices.

Creates an s × s matrix called As whose “ele-

ments” are submatrixes of size m × m, where

m = n/s.

Use notation Ap,q to be the submatrix at row

p and column q of As.

c©2002-2004 R. Leduc 6

Multiplication Algorithm Using Submatri-

ces

For our matrix As, the sequential algorithm
becomes:

for (p = 0; p < s ; p++)
for (q = 0; q < s; q++) {

Cp,q = 0; /* set to m x m Zero matrix */
for (r = 0; r < s; r++) /* submatrix multiplication */

Cp,q = Cp,q + Ap,r * Br,q; /* and add to */
} /* accumulating submatrix */

In inner loop, we are multiplying two subma-

trices, and adding it to submatrix Cp,q.

This means the inner loop would actually be

composed of additional loops to do the matrix

multiplication and matrix addition.

Approach is called block matrix multiplication.

See Figures 10.4, and 10.5

c©2002-2004 R. Leduc 7

201
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

× =

Sum

A B C

Figure 10.4 Block matrix multiplication.

p

qMultiply results

c©2002-2004 R. Leduc 8

202
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

a0,0 a0,1 a0,2 a0,3

a1,0

a2,0

a3,0

a1,2a1,1

a2,1

a3,1

a2,2

a3,2 a3,3

a1,3

a2,3

b0,0 b0,1 b0,2 b0,3

b1,0

b2,0

b3,0

b1,2b1,1

b2,1

b3,1

b2,2

b3,2 b3,3

b1,3

b2,3

a0,0 a0,1

a1,0 a1,1

b0,0 b0,1

b1,0 b1,1

a0,2 a0,3

a1,2 a1,3

b2,0 b2,1

b3,0 b3,1

(a) Matrices

(b) Multiplying A0,0 × B0,0 to obtain C0,0

a0,0b0,0+a0,1b1,0 a0,0b0,1+a0,1b1,1

a1,0b0,0+a1,1b1,0 a1,0b0,1+a1,1b1,1

A0,0 B0,0 A0,1 B1,0

a0,2b2,0+a0,3b3,0 a0,2b2,1+a0,3b3,1

a1,2b2,0+a1,3b3,0 a1,2b2,1+a1,3b3,1

+

× + ×

=

=

a0,0b0,0+a0,1b1,0+a0,2b2,0+a0,3b3,0 a0,0b0,1+a0,1b1,1+a0,2b2,1+a0,3b3,1

a1,0b0,0+a1,1b1,0+a1,2b2,0+a1,3b3,0 a1,0b0,1+a1,1b1,1+a1,2b2,1+a1,3b3,1

= C0,0

Figure 10.5 Submatrix multiplication.

×

c©2002-2004 R. Leduc 9

Direct Implementation

Will start with the simplest way to parallelize

matrix multiplication.

If using n2 processors, and each will calculate

one element of matrix C.

Means each processor needs one row of ele-

ments from A and one column of elements

from B.

Typically, a given row or column is sent to more

than one process.

ie. to compute elements c0,0 and c0,1 both

require row 0 of matrix A.

If using submatrices, then use s2 processors

and each calculates an m × m submatrix of C.

c©2002-2004 R. Leduc 10

Analysis for Element-wise Algorithm

Assuming n × n matrices.

Communication: if send separate messages

to each n2 processor, must send 2n elements.

Each slave will return 1 element of C.

tcomm = n2(tstartup + 2ntdata) + n2(tstartup + tdata)

= n2(2tstartup + (2n + 1)tdata)

If use broadcast, we could get:

tcomm = (tstartup + n2tdata) + n2(tstartup + tdata)

Makes the dominant time the return of results

as tstartup typically much larger than tdata.

c©2002-2004 R. Leduc 11

Analysis for Element-wise Algorithm Cont.

Computation: Each slave in parallel performs
n multiplications and n additions.

tcomp = 2n

Combining gives at best:

tp = (tstartup + n2tdata) + n2(tstartup + tdata) + 2n

Versus: ts = 2n3

c©2002-2004 R. Leduc 12

Analysis for Submatrices Algorithm

To reduce the number of processors required,

we will use s2 submatrices, and thus s2 proces-

sors.

Communication: each processor must receive

one row and one column of submatrices (2s

submatrices in total), each with m2 elements

(m = n/s).

Each processor must return a C submatrix (
m2 elements) to the master process.

tcomm = s2{(tstartup + 2sm2tdata) + (tstartup + m2tdata)}

= (n/m)2{(tstartup + 2nmtdata) + (tstartup +

m2tdata)}

= 2(n/m)2tstartup + (n2 + 2n3/m)tdata

If use broadcast, we could get:

tcomm = (tstartup + n2tdata) + (n/m)2(tstartup +

m2tdata)

c©2002-2004 R. Leduc 13

Analysis for Submatrices Algorithm Cont.

Computation: Each slave must process a row

and a column of m × m submatrices.

Means s passes through loop that does one
matrix multiplication (2m3 steps) and one ma-
trix addition (m2 steps).

tcomp = s(2m3 + m2) O(sm3) = O(nm2)

Combining gives at best:

tp = (tstartup + n2tdata) + (n/m)2(tstartup +

m2tdata) + 2nm2 + m

Versus: ts = 2n3

c©2002-2004 R. Leduc 14

Recursive Implementation

In the original element-wise matrix multipli-

cation algorithm the inner loop was: sum =

sum + a[i][k] ∗ b[k][j];

The submatrix inner loop was: Cp, q = Cp, q +

Ap, r ∗ Br, q;

Which suggests if we continued dividing the

submatrices further into smaller submatrices,

we’d eventually get 1 × 1 matrices, assuming

that n was a power of two.

At this point, the submatrix multiplication ap-

proach reduces to the element-wise algorithm.

c©2002-2004 R. Leduc 15

Recursive Implementation Cont.

To add matrices A and B, each matrix is di-
vided into four square matrices: App, Apq, Aqp, Aqq

and Bpp, Bpq, Bqp, Bqq.

We can then recursively divide each submatrix
into 4 submatrices in order to perform the sub-
matrix multiplications, stopping when the new
submatrices are single elements.

mat_mult(A, B,s) {
if (s == 1)

C = A*B;
else {

s = s/2;
P0 = mat_mult(App, Bpp, s);
P1 = mat_mult(Apq, Bqp, s);
P2 = mat_mult(App, Bpq, s);
P3 = mat_mult(Apq, Bqq, s);
P4 = mat_mult(Aqp, Bpp, s);
P5 = mat_mult(Aqq, Bqp, s);
P6 = mat_mult(Aqp, Bpq, s);
P7 = mat_mult(Aqq, Bqq, s);
Cpp = P0 + P1;
Cpq + P2 + P3;
Cqp = P4 + P5;
Cqq = P6 + P7;

}
return (C);

}

c©2002-2004 R. Leduc 16

Discussion of Recursive Method

Would not want to run the recursive method

directly (too much overhead).

As we saw in the divide and conquer chapter,

we can use the tree construction to map the

recursive problem into a parallel D & C imple-

mentation.

This would be similar to Figures 4.3 and 4.4,

except using an octtree instead of a binary

tree.

Normally, limit the level of recursion to match

the number of processes. If had 64 proces-

sors, then would stop after the second level of

recursion with s = n/4.

Works well for shared memory multiprocessors

with local cache memory as at each stage, the

size of data is reduced and localized.

c©2002-2004 R. Leduc 17

69
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

Figure 4.3 Dividing a list into parts.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Original list

x0 xn−1

c©2002-2004 R. Leduc 18

70
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

Figure 4.4 Partial summation.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Final sum

x0 xn−1

c©2002-2004 R. Leduc 19

Mesh Implementation

As a matrix is a two-dimensional array, a 2d

mesh/torus is a natural message passing topol-

ogy to use.

Allows for simultaneously shifting columns ver-

tically and rows horizontally.

Will discuss a method called Cannon’s algo-

rithm that requires a torus structure as shifts

will include wraparound.

Will disuss in terms of elements, but in reality

would use submatrices.

c©2002-2004 R. Leduc 20

Cannon’s Algorithm

The algorithm to multiply the two n × n ma-

trices A and B to create C is:

1) At startup, each processor Pi,j has elements

ai,j and bi,j (0 ≤ i < n,0 ≤ j < n).

2) Need to shift elements to align them to be

multiplied. The entire ith row of A is shifted

i places to the left and the entire jth column

of B is shifted j places upwards. See Figure

10.10.

This puts elements ai,j+i and bi+j,j in process

Pi,j, and we are ready to calculate ci,j.

3) Each processor Pi,j multiplies together its

two elements.

c©2002-2004 R. Leduc 21

207
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

B

A

Figure 10.10 Step 2 — Alignment of
elements of A and B.

j

i

bi+j,j

ai,j+i

i places

j places

c©2002-2004 R. Leduc 22

Cannon’s Algorithm Cont.

4) The ith row of A is then shifted one place

to the left, and the jth column of B is shifted

1 place upwards. See Figure 10.11.

5) Each processor Pi,j multiplies the two new

elements it receives and adds the result to its

accumulating sum.

6) Steps 4 and 5 are repeated until ci,j calcu-

lation complete. Will perform step 4, (n − 1)

times in total.

c©2002-2004 R. Leduc 23

208
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen Prentice Hall, 1998

B

A

Figure 10.11 Step 4 — One-place shift of
elements of A and B.

j

i

Pi,j

c©2002-2004 R. Leduc 24

The Need to “Align” Elements

In step 2 of the algorithm, the ith row of A

is shifted left i places, and jth column of B is

shifted j places upwards.

This is done to set up for the algorithm. To

see why, look at Figure 10.5 and consider the

calculation for element c1,0 (process P1,0).

According to step 1, P1,0 initially contains ele-

ments a1,0 and b1,0. We want to calculate:

c1,0 = a1,0b0,0 + a1,1b1,0 + a1,2b2,0 + a1,3b3,0

Clearly, a1,0 and b1,0 are not a matching pair.

How ever, shifting one place left, and 0 places

up, gives a1,1 and b1,0 which match.

From this point on, 1 left shift, and 1 up shift

will create matching pairs.

Could align in different ways, but would be

same amount of work.

c©2002-2004 R. Leduc 25

Cannon’s Algorithm: Analysis

We will consider Cannon’s algorithm using s2

submatrices, each m × m (m = n/s).

Communication: Initial alignment requires max-

imum of s−1 shifts, each requiring m2 elements

to be sent. Then s − 1 shifts to multiply and

add the matrices.

tcomm = 2(s − 1)(tstartup + m2tdata)

Complexity is thus O(sm2) = O(nm)

Computation: Each processor is essentially
processing a loop s times where it multiplies
two submatrices together (2m3 operations),
and performs a matrix addition (m2 opera-
tions) for the accumulation.

tcomp = s(2m3 + m2) O(sm3) = O(nm2)

tp = 2(s − 1)(tstartup + m2tdata) + s(2m3 + m2)

c©2002-2004 R. Leduc 26

