
∗

Image Processing

∗Material based on Chapter 11, Image Processing, of
B. Wilkinson et al., “PARALLEL PROGRAMMING.
Techniques and Applications Using Networked Work-
stations and Parallel Computers”

c©2002-2004 R. Leduc



Low Level Image Processing

Low level image processing is used to improve

or enhance an image to aid in human and com-

puter recognition of picture.

Some applications are medical diagnosis, police

fingerprints, film industry etc.

Operates directly on the image stored digitally

as a two dimensional array of pixels.

Images stored as monochrome images or as

color images.

Pixels in monochrome images are given a gray

level value or intensities.

Gray levels have range of value from a mini-

mum value and maximum. Typically zero for

Black and 255 for white.

In a color image, each pixel typically has an

attached red, green, and blue value.

c©2002-2004 R. Leduc 1



Low Level Image Processing Cont.

We will assume that the image uses a coor-

dinate system where the origin is the top left

corner. See Figure 11.1.

In low level processing, we use individual pixel

values to alter the image in the desired way.

Typical operations can be classified as:

Point Operations: operation requires the value

of a single pixel.

Local Operations: operation requires a group

of neighbouring pixels.

Global Operations: operation requires every

pixel in image to calculate result.

c©2002-2004 R. Leduc 2



224
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 11.1 Pixmap.

j

i

Origin (0, 0)

p(i, j)Picture element
(pixel)

c©2002-2004 R. Leduc 3



Why Parrallelize?

If we have a 1024 × 1024 greyscale image (8

bits per pixel), we would have 220 pixels, re-

quiring 1Mbyte of storage.

If each pixel required just one operation, you

are looking at 220 operations. For a 10ns/operation

computer, that would take about 10ms.

If doing real time operations for video, must do

this once per frame with rate typically 60− 85

frames/second (ie. every 12-16ms).

Normally, several complex operations need to

be applied to the image every frame.

c©2002-2004 R. Leduc 4



Smoothing and Sharpening

Smoothing and sharpening are common local

operations performed on images. Will assume

using monochrome values.

Smoothing removes large fluction in grey-level

values over image.

Accomplished by removing high frequency con-

tent of the image.

Sharpening emphasizes transitions which en-

hances details.

Accomplished by removing low frequency con-

tent of the image.

We will look at the mean and weighted mask

operators to perform these two operations.

c©2002-2004 R. Leduc 5



Mean Operator

Simple operator that takes the mean or aver-

age value of a group of neighbouring pixels.

Performs a smoothing operation.

Requires access to a group of pixels around the

pixel to be modified. Often uses a 3×3 group

such as in Figure 11.3.

To calculate x′
4, the new value for x4, we com-

pute:

x′
4 =

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8

9

Sequential Code: Above calculation requires

9 operations and must be applied to all n pix-

els.

ts = 9n and is thus O(n)

c©2002-2004 R. Leduc 6



226
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

x0

x3 x4 x5

x1 x2

x6 x7 x8 Figure 11.3 Pixel values for a 3 × 3 group.

c©2002-2004 R. Leduc 7



Mean Operator: Parallel Code

To parallelize the code, the easiest way is to

divide the image into blocks of rows, and give

them to multiple processors.

Assume we have
√

n ×
√

n pixels, p processors,

and that
√

n/p is an integer.

Each processor has
√

n/p rows to process, thus

n/p pixels.

tp = 9n/p and is thus O(n/p)

In both cases, would need two arrays. One

to store original image, one to store updated

image.

c©2002-2004 R. Leduc 8



Weighted Masks

Similar to the mean operator, but have a weight

value for each pixel in the mask.

For a 3×3 mask, would have values: w0, w1, . . . , w8.

If pixels of interest are x0, x1, . . . , x8, the new
value for center pixel, x4, is:

x′
4 =

w0x0 + w1x1 + w2x2 + w3x3 + w4x4 + w5x5 + w6x6 + w7x7 + w8x8

k

Typically, k = w0 + w1 + . . . + w8.

The mean operator is equivalent to a mask

with all weights set to 1.

To perform a sharpening operation, use:

x′
4 =

8x0 − x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8

9

c©2002-2004 R. Leduc 9



Boundary Cases

Pixels at the edges of the image will not have a

full set of pixels to perform mean or weighted

mask operation.

Easiest way to handle this is to not process

border pixels.

If have n × n image, then process only pixels:

p(i, j) where (1 ≤ i ≤
√

n − 1)(1 ≤ j ≤
√

n − 1)

c©2002-2004 R. Leduc 10


