
∗

Genetic Algorithms

∗Material based on Chapter 12, Searching and Opti-
mization, of B. Wilkinson et al., “PARALLEL PRO-
GRAMMING. Techniques and Applications Using Net-
worked Workstations and Parallel Computers”

c©2002-2004 R. Leduc



Evolution and Genetic Algorithms

Genetic algorithms try to mimic evolution in a

population of a species.

Based on the concept of chromosomes from

biology.

Chromosomes uniquely determine characteris-

tics of living creatures.

When two beings reproduce, portions of the

chromosomes of each parent are combined to

create the chromosomes of the child.

Children thus exhibit a blend of their parent’s

characteristics.

This inheritance is called crossover.

c©2002-2004 R. Leduc 1



Evolution and Genetic Algorithms

cont.

Other major operator is called mutation.

This is when a random change to the child’s

chromosomes occurs that may result in a child

with characteristics significantly different from

either parent.

Mutation typically creates significant change

in the child’s “viability,” either for better or

worse.

As more ways to decrease one’s viability than

increase, many mutations at once would be

detrimental to a population.

Together, crossover and mutation cause the

evolution of the population in this model.

c©2002-2004 R. Leduc 2



Viability

Organism must interact with environment.

If changes to its chromosomes improve its vi-

ability compared to its parents, its more likely

that it will survive to pass its new traits on.

The “strongest” and “fittest” of course do not

necessarily always survive to reproduce.

A genetic algorithm uses these principles and is

characterized by repeatedly applying the con-

cepts of crossover and mutation, where the

production of each new “generation” is based

on the relative fitness of the members of the

previous one.

This optimization method tends to produce

good solutions as the “population” evolves over

time.

c©2002-2004 R. Leduc 3



General Structure of a Genetic Al-

gorithm

1) Initial population of “solutions” (organisms)

is created.

2) Each individual is evaluated using application-

specific criteria to determine its “fitness.”

3) Subset of population chosen to reproduce.

Criteria that favours “more fit” individuals used.

4) Subset used to produce new generation of

offspring using crossover.

5) Small number of the next generation are

mutated.

6) steps 2-5 repeated to produce many gener-

ations. Continues until termination conditions

met.

c©2002-2004 R. Leduc 4



Sequential Genetic Algorithm

generation_no = 0;
initialize Population(generation_no);
evaluate Population(generation_no);
set termination condition to False;
while (not termination condition) {

generation_no++;
select Parents(generation_no) from

Population(generation_no - 1);
apply crossover to Parents(generation_no) to get

Offspring(generation_no);
apply mutation to Offspring(generation_no) to get

Population(generation_no);
evaluate Population(generation_no);
update termination condition;

}

c©2002-2004 R. Leduc 5



Illustrative Example

Example: find maximum of:

f(x, y, z) = −x2+1,000,000x−y2−40,000y−z2

with variables x, y, and z restricted to integer

range: −1,000,000 to 1,000,000

Example useful for comparison to different meth-

ods as closed solution exists.

Using algebra, f can be factored into the form:

f(x, y, z) = 2504×108−(x−500,000)2−(y+20,000)2−z2

Clearly, the maximum 2504 × 108 occurs at

x = 500,000, y = −20,000, and z = 0.

c©2002-2004 R. Leduc 6



Illustrative Example Cont.

Exhaustive approach of evaluating f for all com-

binations of (x, y, z) would mean trying

(2,000,001)3 values.

If each evaluation took 100ns, this would take

> 22,000 years on a single processor.

Even if parallelization sped things up by factor

of 10,000, this would take more than 2 years!

c©2002-2004 R. Leduc 7



Initial Population: Data Represen-

tation

Before we select our initial population, we need

to decide how to represent a solution.

For us, each solution will be represented by a

binary string.

the ith member of a given population would be

the tuple (xi, yi, zi).

As each variable is over range of −1,000,000

to 1,000,000, it can take on 2,000,001 unique

values.

Each variable can thus be stored using 21 bits
as:

220 < 2,000,001 ≤ 221

c©2002-2004 R. Leduc 8



Data Representation Cont.

The solution can be represented by its “chro-

mosome” which would be the 63 bit binary

number created by the concatenation of the

three variables.

For tuple (x, y, z) = ((+262,408), (+16,544), (−1032)),
we can represent them individually using sign-
and-magnitude representation as follows:

x = 001000000000100001000

y = 000000100000010100000

z = 100000000010000001000

The chromosome for (x, y, z) is the 63 bit num-
ber:

00100000000010000100000000010000001010000\\
0100000000010000001000

We can now use a psuedorandom generator to

create an initial “population” of 63 bit num-

bers.

c©2002-2004 R. Leduc 9



Evaluation

For each generation, we need to determine the

fitness of each individual.

For our current example, we can evaluate the

function for each tuple. The larger the result,

the more “fit” the individual is.

For (x, y, z) = ((+262,408), (+16,544), (−1032)), we
get:

f(x, y, z) = −(262,408)2 + 1,000,000(262,408)

−(16,544)2 − 40,000(16,544) − (−1032)2

= 192,613,512,576

Constraints: As 220 = 1,048,576, it’s possi-

ble to have magnitudes outside our 1,000,000

range.

Such a tuple could be handled by NOT consid-

ering it as possible parent for next generation.

Could also be altered to bring back into range.

c©2002-2004 R. Leduc 10



Selection Process

To mimic the biological process, we want a

selection process that favours the fittest, but

allows for “accidents” to happen.

Will use the tournament selection method to

achieve this.

For each tournament, k individuals are chosen.

Each member of current generation has equal

chance to be chosen.

Of these k individuals, the fittest is deemed to

be the winner, and will be a parent for the next

generation.

There will be n tournaments, thus n parents.

c©2002-2004 R. Leduc 11



Offspring Production: Single-point

Crossover

Once the parents are determined, we need to

combine their chromosomes to create children.

Will use the single-point crossover method.

We make a single cut at the pth bit (p is ran-

domly chosen) in the m bit chromosome of

each parent (labelled A and B).

Child number one’s chromosomes are created

from the first p bits of parent A’s chromo-

somes, and the last m − p bits from parent

B.

Child number two’s chromosomes are created

from the first p bits of parent B’s chromo-

somes, and the last m − p bits from parent

A. See Figure 12.2.

c©2002-2004 R. Leduc 12



261
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

A1 A2

B1 B2

A1 B2

B1 A2

Parent A

Parent B

Child 1

Child 2
Figure 12.2 Single-point crossover.

1

1

1

1

p

p

p

p

p+1

p+1

p+1

p+1

m

m

m

m

c©2002-2004 R. Leduc 13



Mutation

After crossover is used to produce offspring, a

subset of the offspring is selected for mutation.

Mutations usually involve a change to only a

single bit.

For the x, y, or z component, this could re-

sult in a sign change, or a magnitude change

as small as (±1) for bit zero, or as large as

(±524,288) for bit 19.

As change could be so dramatic, want to keep

rate of mutation small to allow stable integra-

tion into population, or could get noncover-

gence of algorithm.

c©2002-2004 R. Leduc 14



Termination Conditions

Usually choose a maximum number of genera-

tions as an upper limit as well as some means

to measure the “quality” of the current solu-

tions.

One way to do this is to compare successive

generations, and measure the improvement be-

tween generations.

Another way is to measure similarity of popu-

lation as this increases as algorithm converges

towards an optimal solution.

c©2002-2004 R. Leduc 15



Parallel Algorithms

Two main approaches to parallelize genetic al-

gorithms:

1) Isolated Subpopulations with Migration

2) Common Population

In approach 1, each processor applies sequen-

tial genetic algorithm on a separate subpopu-

lation and then they periodically (every k gen-

erations) share their “best” individuals.

Sharing referred to as migration.

c©2002-2004 R. Leduc 16



Migration Operator

The migration operator handles the exchange

of individuals between subpopulations. It takes

care of:

1) Selection of the emigrants

2) Sending and receiving the emigrants

3) Integrating the emigrants

Have to be careful how to choose which indi-

viduals to send and which to replace with the

new emigrants.

If simply send the fittest, and remove the weak-

est could push the solution towards a local op-

timal.

c©2002-2004 R. Leduc 17



Migration Models

Migration causes communication overhead.

Need to balance variance in subpopulations,

with frequency and volume of communication

to achieve this variance.

Two main migration models:

• Island Model: Individuals allowed to mi-

grate to any other subpopulation. See Fig-

ure 12.3.

Permits more freedom and in some ways

closer to natural processes.

Significant more communication and delay

than second method.

c©2002-2004 R. Leduc 18



Migration Models Cont.

• Stepping Stone Model: Individuals only

allowed to migrate to neighbouring popu-

lations.

Reduces communication by limiting possi-

ble destinations, and thus number of mes-

sages. See Figure 12.4.

c©2002-2004 R. Leduc 19



262
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Subpopulation

Migration path;

Figure 12.3 Island model.

every island sends
to every other island

c©2002-2004 R. Leduc 20



263
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Island subpopulations

Limited migration path Figure 12.4 Stepping stone model

c©2002-2004 R. Leduc 21



Parallel Algorithm: Subpopulations

For each slave process:

generation_no = 0;
initialize Population(generation_no);
evaluate Population(generation_no);
set termination condition to False;
while (not termination condition) {

generation_no++;
select Parents(generation_no) from

Population(generation_no - 1);
apply crossover to Parents(generation_no) to get

Offspring(generation_no);
apply mutation to Offspring(generation_no) to get

Population(generation_no);
apply migration to Population(generation_no);
evaluate Population(generation_no);
update termination condition;

}

send best solution to master;

Master process chooses best solution from the

subpopulations.

c©2002-2004 R. Leduc 22



Subpopulations: Pros and Cons

Pros: As communication occurs only every k

generations, should see speedup factor of p (for

p processors) for this portion of the computa-

tion.

Migration every k generations will reduce the

speedup.

This reduction will be least in “stepping stone

model” as communication only to nearest neigh-

bour.

Cons: The mostly isolated subpopulations in-

creases chance that each subpopulation will

converge to a local optimal.

c©2002-2004 R. Leduc 23



Algorithm 2: Common Population

Here, the genetic operators are performed in

parallel on a common population.

If each processor had information about all of

the individuals, then they could perform selec-

tion, crossover, and mutation in parallel (ie. a

pipeline).

If use tournament selection, they would all be

operating on independent pairs of individuals.

Similarly, they could evaluate independent sets

for generating and evaluating next population.

Unfortunately, they would then have to com-

municate the results to all processors.

c©2002-2004 R. Leduc 24



Common Population Cont.

For message-passing, the communication would

likely be more than the computation.

For shared memory system, could store results

in common memory reducing communication

time considerably.

Assigning each processor a subset to process

reduces memory contention.

Synchronizing after each generation reduces

the parallelization, this shouldn’t be too bad

as only accessing memory.

c©2002-2004 R. Leduc 25


