
RISC Machines∗

∗From Chapter 2 of High Performance Computing

c©2002-2004 R. Leduc



Complex Instruction Set Comput-
ers

The instruction set of a Complex instruction

set computer (CISC) contains powerful primi-

tives. Close in functionality to high level lan-

guages.

Why CISC?

At the time, it was the best choice.

• Compilers didn’t generate fast enough code,

or use memory well enough.

Had to save space and time. Meant pro-

gramming in assembly code.

High level primitives were easy to under-

stand and work with.

c©2002-2004 R. Leduc 1



• “Powerful” instructions did multiple tasks

with one command. Programmer didn’t

have to specify all the steps.

Took up less memory. Loaded faster as

only one instruction to fetch from slow main

memory.

Problem was, these “powerful” instructions meant

for complex, and slower chips.

Optimizing compilers didn’t tend to use them.

The commands did too much at once. Hard

for the compiler to look for redundancies or

opportunities to parallelize code.

c©2002-2004 R. Leduc



RISC Machines

RISC designers wanted a high performance pro-

cessor that had a high clock speed and fit on

a single chip.

A CPU on a single chip means less cost, more

reliable, and faster clock speed.

Needed to create a new minimal instruction

set to make a processor that could fit on a

single chip. Reduced instruction set computers

(RISC) were born.

Why would simpler instructions allow the de-

signer to crank up the clock speed?

c©2002-2004 R. Leduc 2



RISC Machines Cont.

RISC machines simpler than CISC a myth. Lat-

est RISC most complex ever built.

Complexity moved from instruction set into

compiler. A good optimizing compiler can make/break

a RISC chip.

c©2002-2004 R. Leduc 3



Characterizing RISC Machines

Common features found in RISC machines:

• Instruction pipelining

• Pipelining floating point execution

• Uniform instruction length

• Delayed Branching

• Load/store architecture

• Simple addressing modes

c©2002-2004 R. Leduc 4



Instruction Pipelines

In a computer, every action is synchronized to

a clock. Determines speed of system. Techni-

cal reasons make it difficult to increase. Cost

often prohibitive.

Alternative, is to partially overlap execution of

instructions (say: two additions).

Want more than one in progress at same time.

Could have two adders, but that means dou-

bling the H/W and thus cost.

Cheaper approach: after launching one instruc-

tion, immediately launch second without wait-

ing for first to complete.

Nearly same performance as doubling H/W

c©2002-2004 R. Leduc 5



Instruction Pipelines Cont.

This approach is called pipelining. Uses fact

that many operations can be decomposed into

several identifiable steps that use different re-

sources.

Fig 2-1. Say operations can be broken down

into 5 independent steps. An operation enters

pipeline at left, and after 5 clock ticks exits.

As soon as 1st instruction clears stage 1, sec-

ond can be started. Can have up to 5 instruc-

tions “in flight” at same time.

Powerful! After 5 clock ticks, we get 1 instruc-

tion per cycle instead of 1 every 5 ticks!

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 6



Instruction Processing

Instruction processing can be pipelined. Can

be broken down into 5 steps in Fig 2-2.

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 7



Instruction Processing Cont.

Problems: Each step must occur on different

instructions at same time. If stage 2 takes

longer than stage 1, then pipeline frozen until

stage 2 complete.

A stall at any stage freezes entire pipeline.

They must move in lockstep.

What about a jump caused by an if statement?

Processor doesn’t know if a branch will take

place until executes instruction.

c©2002-2004 R. Leduc 8



Program Branch Problem

If branch taken, then information in pipeline

incorrect and must be flushed. Will be 5 clock

cycles before next instruction can be processed,

instead of 1! See Fig 2-3.

The longer the pipeline, the greater the penalty!

The more stalls, the slower overall performance.

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 9



Pipelining Floating-Point Operations

As floating-point operations typically take longer

than integer, they are usually pipelined.

Usually includes addition subtraction, multipli-

cation, and comparisons.

Once computation started, rest of processor

can perform other tasks. Results appear later

in a register.

Can have multiple floating-point operations in

pipeline at once.

c©2002-2004 R. Leduc 10



Uniform Instruction Length

For pipeline, want each stage to take about

same time. For instruction fetch, how do we

know how many bytes to fetch?

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 11



Uniform Instruction Length Cont.

For CISC machines, instructions can be of vari-

able length. If long instruction, pipeline stalls.

∗

Eliminate this by making all instructions same

length. Thus know complete and doesn’t need

additional memory fetches.

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 12



Delayed Branches

Used to reduce cost of a misguessed branch.

Required instruction after branch that can be

executed no matter what.

More robust approach is to “predict” direction

of branch.

During decode stage, CPU notices instruction

is a branch. Consults a table that keeps recent

behaviour of branch and makes a guess.

Based on guess, processor starts fetching in-

structions on “predicted” branch.

c©2002-2004 R. Leduc 13



Load/Store Architecture

Memory access is limited to explicit load and

store operations. In a CISC processor, arith-

metic operations often include embedded mem-

ory references.

• Instructions must be same length. A mem-

ory reference and calculation won’t fit in

one instruction word.

• Complicates pipeline. If calculation could

also perform memory access, would need

two execution stages.

• Embedded memory references take more

time, and would stall pipeline.

c©2002-2004 R. Leduc 14



Simple Addressing Modes

Want to avoid complex address modes as they

require several memory references, and thus

take more time. Stalls pipeline.

Can still do complex data structures. Compiler

generates explicitly extra address calculations.

Often easier for the compiler to optimize.

c©2002-2004 R. Leduc 15



Second-Generation RISC

Superscalar Processors: Can now fit more on

a chip. Add duplicate elements to increase

performance. ie. multiple instruction and

floating point pipeline.

Must be independent of each other.

Problem: must find enough to do in par-

allel (that doesn’t violate a precedence) to

keep all elements busy.

Also called multiple instruction issue pro-

cessors.

c©2002-2004 R. Leduc 16



Second-Generation RISC Cont.

Superpipelined Processors: Pipeline depth in-

creased above 5 stages. By decomposing

instructions into 10 stages (for example),

then should be able to double clock speed.

Increases penalty of a stall!

Need good compiler.

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 17



Post RISC Architecture

Two-way superscalar processors were achiev-

ing about 1.6-1.8 instructions per cycle.

Next step would naturally be four-way or eight-

way, right?

Need to keep four (eight) units busy. Hard to

find four (eight) sets of instructions in a row

to execute in parallel.

Solution? Out of order execution and specu-

lative computation.

If the processor could not find enough instruc-

tions in the sequential stream, it looks ahead

for instructions that don’t rely on previous ones.

It then computes them in advance to take up

unused resources.

But, what if that instruction would never get

executed?

c©2002-2004 R. Leduc 18



Speculative Computation

Must separate the idea of computing a value

from executing an instruction.

If need to make use of unused resources, pro-

cessor computes the value of instructions that

it thinks it may need, particularly if they are a

slow operation. The results are then stored in

an internal, hidden, register.

If a branch occurs, and the instruction isn’t

needed, the results are discarded.

If required, instruction appears to execute in

one clock cycle.

This is called speculative computation.

Instructions that are being executed out of or-

der need to be stored somewhere. This is done

in the instruction reorder buffer (IRB).

c©2002-2004 R. Leduc 19



The Post-RISC Pipeline

First two stages of pipeline still fetch and de-

code. Decode includes branch prediction.

Next, instructions are placed in the IRB to be

computed ASAP.

∗

∗K. Dowd and C. Severance, High Performance Com-
puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 20



The Post-RISC Pipeline Cont.

The IRB holds instructions waiting to execute.

When decode unit predicts a branch, the in-

structions on branch are marked so they can

be easily found later if prediction incorrect.

In IRB, instructions go to computation units

as soon as they have their operands.

As results not seen externally, any instruction

ready to go can be computed.

Results stored in registers hidden from pro-

grammer called rename registers.

Execution unit similar to one from a normal

superscalar RISC processor. Pipelined. Gener-

ally, up to four instructions can be performed

in parallel, if available.

c©2002-2004 R. Leduc 21



Storing Computations

After results of instructions stored, must wait

till the instructions that proceeded it are eval-

uated to know if instruction actually should be

executed.

Not only results stored, but the flags associ-

ated with it. Don’t want processor to act on

an exception before even know if instruction

executed!

If branch mispredicted, all instructions from

this path must be discarded.

c©2002-2004 R. Leduc 22



Retiring Instructions

Last phase of pipeline called “retire.”

Instructions that have already been computed

are now “executed.”

Keeps track of instruction order, and “retires”

the instructions in the original program order.

Normally up to 4 per clock cycle.

Data is copied from rename registers to actual

registers, and exceptions are raised as needed.

Post-RISC pipeline actually three pipelines tied

together by two buffers.

Externally, appears as a regular RISC processor

with expected instruction execution.

c©2002-2004 R. Leduc 23


