
Memory∗

∗From Chapter 3 of High Performance Computing

c©2002-2004 R. Leduc



Memory

Even if CPU is infinitely fast, still need to

read/write data to memory.

Speed of memory increasing much slower than

processor speed.

As computers become faster, people want to

handle problems of ever increasing size.

Requires a large, yet fast memory system. Hard

to get, and won’t be cheap!

c©2002-2004 R. Leduc 1



Memory Cont.

Possible approaches:

• The entire memory can be made fast to

handle every memory access.

• Slow memory can be accessed using a “round-

robin” approach to give appearance of faster

system.

• Make memory system wide, so each trans-

fer provides many bytes of memory.

• Divide memory system into faster and slower

sections. Ensure that the faster section

used more often.

c©2002-2004 R. Leduc 2



Cost dominating factor. A cheap system that

performs well most of the time will be preferred

to an extremely fast, but extremely expensive

system.

A combination of the above are usually used.

c©2002-2004 R. Leduc



Memory Technology

Two types of memory used: dynamic random

access memory (DRAM), and static random

access memory (SRAM).

• With DRAMs, each bit is an electrical charge

stored in a tiny capacitor. The charge leaks

away over time, so must be refreshed.

Reading a bit causes the charge to be lost,

and thus must be refreshed. Can’t access

while being refreshed.

DRAM has higher number of memory cells

per chip, and thus cheaper, uses less space

and power, and produces less heat.

• SRAM is created using logic gates. A bit

is stored using 4-6 transistors.

c©2002-2004 R. Leduc 3



SRAM is faster.

In addition to technology, performance is lim-

ited by wiring layout and the external pins for

the chips.

c©2002-2004 R. Leduc



Access Time

Memory access time: The time required to

read or write a location in memory.

Memory cycle time: States how often you can

repeat a memory reference.

Clock period of home computers went from

210ns for IBM XT, to 3ns for a 300 MHz Pen-

tium II.

Access time for commodity DRAM went from

200ns to 50ns in same time.

Processor performance was doubling every 18

months, but memory every 7 years!

c©2002-2004 R. Leduc 4



Memory Hierarchy

Cray supercomputers created main memory out

of SRAM, but required liquid cooling. Can’t

manufacture inexpensive systems like this.

To solve the problem, a memory hierarchy is

used.

Hierarchy consists of CPU registers. Next comes

1-3 levels of high-speed SRAM cache. Then

DRAM for main memory, followed by virtual

memory typically stored on disk drives.

Which level of hierarchy we access greatly af-

fects speed of program.

Programmer must carefully manage access to

hierarchy.

c©2002-2004 R. Leduc 5



Registers

CPU registers operate at same speed of pro-

cessor thus at top of hierarchy.

When doing calculations, goal to keep operands

and temporary values in registers where possi-

ble.

Handled by optimizing compiler.

Only practical to add so many registers to a

processor. Most problems won’t fit, requiring

accessing lower levels of hierarchy.

c©2002-2004 R. Leduc 6



Caches

Caches are the next level of hierarchy.

Consist of small amounts of SRAM. Stores a
subset of the memory.

Hopefully, the cache will contain the subset
that you need, when you need it.

Usually have 1-2 on-chip caches, and perhaps
one off-chip.

Access time for cache include moving data be-
tween layers of hierarchy, and cost to keep
cache consistent with main memory.

When data always in cache, we say we have a
100% hit rate. Want 90% for level 1 cache,
and better than 50% for L2 cache.

Can characterize the performance of memory
hierarchy by considering the probability that
a memory reference would be satisfied by a
particular level of a hierarchy.

c©2002-2004 R. Leduc 7



Cache Lines

Important to keep track of which areas of main

memory are stored in the cache at the mo-

ment.

To make this easier, and to reduce the space

required to keep track of this, the cache is

partitioned into several slots of the same size

called lines.

Every line contains an equal number of sequen-

tial memory locations from main memory. Of-

ten 4-16 integers/real numbers.

c©2002-2004 R. Leduc 8



Cache Lines Cont.

Data from a given line come from the same

location, other lines may have data from a dif-

ferent part of memory. See Figure 3-1.

∗

When data requested, computer checks if a

cache line contains it. If not, a new line is

retrieved from main memory.

This means another is deleted. Hopefully not

the next one you’ll need!

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 9



Cache Consistency

If new data is stored in cache, there must be

a means to also modify the corresponding lo-

cation in main memory.

Two main types of cache:

Writeback cache: Data written to the cache

stays there until the cache line is replaced.

The data is then written to main memory.

Performs well when CPU is writing to suc-

cessive locations in a cache line.

Write-through cache: Date is written to main

memory and cache right away. Takes up a

lot of main memory bandwidth. A problem

with multiple processors.

When a line is replaced, a writeback is not

needed.

c©2002-2004 R. Leduc 10



Cache Coherency

What if writeback caches were used on a mul-

tiprocessor system?

In a multiprocessor system, we have two choices:

• Data must be written back to main mem-

ory so it will be visible to other processors.

• All processors must be made aware of cache

activity on all other processors.

They need to be told to invalidate cache

lines containing the modified data.

This is called maintaining cache coherency.

Can cause significant traffic with many pro-

cessors.

c©2002-2004 R. Leduc 11



Cache Effectiveness

Caches perform well because programs exhibit

the characteristics called: spatial and temporal

locality of reference.

In other words, programs usually access in-

structions and data that are near to other in-

structions and data in space and time.

When a cache miss occurs, the new line con-

tains not only the required data, but neighbor-

ing data.

It’s likely that the next bit of data needed is in

this line or one loaded recently.

Caches work best when memory is accessed

sequentially.

Effect of a subroutine call?

c©2002-2004 R. Leduc 12



Unit Stride

Say we have a program reading 32 bit integers.

Assume a cache line size of 256 bits.

When program reads 1st word in line, it waits

for line to be loaded. But, next 7 integers will

be in that cache line as well.

Called unit stride as address of each element

separated by one, and all data in line used.

For example:

DO I = 1, 1000000

SUM = SUM + A(I)

ENDDO

c©2002-2004 R. Leduc 13



Unit Stride Cont.

In FORTRAN, a 2-dimensional array is stored

as follows: The first column stored sequen-

tially, followed by the second and so on.

A unit stride memory reference pattern:

REAL*4 A(200,200)

DO J = 1, 200

DO I = 1, 200

SUM = SUM + A(I,J)

ENDDO

ENDDO

However, if we swapped the loops we’d get a

non-unit stride pattern.

REAL*4 A(200,200)

DO I = 1, 200

DO J = 1, 200

SUM = SUM + A(I,J)

ENDDO

ENDDO

c©2002-2004 R. Leduc 14



Cache Organization

Pairing cache lines with memory locations is

referred to as mapping.

Cache is smaller than memory means multiple

memory locations must map to same cache

line.

Each line stores info about the memory loca-

tion it holds (referred to as the tag), and some-

times when it was last used.

How a location is mapped to a cache line can

greatly alter program speed.

Three methods:

• Direct mapped

• Fully associative

• Set associative.

c©2002-2004 R. Leduc 15



Direct-Mapped Cache

Simplest approach. See Figure 3-2.

Uses fixed pattern. If processor has 4K cache,

then memory location 0, 4K, 8K, 12K, etc all

map onto cache line 0.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 16



Direct-Mapped Cache Cont.

Problem when alternating memory accesses all

resolve to same cache line.

Each causes cache miss, and replaces the pre-

vious memory location. Called thrashing.

Makes cache a liability.

Pathological case:

REAL*4 A(1024), B(1024)

DO I = 1, 1024

A(I) = A(I) * B(I)

ENDDO

To fix, adjust size of arrays (avoid powers of

2!), or insert other variables in between them.

c©2002-2004 R. Leduc 17



Fully Associative Cache

Most complex algorithm. Any location can be

mapped to any cache line.

Name comes from memory type used: asso-

ciative memory. Contains not only data, but

information about the data such as where it

comes from.

Processor asks all cache lines for memory ref-

erence at same time. If one has it, it signals

processor. Else, cache miss.

Different algorithms used to decide which line

to replace.

Common method is to replace least recent ac-

cessed line.

c©2002-2004 R. Leduc 18



Set-Associative Cache

In between the two. A two-way set-associative

cache has two direct-mapped caches side by

side. See Figure 3-3.

Each location corresponds to a cache line in

each.

Can choose which line to replace. Usually least

recently accessed.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 19



Set-Associative Cache Cont.

Easy to implement. If large enough can per-

form on par with fully associative caches.

However, can still be made to thrash.

Hard to detect, other than a certain sense of

slowness...

c©2002-2004 R. Leduc 20



Instruction Cache

Instructions and data treated different. Could

execute an instruction with a cache miss, side

by side instructions that don’t need data.

Why make them wait?

Instructions and data often come from sepa-

rate locations. Don’t want an instruction cache

miss to bump useful data.

Makes sense to separate the two. Known as

Harvard Memory Architecture.

Typically, such processors have separate L1

caches for instructions and data, and a shared

L2 cache.

c©2002-2004 R. Leduc 21



Virtual Memory

Separates the addresses used by program (vir-

tual addresses) from actual addresses where

data is stored (physical address).

Program sees address space as 0 to some large

number. Physical address might be quite dif-

ferent.

Virtual memory systems divide program’s mem-

ory into pages.

Sizes vary from 512MB to 1MB and greater -

depends on the computer.

Pages are not necessarily physically contigu-

ously allocated - the program sees them as

contiguous, though.

Makes programs easier to arrange in memory,

and to be swapped to disk.

c©2002-2004 R. Leduc 22



Page Table

When a program access a variable, say at lo-

cation 1000 in its address space, the physical

location must be looked up. This requires a

translation.

The map with this information is called a page

table.

Each process has several associated with it.

They correspond to different areas. ie. in-

structions and data sections.

c©2002-2004 R. Leduc 23



Page Table Cont.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 24



Translation Lookaside Buffer

By itself, virtual memory would be slow. How-

ever, virtual addresses tend to be grouped to-

gether. May do the same page mapping many

times per second.

Can use special cache referred to as transla-

tion lookaside buffer (TLB) to speed up the

translation.

Input to TLB: identifier of program making

memory reference and virtual page requested.

Output: pointer to physical page number.

c©2002-2004 R. Leduc 25



Translation Lookaside Buffer Cont.

TLB of finite size. If info not in TLB, then

have a TLB miss.

A new page may need to be created, or info

retrieved from page table in main memory.

Also has pathological case. Assume TLB page

size is < 40KB.

REAL*4 X(10000000)

DO I = 0,9999

DO J=1, 10000000, 10000

SUM = SUM + X(J+I)

ENDDO

ENDDO

c©2002-2004 R. Leduc 26



Page Faults

Page table entry contains additional informa-

tion about page: Flags about validity of trans-

lation, if page can be modified, how a new

page should be initialized etc.

References to invalid pages are called page

faults. This occurs when page hasn’t been

created yet, or has been swapped to disk.

Time consuming, but not errors. Perhaps caused

by first access to a variable, or call to a sub-

routine.

Pool of physical pages limited as main memory

limited. More programs running, more likely to

cause page faults.

Paging space (swap space) on hard drive is

slowest form of memory. Want to avoid as

much as possible.

c©2002-2004 R. Leduc 27



Improving Memory Performance

Two main attributes of memory system per-

formance:

Bandwidth: Deals with best steady-state trans-

fer rate for memory.

Measured by running lengthy unit-stride loop

reading/writing memory.

Latency: Measures worst-case performance when

moving small amount of data (ie. 32 or 64

bit word) from processor to memory and

vice versa.

As memory systems composed of components,

each has own bandwidth and latency values.

See Figure 3-5.

We next look at ways to improve these values.

c©2002-2004 R. Leduc 28



Improving Memory Performance Cont.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 29



Large Caches

Cache sizes are increasing. Some high end sys-

tems with 8MB! More memory than many PCs

had a few years ago.

Expensive approach, but effective. Small/medium

problems may fit entirely in cache!

Beware when testing systems. If application

grows beyond cache, could see a factor of 10

slowdown!

Beware of benchmarks!

c©2002-2004 R. Leduc 30



Wider Memory Systems

When cache line refilled: contiguous memory

locations are read from main memory.

Maybe 16, 256 bytes or more. Want operation

to be as fast as possible.

Can increase fill speed by “widening” the data

bus as shown in Figure 3-7.

c©2002-2004 R. Leduc 31



Wider Memory Systems Cont.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 32



Bypassing Cache

Spent so much time talking about how great

caches are, now we want to bypass it to speed

things up?

Some memory access patterns are non-unit stride.

Bounces all around memory.

Causes worst case behaviour for caches.

In these cases, we want to bypass cache.

Some RISC processors have special instruc-

tions that bypass the cache.

Data transferred directly between processor and

main memory. See Figure 3-8.

c©2002-2004 R. Leduc 33



Bypassing Cache Cont.

Have good chance that each access is different

RAM. Only have to wait for access time (ie

50ns) instead of cycle time (100ns)

Don’t have to move data through cache. Could

add 10-50ns to load time per word. Also,

won’t invalidate a cache line.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 34



Interleaved and Pipelined Memory
Systems

Let’s talk high end!

The Cray Y/MP and Convex C3 use multi-

banked memory systems.

C3 has up to 256 way interleaving - each bank

64 bits wide. See Figure 3-9.

Reduces chance of using same bank twice in a

row.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 35



Interleaved and Pipelined Memory

Systems Cont.

Not enough! Also need memory pipelining.

If have 16 ns processor and 50 ns memory, CPU

must start 2nd, 3rd, and 4th memory access

before receiving the first one.

When receive results from bank n, must start

access to bank n + 4 to keep pipeline moving.

c©2002-2004 R. Leduc 36



Memory Prefetching

“Poor man’s pipeline.”

Special prefetch instructions added to RISC

processors.

Idea to load data into cache before it’s needed.

Usually added by compiler when notices spe-

cific memory access patterns.

Need superscalar processors to be effective.

c©2002-2004 R. Leduc 37



Subroutine Calls

Each call to a subroutine has lot of overhead.

If task is small, may be better to do in calling

routine.

Subroutine calls make compilers inflexible.

• Side effects of subroutine unknown at time

of call. Everything must be saved.

• Subroutine may be compiled separately. Com-

pilers aren’t free to intermix, and possibly

reorder instructions to optimize.

Consider alternatives:

• Macros

• Procedure inlining

c©2002-2004 R. Leduc 38



Macros

Macros are small procedures that inserted in-

line at compile time.

Functions are only added once during program

linking.

Macros are inserted wherever they occur by the

compiler.

First stage, compiler looks for macros and in-

serts the defined code.

Later stages, compiler sees macros as normal

source code.

Can be optimized as normal. No subroutine

overhead.

c©2002-2004 R. Leduc 39



Procedure Inlining

Macros usually used for small bits of code, gen-

erally one line.

For longer (but not too long) bits of code, use

procedure inlining.

Function details copied inline into the func-

tions that call them.

Can define modular function, then inline to

avoid overhead and expose parallelism.

Supported by C++.

Problem: If overdone, you get a bloated binary.

Cause more (instruction) cache misses and per-

haps swapping.

c©2002-2004 R. Leduc 40



Branches Within Loops

Numerical programs generally spend the largest

portion of their time in loops.

Want to remove unnecessary code from loops.

Loop Invariant Conditionals

These are loops that contain a test that doesn’t

depend on the loop. ie. we know the results

before the loop

DO I = 1, K

IF (N .EQ. 0) THEN

A(I) =A(I) + B(I) *C

ELSE

A(I) =0

ENDIF

ENDDO

c©2002-2004 R. Leduc 41



Loop Index Dependent Condition-

als

For this case, the test is true for a certain range

of loop index variables.

As this has a predictable pattern, we can re-

structure.

DO I=1,N

DO J = 1,N

IF (J .LT. I)

A(J,I) = A(J,I) + B(J,I) *C

ELSE

A(J,I) = 0.0

ENDIF

ENDDO

ENDDO

c©2002-2004 R. Leduc 42



Moving Code

Can get big savings by moving unnecessary or

repeated (invariant) operations out of loop.

DO I=1,N

A(I) = A(I) / SQRT(X*X + Y*Y)

ENDDO

c©2002-2004 R. Leduc 43


