
Interconnect Technology and

Computational Speed∗

∗From Chapter 1 of B. Wilkinson et al., “PARAL-
LEL PROGRAMMING. Techniques and Applications
Using Networked Workstations and Parallel Comput-
ers”, augmented by Chapter 12 of “High Performance
Computing”

c©2002-2004 R. Leduc



Interconnect Technology

Strong similarity between high performance com-

puting and high performance networking.

Both share many technologies.

Parallel processors can be thought of a varia-

tion on “network of workstations.” They just

have faster interconnection.

Processors need to communicate with one an-

other to solve problems.

Need some form of interconnect.

Interconnect: Network connecting all parts of

parallel system.

c©2002-2004 R. Leduc 1



Interconnect Technology Cont.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 2



Bus Architecture

Easy to build and expand.

Every component connected to bus.

Can watch every operation on bus. Cache co-

herency easy to implement.

Limitation: Only 1 CPU can use bus at time.

Doesn’t scale well.

c©2002-2004 R. Leduc 3



Crossbar

Like a network switch.

Offers multiple paths between processors and

memory.

Offers overall better data throughput.

Scales better than bus-based approach.

Expensive to build, and costly as number of

CPUs increases.

Doesn’t scale to 1000 of processors.

Related: Completely connected network. For

n nodes, there is a link to any other node.

Requires n(n − 1)/2 links. Only practical for

small n.

c©2002-2004 R. Leduc 4



Pipelined Multistep Communication

More scalable means no longer able to directly

connect to each node.

May be several steps in path.

At each step message encounters a router.

Takes incoming message and forward it on ap-

propriate link towards destination.

If had to wait for entire message at each stop,

would be slow. Also, need lots of memory at

each router.

Minimize latency by pipelining data.

Dynamically establishes a temporary link through

network.

See Figure 12-4.

c©2002-2004 R. Leduc 5



Pipelined Multistep Communication
Eg.

Figure 12-4 on following slide shows an exam-

ple of a multistep communication network.

Only a small part of the network is shown, a

source and destination, and three routers.

Each input of a router is hardwired to a com-

pute node (first row of routers), or another

router (2nd and 3rd row).

The output of last row of router are hardwired

to compute nodes. All links are bidirectional.

Each router has four output ports, labelled 0 to

3, starting from the top. By selecting a specific

output port on a router, you are selecting the

router/node that is connected to that port.

c©2002-2004 R. Leduc 6



Pipelined Multistep Comm. Eg. II

For example, selecting output port 2 of router

B, means the message should be sent to input

port 3 of router C (see Figure 12-4).

When the source node sends a message to the

destination node, it starts transmitting data to

router A.

The first two bits of the message tell router A

which port to transmit the message to. in our

example, the first two bits would be: a1a0 = 01

(output port 1 - the least significant bit of a

number is sent first, just like in the parallel-

access shift register from your digital logic course).

Router strips bits a1a0 from the message and

starts transmitting the rest of the message to

router B via its output port 1.

c©2002-2004 R. Leduc 7



Pipelined Multistep Comm. Eg. III

The next two bits of the message tell router

B which port to send the message to. In our

example, the next two bits would be b1b0 = 10.

(output port two, thus router C).

Router B strips off bits b1b0, and starts trans-

mitting the rest of the message via its output

port 2.

The next two bits of the message tell router

C which port to send the message to. In our

example, the next two bits would be c1c0 = 11.

(output port three, thus to destination node).

c©2002-2004 R. Leduc 8



Pipelined Multistep Comm. Eg. IV

Router C strips off bits c1c0, and starts trans-

mitting the rest of the message via its output

port 3. It thus starts transmitting the main

data part of message to destination.

After the time to set up the links (bit c1 arrived

at router C), the remaining message time is the

time to transmit the message over the last link

due to the pipeline effect.

c©2002-2004 R. Leduc 9



Pipelined Multistep Communication
II

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 10



Multistage Interconnection Network

A multistage interconnection network (MIN) is

a network of small crossbars.

Scales far better than a bus or crossbar.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 11



Multistage Interconnection Network
Cont.

A 4x4 crossbar requires 1 step to communi-

cate. The MIN in Fig 12-5 requires 2.

Can minimize this by pipelining memory ac-

cess.

c©2002-2004 R. Leduc 12



Static Networks

Common form for message-passing multicom-

puter.

Have direct fixed physical links between nodes.

An example would be a mesh network that we

will look at soon.

A crossbar interconnect is not a static network.

Links may be bidirectional or 2 uni-directional

links.

May be transmitted serially or in parallel.

c©2002-2004 R. Leduc 13



Network Criteria

Network Bandwidth: Number of bits that can

be transmitted in unit time (bits/sec).

Network Latency: Time to make a message

transfer through network.

Communication Latency: Total time to send

the message. Includes software overhead

and interface delays.

Message Latency: This is the total time to

send a zero length message. In other words,

just the software/hardware overhead in send-

ing a message. Also called startup time.

c©2002-2004 R. Leduc 14



Network Criteria Cont.

Diameter: Minimum number of links between

the two furthest apart nodes.

Used to determine worst case delay.

bisection Width: The number of links that

must be cut to divide network in half.

Can also provide lower bound for messages

in parallel algorithm.

c©2002-2004 R. Leduc 15



Bisection Width Eg.

Assume network is 3×3 mesh (see diagram on

board in class).

Assume each link is serial and bi-directional.

For our example, we have n numbers, thus we

have n/2 numbers on each side of network (as-

suming uniformally distributed).

We need to move each set of numbers to the

other half of the network.

For our network, the bisection width, w, is

four.

This determines the maximum number of paths

that can be used to exchange information from

one side of network to the other.

c©2002-2004 R. Leduc 16



Bisection Width Eg. Cont.

Let n = 16. This means we have n/2 = 8

numbers on each side of the network.

To move one half of the numbers to the other

half of network will require
n/2
w messages phases.

As links are bidirectional, can only transmit in

one direction at a time.

To swap both sets of numbers, will thus require
n/2
w ∗ 2 = n

w message phases.

Substituting for n and w, we get n
w = 16

4 = 4.

For our example, we find that it would take

4 messages phases to swap the two sets of

numbers.

c©2002-2004 R. Leduc 17



Line/Ring

A line is a row of nodes, with connections lim-

ited to adjacent nodes.

Formed into a ring structure by connecting the

two opposite ends.

Applicable to certain types of computations.

n node ring requires n links. Diameter, n−1 if

links unidirectional.

Diameter is bn/2c if bidirectional.

When not completely connected, a network

needs a routing algorithm.

c©2002-2004 R. Leduc 18



Mesh Networks

Two dimensional mesh created by connecting

node to its 4 nearest neighbors. See Figure

12-6.

Assuming
√

n (n number of nodes) is an inte-

ger, then we have a
√

n ×√
n mesh.

Diameter is 2(
√

n − 1)

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 19



Mesh Networks Cont.

To move data through mesh, map Cartesian

(x,y) route between two points.

Like a MIN, first bits of message used to route.

Bits stripped off, and rest of message sent on.

Visualize as a worm passing though mesh. Where

head goes, data trails after it.

This technique called wormhole routing.

c©2002-2004 R. Leduc 20



Torus Networks

Variation of Mesh network.

The unused ends of the mesh are wrapped

around to the opposite end.

Reduces worst case number of hops by 50%.

Each node in an
√

n ×√
n torus has four links,

with 2n links in all.

∗
∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 21



Tree Networks

For a binary tree network (see Figure 1.12),

the first node is called the root.

Each node has two links to the two nodes be-

low.

At jth level below root node, there are 2j nodes.

There are 2j+1−1 nodes in the network, from

the jth level and above.

Such a tree is called a complete binary tree, as

it is fully populated.

Height of tree is number of links from root to

lowest leaves.

Useful for divide and conquer algorithms.

c©2002-2004 R. Leduc 22



12
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.12 Tree structure.

Processing
element

Root

Links

c©2002-2004 R. Leduc 23



Hypercubes

Before wormhole routing, number of hops a

message must pass through important.

Want interconnect to minimize # of hops, but

easy/cheap to build.

Used n-dimensional hypercubes. Each node

connects to one node in each of the n dimen-

sions.

With 4 processors, could build 2-cube. Num-

ber of nodes, N , is 2n.

A 3-cube, has 8 processors, and is an actual

cube.

Number of hops between any two nodes is n.

Diameter is thus log2(N) = n. Bisection width

is N/2.

c©2002-2004 R. Leduc 24



Hypercubes Cont.

Higher dimension cubes created by combining

two lower dimension cubes (see 4-cube).

Each node assigned a n-bit binary address. Each

bit corresponds to a dimension. See Figure

1.13

Each node connects to nodes that differ by one

bit.

∗

∗K. Dowd and C. Severance, High Performance Com-

puting, 2nd Ed., O’reilly, 1998.

c©2002-2004 R. Leduc 25



13
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.13 Three-dimensional hypercube.000 001

010 011

100

110

101

111

c©2002-2004 R. Leduc 26



Hypercube Routing

Has simple minimal distance deadlock-free rout-

ing algorithm. Called e-cube routing algorithm.

Route from node S, with address sn−1sn−2 . . . s0,

to Node D, with address dn−1dn−2 . . . d0.

Each bit different represents a direction that

must be traversed.

Found by doing exclusive-OR, R = S ⊕ D, on

bit pairs.

Dimensions to travel are bits of R that are “1.”

At each stage of route, exclusive-OR of current

node and destination node made.

Most significant (left-most bit) “1” bit used to

choose next direction.

c©2002-2004 R. Leduc 27



Embedding

For static networks, embedding means map-

ping nodes of one type of network, onto nodes

of another.

For instance, a ring network (the embedded

network), can be embedded in a torus (the

embedding network). See Figure 1.15.

Above called a perfect embedding. Each link

in ring actually exists in torus. ie. didn’t have

to use extra node to make link.

c©2002-2004 R. Leduc 28



15
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.15 Embedding a ring onto a torus.

Ring

c©2002-2004 R. Leduc 29



Embedding Cont.

Can embed a mesh or torus in a hypercube.

See 4x4 mesh example in Figure 1.16.

Every node in mesh has an x and a y coordi-

nate, labelled in a gray code.

Each node connects to another node whose

addresses differs by one bit (thus one link).

c©2002-2004 R. Leduc 30



16
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.16 Embedding a mesh into a
hypercube.

00

01

11

10

00 01 11 10y
x

Nodal address
1011

c©2002-2004 R. Leduc 31



Embedding Tree Networks

Dilation refers to quality of embedding. Dila-

tion is maximum number of links in embedding

network that correspond to one link in embed-

ded network.

Mapping a tree network into a mesh or hyper-

cube usually doesn’t result in a dilation of 1.

In Figure 1.17, the dilation is two.

c©2002-2004 R. Leduc 32



17
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.17 Embedding a tree into a mesh.

Root

A

A

A

A

A

A

c©2002-2004 R. Leduc 33



Communication Methods

To get message from source to destination, of-

ten need to route through intermediate nodes.

Two methods:

• Circuit Switching

• Packet Switching.

With circuit switching, you establish path and

maintain all links until entire message has passed

through (ie. wormhole routing).

c©2002-2004 R. Leduc 34



Packet Switching

Message broken up into “packets” of data.

Each has a source and destination address.

Network has maximum size. If too large, must

be broken down into multiple packets.

Nodes have buffers to hold packet before re-

transmission.

Called store-and-forward packet switching. High

latency!

Alternative is virtual cut-through. If outgoing

link available, message is immediately trans-

mitted and not stored in buffer.

c©2002-2004 R. Leduc 35



Wormhole Routing for Packet Switch-
ing

Alternative to normal store-and-forward rout-

ing: goal to reduce latency and size of buffers.

In wormhole routing, message divided into smaller

units called flits. Size is usually 1-2 bytes.

Only head of message (first flit) is transmit-

ted from source node to next node when link

available.

Following flits transmitted when links avail-

able.

When head flit moves to next node, the next

flit can move ahead.

Requires a request/acknowledge system. See

Figure 1.18

c©2002-2004 R. Leduc 36



18
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

HeadPacket

Request/
Acknowledge

signal(s)

Figure 1.18 Distribution of flits.

Flit buffer

Movement

c©2002-2004 R. Leduc 37



Wormhole Routing for Packet Switch-
ing Cont.

Necessary to reserve entire path for message

as the flits are linked.

Other packets can be interleaved along the

same links.

Approach requires less storage and has latency

independent of path length.

c©2002-2004 R. Leduc 38



Network Latency Comparison

We will now evaluate the network latency for

four different communication methods.

Let B stand for bandwidth (bits/s), l be the

number of links the message passes through,

and L the message size in bits.

For sending L bits over a single link, the trans-

mission time is: L/B

Circuit Switching: Let Lc be the length (in

bits) of control packet sent to establish path.

Latency = (
Lc

B
)l + (

L

B
)

Latency reduces to L/B if Lc � L

c©2002-2004 R. Leduc 39



Network Latency Comparison Cont.

Store and Forward: Latency = (L
B)l

Virtual Cut Through: Let Lh be the length

(in bits) of header field of first packet of mes-

sage.

Latency = (
Lh

B
)l + (

L

B
)

Latency reduces to L/B if Lh � L

Wormhole Routing: Let Lf be the length (in

bits) of each flit.

Latency = (
Lf

B
)l + (

L

B
)

Latency reduces to L/B if Lf � L

c©2002-2004 R. Leduc 40



20
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Packet switching

Circuit switching
Wormhole routing

Distance

Network

(number of nodes between source and destination)

latency

Figure 1.20 Network delay characteristics.

c©2002-2004 R. Leduc 41



Deadlock

Interconnection networks use routing algorithms

to determine path.

Can be adaptive; They can choose alternative

paths depending on criteria - ie. local traffic

Algorithm may deadlock or livelock.

Livelock: When packet continually moves through

network, but can never reach destination.

Deadlock: When a packet is stuck at a node,

and can go no further do to other packets.

c©2002-2004 R. Leduc 42



21
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Messages

Node 1 Node 2

Node 3Node 4

Figure 1.21 Deadlock in store-and-forward
networks.

c©2002-2004 R. Leduc 43



Deadlock Cont.

A solution is to provide virtual channels, each

with separate buffers.

Physical links or channels or the actual links

between nodes.

Multiple virtual channels are associate with a

physical channel, and time-multiplexed onto

the physical channel. See Figure 1.22.

c©2002-2004 R. Leduc 44



22
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Physical link

Virtual channel

Route

buffer Node Node

Figure 1.22 Multiple virtual channels mapped onto a single physical channel.

c©2002-2004 R. Leduc 45



Networked Computers as Multicom-
puter Platform

Attractive alternative to expensive supercom-

puters.

• High performance PCs and workstations in-

expensive and easily available.

• Latest processors can easily be added as

they become available.

• Current software can be used or modified.

• Many networks of workstations already ex-

ist, and can be used.

Commonly connected using Ethernet (10 Mbit/sec,

100 Mbit/sec (fast), or 1000 Mbit/sec (Giga-

bit)).

c©2002-2004 R. Leduc 46



Networked Computers as Multicom-
puter Platform Cont.

Originally, Ethernet was single cable connect-

ing all workstations.

Bus topology, with high latency.

Other common networks used are ring struc-

tures (ie Token rings/FDDI networks - see Fig-

ure 1.25) and star networks (See Figure 1.26).

Point-to-Point communications have highest

bandwidth. Created using switches.

Examples: High Performance Parallel Interface

(HIPPI), fast and Gigabit Ethernet, and fiber

optics.

Networks usually organized into subnetworks.

May be mixed type.

c©2002-2004 R. Leduc 47



25
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Network

Workstation/

Workstations

Figure 1.25 Network of workstations connected via a ring.

file server

c©2002-2004 R. Leduc 48



26
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Workstation/
file server

Workstations

Figure 1.26 Star connected network.

c©2002-2004 R. Leduc 49



Networked Computers vs Static Linked
Computers

Networked workstations typically have higher

latency, but more flexible communication.

For static linked, want to map communicating

processes onto nearby processors in the inter-

connect topology.

Networked computers tend to be of mixed type

and speed. Static linked usually has CPUs of

the same type and speed.

c©2002-2004 R. Leduc 50



Dedicated Programming Cluster

Workstations on a private network. Dedicated

to cluster tasks.

Except for the cluster head, usually don’t have

keyboards, or monitors etc.

Simplest/cheapest to use Ethernet hubs. Would

prefer something higher performance and that

responds better to simultaneous traffic.

Collisions can be significantly reduced by mul-

tiple, overlapping, communication paths as in

Figure 1.27.

c©2002-2004 R. Leduc 51



27
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.27 Overlapping connectivity Ethernets.

(a) Using specially designed adaptors

(b) Using separate Ethernet interfaces

Parallel programming cluster

c©2002-2004 R. Leduc 52



Potential for Increased Speed

No matter what form of parallel computer,

must break computation into multiple processes

(tasks) that can run simultaneously.

Granularity describes the size of a process.

Coarse Granularity: Each process has large

number of instructions and takes a while

to run.

Fine Granularity: Process contains only a few

instructions.

Medium Granularity: Somewhere in between.

Granularity can also be the amount of com-

putation between communication or synchro-

nization points.

c©2002-2004 R. Leduc 53



Granularity Metric

Want to find compromise between cost of pro-

cess creation and communication, against how

much we can parallelize.

For message passing, want to reduce amount

of intercomputer communication.

As we divide problem, there’s a point when

the communication time dominates execution

time.

Following ratio can be used as granularity met-

ric:

Computation/communication ratio =

Computation time
Communication time

= tcomp

tcomm

Want to maximize ratio, but still maintain suf-

ficient parallelism.

c©2002-2004 R. Leduc 54



Granularity Metric Example

We have two computers connected by a net-

work. Each CPU has clock period T, and the

communication latency for the network is L.

We examine the performance of the following

task:

Each process (1 per CPU) must process 10

commands. Each command takes 30 clock cy-

cles to execute. Process 1 then sends a mes-

sage to process 2, who then replies. For our

system, T = 12.5ns, and L = 500us.

tcomp = 10 · 30 · T = 10 · 30 · 12.5× 10−9s = 3.75× 10−6s

tcomm = 2 · L = 2 · 500 × 10−6s = 0.01s

ratio = tcomp

tcomm
= 3.75×10−6s

0.01s
= 0.00375

NOTE: total execution time of task is: tcomp + tcomm

c©2002-2004 R. Leduc 55



Granularity Metric Cont.

Granularity related to number of processors.

For domain decomposition (partitioning the data),

the size of the per CPU data can be increased

to improve ratio.

For a fixed data size, could reduce number of

CPUs used.

Want to design a program where it is easy to

vary granularity.

c©2002-2004 R. Leduc 56



Speedup Factor

Measure of performance improvement between

a single processor and parallel computer is the

speedup factor, S(n) (n the number of proces-

sors).

S(n) =
Execution time using single CPU

Execution time using n processors

=
ts

tp

For theoretical analysis, can also express as

computational steps.

S(n) =
Number of steps using single CPU

Number of parallel steps using n processors

c©2002-2004 R. Leduc 57



Speedup

The maximum speedup factor due to paral-

lelization is n with n processors. This is called

linear speedup. For example:

S(n) =
ts

ts/n
= n

Superlinear speedup is when S(n) > n.

Unusual, and usually due to a suboptimal se-

quential algorithm or special features of the

architecture which favor parallel programs.

Normally, can’t fully parallelize a program. Some

part must be done serially.

Will be periods when only one processor doing

work, and others idle. See Figure 1.28.

c©2002-2004 R. Leduc 58



28
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Time

Process 1

Process 2

Process 3

Process 4

Waiting to send a message

Figure 1.28 Space-time diagram of a message-passing program.

Message

Computing

Slope indicating time
to send message

c©2002-2004 R. Leduc 59



Overhead

Overhead is the time delays that are added

due to the parallelization. Factors that cause

overhead and reduce speedup are:

• Periods when all processors are not doing

useful work.

• Additional computations not in serial ver-

sion.

• Communication time for sending messages.

c©2002-2004 R. Leduc 60



Maximum Speedup

Normally, there will always be some fraction of

the program that must be performed serially.

Let the serial fraction of the program be f ;

thus, 1 − f is the fraction that can be paral-

lelized.

Assuming no overhead results when program

divided into concurrent parts, then computa-

tion time with n processors is:

tp = fts + (1 − f)ts/n

See Figure 1.29.

c©2002-2004 R. Leduc 61



29
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Serial section Parallelizable sections

(a) One processor

(b) Multiple
processors

fts (1 − f)ts

ts

(1 − f)ts/n

Figure 1.29 Parallelizing sequential problem — Amdahl’s law.

tp

n processors

c©2002-2004 R. Leduc 62



Maximum Speedup Cont.

This gives us the equation below known as Am-

dahl’s law.

S(n) =
ts

fts + (1 − f)ts/n
=

n

1 + (n − 1)f

See Figure 1.30.

Limit of speedup with infinite number of pro-

cessors:

S(n)n→∞ =
1

f

c©2002-2004 R. Leduc 63



30
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 1.30 (a) Speedup against number of processors. (b) Speedup against serial fraction, f.

4

8

12

16

20

0.2 0.4 0.6 0.8 1.0

Sp
ee

du
p 

fa
ct

or
,S

(n
)

Serial fraction, f

(b)

n = 256

n = 16
4

8

12

16

20

4 8 12 16 20

f = 20%

f = 10%

f = 5%

f = 0%

Sp
ee

du
p 

fa
ct

or
,S

(n
)

Number of processors, n

(a)

c©2002-2004 R. Leduc 64



Efficiency

The system efficiency, E, is defined as:

E =
Execution time with single CPU

Execution time with multiprocessor × number of CPUs

=
ts

tp × n

Efficiency as a percentage is given by:

E =
S(n)

n
× 100 %

The processor-time product, or cost of a com-
putation is:

Cost = tp × n =
tsn

S(n)
=

ts

E

c©2002-2004 R. Leduc 65



Scalability

Has different meanings.

Architecture or Hardware Scalability: A hard-

ware design that permits system to be en-

larged which results in increased perfor-

mance.

Usually, adding more processors means net-

work must be increased. Means greater

delay and contention thus lower efficiency.

Algorithmic Scalability: Means parallel algo-

rithm can handle increase in data with low

and bounded increase in computational steps.

One way to define problem size is the number

of data elements to be processed.

Problem: doubling data size doesn’t neces-

sarily mean doubling number of computation

steps.

c©2002-2004 R. Leduc 66



Scalability Cont.

Alternative: equate problem size with number

of steps in best sequential algorithm.

Still, increasing number of data elements will

mean increasing “problem size.”

c©2002-2004 R. Leduc 67



Setting for Gustafson’s Law

Gustafson argued that Amdahl’s law is not as

limiting as it seems.

Observed that a large multiprocessor means

you can handle bigger problems.

In practice, problem size is related to number

of processors.

Assume parallel processing time fixed, not prob-

lem size.

Gustafson claimed that serial section doesn’t

increase as problem size increases.

c©2002-2004 R. Leduc 68



Setting for Gustafson’s Law Cont.

Let s be the serial computation time. Let p

be the time required to execute the parallel

portion of the program on a single processor.

Assume s + p is fixed. For convenience, we

choose s + p = 1, so they represent fractions.

We can then represent Amdahl’s law as:

S(n) =
s + p

s + p/n
=

1

s + (1 − s)/n

c©2002-2004 R. Leduc 69



Gustafson’s Law

For Gustafson’s scaled speedup factor, Ss(n),

he assumes the parallel execution is constant,

and the serial time (ts) changes.

Again, we have s + p = 1. Execution time on

single processor is now s + pn. This gives us:

Ss(n) =
s + np

s + p
= s + np = n + (1 − n)s

c©2002-2004 R. Leduc 70



Gustafson’s Law Cont.

c©2002-2004 R. Leduc 71


