
∗

Message-Passing Computing

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc

Basics of Message-Passing Comput-
ing

We will use high-level language C and message-

passing library calls to handle message passing

between processes.

We must specify explicitly what processes to

run, when to pass messages, and what to pass

in messages.

To do this we need:

• Means to create processes to run on sepa-

rate computers.

• A means to send/receive messages.

c©2002-2004 R. Leduc 1

Process Creation

Process: independent parallelizable subparts

of a problem.

Usually, one per processor.

Two methods of creating processes: static and

dynamic

Static Process Creation: The number is spec-

ified before execution begins and doesn’t in-

crease.

Programmer specifies programs to run and num-

ber at command line.

Usually, there is one master process, that con-

trols the overall behavior. The remaining pro-

cesses are slave or worker processes.

c©2002-2004 R. Leduc 2

SPMD Model

In the single program multiple data (SPMD)

model, the processes are merged into one pro-

gram.

Control sections in the program select portions

of the program to be executed for each pro-

cess.

Executable code compiled for each processor

(may be different type/OS). Each process loads

its version.

SPMD commonly used for MPI.

c©2002-2004 R. Leduc 3

Dynamic Process Creation

This is when new processes can be created

while others are already running. They can

also be destroyed.

More powerful, but significant overhead to cre-

ate new process.

Usually used with multiple program multiple

data (MPMD). For MPMD, different and sep-

arate programs written for different processes.

Use master/slave method. Master process starts,

and spawns (creates) new processes as needed.

See Figure 2.2.

c©2002-2004 R. Leduc 4

32
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process 1

Process 2spawn();

Figure 2.2 Spawning a process.

Time

Start execution
of process 2

c©2002-2004 R. Leduc 5

Basic Send and Receive Routines

Fundamental to be able to send/receive mes-

sages.

Simplest form would have destination ID and
message, such as:

send(&x, destination_id); // in source process

recv(&y, source_id); // in destination process

Very simple format. Doesn’t even allow for

multiple data types, and arrays etc.

c©2002-2004 R. Leduc 6

33
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.3 Passing a message between
processes using send() and recv()
library calls.

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

c©2002-2004 R. Leduc 7

Synchronous Message Passing

Synchronous is used when routines do not re-

turn until message transfer has finished.

Routines don’t require message buffers.

Two processes using synchronous routines to

transfer a message will be synchronized.

Neither can proceed until the message has been

sent and the other has received it.

Term rendezvous used to describe this syn-

chronization.

c©2002-2004 R. Leduc 8

Synchronous Message Passing Cont.

Requires signalling, such as a three-way proto-

col:

1. Source sends a “request to send” message

to destination.

2. When destination ready to receive mes-

sage, it sends acknowledgment.

3. When acknowledgment received, source sends

actual message.

c©2002-2004 R. Leduc 9

34
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.4 Synchronous send() and recv() library calls using a three-way protocol.

Process 1 Process 2

send();

recv();
Suspend

Time

process
Acknowledgment

MessageBoth processes
continue

(a) When send() occurs before recv()

Process 1 Process 2

recv();

send();
Suspend

Time

process

Acknowledgment

MessageBoth processes
continue

(b) When recv() occurs before send()

Request to send

Request to send

c©2002-2004 R. Leduc 10

Blocking and Nonblocking Message
Passing

For MPI, these type of routines can return be-

fore message transfer is complete.

Requires use of message buffers between source

and destination to hold data until transfer com-

plete. See Figure 2.5.

For a recv(), a send() must be done first else

buffer empty and recv() must wait.

For send(), once message transfered to buffer,

the process can move onto other tasks.

However, it may be necessary to know that

message has actually been received.

c©2002-2004 R. Leduc 11

35
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.5 Using a message buffer.

Process 1 Process 2

send();

recv();

Message buffer

Read
message buffer

Continue
process

Time

c©2002-2004 R. Leduc 12

Blocking and Nonblocking Message
Passing Cont

MPI uses the following definitions:

Blocking Routines: Routines that use mes-

sage buffer and return after local actions

have finished (message transfer may not

yet have completed). Also called locally

blocking.

Nonblocking: Routines that return immedi-

ately.

For MPI nonblocking, data storage used in

transfer must not be locally modified until trans-

fer complete.

c©2002-2004 R. Leduc 13

Message Selection

Previously, the destination process only accepted

messages from the process whose ID was spec-

ified in the recv() function call.

Also useful to be able to specify a wild card

address so the destination process will accept

a message from any process.

For more flexibility, can also select a message

by an attached message tag.

Differentiates between different types of mes-

sages.

Can also have wild card message tags.

Still need more powerful selection mechanism

to differentiate between messages sent between

library routines and user processes.

c©2002-2004 R. Leduc 14

Broadcast, and Scatter

Broadcast: When one processes sends a mes-

sage to multiple destination processes at

once. See Figure 2.6.

Must first identify which processes that will

be involved in broadcast.

Scatter: Send each element of an array of

data at the root process to a different pro-

cess.

Need to define group and root process. See

Figure 2.7.

c©2002-2004 R. Leduc 15

36
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

bcast();

buf

bcast();

data

bcast();

datadata

Figure 2.6 Broadcast operation.

Process 0 Process n − 1Process 1

Action

Code

c©2002-2004 R. Leduc 16

37
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

scatter();

buf

scatter();

data

scatter();

datadata

Figure 2.7 Scatter operation.

Process 0 Process n − 1Process 1

Action

Code

c©2002-2004 R. Leduc 17

Gather and Reduce

Gather: When one process (root) collects in-

dividual data from a set of processes. Again,

have to define a group and a root process.

Typically done after computation to collect

results from each process. See Figure 2.8.

Reduce: When gather operation is combined

with an arithmetic or logical operation, called

reduce operation. See Figure 2.9.

c©2002-2004 R. Leduc 18

38
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.8 Gather operation.

gather();

buf

gather();

data

gather();

datadata

Process 0 Process n − 1Process 1

Action

Code

c©2002-2004 R. Leduc 19

39
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.9 Reduce operation (addition).

reduce();

buf

reduce();

data

reduce();

datadata

Process 0 Process n − 1Process 1

+

Action

Code

c©2002-2004 R. Leduc 20

Message Passing Interface (MPI)

Provides library routines for message passing

and associated operations.

Excellent MPI resource:

http://www-unix.mcs.anl.gov/mpi/

Click on: “MPI Standard 1.1.” Scroll down to

contents for detailed description of MPI and

routines. At bottom, see: “MPI 1.1 Standard

Index” for easy look up of specific functions.

c©2002-2004 R. Leduc 21

MPI on CAS Network

For linux cluster, log onto penguin.cas.mcmaster.ca,
and use cnode1 to cnode6. For suns, birkhoff,
wolf01 to wolf22. Easiest to use all linux or all
suns.

Create ~/.rhosts file with names of these ma-
chines.

ie.

For cluster:

penguin

cnode1

cnode2

cnode3

For suns:

wolf01.cas.mcmaster.ca

wolf02.cas.mcmaster.ca

wolf03.cas.mcmaster.ca

wolf04.cas.mcmaster.ca

c©2002-2004 R. Leduc 22

Compiling and Running MPI Pro-
grams

To compile, log onto penguin or one of the fox

machines (depends on which you will use) and

type:

mpicc prog.c -o prog

To run program, type:

mpirun -np 4 -machinefile machines prog

Option “-np” is the number of processes to

run for computation. Here, 4 processes.

File “machines” contains the names of the ma-

chines to run processes on. Names should also

be in .rhosts file!

ie. for “machines”

penguin
cnode1
cnode2
cnode3

c©2002-2004 R. Leduc 23

Initializing Program

All MPI programs must contain the following:

main (int argc,char *argv[])
{
MPI_Init(&argc, &argv); /* Initialize MPI */

.

.

.

MPI_Finalize(); /* terminate MPI */

}

c©2002-2004 R. Leduc 24

Communicators

Communicators define the scope of a commu-

nication operation. It provides both group and

context information.

It identifies a set of processes that are allowed

to communicate with each other.

The context creates a “safe universe” for pro-

cesses to communicate.

Allows a means to separate communication from

library from user code. See Figure 2.15.

Each process has a rank (ID) for a communi-

cator.

For communicator of size n, ranks are sequen-

tial from 0 to n − 1.

Can create new communicator from old. Same

context, but you get to specify subset of group

members.

c©2002-2004 R. Leduc 25

45
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.15 Unsafe message passing with libraries.

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

(a) Intended behavior

(b) Possible behavior

lib()

lib()

send(…,1,…);

recv(…,0,…);

Process 0 Process 1

send(…,1,…);

recv(…,0,…);

Destination

Source

c©2002-2004 R. Leduc 26

Communicators Cont

Communicator is used to define group and con-

text for all point-to-point and collective com-

munication operations. The rank (ID) param-

eter is relative to the communicator.

At start of program, have default communica-

tor called MPI COMM WORLD that all pro-

cesses belong to. Context is user program.

For many applications, this is sufficient.

c©2002-2004 R. Leduc 27

Getting One’s Bearings

A process needs to be able to determine its
rank for a given communicator. This is done
as follows:

int myrank;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

One often needs to know how many processes
in a communicator. The size of a group at-
tached to a communicator can be determined
as follows:

int nprocs;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

c©2002-2004 R. Leduc 28

Point-to-Point Communication

MPI send and receive routines use message

tags.

Can use the wild cards MPI ANY TAG and

MPI ANY SOURCE for the tag and source pa-

rameters for receive routines.

Specify data type by using one of the stan-

dard MPI datatypes (see Table 5.1) or a user

defined type.

MPI has several versions of send and receive

routines.

Distinguished by concepts of locally complete

and globally complete.

Locally complete means routine has complete

at least its part of the operation.

Globally complete means everyone involved in

operation have completed their part.

c©2002-2004 R. Leduc 29

Data Types

∗

∗W. Gropp, E. Lusk, and A. Skjellum, Using MPI.
Portable Parallel Programming with the Message-
Passing Interface, 2nd Ed.

c©2002-2004 R. Leduc 30

MPI Blocking Routines

These routines return when they are locally

complete.

For blocking send routine, this means when

data has been copied from the send buffer,

and the buffer can now be safely reused.

For receive buffer, this is when data has been

copied to the receive buffer and is available to

be read.

Blocking send command:

MPI_Send(buf, count, datatype, dest, tag, comm);

buf - Address of send buffer
count- Number of items to send
datatype - Datatype of each item
dest - Rank of destination process
tag - Message tag
comm - Communicator

c©2002-2004 R. Leduc 31

MPI Blocking Routines Cont

Blocking receive command:

MPI_Recv(buf, count, datatype, src, tag, comm, status);

buf - Address of receive buffer
count- Maximum number of items to receive
datatype - Datatype of each item
src - Rank of source process
tag - Message tag
comm - Communicator
status - status after operation

The status variable contains info about mes-

sage received. Actual message tag is

status.MPI TAG. Rank of sending process is

status.MPI SOURCE.

Can determine number of datatype elements
actually received with following command:

MPI_Get_count(&status, datatype, &nelements);

c©2002-2004 R. Leduc 32

Program ezstarto.c

/*

* Copyright 1998-2001, University of Notre Dame.

* Authors: Jeffrey M. Squyres, Arun Rodrigues, and Brian Barrett

* with Kinis L. Meyer, M. D. McNally, and Andrew Lumsdaine

*

* This file is part of the Notre Dame LAM implementation of MPI.

*

* NOTE: This example has unnecessary use of printf. They are only

* to give the new user some feedback.

*

*/

#include <mpi.h>

#include <unistd.h>

#include <stdio.h>

#define WORKTAG 1

#define DIETAG 2

#define NUM_WORK_REQS 100

/*

* Local functions

*/

static void master(void);

static void slave(void);

c©2002-2004 R. Leduc 33

Main function

/*

* main

* This program is really MIMD, bit is written SPMD for

* simplicity in launching the application.

*/

int

main(int argc, char* argv[])

{

int myrank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD,/* group of everybody */

&myrank); /* 0 thru N-1 */

if (myrank == 0) {

master();

} else {

slave();

}

MPI_Finalize();

return(0);

}

c©2002-2004 R. Leduc 34

Control Function for Master

/*

* master

* The master process sends work requests to the slaves

* and collects results.

*/

static void

master(void)

{

int ntasks, rank, work;

double result;

MPI_Status status;

MPI_Comm_size(MPI_COMM_WORLD,

&ntasks); /* #processes in app */

/*

* Seed the slaves.

*/

work = NUM_WORK_REQS; /* simulated work */

printf("Master started.\n\n");

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(&work,/* message buffer */

1,/* one data item */

MPI_INT,/* of this type */

rank,/* to this rank */

WORKTAG,/* a work message */

MPI_COMM_WORLD);/* always use this */

work--;

printf("Seeding Machine %d.\n\n",rank);

}

c©2002-2004 R. Leduc 35

Control Function for Master Cont.

/*

* Receive a result from any slave and dispatch a new work

* request until work requests have been exhausted.

*/

while (work > 0) {

MPI_Recv(&result,/* message buffer */

1,/* one data item */

MPI_DOUBLE,/* of this type */

MPI_ANY_SOURCE,/* from anybody */

MPI_ANY_TAG,/* any message */

MPI_COMM_WORLD,/* communicator */

&status); /* recv’d msg info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,

WORKTAG, MPI_COMM_WORLD);

work--; /* simulated work */

printf("Feeding machine %d.\n\n",status.MPI_SOURCE);

}

/*

* Receive results for outstanding work requests.

*/

printf("Receiving outstanding work.\n\n");

for (rank = 1; rank < ntasks; ++rank) {

MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

}

c©2002-2004 R. Leduc 36

Control Function for Master Cont.
II

/*

* Tell all the slaves to exit.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

}

printf("Master exiting.\n\n");

}

c©2002-2004 R. Leduc 37

Control Function for Slave

/*

* slave

* Each slave process accepts work requests and returns

* results until a special termination request is received.

*/

static void

slave(void)

{

double result;

int work;

MPI_Status status;

for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

/*

* Check the tag of the received message.

*/

if (status.MPI_TAG == DIETAG) {

return;

}

sleep(1);

result = 6.0; /* simulated result */

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

}

}

c©2002-2004 R. Leduc 38

MPI Nonblocking Routines

A nonblocking routine returns immediately, whether

or not it is locally complete.

Allows interspersion of communication and com-

putation operations. Important for slow com-

munication links.

Nonblocking send command:

MPI_Isend(buf, count, datatype, dest, tag, comm, request);

buf - Address of send buffer
count- Number of items to send
datatype - Datatype of each item
dest - Rank of destination process
tag - Message tag
comm - Communicator
request - ID for given send operation.

c©2002-2004 R. Leduc 39

MPI Nonblocking Routines Cont.

Nonblocking receive command:

MPI_Irecv(buf, count, datatype, src, tag, comm, request);

buf - Address of receive buffer
count- Maximum number of items to receive
datatype - Datatype of each item
src - Rank of source process
tag - Message tag
comm - Communicator
request - ID for given receive operation.

Need to be able to test for completion:

MPI_Test(request,flag, status);

request - ID for given receive operation.
flag - true if operation complete
status - status of operation.

MPI_Wait(request,status);

request - ID for given receive operation.
status - status of operation.

c©2002-2004 R. Leduc 40

MPI Nonblocking Routines Exam-
ple

∗

∗B. Wilkinson, and M. Allen, Parallel Programming.
Techniques and Applications Using Networked Work-
stations and Parallel Computers, Prentice-Hall, 1999.

c©2002-2004 R. Leduc 41

MPI Collective Communication

MPI versions of broadcast, scatter, gather, and

reduce.

The communicator parameter defines the group

to be used.

Broadcast command:

MPI_Bcast(buf, count, datatype, root, comm);

buf - Address of send/receive buffer
count- Number of entries buffer can hold/contains
datatype - Datatype of each item
root - Rank of broadcast root
comm - Communicator

c©2002-2004 R. Leduc 42

MPI Scatter Operation

Scatter command:

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm);

sendbuf - Address of send buffer (only significant
at root).

sendcount- Number of elements to send to each process
(only significant at root).

sendtype - Datatype of each item (only significant
at root).

recvbuf - Address of receive buffer
recvcount- Number of elements to put in recv buffer
recvtype - Datatype of each item in recv buffer
root - Rank of sending process
comm - Communicator

Root process sends sendcount elements to each

process in comm. Process 0 gets the first

sendcount elements, process 1 the next and

so on.

c©2002-2004 R. Leduc 43

MPI Gather Operation

Gather command:

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf,
recvcount, recvtype, root, comm);

sendbuf - Address of send buffer
sendcount- Number of elements in send buffer
sendtype - Datatype of send buffer
recvbuf - Address of receive buffer (only significant

at root).
recvcount- Number of elements for a single receive (only

significant at root).
recvtype - Datatype of recv buffer elements (only significant

at root).
root - Rank of receiving process
comm - Communicator

Root process receives sendcount elements from

each process in comm. Process 0 sends the

first recvcount elements (goes at start of recvbuf),

process 1 sends the next and so on (in recvbuf,

goes after first recvcount elements).

c©2002-2004 R. Leduc 44

MPI Reduce Operation

Reduce command:

MPI_Reduce(sendbuf, recvbuf, count, datatype,
op, root, comm);

sendbuf - Address of send buffer.
recvbuf - Address of receive buffer (only

significant at root).
count- Number of elements to put in send buffer.
datatype - Datatype of each item in send buffer.
op - reduce operation.
root - Rank of root process.
comm - Communicator.

MPI has several predefined operations such as

MPI MAX, MPI MIN, MPI SUM, and

MPI PROD. Can also have user-defined oper-

ations.

If each process provides more than one ele-

ment, then reduce operation performed element-

wise.

c©2002-2004 R. Leduc 45

Program mpidemo.c
/***
* this is a mpi demo program for course 4f03
* what it does is to add 1000 random numbers
* in parallel on several machines and return
* the results to the root process
*
* Based on example in Parallel Programming. Techniques and
* Applications Using Networked Workstations and Parallel Computers,
* Prentice-Hall, 1999.

*/

#include "mpi.h"
#include <stdio.h>
#include <math.h>
#include <sys/utsname.h>

#define MAXSIZE 1000
#define FILE_NAME "rand_data.txt"

int main(int argc, char *argv[])
{

int myid, numprocs;
int data[MAXSIZE], i, x, low, high, myresult=0, result=0;
FILE *fp;
struct utsname my_name;
char name[SYS_NMLN];
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);

/*get my name*/
uname(&my_name);

c©2002-2004 R. Leduc 46

if(myid == 0) {

printf("\n\nMaster (rank %d): %s started\n\n\n",

myid, my_name.nodename);

for(i=1; i<numprocs; i++){

MPI_Recv(name, SYS_NMLN, MPI_CHAR, i, 0, MPI_COMM_WORLD,

&status);

printf("Slave (rank %d): %s started\n\n",

status.MPI_SOURCE, name);

}

}

else {

MPI_Send(my_name.nodename, SYS_NMLN, MPI_CHAR, 0, 0,

MPI_COMM_WORLD); }

if (myid == 0)

{

printf("\n\nPreparing data...\n\n");

/* Open Input File and Initialize Data */

if ((fp = fopen(FILE_NAME,"r")) == NULL) {

printf("Can’t open the input file: %s\n\n", FILE_NAME);

exit(1);

}

/*read data from file*/

for(i=0; i<MAXSIZE; i++)

fscanf(fp,"%d", &data[i]);

}

c©2002-2004 R. Leduc 47

/*broadcast data to everyone*/

MPI_Bcast(data, MAXSIZE, MPI_INT, 0, MPI_COMM_WORLD);

/*job partitioning*/

x = MAXSIZE/numprocs;

low = myid * x;

high = low + x;

if (myid == (numprocs -1))

high = MAXSIZE;

for(i=low; i<high; i++)

myresult += data[i];

MPI_Reduce(&myresult, &result, 1, MPI_INT, MPI_SUM,

0, MPI_COMM_WORLD);

if (myid == 0)

printf("The sum is %d, calculation is done!\n\n",

result);

MPI_Finalize();

return 0;

}

c©2002-2004 R. Leduc 48

Pseudocode Constructs

To specify MPI code, need to keep track of

numerous parameters and details.

This makes examples more complicated and

less readable.

For teaching parallel programming, much of

this detail is unnecessary.

Will instead use pseudocode for describing al-

gorithms. See notation used in Section 2.2.3.

c©2002-2004 R. Leduc 49

Parallel Execution Time

In later chapters, we will discuss methods to

achieve parallelism. We need means to evalu-

ate them.

First: How fast is parallel implementation?

Need to be able to determine number of com-

putation steps as well as estimate communica-

tion overhead.

Parallel execution time (tp) has two parts: com-

putation time (tcomp) and communication time

(tcomm)

tp = tcomp + tcomm

c©2002-2004 R. Leduc 50

Computation Time

Can be estimated in similar manner as for a

sequential algorithm.

Difference: when processes are being executed

simultaneously, we only have to analyze steps

for most complex process.

Usually assume all processors are the same (same

speed, memory etc).

Different types of computers will be handled by

using algorithms that spread load across avail-

able computers (load balancing).

c©2002-2004 R. Leduc 51

Communication Time

Depends on message size, interconnection struc-

ture, and transfer method (ie. circuit switch-

ing, store-and-forward, and wormhole routing).

For cluster of workstations, will have to con-

sider network structure as well as contention.

No simple equation feasible!

First approximation:

tcomm = tstartup + n tdata

c©2002-2004 R. Leduc 52

Communication Time Cont.

tstartup: This is the message startup time.

Equivalent to time to send a message with

no data.

Assumed to be a constant.

tdata: Time to send one data word. Assumed

to be constant. There are n data words to

send.

Transmission rate is in bits/sec. Would thus

be: b/tdata bits/sec where b is the number of

bits in a data word.

c©2002-2004 R. Leduc 53

47
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

T
im

e

Number of data items (n)

Startup time

Figure 2.17 Theoretical communication
time.

c©2002-2004 R. Leduc 54

Interpretation of Equations

Analysis in following chapters make many as-

sumptions.

Intended to give a starting point for how algo-

rithm may actually perform.

Will normalize parallel execution time, tp. Will

be measured in units of some arithmetic oper-

ation.

Assuming homogeneous system and that all

arithmetic operations take the same time (ie.

addition takes same time as division).

c©2002-2004 R. Leduc 55

Interpretation of Equations Cont.

If all processors performing same operation,

then simply count the number of steps on one

processor.

Take max number steps of all sequences run-

ning concurrently.

If computation has m steps, we get: tcomp =

m

Have to measure communication time as well

in units of computation steps.

Will assume all data formats take same time

to send (ie. an eight bit char takes same time

as a 64 bit float).

c©2002-2004 R. Leduc 56

Interpretation of Equations: Com-
munication

Suppose q messages sent, each containing n

data elements. Gives:

tcomm = q(tstartup + n tdata)

Both tstartup and tdata given in terms of com-

putation steps so we can add tcomp and tcomm.

Startup and data transfer time dependent on

actual system.

tstartup is often 1-2 orders of magnitude greater

than tdata which is in turn larger than time for

an arithmetic operation.

In practice, startup time dominates communi-

cation time unless n is large.

c©2002-2004 R. Leduc 57

Latency Hiding

For a 200 MFLOPS machine with a startup

time of 1us, the computer could execute 200

floating point operations in the time required

for message startup.

Would have to perform 200 floating point op-

erations between each message just so time

computing would equal startup time.

Shareed memory manufacturers point to this

as the weakness of message-passing comput-

ers.

Can handle this by overlapping computation

and communication.

Latency hiding is the process of keeping a pro-

cessor busy with needed work while waiting for

the communication to finish.

c©2002-2004 R. Leduc 58

Latency Hiding Cont.

Nonblocking routines are particularly good for

this, but even MPI blocking routines allow a

good amount of overlap.

Can also achieve latency hiding by mapping

multiple processes to single process.

While one process is waiting for communica-

tion to end, the other process is doing useful

work. These processes are sometimes referred

to as Virtual processors.

For an m-process(or) algorithm running on a

machine with n processors (n < m), we say the

machine has parallel slackness of m/n.

To use parallel slackness to hide latency re-

quires an efficient means of swapping processes

such as threads.

c©2002-2004 R. Leduc 59

Time Complexity

Can evaluate parallel algorithms using time com-

plexity, in particular the O notation (“order of

magnitude” or “big-oh” notation).

Captures characteristics of algorithm as some

variable (usually data size) goes to infinity.

For algorithms, useful in comparing execution

time (time complexity), memory requirements

(space complexity). Also speed-up and effi-

ciency.

Using notation for time, first need to estimate

of computation steps.

Take all arithmetic and logical operations to

take same time; ignore all other operations.

c©2002-2004 R. Leduc 60

Time Complexity Cont.

Derive expression for total number of steps in

terms of useful variable (normally # of data

items).

ie. Algorithm A1 requires 4x2 +2x+12 steps,

where x is # of data elements. Growth func-

tion is polynomial.

ie. Algorithm A2 with function 5 logx + 200.

This function is logarithmic. Note: unless spec-

ified otherwise, log will always be base 2.

O Notation: Function f(x) is O(g(x)) if there

exists positive constants c and x0 s.t. 0 ≤

f(x) ≤ cg(x) for x ≥ x0.

c©2002-2004 R. Leduc 61

Θ Notation

Problem with O Notation is more than one

function satisfies. ie. Alg A1 is also O(x3).

Choose function that grows the slowest.

Often, our function is within a constant value

of another function. In this case, we can use

the Θ notation.

Θ Notation: Function f(x) is Θ(g(x)) if there

exists positive constants c1, c2, and x0 s.t.

c1g(x) ≤ f(x) ≤ c2g(x) for x ≥ x0.

If f(x) is Θ(g(x)) then f(x) is also O(g(x)).

c©2002-2004 R. Leduc 62

48
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

160

140

120

100

80

60

40

20

0
1 2 3 4 50

x0

c2g(x) = 6x2

c1g(x) = 2x2

f(x) = 4x2 + 2x + 12

Figure 2.18 Growth of function f(x) = 4x2 + 2x + 12.

c©2002-2004 R. Leduc 63

Ω Notation

Ω notation is used to describe a lower bound

on growth.

Ω Notation: Function f(x) is Ω(g(x)) if there

exists positive constants c and x0 s.t. 0 ≤

cg(x) ≤ f(x) for x ≥ x0.

From Figure 2.18, we have that f(x) = 4x2 +

2x + 12 is Ω(x2).

Can interpret O() as “grows at most as fast

as,” and Ω() as “grows at least as fast as.”

Finally, a function f(x) is Θ(g(x)) if and only

if f(x) is O(g(x)) and Ω(g(x)).

c©2002-2004 R. Leduc 64

Time Complexity of Parallel Algo-
rithms

Analyzing tcomm = tstartup+n tdata for time

complexity, we see that is is O(n).

For tp, the time complexity will be sum of that

for tcomp and tcomm.

c©2002-2004 R. Leduc 65

Time Complexity eg.

Want to add n numbers on two computers

(comp1 and comp2). Each adds n/2 numbers,

and originally only comp1 has all n numbers.

Comp2 sends its resul to comp1 which then

adds the two partial sums.

This problem has four main steps:

1. Comp1 sends n/2 to comp2.

2. Both add n/2 in parallel

3. Comp2 sends its partial sum to comp1

4. comp1 adds the partial sums to produce

final result.

c©2002-2004 R. Leduc 66

Time Complexity eg. cont.

Computation steps 2 and 4:

tcomp = (
n

2
−1)+1 =

n

2
tcomp is O(n)

Communication steps 1 and 3:

tcomm = (tstartup +
n

2
tdata) + (tstartup + tdata)

= 2tstartup + (
n

2
+ 1)tdata

tcomm is O(n)

tp = 2tstartup + (
n

2
+ 1)tdata +

n

2

= 2tstartup + tdata + n(
tdata

2
+

1

2
)

tp is O(n)

c©2002-2004 R. Leduc 67

Computation/Communication Ratio

Communication is generally costly.

If tcomp and tcomm have same time complex-

ity, then increasing problem size probably won’t

improve performance.

Want complexity of tcomp to be greater.

For example if tcomp is O(n2) and tcomm is

O(n), we should be able to find a n so that

tcomp will dominate.

c©2002-2004 R. Leduc 68

Cost Optimal Algorithms

A cost optimal algorithm is when the cost of

solving a problem using a parallel algorithm is

proportional to execution time on one proces-

sor. For n processors and constant k:

Cost = tp × n = k × ts

For time complexity analysis, we can say that

our parallel algorithm is cost-optimal if:

parallel time complexity × # of processors =

sequential time complexity

c©2002-2004 R. Leduc 69

Comments on Asymptotic Analysis

Time complexity widely used to analyze se-

quential programs and for theoretical analysis

of parallel programs.

Not as useful to determine possible performance

of parallel programs.

Notations rely on asymptotic behavior. Let-

ting some variable (perhaps # data elements

or processors) tend to infinity may not be rel-

evant.

Number processors available constrained by cost

and technology.

Also, want manageable data sizes.

c©2002-2004 R. Leduc 70

Comments on Asymptotic Analysis
Cont.

Analysis also ignores lower order terms that

may be significant for real values of the vari-

able.

An example is tcomm = tstartup + n tdata. It

is O(n). Ignores fact that for reasonable values

of n, term tstartup will dominate tcomm.

Also ignores factors such as network contention.

c©2002-2004 R. Leduc 71

Shared Memory Programs

So far, we’ve concentrated on message-passing

programs.

For shared memory programs, communication

time is zero, so time complexity is that of the

computation.

This makes time complexity analysis more ap-

plicable.

However, in shared memory programs, ensur-

ing orderly access to shared data adds addi-

tional delays.

c©2002-2004 R. Leduc 72

Time Complexity of Broadcast on
Hypercube Network

Most problems require data to be broadcast

and then gathered.

Many software environments provide this func-

tionality, but actual algorithm used is a func-

tion of actual architecture to system.

For a d-dimensional hypercube, we have n = 2d

nodes.

For d = 3, to broadcast from node r = 000

to all other nodes, we can use the following

efficient algorithm.

1. Message is sent to node whose address dif-

fers in the least significant bit (right-most

bit: bit 0) from r.

c©2002-2004 R. Leduc 73

2. The two nodes with message send message

to nodes that differ from their address by

bit 1.

3. The four nodes with message send mes-

sage to nodes whose address differs in the

most significant bit.

See Figure 2.19.

Message can be broadcast to all n nodes in

logn steps. Complexity thus O(logn).

Optimal as diameter of hypercube is logn = d.

Can express algorithm as a tree. See Figure

2.20.

c©2002-2004 R. Leduc

49
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.19 Broadcast in a three-dimensional hypercube.

000 001

010 011

100

110

101

111

1st step

2nd step

3rd step

c©2002-2004 R. Leduc 74

50
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.20 Broadcast as a tree construction.

P000

P000

P010P000

P000

P010P100 P110 P001 P101 P011

P001

P111

P001 P011

Step 1

Step 2

Step 3

Message

c©2002-2004 R. Leduc 75

Gather on Hypercube Network

Can use reverse of broadcast algorithm to gather

data to root node, say node 000.

Node Node

1) 100 --> 000

101 --> 001

110 --> 010

111 --> 011

2) 010 --> 000

011 --> 001

3) 001 --> 000

Because message length increases at each step,

complexity more than O(logn).

c©2002-2004 R. Leduc 76

Broadcast on Mesh Network

Broadcast can be performed (ie. from top-left

corner) by sending message across top row,

and then down the column once received.

See Figure 2.21.

On an n × n mesh, algorithm takes 2(n − 1)

steps and is thus O(n).

Optimal as diameter is 2(n − 1).

c©2002-2004 R. Leduc 77

51
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.21 Broadcast in a mesh.

1 2 3

4

5 6

2

3

4

5

6

3 4

5

4

Steps

c©2002-2004 R. Leduc 78

Broadcast on Workstation Cluster

In text, we will concentrate on communication

with workstation clusters.

Broadcast on single ethernet connection done

by sending one message that is read by all des-

tinations on network at once. See Figure 2.22.

Time complexity is O(1) for 1 data element to

N computers. For n data elements is O(n).

Unfortunately, not all computers have same

network structure, so message-passing libraries

can’t rely on this.

PVM uses a 1-to-N fan-out broadcast (N is

number of computers). MPI probably uses a

similar method, but this is implementation spe-

cific. The same message is sent to each of the

destination in turn. See Figure 2.23.

Time complexity is O(N).

c©2002-2004 R. Leduc 79

52
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Source Destinations

Message

Figure 2.22 Broadcast on an Ethernet
network.

c©2002-2004 R. Leduc 80

53
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 2.23 1-to-N fan-out broadcast.

Source

N destinations

Sequential

c©2002-2004 R. Leduc 81

Broadcast on Tree

Figure 2.24 shows 1-to-N fan-out broadcast on

a complete tree structure.

Complexity depends on the number of nodes

at each level and the number of levels.

For binary tree, our fan out for each node is

N = 2.

If there are p final destinations, we have log p

levels.

We thus have:

tcomm = 2(log p)(tstartup + w tdata)

Where we are sending w words of data.

c©2002-2004 R. Leduc 82

54
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Source

Sequential message issue

Destinations
Figure 2.24 1-to-N fan-out broadcast on a
tree structure.

c©2002-2004 R. Leduc 83

Low-Level Debugging

First step: Debug program to get to work cor-

rectly

2nd: Evaluate to see how fast it runs.

3rd: Try to make it even faster!

Often hard to get a parallel program to work

correctly.

Helpful to start by getting a sequential version

of parallel algorithm working.

Common practice to debug sequential code is

to instrument it. Instrumenting code means

adding code to output intermediate values.

Can use similar approach with parallel code,

but has important consequences.

c©2002-2004 R. Leduc 84

Low-Level Debugging Cont.

In a sequential program, this will slow it down

but it will still perform deterministically and

give you the correct answer.

Not necessarily the case for parallel program.

Heisenberg (creater of same “uncertainty prin-

ciple”): “We have to remember that what we

observe is not nature itself, but nature exposed

to our method of questioning.”

Instrumenting a parallel program will also slow

it down, but the behavior (and thus final an-

swer) of the program might also change.

Could change the interleaved order instructions

are executed in since each processor would nor-

mally be affected differently by the instrument-

ing code.

c©2002-2004 R. Leduc 85

More Low-Level Debugging

Processes are usually running on multiple com-

puters.

All output appears in starting terminal, but in-

terleaved, and not necessarily in proper time

ordering. *beware* Label output by rank!

Lowest level of debugging is to use a sequen-

tial debugger like gdb. Can help find error in

sequential logic, but not much use for multiple

processes.

These debuggers can be used to examine reg-

isters and set break-points, but can’t give in-

formation about order instructions executed in

concurrent processes.

c©2002-2004 R. Leduc 86

More Low-Level Debugging Cont.

Sequential debuggers can’t capture timing of

events. Can’t recognize events such as “mes-

sage sent.”

Parallel debuggers do exist. See MPI web site

(tools(not free)) or

http://www.lam-mpi.org/software/xmpi/ (XMPI

for LAM version of MPI).

c©2002-2004 R. Leduc 87

Visualization Tools

Parallel programs are naturals for visualization

of their actions.

Version of MPI on suns comes with visual-

ization tool called upshot (see: http://www-

fp.mcs.anl.gov/ l̃usk/upshot/).

Program execution can be watched in a space-

time diagram. Also called a process-time dia-

gram. See Figure 2.25.

Wait period represent process idle. Visualiza-

tions can help spot incorrect behavior.

Events can be captured so can be displayed

later.

c©2002-2004 R. Leduc 88

55
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Process 1

Process 2

Process 3

Time

Computing

Waiting

Message-passing system routine

Message

Figure 2.25 Space-time diagram of a parallel program.

c©2002-2004 R. Leduc 89

Utilization-Time Diagram

A utilization-time diagram shows time each

process spends on waiting, communication and

message-passing library routines.

Helps with debugging as well as gives informa-

tion on efficiency of computation.

Also, animation of processes can be used.

Each process shown, and current state info.

State changes over time animated.

c©2002-2004 R. Leduc 90

Debugging Strategies For message-
Passing Programs

1. If you can, run program with 1 process and

debug as sequential program

2. Run program as 2-4 processes on same pro-

cessor. Examine tasks such as messages

being sent to correct place. Common error

to screw up message tags (etc.) resulting

in message going to wrong place.

3. Run same 2-4 processes using several com-

puters. Helps to find problems due to net-

work delay with respect to timing and syn-

chronization.

c©2002-2004 R. Leduc 91

Measuring Execution Time Empiri-
cally

Can evaluate time comlexity of algorithm, but

doesn’t mean a program will run fast on your

computer.

Only way to know performance for sure is to

code program, run it, and measure execution

time!

Can instrument code to measure execution time:

See C library function: man gettimeofday

Returns elapsed time in seconds and microsec-

onds since 00:00 Universal Coordinated Time.

c©2002-2004 R. Leduc 92

Measuring Time Empirically Cont.

Can also use the time() system call, but only

returns time in seconds. Can use difftime()

routine with results from time() to automati-

cally calculate difference.

Call once and record. Call later, and elapsed

time is difference.

Warning: clocks across computers are not syn-

cronized.

Elapsed time includes time waiting for mes-

sages and assumes processor not running other

programs concurrently.

c©2002-2004 R. Leduc 93

Measuring Communication Time

The ping-pong method can be used to mea-

sure point-point communication between two

processes.

1. First process, P0, records current time, t1.

2. Process P0 sends message to second pro-

cess, P1.

3. As soon as process P1 receives message, it

immediately sends it back to process P0.

4. Process P0 receives message and records

time, t2.

5. Communication time is (t2 − t1)/2

c©2002-2004 R. Leduc 94

Profiling

A histogram or graph showing the amount of

time a program spends in different parts of the

program is called a profile. See Figure 2.26.

The profiler extracting the timing information

from running program will alter runtime of pro-

gram.

Program usually probed or sampled at intervals

to produce statistical data.

Used to identify areas of the program that

are visited often and/or the program spends

a large percentage of its execution time in.

These are good candidates for optimization

(large percentage) and/or procedure inlining

(called often but small).

Primarily useful for examining code sequen-

tially.

c©2002-2004 R. Leduc 95

56
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Statement number or regions of program
1 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 r

ep
et

iti
on

s
or

 ti
m

e

Figure 2.26 Program profile.

c©2002-2004 R. Leduc 96

Profiling with gprof.

A commonly used UNIX profiler is gprof.

Gprof not only provides statistics about the
time the program spends in each function, but
provides a call graph.

A call graph provides information about which
function calls which, as well as how much the
called function contributes to the runtime of
the calling function.

To use gprof, you must compile the program,
say loops.c, with the “-pg” flag so that the
profiling routines are linked in.

gcc loops.c -pg -o loops

When “loops” is executed, it will store the
profiling data in binary form in a file called
gmon.out. To view in a human-readable for-
mat, use gprof.

gprof loops >loops.gprof

c©2002-2004 R. Leduc 97

loops.c
main() {

int i;

for (i=0;i<30000;i++) {
if (i == 2*(i/2))

foo();
bar();
baz(); }

}

foo() {
int j,junk1;

for (j = 0; j <500;j++)
junk1 = 3456;

}

bar() {
int k,junk2;

for (k = 0; k <500;k++)
junk2 = 3456;

}

baz() {
int l,junk3;

for (l = 0; l <900;l++)
junk3 = 3456;

}

c©2002-2004 R. Leduc 98

Output of gprof for loops.c

Flat profile: Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ns/call ns/call name
41.67 0.10 0.10 30000 3333.33 3333.33 baz
33.33 0.18 0.08 30000 2666.67 2666.67 bar
25.00 0.24 0.06 15000 4000.00 4000.00 foo

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
seconds for by this function and those listed above it.

self the number of seconds accounted for by this
seconds function alone.

calls the number of times this function was invoked.

self the average number of milliseconds spent in this
ms/call function per call.

total the average number of milliseconds spent in this
ms/call function and its descendents per call.

name the name of the function.

c©2002-2004 R. Leduc 99

Call Graph for loops.c

index % time self children called name
<spontaneous>

[1] 100.0 0.00 0.24 main [1]
0.10 0.00 30000/30000 baz [2]
0.08 0.00 30000/30000 bar [3]
0.06 0.00 15000/15000 foo [4]

0.10 0.00 30000/30000 main [1]

[2] 41.7 0.10 0.00 30000 baz [2]

0.08 0.00 30000/30000 main [1]
[3] 33.3 0.08 0.00 30000 bar [3]

0.06 0.00 15000/15000 main [1]
[4] 25.0 0.06 0.00 15000 foo [4]

index A unique number given to each element of the

table. Index numbers are sorted numerically.

% time This is the percentage of the ‘total’ time that
was spent in this function and its children.

self Total amount of time spent in function.

children This is the total amount of time propagated into this
this function by its children.

called This is the number of times the function was called.

name The name of the current function.

c©2002-2004 R. Leduc 100

