
∗

Embarrassingly Parallel

Computations

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc

Ideal Parallel Computation

Parallel programs divide a problem into parts

that can be run concurrently on multiple pro-

cessors.

A problem that can be divided right away into

100% independent parts that can be executed

in parallel is an ideal parallel computation.

Such a beatific problem is called embarrass-

ingly parallel.

Parallelizing them should be obvious. No spe-

cial technique or algorithm needed.

Only need means to distribute and collect data

and start the processes.

A true embarrassingly parallel problem should

require no communication between separate

processes. See Figure 3.1.

c©2002-2004 R. Leduc 1

57
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Processes

Results

Input data

Figure 3.1 Disconnected computational
graph (embarrassingly parallel problem).

c©2002-2004 R. Leduc 2

Ideal Parallel Computation Cont.

Each process needs different (or same) set of

data and can produce its results without need

of the results of the other processes.

Gives maximum speedup if all processors can

be kept busy for entire computation.

Often, independent parts are the same com-

putation, so can use SPMD model.

Problems that require results to be distributed,

collected, and combined in some manner are

called nearly embarrassingly parallel computa-

tions.

This is when you have a master process send-

ing out data to slaves. The slaves process

data, then send it back to master who stores

it, or combines the results.

c©2002-2004 R. Leduc 3

58
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Figure 3.2 Practical embarrassingly parallel computational graph with dynamic process
creation and the master-slave approach.

Send initial data

Collect results

Master
Slaves

spawn()

recv()

send()

recv()
send()

c©2002-2004 R. Leduc 4

Load Balancing

Even with identical slave processes, if our as-

signment of processes to processors is fixed,

we may get suboptimal performance.

Will need to use load-balancing methods to

improve performance.

Will introduce in this chapter, but only for non-

interacting slave processes.

c©2002-2004 R. Leduc 5

Examples of Embarrassingly Paral-
lel Problems

Geometrical Transformation of Images: Two

dimensional images are stored in a pixmap.

For each pixel in the array, a number is

stored to represent it.

Common to perform a geometrical trans-

formation on image, such as shifting, scal-

ing, rotation, clipping, etc.

Need to perform mathematical operations

on each pixel. Transformation of each pixel

is independent of the transformation on the

other pixels.

c©2002-2004 R. Leduc 6

Mandelbrot Set

To display the mandelbrot set we again have

to process a bit-mapped image.

This time, we have to first calculate it!

A Mandebrot set is a group of points in the

complex plane that is quasi-stable when cal-

culated by iterating some function. Normally,

use:

zk+1 = z2
k + c

Will create sequence: z0 = 0, z1, z2, . . .

The number c represents a point on the com-

plex plane.

c©2002-2004 R. Leduc 7

Complex Number Refresher

A complex number is:

z = a + bi = zreal + zimagi where i =
√
−1.

The magnitude of z is: zmagn =
√

a2 + b2

Examining equation, zk+1 = z2
k + c, we see we

can simplify the computation by noting that:

z2 = a2 + 2abi + (bi)2

= a2 − b2 + 2abi

We can thus compute zk+1 with zk = zreal +

zimagi as follows:

zk+1.real = z2
real − z2

imag + creal

zk+1.imag = 2zrealzimag + cimag

c©2002-2004 R. Leduc 8

Calculating Set

The value of c ranges over the complex plane

from cmin to cmax.

If we treat c = x + yi = (x, y) as a tuple, then

we can take the coordinates (x, y) as a point

on the x-y plane. See Figure 3.4.

This means that cmin.real ≤ creal ≤ cmax.real

and cmin.imag ≤ cimag ≤ cmax.imag.

For each value of c in our range, we compute

the color of that point as an 8-bit number (0-

255).

We calulate the color of c by computing zk+1

until the magnitude exceeds two (zmagn =
√

a2 + b2 ≥ 2) or the number of iteration reaches

some constant (for us, 255).

The number of iterations is the color of c.

c©2002-2004 R. Leduc 9

60
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Real

Figure 3.4 Mandelbrot set.

+2−2 0

+2

−2

0

Imaginary

c©2002-2004 R. Leduc 10

Sequential Code

Represent the complex number using the struc-

ture:

structure complex {

float real;

float imag;

};

A routine for calculating z for point c and re-

turning the color would be similar to:∗

int cal_pixel(complex c){

int count, max;

complex z;

float temp, lengthsq;

∗This and other code from “Parallel Programming.. “
by Wilkinson et al.

c©2002-2004 R. Leduc 11

Sequential Code Cont.

max = 256;
z.real = 0;
z.imag = 0;
count = 0;

do {
temp = z.real * z.real - z.imag * z.imag + c.real;
z.imag = 2 * z.real * z.imag + c.imag;
z.real = temp;
lengthsq = z.real * z.real + z.imag * z.imag ;
count++;

} while ((lengthsq < 4.0) && (count < max));

return count; /* the color of point c */
}

Stops when
√

a2 + b2 ≥ 2 or maximum count

reached.

Means all the Mandelbrot points must be within

a circle centered at the origin, with radius 2.

c©2002-2004 R. Leduc 12

Scaling the Coordinate System

Want to display image on a display of fixed

size: disp height × disp width in pixels.

This creates a rectangular window that can be

positioned anywhere in the complex plane.

We need to map each pixel onto the complex

plane to determine a corresponding value for

c.

We first choose values for our range: cmin =

(real min, imag min) to

cmax = (real max, imag max).

c©2002-2004 R. Leduc 13

Scaling the Coordinate System cont.

We will thus need to scale each (x, y) value
from our display to get our value for c.

c.real = real_min + x *(real_max - real_min)/disp_width;
c.imag = imag_min + y *(imag_max - imag_min)/disp_height;

To improve speed, we define:

scale_real = (real_max - real_min) /disp_width;
scale_imag = (imag_max - imag_min) /disp_height;

To process every point in the display, we’d use:

for (x = 0; x < disp_width; x++)
for (y = 0; y < disp_height; y++) {

c.real = real_min + ((float)x * scale_real);
c.imag = imag_min + ((float)y * scale_imag);
color = cal_pixel(c);
display(x,y,color);

}

Where display() is a suitable routine to display

the pixel (x,y) with the indicated color.

c©2002-2004 R. Leduc 14

Parallelizing Computation

Parallelizing works very well for message-passing

systems as value for each pixel can be calcu-

lated without requiring information about neigh-

boring pixels.

Will first examine a static task assignment.

Can do this by breaking up the display area

into squares or rectangles and assign each to

a process. See Figure 3.3.

Once process assigned portion of display, it

must call cal pixel() to process every pixel in

its area.

Suppose display is 640 × 480 and we want to

compute 10 rows per process. We thus need

49 processes.

c©2002-2004 R. Leduc 15

59
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

640

480

80

80

640

480

10

(a) Square region for each process

(b) Row region for each process

Figure 3.3 Partitioning into regions for individual processes.

Process

Map

Process

Map

x

y

c©2002-2004 R. Leduc 16

Parallelizing Computation Cont.

Could use following pseudocode:

Master Code:

for (i = 0, row = 0; i <48; i++, row = row + 10)
send(&row, Pi) /* send starting row to proc i */

/* receive pixels individually from any process */
for (i = 0; i < (480 * 640); i++) {

/* receive coordinates/ color from any process*/
recv(&c, &color, Pany);
display(c,color);

}

Slave Code (process i):

/* receive starting row number */
recv(&row,Pmaster);
for (x = 0; x < disp_width; x++)

for (y = row; y < (row + 10); y++) {
c.real = real_min + ((float)x * scale_real);
c.imag = imag_min + ((float)y * scale_imag);
color = cal_pixel(c);
/* send coordinates/color of pixel to master */
send(&c,&color,Pmaster);

}

c©2002-2004 R. Leduc 17

Problems With Code

• Obviously, won’t perform optimally if pro-

cessors are not the same. Also, compu-

tation time of each pixel varies, so want

dynamic allocation.

• Should have partitioned data based on num-

ber of processes, not on a fixed process

number (48 slaves + 1 master) (see sam-

ple collective MPI program given earlier).

• Pixels are sent to master one at a time.

If using message passing, this incurs signif-

icant startup overhead.

Better to save to array, and send results

one row at a time.

• Slave routine should return (x, y) coordi-

nates, not c.

c©2002-2004 R. Leduc 18

Dynamic Task Assignment

Calculating Mandelbrot set requires significant

computation.

Number of iterations per pixel normally differ-

ent plus computers used may be different types

or operate at different speeds.

Thus, some processors might complete their

tasks before others, and thus be idle.

Will use load balancing so that all processors

finish together.

Varying Portion Size: Can assign different sized

regions to different processors.

Undesirable as we would need to know in

advance the speed of each processor as well

as the time to calculate each Pixel.

c©2002-2004 R. Leduc 19

Work Pool/Processor Farms

More efficient approach is a dynamic form of

load balancing such as the work pool approach.

Basic idea: supply individual processors with

chunks of data when they become idle.

The work pool holds a collection (pool) of

tasks to be performed.

For our application, the coordinates of our set

of pixels is our set of tasks.

The number of tasks is fixed as the number of

pixels is fixed before computation begins.

c©2002-2004 R. Leduc 20

How Work Pool Functions.

Our work pool contains coordinates for rows

of pixels.

Requires that the slave processes are informed

at the begining the number of pixels in a row.

Individual processes request a row, and then

process it.

Process then returns the array of colurs for

row, and requests new row.

When all rows have been assigned, we then

wait for each process to finish their tasks, and

return the data.

c©2002-2004 R. Leduc 21

61
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Work pool

(xc, yc)
(xa, ya)

(xd, yd)(xb, yb)

(xe, ye)

Figure 3.5 Work pool approach.

Task

Return results/
request new task

c©2002-2004 R. Leduc 22

Work Pool Pseudocode

Assuming procno is the number of slave pro-
cesses, we could use the following pseudocode:

Master Code:

count = 0; /* termination counter */
row = 0; /* row being sent */
rows_recv = 0; /* No of rows processed */

/* assuming procno < disp_height */
for (k = 0; k < procno; k++) {

/* send initial row to process */
send(&row, P_k, data_tag);
count++;
row++;

}

do {
recv(&slave, &r, color, Pany, result_tag);
/* reduce count as rows received */
count--;
if (row < disp_height) { /* still rows to process */

send(&row, P_slave, data_tag);
count++;
row++;

} else /* pool empty- terminate */
send(&row, P_slave, terminator_tag);

rows_recv++;
display(r, color);

} while (count > 0);

c©2002-2004 R. Leduc 23

Work Pool Pseudocode Cont.

Slave Code (process i):

/* receive 1st row */
recv(&y, P_master, ANYTAG, source_tag);

/* exit when a tag other than data_tag received */
while (source_tag == data_tag) {

c.imag = imag_min + ((float)y * scale_imag);

/* compute colours for each pixel in row */
for (x = 0; x < disp_width; x++)

c.real = real_min + ((float)x * scale_real);
color[x] = cal_pixel(c);

}

/* send row no/color of pixels to master */
send(&i, &y, color, P_master, result_tag);
/* receive next row to process */
recv(&y, P_master, ANYTAG, source_tag);

}

c©2002-2004 R. Leduc 24

Discussion of Pseudocode

As rows assigned on dynamic basis, will easily

handle differences in computation time.

Termination of main loop in master based on

number of rows outstanding as shown in Figure

3.6.

∗

Alternate termination condition is to count num-

ber of rows received. When rows recv =

disp height, then exit loop.

∗From “Parallel Programming.. “ by Wilkinson et al.

c©2002-2004 R. Leduc 25

Tradeoff for Work Pool Method

Work pool method allows for dynamic work

load balancing providing higher CPU utiliza-

tion.

Increases number of messages sent thus cost

of communication.

Need to find balance between size of task, ver-

sus number of tasks.

Smaller task (data chunk) size decreases com-

putation: communication ratio.

c©2002-2004 R. Leduc 26

Timing Analysis of Mandelbrot Set

Exact analysis not easy as don’t know how

many iterations would be needed for each pixel.

For n pixels, the number of iterations for a

given pixel is a function of n, but can’t exceed

value max.

This gives us formula for the sequential time:

ts ≤ max × n

In other words, time complexity of O(n).

c©2002-2004 R. Leduc 27

Parallel Timing Analysis

We will examine for the static assignment case.

We have three main phases: communication,

computation, and more communication.

Phase 1: Communication. Send starting row

number to each of s slaves.

tcomm1 = s(tstartup + tdata)

Phase 2: Computation. Slaves perform com-

putation for mandelbrot in parallel.

tcomp ≤
max × n

s

c©2002-2004 R. Leduc 28

Parallel Timing Analysis Cont.

Phase 3: Communication. Results are sent

to master one pixel at a time.

tcomm2 =
n

s
(tstartup + tdata)

The total parallel time is:

tp ≤
max × n

s
+ (

n

s
+ s)(tstartup + tdata)

This gives us an estimate for our scaling factor

of:

S(n) =
max × n

max×n
s

+ (n
s
+ s)(tstartup + tdata)

For large values of max, this gives S(n) = p−1,

where p = s + 1 is the total number of pro-

cesses.

c©2002-2004 R. Leduc 29

