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Strategies

We now discuss two of the most fundamental

approaches in parallel programming.

Partitioning: Problem divided into distinct parts

and then each part is separately computed.

Divide and Conquer: Uses partitioning , but

in a recursive manner.

The problem is continually divided into smaller

and then smaller parts. The smallest parts

are then solved and the results combined.
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Partitioning Strategies

Partitioning simply divides the problem into

parts.

Basis of all parallel programs in one form or

another.

Unlike the partitioning done for the embarras-

ingly parallel case, the general case requires

that the results of the individual parts have to

be combined to obtain the final result.

Two common approaches to partition the prob-

lem:

Data Partitioning: This is when the data is

partitioned. The program data is divided

and operated upon in parallel.

This is also called domain decomposition.

c©2002-2004 R. Leduc 2



Partitioning Strategies Cont.

Functional Decomposition: This is when the

function of the program is partitioned. The

program is divided into separate functions

which then run in parallel.

Not common to have concurrent functions in a

problem, but data partitioning is an often used

strategy.
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Data Partitioning

Simple example: suppose want to add a se-

quence of numbers x0, . . . , xn−1.

Recurring problem in text to demonstrate con-

cept. Not worthwhile to parallelize unless n is

large.

Approach can be used on large databases to

do complex calculations.

Could divide sequence into m parts with n/m
numbers in each part.

ie. (x0 . . . x(n/m)−1), (xn/m . . . x(2n/m)−1), . . . (x(m−1)n/m . . . xn−1)

Next, m processes would each add a sequence

creating m partial sums.

The m partial sums are then added together.

See Figure 4.1.
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Figure 4.1 Partitioning a sequence of numbers into parts and adding the parts.

Sum

x0 … x(n/m)−1 xn/m … x(2n/m)−1 x(m−1)n/m … xn−1…

Partial sums

+ +

+

+
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Data Partitioning Cont.

Need to distribute the required portion of num-

bers to each processor.

With MPI, would require data passed individu-

ally to processes. A shared-memory processor

could simply access the data from a commonly

accesible location.

Parallel code for master/slave simple:

• Master sends numbers to slaves.

• Slaves add their numbers in parallel.

• Partial sums sent to master.

• Master adds partial sums to obtain results.
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Individual Send or Broadcast

Whether broadcast entire list or send individ-

ually to processes, send the same amount of

data.

Which is better, depends on broadcast method.

Broadcast has single startup time, and thus

may be better than multiple sends.

Using broadcast, increases complexity of every

slave as it must determine itself which portion

of the problem to handle.

Also, each slave must have enough memory to

hold all of the data.
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Individual Send

Pseudocode for addition that uses separate

send/recvs.

∗

∗This and other code from “Parallel Programming.. “
by Wilkinson et al.
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Using Broadcast Cont.

Pseudocode using broadcast.
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Scatter and Reduce

If using scatter and reduce, pseudocode would

be:

Instead of addition, could have done many other

operations such as:

• Found maximum number of each group,

then master finds maximum of results.

• Number of occurrences of a number (char-

acter, string etc.) in a group can be found

and given to master.
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Timing Analysis

Sequential computation requires n − 1 addi-

tions, thus O(n).

For parallel we have m + 1processes.

Phase 1: Communication. Evaluate time for

the m slaves to receive their n/m numbers.

For separate send/recs, we’d get:

tcomm1 = m(tstartup + (n/m)tdata)

= m tstartup + n tdata

If we used scatter, we might get:

tcomm1 = tstartup + ntdata

The results dependent on implementation

of scatter. Either case, time complexity is

O(n).
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Timing Analysis Cont.

Phase 2: Computation. Each slave must add

n/m numbers.

tcomp1 = (n/m) − 1

Phase 3: Communication. Sending partial sums

to master.

Using separate send/recs:

tcomm2 = m(tstartup + tdata)

= m tstartup + m tdata

Using gather or reduce might give:

tcomm2 = tstartup + mtdata

Phase 4: Computation. The master now adds

the m partial sums:

tcomp2 = m − 1
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More Timing Analysis

The overall runtime with send and receive is:

tp = (tcomm1 + tcomm2) + (tcomp1 + tcomp2)

= (m tstartup + n tdata + m tstartup + m tdata)

+(n/m − 1 + m − 1)

= 2m tstartup + (n + m)tdata + m + n/m − 2

Thus tp is O(n + m).

The parallel algorithm actually has worse time

complexity than sequential.

Ignoring communication, the speedup factor,

S, is:

S =
ts

tp
=

n − 1

n/m + m − 2

OK for large n, but very low for smaller n.
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Divide and Conquer

Characterized by breaking a problem down into

subproblems of the same form.

These subproblems are in turn broken down,

and so on, until the tasks are simple enough

to perform.

Normally done by recursion.

The simple tasks are performed and the re-

sults are combined to obtain larger results, and

these results are combined, and so on.

One way to determine if a method is partition-

ing or divide and conquer is as follows:

Partitioning: A method is partitioning when

the majority of work is done in dividing the

problem.
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Divide and Conquer Cont.

Divide and Conquer: When the majority of

work is performed in combining the results.

We will instead categorize a method as di-

vide and conquer when the initial partitioning

is continued to make smaller and smaller prob-

lems.
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Sequential Recursive Approach

Pseudocode for a sequential recursive method
for adding group of numbers is:

int add(int *s) { /* add #s in list s */

/* see defn of n1, n2 below */
if ( number(s) =< 2) return (n1 + n2);
else {

/* divide s into lists s1 and s2 */
Divide(s, s1, s2);
/* recursive call to add sublist */
part_sum1 = add(s1);
part_sum2 = add(s2);
return (part_sum1 + part_sum2);

}
}

If 2 #, we name them n1 and n2. If one, it’s n1
and we set n2 = 0. None, then n1 = n2 = 0.

Can extend to find maximum value or to sort
list (ie. mergesort and quicksort sorting algo-
rithms) etc.

Wouldn’t use recursion when could use itera-
tive, but our method can be applied to any-
thing that can be formulated as above.
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Tree Construction

When problem is divide into two parts, divide

and conquer forms binary tree.

Tree traversed downwards when function calls

made, and upwards when the functions return.

See Figure 4.2.

The tree construction can be used to divide

the list into first two, and then four parts and

so on until every process has an equal part.

Once pairs at bottom are added, the numbers

are added in a reverse tree traversal.

Figure 4.2 shows a complete tree. Only hap-

pens if tree can be divided into a number of

parts that is power of 2.
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Figure 4.2 Tree construction.

Initial problem

Divide

Final tasks

problem
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Parallel Implementation

For sequential case, can only visit one node of

tree at a time.

In parallel implementation, can traverse several

parts simultaneously.

Once problem divided, both parts can be pro-

cessed concurrently.

If visualize problem as a tree, don’t need re-

cursion.

One solution is to assign a process per node.

For a tree of height m, this would require

2m+1
−1 nodes to break the problem down into

2m parts. Inefficient.
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Parallel Implementation Cont.

Better solution is to reuse processes at each

stage in tree.

Division ends when all processes are commit-

ted.

At each stage, a process keeps half of list, and

passes other half on.

Consider Figure 4.3 which uses 8 processes.

Each list at leaves will have n/p numbers, when

we have p processes.

We thus have a tree of height log p.
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Figure 4.3 Dividing a list into parts.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Original list

x0 xn−1
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Combining the Results

Once partial sums at the leafs have been com-

puted, every odd number process sends it’s

sum to the adjacent even numbered process.

The even numbered process then adds the par-

tial sum with its own and passes the results on.

Stops when Process 0 has final result.

Figure 4.4 can show how the partial sums can

be combined back to produce the final results.
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Figure 4.4 Partial summation.

P0 P1 P2 P3 P4 P5 P6 P7

P0

P0

P0 P2 P4 P6

P4

Final sum

x0 xn−1
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Relationship to Hypercube

Same communication pattern as used in a bi-

nary hypercube broadcast and gather algorithm

from slides5.

Processes that are suppose to communicate

with other processes can be found from their

binary address (000 − 111 for p = 8).

Processes that communicate with each other

differ by one bit.

In division of data phase, this starts with the

most significant bit (left-most bit). Next, pro-

cesses that differ in the bit to the right of the

most significant bit communicate, and so on.

In combining stage, starts with least significant

bit.
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Parallel Pseudocode

Pseudo code for process 0 would look like:
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Parallel Pseudocode Cont.

Code for process 4 would be as below.

Similar for other processes.
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Timing Analysis

Assume that n (number of elements to add) is

a power of two.

Leave as exercise to include tstartup (commu-

nication setup time).

Division phase only communication. Combin-

ing phase both.

Communication: For division phase, we have
logp steps, p the number of processes.

tcomm1 =
n

2
tdata +

n

4
tdata +

n

8
tdata + . . . +

n

p
tdata

=
n(p − 1)

p
tdata

For the combining phase, only send one

piece of data:

tcomm2 = tdata log p
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Timing Analysis Cont.

Computation: Once divide phase over, the

n/p numbers added together. Next, one

addition occurs at each stage of combin-

ing phase.

tcomp =
n

p
− 1 + log p

For constant p, we get time complexity

O(n). For variable p, and large n, we get

O(n/p).

Total parallel execution time is:

tp =
n(p − 1)

p
tdata + tdata log p +

n

p
− 1 + log p
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More Timing Analysis

Ignoring communication, and we get a scaling

factor of p for constant p and large n.

S =
ts

tp
=

n − 1
n
p − 1 + log p

Comparing this to partitioning (m = p-1), and

we see a definite improvement:

S =
n − 1

n/m + m − 2
=

n − 1

n/(p − 1) + p − 3
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Other Operators

Clearly, other associative operators could re-

place the sum (ie. subtraction, multiplication,

logical OR etc).

Tree construction can also be used for opera-

tions such as a search.

Information passed up is boolean flag asserting

if condition or a specific item has been found.

Operation at each node would then be an OR

function as in Figure 4.5.
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OR

OROR

Found/
Not found

Figure 4.5 Part of a search tree.
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M-ary Divide and Conquer

Can also use when tasks divided at each stage

into > 2 parts.

ie. the task can be divided into four parts at

each stage.

The recursive sequential formulation would be:

int add(int *s) { /* add #s in list s */

if ( number(s) =< 4) return (n1 + n2 + n3 + n4);

else {

/* divide s into lists s1, s2, s3, s4 */

Divide(s, s1, s2, s3, s4);

/* recursive call to add sublist */

part_sum1 = add(s1);

part_sum2 = add(s2);

part_sum3 = add(s3);

part_sum4 = add(s4);

return (part_sum1 + part_sum2 + part_sum3 + part_sum4);

}

}
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M-ary Divide and Conquer Cont.

This leads to a tree where each non-leaf node

has four children. Called a quadtree. See Fig-

ure 4.6.

A quadtree is used in decomposing a 2-dimensional

area into four subregions.

This would be done with a digital image. The

image would be divided into four quadrants.

The quadrants would then each be divided into

four subquadrants. See Figure 4.7.

An octtree is a tree when each non-leaf node

has 8 children. Useful to divide a 3-dimensional

space.
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Figure 4.6 Quadtree.
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Image area

First division

Second division

into four parts

Figure 4.7 Dividing an image.
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M-ary Tree

Generalizes to a m-ary tree, a tree where each

non-leaf node has m children.

The fact that we divide a problem into m parts

at each stage, suggests that we are exposing

more parallelism at each stage.

Cons: For m > 2, the algorithm is more com-

plicated.

Particularly if the architecture isn’t well suited,

this may not give an increase in parallelism.

Pros: Using m > 2 may be a more natural fit

with the problem.

If the architecture is well suited, then can

expose more parallelism sooner.
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Sorting Using Bucket Sort

Instead of just adding group of numbers, we

could sort list into numerical order.

Most sequential sorting algorithms based on

compare and swapping of a pair of numbers.

Will examine a method called bucket sort which

doesn’t use this method.

It is actually a partitioning method.
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Sorting Using Bucket Sort Cont.

Bucket sort only works well if numbers are uni-

formally distributed across a specified interval.

ie. 0 to a − 1

We then break this interval into m equal re-

gions: 0 to a/m−1, a/m to 2a/m−1, 2a/m to

3a/m − 1, . . .

We assign one “bucket” to hold the numbers

that belong to each region, thus m buckets.

We place each number in the appropriate bucket,

and then sort the bucket.

We will use a limited number of buckets, and

then sort the buckets using a sequential algo-

rithm, and then merge the lists. See Figure

4.8.

c©2002-2004 R. Leduc 38



74
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Unsorted numbers

Sorted numbers

Buckets

Figure 4.8 Bucket sort.

Sort
contents
of buckets

Merge lists
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Sequential Algorithm

Fist step: place each number in their bucket.

Requires determining region number falls in.

• Could compare number to start value of

each region (a/m,2a/m, . . .).

Would require m−1 steps for every number.

• Better way is to divide each number by

n/m, and quotient gives bucket.

Gives 1 step per number, but division may

be slow.

• If m a power of two, can derive bucket by

looking at upper digits in binary.

If m = 8 = 23, then number 1100101 falls

into region 110 = (6)10. Simply take three

most significant bits.
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Sequential Algorithm Cont.

We will thus assume that placing a number in a

bucket takes one step, thus n steps to place all

numbers. Will have n/m numbers per bucket.

Step two: Each bucket must be sorted.

Sequential algorithms such as quicksort and

mergesort are O(n logn) to sort n numbers.

We will assume that sequential algorithm needs

n logn comparisons, and we’ll take one com-

parison to be one computation step.

To sort n/m numbers in each bucket will thus

take (n/m) log(n/m) steps.
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Sequential Algorithm Analysis

After numbers in buckets are sorted, they must

be contenated into one list. We will assume

this takes no additional steps.

Combining all steps together, our serial time

is:

ts = n + m((n/m) log(n/m)) = n + n log(n/m)

This is O(n log(n/m)). If n = km, k being

some constant, then we have O(n).

Only applies if numbers are properly distributed.
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Parallel Algorithm

Easiest way to parallelize is to use one process

per bucket.

This changes the n log(n/m) term in the ts

equation to n/p log(n/p), where p = m is the

number of processes. See Figure 4.9.

Lots of wasted effort as each process must ex-

amine all n numbers to determine which ones

belong in its bucket.

Better approach is to divide the n unsorted

numbers in the list into p regions, one per pro-

cess.
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Parallel Algorithm Cont.

Each process has p small buckets into which it

puts the numbers from its region. Each Pro-

cess also has one large bucket to contain all the

numbers from the list that fall into its sorting

interval.

The contents of the small buckets are then

sent to the appropriate process. ie. small

bucket i is sent to process i. See Figure 4.10.

This requires the following phases:

1. Partition numbers.

2. Sort numbers into small buckets.

3. Empty small buckets into large buckets.

4. Sort large buckets.
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Unsorted numbers

Sort

Figure 4.9 One parallel version of bucket sort.

Buckets

contents
of buckets

Merge lists

p processors

Sorted numbers
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Unsorted numbers

Sort

Large

Figure 4.10 Parallel version of bucket sort.
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Timing Analysis

Phase 1: Computation and Communication.

We assume that it takes n steps to parti-

tion numbers into p regions.

tcomp1 = n

We now need to send n/p numbers to each

process. With broadcast or scatter, the

communication time is:

tcomm1 = tstartup + ntdata

Phase 2: Computation. To put the n/p num-

bers into small buckets takes:

tcomp2 = n/p

c©2002-2004 R. Leduc 47



Timing Analysis Cont.

Phase 3: Communication. We now send the

small buckets to their repective process.

If we assume numbers evenly distributed

across the p small buckets, each will have

n/p × 1/p = n/p2 numbers.

Thus, p processes must each send p − 1

buckets. Upperbound would be when com-

munication can not be overlapped and sep-

arate send() calls used:

tcomm3 = p(p−1)(tstartup+(n/p2)tdata)

Lowerbound is when all p−1 transmissions

can overlap:

tcomm3 = (p − 1)(tstartup + (n/p2)tdata)

Can use MPI’s MPI Alltoall() which should

be more efficient than individual send and

receive routines. See Figure 4.12.
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Send Receive

Send

Process 1 Process n − 1

Process 0 Process n − 1

Process 0 Process n − 2

0 n − 1 0 n − 1 0 n − 1 0 n − 1

Figure 4.11 “All-to-all” broadcast.

buffer buffer

buffer
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More Timing Analysis

Phase 4: Computation. Each large bucket,

containing n/p numbers, is now sorted in

parallel.

tcomp4 = n/p log(n/p)

Total Runtime: The total parallel runtime is:

tp = n + tstartup + ntdata + n/p +

(p − 1)(tstartup + (n/p2)tdata) + n/p log(n/p)

= ptstartup + (n + (p − 1)n/p2)tdata + n +

n/p + n/p log(n/p)

Ignoring communication and tcomp1, we get

the following speedup factor:

S =
n + n log(n/p)

n/p + n/p log(n/p)
= p
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