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Introduction

We now consider problems that require a group

of individual computations that need to wait

for one another at certain times, before con-

tinuing.

Waiting for each other causes them to become

synchronized.

When all processes in an application are syn-

chronized at regular points, we say the appli-

cation is a fully synchronous application.

Normally, same operations applied in parallel

to a set of data.

All operations start in lock-step like SIMD com-

putations.
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Barriers

Say we have a number of processes performing

a computation.

The processes that finish first must wait until

all processes reach a common reference point.

A common reason is when processes must ex-

change data, and then continue from a known

state.

Need a mechanism that will stop all processes

from proceeding past a particular point until

all are ready.

Such a mechanism is called a barrier.

A barrier is placed at a point in all processes

where the process must wait. All processes

can only continue when every processes has

reached it. See Figure 6.1.
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Barriers Cont.

Barriers can be used in both shared memory

and message-passing systems.

Usually provided by library routines.

For MPI, the routine is MPI Barrier() which

takes a communicator as parameter.

MPI Barrier() must be called by all members of

the communicator, and blocks until all mem-

bers have arrived at the barrier call, and re-

turning only then.

Figure 6.2 shows library call approach.

How the routine is actually implemented de-

pends on the implementer of the libraries, who

take into consideration the systems architec-

ture.
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Counter Implementation

One way to implement a barrier is as a cen-

tralized counter (also called a linear barrier) as

in Figure 6.3.

Single counter used to keep track of number

of processes to arrive at barrier.

Initialize to zero then count to some value n.

If process has reached barrier and count < n,

then process is stalled.

When counter reaches n, all processes waiting

on it are released.
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Counter Implementation Phases

These type of barriers normally have two phases:

Arrival Phase: The arrival or trapping phase

is the phase when the process reaches the

barrier call. It stays here until all processes

reach this phase.

Departure Phase: Once all processes reach

the arrival phase, they move to the de-

parture phase and are released from the

barrier.

As barriers often used more than once in a

program, must keep in mind that a process

can enter a barrier for a second time before

others have left from the first time.
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Counter Implementation Phases Cont.

This problem can be handled as below.

Master counts messages received from slaves

during the arrival phase, and then releases slaves

in departure phase. See Figure 6.4.

The code would look like:∗

/* count slaves as they reach barrier */

for (i = 0; i < n; i++)

recv(Pany);

/* release slaves */

for (i = 0; i < n; i++)

send(Pi);

Slave code would be:

send(Pmaster);

recv(Pmaster);

∗This and other code from “Parallel Programming.. “
by Wilkinson et al.
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for(i=0;i<n;i++)
recv(Pany);

for(i=0;i<n;i++)
send(Pi);

Master

Figure 6.4 Barrier implementation in a message-passing system.
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Tree Implementation

Counter implementation is O(n). Can imple-

ment more efficiently as decentralized tree con-

struction.

If we have eight processes, P0, P1, ... , P7,
the algorithm would be as follows:

Stage 1: P1 sends message to P0; (when P1 hits barrier)
P3 sends message to P2; (when P3 hits barrier)
P5 sends message to P4; (when P5 hits barrier)
P7 sends message to P6; (when P7 hits barrier)

Stage 2: P2 sends message to P0; (P2 and P3 at barrier)
P6 sends message to P4; (P6 and P7 at barrier)

Stage 3: P4 sends message to P0; (P4-P7 at barrier)
P0 ends arrival phase; (P0 hits barrier and

received message from P4)

To release processes, reverse tree construction.

See Figure 6.5.

In general, requires 2 logn steps and is thus

O(logn).
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Figure 6.5 Tree barrier.
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Butterfly Barrier

Tree construction can be extended into a but-
terfly construction, where pairs of processes
synchronize at each step (See Figure 6.6):

Stage 1: P0 <-> P1, P2 <-> P3, P4 <-> P5, P6 <-> P7
Stage 2: P0 <-> P2, P1 <-> P3, P4 <-> P6, P5 <-> P7
Stage 3: P0 <-> P4, P1 <-> P5, P2 <-> P6, P3 <-> P7

After stage 3, all processes have been synchro-

nized with all others, and all can continue.

If we have n processes (n a power of 2), then

the butterfly construction takes logn steps and

is thus O(logn).
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Figure 6.6 Butterfly construction.
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Local Synchronization

Sometimes, for a given problem, a process only

needs to be synchronized with a subset of pro-

cesses.

For example, in algorithms when processes are

structured as a mesh or pipeline.

Say process Pi needs to exchange data and be

synchronized with processes Pi−1 and Pi+1.

Not perfect three process barrier, but may be

good enough for many problems.
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Deadlock

Deadlock can occur when two processes both

send and receive to each other.

For example, if both first perform synchronous

sends or blocking send without sufficient buffer-

ing.

One solution is to have one first send and the

other start with a receive, and then swap.

As bidirection swapping of data common, MPI

provides the function MPI Sendrecv() which

handles this in such a way to prevent dead-

lock.
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Data Parallel Computations

Data parallel computations have inherent syn-

chronization requirements.

A data parallel computation is when the same

operation is applied to separate data elements

concurrently (ie. SIMD).

Data parallel programming is useful because:

• Easy to program. Just have to create one

program.

• Scales easy to handle big problems.

• A large number of numeric (and some non-

numeric) can be cast in this form.
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SIMD Computers

SIMD (single instruction stream multiple data

stream) computers are data parallel comput-

ers.

In a SIMD computer, each processor concur-

rently performs the same operation, but on dif-

ferent data.

The synchronism is a part of the hardware;

each processor executes in lock-step.

Below is an example data parallel computation
(k is a constant).

for (i = 0; i <n; i++)
a[i] = a[i] + k;
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SIMD Computers Cont.

Line a[i] = a[i] + k can be evaluate in parallel

by multiple processors, each taking a different

value for i (ie. i ∈ {0,1, . . . , n−1}). See Figure

6.7.

On an SIMD computer, each processor would

execute concurrently an instruction equivalent

to a[] = a[] + k.

As such a parallel operation as above are com-

mon, many parallel languages have data paral-

lel operations.
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a[0]=a[0]+k; a[n-1]=a[n-1]+k;a[1]=a[1]+k;

Instruction
a[] = a[] + k;

a[0] a[n-1]a[1]

Figure 6.7 Data parallel computation.

Processors
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Forall Statement

forall operation: A forall statement consists
of a loop variable, a sequence of values it
can take, and a loop body as shown below.

forall (i = 0; i <n; i++)
body

The statement means the n instances of

the body should be evaluated concurrently,

with each instance using a different value

for i in i’s possible range.

Our example becomes:

forall (i = 0; i <n; i++)
a[i] = a[i] + k;

Note: Each instance of the body must be in-

dependent of all others.
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Forall Statement and Message-Passing

On parallel computer, each instance would run

in a different process, but the overall construct

will not be completed until all processes com-

plete.

Construct has inherent barrier.

Pseudocode for the SPMD would be:

i = myrank;
a[i] = a[i] + k; /* body */
barrier(mygroup);

Body to simple to be practical, but more com-

plex applications such as image processing (Chap-

ter 11) are applicable.
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Synchronous Iteration

In sequential programming, iteration important

technique.

Used in the iterative method, an effective method

for solving numerical problems.

Often in numerical problems, we perform a cal-

culation repeatedly.

We use the result from current calculation in

the next one.

Can parallelize if there are multiple indepen-

dent instances of each iteration.
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Synchronous Iteration Cont.

Synchronous Iteration: When we solve a prob-

lem using iteration and in every iteration

we have several processes that begin as a

group at the start of the iteration, and the

next iteration can not start until every pro-

cess has completed the current iteration,

we call this synchronous iteration.

Pseudocode would be:

i = myrank;

for (j = 0; j < n; j++) {
body(i);
barrier(mygroup);

}
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Solving System of Linear Equations
by Iteration

Given n equations of n unknowns, we want to

solve for the n unknowns.

an−1,0x0 + an−1,1x1 . . . + an−1,n−1xn−1 = bn−1

·
·
·

a1,0x0 + a1,1x1 . . . + a1,n−1xn−1 = b1
a0,0x0 + a0,1x1 . . . + a0,n−1xn−1 = b0

Want to solve for the unknowns x0, x1, . . . , xn−1

by using iteration.

If we rearrange the ith equation (0 ≤ i ≤ n−1)

by solving for xi, we get:

xi = (1/ai,i)[bi − (ai,0x0 + ai,1x1 + . . .)]

=
1

ai,i



bi −
∑

j 6=i

ai,jxj




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Jacobi Iteration

The iteration equation xi = 1
ai,i

[

bi −
∑

j 6=i ai,jxj

]

gives

xi as a function of the other unknowns.

We can use it iteratively for each of the n

unkowns to provide improved approximations.

This is called the Jacobi iteration.

1. Start with an initial estimate for each xi,

usually bi.

2. Using the current estimate for each un-

known, use the iteration equation to com-

pute a new estimate for each xi.

3. Once a new estimate for each variable has

been found, repeat step 2 until the termi-

nation condition has been reached.
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Convergence and Termination

One way to ensure that the Jacobi iteration

converges is to make sure that the array of a

constants is diagonally dominant. The itera-

tions are guaranteed to converge if:

∑

j 6=i

∣

∣

∣ai,j

∣

∣

∣ <
∣

∣

∣ai,i

∣

∣

∣

A common termination condition would be as

below. The notation xt
i means the value of xi

after the tth iteration.
∣

∣

∣xt
i − xt−1

i

∣

∣

∣ < error tolerance

Unfortunately, this doesn’t mean that our so-

lution will be accurate to that error tolerance.

See Figure 6.9.
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Figure 6.9 Convergence rate.t+1t
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Convergence and Termination Cont.

Another point is that errors in one unknown

will influence other xi when they are used in

the next iteration.

A better termination condition might be:
√

√

√

√

√

n−1
∑

i=0

(xt
i − xt−1

i )2 < error tolerance

Whichever one chosen, one must also set a

maximum number of iterations as the Jacobi

iteration may not converge or converge too

slowly.
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Sequential Algorithm

Let arrays a[][] and b[] contain the constants,
and x[] hold the unkowns:

for (i = 0; i < n; i++)
x[i] = b[i]; /* initialize unknowns */

/* iterate for fixed number of times */
for (iteration = 0; iteration < limit; iteration++) {

/* for each unknown, do: */
for (i = 0; i < n; i++) {

sum = -a[i][i] * x[i];
/* compute summations */
for (j = 0; j < n; j++)

sum = sum + a[i][j] * x[j];
/* compute unknown */
new_x[i] = (b[i] - sum)/a[i][i];

}
/* set new values to current */
tmp_loc = new_x;
new_x = x;
x = tmp_loc;

}
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Parallel Algorithm

Let each process compute the iteration equa-

tion for an unkown. Assume we have a group

routine broadcast receive() that send local value

to all processes, and receives copy of local

value from all other processes.

For Process Pi:

x[i] = b[i]; /* initialize unknowns */

/* iterate for fixed number of times */
for (iteration = 0; iteration < limit; iteration++) {

sum = -a[i][i] * x[i];
/* compute summations */
for (j = 0; j < n; j++)

sum = sum + a[i][j] * x[j];
/* compute unknown */
new_x = (b[i] - sum)/a[i][i];
broadcast_receive(&new_x, x);
barrier(my_group);

}
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Parallel Algorithm Cont.

Routine broadcast receive() could be coded as

individual send/recv calls, but not efficient (O(n)).

Instead, can use the butterfly barrier (O(logn))

not only as a barrier, but to exchange data.

Means we can also get rid of the barrier call.

MPI provides library routine MPI Allgather()

to do this. See Figure 6.10.

Also, want to iterate until estimations are suf-

ficiently close, not just to some fixed number

of iterations.

Need some sort of global tolerance() routine,

as need all processes to do same number of

iterations.

Want each process to iterate until its unknown

has converged. Tolerance() returns TRUE un-

til all processes have converged.
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Figure 6.10 Allgather operation.
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New Parallel Algorithm

For Process Pi:

x[i] = b[i]; /* initialize unknowns */
iteration = 0;

do {
iteration++;
sum = -a[i][i] * x[i];
/* compute summations */
for (j = 0; j < n; j++)

sum = sum + a[i][j] * x[j];
/* compute unknown */
new_x = (b[i] - sum)/a[i][i];
/* broadcast value and wait */
broadcast_receive(&new_x, x);

} while ((tolerance()) && (iteration < limit));
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Partitioning

If there are more unknowns than processes, we

must partition our problem further.

Assign a group of unknowns to be computed

to each process.

Easiest solution is to assign unknowns in se-

quential order:

• Process P0 handles: unknowns x0 to xn/p−1.

• Process P1 handles: unknowns xn/p to x2n/p−1

and so on.
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Timing Analysis

Sequential time will be the time required for

one iteration (evaluating all n unknowns once),

times the total number of iterations.

The parallel time will be the time for a single

process to perform all of its iterations.

Each process operates on n/p unknowns, and

performs τ iterations.

Computation Phase: For each iteration, we

have an outer loop executed n/p times, and

an inner loop executed n times.

In each pass of the inner loop, we do one

addition and one multiplication (2n steps).
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Timing Analysis Cont.

In each pass of the outer loop, we have a

subtraction and a multiplication before the

inner loop, and a subtraction and division

after the inner loop (4 steps + 2n steps

from inner loop).

tcomp = n/p(2n + 4)τ

If τ is constant, then the computation is

O(n2/p).

Communication Phase: At the end of each
iteration, we must transmit the new esti-
mates to all processes. We have p pro-
cesses that each must broadcast n/p data
elements.

tcomm = p(tstartup + (n/p)tdata)τ

= (ptstartup + ntdata)τ
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More Timing Analysis

Putting it together, we get:

tp = (n/p(2n + 4) + ptstartup + ntdata)τ

= (1/p(2n2 + 4n) + ptstartup + ntdata)τ

From our computation phase discussion, we

can see that:

ts = n(2n + 4)τ = (2n2 + 4n)τ

Our speedup factor is:

S =
(2n2 + 4n)τ

(1/p(2n2 + 4n) + ptstartup + ntdata)τ

If we take tstartup = 10,000 and tdata = 50

(from example in Chapter 2), we can exam-

ine Figure 6.11 and we see that our minimum

execution time occurs for p = 16.
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Figure 6.11 Effects of computation and communication in Jacobi iteration.
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Heat Distribution Problem (HDP)

We now consider applying parallel techniques

to simulating heat distribution.

We have a square piece of metal that we know

the temperature values at each edge.

To find the temperature distribution, divide

area into 2-dimensional mesh of points, hi,j.

Temperature at interior point is average of four

surounding points. See Figure 6.12.
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Figure 6.12 Heat distribution problem.

Enlarged
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HDP Points Range

For point hi,j, the range of values for indices

is: 0 ≤ i ≤ k, 0 ≤ j ≤ k

The indices for the n × n interior points are:

1 ≤ i ≤ k − 1, 1 ≤ j ≤ k − 1

The edge points are when: i = 0, or i = k, or

j = 0, or j = k

We compute an interior point’s temperature

by iterating:

hi,j =
hi−1,j + hi+1,j + hi,j−1 + hi,j+1

4

Stop after a set number of iterations or until

difference between iterations is less than the

desired error tolerance.
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HDP Sequential Code

Assume temperature of each point held in ar-

ray h[i][j]

Initialize boundary points h[0][x], h[x][0], h[k][x],

h[x][k] (0 ≤ x ≤ k) to edge temperatures.

Initialize all other points to some initial default

value such as room temperature.

for (iteration = 0; iteration < limit; iteration++){
for (i = 1; i < k; i++)

for (j = 1; j < k; j++)
g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +

h[i][j-1] + h[i][j+1]);
for (i = 1; i < k; i++)

for (j = 1; j < k; j++)
h[i][j] = g[i][j]; }
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Terminiation and Precision

If want to stop at a desired precision, need All

points to have reached desired error tolerance.

do {
for (i = 1; i < k; i++)

for (j = 1; j < k; j++)
g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +

h[i][j-1] + h[i][j+1]);
for (i = 1; i < k; i++)

for (j = 1; j < k; j++)
h[i][j] = g[i][j];

continue = FALSE;
for (i = 1; i < k; i++)

for (j = 1; j < k; j++)
if (!converged(i,j)) {

continue = TRUE;
break;

}

} while (continue == TRUE);
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HDP Parallel Version

Want to evaluate multiple points at once, then

synchronize with 4 nearest neighbours.

Initially, we assume one process per point. Pro-
cesses arranged in a mesh (subscripts: row,
column).

iteration = 0; /* for process i,j */
do {

iteration++;
g = 0.25 * (w + x+ y + z);
send(&g, P_i-1,j); /* non-blocking send */
send(&g, P_i+1,j);
send(&g, P_i,j-1);
send(&g, P_i,j+1);
recv(&w, P_i-1,j); /* synchronous receives */
recv(&x, P_i+1,j);
recv(&y, P_i,j-1);
recv(&z, P_i,j+1);

} while ((!converged(i,j)) && (iteration < limit));
send(&g, &i, &j, &iteration, P_Master);

See Figure 6.14.
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send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j)
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j)
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j)
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j)
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

send(g, Pi-1,j);
send(g, Pi+1,j);
send(g, Pi,j-1);
send(g, Pi,j+1);
recv(w, Pi-1,j)
recv(x, Pi+1,j);
recv(y, Pi,j-1);
recv(z, Pi,j+1);

Figure 6.14 Message passing for heat distribution problem.

i

j

column

row
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Interior Edge points.

Can use process IDs to determine which points

are edge points.

We only calculate values for the interior points.

if (first_row) w = bottom_value;
if (last_row) x = top_value;
if (first_column) y = left_value;
if (last_column) z = right_value;
iteration = 0; /* for process i,j */
do {

iteration++;
g = 0.25 * (w + x+ y + z);
if !(first_row) send(&g, P_i-1,j);
if !(last_row) send(&g, P_i+1,j);
if !(first_column) send(&g, P_i,j-1);
if !(last_column) send(&g, P_i,j+1);
if !(first_row) recv(&w, P_i-1,j);
if !(last_row) recv(&x, P_i+1,j);
if !(first_column) recv(&y, P_i,j-1);
if !(last_column) recv(&z, P_i,j+1);

} while ((!converged(i,j)) && (iteration < limit));
send(&g, &i, &j, &iteration, P_Master);
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Partitioning HDP

Easy to map the n2 interior mesh points to

process indices.

Process zero (P0) is top left of mesh (P1,1),

then process numbered across rows in natural

order.

Means process Pi exchanges data with Pi−1

(left), Pi+1 (right), Pi−n (above), Pi+n (below)

0 ≤ i ≤ n2 − 1.

However, likely that we have only p < n2 pro-

cesses and we have to partition our set of

points.
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Partitioning HDP Cont.

Must allocate blocks of points to each process.

Blocks are usually either square blocks or strips

as in Fig 6.15.

Want to minimize communication between par-

titions.

With n2 points, p processes, and assuming equal

partitions, we have n2/p points per partition.

Process must transmit at each edge n√
p points

for square block, and n points for strip. See

Figure 6.16
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Figure 6.15 Partitioning heat distribution problem.

Blocks Strips (columns)
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Communication Time

Block partitions have 4 edges where data ex-

changed.

Each process sends 4 messages and receives 4

messages per iteration.

tcommsq = 8(tstartup +
n
√

p
tdata)

Strip partitions have only two edges, thus

only two messages are sent then two received

per iteration.

tcommcol = 4(tstartup + ntdata)
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Example Times

Eg. 1: Let tstartup = 10000, tdata = 50,

and n2 = 1024

This gives: tcommsq = 80000 + 12800√
p time

units and tcommcol = 46,400.

Block partitions will take more time for any

value of p.

Eg. 2: As above but tstartup = 100.

This gives: tcommsq = 800+ 12800√
p time units

and tcommcol = 6800.

Strip partitions will have larger time for p > 4.
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Crossover Point

Strip partition has lower communication time

as long as:

8(tstartup +
n
√

p
tdata) > 4(tstartup + ntdata)

which is equivalent to:

tstartup > n

(

1 − 2
√

p

)

tdata

With tstartup = 1200, tdata = 50, and n2 =

1024, the crossover point is when p = 64 (see

also Figure 6.17).

One can solve for the crossover point of the

above equation by replacing “>” by “=” and

solving for p.
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Processors, p
Figure 6.17 Startup times for block and
strip partitions.
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Implementation

Rather than partion into columns, we will par-

tition by rows as we will be using the ’C’ lan-

guage.

Each process will have an array containing its
n
p rows of data points it must compute.

Process also has an additional row (1 per adja-

cent edge) of “ghost points” to hold the data

row from its adjacent edge. See Figure 6.18.

for (i = 1; i <= n/p; i++)
for (j = 1; j <= n; j++)

g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
h[i][j-1] + h[i][j+1]);

for (i = 1; i <=n/p; i++)
for (j = 1; j <= n; j++)

h[i][j] = g[i][j];

send(&g[1][1], n, P_i-1); /* send rows to */
send(&g[n/p][1], n, P_i+1); /* adjacent process */
recv(&h[0][1], n, P_i-1); /* recv rows from */
recv(&h[n/p +1][1], n, P_i+1); /*adjacent process */
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Ghost points

Process i

Process i+1

One row
of points

Array held
by process i

Array held
by process i+1

Figure 6.18 Configurating array into contiguous rows for each process, with ghost points.

Copy
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Deadlock

The data exchange just described is considered

unsafe in the MPI setting.

Method relies on the amount of buffering avail-

able in the send() routines.

If insufficent, process will block until enough

data has been received by the other process to

copy the remaining data to an internal buffer.

As the other process is also trying to send data

before it can receive, they deadlock.
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Deadlock Solutions

• Alternate send and receives of adjacent pro-

cesses. ie. only one process does a send

first, the other receives etc.

• Combined send/receive functions like:

MPI Sendrecv().

• Buffered sends such as: MPI Bsend(). User

provides explicit storage space for buffers.

• Globally nonblocking routines such as:

MPI ISend() and MPI Irecv().
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Deadlock Solutions II

Alternating send()s and rec()s:

if ((i % 2) == 0) { /* even process */
send(&g[1][1], n, P_i-1);
recv(&h[0][1], n, P_i-1);
send(&g[n/p][1], n, P_i+1);
recv(&h[n/p +1][1], n, P_i+1);

} else {
recv(&h[n/p +1][1], n, P_i+1);
send(&g[n/p][1], n, P_i+1);
recv(&h[0][1], n, P_i-1);
send(&g[1][1], n, P_i-1);

}

Segment for using nonblocking routines:

isend(&g[1][1], n, P_i-1);
isend(&g[n/p][1], n, P_i+1);
irecv(&h[0][1], n, P_i-1);
irecv(&h[n/p +1][1], n, P_i+1);
waitall(4);
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Prefix Sum Problem

The prefix sum problem is when we are given

a set of n numbers, x0, x1, . . . , xn−1, and we

want to compute all of the partial sums:

ie. S1 = x0 + x1;S2 = x0 + x1 + x2; . . .

Can replace addition with any other associative

operator (multiplication, subtraction etc.)

Sequential code is:

for (i = 0; i <n; i++) {
sum[i] = 0;
for(j =0; j <= i; j++)

sum[i] = sum[i] + x[j];
}

Algorithm is O(n2).
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Prefix Sum Problem Cont.

Figure 6.8 shows data parallel approach to cal-

culate all partial sums for 16 numbers.

Uses multiple treelike constructions and com-

putes partial sums storing values at x[i] with

0 ≤ i ≤ 16).

Note: Original values of array x lost.

Step 1: 15 (16-1) adds occur (x[i] + x[i-1]) for 1<=i<16
Step 2: 14 (16-2) adds occur (x[i] + x[i-2]) for 2<=i<16
Step 3: 12 (16-4) adds occur (x[i] + x[i-4]) for 4<=i<16
Step 4: 8 (16-8) adds occur (x[i] + x[i-8]) for 8<=i<16

For n numbers, need logn steps.

c©2002-2004 R. Leduc 62



119
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Σ
i=0

0

Σ
i=0

1

Σ
i=0

2

Σ
i=0

3

Σ
i=0

4

Σ
i=0

5

Σ
i=0

6

Σ
i=0

7

Σ
i=0

8

Σ
i=0

9

Σ
i=0

10

Σ
i=0

11

Σ
i=0

12

Σ
i=0

15

Σ
i=0

14

Σ
i=0

13

Σ
i=0

0

Σ
i=0

1

Σ
i=1

2

Σ
i=2

3

Σ
i=3

4

Σ
i=4

5

Σ
i=5

6

Σ
i=6

7

Σ
i=7

8

Σ
i=8

9

Σ
i=9

10

Σ
i=10

11

Σ
i=11

12

Σ
i=14

15

Σ
i=13

14

Σ
i=12

13

Σ
i=0

0

Σ
i=0

1

Σ
i=0

2

Σ
i=0

3

Σ
i=1

4

Σ
i=2

5

Σ
i=3

6

Σ
i=4

7

Σ
i=5

8

Σ
i=6

9

Σ
i=7

10

Σ
i=8

11

Σ
i=9

12

Σ
i=12

15

Σ
i=11

14

Σ
i=10

13

Σ
i=0

0

Σ
i=0

1

Σ
i=0

2

Σ
i=0

3

Σ
i=0

4

Σ
i=0

5

Σ
i=0

6

Σ
i=0

7

Σ
i=1

8

Σ
i=2

9

Σ
i=3

10

Σ
i=4

11

Σ
i=5

12

Σ
i=8

15

Σ
i=7

14

Σ
i=6

13

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

Figure 6.8 Data parallel prefix sum operation.
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Sequential & Parallel Algorithm

At step j ∈ {0,1, . . . , (logn) − 1}, we do n −
2j adds with x[i − 2j] and x[i] (i ∈ {2j,2j +

1, . . . , n − 1})

Sequential algorithm:

for (j = 0; j < log(n); j++)
for (i = 2^j; i <n ; i++)

x[i] = x[i] + x[i - 2^j];

Parallel pseudocode:

i = myrank;

for (j = 0; j < log(n); j++) {
if (i >= 2^j)

xtmp = x[i] + x[i - 2^j];
barrier(mygroup);
x[i] = xtmp;
barrier(mygroup);

}

Complexity is O(logn) if we ignore the com-

plexity from the barriers (SIMD computer). Oth-

erwise it’s O((logn)2). Efficiency is less than

100% as we use fewer processors as we go

along.
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