
∗

Programming with Shared

Memory

∗Material based on B. Wilkinson et al., “PARALLEL
PROGRAMMING. Techniques and Applications Using
Networked Workstations and Parallel Computers”

c©2002-2004 R. Leduc

Introduction

Figure 1-1 shows a program designed to run

as a single process.

∗

∗B. Nichols, D. Buttlar, and J. Proulx Farrell, Pthreads
Programming, O’reilly, 1996.

c©2002-2004 R. Leduc 1

Anatomy of a Process

A process contains several regions in its mem-

ory space.

• Read-only region containing program in-

structions.

• Read-write region containing global data.

• Heap area where from which memory is dy-

namically allocated using malloc systems

calls.

• Stack containing automatic variables for

the current function plus function argu-

ments and return address of function that

called the current function.

Below that in the stack, are similar data

for the calling function, and so on. Each

function-specific area is called a stack frame.

c©2002-2004 R. Leduc 2

Anatomy of a Process Cont.

Additional resources required by a process are:

• Machine registers, in particular the pro-

gram counter (PC) and a pointer (SP) to

the current stack frame.

• Tables for the process (handled by the op-

erating system) that keeps track of resources

supplied by the system. ie. open files (each

with own file descriptor), sockets, system

locks, etc.

c©2002-2004 R. Leduc 3

Multiple Processes

Before threads, we could only divide a program

into multiple tasks by creating multiple pro-

cesses, as in Figure 1-5.

This is done using the fork() command that

creates a child process identical to its parent

except:

• Child is given separate process identifier

(PID).

• The value returned by fork() call is differ-

ent than that returned to parent.

Lot of overhead to create process as everything

duplicated. Also, data space isn’t shared, so

harder to communicate.

c©2002-2004 R. Leduc 4

∗

∗B. Nichols, D. Buttlar, and J. Proulx Farrell, Pthreads
Programming, O’reilly, 1996.

c©2002-2004 R. Leduc 5

Threads

Threads give us a more efficient way to divide
our program.

With threads, multiple subtasks in a program
are implemented as separate control streams
in a single process.

In the threads model, we break a process into
two parts:

• Program-wide resources such as global data
and program instructions. This portion is
referred to as the process.

• Information pertaining to the execution state
of control stream, such as the PC and the
stack. We refer to this part as the thread.

Figure 1-3 illustrates this. Threads are more
efficient than multiple processes because more
of the program is shared.

c©2002-2004 R. Leduc 6

∗

∗B. Nichols, D. Buttlar, and J. Proulx Farrell, Pthreads
Programming, O’reilly, 1996.

c©2002-2004 R. Leduc 7

Pthreads

Pthreads is the POSIX standard for multithreaded

programming.

Its purpose to provide a portable application

programming interface for threads as an alter-

native to the many platform-specific APIs.

Requires: #include <pthread.h>

To compile program “prog.c:”

gcc -o prog prog.c -lpthread -D_REENTRANT

On Linux, the “-D REENTRAN” activates a

macro that replaces certain library functions

(ie. readdir, localtime, ctime etc.) with full

reentrant versions specifed by Pthreads (ie. read-

dir r, localtime r, ctime r etc.).

On Solaris? don’t know. Safer to be specific.

c©2002-2004 R. Leduc 8

Creating Threads

To create a new thread, use:

pthread_create(threadID, thd_attr, routine, arg)

threadID - A pointer to a buffer in which an identifier
for the thread is placed.

thd_attr - A pointer to a structure referred to as a
thread attribute object. If you pass NULL
pointer, means you get default characteristics.

routine - A pointer to routine at which new thread will
start executing.

void *(*routine) (void *)
arg - A pointer to the parameter to be passed to routine.

void *arg

c©2002-2004 R. Leduc 9

Synchronizing Threads Exit

Common practice is to start threads to perform

certain tasks, and then have them exit.

Once these tasks are complete, we want to

perform additional tasks.

This synchronization is achieved by using:

pthread_join(threadID, value)

threadID - An identifier for the thread.
value - Value is a pointer to the data returned by the thread

represented by threadID. Normally pass NULL pointer as
communication occurs via global variables.

void **value

When pthread join() is called, it doesn’t return

until the thread identified by threadID has ex-

ited.

A thread exits when its starting routine com-

pletes, or when it calls pthread exit().

c©2002-2004 R. Leduc 10

Protecting Data with Mutexes

As threads from the same process share the

same global data space, they normally use global

variables to communicate.

Variables used for communication are declared

before main() (outside any function) so that

all threads can easily access them by name.

Must protect data from race conditions such

as:

∗

∗B. Nichols, D. Buttlar, and J. Proulx Farrell, Pthreads
Programming, O’reilly, 1996.

c©2002-2004 R. Leduc 11

Protecting Data with Mutexes Cont.

We use a form of synchronization called mutual

exclusion (mutex) to prevent race conditions.

Mutexes are used to provide a thread with ex-

clusive access to a shared resource for a time.

In the previous example, the first thread would

have locked mutex for the balance variable

before reading it.

This would have caused the other thread to

wait until the lock was removed before trying

to read the balance.

When the first thread had updated the bal-

ance, it would remove the lock and the second

thread would then access the balance variable.

c©2002-2004 R. Leduc 12

Using Pthreads Mutexes

For Pthreads, a specific mutex is defined as a

variable of type pthread mutex t.

To use it, you would:

1. Initialize and create a mutex for all vari-

ables you want to protect.

2. Use function pthreads mutex lock() to lock

the mutex of the resource that you want

to access.

Pthreads library guarantees that only one

thread can lock a mutex at a given time.

Other calls to pthreads mutex lock() for

this mutex will block until mutex is un-

locked.

3. Unlock mutex using function

pthreads mutex unlock() when finished with

resource.

c©2002-2004 R. Leduc 13

Mutex Functions

Create and initialize mutex TheMutex:

pthread_mutex_t TheMutex=PTHREAD_MUTEX_INITIALIZER;

To lock mutex:

pthreads_mutex_lock(&TheMutex)

TheMutex - Pointer to mutex variable to be locked.

To unlock mutex:

pthreads_mutex_unlock(&TheMutex)

TheMutex - Pointer to mutex variable to be unlocked.

NOTE: Pthreads libraries don’t enforce locks.

A thread could just not call pthreads mutex lock()

and go ahead and use resource.

You have to make sure this doesn’t happen.

c©2002-2004 R. Leduc 14

pthreadseg.c

/* This example base on code from:
* B. Nichols, D. Buttlar, and J. Proulx Farrell,
* "Pthreads Programming," O’reilly, 1996. */

#include <stdio.h>
#include <pthread.h>

void do_another_thing(int *);
void do_one_thing(int *);
void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;
pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;

int main (int argc, char **argv) {

pthread_t thread1, thread2;
pthread_attr_t custom_sched_attr;

/* set scheduling policy to system so braindead solaris
doesn’t run threads sequentially */

pthread_attr_init(&custom_sched_attr);
pthread_attr_setscope(&custom_sched_attr,

PTHREAD_SCOPE_SYSTEM);
r3 = 34;

/* start two threads */
pthread_create(&thread1, &custom_sched_attr,

(void *) do_one_thing, (void *) &r1);

c©2002-2004 R. Leduc 15

pthread_create(&thread2, &custom_sched_attr,
(void *) do_another_thing, (void *) &r2);

/* wait till threads complete */
pthread_join(thread1,NULL);
pthread_join(thread2,NULL);

/* print results */
do_wrap_up(r1,r2);
return 0;

}

void do_one_thing(int *pnum_times)
{

int i,j,x;

/* protect access to r3 */
pthread_mutex_lock(&r3_mutex);
if (r3 >0) {

x = r3;
r3 --;

} else {
x = 1;

}
pthread_mutex_unlock(&r3_mutex);

c©2002-2004 R. Leduc

for (i = 0; i < 4;i++) {
printf("doing one thing\n");
for (j = 0; j < 10000000; j++)

x = x + i;
(*pnum_times)++;

}
}

void do_another_thing(int *pnum_times)
{

int i,j,x;

/* protect access to r3 */
pthread_mutex_lock(&r3_mutex);
if (r3 >0) {

x = r3;
r3 --;

} else {
x = 1;

}
pthread_mutex_unlock(&r3_mutex);

for (i = 0; i < 4;i++) {
printf("doing another thing\n");
for (j = 0; j < 10000000; j++)

x = x + i;
(*pnum_times)++;

}
}

c©2002-2004 R. Leduc

void do_wrap_up(int first, int second) {

int total;

total = first+second;
printf("Wrap up: one thing %d, another %d,

total %d, r3 %d\n",first,second, total, r3);
}

c©2002-2004 R. Leduc

Condition Variables

Condition variables allow threads to synchro-

nize on the value of a variable.

If only had mutexes, would have to poll value.

Inefficient and problematic.

A condition variable provides a means of noti-

fication between threads that a certain condi-

tion has occurred (ie. a counter has reached

12).

A condition variable is used in conjunction with

the mutex that protects the data.

c©2002-2004 R. Leduc 16

Using Condition Variables

Once you initialize a condition variable, a thread

can do two things:

• Wait on the condition variable. This is

done by calling functions pthread cond wait()

or pthread cond timedwait().
Both suspend the calling thread until an-

other thread signals (see next item) using

the condition variable.

• Signal other threads that are waiting on

the condition variable.

This is done using functions pthread cond signal()

(wake one) or pthread cond broadcast() (wake

all).

A signal isn’t saved. If no thread is waiting,

it’s lost!

Must check condition not met before waiting

on variable, or may block.

c©2002-2004 R. Leduc 17

Condition Variable Functions

To initialize condition variable TheCV:

pthread_cond_t TheCV = PTHREAD_COND_INITIALIZER;

Assume we are watching a counter variable
which has mutex countMX and conditional vari-
able countCV. To wait on countCV, we would
first lock countMX and then call:

pthread_cond_wait(&countCV, &countMX)

countCV - The conditional variable to wait on.
countMX - The mutex for the associated resource\

for which we are waiting to reach some state.

The mutex MUST be locked before the function is called.

The function will release the mutex for the

thread so that other threads can access the

resource.

When another thread signals on the condition

variable and this thread wakes up, it is returned

the lock on the mutex before it continues to

execute.

c©2002-2004 R. Leduc 18

Condition Variable Functions Cont.

To signal on condition variable countCV and
wake up a waiting thread (if any)

pthread_cond_signal(&countCV)

countCV - Wake one thread (if any waiting) that is waiting on this
condition variable.

The thread would have first locked mutex countMX

before calling pthread cond signal(). It would

then unlock the mutex.

Once the mutex was unlocked, the lock would

be given to the thread waiting, and it would

start executing.

c©2002-2004 R. Leduc 19

condvareg.c

/* This example base on code from:
* B. Nichols, D. Buttlar, and J. Proulx Farrell,
* "Pthreads Programming," O’reilly, 1996. */

#include <stdio.h>
#include <pthread.h>
#define TCOUNT 10
#define WATCH_COUNT 12

void watch_count(int *);
void inc_count(int *);

int count = 0;
pthread_mutex_t count_mutex=PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t count_threshold_cv

= PTHREAD_COND_INITIALIZER;
int thread_ids[3] = {0,1,2};

int main (int argc, char **argv) {

int i;
pthread_t threads[3];
pthread_attr_t custom_sched_attr;

/* set scheduling policy to system so braindead
solaris doesn’t run threads sequentially */

pthread_attr_init(&custom_sched_attr);
pthread_attr_setscope(&custom_sched_attr,

PTHREAD_SCOPE_SYSTEM);

c©2002-2004 R. Leduc 20

/* start threads */
pthread_create(&threads[0], &custom_sched_attr,

(void *) inc_count, (void *) &thread_ids[0]);
pthread_create(&threads[1], &custom_sched_attr,

(void *) inc_count, (void *) &thread_ids[1]);
pthread_create(&threads[2], &custom_sched_attr,

(void *) watch_count, (void *) &thread_ids[2]);

/* wait for threads to complete */
for (i = 0; i < 3; i++) {

pthread_join(threads[i],NULL);
}

return 0;
}

void watch_count(int *idp)
{

pthread_mutex_lock(&count_mutex);
printf("watch_count(): Starting thread %d,

count is %d\n",*idp, count);

while(count < WATCH_COUNT) {
pthread_cond_wait(&count_threshold_cv, &count_mutex);
printf("watch_count(): Thread %d, count is

%d\n",*idp, count);
}
pthread_mutex_unlock(&count_mutex);

}

c©2002-2004 R. Leduc

void inc_count(int *idp)
{

int i,j,x;

x = 1;

for (i = 0; i < TCOUNT; i++) {
pthread_mutex_lock(&count_mutex);
count++;
printf("inc_count(): Thread %d, old count %d,

new count %d\n",*idp, count -1, count);
if (count == WATCH_COUNT)

pthread_cond_signal(&count_threshold_cv);
pthread_mutex_unlock(&count_mutex);

/* do some work to allow another thread to run */
for (j = 0; j < 10000000; j++)

x = x + i;
}

}

c©2002-2004 R. Leduc

Dependency Analysis

For parallel programming, it’s important to be

able to identify which processes can be exe-

cuted concurrently.

Two processes can not be executed concur-

rently if there is a dependency between them

requiring that they must run sequentially.

Dependency analysis is the process of identify-

ing the dependencies in a program.

In the example below, it’s easy to see that each
instance of the loop body is independent.

forall (i = 0; i < 5; i++)
a[i] = 0;

It’s not so easy to see that each instance of
the loop body below is independent.

forall (i = 2; i < 6; i++) {
x = i - 2*i + i*i;
a[i] = a[x];

}

c©2002-2004 R. Leduc 21

Bernstein’s Conditions

Want to develop an algorithmic way to identify

dependencies.

Bernstein’s conditions are sufficient conditions

to decide if two processes can be executed con-

currently.

They refer to the memory locations used by the

process for variables that the process reads/writes

to.

We define two sets of memory locations, I and

O, for input and output operations.

Let Ii be the set of memory locations that

process Pi reads from. Let Oi be the set of

memory locations that process Pi writes to.

c©2002-2004 R. Leduc 22

Bernstein’s Conditions Cont.

To be able to run processes P1 and P2 concur-
rently, they must satisfy:

I1 ∩ O2 = ∅

I2 ∩ O1 = ∅

O1 ∩ O2 = ∅

These three conditions are the Bernstein con-

ditions.

If all three satisfied, it’s safe to run the two

process simultaneously.

When applied to a single assignment state-

ment, then variables to the right of the as-

signment operator correspond to Ii. Variables

on the left correspond to Oi.

c©2002-2004 R. Leduc 23

Bernstein’s Conditions Example

Take each statement as a process:

1) a = x + y;
2) b = x + z;

This gives us:

I1 = (x, y) I2 = (x, z)

O1 = (a) O2 = (b)

Which satisfies:

I1 ∩ O2 = ∅

I2 ∩ O1 = ∅

O1 ∩ O2 = ∅

However, the statements:

1) a = x + y;
2) b = a + b;

we have I2 ∩ O1 6= ∅, which violates condition 2.

c©2002-2004 R. Leduc 24

Bernstein’s Conditions and Compil-

ers

Multiple statements can be grouped together

as one process, and compared to another group

of statements using this method.

Conditions are very general and can be auto-

mated in a compiler.

Can be used to determine instruction-level par-

allelism or function-level parallelism.

Assuming the functions do not access global

variables, the inputs are the parameters passed

to the functions, and the outputs are the return

values.

c©2002-2004 R. Leduc 25

Exploiting Natural Parallelism

We can exploit the natural parallelism in pro-
gramming constructs such as loops.

for (i = 0; i <= 20; i++)
a[i] = b[i];

Expands as below. Clearly, they satisfy Bern-
stein’s conditions and thus could be executed
concurrently by 20 processors.

a[1] = b[1];
.
.

a[20] = b[20];

The dependencies in the loop below can be
handled by breaking the loop into two.

for (i = 3; i <= 20; i++)
a[i] = a[i-2] + 4;

This evaluates as:

a[3] = a[1] + 4;
a[4] = a[2] + 4;

.

.
a[19] = a[17] + 4;
a[20] = a[18] + 4;

c©2002-2004 R. Leduc 26

Exploiting Natural Parallelism Cont.

We can decompose the computation into two
independent streams:

a[3] = a[1] + 4; a[4] = a[2] + 4;
a[5] = a[3] + 4; a[6] = a[4] + 4;

. .

. .
a[17] = a[15] + 4; a[18] = a[16] + 4;
a[19] = a[17] + 4; a[20] = a[18] + 4;

We can thus rewrite as the following two inde-
pendent loops:

i = 3;
for (j = 1; j <= 9; j++) {

a[i] = a[i-2] + 4;
i = i + 2;

}

and:

i = 4;
for (j = 1; j <= 9; j++) {

a[i] = a[i-2] + 4;
i = i + 2;

}

c©2002-2004 R. Leduc 27

Shared Data and Memory Caches

Typically in shared-memory multiprocessors, each

processor has an attached high speed cache.

When a processor accesses a memory location,

it fills a cache line with the data and its neigh-

bours.

If another processor loads the same data, we

have a potential coherency problem as each

have a local copy of the data.

If they only read the data, no problem.

If one processor alters the copy in their cache,

the copy in the other processors cache must

either be updated or invalidated.

This is handled by the systems cache coher-

ence protocol.

c©2002-2004 R. Leduc 28

Shared Data and Memory Caches

Cont.

Cache coherency protocols use one of two ap-

proaches:

Update Policy: This is when the copies of

data in all caches are updated, when the

data in one cache is modified.

Invalidate Policy: One a copy of data is mod-

ified in one cache, the copies in all other

caches are marked invalid by setting a “valid”

bit.

The data in a specific cache is only updated

when the associated processor actually ref-

erences it.

This policy is more common.

c©2002-2004 R. Leduc 29

False Sharing of Data

When data Is loaded into a cache, it is loaded

in a block.

Normally, this improves access time as data

access usually has temporal and spatial locality.

This can cause a problem for multiprocessor

systems as different processors might access

data in the same block, but NOT the same

data.

When one processor accesses data in one block,

the copies in the other caches must be updated

or invalidated even though data is not really

being shared.

Called false sharing, and can reduce perfor-

mance. See Figure 8.9.

c©2002-2004 R. Leduc 30

163
Parallel Programming: Techniques and Applications using Networked Workstations and Parallel Computers

Barry Wilkinson and Michael Allen  Prentice Hall, 1998

Block

Cache

Processor 1

Cache

Processor 2

Main memory

Block in cache

7
6
5
4
3
2
1
0

Address
tag

Figure 8.9 False sharing in caches.

c©2002-2004 R. Leduc 31

False Sharing of Data Cont.

If system supports, can bypass the cache.

Another solution is to have compiler separate

data accessed by different processors.

May not be easy to do. For example:

forall (i = 0; i < 5; i++)
a[i] = 0;

This will probably cause false sharing as a[0],

a[1], etc are going to be stored sequentially.

Would have to put each value in separate block.

Could be handled by SIMD computer.

c©2002-2004 R. Leduc 32

Encryption∗

To encrypt a message is to encipher the mes-

sage using an algorithm such that you need a

secret piece of information (called a key) to

recover the original message.

A simple cipher for text messages would be to

replace each letter of the alphabet by another.

ie. to create a unique 1 to 1 mapping. This is

an example of a substitution cypher.

say: a → c b → d c → e

If you know the mapping, it is easy to reverse

the process and recover the original message.

The original message is called the plaintext and

the encrypted message is called the ciphertext.

∗This discussion is based on information from: Simon
Singh, The Code Book, Anchor Books, 1999.

c©2002-2004 R. Leduc 33

Key Distribution

Typically, encryption methods are symmetric.

This means the same key is used to encrypt

the message and to decrypt the message.

Key distribution is the biggest problem. How

do you securely get the key to the other person

so they can decrypt the message?

Imagine if the key changed daily, and you had

to swap keys with thousands of people?

How can this be done securely, easily, and cheaply?

It was taken as a given that two people must

first exchange a key before they can send each

other encrypted messages.

c©2002-2004 R. Leduc 34

Key Exchange Method

In 1976 , this was challenged by Whitfield Dif-

fey, Martin Hellman, and Ralph Merkle. They

came up with the Diffey-Hellman-Merkle key

exchange Scheme.

Allowed Bob and Alice to securely exchange

a private key without meeting and in public,

without Eve intercepting the key.

They agreed on a one-way function (a func-

tion that is very difficult to reverse) and each

choose a private piece of information. They

each applied it to the function, and sent the

results to the other.

They then use the secret, the function, and

the received info to compute a new private key

that they then use to encrypt messages.

c©2002-2004 R. Leduc 35

Key Exchange Method Cont.

The final key can only be computed if one

knows one of the original two secrets that were

never exchanged.

They have securely exchanged a private key

without meeting, but they must first exchange

several pieces of information. This requires

that they be available to do this.

Requires coordination and contact.

c©2002-2004 R. Leduc 36

Public Key Encryption

For symmetric encryption, people must securely
exchange a secret key.

What if the encryption was asymetric? if the
message was encrypted with one key, but must
be decrypted with another.

That knowing the encryption key (called public
key), it’s very difficult to determine the decryp-
tion key (private key)?

Alice could publish her public key in something
like a telephone book. If Bob wants to send
her an encrypted message, he looks up Alice’s
public key, and uses it to encrypt the message.

Now, only someone knowing Alice’s private key
can easily decrypt the message.

This was the flash of inspiration of Whitfield
Diffie in 1975. He came up with the idea, but
was unable to come up with an implementa-
tion.

c©2002-2004 R. Leduc 37

RSA Public Key Encryption

In 1977, Ron Rivest, Adi Shamir, and Leonard

Adleman (RSA) came up with the RSA en-

cryption method.

Utilizes a one-way function based on modular

arithmetic.

In modular arithmetic, we have n numbers, say

for n = 7, 0 to 6. To add two numbers mod

7, it’s as if we are going around a clock with

those numbers.

For 2+3(mod 7) we start at 2 and go around

clock 3 positions to 5. However, 2+6(mod 7)

we get 1!

If we knew that one operand is 2 and the an-

swer is 1, that doesn’t tell us what the other

operand is as many values generate 1.

c©2002-2004 R. Leduc 38

RSA Public Key Encryption Cont

To know an answer (mod x), we can calcu-

late the normal answer, then divide by x. The

remainder is the answer (mod x).

If you were told that 3x = 9, it’d be easy to

guess x = 2, but what about 3x(mod 7) = 1?

To reverse a function in modular arithmetic,

one usually has to generate a table by calcu-

lating the function for many values of x until

you find one that works.

c©2002-2004 R. Leduc 39

How RSA Works

Alice picks a private key consisting of two very

large (say 256 bits) prime numbers, which we

will label p and q.

Her public key is N = p∗q and a third number e

chosen such that e, (p−1)×(q−1) are relatively

prime (two numbers that share no factors in

common except 1).

Alice publishes N and e but keeps p and q se-

cret.

If bob wants to encrypt the number M to send

to Alice, he calculates C (ciphertext) by:

C = Me(mod N)

c©2002-2004 R. Leduc 40

How RSA Works Cont.

To decrypt message, Alice must first calculate

the number d which satisfies:

e × d(mod (p − 1) × (q − 1)) = 1

Knowing p, q, e this can be easily calculated us-

ing Euclid’s algorithm (See for details : ”Ap-

plied Cryptography second edition: protocols,

algorithms, and source code in C” by Bruce

Schneier, 1996. John Wiley & Sons, Inc.)

She can then decrypt the message using the

following formula:

M = Cd(mod N)

Knowing N allows you to encrypt the message,

but can only decrypt if know p and q.

c©2002-2004 R. Leduc 41

Simple RSA Example

Alice chooses p = 17, q = 11 and e = 7.

This makes Alice’s public key N = 17 × 11 =

187 and e = 7.

Bob wants to send the letter X to Alice. ASCII

for X is (1011000)2 = (88)10. Thus, M = 88.

Our Cypher text is:

C = Me(mod N) = 887(mod 187) = 11

ALice receives C = 11 and wants to decrypt

it.

c©2002-2004 R. Leduc 42

Simple RSA Example Cont.

She uses Euclid’s algorithm to evaluate:

7 × d(mod (16) × (10)) = 1

and finds d = 23.

She then decrypts the message as follows:

M = Cd(mod N) = 1123(mod 187) = 88

Knowing that 88 is ASCII for X, Alice has the

original message.

c©2002-2004 R. Leduc 43

Breaking RSA

Given a person’s public key (N and e), how can

we determine their private key (p and q) so we

can decrypt the message?

We know that N = p ∗ q and that p and q are

prime. That means that p and q are the only

factors of N other than 1 and N itself.

If we can factor N , we get p and q.

If we start at i = 2 and divide N by i (increment

by 1 after each try) until it divides evenly (no

remainder), then i and our quotient are p and

q.

An approach called general number field sieve

is faster, but still takes a prohibitively long time

for large N .

c©2002-2004 R. Leduc 44

Speedup Anomalies

The simplest way to parallelize this is to simply

divide up the search space.

It could be that the problem is divided such

that one processor will find the key almost

immediately and thus speedup will be greater

than linear.

Referred to as an acceleration anomaly.

It is also possible that a single processor might

stumble upon the key right away, but the search

space for multiple processors could be divided

such that no process will find the key quickly;

thus speedup is less than linear.

Referred to as an deceleration anomaly.

If the speedup is actually less than one, it is

called a detrimental anomaly.

c©2002-2004 R. Leduc 45

