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Introduction

» Once we have obtained a mathematical representation of a
system, our next step is to analyze its transient and
steady-state response.

» In this section, we will focus on how to analyze a system’s
transient response.

» We already know how to determine the output response by
solving differential equations, or taking inverse Laplace
transforms.

» These methods are laborous and time consuming.

» We want to develop a technique where we can get the desired
information about a systems transient and steady-state
response, basically by inspection.

» Qur first topic will be how to analyze poles and zeros to

determine a system's response.
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Poles and Zeros

» Consider:

bnflsnfl + bn,28n72 + -+ b . N(S)
"+ ap_18" 14+ +ag  D(s)

G(s) =
> Poles of G(s) are the roots of D(s).
» Zeros of G(s) are the roots of N(s).

» Generally, at poles G(s) = oo unless the pole is cancelled by a
matching zero.

» At zeros, G(s) = 0 unless the zero is cancelled by a matching
pole.
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Poles and Zeros of First Order System eg.

» A system’s output response contains two parts:
1. Forced or steady state response: this is caused by the poles of
the input function, R(s).
2. Natural or homogeneous response: this is caused by the poles
of the transfer function, G(s).
s+ 2

, and
s+5

» In example below, our transfer function is G(s) =

our input is R(s).

s-plane

| G(s)
RO=5 [1r2] €O N
573 53 ’
(@) )
Figure 4.1.
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Poles and Zeros of First Order System
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Poles and Zeros of First Order System eg. - llI

1. Pole of input function generated forced response, u(t).

2. Pole of transfer function generated natural response, et

The above is not affected at all by the zero.
3. Pole on real axis, say at —«, generates an exponential
response, e~ .

Farther to the left on negative axis, the faster the response
decays.
4. Both the poles and zeros contribute to the amplitude of the

2 3
response (ie. the c and 5 factors).

Pole at —a generates
response Ke~%! s-plane
c
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Evaluating Response using Poles eg.
» Consider system shown below.

» From inspection, we can immediately determine:

o= B B2 Ko, K
s s+2 s+4 s+45
Forced Natural
» Using £{ Sia} = e~ gives:

C(t) = Kj + K2672t + K3674t + K4675t
—

Forced Natural
R(s) = l; s+3) C(s)
_— "
(s +2)(s+4)(s+5)
Figure 4.3.
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First Order Systems

» We will now examine first order systems without zeros so we
can define performance specifications.

a
s+a

» We use systems of the form G(s) = as our base form for

our definitions.

> If our input is the step function, R(s) = 1, we get

c(t) =cp(t) +ep(t) =1 —e

G(s) s-plane
R(s) a | Cs) v
sta o

2 ‘
(@) )

Figure 4.4.
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Time Constant
» We will now examine first order systems without zeros so we
can define performance specifications.

» OQur first specification is the system's time constant, 7 = %

» The time constant is the time required for step response to
rise to 63% percent of its final value.

o(r)=1—e% =1-037=063

c(f)

. 1
dC t Tnitial slope = o= a
> As L = ae~ ™, we thus have a o T
0.8 - d
equal to the slope at t = 0. 07r /
0.6 - 63% of final value
05 at £ = one time constant
. 04+
» We call a the exponential 03
02
frequency. 01
0 | > 5 J s
Figure 4.5 z < 2 4 2
L
g \
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Rise and Settling Time

» Rise time, T}, is the time for the output to go from 10% to
90% of its final value.

» Can show that T, = 2.2

a

» Settling time, Ty, is time required for the output to reach 98%
of its final value.

. o 1 _
1o Initial slope = 7 orstant ¢
0.9
08 /f/
0.7
» Setting ¢(Ts) = 0.98, we find that oL 3% of final value
T 4 o5k at £ = one time constant
ST ar 04t
03
Figure 4.5 02
0.1
‘ ‘ L.
0 1 2 3 4 5
a a e a a
7 —— ‘
" \
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Using Testing to Determine Transfer Function

» It is quite often not possible or practical to determine a
systems transfer function by analytical means.

v

In general, gain of system at s = 0 (D.C. gain) is not unity.

v

A more general model would be G(s) = s
s+a

v

Step response is thus

K K
a a

We thus have

v

c(t) = —(1 —e ™)

» How can we experimentally determine the values of K and a?

(©2006, 2007 R.J. Leduc
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Using Testing to Determine Transfer Function - Il

» For system to be a first-order system, its unit step response
should have no overshoot and should have a nonzero initial
slope, as in diagram below.

» From diagram, we can see the final value is about 0.72, thus
63% of that is 0.63 x 0.72 = 0.45.

» From diagram, the output reaches 0.45 at about 7 = 0.13
(time constant).

1
» We thus have a = — = 7.7. osh
T 0.7
» We next note that I osk
= _(1— —at - _ gos
C(OO) a ( € )|t ) a Ef“*
> ThUSK:a-C(OO): 03t
(7.7)(0.72) = 5.54 j,
5.54 e
> Thus G(S) — 0 0.1 0.2 03 04 0.5 0.6 0.7 0.8

s + 7 7 Time (seconds)

(©2006, 2007 R.J. Leduc Figure 4.6



Second-Order Systems

» For first order systems, varying the systems parameters only
changed the speed of the response.

» Form of a second order system we will analyze is

_ b
G(s) = w5as7s

» Changes in these parameters can actually change the form of
the system’s response.

» May see responses similar to first-order system, damped
oscillations, or undamped oscillations.

(©2006, 2007 R.J. Leduc
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Second-Order System Examples

System Pole-zero Plot Response
G(s)
1
R@s) =5 b Cs)
@ -
s?tastb
General
) c(t) c(y=1+0.171¢ 7854 —
@
J e 1.171¢"1-146¢
G(s)
1
® Rs) =5 9 Cs)
2
STt ~7.854 —1.146 0.5
Overdamped
0 1 2 3 4 5 !
c(ty e(y=1-¢ ‘(cns&ﬁ‘/g sin{8#)
14b = 1-1.06¢ " cos(81-19.47")
1.2
GGs) :
1
© R(s) =5 9 (s) 0.8
s2+25+9 0.6
0.4
Underdamped 0.2

(©2006, 2007 R.J. Leduc
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Second-Order System Examples -II

0]
9 )

1
@ R0

s2+9

Undamped

0]
9 )

1
PO

s2+6s+9

Critically damped

e
2

c()=1—cos 3t

» Like for first-order system, we want to determine information
about system’s steady state and transient response by
examination.

(©2006, 2007 R.J. Leduc
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Overdamped Response

» For overdamped response, we have a system with two non
equal real poles.

» The unit step response to system below is
9 9

T 5(s2+9s5+9)  s(s+7.854)(s + 1.146)
» From inspection of poles, we know form of system’s response
will be:

C(s)

C(t) =K+ ngiglt + K36702t
where —oq = —7.854 and —o, = —1.146, are our two real
poles.

c(f) c()=1+0.171¢7854 —

jo
J 1.171e 1.1461

G(s)
1
R(s) =5 9 Cs)
2
st O ~7.854 ~1.146

Overdamped

®)

©2006, 2007 R.J. Leduc Figure 4.7. 16



Critically Damped Response

» For critally damped response, we have a system with two
equal real poles.

» The unit step response to system below is
9 9 Ky K K3
C = - -
(s) s(s2+6s+9) s(s+3)2 s +(5 + 3)+(s +3)2
» From inspection of poles, we know form of system'’s response

will be:
C(t) =K1+ ng_alt + K3t6_01t
where —g1 = —3 is our pole location.
G(s)
, R(s) =+ 9 )

(e

s2+6s+9

Critically damped

Figure 4.7.
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Underdamped Response

» For underdamped response, we have a system with two
complex conjugate poles (non zero real and imaginary parts).

» The unit step response to system below is
C(s) = 9 _ 9
5(s2+25+9)  s(s+1+7V8)(s+1—jV8)
K1 a+jB a—jp

s s+1+jV8 s+1-3V8
» Thus the form of system's response will be:

c(t) = K1+ eigdt[Qa coswgt + 203 sinwgt]
where —o4 + jwg = —1 4 j1/8.

c(t)y c(n=1-¢ ‘(cnsﬁrﬂ% sinV87)
=1-1.06e cos(V8¢—19.47")
G(s)

| o= 9 )
s2+25+9

(c

Underdamped

0 1 2 3 4 5
©2006, 2007 R.J. Leduc Figure 4.7. 18



Underdamped Response - ||

» For system with poles at s = —o4 & jwg, the real part (o4)
determines the exponential frequency (decay rate) for the

exponential envelope.

» The imaginary part, wy, determines the oscillation frequency
of the sinusoids, and is called the damped frequency of

oscillation.
» Can show that

e 7420 coswyt + 23 sinwgt
= K4e 7 cos(wgt — )

where ¢ = tanfl(g) and
Ky = /(2072 + (28)2

(©2006, 2007 R.J. Leduc

<)

Exponential decay generated by
real part of complex pole pair

Sinusoidal oscillation generated by
imaginary part of complex pole pair

Figure 4.8
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Undamped Response

» For undamped response, we have a system with two
imaginary poles (zero real part).

» The unit step response to system below is
9 9 Ki a+jbf  a—jp
C(s) = = 1
() s(s2+9)  s(s+43)(s—33) s s+ 43 Tz j3
» Thus the form of system’s response will be:
c(t) = K1 + e O 2 coswgt + 23 sinwyt]
= K1 + 2« coswgt + 208 sinwgt

= K1 + K4 cos(wgt — ¢)

c(t)
> where Jo A 0= s
. _ . s-plane
+jwg = £353. o)
] @ Rs) =3 5 ) o
Figure 4.7 s2+9 -3

Undamped
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Second-order System’s Step Responses

» Critically damped case represents the transition between the
underdamped and overdamped cases.

» Critically damped case is the fastest response without

overshoot.
c(f)
Undamped
20
1.8 -
1.6 -
14 Under-
12k damped
Critically
10 damped
0.8
0.6
04 F Overdamped
02
Il Il 1 1 Il 1 Il t
0 0.5 1 15 2 25 3 3.5 4

Figure 4.10.
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General Second-Order Systems

» We now generalize our discussion of second-order systems and
develop specifications to describe the response of the system.

1. The natural frequency, w,, of a second-order system is the
frequency of oscillation of the system with damping removed.

2. The damping ratio of a second-order system is a way to
describe a system's damped oscillation, independent of time
scale.

We define damping ratio, (, to be

= Exponential decay frequency
~ Natural frequency(rad/sec)

(©2006, 2007 R.J. Leduc 22



Deriving Parameters - w,

» We want to rewrite the second-order system shown below in
terms of w,, and ¢

b

G(s) = —— 1
(5) s2+as+b (1)
» The quadratic equation tells us the poles are:
—a++Va?2 -4 —a Va?2—-4b
S1p=——F7—— = + — (2)
2 2 2
» To determine w,,, we need an undamped system; thus a = 0,
G(s) = s2l-)+-b'

» Our poles are thus s12 = /b, giving w, = Vb and b = w2.

(©2006, 2007 R.J. Leduc
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Deriving Parameters - (

b —a a? — 4b
G = —FV—— = — :l: B ——
(5) s2+as+b 1.2 =5 2
» For an underdamped system, the poles must have a real part,
—a
o= —.

» The exponential decay frequency is equal to the absolute
value of o.
_ Exponential decay frequency |0 a/2

(= =S )

Natural frequency(rad/sec) — w,  wp
» We thus have:

a = 2Cwy (4)
» We can now rewrite our system as
W2

. (5)

82 + 2Cwps + w2

G(s) =

(©2006, 2007 R.J. Leduc



Relating Parameters to Poles

» Substituting into the poles equation gives:

—a a?—4b  —(2¢wy) (2¢wp)? — 4w?2
S12= —(+~ + = +
2 2 2 2
— 2
= —Cwp TwpV(?—1 (6)
¢ Poles Step response
Jjo c(®)
o, s-plane
0 E—— 0
O t
Undamped
Jjo s-plane c(t)
X Jjony1-¢2
0<¢<1 - =0
-¢o,
X —jo, 1= &2 Underdamped !
Figure 4.11.
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Relating Parameters to Poles - Il

51,2 = —Cwp £ wpy 4'2 -1

jo ()
s-plane
§=1 4;4» o
—Gw,
t
Critically damped
jo c(t)
—Cw,+w, /g2 -1
§ s-plane
’>1 H——%————» O
—tw— fe2 —
fo,m @, -1 Overdamped
Figure 4.11.
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Underdamped Second-order Systems

» We are mostly interested in underdamped systems as they
give us the fastest response.

> Need to examine behavior more closely for analysis and design.
» Will now define transient specifications for underdamped

responses.
» The step response is:
2
w K Kos+ K
C(s) n =l 22T ()

T 582+ 20wns +w2) s | s+ 20wns + w2

» Assuming ¢ < 1 (ie. underdamped case), partial fractions
gives:

¢
. (s+(wn)+ﬁwn\/l—gz
O rerran-a - ®

(©2006, 2007 R.J. Leduc
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Underdamped Second-order Systems - 1l

¢ —
Cs) = = AR/ o

s (s + Cwn)? + w2(1 - ¢?)

» We can now use the inverse Laplace transform below that we
derived earlier

K K.
L{K1e "coswt + Kre™ sinwt} = (s +a) + Kow

(s +a)?+w?
» This gives:
o(t) =1 — et (coswn /1 — 2t + %@Sinwnv 1-¢%t)
=1- #efg“’"tcos( 1-¢%t—9¢) 9)

Vi@

_ -1 ¢

where ¢ = tan .

¢ ( - )

(©?2006, 2007 R.J. Leduc 28
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Underdamped Second-order Systems - 1lI

1
V1-¢2
where ¢ = tan~!(—==).

Vs
» We can now plot the output with the time axis normalized to
the natural frequency.

c(t)y=1- e “nteos(wpy/1 — (2t — )

clw,t)

1.8
1.6
14

12
1.0
0.8 [
0.6 -
0.4 -

02

T T T Y R S
0 12 3 4 5 6 7 8 9 1011 1213 14 15 16 17

Figure 4.13.
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Underdamped Response Specifications

Let Cfinal = lim; o0 c(t).

1. Rise time, T;, is the time for the output to go from 10%
(0.1¢finar) to 90% (0.9¢finar) of its final value.

2. Peak time, T, is the time required to reach the first and
largest peak, Ccmaz-

3. Percent overshoot, %0S, is the percentage that the output
overshoots the final value at t = T,.

e

%08 = “mez — Cinal 1009

Cfinal P y

4. Settling time, 75, is time 09/
required for the output to
reach and stay within 2% of

sznal . 0.1¢final ——amt

Figure 4.14 I 7, T,

(©2006, 2007 R.J. Leduc

30



Calculating Peak time

» We can determine T}, by differentiating ¢(¢) in equation 9 and
finding the first time it equals zero after ¢t = 0.

w2

(1)} = - n 1
L) =5C() = gy (10)
» As we want in form of L{sinwt}, we complete the square for
the denominator giving

2
G =00) = (e 2 g )
\/%an
NPT ) 4y
» We thus have
é(t) = Le*@’”tsin(wn 1-—¢%t) (12)

-G

(©2006, 2007 R.J. Leduc
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Calculating Peak time - 1l

» Setting ¢(t) = 0 gives

wpV1—Ct=nn

thus

nm
a1 "

» At n =1, we get first time derivative equals zero after ¢t = 0.
We thus have:

t =
s
P "

(©2006, 2007 R.J. Leduc
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Calculating %0S

» The definition of percent overshoot is:

%0S = Tmezr — inal 1009
Cfinal
> To determine ¢pqz, We need to evaluate ¢(7},) by substituting
equation 14 into equation 9:

1 _ =/ \1-¢? ¢ .
ct)y=1-e (cosm + 7\/@517177)
o(t) =1+ e CT/VI=C (15)

> From equation 9, it is easy to see that ¢(o0) = ¢fina = 1.

» Substituting into the %OS formula gives:

14 e Sm/V1=¢ 1

%0S = . x 100%
%0S = e~/ V1=¢ % 100% (16)

(©2006, 2007 R.J. Leduc 33



Calculating %0S

%0S = ST/ V1I=¢* « 100%

» However, what if

» We can use the e
%0S. This gives:

100

90 |-
©w 80
70
60 [
50 -

830+
5
=20

10 -

0

(©2006, 2007 R.J. Leduc

we knew which %0OS we wanted?

quation above to solve for { in terms of

— In(%0S/100)
/72 +In%(%05/100)

¢ =

(17)

. . . I . . L
01 02 03 04 05 06 07 08 09
Damping ratio, {

Figure 4.15.
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Calculating 2% Settling Time

» Settling time is when the ouput reaches and stays within 2%
of its final value.

» This occurs at latest when the exponential envelope of
equation 9 reaches the value of 0.02. This gives:

1
» Solving for t gives:
e~nt =0.02,/1 -2
—Cwnt = In(0.02y/1 — ¢?)
T —1n(0.024/1 - ¢2

: G (19)

Ty~ — (20)

e~ t¥rt = 0.02 (18)

(©2006, 2007 R.J. Leduc
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Calculating Rise Time

» There does not exist a precise relationship between rise time
and damping ratio.

» Instead, we use a computer and equation 9 to solve for

c(wnt1) = 0.1ctina and c(wnt2) = 0.9¢finqi, normalizing for
the natural frequency.

» We then calculate the normalized rize time, w, T, as
wnTT = (wntg) — (wntl)

» Then, we can use charts below to solve for T;. given a specific
¢ and wy,.

Damping |Normalized
ratio | rise time

01 1104
02 1203
03 1321
04 1.463
05 1638
06 1.854
07 2126
08 2467

09 2883

0 . . . . . . . .
01 02 03 04 05 06 07 08 09
Damping ratio

(©2006, 2007 R.J. Leduc Figure 4.16.



System Response with Additional Poles
» In last section, we analyzed second-order systems.

» The formulas we have derived for percent overshoot, settling
time, and peak time are only directly valid for systems with
two complex poles and no zeros.

» However, sometimes we can approximate a higher-order
system as a second-order system containing the dominant
poles.

» The dominant poles are the two poles farthest to the right.

jo jo jo

P1 P1 P
73 X s-plane s X s-plane X s-plane

-a, —Co, ~o, g, ~w,

X X X

P2 P2 P2
Case I Case IT Case TIT

(@
Figure 4.23.
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System Response with Additional Poles - Il

» How far away do the additional poles have to be?.

» Depends on the accuracy you want.

» Text assumes that if a pole is five times more to the left than
the dominant poles, then system is represented by the
dominant poles.

» If above met, you would design using the second-order

approximation, then simulate final system to make sure it
satisfies the design specifications such as %0S, and T} etc.

(©2006, 2007 R.J. Leduc 38



Example Three Pole Systems

» Compare step responses of systems below:

T ( ) 24.542
S =
! s2 + 4s + 24542
T ( ) 24.542
2(8) =
(s 4+ 10)(s? + 4s + 24.542)
T ( ) 24.542
S) =
3 (s + 3)(s2 + 4s + 24.542)
14T
[210]
12
g oL ()
ci(t) = 1 — 1.09 % cos (4.532¢ — 23.8°) g
o) = 1—0.29 "% — 1.189¢™ cos (4.532r — 53.34°) ?é o5 [
c3() = 1 — L1de ¥ + 0.707¢ % cos (4.532¢ + 78.63°) g eer
2 04
02
0 015 1{0 I{S 2!0 2!5 3‘.0
(©2006, 2007 R.J. Leduc Time (seconds)

Figure 4.24.
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Justification for Ignoring Nondominant Poles

» As long as the nondominant pole is far enough to the left,
then its contribution to the output will be negligible.

» Easy to see that this will cause it to decay quickly, but what
about its amplitude?

» Consider the third order system below
bc A Bs+C D

= =—+ +
s(s2+as+b)(s+c) s s24+as+b s+c

» If we assume steady state response is unity, and that the
nondominant pole is at s = —c¢, we can then solve for the

following constants using partial fractions:

C(s)

)
ca—c
A=1; - =
' 2+b—ca
2_ 2, _
_ca ca bc; _ b (21)
c2+b—ca 2+b—ca

(©2006, 2007 R.J. Leduc 40



Justification for Ignoring Nondominant Poles - Il

ca — ¢
A=1; = =
' 2+b—ca
B caz—cza—bc_ D —b
2+b—ca ' R4+ b—ca
» If we let ¢ — oo, we find:
A=1; B=-1
C = —a; D =0. (22)

(©2006, 2007 R.J. Leduc 41



System Response with Zeros

» We now examine systems with Zeros.

» As we saw before, zeros don’t change the type of system, but
can affect the constants found during partial fraction
expansion.

» Consider the system below

(s+a) A B

Gls) = (s+b)(s+c):s+b+s+c

where by partial fractions we have:

—b+a —c+a
A= : B = 23
—b+c —c+b (23)

(©2006, 2007 R.J. Leduc
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System Response with Zeros -II

—b+a —c+a
—b+c —c+b

» When the zero is far to the left, it will be much larger than
the poles, thus:

a ) - a
—b+c' T _c+b

A=

» Our system then becomes

_1 1
—b+c —c+b

s+b s+ec

T (5+b)(s+0)

G(s)~a

(©2006, 2007 R.J. Leduc 43



Nonminium-Phase System

>

>

What if the zero is in the right half plane (ie. a < 0)7?

If C(s) is the response of a system, then after adding zero at
—a, we get:

(s+a)C(s) = sC(s) + aC(s)
If the derivative term sC(s) is larger than the scaled response
aC(s), the system will initially follow the derivative in the
wrong direction!

If we take r(t) = —u(t) as our input, we could get a system
like the one below.

I I I
1.0 2.0 3.0 4.0 5.0 6.0

0 1 1 1

Time (seconds)

(©2006, 2007 R.J. Leduc Figure 4.26. 44



Pole Zero Cancellations

» Consider the system below:

B K(s+ z1)
)= G )@ T as+b) (24)

» If z1 and p; are close enough to each other, they can
effectively cancel each other even though they are not exactly

equal.
26.25(s + 4)
C(s) = 25
()= 5T a01)(s £ 5) (5 + 6) (25)
0.87 5.3 4.4 —0.033
= — 2
S s+5+s+6+s+4.01 (26)
0.87 5.3 4.4
~ — + (27)

s s+5 s+6

(©2006, 2007 R.J. Leduc

45



Analysis and Design of Feedback Systems

» Using the block diagram algebra we developed earlier, we can
now apply our second-order system results to feedback

systems.

» Applying feedback reduction, we find that the equivalent
closed-loop transfer function of system on right is

K
T(s)=
(5) s2+as+ K

controller

RG) 4 EGs as
4'1(\) v el G0 0") R Ly _K_ @@,
nput P Actuating utput X prosy

signal
(error)

Feedback
®)

Figures 5.6 and 4.14.

(©2006, 2007 R.J. Leduc
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Analysis and Design of Feedback Systems - 1l

K
T = =
(5) s24+as+ K

» As we increase K from zero, the poles of the system will go
2
a

from overdamped (0 < K < %2) critically damped (K = %),
to underdamped (K > %2)

—a a? — 4K —a —a JVAK — a?
S = — —_— 8 = — 8 = — e
12 =7 > 12 =75 512 =7 >
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Gain Design for Transient Response

» Design the value for system gain ,K, such that the system
response has 10% overshoot.

» Applying feedback reduction, our closed-loop transfer function
becomes

K
s24+5s+ K

R(s) + K C(s)
T s(s+5)

Figure 5.16.

T(s) = (29)
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