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Introduction
I Once we have obtained a mathematical representation of a

system, our next step is to analyze its transient and
steady-state response.

I In this section, we will focus on how to analyze a system’s
transient response.

I We already know how to determine the output response by
solving differential equations, or taking inverse Laplace
transforms.

I These methods are laborous and time consuming.

I We want to develop a technique where we can get the desired
information about a systems transient and steady-state
response, basically by inspection.

I Our first topic will be how to analyze poles and zeros to
determine a system’s response.
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Poles and Zeros

I Consider:

G(s) =
bn−1s

n−1 + bn−2s
n−2 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0
=

N(s)

D(s)

I Poles of G(s) are the roots of D(s).

I Zeros of G(s) are the roots of N(s).

I Generally, at poles G(s) = ∞ unless the pole is cancelled by a
matching zero.

I At zeros, G(s) = 0 unless the zero is cancelled by a matching
pole.
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Poles and Zeros of First Order System eg.

I A system’s output response contains two parts:
1. Forced or steady state response: this is caused by the poles of

the input function, R(s).
2. Natural or homogeneous response: this is caused by the poles

of the transfer function, G(s).

I In example below, our transfer function is G(s) =
s + 2

s + 5
, and

our input is R(s).

Figure 4.1.
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Poles and Zeros of First Order System eg. - II
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Poles and Zeros of First Order System eg. - III

1. Pole of input function generated forced response, u(t).
2. Pole of transfer function generated natural response, e−5t.

The above is not affected at all by the zero.
3. Pole on real axis, say at −α, generates an exponential

response, e−αt.

Farther to the left on negative axis, the faster the response
decays.

4. Both the poles and zeros contribute to the amplitude of the

response (ie. the
2

5
and

3

5
factors).

Figure 4.2.
c©2006, 2007 R.J. Leduc 6



Evaluating Response using Poles eg.

I Consider system shown below.

I From inspection, we can immediately determine:

C(s) ≡ K1

s︸︷︷︸
Forced

+
K2

s + 2
+

K3

s + 4
+

K4

s + 5︸ ︷︷ ︸
Natural

I Using L{ 1
s+α} = e−αt gives:

c(t) ≡ K1︸︷︷︸
Forced

+K2e
−2t + K3e

−4t + K4e
−5t

︸ ︷︷ ︸
Natural

Figure 4.3.
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First Order Systems

I We will now examine first order systems without zeros so we
can define performance specifications.

I We use systems of the form G(s) = a
s+a as our base form for

our definitions.

I If our input is the step function, R(s) = 1
s , we get

c(t) = cf (t) + cn(t) = 1− e−at

Figure 4.4.
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Time Constant
I We will now examine first order systems without zeros so we

can define performance specifications.

I Our first specification is the system’s time constant, τ = 1
a .

I The time constant is the time required for step response to
rise to 63% percent of its final value.

c(τ) = 1− e−aτ = 1− 0.37 = 0.63

I As
dc(t)

dt
= ae−at, we thus have a

equal to the slope at t = 0.

I We call a the exponential
frequency.

Figure 4.5
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Rise and Settling Time

I Rise time, Tr, is the time for the output to go from 10% to
90% of its final value.

I Can show that Tr = 2.2
a .

I Settling time, Ts, is time required for the output to reach 98%
of its final value.

I Setting c(Ts) = 0.98, we find that
Ts = 4

a .

Figure 4.5
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Using Testing to Determine Transfer Function

I It is quite often not possible or practical to determine a
systems transfer function by analytical means.

I In general, gain of system at s = 0 (D.C. gain) is not unity.

I A more general model would be G(s) =
K

s + a
.

I Step response is thus

C(s) =
K

s(s + a)
=

K

a
s
−

K

a
s + a

I We thus have

c(t) =
K

a
(1− e−at)

I How can we experimentally determine the values of K and a?
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Using Testing to Determine Transfer Function - II

I For system to be a first-order system, its unit step response
should have no overshoot and should have a nonzero initial
slope, as in diagram below.

I From diagram, we can see the final value is about 0.72, thus
63% of that is 0.63× 0.72 = 0.45.

I From diagram, the output reaches 0.45 at about τ = 0.13
(time constant).

I We thus have a =
1

τ
= 7.7.

I We next note that

c(∞) =
K

a
(1− e−at)|t→∞ =

K

a
I Thus K = a · c(∞) =

(7.7)(0.72) = 5.54

I Thus G(s) =
5.54

s + 7.7
Figure 4.6c©2006, 2007 R.J. Leduc 12



Second-Order Systems

I For first order systems, varying the systems parameters only
changed the speed of the response.

I Form of a second order system we will analyze is
G(s) = b

s2+as+b
.

I Changes in these parameters can actually change the form of
the system’s response.

I May see responses similar to first-order system, damped
oscillations, or undamped oscillations.
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Second-Order System Examples

Figure 4.7.
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Second-Order System Examples -II

Figure 4.7.

I Like for first-order system, we want to determine information
about system’s steady state and transient response by
examination.
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Overdamped Response

I For overdamped response, we have a system with two non
equal real poles.

I The unit step response to system below is

C(s) =
9

s(s2 + 9s + 9)
=

9

s(s + 7.854)(s + 1.146)

I From inspection of poles, we know form of system’s response
will be:

c(t) = K1 + K2e
−σ1t + K3e

−σ2t

where −σ1 = −7.854 and −σ2 = −1.146, are our two real
poles.

Figure 4.7.
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Critically Damped Response

I For critally damped response, we have a system with two
equal real poles.

I The unit step response to system below is

C(s) =
9

s(s2 + 6s + 9)
=

9

s(s + 3)2
=

K1

s
+

K2

(s + 3)
+

K3

(s + 3)2

I From inspection of poles, we know form of system’s response
will be:

c(t) = K1 + K2e
−σ1t + K3te

−σ1t

where −σ1 = −3 is our pole location.

Figure 4.7.
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Underdamped Response

I For underdamped response, we have a system with two
complex conjugate poles (non zero real and imaginary parts).

I The unit step response to system below is

C(s) =
9

s(s2 + 2s + 9)
=

9

s(s + 1 + j
√

8)(s + 1− j
√

8)

=
K1

s
+

α + jβ

s + 1 + j
√

8
+

α− jβ

s + 1− j
√

8

I Thus the form of system’s response will be:

c(t) = K1 + e−σdt[2α cosωdt + 2β sinωdt]

where −σd ± jωd = −1± j
√

8.

Figure 4.7.c©2006, 2007 R.J. Leduc 18



Underdamped Response - II

I For system with poles at s = −σd ± jωd, the real part (σd)
determines the exponential frequency (decay rate) for the
exponential envelope.

I The imaginary part, ωd, determines the oscillation frequency
of the sinusoids, and is called the damped frequency of
oscillation.

I Can show that

e−σdt[2α cosωdt + 2β sinωdt

= K4e
−σdt cos(ωdt− φ)

where φ = tan−1(β
α) and

K4 =
√

(2α)2 + (2β)2

Figure 4.8
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Undamped Response

I For undamped response, we have a system with two
imaginary poles (zero real part).

I The unit step response to system below is

C(s) =
9

s(s2 + 9)
=

9

s(s + j3)(s− j3)
=

K1

s
+

α + jβ

s + j3
+

α− jβ

s− j3

I Thus the form of system’s response will be:

c(t) = K1 + e−(0)t[2α cosωdt + 2β sinωdt]

= K1 + 2α cosωdt + 2β sinωdt

= K1 + K4 cos(ωdt− φ)

I where
±jωd = ±j3.

Figure 4.7
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Second-order System’s Step Responses

I Critically damped case represents the transition between the
underdamped and overdamped cases.

I Critically damped case is the fastest response without
overshoot.

Figure 4.10.
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General Second-Order Systems

I We now generalize our discussion of second-order systems and
develop specifications to describe the response of the system.

1. The natural frequency, ωn, of a second-order system is the
frequency of oscillation of the system with damping removed.

2. The damping ratio of a second-order system is a way to
describe a system’s damped oscillation, independent of time
scale.

We define damping ratio, ζ, to be

ζ =
Exponential decay frequency

Natural frequency(rad/sec)
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Deriving Parameters - ωn

I We want to rewrite the second-order system shown below in
terms of ωn and ζ

G(s) =
b

s2 + as + b
(1)

I The quadratic equation tells us the poles are:

s1,2 =
−a±√a2 − 4b

2
=
−a

2
±
√

a2 − 4b

2
(2)

I To determine ωn, we need an undamped system; thus a = 0,
G(s) = b

s2+b
.

I Our poles are thus s1,2 = ±j
√

b, giving ωn =
√

b and b = ω2
n.
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Deriving Parameters - ζ

G(s) =
b

s2 + as + b
s1,2 =

−a

2
±
√

a2 − 4b

2

I For an underdamped system, the poles must have a real part,

σ =
−a

2
.

I The exponential decay frequency is equal to the absolute
value of σ.

ζ =
Exponential decay frequency

Natural frequency(rad/sec)
=
|σ|
ωn

=
a/2

ωn
(3)

I We thus have:

a = 2ζωn (4)

I We can now rewrite our system as

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

(5)
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Relating Parameters to Poles

I Substituting into the poles equation gives:

s1,2 =
−a

2
±
√

a2 − 4b

2
=
−(2ζωn)

2
±

√
(2ζωn)2 − 4ω2

n

2

= −ζωn ± ωn

√
ζ2 − 1 (6)

Figure 4.11.
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Relating Parameters to Poles - II

s1,2 = −ζωn ± ωn

√
ζ2 − 1

Figure 4.11.
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Underdamped Second-order Systems

I We are mostly interested in underdamped systems as they
give us the fastest response.

I Need to examine behavior more closely for analysis and design.
I Will now define transient specifications for underdamped

responses.
I The step response is:

C(s) =
ω2

n

s(s2 + 2ζωns + ω2
n)

=
K1

s
+

K2s + K3

s2 + 2ζωns + ω2
n

(7)

I Assuming ζ < 1 (ie. underdamped case), partial fractions
gives:

C(s) =
1

s
−

(s + ζωn) +
ζ√

1− ζ2
ωn

√
1− ζ2

(s + ζωn)2 + ω2
n(1− ζ2)

(8)
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Underdamped Second-order Systems - II

C(s) =
1

s
−

(s + ζωn) +
ζ√

1− ζ2
ωn

√
1− ζ2

(s + ζωn)2 + ω2
n(1− ζ2)

I We can now use the inverse Laplace transform below that we
derived earlier

L{K1e
−atcosωt + K2e

−atsinωt} =
K1(s + a) + K2ω

(s + a)2 + ω2

I This gives:

c(t) = 1− e−ζωnt(cosωn

√
1− ζ2 t +

ζ√
1− ζ2

sinωn

√
1− ζ2 t)

= 1− 1√
1− ζ2

e−ζωntcos(ωn

√
1− ζ2 t− φ) (9)

where φ = tan−1( ζ√
1−ζ2

).
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Underdamped Second-order Systems - III

c(t) = 1− 1√
1− ζ2

e−ζωntcos(ωn

√
1− ζ2 t− φ)

where φ = tan−1( ζ√
1−ζ2

).

I We can now plot the output with the time axis normalized to
the natural frequency.

Figure 4.13.
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Underdamped Response Specifications

Let cfinal = limt→∞ c(t).

1. Rise time, Tr, is the time for the output to go from 10%
(0.1cfinal) to 90% (0.9cfinal) of its final value.

2. Peak time, Tp, is the time required to reach the first and
largest peak, cmax.

3. Percent overshoot, %OS, is the percentage that the output
overshoots the final value at t = Tp.

%OS =
cmax − cfinal

cfinal
× 100%

4. Settling time, Ts, is time
required for the output to
reach and stay within ±2% of
cfinal.

Figure 4.14
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Calculating Peak time

I We can determine Tp by differentiating c(t) in equation 9 and
finding the first time it equals zero after t = 0.

L{ċ(t)} = sC(s) =
ω2

n

(s2 + 2ζωns + ω2
n)

(10)

I As we want in form of L{sinwt}, we complete the square for
the denominator giving

L{ċ(t)} = sC(s) =
ω2

n

(s + ζωn)2 + ω2
n(1− ζ2)

=

ωn√
1−ζ2

ωn

√
1− ζ2

(s + ζωn)2 + ω2
n(1− ζ2)

(11)

I We thus have

ċ(t) =
ωn√
1− ζ2

e−ζωnt sin(ωn

√
1− ζ2 t) (12)
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Calculating Peak time - II

I Setting ċ(t) = 0 gives

ωn

√
1− ζ2 t = nπ

thus

t =
nπ

ωn

√
1− ζ2

(13)

I At n = 1, we get first time derivative equals zero after t = 0.
We thus have:

Tp =
π

ωn

√
1− ζ2

(14)
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Calculating %OS

I The definition of percent overshoot is:

%OS =
cmax − cfinal

cfinal
× 100%

I To determine cmax, we need to evaluate c(Tp) by substituting
equation 14 into equation 9:

c(t) = 1− e−ζπ/
√

1−ζ2
(cosπ +

ζ√
1− ζ2

sinπ)

c(t) = 1 + e−ζπ/
√

1−ζ2
(15)

I From equation 9, it is easy to see that c(∞) = cfinal = 1.

I Substituting into the %OS formula gives:

%OS =
1 + e−ζπ/

√
1−ζ2 − 1

1
× 100%

%OS = e−ζπ/
√

1−ζ2 × 100% (16)
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Calculating %OS -II

%OS = e−ζπ/
√

1−ζ2 × 100%

I However, what if we knew which %OS we wanted?

I We can use the equation above to solve for ζ in terms of
%OS. This gives:

ζ =
− ln(%OS/100)√

π2 + ln2(%OS/100)
(17)

Figure 4.15.c©2006, 2007 R.J. Leduc 34



Calculating 2% Settling Time

I Settling time is when the ouput reaches and stays within 2%
of its final value.

I This occurs at latest when the exponential envelope of
equation 9 reaches the value of 0.02. This gives:

1√
1− ζ2

e−ζωnt = 0.02 (18)

I Solving for t gives:

e−ζωnt = 0.02
√

1− ζ2

−ζωnt = ln(0.02
√

1− ζ2)

Ts =
− ln(0.02

√
1− ζ2

ζωn
(19)

Ts ≈ 4

ζωn
(20)
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Calculating Rise Time

I There does not exist a precise relationship between rise time
and damping ratio.

I Instead, we use a computer and equation 9 to solve for
c(ωnt1) = 0.1cfinal and c(ωnt2) = 0.9cfinal, normalizing for
the natural frequency.

I We then calculate the normalized rize time, ωnTr, as
ωnTr = (ωnt2)− (ωnt1)

I Then, we can use charts below to solve for Tr given a specific
ζ and ωn.

Figure 4.16.c©2006, 2007 R.J. Leduc 36



System Response with Additional Poles

I In last section, we analyzed second-order systems.

I The formulas we have derived for percent overshoot, settling
time, and peak time are only directly valid for systems with
two complex poles and no zeros.

I However, sometimes we can approximate a higher-order
system as a second-order system containing the dominant
poles.

I The dominant poles are the two poles farthest to the right.

Figure 4.23.
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System Response with Additional Poles - II

I How far away do the additional poles have to be?.

I Depends on the accuracy you want.

I Text assumes that if a pole is five times more to the left than
the dominant poles, then system is represented by the
dominant poles.

I If above met, you would design using the second-order
approximation, then simulate final system to make sure it
satisfies the design specifications such as %OS, and Ts etc.
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Example Three Pole Systems

I Compare step responses of systems below:

T1(s) =
24.542

s2 + 4s + 24.542

T2(s) =
24.542

(s + 10)(s2 + 4s + 24.542)

T3(s) =
24.542

(s + 3)(s2 + 4s + 24.542)

Figure 4.24.
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Justification for Ignoring Nondominant Poles

I As long as the nondominant pole is far enough to the left,
then its contribution to the output will be negligible.

I Easy to see that this will cause it to decay quickly, but what
about its amplitude?

I Consider the third order system below

C(s) =
bc

s(s2 + as + b)(s + c)
=

A

s
+

Bs + C

s2 + as + b
+

D

s + c

I If we assume steady state response is unity, and that the
nondominant pole is at s = −c, we can then solve for the
following constants using partial fractions:

A = 1; B =
ca− c2

c2 + b− ca

C =
ca2 − c2a− bc

c2 + b− ca
; D =

−b

c2 + b− ca
(21)
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Justification for Ignoring Nondominant Poles - II

A = 1; B =
ca− c2

c2 + b− ca

C =
ca2 − c2a− bc

c2 + b− ca
; D =

−b

c2 + b− ca

I If we let c →∞, we find:

A = 1; B = −1

C = −a; D = 0. (22)
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System Response with Zeros

I We now examine systems with Zeros.

I As we saw before, zeros don’t change the type of system, but
can affect the constants found during partial fraction
expansion.

I Consider the system below

G(s) =
(s + a)

(s + b)(s + c)
=

A

s + b
+

B

s + c

where by partial fractions we have:

A =
−b + a

−b + c
; B =

−c + a

−c + b
(23)
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System Response with Zeros -II

A =
−b + a

−b + c
; B =

−c + a

−c + b

I When the zero is far to the left, it will be much larger than
the poles, thus:

A ≈ a

−b + c
; B ≈ a

−c + b

I Our system then becomes

G(s) ≈ a

[
1

−b+c

s + b
+

1
−c+b

s + c

]
=

a

(s + b)(s + c)
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Nonminium-Phase System

I What if the zero is in the right half plane (ie. a < 0)?

I If C(s) is the response of a system, then after adding zero at
−a, we get:

(s + a)C(s) = sC(s) + aC(s)

I If the derivative term sC(s) is larger than the scaled response
aC(s), the system will initially follow the derivative in the
wrong direction!

I If we take r(t) = −u(t) as our input, we could get a system
like the one below.

Figure 4.26.c©2006, 2007 R.J. Leduc 44



Pole Zero Cancellations

I Consider the system below:

G(s) =
K(s + z1)

(s + p1)(s2 + as + b)
(24)

I If z1 and p1 are close enough to each other, they can
effectively cancel each other even though they are not exactly
equal.

C(s) =
26.25(s + 4)

s(s + 4.01)(s + 5)(s + 6)
(25)

=
0.87

s
− 5.3

s + 5
+

4.4

s + 6
+
−0.033

s + 4.01
(26)

≈ 0.87

s
− 5.3

s + 5
+

4.4

s + 6
(27)
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Analysis and Design of Feedback Systems

I Using the block diagram algebra we developed earlier, we can
now apply our second-order system results to feedback
systems.

I Applying feedback reduction, we find that the equivalent
closed-loop transfer function of system on right is

T (s) =
K

s2 + as + K
(28)

Figures 5.6 and 4.14.
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Analysis and Design of Feedback Systems - II

T (s) =
K

s2 + as + K

I As we increase K from zero, the poles of the system will go
from overdamped (0 ≤ K < a2

4 ), critically damped (K = a2

4 ),

to underdamped (K > a2

4 ).

s1,2 =
−a

2
±
√

a2 − 4K

2
s1,2 =

−a

2
s1,2 =

−a

2
± j

√
4K − a2

2
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Gain Design for Transient Response

I Design the value for system gain ,K, such that the system
response has 10% overshoot.

I Applying feedback reduction, our closed-loop transfer function
becomes

T (s) =
K

s2 + 5s + K
(29)

Figure 5.16.

c©2006, 2007 R.J. Leduc 48


