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Introduction

» We now focus on the third design specification, steady-state
error.

» We define steady-state error to be the difference between
input and ouput as t — oo.

» We will see that control system design typically means we will

have to make trade-offs between the desired transient,
steady-state, and stability specifications.
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Test Inputs

» Table below shows the standard test inputs typically used for
evaluating steady-state error.

Ph Time Laplace
Waveform Name interpretation function  transform
)
] o - 1
Step Constant position 1 -
s
J
i)
Ramp  Constant velocity ' S
B

ul

N 1, 1
Parabola  Constant acceleration 3" =
f s
, '

Table 7.1.
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Choosing a Test Inputs

» The test inputs we will choose for our steady-state analysis
and design depends on our target application.

Satellite in geostationary orbit N
Satellite orbiting at
constant velocity @

Accelerating
missile

Tracking system @

Figure 7.1.
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Steady-State Error and Stable Systems

» The calculations we will be deriving for steady-state apply
only to stable systems.

» Unstable systems represent loss of control in steady-state as
the transient response swamps the forced response.

» As we analyze and design a system for steady-state error, we
must constantly check the system for stability.
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Steady-State Error and Step Inputs
» With step inputs, we can get two types of steady-state errors:

1. Zero error.
2. A constant error value.

Input X

“— Qutput 1 e3(e0)

c(t)

Output 2

Time
(@) Figure 7.2.
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Steady-State Error and Ramp input

» With ramp inputs, we can get three types of steady-state
errors:
1. Zero error.

2. A constant error value.
3. Infinite error.

€3(x)

Output 2

c(t)

Input

Output 1
<—— Qutput 3

Time
® Figure 7.2.
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Steady-State Error and Block Diagrams

» If we have a closed-loop transfer function 7'(s), we can
represent our error signal, E(s), as in figure (a).

» We are interested in the time domain signal,
e(t) = L7HE(s)}, as t — oo.

» If we have a unity feedback system, we already have E(s) as
part of our diagram, as shown in figure (b).

R(s)

+
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Sources of Steady-State Error

» Steady-state errors can arise from nonlinear sources, such as
backlash in gears or motors requiring a minimum input
voltage before it starts to move.

> Steady-state errors can also arise from configuration of system
and the input we apply.

» Consider a step input applied to the system below which has
constant gain.

» If a unity feedback system has a feedforward transfer function
G(s), then we can derive the transfer function ggi; as follows:

C(s) = E(s)G(s) (1)
E(s) = R(s) — C(s) (2)
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Sources of Steady-State Error - I

» Substituting equation 1 into equation 2 gives:
E(s) = R(s) — E(s)G(s)
E(s)[1 + G(s)] = R(s)

B(s) 1 (3)
R(s) 1+G(s)

» For G(s) = K, we get
B(s) 1 (4)
R(s) 1+ K

> For R(s) = % (unit step), we get E(s) = 5;(17}»}()

» We thus have es5 = limi_ e(t) = lims_q sE(s) = 14}1{
(@ Figure 7.4.
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Sources of Steady-State Error - 11l

E(s) 1
R(s) 1+ G(s)
» If we add an integrator to the forward-path gain, we get
G(s) = & giving
E(s) 1 s

- = 5
R(s) 1+% s+K ®)
» For R(s) = % (unit step), we get E(s) = ﬁ
» We thus have
0
€os = fim e(t) = limsB(s) = 577z =0 (6)
(b) Figure 7.4.

(©2006, 2007 R.J. Leduc

11



Steady-State Error and 7'(s)

» In Diagram below, we have E(s) = R(s) — C(s).
» We also have:

C(s) = R(s)T(s)
» Combining the two we get
E(s) = R(s) — R(s)T(s) = R(s)[1 = T(s)]
» We thus have
€ss = !er})s E(s)

= lim 5 R(s)[1 — T(s)]

+
RGs)| . C(s) — E(s)

@ Figure 7.3.
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Steady-State Error and G(s)

» From equation 3, we have
E(s) = —=7—~ (10)

» We thus have

ess = lim s E(s)
5—0

. R(s)
= sll_r%S 1760 (11)

R(s) + E(s) ) C(s)
,%

®) Figure 7.3.
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Steady-State Error, GG(s), and Step Input

» For input R(S) =1, we get
1/s 1
12
1+G(s)  1+limeoG(s) (12)

> We refer to the term lims_ G(s) as dc gain of the forward
transfer function.

€ss I|m s

» To have zero steady-state error we need

lim, G(s) = oc (13)
» For G(s) of form below, we thus need n > 1
sM(s+p1)(s+p2)---
> If’n,IO, we get
||m G(s): (O+Zl)(0+32) _ 2120+ (15)
5—0 O+p)O0+p2)---  pip2---
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Steady-State Error, G(s), and Ramp Input

» For input R(S) = ?12 we get

s—01+G(s) st sG(s) ~ limy—o sG(s)
» To have zero steady-state error for ramp input, we need
IimOsG(s) = 00 (17)
S—>

e — fim 25 1 ! (16)

» For G(s) of form below, we thus need n > 2
(s+21)(s+ 22) -

G(s) = 18
(s) s™(s+p1)(s+p2)--- (18)
> If n =1, we get
lim sG(s) = 19
lim s G(s) PR (19)

» If n =0, we get

lim s G(s) = s(s+z1)(s+22) - o (20)
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Steady-State Error, GG(s), and Parabolic Input

» For input R(S) = ?13 we get

1/s3 1 1
ess = lim s(1/5°) i

= = 21
s—0 1+ G(s) b} Y s$2G(s)  limg_g s2G(s) (21)
» To have zero steady-state error for ramp input, we need

Iim0 5% G(s) = 00 (22)
» For G(s) of form below, we thus need n > 3
G(S) = (S+21)(S+2’2)”- (23)

s"(s +p1)(s+p2) -
> If n =2, we get
Z]_ZQ ...

lim s® G(s) = 24
lims™Gls) = (24)

> If n=1, we get
lim 52 G(s) = s(s+z1)(s+22) - 0 (25)
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Steady-State Error eg.

» Find the steady state errors for inputs 5u(t), 5tu(t), and

5t2u(t).
R(s) + > E(s) 100(s +2)(s + 6) C(s)
T s(s+3)(s+4)

Figure 7.6.
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Static Error Constants

» We now define steady state-error performance specifications
called static error constants.

1. Position Constant: K, = lim,_,o G(s), thus

1
14

Estep(00) =

=

2. Velocity Constant: K, = lims_, sG(s), thus

1

emmp(oo) = 7

K,
3. Aceleration Constant: K, = lim,_o s?G(s), thus

1

eparabola(oo) - ?
a
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System Type

» The static error constants are determined by the structure of

G(s).

» They are mostly determined by the number of integrators in
G(s).

» The system type is the number of integrators in the forward
path, thus the value of n in figure below.

RO+ nE©) | Ks+z)s+2z) - @)
% s"(s +p)(s+py)
Figure 7.8.
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Steady-State Error Summary

» Table shows relationship between input type, system type,
static error constants, and steady-state errors.

Type O Type 1 Type 2
Static Static Static
Steady-state error error error
Input error formula constant Error constant Error constant Error
Step, 1 K, = 1
K, = K, =
u(?) 1+K, Constant 1+K, P= 0 r=” 0
Ramp, 1 _ K, = 1 _
tu(t) X Ky =0 * Constant X Ky = 0
Parabola.
’ 1 K, = 1
1 — _ _ a 1
Etzu(t) X, Ka=0 * Ka=10 « Constant X,
Table
7.2
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Tight Steady-State Error Specifications

» Example of a system requiring tight steady-state error
specifications to be useful.

Figure 7.9.
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Steady-State Error Specifications eg.

» For system below, find value of K such there is 10% error in

steady state.

C(s)

R(s) + o E(s) K(s+5)
% S(s+6)(s+T)(s+8)
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Steady-State Error and Disturbances

» Can use feedback systems to handle unwanted disturbances to
the systems.

» By using feedback, we can design systems that follow the
input signal with small or zero error, despite these
disturbances.

» Consider feedback system below with disturbance, D(.5),
added between plant and controller.

» The system output is
C(s) = E(s)G1(s)G2a(s) + D(s)G2(s) (26)

D(s)

Controller Plant
+
R(s) + o E(9) + C(s)
—(%d G Gals)
Figure 7.11.
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Steady-State Error and Disturbances - Il

» However
E(s) = R(s) — C(s) = C(s) = R(s) — E(s)
» Using Equations 27 and 26 and solving for E(s) gives
_ R(s) _ D(s)Ga(s)
1+ G1(s)Ga(s) 1+ Gi(s)Ga(s)
» Using final-value theorem, the steady-state error is

E(s)

€ss = ll_ﬂ:é) sE(s)
~im sR(s) ~im sD(s)Ga(s)

s—0 1+ G1(s)G2(s) =01+ G1(s)Ga(s)
= eg(00) + ep(o0)

D(s)

Controller Plant
+
LU V?—-E(‘” G |- Gy ©

(©2006, 2007 R.J. Leduc Figure 7.11.
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Steady-State Error and Disturbances - 111

» The eg(oc0) term is the steady-state error due to input R(s)
that we have already seen.

» The ep(c0) term is the steady-state error due to D(s).

» If D(s) =1/s (step input), we have
1

en(s) = - . (32)
I. s—0 ~ / | S—
ims_0 () + lims—o G1(9)
> If we set R(s) =0, we get from Eqn28 the transfer function:
E(s) Ga(s)

D)~ 1+ Ca(s)Gals) (33)

Plant

Dis) + X o E(s)

=il

(©2006, 2007 R.J. Leduc Controller Figure 7.12.
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