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Introduction

I We now focus on the third design specification, steady-state
error.

I We define steady-state error to be the difference between
input and ouput as t →∞.

I We will see that control system design typically means we will
have to make trade-offs between the desired transient,
steady-state, and stability specifications.
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Test Inputs

I Table below shows the standard test inputs typically used for
evaluating steady-state error.

Table 7.1.
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Choosing a Test Inputs

I The test inputs we will choose for our steady-state analysis
and design depends on our target application.

Figure 7.1.
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Steady-State Error and Stable Systems

I The calculations we will be deriving for steady-state apply
only to stable systems.

I Unstable systems represent loss of control in steady-state as
the transient response swamps the forced response.

I As we analyze and design a system for steady-state error, we
must constantly check the system for stability.
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Steady-State Error and Step Inputs

I With step inputs, we can get two types of steady-state errors:

1. Zero error.
2. A constant error value.

Figure 7.2.

c©2006, 2007 R.J. Leduc 6



Steady-State Error and Ramp input

I With ramp inputs, we can get three types of steady-state
errors:

1. Zero error.
2. A constant error value.
3. Infinite error.

Figure 7.2.
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Steady-State Error and Block Diagrams

I If we have a closed-loop transfer function T (s), we can
represent our error signal, E(s), as in figure (a).

I We are interested in the time domain signal,
e(t) = L−1{E(s)}, as t →∞.

I If we have a unity feedback system, we already have E(s) as
part of our diagram, as shown in figure (b).

Figure 7.3.
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Sources of Steady-State Error

I Steady-state errors can arise from nonlinear sources, such as
backlash in gears or motors requiring a minimum input
voltage before it starts to move.

I Steady-state errors can also arise from configuration of system
and the input we apply.

I Consider a step input applied to the system below which has
constant gain.

I If a unity feedback system has a feedforward transfer function
G(s), then we can derive the transfer function E(s)

R(s) as follows:

C(s) = E(s)G(s) (1)

E(s) = R(s)− C(s) (2)

Figure 7.4.
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Sources of Steady-State Error - II

I Substituting equation 1 into equation 2 gives:

E(s) = R(s)− E(s)G(s)

E(s)[1 + G(s)] = R(s)

E(s)

R(s)
=

1

1 + G(s)
(3)

I For G(s) = K, we get

E(s)

R(s)
=

1

1 + K
(4)

I For R(s) = 1
s (unit step), we get E(s) = 1

s(1+K) .

I We thus have ess = limt→∞ e(t) = lims→0 sE(s) = 1
1+K

Figure 7.4.
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Sources of Steady-State Error - III

E(s)

R(s)
=

1

1 + G(s)

I If we add an integrator to the forward-path gain, we get
G(s) = K

s giving

E(s)

R(s)
=

1

1 + K
s

=
s

s + K
(5)

I For R(s) = 1
s (unit step), we get E(s) = 1

(s+K) .

I We thus have

ess = lim
t→∞ e(t) = lim

s→0
sE(s) =

0

0 + K
= 0 (6)

Figure 7.4.
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Steady-State Error and T (s)

I In Diagram below, we have E(s) = R(s)− C(s).
I We also have:

C(s) = R(s)T (s) (7)

I Combining the two we get

E(s) = R(s)−R(s)T (s) = R(s)[1− T (s)] (8)

I We thus have

ess = lim
s→0

s E(s)

= lim
s→0

s R(s)[1− T (s)] (9)

Figure 7.3.

c©2006, 2007 R.J. Leduc 12



Steady-State Error and G(s)

I From equation 3, we have

E(s) =
R(s)

1 + G(s)
(10)

I We thus have

ess = lim
s→0

sE(s)

= lim
s→0

s
R(s)

1 + G(s)
(11)

Figure 7.3.
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Steady-State Error, G(s), and Step Input

I For input R(S) = 1
s , we get

ess = lim
s→0

s
1/s

1 + G(s)
=

1

1 + lims→0 G(s)
(12)

I We refer to the term lims→0 G(s) as dc gain of the forward
transfer function.

I To have zero steady-state error we need

lim
s→0

G(s) = ∞ (13)

I For G(s) of form below, we thus need n ≥ 1

G(s) ≡ (s + z1)(s + z2) · · ·
sn(s + p1)(s + p2) · · · (14)

I If n = 0, we get

lim
s→0

G(s) =
(0 + z1)(0 + z2) · · ·
(0 + p1)(0 + p2) · · · =

z1z2 · · ·
p1p2 · · · (15)
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Steady-State Error, G(s), and Ramp Input

I For input R(S) = 1
s2 , we get

ess = lim
s→0

s(1/s2)

1 + G(s)
= lim

s→0

1

s + sG(s)
=

1

lims→0 sG(s)
(16)

I To have zero steady-state error for ramp input, we need

lim
s→0

sG(s) = ∞ (17)

I For G(s) of form below, we thus need n ≥ 2

G(s) ≡ (s + z1)(s + z2) · · ·
sn(s + p1)(s + p2) · · · (18)

I If n = 1, we get

lim
s→0

s G(s) =
z1z2 · · ·
p1p2 · · · (19)

I If n = 0, we get

lim
s→0

sG(s) =
s(s + z1)(s + z2) · · ·
(s + p1)(s + p2) · · · = 0 (20)
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Steady-State Error, G(s), and Parabolic Input

I For input R(S) = 1
s3 , we get

ess = lim
s→0

s(1/s3)

1 + G(s)
= lim

s→0

1

s2 + s2G(s)
=

1

lims→0 s2G(s)
(21)

I To have zero steady-state error for ramp input, we need

lim
s→0

s2 G(s) = ∞ (22)

I For G(s) of form below, we thus need n ≥ 3

G(s) ≡ (s + z1)(s + z2) · · ·
sn(s + p1)(s + p2) · · · (23)

I If n = 2, we get

lim
s→0

s2 G(s) =
z1z2 · · ·
p1p2 · · · (24)

I If n = 1, we get

lim
s→0

s2 G(s) =
s(s + z1)(s + z2) · · ·
(s + p1)(s + p2) · · · = 0 (25)
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Steady-State Error eg.

I Find the steady state errors for inputs 5u(t), 5tu(t), and
5t2u(t).

Figure 7.6.
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Static Error Constants

I We now define steady state-error performance specifications
called static error constants.

1. Position Constant: Kp = lims→0 G(s), thus

estep(∞) =
1

1 + Kp

2. Velocity Constant: Kv = lims→0 sG(s), thus

eramp(∞) =
1

Kv

3. Aceleration Constant: Ka = lims→0 s2G(s), thus

eparabola(∞) =
1

Ka
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System Type

I The static error constants are determined by the structure of
G(s).

I They are mostly determined by the number of integrators in
G(s).

I The system type is the number of integrators in the forward
path, thus the value of n in figure below.

Figure 7.8.
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Steady-State Error Summary

I Table shows relationship between input type, system type,
static error constants, and steady-state errors.

Table

7.2.
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Tight Steady-State Error Specifications

I Example of a system requiring tight steady-state error
specifications to be useful.

Figure 7.9.
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Steady-State Error Specifications eg.

I For system below, find value of K such there is 10% error in
steady state.

Figure 7.10.
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Steady-State Error and Disturbances

I Can use feedback systems to handle unwanted disturbances to
the systems.

I By using feedback, we can design systems that follow the
input signal with small or zero error, despite these
disturbances.

I Consider feedback system below with disturbance, D(S),
added between plant and controller.

I The system output is

C(s) = E(s)G1(s)G2(s) + D(s)G2(s) (26)

Figure 7.11.
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Steady-State Error and Disturbances - II

I However

E(s) = R(s)− C(s) ⇒ C(s) = R(s)− E(s) (27)

I Using Equations 27 and 26 and solving for E(s) gives

E(s) =
R(s)

1 + G1(s)G2(s)
− D(s)G2(s)

1 + G1(s)G2(s)
(28)

I Using final-value theorem, the steady-state error is

ess = lim
s→0

sE(s) (29)

= lim
s→0

sR(s)

1 + G1(s)G2(s)
− lim

s→0

sD(s)G2(s)

1 + G1(s)G2(s)
(30)

= eR(∞) + eD(∞) (31)

Figure 7.11.
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Steady-State Error and Disturbances - III

I The eR(∞) term is the steady-state error due to input R(s)
that we have already seen.

I The eD(∞) term is the steady-state error due to D(s).

I If D(s) = 1/s (step input), we have

eD(∞) = − 1

lims→0
1

G2(s)
+ lims→0 G1(s)

(32)

I If we set R(s) = 0, we get from Eqn28 the transfer function:

E(s)

D(s)
= − G2(s)

1 + G1(s)G2(s)
(33)
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