Software Engineering 3DX3

Slides 7: Steady-State Errors

Dr. Ryan Leduc

Department of Computing and Software McMaster University

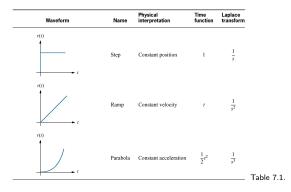
Material based on lecture notes by P. Taylor and M. Lawford, and Control Systems Engineering by N. Nise.

Introduction

- We now focus on the third design specification, steady-state error.
- We define steady-state error to be the difference between input and ouput as $t \to \infty$.
- We will see that control system design typically means we will have to make trade-offs between the desired transient, steady-state, and stability specifications.

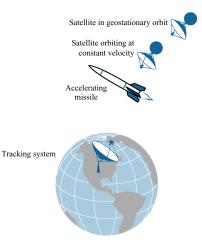
Test Inputs

 Table below shows the standard test inputs typically used for evaluating steady-state error.



Choosing a Test Inputs

The test inputs we will choose for our steady-state analysis and design depends on our target application.

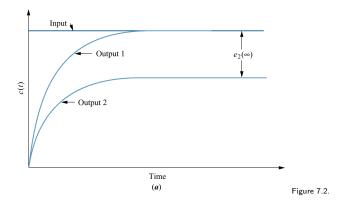


Steady-State Error and Stable Systems

- The calculations we will be deriving for steady-state apply only to stable systems.
- Unstable systems represent loss of control in steady-state as the transient response swamps the forced response.
- As we analyze and design a system for steady-state error, we must constantly check the system for stability.

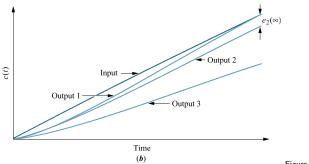
Steady-State Error and Step Inputs

- With step inputs, we can get two types of steady-state errors:
 - **1.** Zero error.
 - 2. A constant error value.



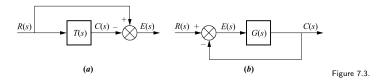
Steady-State Error and Ramp input

- With ramp inputs, we can get three types of steady-state errors:
 - 1. Zero error.
 - 2. A constant error value.
 - 3. Infinite error.



Steady-State Error and Block Diagrams

- ► If we have a closed-loop transfer function T(s), we can represent our error signal, E(s), as in figure (a).
- ▶ We are interested in the time domain signal, $e(t) = \mathcal{L}^{-1}{E(s)}$, as $t \to \infty$.
- If we have a unity feedback system, we already have E(s) as part of our diagram, as shown in figure (b).

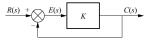


Sources of Steady-State Error

- Steady-state errors can arise from nonlinear sources, such as backlash in gears or motors requiring a minimum input voltage before it starts to move.
- Steady-state errors can also arise from configuration of system and the input we apply.
- Consider a step input applied to the system below which has constant gain.
- ▶ If a unity feedback system has a feedforward transfer function G(s), then we can derive the transfer function $\frac{E(s)}{R(s)}$ as follows:

$$C(s) = E(s)G(s) \tag{1}$$

$$E(s) = R(s) - C(s)$$
⁽²⁾



Sources of Steady-State Error - II

Substituting equation 1 into equation 2 gives:

$$E(s) = R(s) - E(s)G(s)$$

$$E(s)[1 + G(s)] = R(s)$$

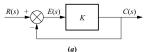
$$\frac{E(s)}{R(s)} = \frac{1}{1 + G(s)}$$
(3)

For G(s) = K, we get

$$\frac{E(s)}{R(s)} = \frac{1}{1+K} \tag{4}$$

For $R(s) = \frac{1}{s}$ (unit step), we get $E(s) = \frac{1}{s(1+K)}$.

• We thus have $e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{1}{1+K}$



Sources of Steady-State Error - III

$$\frac{E(s)}{R(s)} = \frac{1}{1+G(s)}$$

▶ If we add an integrator to the forward-path gain, we get $G(s) = \frac{K}{s}$ giving

$$\frac{E(s)}{R(s)} = \frac{1}{1 + \frac{K}{s}} = \frac{s}{s + K}$$
(5)

▶ For
$$R(s) = \frac{1}{s}$$
 (unit step), we get $E(s) = \frac{1}{(s+K)}$.

We thus have

$$e_{ss} = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \frac{0}{0+K} = 0$$
(6)
$$\xrightarrow{\frac{R(s)}{4} \bigoplus \frac{E(s)}{4} \bigoplus \frac{K}{s} \bigoplus \frac{C(s)}{4} \bigoplus \frac{E(s)}{4} \bigoplus \frac{E(s$$

Steady-State Error and T(s)

- ▶ In Diagram below, we have E(s) = R(s) C(s).
- We also have:

$$C(s) = R(s)T(s) \tag{7}$$

Combining the two we get

R(s)

$$E(s) = R(s) - R(s)T(s) = R(s)[1 - T(s)]$$
(8)

We thus have

$$e_{ss} = \lim_{s \to 0} s E(s)$$

=
$$\lim_{s \to 0} s R(s) [1 - T(s)]$$
(9)

(a)

Figure 7.3.

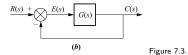
Steady-State Error and G(s)

From equation 3, we have

$$E(s) = \frac{R(s)}{1 + G(s)}$$
 (10)

We thus have

$$e_{ss} = \lim_{s \to 0} s E(s)$$
$$= \lim_{s \to 0} s \frac{R(s)}{1 + G(s)}$$
(11)



Steady-State Error, G(s), and Step Input

• For input
$$R(S) = \frac{1}{s}$$
, we get

$$e_{ss} = \lim_{s \to 0} s \, \frac{1/s}{1 + G(s)} = \frac{1}{1 + \lim_{s \to 0} G(s)} \tag{12}$$

- We refer to the term lim_{s→0} G(s) as dc gain of the forward transfer function.
- To have zero steady-state error we need

$$\lim_{s \to 0} G(s) = \infty \tag{13}$$

▶ For G(s) of form below, we thus need $n \ge 1$

$$G(s) \equiv \frac{(s+z_1)(s+z_2)\cdots}{s^n(s+p_1)(s+p_2)\cdots}$$
(14)

• If
$$n = 0$$
, we get

$$\lim_{s \to 0} G(s) = \frac{(0 + z_1)(0 + z_2)\cdots}{(0 + p_1)(0 + p_2)\cdots} = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}$$
(15)

Steady-State Error, G(s), and Ramp Input

For input
$$R(S) = \frac{1}{s^2}$$
, we get
 $e_{ss} = \lim_{s \to 0} \frac{s(1/s^2)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s + sG(s)} = \frac{1}{\lim_{s \to 0} sG(s)}$ (16)

To have zero steady-state error for ramp input, we need

$$\lim_{s \to 0} s G(s) = \infty \tag{17}$$

▶ For G(s) of form below, we thus need $n \ge 2$

$$G(s) \equiv \frac{(s+z_1)(s+z_2)\cdots}{s^n(s+p_1)(s+p_2)\cdots}$$
(18)

• If n = 1, we get

$$\lim_{s \to 0} s G(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}$$
(19)

▶ If n = 0, we get

$$\lim_{s \to 0} s G(s) = \frac{s(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots} = 0$$
(20)

Steady-State Error, G(s), and Parabolic Input

For input
$$R(S) = \frac{1}{s^3}$$
, we get
 $e_{ss} = \lim_{s \to 0} \frac{s(1/s^3)}{1 + G(s)} = \lim_{s \to 0} \frac{1}{s^2 + s^2 G(s)} = \frac{1}{\lim_{s \to 0} s^2 G(s)}$ (21)

► To have zero steady-state error for ramp input, we need

$$\lim_{s \to 0} s^2 G(s) = \infty \tag{22}$$

For G(s) of form below, we thus need $n \ge 3$

$$G(s) \equiv \frac{(s+z_1)(s+z_2)\cdots}{s^n(s+p_1)(s+p_2)\cdots}$$
(23)

▶ If n = 2, we get

$$\lim_{s \to 0} s^2 G(s) = \frac{z_1 z_2 \cdots}{p_1 p_2 \cdots}$$
(24)

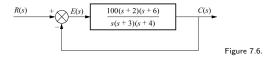
▶ If n = 1, we get

ł

$$\lim_{s \to 0} s^2 G(s) = \frac{s(s+z_1)(s+z_2)\cdots}{(s+p_1)(s+p_2)\cdots} = 0$$
(25)

Steady-State Error eg.

Find the steady state errors for inputs 5u(t), 5tu(t), and $5t^2u(t)$.



Static Error Constants

We now define steady state-error performance specifications called static error constants.

1. Position Constant: $K_p = \lim_{s \to 0} G(s)$, thus

$$e_{step}(\infty) = \frac{1}{1 + K_p}$$

2. Velocity Constant: $K_v = \lim_{s \to 0} sG(s)$, thus

$$e_{ramp}(\infty) = \frac{1}{K_v}$$

3. Aceleration Constant: $K_a = \lim_{s \to 0} s^2 G(s)$, thus

$$e_{parabola}(\infty) = \frac{1}{K_a}$$

System Type

- ► The static error constants are determined by the structure of G(s).
- ► They are mostly determined by the number of integrators in G(s).
- ► The system type is the number of integrators in the forward path, thus the value of *n* in figure below.

$$\underbrace{R(s) + \underbrace{E(s)}_{s^n(s+p_1)(s+p_2) \cdots} C(s)}_{s^n(s+p_1)(s+p_2) \cdots}$$
Figure 7.8.

Steady-State Error Summary

 Table shows relationship between input type, system type, static error constants, and steady-state errors.

Input	Steady-state error formula	Туре О		Type 1		Type 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step, $u(t)$	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	$K_p = \infty$	0
Ramp, $tu(t)$	$\frac{1}{K_v}$	$K_v = 0$	×	$K_v =$ Constant	$\frac{1}{K_v}$	$K_v = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_a = 0$	œ	$K_a = 0$	œ	$K_a =$ Constant	$\frac{1}{K_a}$

7.2.

Tight Steady-State Error Specifications

 Example of a system requiring tight steady-state error specifications to be useful.

Figure 7.9.

Steady-State Error Specifications eg.

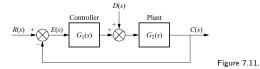
► For system below, find value of *K* such there is 10% error in steady state.

$$\underbrace{\frac{R(s)}{s}}_{-} + \underbrace{\frac{E(s)}{s(s+6)(s+7)(s+8)}}_{-} \underbrace{\frac{K(s+5)}{s(s+6)(s+7)(s+8)}}_{-}$$
Figure 7.10.

Steady-State Error and Disturbances

- Can use feedback systems to handle unwanted disturbances to the systems.
- By using feedback, we can design systems that follow the input signal with small or zero error, *despite* these disturbances.
- ► Consider feedback system below with disturbance, D(S), added between plant and controller.
- The system output is

$$C(s) = E(s)G_1(s)G_2(s) + D(s)G_2(s)$$
(26)



Steady-State Error and Disturbances - II

However

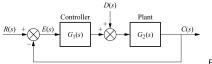
$$E(s) = R(s) - C(s) \Rightarrow C(s) = R(s) - E(s)$$
(27)

• Using Equations 27 and 26 and solving for E(s) gives

$$E(s) = \frac{R(s)}{1 + G_1(s)G_2(s)} - \frac{D(s)G_2(s)}{1 + G_1(s)G_2(s)}$$
(28)

Using final-value theorem, the steady-state error is

$$e_{ss} = \lim_{s \to 0} sE(s)$$
(29)
=
$$\lim_{s \to 0} \frac{sR(s)}{1 + G_1(s)G_2(s)} - \lim_{s \to 0} \frac{sD(s)G_2(s)}{1 + G_1(s)G_2(s)}$$
(30)
=
$$e_R(\infty) + e_D(\infty)$$
(31)



©2006, 2007 R.J. Leduc

Figure 7.11.

Steady-State Error and Disturbances - III

- ► The e_R(∞) term is the steady-state error due to input R(s) that we have already seen.
- The $e_D(\infty)$ term is the steady-state error due to D(s).
- If D(s) = 1/s (step input), we have

$$e_D(\infty) = -\frac{1}{\lim_{s \to 0} \frac{1}{G_2(s)} + \lim_{s \to 0} G_1(s)}$$
(32)

• If we set R(s) = 0, we get from Eqn28 the transfer function:

$$\frac{E(s)}{D(s)} = -\frac{G_2(s)}{1 + G_1(s)G_2(s)}$$
(33)

$$\xrightarrow{D(s) + \bigoplus_{i=1}^{Plant} G_2(s)} \xrightarrow{-E(s) + \bigoplus_{i=1}^{G_2(s)} G_1(s)}$$
Controller Figure 7.12.

25