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Introduction
» The root locus technique shows graphically how the
closed-loop poles change as a system parameter is varied.

» Used to analyze and design systems for stability and transient
response.

» Shows graphically the effect of varying the gain on things like
percent overshoot, and settling time.

» Also shows graphically how stable a system is; shows ranges of
stability, instability, and when system will start oscillating.
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The Control System Problem

» The poles of the open-loop transfer function are typically easy
to find and do not depend on the gain, K.

» It is thus easy to determine stability and transient response for
an open-loop system.
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Figure 8.1.
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The Control System Problem - 11

» Our closed transfer function is thus

Na(s)

DG(S) (1)
Ng(s) Ni(s)
De(s) Dr(s)

T(s) =
1+ K

_ KNg(S)DH(S) (2)
Dg(S)DH(S) + KNg(S)NH(S)
» We thus see that we have to factor the denominator of T'(s)
to find the closed-loop poles, and they will be a function of K.

R(s) KG(s) C(s)
1+ KG(s)H(s)

Figure 8.1(b).
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The Control System Problem - IlI

1
sl and H(s) = s+3
s(s+2) s+ 4

closed-loop transfer function is:

» For example, if G(s) =

B K(s+1)(s+4)
T(s) = s(s+2)(s+4)+ K(s +1)(s + 3) 3

B K(s+1)(s+4)
S8+ (64 K)s2+ (8 +4K)s+ 3K

(4)

» To find the poles, we would have to factor the polynomial for
a specific value of K.

» The root-locus will give us a picture of how the poles will vary
with K.
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Vector Representation of Complex Numbers

» Any complex number, o 4+ jw, can be represented as a vector.

» |t can be represented in polar form with magnitude M, and an
angle 6, as M /0.

» If F(s) is a complex function, setting s = o + jw produces a
complex number. For F(s) = (s + a), we would get

(0 +a)+ jw.
jo jo
s-plane s-plane
jor jo
M
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o ota
(@) (b)
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s-plane s-plane
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Vector Representation of Complex Numbers - 1|

» If we note that function F(s) = (s + a) has a zero at s = —a,

we can alternately represent F'(0 + jw) as originating at
s = —a, and terminating at 0 + jw.

» To multiply and divide the polar form complex numbers,
z1 = M1/61 and zo = M /65, we get

21 M

2120 = M1 M /(01 + 62) A

s-plane s-plane
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Polar Form and Transfer Functions

» For a transfer function, we have:

(s+p1)--(s+pn)  Tliei(s+p)
(6)
where
[% (s + =) T[Z, M,
Mg = =5 = =n : (7)
Hi:l |(s + pi)| Hi:l Mp,
and
0 = Xzero angles — ¥ pole angles (8)
=% Z(s + 2i) — Xi14(s + pj) (9)
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Polar Form and Transfer Functions eg.

(s+1)

ts=-3+j4
8(8+2)a s +7

» Use Equation 6 to evaluate F'(s) =

13 s-plane

) 142
(s+1)
(s+2) qJ1

Figure 8.3.
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Root Locus Introduction

» System below can automatically track subject wearing infrared
Sensors.

» Solving for the poles using the
quadratic equation, we can create
the table below for different values

of K.
Table 8.1.

K Pole 1 Pole 2 Subject’s Motor Camera
position  Sensors  Amplifier and camera position

0 -10 0 LU s —— L

5 -9.47 -0.53 Ay 6 +10)

10 —8.87 —1.13

15 -8.16 -1.84 ®

20 -7.24 -2.76

25 -5 -5

30 ~5+j2.24 —5-j2.24 O )

35 —-5+3.16 -5-j3.16 STHI0s K

40 -5+ ,3.87 —-5-3.87 where K = KK,

45 —5 +j4.47 —5—j4.47 ©

50 —5+5 -5-75
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Root Locus Introduction - |l

» We can plot the poles from Table 8.1. labelled by their
corresponding gain.

Jjo
K=50X EVE
Table 8.1. 45X 1ia
s-plane 40X J
35X 13
K Pole 1 Pole 2 30X 42
41
0 -10 0 K=0 51015 20 25 2015 105 0=K
5 -9.47 —0.53 o
1o 587 ST 10-9 -8 =7 -6 -5 4 -3 -2 -1 7(1]‘1
15 -8.16 —1.84 ’
20 -7.24 -2.76 . 152
25 =5 =5 )
30 —5+,2.24 —5—j2.24 35X 173
35 -5+j3.16 -5-j3.16 40X {4
40 -5+ j3.87 -5—j3.87 45X ’
45 =5+ j4.47 =5 —j4.47 K=50% 155
50 -5+5 -5-75

(@)

Figure: 8.5
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Root Locus Introduction - 1l

» We can go a step further, and replace the individual poles
with their paths.

» We refer to this graphical representation of the path of the
poles as we vary the gain, as the root locus.

» We will focus our discussion on K > 0.

» For pole op + jwp, Ts = %, T, =, and = lop|

Wn,
Jjo Jjo
K=50% /s K=50 145
45X s 45 .
s-planc 40X 7 s-plane 40 174
35X 4/3 35 13
30X 42 30 42
H4i1 41
K=0 51015 20 25 2015 105 [0=K = -
Qols 20 25 2015 10 K K-g stols2p | |25 015 195 0=k
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 |0 -0 9 8 -7 -6 -5 -4 -3 -2 -1 |0
H41 41
30X 1792 30 42
35X 173 35 473
40X ; 40
14 15
45X / s 74
K=50X 15 K=50 45
(@) ®)
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Root Locus Properties

» For second-order systems, we can easily factor a system and
draw the root locus.

» We do not want to have to factor for higher-order systems
(5th, 10th etc.) for multiple values of K.

» We will develop properties of the root locus that will allow us
to rapidly sketch the root locus of higher-order systems.

» Consider the closed-loop transfer function below:
(s) = KG(s)
- 1+ KG(s)H(s)

» A pole exists when

KG(s)H(s) = —1=1/(2k +1)180°  k=0,41,+2 ...
(10)

(©2006, 2007 R.J. Leduc
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Root Locus Properties - |l
» Equation 10 is equivalent to
[KG(s)H(s)| =1 (11)
and
ZKG(s)H(s) = (2k + 1)180° (12)

» Equation 12 says that any s’ that makes the angle of
KG(s)H(s) be an odd multiple of 180° is a pole for some
value of K.

> Given s’ above, the value of K that s’ is a pole of T'(s) for is
found from Equation 11 as follows:

1

K= e (13)
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Root Locus Properties eg.

» For system below, consider s = —2 + 33 and

s = —2+j(v2/2).

s-plane

C(s)

R(s)+ 8 K(s+3)(s+4)
(s+1)(s+2)
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Sketching Root Locus

» Now give a set of rules so that we can quickly sketch a root
locus, and then we can calculate exactly just those points of
particular interest.

1. Number of branches: a branch is the path a single pole
traverses. The number of branches thus equals the number of
poles.

2. Symmetry: As complex poles occur in conjugate pairs, a root
locus must be symmetric about the real axis.

s-plane 40 174
1

42

1/

K=0 5101520 25 2015 105 |0
g 2 0P P

10 -9 -8 7 -6 -5 ~4 -3 2 -1 0

30 452

35 173
40
45
K=50 445

®)
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Sketching Root Locus - Il

3. Real-axis segments: For K > 0, the root locus only exists
on the real axis to the left of an odd number of finite
open-loop poles and/or zeros, that are also on the real axis.

Why? By Equation 12, the angles must add up to an odd
multiple of 180.
» A complex conjugate pair of open-loop zeros or poles will
contribute zero to this angle.
» An open-loop pole or zero on the real axis, but to the left of
the respective point, contributes zero to the angle.
» The number must be odd, so they add to an odd multiple of
180, not an even one.

s-plane ‘ \2}
——O e

Figure 8.8.
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Sketching Root Locus - 111

4. Starting and ending points: The root locus begins at the
finite and infinite poles of G(s)H (s) and ends at the finite
and infinite zeros of G(s)H(s).

Why? Consider the transfer function below

T(s) = KN¢(s)Dg(s)
D¢a(s)Dp(s) + KNg(s)Ng(s)

» The root locus begins at zero gain, thus for small K, our
denominator is

De(s)Du(s) +e€ (14)

» The root locus ends as K approaches infinity, thus our
denominator becomes

€+ KNg(S)NH(S)
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Infinite Poles and Zeros

» Consider the open-loop transfer function below

KG(s)H(s) = m (15)

» From point 4, we would expect our three poles to terminate
at three zeros, but there are no finite zeros.
» A function can have an infinite zero if the function approaches

zero as s approaches infinity. ie. G(s) = 1.

» A function can have an infinite pole if thesfunction approaches
infinity as s approaches infinity. ie. G(s) = s.

» When we include infinite poles and zeros, every function has
an equal number of poles and zeros

s||—>ngo KG(s)H(s) = s||—>nczo s(s+ 1K)(s +2) ~5 I: s (16)

How do we locate where these zeros at infinity are so we can
terminate our root locus?
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Sketching Root Locus - IV

5. Behavior at Infinity: As the locus approaches infinity, it
approaches straight lines as asymptotes.

The asymptotes intersect the real-axis at o,, and depart at
angles 0,, as follows:

_ Xfinite poles — Xfinite zeros

7% = Zfinite poles — #finite zeros
B 2k +1)m

“ " #finite poles — #finite zeros

(17)

(18)

where k = 0,+1,4+2, 43, and the angle is in radians relative
to the positive real axis.

(©2006, 2007 R.J. Leduc
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Sketching Root Locus eg. 1

» Sketch the root locus for system below.

R(s) + K(s+3) C(s)
A S(s+ 1)(s +2)(s +4)

Figure 8.11.
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Real-axis Breakaway and Break-in Points
» Consider root locus below.

» We want to be able to calculate at what points on the real
axis does the locus leave the real-axis (breakaway point), and
at what point we return to the real-axis (break-in point).

» At breakaway/break-in points, the branches form an angle of
180°/n with the real axis where n is number of poles
converging on the point.

(©2006, 2007 R.J. Leduc Figure 8.13. 2



Real-axis Breakaway and Break-in Points - |l

» Breakaway points occur at maximums in the gain for that part
of the real-axis.

» Break-in points occur at minimums in the gain for that part of
the real-axis.

» We can thus determine the breakaway and break-in points by
setting s = o, and setting the derivative of equation below
equal to zero:

K= (19)

(©2006, 2007 R.J. Leduc 73 Figure 8.13.
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The jw-Axis Crossings

» For systems like the one below, finding the jw-axis crossing is

important as it is the value of the gain where the system goes
from stable to unstable.

» Can use the Routh-Hurwitz criteria to find crossing:
1. Force a row of zeros to get gain

2. Determine polynomial for row above to get w, the frequency of
oscillation.

s-plane
Asympuote /| 1>

Asymptote

L L
4 3 2 1 0 1 2

Asymptote \ |

Figure 8.12.
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The jw-Axis Crossing eg.

» For system below, find the frequency and gain for which the
system crosses the jw-axis.

jo
—/3
s-planc
Asymptote 12
]
/1
_.<+ 8 e K +3) C6) Asymptote
A s(s+1)(s+2)(s +4) “ M . ) .
X X X
T —4 -3 -2 <1 0 1 2
41
N j2
Asymptote \ | g
4-3

Figures 8.11 and 8.12.
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Angles of Departure and Arrival

» We can refine our sketch by determining at what angles we
depart from complex poles, and arrive at complex zeros.

» Net angle from all open-loop poles and zeros to a point on
root access must satisfy:

Y zero angles — ¥.pole angles = (2k + 1)180° (20)

» To find angle 61, we choose a point € on root locus near
complex pole, and assume all angles except 67 are to the

complex pole instead of €. Can then use Equation 20 to solve
for 6.

o

~0,+0,+05 —0,- 05+ 0= (2k+ 1)I80°

0y (a)
(©2006, 2007 R.J. Leduc Figure 8.15.
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Angles of Departure and Arrival - Il

» For example in Figure 8.15a, we can solve for 61 in equation
below:

0> + 03 + 0 — (01 + 04 + 05) = (2k + 1)180° (21)

» Similar approach can be used to find angle of arrival of
complex zero in figure below.

» Simply solve for 65 in Equation 21.

jo

s-plane

o

—0)+0,+6; —0,— 05+ 6= (2k+ 1)180°

(©2006, 2007 R.J. Leduc - Figure 8.15.
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Angles of Departure and Arrival eg.

» Find angle of departure for complex poles, and sketch root

locus.

R(s) + K(s+2)

C(s)

(s+3)(s2+25+2)

Jjo

Angleof | .

departure
o

s-plane
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Figures 8.16 and 8.17.
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Plotting and Calibrating Root Locus

» Once sketched, we may wish to accurately locate certain
points and their associated gain.

» For example, we may wish to determine the exact point the
locus crosses the 0.45 damping ratio line in figure below.
. adj w
» From Figure 4.17, we see that cos(f) = adi _ e C.
hyp W,
» We then use computer program to try sample radiuses,
calculate the value of s at that point, and then test if point
satisfies angle requirement.

jo

********** b o= ¢ =jo, Radius /‘"Z“‘
o s-plane " | (degrees)
3 05 158.4
f—— o 0.747 180.0
S0 1.0 199.9
15 2304

20 2515

joV1- 82 ==joy e

6

4 3 2 1 0

(©2006, 2007 R.J. Leduc Figures 4.17 and 8.18. 29



Plotting and Calibrating Root Locus - Il

» Once we have found our point we can use the equation below
to solve for the required gain, K.

m
K = 1 = H:‘fl M, (22)
IG()[H ()| [Ty M,
» Uses labels in Figure 8.18, we would have for our example:
ACDE
k=270 (23)
B
Jjo
o/ 1- 2 =jo, Radius A"Ag'e ¥
On s-plane (degrees) j2
0 0.5 s-plane
=0y R
15 jt
2.0
—————————— FoV1- 2 =—jo,
05 "
4 3 2 1 0
Figures 4.17 and 8.18.
©2006, 2007 R.J. Leduc
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Transient Response Design via Gain Adjustment

» We want to be able to apply our transient response
parameters and equations for second-order underdamped
systems to our root locuses.

» These are only accurate for second-order systems with no
finite zeros, or systems that can be approximated by them.

» In order that we can approximate higher-order systems as
second-order systems, the higher-order closed-loop poles must
be more than five times farther to the left than the two
dominant poles.

» In order to approximate systems with zeros, the following
must be true:
1. The closed-loop zeros near the two dominant closed-loop poles
must be nearly canceled by higher-order poles near them.
2. Closed-loop zeros not cancelled, must be far away from the
two dominant closed-loop poles.

(©2006, 2007 R.J. Leduc
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Transient Response Design via Gain Adjustment - |l

Ng(s) N (s)
> Let G(s) = and H(s) = )
» We saw earlier, that our closed-loop transfer equals:
KN, D
T(s) = c(s)Di(s) (24)
Dg(S)DH(S) + KNg(S)NH(S)
s-plane [ . s-plane n ‘ .
A B o
r3 Pz&\\ r3 Fzs’\\,
. X Open-loop pole

X Closed-loop pole

O Closed-loop zero

Figure 8.20.
(©2006, 2007 R.J. Leduc
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Defining Parameters on Root Locus

» We have already seen that as { = cos#, vectors from the
origin are lines of constant damping ratio.

» As percent overshoot is solely a function of (, these lines are
also lines of constant %0S.

» From diagram we can see that the real part of a pole is
04 = Cwy, and the imaginary part is wy = wnm.

4 4 ) .
» As T, = —— = —, vertical lines have constant values of T%.
Cwn o] '
jo
o= §% = joy
Dn s-plane
il (o2
—{w,=-0y
oY1 §2=—jo,

Figure 4.17.
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Defining Parameters on Root Locus - |l

il ™ horizontal lines thus h
—F— = = —, horizontal lines us nave
wny/1—¢% wa

constant peak time.

> As T, =

» We thus choose a line with the desired property, and test to
find where it intersects our root locus.

jo

—————————— L o1 =joy

Dn s-plane

—jo,V1- 2 ==jo,

Figure 4.17.
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Design Procedure For Higher-order Systems

1. Sketch root locus for system.

2. Assume system has no zeros and is second-order. Find gain
that gives desired transient response.

3. Check that systems satisfies criteria to justify our
approximation.

4. Simulate system to make sure transient response is acceptable.
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Third-order System Gain Design eg.

» For system below, design the value of gain, K, that will give
1.52% overshoot. Also estimate the settling time, peak time,
and steady-state error.

» First step is to sketch the root locus below.

» We next assume system can be approximated by second-order

—1n(%0S/100)
\/7241n2(%0S/100)

system, and solve for ¢ using { =

46+ j3.45, K= 39.64
s-plane

Jj0.90, K=12.79

R(s) + o E5) K(s + 1.5) Cls) N
praraTrT .87 + j0.66, K = 7.36
oy
0 9 8 7 -6 -5 |4 3 15-1 0
i
X = Closed-loop pole
X = Open-loop pole 1
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Third-order System Gain Design eg. - Il

» This gives ¢ = 0.8. Our angle is thus § = cos~1(0.8) = 36.87°.

» We then use root locus to search values along this line to see
if they satisfy the angle requirement.

» The program finds three conjugate pairs on the locus and our
¢ = 0.8 line. They are —0.87 £ j0.66, —1.19 + 50.90,
—4.6 + j3.45 with respective gains of K = 7.36,12.79, and

. T 4
» We will use T}, = —, and Ty = —.
Wy o4
=08
-4
4.6 +j3.45 K=39.64 43 sopla
—1.19 +j0.90, K= 12.79

10 9 8 7 -6 -5 |-4 —SU 0

X = Closed-loop pole

X = Open-loop pole 42

Figures 8.21 and 8.22.
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Third-order System Gain Design eg. - IlI

» For steady-state error, we have:

. ) K(s+ 1.5) K(1.5)
K, =1 G(s) = | = 25
o= limsGls) = lim s TG+ 10) ~ @)ao) 2
> To test to see if our approximation of a second-order system is
valid, we calculate the location of the third pole for each value

of K we found.

» The table below shows the results of our calculations.

Third Settling Peak
Case Closed-loop poles Closed-loop zero  Gain  closed-loop pole time time K,
1 —0.87 = j0.66 —1.5+,0 7.36 -9.25 4.60 476 1.1
2 —1.19 =;0.90 —1.5+,0 12.79 —8.61 3.36 349 19
3 —4.60 = j3.45 —1.5+,0 39.64 —1.80 0.87 091 59
Table 8.4.

(©2006, 2007 R.J. Leduc
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Third-order System Gain Design eg. - IV

» We now simulate to see how good our result is:

Case 2 response

121 12 F
10 F 10k
08 F — Third-order, K = 39.64
0.8 - o O
2 2
g 0.6 2 06 — Second-order, K = 39.64
g — Third-order, K = 12.79 5
o4t 04
: — Second-order, K = 12.79
02 0.2
0.0 T T R R SR T B B | 0.0 T S
"0 05 1 152 253 35 4 45 5 005 1 15 2 25 3 35 4 455
Time (seconds) Time (seconds)
(@) (b)
Figure 8.23.
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