CAS 745
Supervisory Control of
Discrete-Event Systems

Slides 1:

Algebraic Preliminaries

*Material based on W. M. Wonham, Supervisory Con-
trol of Discrete-Event Systems, Department of Electri-
cal and Computer Engineering, University of Toronto,
July 2004. Lecture notes of Professor W. M. Wonham
also used.

©2004 R. Leduc

Control Systems

Assumptions: Students have taken a discrete
math course that includes elementary logic and

set theory.

The research area of Supervisory Control orig-
inated in systems control research.

Area deals with dynamic systems: systems that
have state space, state transition structure,
and inputs/outputs.

Control

Plant

>

Input

©2004 R. Leduc

Observational
Output

Control Systems Cont.

Feedback control in the form of a controller is
usually needed to ensure the desired behaviour.

— Plant
Supervisor - |
Feedback Control

Typically, the controller has its own dynamics,
and its the combination of the two (called the
closed behaviour) that provides the desired be-
haviour (specification).

A suitable controller may not always exist for
a given desired behaviour and plant.

©2004 R. Leduc 2

Continuous Control Systems Eg.

Here our inputs/outputs are represented as con-
tinuous or discrete time functions, as well as

the system’s dynamics.

Grasping force
set point

— Microcomputer

A

1'\

Step
motor

Force feedback

Slip feedback

Slip-sensing device
consisting of
light-emitting diode,
slit disk, and
photofransistor

Example shows a robot hand, grasping force,

control system.

*Diagram taken from Katsuhiko Ogata, Modern Control

Engineering, 2nd ed., Prentice Hall, 1990

©2004 R. Leduc

3

Discrete-Event Systems Overview

Discrete-event (dynamic) systems (DES or
DEDS) are a relatively new area of research for
control systems, but is now well represented at
conferences and in the literature.

Recently, continuous systems have been com-
posed with DES to form a new research area

called Hybrid Systems.

The parent domains of DES are Operations
Research (OR) and Software Engineering.

©2004 R. Leduc 4

Operations Research

OR deals with systems of stores and servers
that are interconnected. Together, they pro-
cess ‘items.”

Focus of area:

- Measure quantitative performance and trade-
offs (throughput of operation versus cost etc.).
- Optimize control parameters such as buffer
Size, maintenance schedules, uptime, etc.

Some examples:

Manufacturing Systems: operates on work
pieces which are stored in queues or buffers.

These work pieces are then operated on by
robots, machines, automated guided vehicles
(AGVs) etc.

2004 R. Leduc 5
©

Manufacturing Example
10 Station ﬂu

—
External loop 4
External Pa—
loop 1 Transport
Unit 4 <
Assembly i F w
Station 1
Transport Central Transport

Unit 1 loop Unit 3

Assembly
Station 3

-

Transport
Unit 2

-
I
J

External
loop 3

External loop 2

-

Assembly
Station 2 *k

(External loop X
PS X.5

O [CIR\W device X
[spx2
L
% A ESXI Pallet gate X.2 Legend
Fxtractor X Pallet sensor
/A ESX.2 Extractor sensor

Read\ write device
Raising
platform X Robot X Assembly

station X

O9XSd

OrXsd

AN

Pallet stop

~—[>ro

Pallet gate

*AIP example taken from R.J. Leduc, Hierarchical
Interface-based Supervisory Control. Doctoral Thesis,
Dept. of Elec. & Comp. Engrg., Univ. of Toronto,
2002.

©2004 R. Leduc §)

Operations Research Cont.

Communication Systems: operates on mes-
sages which are stored in queues and buffers.

These are then served by transmitters, chan-
nels, receivers, network nodes etc.

other examples are: Traffic systems, Database
management systems, etc.

©2004 R. Leduc v’

Software Engineering and DES

Some areas of software engineering that are
relevant are operating systems (resource man-
agement etc.), concurrent computation, real-
time (embedded and reactive) systems.

Example applications are synchronization algo-
rithms that control resource sharing and mu-
tual exclusion enforcement for concurrent en-
tities.

Focus of area:

- Guarantee safety (“nothing bad will happen™),
mutual exclusion, deadlock prevention.

- Guarantee liveness (‘something good will even-
tually happen’), efficiency, absence of starva-
tion or lockout.

©2004 R. Leduc 3

Software Engineering and DES Cont.

Diagram below shows different viewpoint of
Software Engineering and discrete-event sys-
tems.

\4

Plant

Environment Supervisor

A

©2004 R. Leduc 9

Discrete-Event Systems

A Discrete-event system is a dynamic system
that is:

- Discrete in time and state space.

- Asynchronous or event driven. DES are driven
by “events” (ie machine starts, machine stops
etc.) or instantaneous “occurrences in time.”

- Occurrence of events is nondeterministic. Means
that the selection process that determines which
event out of those currently possible to occur,

is not modelled (could be chance, or some un-
specified mechanism).

Focus of area:

- Logical correctness in presence of concur-
rency, timing constraints, etc.

- Quantitative performance.

- Feedback control synthesis and optimization.
©2004 R. Leduc 10

Small Factory Example

machl mach2 fori=1,2
I 12 o, = machine i starts job
el o B ;= machine i finishes job
! 2
u, (t, N;=machineibreaks down
B B L, = machine i is repaired
1
> >
Wi A D1 w2 A, D2
X o
— machl B, > 2 »| mach? [
o
1 B
BufferSup
>
o 2

Closed Loop: sync (machl, mach2,BufferSup)

©2004 R. Leduc 11

Industrial Chemical Process Eg.

Plant Components: Reaction tank, valves, heater,
mixer etc.

States: Fluid level (low, medium, high, etc),
temperature, pH (too low, OK, too
high, etc).

X
valve states (open, closed, etc.)
X

heater and mixer states (off, on, etc.)

Transitions (events): chemical mixture reach-
ing desired composition, temperature
entering a desired range, critical variables
entering a dangerous range etc.

©2004 R. Leduc 12

Discrete-Event Systems Challenges

Model size: DES state space increases com-
binatorially in the number of model com-
ponents. Can quickly make computation
intractable.

Structure: How to exploit regularities of a sys-
tem’s structure to improve scalability. Usu-
ally combined with appropriate architecture
that can take advantage of structure.

Implementation: How to implement supervi-
sors as hardware and software, taking care
of necessary concurrency issues.

©2004 R. Leduc 13

Binary Relations - 31.1

Let X be an arbitrary set. The set of all or-
dered pairs of X is:

X x X :={(z1,22)|z1,22 € X}

Note: (x1,xz2) an ordered pair means that

(z1,22) = (21,232) & 21 = 2] & 22 = 25

Defn: A binary relation is any R C X x X

We write: (x1,z2) € R or x1Rxz> (infix nota-
tion).

©2004 R. Leduc 14

Posets

Let the symbol “<"” denote a binary relation R
with the properties:

1. (Ve e X) x <z (reflexive)

2. Vz,y,ze€e X)x<y&y<z=x<z (tran-
sitive)

3. Ve,y e X)) e <y &y<z=x=uy (anti-
symmetric)

Defn: A relation < with the properties (1)-(3)
is a partial order (p.o) on X.

Poset stands for partially ordered sets.

We refer to “the poset X" if the relation < is
understood. Otherwise, we refer to the poset
(X, <).

©2004 R. Leduc 15

Total Ordering

Defn: we say that xz,y € X are comparable wrt
<ifxa<yory<uc.

If two elements z,y € X are not comparable,
we write x <> y.

A poset is a total ordering if every z,y € X is
comparable.

How do you know if the relation is a poset?
Check that it satisfies the three properties.

We can extend our notation as follows:
If £ <y, may write y > x

If <y and z #= y then may write x < y or
y>x

NOTE: “(z<y) < (x<>y) or (z>1vy)
©2004 R. Leduc 16

Poset Examples

1. Let X = R (set of real numbers), or X =
N:= {0,1,2,...} (set of natural numbers)
or X =%7:=4...,—-1,0,41,...} (set of in-
tegers) and let < have normal meaning.

Thus 2 <3 but not 4 < 3.

2. Let X =Z x ... x Z thus:
k-fold

reX=>x=(z1,...,23) With z; €2, i =1,... k.

Defn: (Vz,y € X) z <y < x; <y; (hormal
meaning) for all 1 =1,...,k.

eg. (5,—2) < (7,-1) but (5,-1) <> (7,-2)
as 5<7 but —1 > —2.

©2004 R. Leduc 17

Poset Examples (2)

3. Let A be an arbitrary set.
Let X = Pwr(A4) = 24,

The powerset of A (24) is the set of all
subsets of A thus: z€ X =2 CA

eg. =0, x = {a,b} with a,be A, z = A

Defn: (Vr,ye X))z <y xCuy
eg. A= {a,3,v} thus:
X =A{0,{a}, {8} {7} {a. B} {; 7}, {8, v} {e, B, 73}

Have {8} < {8,~} but {8} <> {e,~}

Should be able to check for yourself that
(X, <) is a poset.

©2004 R. Leduc 13

Meet
Let (X,<) be a poset, and let z,y € X.

Defn: Element a € X is a lower bound for x
and y if a <x and a <y.

eg. for X = Pwr(A), this means a is a subset
of both x and y.

Defn: Element [€ X is a meet (greatest lower
bound) for x and y iff

1<z & I<y & WaeX)(a<z & a<y)=a<l

In other words, [is a lower bound and beats
any other lower bound.

For a given x and y, the meet may not exist.
If it does, it is unique and we denote it = A y.

Defn: We denote the bottom element by L. If
it exists, it satisfies: 1. € X and (Vz € X) L < z.

©2004 R. Leduc 19

Join

Defn: Element b€ X is an upper bound for x
and y if x <b and y <b.

eg. for X = Pwr(A), this means x and y are a
subset of b.

Defn: Element v € X is a join (least upper
bound) of x and y iff

r<u & y<u & (WMVbeX)(z<b & y<b)=u<b

In other words, w is a upper bound and is lower
than any other upper bound.

For a given x and y, the join may not exist. If
it does, it is unique and we denote it x V y.

Defn: We denote the top element by T. If it
exists, it satisfies: Te X and (Wze X))z < T.
©2004 R. Leduc 20

Meet and Join Examples

1. Let X =Pwr(A) and z,y € X.

We then have xAy = xNy (set intersection)
and zVy =xUy (set union).

We also have L. =0 and T = A.

For this X, the meet, join, bottom, and
top always exist.

2. Let X =ZxZandx = (x1,22),y = (y1,y>) €
X. We then have:

rAy = (min(x1,y1), min(xo,y2))

CC\/y — (maX(aZ‘]_,y]_),maXCBQ,yQ))
As Z:={...,—1,0,41,...}, neither L or T
exist.

©2004 R. Leduc 21

Lattices - §1.2

Defn: A lattice L is a poset (L,<) in which
the meet and join is defined for all x,y € L.

The binary operators A and Vv define the func-
tions:

AN LXL—L, V:LXL—L

For x,y,z € L then the operators A and VvV (de-
noted consistently throughout as x) satisfy the
following properties:

l. zxx == (% is idempotent)
2. THY =Y*T (x is commutative)
3. (zxy)*xz=xz*x(y*2) (% is associative)

eg. for v, point 2 gives: ztVy=yVzx

We also have the following relationships:

xAN(xVy) =xzV(rAy) =x (absorption)
x<yiffrtAhy=zxiffrvy=uy (consistency)

©2004 R. Leduc 22

Absorption Example
Verify: zA(xVy) ==

let a=xz A (xVy)

Proof:

Must show 1) 2 <a 2)a <=z
Part 1) show =z <a

Have = < x by reflexivity of <

As xVy is upper bound of x, y by definition of
join, we have: z<xVy

= x is a lower bound of x and =z V y
= x <z A (xVy) by defn of meet.

Part 1 done.
©2004 R. Leduc 23

Absorption Example (2)

Part 2) show a <z

By defn of meet, a<z and a<zVy

Part 2 done.

By parts 1) - 2), we have x <a and a < z.
= r = a by antisymmetry of Posets.

QED

©2004 R. Leduc 24

Infinum and Supremum

Defn: Let L be a lattice and let S be a nonempty,
possibly infinite subset of L.

The infimum of S, denoted inf(S), is an ele-
ment [€ L with the properties:

VyeS)I<y & (WzeL)((WyeS)z<y) = 2<I

Note: [€ L but is possible [€ S

Defn: Let L be a lattice and let S be a nonempty,
possibly infinite subset of L.

The supremum of S, denoted sup(S), is an
element v € L with the properties:

VyeS)y<u & (VzeL)(WVyeS)y<z)=u<z

Note: u € L but is possible u & S
©2004 R. Leduc 25

Complete Lattices

If lattice L is finite, the inf(S) and sup(S)
reduce to the meet and join of a finite number
of elements of L.

In this case, they always exist as L is a lattice.

If S is an infinite subset, they need not exist.
If they do, they are unique.

Defn: A lattice L is complete if for any nonempty
subset S of L, the inf(S) and sup(S) always ex-
ISts.

©2004 R. Leduc 26

Lattice Examples

1. Let A be an arbitrary finite set. Let X =
Pwr(A). Let SC L and S # 0.

inf(S)= Ny sup(S) = Jy

yes yes
Clearly, (L,N,U) is complete.

2. Let L =7ZxZandz = (x1,22),y = (y1,y>) €
L. We then have:

(min(z1,y1), Min(z2,y2))
(max(a;l, yl)a max($27 yQ))

rA\y

xrVy

Let S:= {(z,y) € Z x Z|y > 1}.

Thus S is an infinite subset, with y com-
ponent able to be arbitrarily large. Clearly
no max value exists for S, thus sup(S) not
defined.

Thus, L is not complete.

©2004 R. Leduc 27

When S is Empty

Regardless of whether L is complete, if sup(L) =
T exists, then we can include S =0 C L in our
definition of inf(S) by defining:

inf(0) = sup(L)

Similarly if inf(L) = L exists, we can define:

sup(0) = inf(L)

This is a result of "empty set logic.”

P

M-

q
T
=
T
=

=T

If p = F then the statement p = ¢ is always
true for any gq.
©2004 R. Leduc 28

When S is Empty (2)

The statement y € 0 is false for any y in the
universe, thus statement y € 0 = ¢ is true for
any q.

To show that inf(@) = T, we need to show:
1) (Vyed) T <y

Equivalent to showing: (Vy)y e =T <y

T his statement would only be false if:

Fy)yech & (T <y)

NOTE: Similarly (Vz € L)(Vy € 0) z <y is true.

2) (Vze€e L)2<T true by defn of T

©2004 R. Leduc 29

Equivalence Relations - §1.3

Let X be a nonempty set, and let £ C X x X
be a binary relation on X.

Defn: The relation E is an equivalence rela-
tion on X if:

1. Vzx € X)xFEx (E is reflexive)
2. (Vx,2’ € X)zEx' = 2’'Ex (E is symmetric)

3. (Vx,2/,2" € X)2Ex' & 2'Ex' = xEx" (E
is transitive)

For zEz’ we may write x = 2/ (modE)

©2004 R. Leduc 30

Equivalence Relations Example

1. Let X be the set of all motorized vehicles.

We could define an equivalence relation, E,
as follows:

e All two wheeled vehicles (mopeds, mo-
torbikes etc) are equivalent, AND

e All four wheeled vehicles (cars, trucks,
buses) are equivalent, but no two wheel
IS equivalent to a four wheel vehicle,
AND

e All vehicles that do not fall into the
above types are equivalent.

2. Any arbitrary partition (ie doesn't need any
physical meaning) of X could be used to
create an equivalence relation.

©2004 R. Leduc 31

Equivalence Classes (Cosets)

For z € X, let [z] represent the subset of ele-
ments that are equivalent to zx:

[z] ;= {2’ € X|2'Ez} C X

Defn: We refer to the subset [z] as the coset
(or equivalence class) of x wrt to E.

By reflexivity, we have z € [x] thus all cosets
are non empty.

Proposition 1.3.1

(Vo,y € X) either [z] = [y] or [z]N[y] =10

Proof: Assume one statement is false, and
show this implies the other is true.

©2004 R. Leduc 32

Partitions

T he equivalence relation divides X into nonempty,
non-overlapping subsets, inducing a partition
of X.

Let P be a family of subsets of X, with index
set A:

Defn: P is a partition of X if:

1. Vae A)Cy # 0

2. (Vz e X)(Faec A)x € Cy,

3. Va,8eA)azx==ConCg=10

The subsets C, are called the cells of P.

Clearly, the collection of distinct cosets of an
equivalence relationship is a partition.
©2004 R. Leduc 33

Inducing Equivalence Relations

Given a partition P of X, we can define a cor-
responding equivalence relation E as follows:

(Vz,y € X)zEy iff (3ac A)z€Cy & y€ Cq

Will speak of equivalence relations and parti-
tions interchangeably.

©2004 R. Leduc 34

Lattice of Partitions

Let £(X) (or simply £) be the set of all equiv-
alence relations on (partitions of) X. We will
now define a partial order on £€ and then show
that it is a complete lattice:

(VE{,E> € E)E1 < E5 iff (Vo,y € X)xE1y = xE>y

Implies every coset of E4 is a subset of exactly
one coset of Fo».

Defn: If £1 < E»>, we say that Eq refines Eo,

or F4q is finer than FE», or that FE» is coarser
than E;.

©2004 R. Leduc 35

EXxistence of Meet
Proposition 1.3.2: In the poset (£,<) the
meet Eq1 A E> always exists and is given by:
(Vz,z’ € X))z =2'(mod E1 A E5)
iffr = 2’(mod E1) & =z = 2/(mod E>»)

The relation Eq A E» is the coarsest partition
that is still finer than Eq and Ebs.

Fig. 1.3.1
Meet of T'wo Partitions

. boundaries of E-cells
boundaries of F'-cells

..................

Any boundary line is a boundary of an (E A F)-cell

©2004 R. Leduc 36

Existence of Join

Proposition 1.3.3: In the poset (&£,<) the
join E1V E» always exists and is given by:
(Vx, 2’ € X))z = 2'(mod E1 V E»)
iff (Jintegerk > 1)(3zo,z1,..., 2. € X)xog =2 & 2, = 2’
&(Vi)l <i:<k= [:EZ = a;i_l(mod El) orx; = :Ui_l(mOd EQ)]

The relation E1V E» is the finest partition that
is still coarser than Eq and E».

Fig. 1.3.2
Join of Two Partitions

.~ YDoundaries of F-cells
boundaries of F-cells
common boundaries of F-cells and F-cells,

forming boundaries of (I V F')-cells

©2004 R. Leduc 37

Completeness of &

Proposition 1.3.4: Let F C £ be a nonempty
collection of equivalence relations on X. Then
inf(F) exists; in fact:

(Vz, 2’ € X) z(inf(F)’ iff (VF € F) xFa'

Also, sup(F) exists; in fact:
(Va, 2’ € X) xz(sup(F))x’'
iff (3integerk > 1)(3F1, ..., Fy € F)(Bzo, 21, . .., 75 € X)
o=z &z, =2 & Vi)l <i<k=z=x,_1(modF;)

We can also state L. = inf(&) and T = sup(&)
as follows:

r=a'(mod l)iffx =2 z=2'(modT)iff true

©2004 R. Leduc 33

Canonical Projection - 31.4

Let X and Y be sets. Will use w,p etc. for
elements of £(X).

For m € £(X), let X = X/ be the set of dis-
tinct cells of the equivalence relation .

Defn: The canonical projection associated with
7, denoted Py, is defined to be the surjective
function:

Pr: X — X/m:xw— [z]

©2004 R. Leduc 39

Equivalence Kernel

Let f : X — Y be a function with the given
domain and codomain. For A C X, we define:

F(A) '=A{f(z)|z € A}

Defn: We also associate with f the inverse
image function f~1 : Pwr(Y) — Pwr(X) as
follows:

F~Y(B):={z € X|f(z) € B}, BePwr(Y)

Defn: The equivalence kernel of f : X — Y,
denoted kerf, is the equivalence relation in
£(X), defined as follows:

(Vz,z' € X))z = 2’ (mod kerf) iff f(z) = f(a')

For m € £(X) and the canonical projection Py :
X — X/mw, we have ker Pr =7
©2004 R. Leduc 40

Equivalence Kernel Example

Let the set X be a set of people in a room and
let each person’s age be in the integer range
{21,22,...,25}.

Let Y =N:={0,1,2,...}, and f: X — Y map
a person to their corresponding age.

The equivalence relation kerf groups the peo-
ple based on their age.

Let X be the cells of kerf. Treating X as a
set of labels for the cosets, we could take X =
{21,22,...,25}, representing the five possible
ages of the people.

Let PfX—>7

See diagram in class.

©2004 R. Leduc 41

Canonical Factorization

Let f: X — Y and let Pr: X — X/kerf.

P
X L o X/kerf
g
Y
¥

Defn: We refer to f = go Py as the canonical
factorization of f.

If we only care about evaluating f, we can con-
vert X to X, and then just use g to evaluate f
using the typically much smaller set X.

Note: o denotes function composition. In this
case, equivalent to saying:

(Vz € X) f(z) = g(Pf(z))

©2004 R. Leduc 42

Canonical Factorization Proof

Claim: There exists a unique function
g: X/kerf — Y such that f =go Pr.

Proof:

Let T € X/kerf = X.

= (da € X) [a] = = by definition of X

Define g(z) = f(a) (1)

If there exists other o/ € X such that [d] ==
then: a = a’(mod kerf)

= f(a) = f(a') (by definition of kerf), thus
function g is well defined. (2)

Now need to verify that: f =go Py

Sufficient to show: (Vz € X) f(x) = g(Pr(x))
©2004 R. Leduc 43

Canonical Factorization Proof (2)
Let x € X, then Py(z) = [z] ==

= g(x) = f(x) by definition.

thus f(x) = g(P¢(x)) as required. (3)
Finally, we need to show that g is unique.

Let g: X/kerf — Y and assume that

Will show this implies g = g.
Must show: (Vz € X) g(z) = g(Z)
Let Z € X, then T = [a] for some a € X.

= T = Pf(a)
©2004 R. Leduc 44

Canonical Factorization Proof (3)

= 9(z) = g(Pr(a)) = f(a) by (4)

As g(z) = f(a) by definition, we have g(z) =
9(T)

By (1), (2), and (3) we have defined a suitable
function g, and by (4) we have shown it is
unique.

QED

©2004 R. Leduc 45

Other Factorizations

Proposition 1.4.1: Suppose f: X — Y and
let p € £(X) with kerf > p.

There exists a unique map g : X/p — Y such
that f =go Py

P
X T X
9 ker f > p
f :
v
Y

©2004 R. Leduc 46

Other Factorizations (2)

Proposition 1.4.2: Suppose f: X — Y and
let g: X — Z and let kerf > keryg.

There exists a map h : Z — Y such that f =
hog.

Furthermore, h is uniquely defined on the im-
age ¢g(X) of X in Z; that is, the restriction
h|g(X) IS unique.

X

J / ker f > ker g

©2004 R. Leduc 47

Other Factorizations (3)
Proposition 1.4.3: If m,p € £(X) and « < p,

there is a unique function f: X/m — X/p such

X
Py & D>

X/m T Lo = X/p

©2004 R. Leduc 48

Dynamic Systems

Defn: A dynamic system on a set X is a map
a . X — X with interpretation X are the sys-
tem’s states, and « is the state transition func-
tion .

We can then select an initial state zg € X
and the system will evolve through states z1 =

a(zg), 2 = a(x1), ...
We write o for the k-fold composition of «,

taking o = identity. ie. for k = 2 get a? =

O O (X.

The sequence (a°(zq), al(zg), a?(zg),...) is path
of (X, «a) with initial state zg.

©2004 R. Leduc 49

Congruences of Dynamic Systems

Defn: Let 7 € £(X) with canonical projection
Pr: X —- X .= X/r.

Relation 7 is a congruence for o if there exists
a map @ : X — X such that @o Py = Py o «.
ie., the diaaram below commutes.

87

X = X
Pr Pr
¥ _ v
D s R > X

We say that @ is the map induced by a on X.

Fixing (X,a), let C(X) C £(X) be the set of
all congruences for c.

It can be shown that C(X) is a complete sub-
lattice of £(X) that contains the elements L
and T of £(X).

©2004 R. Leduc 50

Congruence Condition
How do we know when 7 is a congruence?

Proposition 1.4.4: « is a congruence for o iff

ker Pr < ker(Pr o «)

namely

Vz,z' € X) (z,2) € 71 = (a(z),a(z)) en

Proof: Immediate from Proposition 1.4.1,
with identifications (Y, f, p,g) = (X, Proa, 7, @).

QED

Condition says that o« maps all elements in the
same cell of # to the same new cell of .

Can take the dynamic system (X, @), with ini-
tial state Tg = [zg], as a consistent aggregated
(high level) model of (X, a).

©2004 R. Leduc 51

Observers

Let o : X — X be an arbitrary function. Let
w e E(X).
Defn: Let w-a € £(X) be defined as:

(z,2' € X))z =2 (modw-a) iff a(z) = a(z")(Mmod w)

ie. w-a=ker(P,oa«).
Thus, wis a congruence for a iIff w < w - «.

Defn: Let v: X — Y be an arbitrary function.
The observer for the triple (X, «a,~) is defined
to be the equivalence relation:

wo :=sup{w € E(X)|w < (kery) A (w-a)}

Will show the observer is the coarsest congru-
ence for a that is finer than ker~.
©2004 R. Leduc 52

Observers Proof
Let F={we(X)|w < (kery) AM(w-a)}.

Thus, F is the set of all congruences finer than
the ker~.

To prove this, we must show that w, iS a con-
gruence for a and that w, < ker~.

Subclaim 1: w, is a congruence for «.

Proof: Clearly, 7 C C(X), the set of all con-
gruences for «, as every w € F has property
w < w- -« and is thus a congruence.

As C(X) (the set of all congruences for «) is
a complete sublattice of £(X), we have w, =
sup(F) € C(X), as required.

©2004 R. Leduc 53

Observers Proof (2)

Subclaim 2: w, < ker~

Proof: Let z,2’ € X. Assume z(sup(F))z’ (1)
Will now show implies z(ker~)zx’

From definition of sup, (1) implies: (2)
(dintegerk > 1)(3Fy, ..., F, € F)(3xo,x1,...,71 € X)
ro=z&zxz, =2 & Vi)l <i<k=uz=xz_1(modF;)

From definition of F, (VF € F) F < ker~
= (V)1 <i<k=ux=x,_1(modker~) (3)

= x(kerv)z’ by the transitive property of equiv-
alence relations.

Subclaim 2 complete.

By subclaims 1 and 2, we have that w, is
a congruence for a and that wy, < ker~, as
required.

QED
©2004 R. Leduc 54

Observer Diagram

If we is an observer for (X, «,~), then it will in-
duce the maps @ and 7, such that the diagram
below will commute.

Think of v as the output map for the system.

g h——X
X \
P, Yy
Pwo s 4
~
o
a v 77
X——————= T

We can thus take the dynamic system (X, a, %)
as a consistent aggregated (high level) model
of (X, a,~).

©2004 R. Leduc 55

Observer Example

Assume we have the dynamic system (X, «,)
shown in the figure and table below:

@)

z 15 20 23 26 40 70
a(z) 26 40 70 23 23 40 70
~(z)|]B B B B N N N

Define v: X —- Y :={B, N, D} as follows:

v(x)
v(x)

B if x <25, ~(zx)= N if 25 <z <100,
D if x > 100

©2004 R. Leduc 56

Observer Example (2)

We will use the function W : £(X) — &£(X) to
calculate our observer, wy:

V(w) i =(kery) AM(w-a), we&(X)

It can be shown that, if we start with w = ker~,
W is monotone and that wy, is the greatest fixed
point of V.

Our refinement algorithm will be:

1) Set ' = ker~

2) w=W(J) = (kery) A (-)

3) if w# W then ' = w; goto step 2

4) wo = w; Sstop

2004 R. Leduc 57
©

Observer Example (3)

From table: kervy = {{10, 15, 20,23},{26,40,70}}

i W = kervy
calculate: ' -a = {{10,15,20,40,70}, {23,26}}
calculate:
w = (kery) A (v - o) = {{10, 15,20}, {23},{26}, {40,70}}
w#Fw sow =uw

Il calculate: o' -a={{10},{15,20,40,70}, {23,26}}
calculate: w = {{10}, {23}, {26}, {15,20},{40,70}}
w#w souw =uw

Il calculate: o' -a={{10},{15,20,40,70}, {23,26}}
calculate: w = {{10}, {23}, {26}, {15,20},{40,70}}
w = w sO w, = w: stop

©2004 R. Leduc 58

Observer Example (4)

Our observer is thus:
wo = {{10},{23}, {26}, {15, 20}, {40, 70}}

Define: X := {a,c,b,d,e} to label cells:

{10}, {23}, {26}, {15,201}, {40, 70}

We can now define our aggregated system (7, a,)
as follows:

o(T)
7(Z)

W o|
>lo|lo
wikelfe}

C
C
B

BN D

©2004 R. Leduc 59

S
S
N

