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Control Systems

Assumptions: Students have taken a discrete

math course that includes elementary logic and

set theory.

The research area of Supervisory Control orig-

inated in systems control research.

Area deals with dynamic systems: systems that

have state space, state transition structure,

and inputs/outputs.

Plant
Control
Input

Observational
Output
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Control Systems Cont.

Feedback control in the form of a controller is
usually needed to ensure the desired behaviour.

Feedback Control

Plant

Supervisor

Typically, the controller has its own dynamics,
and its the combination of the two (called the
closed behaviour) that provides the desired be-
haviour (specification).

A suitable controller may not always exist for
a given desired behaviour and plant.
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Continuous Control Systems Eg.

Here our inputs/outputs are represented as con-

tinuous or discrete time functions, as well as

the system’s dynamics.

∗

Example shows a robot hand, grasping force,

control system.

∗Diagram taken from Katsuhiko Ogata, Modern Control
Engineering, 2nd ed., Prentice Hall, 1990
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Discrete-Event Systems Overview

Discrete-event (dynamic) systems (DES or

DEDS) are a relatively new area of research for

control systems, but is now well represented at

conferences and in the literature.

Recently, continuous systems have been com-

posed with DES to form a new research area

called Hybrid Systems.

The parent domains of DES are Operations

Research (OR) and Software Engineering.
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Operations Research

OR deals with systems of stores and servers

that are interconnected. Together, they pro-

cess “items.”

Focus of area:

- Measure quantitative performance and trade-

offs (throughput of operation versus cost etc.).

- Optimize control parameters such as buffer

size, maintenance schedules, uptime, etc.

Some examples:

Manufacturing Systems: operates on work

pieces which are stored in queues or buffers.

These work pieces are then operated on by

robots, machines, automated guided vehicles

(AGVs) etc.
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Manufacturing Example

∗

∗AIP example taken from R.J. Leduc, Hierarchical
Interface-based Supervisory Control. Doctoral Thesis,
Dept. of Elec. & Comp. Engrg., Univ. of Toronto,
2002.
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Operations Research Cont.

Communication Systems: operates on mes-

sages which are stored in queues and buffers.

These are then served by transmitters, chan-

nels, receivers, network nodes etc.

other examples are: Traffic systems, Database

management systems, etc.
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Software Engineering and DES

Some areas of software engineering that are

relevant are operating systems (resource man-

agement etc.), concurrent computation, real-

time (embedded and reactive) systems.

Example applications are synchronization algo-

rithms that control resource sharing and mu-

tual exclusion enforcement for concurrent en-

tities.

Focus of area:

- Guarantee safety (“nothing bad will happen”),

mutual exclusion, deadlock prevention.

- Guarantee liveness (“something good will even-

tually happen”), efficiency, absence of starva-

tion or lockout.
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Software Engineering and DES Cont.

Diagram below shows different viewpoint of

Software Engineering and discrete-event sys-

tems.
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Discrete-Event Systems

A Discrete-event system is a dynamic system
that is:

- Discrete in time and state space.

- Asynchronous or event driven. DES are driven
by “events” (ie machine starts, machine stops
etc.) or instantaneous “occurrences in time.”

- Occurrence of events is nondeterministic. Means
that the selection process that determines which
event out of those currently possible to occur,
is not modelled (could be chance, or some un-
specified mechanism).

Focus of area:

- Logical correctness in presence of concur-
rency, timing constraints, etc.

- Quantitative performance.

- Feedback control synthesis and optimization.
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Small Factory Example

mach1

I1 I2

W1 D1

a1

b1
b2

l1

m1

mach2

W2 D2

a2

l2

m2

for i = 1, 2

a i = machine starts jobi

b i = machine finishes jobi

l i = machine breaks downi

m i = machine is repairedi

BufferSup

a1 b1 b2

a1
b1

a2

a2

mach1

Closed Loop: sync (mach1, mach2,BufferSup)

mach2Buffer
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Industrial Chemical Process Eg.

Plant Components: Reaction tank, valves, heater,

mixer etc.

States: Fluid level (low, medium, high, etc),

temperature, pH (too low, OK, too

high, etc).

X

valve states (open, closed, etc.)

X

heater and mixer states (off, on, etc.)

Transitions (events): chemical mixture reach-

ing desired composition, temperature

entering a desired range, critical variables

entering a dangerous range etc.
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Discrete-Event Systems Challenges

Model size: DES state space increases com-

binatorially in the number of model com-

ponents. Can quickly make computation

intractable.

Structure: How to exploit regularities of a sys-

tem’s structure to improve scalability. Usu-

ally combined with appropriate architecture

that can take advantage of structure.

Implementation: How to implement supervi-

sors as hardware and software, taking care

of necessary concurrency issues.
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Binary Relations - §1.1

Let X be an arbitrary set. The set of all or-

dered pairs of X is:

X ×X := {(x1, x2)|x1, x2 ∈ X}

Note: (x1, x2) an ordered pair means that

(x1, x2) = (x′1, x′2) ⇔ x1 = x′1 & x2 = x′2

Defn: A binary relation is any R ⊆ X ×X

We write: (x1, x2) ∈ R or x1Rx2 (infix nota-

tion).
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Posets

Let the symbol “≤” denote a binary relation R

with the properties:

1. (∀x ∈ X) x ≤ x (reflexive)

2. (∀x, y, z ∈ X) x ≤ y & y ≤ z ⇒ x ≤ z (tran-
sitive)

3. (∀x, y ∈ X) x ≤ y & y ≤ x ⇒ x = y (anti-
symmetric)

Defn: A relation ≤ with the properties (1)-(3)
is a partial order (p.o) on X.

Poset stands for partially ordered sets.

We refer to “the poset X” if the relation ≤ is
understood. Otherwise, we refer to the poset
(X,≤).
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Total Ordering

Defn: we say that x, y ∈ X are comparable wrt
≤ if x ≤ y or y ≤ x.

If two elements x, y ∈ X are not comparable,
we write x <> y.

A poset is a total ordering if every x, y ∈ X is
comparable.

How do you know if the relation is a poset?
Check that it satisfies the three properties.

We can extend our notation as follows:

If x ≤ y, may write y ≥ x

If x ≤ y and x 6= y then may write x < y or
y > x

NOTE: ¬(x ≤ y) ⇔ (x <> y) or (x > y)
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Poset Examples

1. Let X = R (set of real numbers), or X =

N := {0,1,2, . . .} (set of natural numbers)

or X = Z := {. . . ,−1,0,+1, . . .} (set of in-

tegers) and let ≤ have normal meaning.

Thus 2 ≤ 3 but not 4 ≤ 3.

2. Let X = Z× . . .× Z︸ ︷︷ ︸
k-fold

thus:

x ∈ X ⇒ x = (x1, . . . , xk) with xi ∈ Z, i = 1, . . . , k.

Defn: (∀x, y ∈ X) x ≤ y ⇔ xi ≤ yi (normal

meaning) for all i = 1, . . . , k.

eg. (5,−2) ≤ (7,−1) but (5,−1) <> (7,−2)

as 5 ≤ 7 but −1 > −2.
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Poset Examples (2)

3. Let A be an arbitrary set.

Let X = Pwr(A) = 2A.

The powerset of A (2A) is the set of all

subsets of A thus: x ∈ X ⇒ x ⊆ A

eg. x = ∅, x = {a, b} with a, b ∈ A, x = A

Defn: (∀x, y ∈ X) x ≤ y ⇔ x ⊆ y

eg. A = {α, β, γ} thus:

X = {∅, {α}, {β}, {γ}, {α, β}, {α, γ}, {β, γ}, {α, β, γ}}

Have {β} ≤ {β, γ} but {β} <> {α, γ}

Should be able to check for yourself that

(X,≤) is a poset.
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Meet

Let (X,≤) be a poset, and let x, y ∈ X.

Defn: Element a ∈ X is a lower bound for x

and y if a ≤ x and a ≤ y.

eg. for X = Pwr(A), this means a is a subset
of both x and y.

Defn: Element l ∈ X is a meet (greatest lower
bound) for x and y iff

l ≤ x & l ≤ y & (∀a ∈ X) (a ≤ x & a ≤ y) ⇒ a ≤ l

In other words, l is a lower bound and beats
any other lower bound.

For a given x and y, the meet may not exist.
If it does, it is unique and we denote it x ∧ y.

Defn: We denote the bottom element by ⊥. If
it exists, it satisfies: ⊥ ∈ X and (∀x ∈ X)⊥ ≤ x.
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Join

Defn: Element b ∈ X is an upper bound for x

and y if x ≤ b and y ≤ b.

eg. for X = Pwr(A), this means x and y are a

subset of b.

Defn: Element u ∈ X is a join (least upper
bound) of x and y iff

x ≤ u & y ≤ u & (∀b ∈ X) (x ≤ b & y ≤ b) ⇒ u ≤ b

In other words, u is a upper bound and is lower

than any other upper bound.

For a given x and y, the join may not exist. If

it does, it is unique and we denote it x ∨ y.

Defn: We denote the top element by >. If it

exists, it satisfies: > ∈ X and (∀x ∈ X)x ≤ >.
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Meet and Join Examples

1. Let X = Pwr(A) and x, y ∈ X.

We then have x∧y = x∩y (set intersection)

and x ∨ y = x ∪ y (set union).

We also have ⊥ = ∅ and > = A.

For this X, the meet, join, bottom, and

top always exist.

2. Let X = Z×Z and x = (x1, x2), y = (y1, y2) ∈
X. We then have:

x ∧ y = (min(x1, y1),min(x2, y2))

x ∨ y = (max(x1, y1),max(x2, y2))

As Z := {. . . ,−1,0,+1, . . .}, neither ⊥ or >
exist.
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Lattices - §1.2

Defn: A lattice L is a poset (L,≤) in which
the meet and join is defined for all x, y ∈ L.

The binary operators ∧ and ∨ define the func-
tions:

∧ : L× L → L, ∨ : L× L → L

For x, y, z ∈ L then the operators ∧ and ∨ (de-
noted consistently throughout as ?) satisfy the
following properties:

1. x ? x = x (? is idempotent)
2. x ? y = y ? x (? is commutative)
3. (x ? y) ? z = x ? (y ? z) (? is associative)

eg. for ∨, point 2 gives: x ∨ y = y ∨ x

We also have the following relationships:

x ∧ (x ∨ y) = x ∨ (x ∧ y) = x (absorption)

x ≤ y iffx ∧ y = x iffx ∨ y = y (consistency)
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Absorption Example

Verify: x ∧ (x ∨ y) = x

let a = x ∧ (x ∨ y)

Proof:

Must show 1) x ≤ a 2) a ≤ x

Part 1) show x ≤ a

Have x ≤ x by reflexivity of ≤

As x∨ y is upper bound of x, y by definition of

join, we have: x ≤ x ∨ y

⇒ x is a lower bound of x and x ∨ y

⇒ x ≤ x ∧ (x ∨ y) by defn of meet.

Part 1 done.
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Absorption Example (2)

Part 2) show a ≤ x

By defn of meet, a ≤ x and a ≤ x ∨ y

Part 2 done.

By parts 1) - 2), we have x ≤ a and a ≤ x.

⇒ x = a by antisymmetry of Posets.

QED
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Infinum and Supremum

Defn: Let L be a lattice and let S be a nonempty,

possibly infinite subset of L.

The infimum of S, denoted inf(S), is an ele-

ment l ∈ L with the properties:

(∀y ∈ S) l ≤ y & (∀z ∈ L) ((∀y ∈ S) z ≤ y) ⇒ z ≤ l

Note: l ∈ L but is possible l 6∈ S

Defn: Let L be a lattice and let S be a nonempty,

possibly infinite subset of L.

The supremum of S, denoted sup(S), is an

element u ∈ L with the properties:

(∀y ∈ S) y ≤ u & (∀z ∈ L) ((∀y ∈ S) y ≤ z) ⇒ u ≤ z

Note: u ∈ L but is possible u 6∈ S
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Complete Lattices

If lattice L is finite, the inf(S) and sup(S)

reduce to the meet and join of a finite number

of elements of L.

In this case, they always exist as L is a lattice.

If S is an infinite subset, they need not exist.

If they do, they are unique.

Defn: A lattice L is complete if for any nonempty

subset S of L, the inf(S) and sup(S) always ex-

ists.
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Lattice Examples

1. Let A be an arbitrary finite set. Let X =

Pwr(A). Let S ⊆ L and S 6= ∅.
inf(S) =

⋂

y∈S

y sup(S) =
⋃

y∈S

y

Clearly, (L,∩,∪) is complete.

2. Let L = Z×Z and x = (x1, x2), y = (y1, y2) ∈
L. We then have:

x ∧ y = (min(x1, y1),min(x2, y2))

x ∨ y = (max(x1, y1),max(x2, y2))

Let S := {(x, y) ∈ Z× Z| y ≥ 1}.
Thus S is an infinite subset, with y com-

ponent able to be arbitrarily large. Clearly

no max value exists for S, thus sup(S) not

defined.

Thus, L is not complete.
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When S is Empty

Regardless of whether L is complete, if sup(L) =

> exists, then we can include S = ∅ ⊆ L in our

definition of inf(S) by defining:

inf(∅) = sup(L)

Similarly if inf(L) = ⊥ exists, we can define:

sup(∅) = inf(L)

This is a result of “empty set logic.”

p q p ⇒ q
T T T
T F F
F T T
F F T

If p = F then the statement p ⇒ q is always

true for any q.
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When S is Empty (2)

The statement y ∈ ∅ is false for any y in the

universe, thus statement y ∈ ∅ ⇒ q is true for

any q.

To show that inf(∅) = >, we need to show:

1) (∀y ∈ ∅)> ≤ y

Equivalent to showing: (∀y) y ∈ ∅ ⇒ > ≤ y

This statement would only be false if:

(∃y) y ∈ ∅ & ¬(> ≤ y)

NOTE: Similarly (∀z ∈ L)(∀y ∈ ∅) z ≤ y is true.

2) (∀z ∈ L) z ≤ > true by defn of >
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Equivalence Relations - §1.3

Let X be a nonempty set, and let E ⊆ X ×X

be a binary relation on X.

Defn: The relation E is an equivalence rela-

tion on X if:

1. (∀x ∈ X)xEx (E is reflexive)

2. (∀x, x′ ∈ X)xEx′ ⇒ x′Ex (E is symmetric)

3. (∀x, x′, x′′ ∈ X)xEx′ & x′Ex′′ ⇒ xEx′′ (E

is transitive)

For xEx′ we may write x ≡ x′ (modE)
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Equivalence Relations Example

1. Let X be the set of all motorized vehicles.

We could define an equivalence relation, E,

as follows:

• All two wheeled vehicles (mopeds, mo-

torbikes etc) are equivalent, AND

• All four wheeled vehicles (cars, trucks,

buses) are equivalent, but no two wheel

is equivalent to a four wheel vehicle,

AND

• All vehicles that do not fall into the

above types are equivalent.

2. Any arbitrary partition (ie doesn’t need any

physical meaning) of X could be used to

create an equivalence relation.
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Equivalence Classes (Cosets)

For x ∈ X, let [x] represent the subset of ele-

ments that are equivalent to x:

[x] := {x′ ∈ X|x′Ex} ⊆ X

Defn: We refer to the subset [x] as the coset

(or equivalence class) of x wrt to E.

By reflexivity, we have x ∈ [x] thus all cosets

are non empty.

Proposition 1.3.1

(∀x, y ∈ X) either [x] = [y] or [x] ∩ [y] = ∅

Proof: Assume one statement is false, and

show this implies the other is true.
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Partitions

The equivalence relation divides X into nonempty,
non-overlapping subsets, inducing a partition
of X.

Let P be a family of subsets of X, with index
set A:

P = {Cα ⊆ X|α ∈ A}

Defn: P is a partition of X if:

1. (∀α ∈ A)Cα 6= ∅

2. (∀x ∈ X)(∃α ∈ A)x ∈ Cα

3. (∀α, β ∈ A)α 6= β ⇒ Cα ∩ Cβ = ∅

The subsets Cα are called the cells of P.

Clearly, the collection of distinct cosets of an
equivalence relationship is a partition.
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Inducing Equivalence Relations

Given a partition P of X, we can define a cor-

responding equivalence relation E as follows:

(∀x, y ∈ X)xEy iff (∃α ∈ A)x ∈ Cα & y ∈ Cα

Will speak of equivalence relations and parti-

tions interchangeably.
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Lattice of Partitions

Let E(X) (or simply E) be the set of all equiv-

alence relations on (partitions of) X. We will

now define a partial order on E and then show

that it is a complete lattice:

(∀E1, E2 ∈ E)E1 ≤ E2 iff (∀x, y ∈ X)xE1y ⇒ xE2y

Implies every coset of E1 is a subset of exactly

one coset of E2.

Defn: If E1 ≤ E2, we say that E1 refines E2,

or E1 is finer than E2, or that E2 is coarser

than E1.
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Existence of Meet

Proposition 1.3.2: In the poset (E,≤) the
meet E1 ∧ E2 always exists and is given by:

(∀x, x′ ∈ X)x ≡ x′(modE1 ∧ E2)
iffx ≡ x′(modE1) & x ≡ x′(modE2)

The relation E1 ∧ E2 is the coarsest partition
that is still finer than E1 and E2.
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Existence of Join

Proposition 1.3.3: In the poset (E,≤) the
join E1 ∨ E2 always exists and is given by:
(∀x, x′ ∈ X)x ≡ x′(modE1 ∨ E2)

iff (∃ integer k ≥ 1)(∃x0, x1, . . . , xk ∈ X)x0 = x & xk = x′

&(∀i)1 ≤ i ≤ k ⇒ [xi ≡ xi−1(modE1) orxi ≡ xi−1(modE2)]

The relation E1∨E2 is the finest partition that
is still coarser than E1 and E2.
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Completeness of E

Proposition 1.3.4: Let F ⊆ E be a nonempty

collection of equivalence relations on X. Then

inf(F) exists; in fact:

(∀x, x′ ∈ X)x(inf(F))x′ iff (∀F ∈ F)xFx′

Also, sup(F) exists; in fact:

(∀x, x′ ∈ X)x(sup(F))x′

iff (∃ integer k ≥ 1)(∃F1, . . . , Fk ∈ F)(∃x0, x1, . . . , xk ∈ X)

x0 = x & xk = x′ & (∀i)1 ≤ i ≤ k ⇒ xi ≡ xi−1(modFi)

We can also state ⊥ = inf(E) and > = sup(E)
as follows:

x ≡ x′(mod⊥) iff x = x′ x ≡ x′(mod>) iff true
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Canonical Projection - §1.4

Let X and Y be sets. Will use π, ρ etc. for

elements of E(X).

For π ∈ E(X), let X = X/π be the set of dis-

tinct cells of the equivalence relation π.

Defn: The canonical projection associated with

π, denoted Pπ, is defined to be the surjective

function:

Pπ : X → X/π : x 7→ [x]
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Equivalence Kernel

Let f : X → Y be a function with the given

domain and codomain. For A ⊆ X, we define:

f(A) := {f(x)|x ∈ A}

Defn: We also associate with f the inverse

image function f−1 : Pwr(Y ) → Pwr(X) as

follows:

f−1(B) := {x ∈ X| f(x) ∈ B}, B ∈ Pwr(Y )

Defn: The equivalence kernel of f : X → Y ,

denoted kerf , is the equivalence relation in

E(X), defined as follows:

(∀x, x′ ∈ X)x ≡ x′(mod kerf) iff f(x) = f(x′)

For π ∈ E(X) and the canonical projection Pπ :

X → X/π, we have kerPπ = π
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Equivalence Kernel Example

Let the set X be a set of people in a room and

let each person’s age be in the integer range

{21,22, . . . ,25}.

Let Y = N := {0,1,2, . . .}, and f : X → Y map

a person to their corresponding age.

The equivalence relation kerf groups the peo-

ple based on their age.

Let X be the cells of kerf . Treating X as a

set of labels for the cosets, we could take X =

{21,22, . . . ,25}, representing the five possible

ages of the people.

Let Pf : X → X.

See diagram in class.
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Canonical Factorization

Let f : X → Y and let Pf : X → X/kerf .

Defn: We refer to f = g ◦ Pf as the canonical

factorization of f .

If we only care about evaluating f , we can con-

vert X to X, and then just use g to evaluate f

using the typically much smaller set X.

Note: ◦ denotes function composition. In this

case, equivalent to saying:

(∀x ∈ X) f(x) = g(Pf(x))
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Canonical Factorization Proof

Claim: There exists a unique function
g : X/kerf → Y such that f = g ◦ Pf .

Proof:

Let x ∈ X/kerf = X.

⇒ (∃a ∈ X) [a] = x by definition of X

Define g(x) = f(a) (1)

If there exists other a′ ∈ X such that [a′] = x

then: a ≡ a′(mod kerf)

⇒ f(a) = f(a′) (by definition of kerf), thus
function g is well defined. (2)

Now need to verify that: f = g ◦ Pf

Sufficient to show: (∀x ∈ X) f(x) = g(Pf(x))
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Canonical Factorization Proof (2)

Let x ∈ X, then Pf(x) = [x] = x

⇒ g(x) = f(x) by definition.

thus f(x) = g(Pf(x)) as required. (3)

Finally, we need to show that g is unique.

Let ĝ : X/kerf → Y and assume that

f = ĝ ◦ Pf . (4)

Will show this implies g = ĝ.

Must show: (∀x ∈ X) g(x) = ĝ(x)

Let x ∈ X, then x = [a] for some a ∈ X.

⇒ x = Pf(a)
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Canonical Factorization Proof (3)

⇒ ĝ(x) = ĝ(Pf(a)) = f(a) by (4)

As g(x) = f(a) by definition, we have ĝ(x) =

g(x)

By (1), (2), and (3) we have defined a suitable

function g, and by (4) we have shown it is

unique.

QED
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Other Factorizations

Proposition 1.4.1: Suppose f : X → Y and

let ρ ∈ E(X) with kerf ≥ ρ.

There exists a unique map g : X/ρ → Y such

that f = g ◦ Pρ
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Other Factorizations (2)

Proposition 1.4.2: Suppose f : X → Y and

let g : X → Z and let kerf ≥ kerg.

There exists a map h : Z → Y such that f =

h ◦ g.

Furthermore, h is uniquely defined on the im-

age g(X) of X in Z; that is, the restriction

h|g(X) is unique.
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Other Factorizations (3)

Proposition 1.4.3: If π, ρ ∈ E(X) and π ≤ ρ,

there is a unique function f : X/π → X/ρ such

that Pρ = f ◦ Pπ.
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Dynamic Systems

Defn: A dynamic system on a set X is a map

α : X → X with interpretation X are the sys-

tem’s states, and α is the state transition func-

tion .

We can then select an initial state x0 ∈ X

and the system will evolve through states x1 =

α(x0), x2 = α(x1), . . .

We write αk for the k-fold composition of α,

taking α0 = identity. ie. for k = 2 get α2 =

α ◦ α.

The sequence 〈α0(x0), α
1(x0), α

2(x0), . . .〉 is path

of (X, α) with initial state x0.
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Congruences of Dynamic Systems

Defn: Let π ∈ E(X) with canonical projection
Pπ : X → X := X/π.

Relation π is a congruence for α if there exists
a map α : X → X such that α ◦ Pπ = Pπ ◦ α.
ie., the diagram below commutes.

We say that α is the map induced by α on X.

Fixing (X, α), let C(X) ⊆ E(X) be the set of
all congruences for α.

It can be shown that C(X) is a complete sub-
lattice of E(X) that contains the elements ⊥
and > of E(X).
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Congruence Condition

How do we know when π is a congruence?

Proposition 1.4.4: π is a congruence for α iff

kerPπ ≤ ker(Pπ ◦ α)

namely

(∀x, x′ ∈ X) (x, x′) ∈ π ⇒ (α(x), α(x′)) ∈ π

Proof: Immediate from Proposition 1.4.1,

with identifications (Y, f, ρ, g) = (X, Pπ◦α, π, α).

QED

Condition says that α maps all elements in the

same cell of π to the same new cell of π.

Can take the dynamic system (X, α), with ini-

tial state x0 = [x0], as a consistent aggregated

(high level) model of (X, α).
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Observers

Let α : X → X be an arbitrary function. Let

ω ∈ E(X).

Defn: Let ω · α ∈ E(X) be defined as:

(x, x′ ∈ X)x ≡ x′(modω·α) iff α(x) ≡ α(x′)(modω)

ie. ω · α = ker(Pω ◦ α).

Thus, ω is a congruence for α iff ω ≤ ω · α.

Defn: Let γ : X → Y be an arbitrary function.

The observer for the triple (X, α, γ) is defined

to be the equivalence relation:

ωo := sup{ω ∈ E(X)| ω ≤ (ker γ) ∧ (ω · α)}

Will show the observer is the coarsest congru-

ence for α that is finer than ker γ.
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Observers Proof

Let F = {ω ∈ E(X)| ω ≤ (ker γ) ∧ (ω · α)}.

Thus, F is the set of all congruences finer than

the ker γ.

Claim: ωo ∈ F

To prove this, we must show that ωo is a con-

gruence for α and that ωo ≤ ker γ.

Subclaim 1: ωo is a congruence for α.

Proof: Clearly, F ⊆ C(X), the set of all con-

gruences for α, as every ω ∈ F has property

ω ≤ ω · α and is thus a congruence.

As C(X) (the set of all congruences for α) is

a complete sublattice of E(X), we have ωo =

sup(F) ∈ C(X), as required.
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Observers Proof (2)

Subclaim 2: ωo ≤ ker γ

Proof: Let x, x′ ∈ X. Assume x(sup(F))x′ (1)

Will now show implies x(ker γ)x′

From definition of sup, (1) implies: (2)
(∃ integer k ≥ 1)(∃F1, . . . , Fk ∈ F)(∃x0, x1, . . . , xk ∈ X)

x0 = x & xk = x′ & (∀i)1 ≤ i ≤ k ⇒ xi ≡ xi−1(modFi)

From definition of F, (∀F ∈ F)F ≤ ker γ

⇒ (∀i)1 ≤ i ≤ k ⇒ xi ≡ xi−1(modker γ) (3)

⇒ x(ker γ)x′ by the transitive property of equiv-
alence relations.

Subclaim 2 complete.

By subclaims 1 and 2, we have that ωo is
a congruence for α and that ωo ≤ ker γ, as
required.

QED
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Observer Diagram

If ωo is an observer for (X, α, γ), then it will in-

duce the maps α and γ, such that the diagram

below will commute.

Think of γ as the output map for the system.

We can thus take the dynamic system (X, α, γ)

as a consistent aggregated (high level) model

of (X, α, γ).
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Observer Example

Assume we have the dynamic system (X, α, γ)

shown in the figure and table below:

x 10 15 20 23 26 40 70
α(x) 26 40 70 23 23 40 70
γ(x) B B B B N N N

Define γ : X → Y := {B, N, D} as follows:

γ(x) = B if x < 25, γ(x) = N if 25 ≤ x ≤ 100,

γ(x) = D if x > 100
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Observer Example (2)

We will use the function Ψ : E(X) → E(X) to

calculate our observer, ωo:

Ψ(ω) := (ker γ) ∧ (ω · α), ω ∈ E(X)

It can be shown that, if we start with ω = ker γ,

Ψ is monotone and that ωo is the greatest fixed

point of Ψ.

Our refinement algorithm will be:

1) Set ω′ = ker γ

2) ω = Ψ(ω′) := (ker γ) ∧ (ω′ · α)

3) if ω 6= ω′ then ω′ = ω; goto step 2

4) ωo = ω; stop
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Observer Example (3)

From table: ker γ = {{10,15,20,23}, {26,40,70}}

i ω′ = ker γ
calculate: ω′ · α = {{10,15,20,40,70}, {23,26}}
calculate:
ω = (ker γ) ∧ (ω′ · α) = {{10,15,20}, {23}, {26}, {40,70}}
ω 6= ω′ so ω′ = ω

ii calculate: ω′ · α = {{10}, {15,20,40,70}, {23,26}}
calculate: ω = {{10}, {23}, {26}, {15,20}, {40,70}}
ω 6= ω′ so ω′ = ω

iii calculate: ω′ · α = {{10}, {15,20,40,70}, {23,26}}
calculate: ω = {{10}, {23}, {26}, {15,20}, {40,70}}
ω = ω′ so ωo = ω; stop
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Observer Example (4)

Our observer is thus:

ωo = {{10}, {23}, {26}, {15,20}, {40,70}}

Define: X := {a, c, b, d, e} to label cells:

{10}, {23}, {26}, {15,20}, {40,70}

We can now define our aggregated system (X, α, γ)

as follows:

x a b c d e
α(x) b c c e e
γ(x) B N B B N
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