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Abstract

With the ever growing complexity of computer-controlled systems, the need for discrete-

event systems has emerged. Many contributions have been done to improve and dis-

cuss discrete-event system properties. In this thesis, we investigate the problem of

fault tolerance in timed discrete-event systems.

Our goal is to establish a timed fault tolerant supervisory control approach. We start

by presenting our settings and providing different fault scenarios. We then provide

four fault tolerant definitions to verify that the system will remain controllable in

each scenario. Also, we introduce algorithms to verify timed controllability for each

scenario.

We implement a tool extension for the software research tool, DESpot, to verify timed

controllability. Furthermore, we implement a tool extension to verify fault tolerant

untimed controllability and nonblocking, and timed fault tolerant controllability for

the fault scenarios.

Finally, we present a simple example to illustrate our approach.
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Chapter 1

Introduction

In this chapter, we introduce discrete-event systems (DES) [Won15, RW87, WR87].

In Section 1.1, we give an overview of DES. In Section 1.2, we present a literature

review of timed DES. In Section 1.3, we present a literature review of DES fault

tolerance. In Section 1.4, we present our timed fault tolerant supervisory control

concept. Finally, Section 1.5 outlines the structure of the thesis.

1.1 Discrete-Event Systems

Computer systems have became an essential part of our daily lives. We find their ap-

plications in traffic systems, network systems, manufacturing systems, and so forth.

With this ever growing popularity and complexity of computer systems, the need for

reliable systems have became a necessity.

Typically, a system is defined by having two features: First, they have interacting

components. Second, they have a function they are intended to perform. Moreover,

1
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systems can be classified as static systems, where the output is independent of the

input history, and dynamic systems, where the output depends on the input his-

tory [CL08]. In this thesis, Our focus is on dynamic systems.

System behavior is defined as how the system performs its functionality and interacts

with its components. Also, the system behavior at a specific point represents the

system’s state. All possible values that a system state can take corresponds to its

state space.

DES consist of events such as: taking actions (e.g., user sends message), natural

occurrences (e.g., machine breaks down), or results of several conditions (e.g., all

product parts have finished). These events cause a system to transition from one

state to another state.

Moreover, systems are associated with different kinds of processes [CL08, Won15]:

• Discrete or continuous: Discrete in time or in state space, or continuous in time

and state space.

• Event-driven or clock-driven: In event-driven system, state transitions are the

result of asynchronous events. Also, the events need not be independent of each

other. In a clock-driven system, there is a possible state transition at every

clock tick. Therefore, state transitions are synchronized by the clock.

• Deterministic or nondeterministic: A deterministic system has a single initial

state and at most one transition for a given event at a given state. Nondeter-

ministic system do not have these restrictions.

2
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Generally, DES are represented as an automata. We provide a detailed description

for DES diagrams in Section 2.2.4.

To better understand DES, we present an example adopted from [Won15]. Please see

Section 2.2.4 for an explanation of the notation used in the diagram.

!finishes_job

!breaks_down

repaired

starts_job

I

W D

Figure 1.1: Manufacturing System DES

Example 1.1.1. Let us assume that we have a manufacturing system with one ma-

chine. This machine performs a job that has a start point and an end point. Initially,

the machine is idle. Whenever it receives a job, it starts working. Also, the machine

may break down and need to be repaired. While being repaired, no jobs can be per-

formed.

From the above description we can define the machine’s main functionality which

is to complete a job. This machine has three different states: idle (I), Working

(W) and broken down(D). Also, it has four different events: starts job, finishes job,

breaks down and repaired. Figure 1.1 shows the machine automaton.

In [Won15], Wonham introduces the concept of controllability. The idea is to use

a controller (i.e., supervisor) that modifies the system’s behavior in order to satisfy

3
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a given specification. In Chapter 2, we provide a more formal treatment of the setting.

1.2 Timed Discrete-Event Systems

In many systems designs there is a need to answer questions such as: “how long

should the system stay in a specific state?”, “when should the next event occur?”,

“what is an acceptable time to finish this task?” etc.. For example, in a traffic system

there is a need to specify how long the pause should be between one light going red

and the other going green.

In their work [BW92, Bra93, BW94], Brandin et al. added a new dimension to the ba-

sic DES theory by introducing timed discrete-event systems (TDES). They introduced

the concept of a global clock and tick event. Also, they introduced the ability to spec-

ify when certain events must occur. In Section 2.3, we explain TDES theory in detail.

Several approaches have been introduced to enhance TDES theory. In [LWA14],

Leduc et al. presented concurrency and timing issues related to implementing TDES

as a sampled data controller. They extended TDES controllability definition to a

newer version that covers new properties to deal with concurrency. Also, for simplicity

they used special restrictions in designing TDES.

4
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1.3 Discrete-Event Systems and Faults

Typically, basic DES theory models system behavior as fault free. However, many

systems would typically contain different kinds of faults. For example, consider a

request message in a data communication network system. There is a possibility that

the message could get lost or corrupted during transmission. Therefore, if the system

has not been designed to deal with such faults, the communication between these

machines would be corrupted.

A fault can be defined as “a non-permitted deviation of at least one characteristic

property (feature) of a system, or one of its components, from its normal or intended

behavior. This deviation reduces the system performances or its capability to achieve

a required function” [SM14]. Faults can come from different sources such as: incorrect

operating conditions such as overloads, maintenance faults, human operator errors,

as well as software and hardware faults.

A lot of research has discussed the possibility of fault events in DES [PSL11, WKHL08]

and how to handle them. However, the common approach is to switch to a new su-

pervisor when a fault event has occurred. This requires the ability to detect that a

fault has occurred, which is not always easy to do in a timely manner.

In [PSL11], Paoli et al. have solved the faults problem by updating the controller

based on information provided by online diagnostics. The supervisor reacts to the

detection of a malfunctioning component in order to provide fault tolerant control.

5
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They introduced two new terms: “safe controllability” and “active fault tolerant sys-

tem” in order to characterize the conditions that must be satisfied when solving the

fault tolerant problem using their approach.

In [WKHL08], the authors have introduced a framework for fault tolerant supervi-

sory control. Their basic idea is to design a system with the faulty and nonfaulty

behavior, and a submodel for just the nonfaulty part. The goal is to enforce a certain

specification for the normal plant behavior and another specification for the overall

plant behavior, to ensure that the plant recovers from any fault within a bounded

delay. Then, compare the recovery system state to the normal state to ensure they

are equivalent. Moreover, They presented a necessary and sufficient condition for the

existence of such a supervisor.

In [MRD+15], Mulahuwaish et al. have established the idea of using a single supervisor

that will behave correctly during normal behavior and in the presence of specific fault

scenarios. This has the advantage of not requiring the actual detection of the fault.

Furthermore, they presented several algorithms to verify system controllability and

nonblocking. In Chapter 3, we will review their work as it provides the foundation of

our new results.

1.4 Timed Fault Tolerant Supervisory Control

It is unrealistic to assume that only untimed DES have faults. With the possibility

of faults and the importance of timing, the need for fault tolerant TDES has emerged.

6
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Research has been conducted to discuss faults in TDES behavior. However, these re-

search topics focus on fault recovery and fault detection, as opposed to fault tolerance.

In [AA10], the main goal of Allahham et al. was to detect system faults as early as

possible. Their proposed idea was to construct a TDES with two clocks: one clock

would reflect the task state and and the other clock would measure the elapsed time

since the task had been started. They assumed that each task had normal behavior

with no faults, and acceptable behavior with intermittent faults within a bounded

delay. Their approach was to give each task a time interval. Then, they would check

if the task had finished in the defined time interval or before it, which means the

system had no faults or it had intermittent faults that the system can tolerant. They

monitored the TDES with a stopwatch automaton that models the acceptable behav-

ior for a specific task. The stopwatch had three states: initial, normal execution, and

interruption, to specify the task status.

In [MZ05], Moosaei et al. introduced fault recovery to TDES. Their system consists

of the plant and a diagnosis system, both modeled using an activity transition graph

(ATG). The plant model describes its behavior in both normal and faulty conditions.

The diagnosis system was assumed to be available to detect and isolate faults when-

ever they occurred. They have introduced three modes for their system: normal

when no faults occur, transient when a fault occurs, and recovery when the fault was

detected and isolated. Their design consists of a normal-transient supervisor, and

multiple recovery supervisors for each failure mode.

7
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Our goal in this thesis is to extend the fault tolerant approach of Mulahuwaish et

al. [MRD+15] to timed DES. Furthermore, we introduce new definitions, theorems,

propositions and algorithms to verify system consistency, and controllability for timed

fault tolerant supervisory control. Moreover, we implement software to verify both

our new timed algorithms, as well as the untimed algorithms of [MRD+15]. In the

software, we use the same TDES setting introduced in [WL12], for simplicity.

1.5 Thesis Structure

The reminder of this thesis is organized as follow:

Chapter 2 presents the required DES background including languages, automata,

controllability and nonblocking definitions.

Chapter 3 discusses untimed fault tolerant controllability and nonblocking.

Chapter 4 introduces timed fault tolerant supervisory control, including definitions

and verification algorithms.

Chapter 5 provides propositions and theorems to verify the correctness of the timed

FT controllability algorithms.

Chapter 6 presents the implementation of a software tool extension to examine

TDES controllability, fault tolerant controllability and nonblocking, and timed fault

tolerant controllability.

8
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Chapter 7 presents an example to illustrate our approach.

Chapter 8 provides conclusions and suggestions for future work.

9



Chapter 2

Discrete-Event System

Preliminaries

In this chapter, we introduce the DES terminology [Won15, CL08] that we use

throughout the thesis. In Section 2.1, we give a brief introduction to some linguistic

definitions. In Section 2.2, we present the DES main definitions. In Section 2.3,

we give the main Timed DES definitions. For a more in depth discussion, please

see [Won15, CL08] and [BW92, Bra93, BW94].

2.1 Linguistic Preliminaries

Typically, a DES is represented as an automaton defined over an event set. We can

think of the event set as an alphabet. A sequence of events taken from this alphabet

is called a string, and a set of strings is called a language. Languages are used to

represent system behavior.

10
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Now, let Σ be a finite set of distinct symbols (i.e., α, β, γ). We refer to Σ as an

alphabet. Let Σ+ denote the set of all finite, non-empty sequences σ1σ2 . . . σk, where

σi ∈ Σ and k ≥ 1. Let Σ∗ be the set of all finite sequences including ǫ, the empty

string. We thus have Σ∗:= Σ+∪{ǫ}. Let Pwr(Σ) denote the set of all possible subsets

of (Σ). A language over L ⊆ Σ∗ is any subset of Σ∗.

We now define some operations on languages. We first define the operation catenation

of strings, cat : Σ∗ × Σ∗ → Σ∗, as follows:

cat(ǫ, s) = cat(s, ǫ) = s, for s ∈ Σ∗

cat(s, t) = st, for s, t ∈ Σ+

The prefix closure of a language L is often relevant to control problems, because it

shows the history of the strings in L. For s ∈ Σ∗, we say t ∈ Σ∗ is a prefix of s and

write t ≤ s if: (∃u ∈ Σ∗)s = tu. For L ⊆ Σ∗, the prefix closure of L is L defined as:

L := {t ∈ Σ∗|t ≤ s for some s ∈ L}. A language L is closed if L = L.

The natural projection operation takes a string formed from a larger event set, i.e.,

Σ, and erases events in it that do not belong to the smaller event set, i.e., Σi. Natural

projection plays an important role in the study of DES [CL08]. Let Σ = Σ1 ∪ Σ2,

L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2, s ∈ Σ∗, and σ ∈ Σ, we define the natural

11
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projection Pi : Σ∗ → Σ∗

i according to:

Pi(ǫ) = ǫ

Pi(σ) =











ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i ) → Pwr(Σ∗) is the inverse image of Pi such that for L⊆Σ∗

i ,

we have P−1
i (L) := {s ∈ Σ∗|Pi(s) ∈ L}.

Finally, we provide some language definitions we use in the thesis. We start with the

language Lk. This the set of strings constructed from any k strings in L.

Definition 2.1.1. Let L⊆Σ∗ and k ∈ {1, 2, 3, ...}. We define the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2...sk for some s1, s2, ..., sk ∈ L}

We next define the notation for the language constructed from all possible ways to

concatenate a string from the first language, followed by an event from the event set,

and a string from the second language.

Definition 2.1.2. Let L1, L2⊆Σ∗ and Σ′⊆Σ. We define the language L1.Σ
′.L2 to be:

L1.Σ
′.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈ L2, σ ∈ Σ′}

12
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2.2 DES Preliminaries

In this section, we introduce key DES concepts and definitions.

2.2.1 DES Representation

We now provide a formal definition of DES.

Definition 2.2.1. A DES is represented as a 5-tuple:

G = (Y, Σ, δ, yo, Ym)

Where:

• Y is the state set

• Σ is a finite event set

• δ : Y × Σ → Y is the (partial) transition function

• yo is the initial state

• Ym ⊆ Y is the set of marker states

The notation δ(y, s)! means that δ is defined for s ∈ Σ∗ at state y. We extend δ to a

δ : Y × Σ∗ → Y as follows:

δ(y, ǫ) = y

δ(y, sσ) = δ(δ(y, s), σ)

provided y′ := δ(y, s)! and δ(y′, σ)!

13
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2.2.2 DES Definitions

We now introduce basic DES definitions that we will use in the remainder of the

thesis.

Definition 2.2.2. For DES G, the language generated by G, referred to as the closed

behavior of G, is denoted by L(G), and is defined to be:

L(G) := {s ∈ Σ∗| δ(yo, s)!}

The language L(G) represents all the defined paths in the state transition diagram.

String s is thus in L(G) if and only if it starts from the initial state and has an

admissible path in the state transition diagram.

Definition 2.2.3. The marked behavior of G is defined as:

Lm(G) := {s ∈ L(G)| δ(yo, s) ∈ Ym}

Clearly, Lm ⊆ L(G). String s is in Lm(G) if and only if its path starts from the

initial state and ends in a marked state.

Definition 2.2.4. The reachable state subset of DES G, denoted Yr, is

Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}

We say G is reachable if all of its states are reachable, i.e., Yr = Y .

Definition 2.2.5. We say a state y ∈ Y is coreachable if there is a string s ∈ Σ∗

such that δ(y, s)! and δ(y, s) ∈ Ym.

14
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We say G is coreachable if all of its states are coreachable. A DES could reach a

deadlock state where no further events can be executed, or a livelock state where

there is a set of unmarked states that are strongly connected without transitions

going out of the set. In the case of system deadlock or livelock, we say the system is

blocking.

Definition 2.2.6. We say G is nonblocking if every reachable state is coreachable.

This is equivalent to saying:

L(G) = Lm(G)

We will use the following equivalent definition for nonblocking in our fault tolerant

setting.

Definition 2.2.7. A DES G is said to be nonblocking if:

(∀s ∈ L(G))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G)

Definition 2.2.8. A DES G is deterministic if it has a single initial state, and at

every state there is at most a single transition leaving that state for each σ ∈ Σ.

In this thesis we assume that a DES is reachable, has a finite state and event set, and

is deterministic.

For large and complex DES, it is easier to model it as a number of smaller DES and

combine them. Therefore, in control problems we often need to combine several DES

to achieve our desired system specifications. To combine two or more DES, we will

use the synchronous product operator.

15
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Definition 2.2.9. For Gi = (Yi, Σi, δi, yo,i, Ym,i) (i = 1, 2), we define the synchronous

product G = G1||G2 of the two DES as:

G := (Y1 × Y2, Σ1 ∪ Σ2, δ, (yo,1, yo,2), Ym,1 × Ym,2),

where δ((y1, y2), σ) is only defined and equals:

(y′

1, y
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(y1, σ) = y′

1, δ2(y2, σ) = y′

2 or

(y′

1, y2) if σ ∈ Σ1 − Σ2, δ1(y1, σ) = y′

1 or

(y1, y
′

2) if σ ∈ Σ2 − Σ1, δ2(y2, σ) = y′

2 or

undefined, otherwise

It follows that L(G) = P−1
1 L(G1)∩P−1

2 L(G2) and Lm(G) = Lm(G1)∩Lm(G2). We

note that if Σ1 = Σ2, we get L(G) = L(G1) ∩ L(G2).

Definition 2.2.10. For language L ⊆ Σ∗, the eligibility operator, EligL : Σ∗ →

Pwr(Σ), is given, for s ∈ Σ∗, by:

EligL(s) := {σ ∈ Σ |sσ ∈ L}

2.2.3 Supervisory Control

In DES theory, the unrestricted system behavior is modelled as a plant DES. The

desired behavior of the system is then modelled as a supervisor DES. The goal is

for the supervisor to monitor the plant behavior, and then through valid control

actions, ensure the system behavior stays within the desired behavior. Let DES

16
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G = (Y, Σ, δ, yo, Ym) be a our plant, and let DES S = (Y, Σ, ξ, yo, Ym) be our supervi-

sor.

For example, if we have a system with two robots, we might need to control their

behavior by specifying that only one robot can perform a task at a time. When the

first robot finishes its task, the second robot can perform its task. Such actions do

not create new system behavior, they only restrict the behavior.

Our next step is to define our control technology. We do this by partitioning our

aphabet into two disjoint subsets as follows:

Σ = Σc ∪̇ Σu

Controllable events (Σc) are events that can be enabled or disabled by an external

agent (i.e., our supervisor). They can only occur if they have been enabled.Uncontrollable

events(Σu) are events that can not be disabled by an external agent. Once the plant

reaches a state where these events can occur, there is no way that the supervisor can

stop them from occurring.

We now introduce the concept of controllability. It basically checks to make sure

the plant behavior can not leave the desired behavior, specified by K, due to an

uncontrollable event.

Definition 2.2.11. We say a language K ⊆ Σ∗ is controllable with respect to G if

(∀s ∈ K)(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ K

17
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The following definition restates controllability in terms of a supervisor.

Definition 2.2.12. A supervisor S = (X, Σ, ξ, xo, Xm) is controllable for plant G =

(Y, Σ, δ, yo, Ym) if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G) ⇒ sσ ∈ L(S)

2.2.4 DES Diagrams

In this section, we discuss how DES are depicted as a diagram. Figure 2.2 shows an

examples of a DES diagram. In the diagram, arrows represent transitions and circles

represent states. Empty circles represent unmarked states, filled circles represent

marked states, and two concentric, unfilled circles represent the initial state. If the

initial state is also marked, the inner circle is filled. Also, uncontrollable events labels

are donated by “!” at the beginning of their names.

!finishes_job

!breaks_down

repaired

starts_job

I

W D

Figure 2.2: Sample DES Diagram

2.3 Timed DES

Timed DES (TDES) [Bra93, BW94] extends untimed DES theory by adding a new

tick (τ) event, corresponding to the tick of a global clock. The event set of a TDES

18



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

contains the tick event as well as other non-tick events called activity events, Σact.

A TDES is represented as a 5-tuple G = (Q, Σ, δ, qo, Qm) where:

• Q is the state set

• Σ = Σact ∪̇{τ} is the event set

• δ : Q × Σ → Q is the (partial) transition function.

• qo is the initial state.

• and Qm is the set of marker states.

We extend δ to δ : Q × Σ∗ → Q in the natural way.

For TDES, we introduce new types of event. Prohibitible events (Σhib) are events that

can be disabled by a supervisor. Forcible events (Σfor) are events that can preempt

a tick of the clock i.e., they can be forced to occur before the next tick of the clock.

If G is in a state where the tick event is possible and a forcible event is possible, then

the supervisor can disable the tick event, knowing that the forcible event will occur

if needed to prevent the clock from stopping.

For the TDES setting, we provide alternative version of several untimed definitions.

First, we define uncontrollable events as follows:

Σu := Σact − Σhib

19



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

We define controllable events as:

Σc := Σ − Σu = Σhib ∪ {τ}

Definition 2.3.1. Supervisor S is timed controllable with respect to G if

(∀s ∈ L(S) ∩ L(G)),

EligL(S)(s) ⊇















(EligL(G)(s) ∩ (Σu ∪ {τ})) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

(EligL(G)(s) ∩ Σu) if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

For TDES, we have the additional properties of activity-loop-free and proper timed

behavior. The first definition ensures that the clock tick can not be delayed indefi-

nitely, while the second ensures that either a tick or an uncontrollable event (which

can not be disabled) is always possible in the plant.

Definition 2.3.2. TDES G = (Q, Σ, δ, qo, Qm) is activity-loop-free (ALF) if

(∀q ∈ Qr)(∀s ∈ Σ∗

act)δ(q, s) 6= q

Definition 2.3.3. A plant TDES G has proper time behavior if:

(∀q ∈ Qr)(∃σ ∈ Σu ∪ τ)δ(q, σ)!
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Chapter 3

Untimed Fault Tolerant

Supervisory Control

In this chapter, we give an overview of untimed fault tolerant DES supervisory control

as introduced in [MRD+15]. In Chapter 4 we will extend this to a timed setting. In

Section 3.1, we present the basic setting. In Section 3.2, we present consistency re-

quirements. In Section 3.3, we introduce the four fault scenarios that we will consider.

In Sections 3.4 and 3.5, we provide FT controllability and nonblocking definitions.

In Section 3.6, we present the needed algorithms to verify fault tolerant properties.

In Section 3.7, we state the relevant propositions and theorems from [MRD+15] with

respect to algorithm correctness.

3.1 Untimed Fault Tolerant Setting

Systems contain faults, which can cause catastrophic failures. Fault events represent

deviations from the normal behavior of the system, usually in an undesirable fashion.
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We model faults as uncontrollable events that are unobservable by supervisors. As

faults are difficult to detect, it is more practical to design a system that can deal

with both normal and faulty behaviors without switching between supervisors when

a fault is detected.

The method we are presenting in this chapter, and basing the work on, is from

Mulahuwaish et al. [MRD+15]. We will also, as part of this thesis (see Chapter 6),

implement in software the verification algorithms from Mulahuwaish et al. [MRD+15].

The approach is to add a set of uncontrollable events to the plant model to represent

fault events. For example, if there is a sensor to detect when a robot passes a specific

location, its plant model will contain an event such as robot sen. We would then

add an uncontrollable event such as robotf sen() to occur instead if the sensor fails

to detect the robot. Such a technique does not detect the faults or prevent them.

However, it allows us to specify how the system behaves after the occurrence of a fault.

A Group of faults can be related. For example, we could have two sensors in a row

where each sensor is used to detect when a train passes a given track segment. We

might put the two sensors’ fault events into the same fault set as they might be

relevant to a supervisor that takes action when a train reaches that track section. On

the other hand, a sensor in a different part of the track would be in a different fault

set, as it would not be relevant to the same supervisor as the previous faults. We

thus define a group of m ≥ 0 mutually exclusive sets of faults events ΣFi
, as specified
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below. Each fault set groups related faults.

ΣFi
⊆ Σu, i = 1, . . . ,m

To aid in clarification and to handle a few special cases, we define a few fault classi-

fications: standard fault events, unrestricted fault events, excluded fault events, and

reset events. They are each defined below. We would like to point out that it is up

to the designer to make these designations, based on the behavior of the system in

question. In Chapter 7, we present a detailed fault tolerant example. Please see the

example for illustrations of the various terminology introduced in this and the next

chapter.

1. Standard fault events are used to define various fault scenarios that a supervisor

will be required to handle. By “handle,” we mean the system must not become

uncontrollable or block when these fault events occur.

Definition 3.1.1. We refer to the faults in sets ΣFi
, i = 1, . . . ,m, collectively

as standard fault events:

ΣF :=

m

˙⋃

i=1

ΣFi

We note that for m = 0, ΣF = ∅.

2. Unrestricted fault events are fault events that a supervisor can always handle;

therefore, they are allowed to occur unrestricted.

Definition 3.1.2. We refer to faults in ΣΩF ⊆ Σu as unrestricted fault events.
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3. Excluded fault events are fault events that can not be handled at all. They are

thus ignored in the scenarios. These typically arise due to limitations of the

physical system. Designating faults as such allows us to at least check to see

how well our supervisors handle the remaining faults.

Definition 3.1.3. We refer to faults in Σ∆F ⊆ Σu as excluded fault events.

4. For each fault set ΣFi
, i = 1, . . . ,m, we need to define a corresponding set of

reset events. The purpose of these events will be explained in Section 3.3.

Definition 3.1.4. We refer to events in ΣTi
⊆ Σ, i = 1, . . . ,m as reset events.

3.2 Fault Tolerant Consistency

For a system to be analyzed using this approach, it needs to have certain consistency

properties. The following definition collects them in one place.

Definition 3.2.1. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), Σ∆F , and ΣΩF , is

fault tolerant (FT) consistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F , ΣΩF , ΣFi
(i = 0, ..,m), are pair-wise disjoint.

3. (∀i ∈ 1, ..,m)ΣFi
6= ∅

4. (∀i ∈ 1, ..,m)ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministic.
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6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF ))ξ(x, σ) = x

We make the following observations about the definition:

1. All fault events are uncontrollable events.

2. Different types of fault events need to be disjoint, because each type is handled

by the method differently.

3. Fault sets ΣFi
are non-empty since we can simply decrease the number of fault

sets otherwise.

4. A fault set must be disjoint from its corresponding set of reset events, so we

can tell them apart.

5. Supervisor S has to be deterministic.

6. At every state in S, there is a selfloop for each fault event in the system. This

means a supervisor does not change its state because of a fault event. Combined

with point 5, this is equivalent to saying faults are unobservable by supervisors.

If S is defined over a subset Σ′ ⊂ Σ instead, we could equivalently require that

Σ′ contain no fault events.

7. We note that reset events can be controllable or uncontrollable, and they can

be observable by the supervisor.

3.3 Fault Scenarios

For untimed fault tolerant supervisory control, we define four different fault scenarios.

The intent is to capture different types of common fault situations that we would want
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our supervisors to handle. The scenarios range from simple situations easy to verify,

to ones that are more flexible in terms of how faults can occur and how often, but

more expensive to verify.

Default Fault Scenario

In this scenario, the supervisor must handle every non-excluded fault event that

occurs.

N-Fault Scenario

In this scenario, the supervisor handles at most N ≥ 0 non-excluded fault events and

all unrestricted fault events. This scenario is useful when we want to specify how

many times fault events can occur in the system.

Non-repeatable N-Fault Scenario

In this scenario, the supervisor is required to handle at most N ≥ 0 non-excluded

fault events and all unrestricted fault events. Also, only one fault event is allowed

from any given ΣFi
(i = 0, . . . ,m) fault set. This approach us useful when a controller

can handle multiple faults, but not more than one fault per fault set.

Resettable Fault Scenario

In this scenario, the supervisor handles at most one fault event from each ΣFi
(i =

0, . . . ,m) fault set during each pass through a specific part of the system’s behavior.

The set of reset events, ΣTi
(i = 0, . . . ,m), is used to indicate when the pass has

ended and it is safe for another fault from ΣFi
to occur.
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3.4 Fault Tolerant Controllability Definitions

In this section, we present controllability definitions that are introduced to verify

if a supervisor will remain controllable after applying one of the four fault tolerant

scenarios.

3.4.1 Fault Tolerant Controllability

This FT property is designed to handle the default fault scenario. We first need to

define the language of excluded faults which contains all strings that have at least

one fault from Σ∆F .

Definition 3.4.1. The language of excluded faults is defined as:

L∆F = Σ∗.Σ∆F .Σ∗

Definition 3.4.2. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, . . . ,m) and Σ∆F , is fault tolerant (FT)

controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) (sσ ∈ L(G)) ∧ (s /∈ L∆F ) ⇒ sσ ∈ L(S)

The above definition is the standard controllability definition with one addition. By

adding the (s /∈ L∆F ) condition, the definition ignores strings that include at least

one excluded fault event. As the supervisor is required to handle an unlimited num-

ber of faults from ΣF in any order, it is the most powerful FT controllability property.
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We note that if Σ∆F = ∅, then Definition 3.4.2 reduces to the standard controllability

definition as L∆F reduces to L∆F = ∅.

3.4.2 N-Fault Tolerant Controllability

This FT property is designed to handle the N-fault scenario. First, we define the

language of max N-fault events. This is the set of all strings that include at most N

faults from ΣF .

Definition 3.4.3. The language of max N-fault events is defined as:

LNF = (Σ − ΣF )∗ ∪
N
⋃

k=1

((Σ − ΣF )∗.ΣF .(Σ − ΣF )∗)k

Definition 3.4.4. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, . . . ,m) and Σ∆F , is N-fault tolerant (N-

FT) controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)(sσ ∈ L(G)) ∧ (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒ sσ ∈ L(S)

The above definition is the standard controllability definition, but ignores strings

that include excluded fault events or more than N faults from ΣF . We note that if

m = 0, we get ΣF = ∅. This means LNF will simplify to LNF = Σ∗, which means

Definition 3.4.4 will then simplify to Definition 3.4.2.
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3.4.3 Non-repeatable N-Fault Tolerant Controllability

This FT property is designed to handle the non-repeatable N-fault scenario. We first

define the language of repeated fault events. This is the set of all strings that include

two or more faults from a single fault set ΣFi
(i = 0, . . . ,m).

Definition 3.4.5. The language of repeated fault events defined as:

LRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

Definition 3.4.6. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, ..,m) and Σ∆F , is non-repeatable N-fault

tolerant (NR-FT) controllable, if it is FT consistent and:

(∀s ∈ L(S)∩L(G))(∀σ ∈ Σu)(sσ ∈ L(G))∧(s /∈ L∆F∪LRF )∧(s ∈ LNF ) ⇒ sσ ∈ L(S)

The above definition is the standard controllability definition, but ignores strings that

include excluded fault events, strings with more than N faults from ΣF , and strings

that include two or more faults from the same fault set. We note that if m = 0, we

get ΣF = ∅. This means LNF simplifies to LNF = Σ∗ and LRF simplifies to LRF = ∅.

Definition 3.4.6 will then simplify to Definition 3.4.2.

3.4.4 Resettable Fault Tolerant Controllability

This FT property is designed to handle the resettable fault scenario. We first define

the language of non-reset fault events. This is the set of all strings where two faults

from the same fault set ΣFi
(i = 0, . . . ,m) occur in a row without an event from the
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corresponding set of reset events in between.

Definition 3.4.7. The language of non-reset fault events defined as:

LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ − ΣTi

)∗.ΣFi
.Σ∗)

Definition 3.4.8. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), and Σ∆F , is reset-

table fault tolerant (T-FT) controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF ) ⇒ sσ ∈ L(S)

The above definition is the standard controllability definition, but ignores strings that

include excluded fault events and strings where there are two fault events from the

same fault set ΣFi
in a row without a reset event (see Definition 3.1.4) from ΣTi

to

separate them. We note that if m = 0, we get ΣF = ∅. This means LTF simplifies to

LTF = ∅, which means Definition 3.4.8 then simplifies to Definition 3.4.2.

3.5 Fault Tolerant Nonblocking Definitions

In [MRD+15], Mulahuwaish et al. introduced four fault tolerant nonblocking proper-

ties that are analogous to the FT controllability definitions. As the timed tick event

is controllable, it therefore can never be a fault event. As the nonblocking definition

for TDES is the same as for untimed systems (tick is treated like any other event),

it follows that the untimed FT nonblocking definitions apply to TDES as well. As

such, we do not need to introduce a timed version.
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We will now simply list the FT nonblocking definitions as we will later be discussing

and implementing their verification algorithms.

3.5.1 Fault Tolerant Nonblocking

Definition 3.5.1. A system, with plant G = (Y, Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 0, . . . ,m) and Σ∆F , is fault tolerant (FT) nonblocking

if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F ) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F )

We note that if Σ∆F = ∅, then Definition 3.5.1 reduces to the standard nonblocking

definition. Also, if m = 0 then Definitions 3.5.2, 3.5.3 and 3.5.4 all simplify to

Definition 3.5.1.

3.5.2 N-Fault Tolerant Nonblocking

Definition 3.5.2. A system, with plant G = (Y, Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 0, . . . ,m) and Σ∆F , is N-fault tolerant (N-FT) non-

blocking if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ) ∧ (ss′ ∈ LNF )
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3.5.3 Non-repeatable N-Fault Tolerant Nonblocking

Definition 3.5.3. A system, with plant G = (Y, Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 0, . . . ,m) and Σ∆F , is non-repeatable N-fault tolerant

(NR-FT) nonblocking, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LRF ) ∧ (s ∈ LNF ) ⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LRF ) ∧ (ss′ ∈ LNF )

3.5.4 Resettable Fault Tolerant Nonblocking

Definition 3.5.4. A system, with plant G = (Y, Σ, δ, yo, Ym), supervisor S = (X, Σ, ξ,

xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), and Σ∆F , is resettable fault

tolerant (T-FT) nonblocking if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LTF ) ⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LTF )

3.6 Fault Tolerant Algorithms

In this section, we present the algorithms introduced in Mulahuwaish et al. [MRD+15]

to verify the fault tolerant controllability and nonblocking definitions. They will pro-

vide the foundation of our timed fault tolerant controllability algorithms.

Our system is assumed to be consists of a plant G = (Y, Σ, δ, yo, Ym), a supervisor

S = (X, Σ, η, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), Σ∆F , and ΣΩF .

Each fault tolerant controllability and nonblocking definition requires different plant
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components. The technique is to construct new plant components that restrict the

occurrence of the fault events based on the definition requirements. Also, all the con-

structed plants have their states marked so that we don’t directly alter the system’s

marked behavior. This technique relies on the standard controllability, nonblocking,

and synchronous product algorithms.

We will assume that the controllability, nonblocking, and synchronous product al-

gorithms are given to us. We will use the standard || symbol to indicate the syn-

chronous product operation, vCont(Plant,Sup) to indicate controllability verifica-

tion, and vNonb(System) to indicate nonblocking verification. Functions vCont and

vNonb return true or false to indicate whether the verification passed or failed, and

the result will be stored in the Boolean variable pass.

We note that, when we define our transition functions such as δ, we will define them

as a subset of Y × Σ × Y for convenience. For example, (yo, σ, y1) ∈ δ implies

δ(yo, σ) = y1.

3.6.1 FT Controllability and Nonblocking Algorithms

In the fault tolerant controllability and nonblocking definitions, we need to remove all

the excluded fault transitions from the system behavior, and then apply the standard

controllability and nonblocking algorithms, as appropriate. To achieve this, three

algorithms have been introduced. First, Algorithm 1 constructs a new plant G∆F ,

with event set Σ∆F , no transitions, and a marked initial state. Figure 3.3 shows an

example of the constructed plant.
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Algorithm 1 construct-G∆F(Σ∆F )

1: Y1 ← {y0}

2: Ym,1 ← Y1

3: δ1 ← ∅

4: return (Y1, Σ∆F , δ1, yo, Ym,1)

0

Figure 3.3: Excluded Faults Plant G∆F

DES G∆F contains the excluded fault events but with no transitions. When we syn-

chronize it with the system, it will removed all the excluded fault transitions. Algo-

rithm 2 does this by using the plant constructed in Algorithm 1 and the synchronous

product algorithm. Algorithm 2 then uses the standard controllability algorithm for

verification.

If Σ∆F = ∅, Algorithm 2 will still produce the correct result. However, it would be

more efficient to just check that S is controllable for G directly.

Algorithm 2 Verify fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F )

2: G′ ← G||G∆F

3: pass ← vCont(G′,S)

4: return pass

As for nonblocking verification, the same procedure applies. Algorithm 3 uses the
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plant constructed in Algorithm 1, and then it uses the standard nonblocking algo-

rithm for verification.

If Σ∆F = ∅, Algorithm 3 will still return the correct result. However, it would be

more efficient to just check that S||G is nonblocking directly.

Algorithm 3 Verify fault tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F )

2: G′ ← G||G∆F||S

3: pass ← vNonb(G′)

4: return pass

3.6.2 N-Fault Tolerant Algorithms

For the N-Fault tolerant controllability and nonblocking definitions, we only allow at

most N fault events from ΣF to occur and remove all the excluded fault transitions.

We then apply the standard controllability and nonblocking algorithms. To achieve

this, we introduce three algorithms, as appropriate. First, Algorithm 4 constructs a

new plant GNF, with event set ΣF , N + 1 marked states, and a transition for each

fault event in ΣF from state yi to state yi+1. Figure 3.4 shows an example of GNF

with N set to three. We note that a translation labelled by an event set is a shorthand

for a transition for each event in the set.
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Algorithm 4 construct-GNF(N, ΣF )

1: Y1 ← {y0, y1, . . . , yN}

2: Ym,1 ← Y1

3: δ1 ← ∅

4: for i = 0, . . . , N − 1

5: for σ ∈ ΣF

6: δ1 ← δ1 ∪ {(yi, σ, yi+1)}

7: end for

8: end for

9: return (Y1, ΣF , δ1, yo, Ym,1)

∑F∑F ∑F ∑F

0 1 2 3

Figure 3.4: N-Fault Plant GNF, N = 3

DES GNF has N transitions for each fault event. As a result, synchronizing G∆F and

GNF with the system will allow at most N fault events from ΣF to occur, and remove

all the excluded fault events transitions. Algorithm 5 perform this synchronization

and then calls the standard controllability algorithm.

We note that if m = 0, we have ΣF = ∅ and that synchronizing with GNF will have

no effect. We will still get accurate results but it would be more efficient to run

Algorithm 2 directly instead.
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Algorithm 5 Verify N-fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F )

2: GNF ← construct-GNF(N, ΣF )

3: G′ ← G||G∆F||GNF

4: pass ← vCont(G′,S)

5: return pass

Verifying nonblocking is similar, except Algorithm 6 calls the standard nonblocking

algorithm instead. We note that if m = 0, we have ΣF = ∅ and that synchronizing

with GNF will have no effect. We will still get accurate results but it would be more

efficient to run Algorithm 3 directly instead.

Algorithm 6 Verify N-fault tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F )

2: GNF ← construct-GNF(N, ΣF )

3: G′ ← G||G∆F||GNF||S

4: pass ← vNonb(G′)

5: return pass

3.6.3 Non-repeatable N-Fault Tolerant Algorithms

For the timed non-repeatable N-fault tolerant controllability definition, we allow at

most N faults from ΣF to occur, at most one fault event from each fault set ΣFi
,

i = 0, . . . ,m, and remove all excluded fault transitions. We then apply the standard

timed controllability algorithm.
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For the non-repeatable N-Fault tolerant controllability and nonblocking definitions,

we allow at most N faults from ΣF to occur, at most one fault event from each fault

set ΣFi
, i = 0, . . . ,m, and remove all the excluded fault transitions. We then apply

the standard controllability and nonblocking algorithms, as appropriate. To achieve

this, we introduce three algorithms. First, Algorithm 7 constructs a new plant GF,i

for i = 1, . . . ,m, with event set ΣFi
, two marked states, and a transition for each

fault event in ΣFi
from the initial state to state y1. Figure 3.5 shows an example of

the constructed plant, GF,i.

∑Fi

00 1

Figure 3.5: Non-Repeatable N-Fault Plant GF,i

Algorithm 7 construct-GF,i(ΣFi
, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}

6: end for

7: return (Yi, ΣFi
, δi, yo, Ym,i)

DES GF,i has one transition for each fault event in ΣFi
, i = 0, . . . ,m. As a result,

synchronizing G∆F, GNF, and GF,i, i = 1, . . . ,m, with the plant will allow at most N

faults from ΣF to occur, at most one fault event to occur from each fault set ΣFi
, and

remove all the excluded fault transitions. Algorithm 8 performs this synchronization
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and then calls the standard controllability algorithm.

We note that if m = 0, we have ΣF = ∅, that no GF,i will be constructed, and

that synchronizing with GNF will have no effect. This means G′ will simplify to

G′ = G||G∆F and we can just evaluate Algorithm 2 instead.

We also note that if N ≥ m, the GF,i will ensure that no more than m events occur.

We thus do not need to add GNF to G′, which should make the verification more

efficient.

Algorithm 8 Verify non-repeatable N-fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F )

2: GNF ← construct-GNF(N, ΣF )

3: for i = 1, . . . ,m

4: GF,i ← construct-GF,i(ΣFi
, i)

5: end for

6: G′ ← G||G∆F||GNF||GF,1||.....||GF,m

7: pass ← vCont(G′,S)

8: return pass

Verifying nonblocking is similar except Algorithm 9 calls the standard nonblocking

algorithm instead. We note that if m = 0, we have ΣF = ∅, that no GF,i will be

constructed, and that synchronizing with GNF will have no effect. This means G′

will simplify to G′ = G||G∆F||S and we can just evaluate Algorithm 3 instead.

39



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

Algorithm 9 Verify non-repeatable N-fault tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F )

2: GNF ← construct-GNF(N, ΣF )

3: for i = 1, . . . ,m

4: GF,i ← construct-GF,i(ΣFi
, i)

5: end for

6: G′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m||S

7: pass ← vNonb(G′)

8: return pass

3.6.4 Resettable Fault Tolerant Algorithms

For the resettable fault tolerant controllability and nonblocking definitions, we al-

low at most one fault event from each fault set ΣFi
, i = 0, . . . ,m, during each pass

through a portion of the system’s behavior. We then remove all the excluded fault

transitions. We then apply the controllability and nonblocking standard algorithms,

as appropriate.

To achieve this, we introduce three algorithms. First, Algorithm 10 constructs a new

plant GTF,i for i = 1, . . . ,m, with event set ΣFi
, reset event set ΣTi

, two marked

states, and a transition for each fault event in ΣFi
from the initial state to state y1.

Next, it creates a transition for each reset event in ΣTi
from state y1 to the initial

state, and a selfloop transition at the initial state for each reset event. Typically,

reset events can occur unrestricted, but once a fault event occurs from ΣFi
, a second

event from ΣFi
is blocked, until a reset event from the corresponding ΣTi

set occurs.
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Figure 3.6 shows an example of the constructed plant, GTF,i.

∑Fi

∑Ti

∑Ti

0 1

Figure 3.6: Resettable Fault Plant GTF,i

Algorithm 10 construct-GTF,i(ΣFi
, ΣTi

, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}

6: end for

7: for σ ∈ ΣTi

8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}

9: end for

10: return (Yi, ΣFi
∪ ΣTi

, δi, yo, Ym,i)

Synchronizing G∆F and GTF,i, i = 1, . . . ,m, with the system will allow at most one

fault event to occur from each fault set ΣFi
before a corresponding event from ΣTi

,

and remove all excluded fault transitions. Algorithm 11 performs this synchroniza-

tion and then calls the standard controllability algorithm.

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be constructed. This
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means G′ will simplify to G′ = G||G∆F and we can just evaluate Algorithm 2 instead.

Algorithm 11 Verify resettable fault tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F )

2: for i = 1, . . . ,m

3: GTF,i ← construct-GTF,i(ΣFi
, ΣTi

, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m

6: pass ← vCont(G′,S)

7: return pass

Verifying nonblocking is similar except that Algorithm 12 calls the standard non-

blocking algorithm instead. We note that if m = 0, we have ΣF = ∅ and that no

GTF,i will be constructed. This means G′ will simplify to G′ = G||G∆F||S and we

can just evaluate Algorithm 3 instead.

Algorithm 12 Verify resettable fault tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F )

2: for i = 1, . . . ,m

3: GTF,i ← construct-GTF,i(ΣFi
, ΣTi

, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m||S

6: pass ← vNonb(G′)

7: return pass
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3.7 Fault Tolerant Algorithm Correctness

In this section, we state propositions and theorems from [MRD+15] that show that if a

fault tolerant consistent system passes the algorithms in Section 3.6, then the system

satisfies the corresponding fault tolerant controllability and nonblocking property. We

will be extending these results to the timed setting in Chapter 4. Please see [MRD+15]

for further discussion of these propositions and theorems.

Supporting Propositions

Proposition 3.7.1. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm)

and a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed

in Algorithm 2. Then:

(∀s ∈ L(G))s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proposition 3.7.2. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm)

and a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant

constructed in Algorithm 5. Then:

(∀s ∈ L(G))(s /∈ L∆F ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)

Proposition 3.7.3. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm)

and a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant

constructed in Algorithm 8. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)
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Proposition 3.7.4. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm)

and a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed

in Algorithm 11. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTF ) ⇐⇒ s ∈ L(G′)

FT Controllability Theorems

Theorem 3.7.5. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and

a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in

Algorithm 2. Then S is fault-tolerant controllable for G iff S is controllable for G′.

Theorem 3.7.6. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and

a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant con-

structed in Algorithm 5. Then S is N-fault-tolerant controllable for G iff S is con-

trollable for G′.

Theorem 3.7.7. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and

a plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant con-

structed in Algorithm 8. Then S is non-repeatable N-fault tolerant controllable for

G iff S is controllable for G′.

Theorem 3.7.8. [MRD+15] Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a

plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Al-

gorithm 11. Then S is resettable fault-tolerant controllable for G iff S is controllable

for G′.
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FT Nonblocking Theorems

Theorem 3.7.9. [MRD+15] Let system with supervisor S = (X, Σ, ξ, xo, Xm) and

plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in

Algorithm 9. Then S and G are fault tolerant nonblocking iff G′ is nonblocking.

Theorem 3.7.10. [MRD+15] Let system with supervisor S = (X, Σ, ξ, xo, Xm) and

plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the system con-

structed in Algorithm 10. Then S and G are N-fault tolerant nonblocking iff G′ is

nonblocking.

Theorem 3.7.11. [MRD+15] Let system with supervisor S = (X, Σ, ξ, xo, Xm) and

plant G = (Y, Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the system con-

structed in Algorithm 11. Then S and G are non-repeatable N- fault tolerant non-

blocking iff G′ is nonblocking.

Theorem 3.7.12. [MRD+15] Let system with supervisor S = (X, Σ, ξ, xo, Xm) and

plant G = (Y, Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed

in Algorithm 12. Then S and G are resettable fault tolerant nonblocking iff G′ is

nonblocking.
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Chapter 4

Timed Fault Tolerant Supervisory

Control

In this chapter, we introduce our timed fault tolerant supervisory control (TFTSC)

methodology. In Section 4.1, we present a brief introduction to TFTSC. In Sec-

tion 4.2, we introduce the timed fault tolerant consistency definition. In Section 4.3,

we present the fault scenarios that we use. In Section 4.4, we introduce our timed fault

tolerant controllability definitions, and in Section 4.5, we introduce the corresponding

algorithms.

4.1 Timed Fault Tolerant Introduction

In this section, we introduce the settings to establish timed fault tolerant supervisory

control. The main goal is to extend the untimed terminology from Mulahuwaish et

al. [MRD+15] to include TDES.
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We will be reusing the fault set and reset event set terminology from Section 3.1.

We also assume that we are given a plant G = (Y, Σ, δ, yo, Ym), and a supervisor

S = (X, Σ, ξ, xo, Xm), both TDES. Also, we assume that all TDES are deterministic.

4.2 Timed Fault Tolerant

To ensure a timed fault tolerant system behaves correctly, it needs a few properties.

As a result, we introduce the timed fault tolerant consistency definition, which is an

extension of the FT consistency definition from [MRD+15]. We note that as the tick

event is controllable, Definition 4.2.1 implies that a tick can not be a fault event.

Definition 4.2.1. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, ..,m), Σ∆F , and ΣΩF , is

timed fault tolerant (TFT) consistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F , ΣΩF , ΣFi
(i = 0, ..,m), are pair-wise disjoint.

3. (∀i ∈ 1, ..,m)ΣFi
6= ∅

4. (∀i ∈ 1, ..,m)ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministic.

6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF )) ξ(x, σ) = x

7. (Σ∆F ∪ ΣΩF ∪ ΣF ) ∩ Σfor = ∅

We make the following remarks on the definition:
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1. Fault events are uncontrollable events.

2. Different types of faults event have to be disjoint, because each type is handled

by the method differently.

3. Fault sets ΣFi
are non-empty since we can simply decrease the number of fault

sets otherwise.

4. A given fault set must be disjoint from its corresponding set of reset events.

5. Supervisor S has to be deterministic.

6. At every state in S, there is a selfloop for each fault event in the system. This

means a supervisor does not change its state because of a fault event. Combined

with point 5, this is equivalent to saying faults are unobservable by supervisors.

If S is defined over a subset Σ′ ⊂ Σ instead, we could equivalently require that

Σ′ contain no fault events.

7. We note that reset events can be controllable or uncontrollable, and they can

be observable by the supervisor.

8. There are no common events between fault events and forcible events (i.e., there

are no forcible fault events).

In the above definition, points 1-6 are defined the same as the FT consistency def-

inition (Definition 3.2.1), with the only difference being Point 7. In general, TDES

forcible events (Σfor) can be controllable or uncontrollable events [Bra93, BW94],

while fault events have to be uncontrollable events. That said, it is unrealistic to be

able to force faults to occur. Point 7 was added to enforce this.
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4.3 Timed Fault Tolerant Scenarios

We will use the same four faults scenarios that were presented in Section 3.3 as they

are still applicable. This diversity in faults scenarios gives the designer more flexibility

in specifying system behavior and designing supervisors.

4.4 Timed Fault Tolerant Controllability Defini-

tions

In this section, we introduce new timed fault tolerant controllability definitions so

that we can verify if our TDES supervisor will stay controllable for our plant in the

four fault tolerant scenarios defined in Section 3.3.

4.4.1 Timed Fault Tolerant Controllability

This FT property is designed to handle the default fault scenario. For this property,

the supervisor is required to be able to handle unlimited number of faults in any

order as long as they are not excluded faults. It is based upon the standard timed

controllability definition and the language of excluded faults (Definition 3.4.1). We

add the condition (s /∈ L∆f ) to the timed controllability definition so that we ignore

all strings that include at least one fault from Σ∆F .

Definition 4.4.1. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, ..,m) and Σ∆F , is timed fault tolerant

controllable if it is TFT consistent and:
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(∀s ∈ L(S) ∩ L(G))(s /∈ L∆f ) ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

4.4.2 N-Fault Tolerant Timed Controllability

This FT property is designed to handle the N -fault scenario. For this property, the

supervisor is required to be able to handle up to N fault events from ΣF , and all

faults in Σ∆F . This new definition is based upon the standard timed controllability

definition, the language of excluded faults (Definition 3.4.1), and the language of max

N-fault events (Definition 3.4.3). We add the condition (s /∈ L∆F ) ∧ (s ∈ LNF ) to

remove all strings that include at least one fault from Σ∆F , and only allow strings

that include at most N faults from ΣF .

Definition 4.4.2. A system, with a plant G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, ..,m) and Σ∆F , is timed N-fault tolerant

controllable if it is TFT consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F ) ∧ (s ∈ LNF ) ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

4.4.3 Timed Non-repeatable N-Fault Tolerant Controllabil-

ity

This FT property is designed to handle the non-repeatable N -fault scenario. For

this property, the supervisor is required to handle up to one fault from each fault
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set ΣFi
(i = 0, . . . ,m), a maximum of N faults from ΣF , and all faults in Σ∆F .

This new definition is based upon the standard timed controllability definition, the

language of excluded faults (Definition 3.4.1), the language of max N-fault events

(Definition 3.4.3), and the language of repeated fault events (Definition 3.4.5). We

add the condition (s /∈ L∆F ∪ LRF ) ∧ (s ∈ LNF ) to remove all strings that include

at least one fault from Σ∆F , allow only strings containing at most N faults from ΣF ,

and remove strings that contain two or more faults from the same fault set.

Definition 4.4.3. A system, with plant a G = (Y, Σ, δ, yo, Ym), a supervisor S =

(X, Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 0, ..,m) and Σ∆F , is timed non-repeatable

N-fault tolerant controllable, if it is TFT consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F ∪ LRF ) ∧ (s ∈ LNF ) ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

4.4.4 Resettable Fault Tolerant Timed Controllability

This FT property is designed to handle the resettable fault scenario. For this property,

the supervisor is required to handle up to one fault from a given fault set ΣFi
(i =

0, . . . ,m) for each pass through a portion of the system’s behavior, and all faults from

Σ∆F . This new definition is based upon the standard timed controllability definition,

the language of excluded faults (Definition 3.4.1), and the language of non-reset fault

events (Definition 3.4.7). We add the condition (s /∈ L∆F ∪LTF ) to remove all strings

that include at least one fault from Σ∆F and all strings that include two faults in row

from the same fault set ΣFi
without a resettable event from ΣTi

to separate them.
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Definition 4.4.4. A system, with a plant G = (Y, Σ, δ, yo, Ym), supervisor S =

(X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), and Σ∆F , is timed

resettable fault tolerant controllable if it is TFT consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F ∪ LTF ) ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

4.5 Timed Fault Tolerant Timed Controllability

Algorithms

In this section, we present fault tolerant controllability algorithms for TDES. We will

not present an algorithm for the TFT consistency property as its individual points

can easily be checked by adapting various standard algorithms. Our goal is to verify

the four timed fault tolerant controllability definitions presented in Section 4.4.

We assume that the our TDES system consists of a plant G = (Y, Σ, δ, yo, Ym), a su-

pervisor S = (X, Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), Σ∆F ,

and ΣΩF . We also assume that the timed controllability and synchronous product

algorithms are given. We use vTCont(Plant, Sup) to indicate timed controllability

verification, and || to indicate the synchronous product operation. Function vTCont

returns true or false to indicate whether the verification passed or failed, and the

result will be stored in the Boolean variable pass.

Similar to the untimed fault tolerant algorithms in Section 3.6, our approach is to
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construct new plant components for each fault scenario such that when they are syn-

chronized with plant G, the result will be to restrict the behavior of fault events to

match the given timed fault tolerant controllability definition. We can then check

the controllability property using the standard timed controllability algorithm. This

approach allows us to automatically take advantage of existing scalability meth-

ods such as incremental [BMM04] and binary decision diagram-based (BDD) algo-

rithms [Bry92, Ma04, Son06, VLF05, Wan09, Zha01].

Since every TDES must contain the tick event, we add a tick event selflooped at every

state in the plants we construct. Moreover, all the constructed plants have all of their

states marked so that we do not directly change the system marked behavior.

We note that, when we define our transition functions such as δ, we will define them

as a subset of Y × Σ × Y for convenience. For example, (yo, σ, y1) ∈ δ implies

δ(yo, σ) = y1.

4.5.1 Timed Fault Tolerant Controllability Algorithm

For the timed fault tolerant controllability definition, we need to remove all of the

excluded fault transitions and then apply the standard timed controllability. To

achieve this, we introduce two algorithms. First, Algorithm 13 constructs a new plant

Gt∆F, with event set Σ∆F∪{τ}, one selflooped transition for tick, and a marked initial

state. Figure 4.7 shows an example of the constructed plant, Gt∆F.
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Algorithm 13 construct-Gt∆F(Σ∆F )

1: Y1 ← {y0}

2: Ym,1 ← Y1

3: δ1 ← δ1 ∪ {(y0, τ, y0)}

4: return (Y1, Σ∆F ∪ {τ}, δ1, yo, Ym,1)

tick

0

Figure 4.7: Timed Excluded Faults Plant Gt∆F

TDES Gt∆F contains the excluded fault events but no transitions except for a tick

selfloop at the initial state. When we synchronize Gt∆F with the system, it will

remove all the excluded fault transitions, but allow tick transitions to occur without

restriction. Algorithm 14 then uses the standard timed controllability algorithm to

verify the augmented system.

Algorithm 14 Verify timed fault tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F )

2: G′ ← G||Gt∆F

3: pass ← vTCont(G′,S)

4: return pass

4.5.2 Timed N-Fault Tolerant Controllability Algorithm

For the timed N-Fault tolerant controllability definition, we only allow at most N

fault events from ΣF to occur, and remove all the excluded fault transitions. We then
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apply the standard timed controllability algorithm. To achieve this, we introduce two

algorithms. First, Algorithm 15 constructs a new plant GtNF with event set ΣF ∪{τ},

N + 1 marked states, a transition for each event in ΣF from state yi to state yi+1,

and one selflooped transition for tick at each state. Figure 4.8 shows an example of

GtNF, with N set to two. We note that a translation labelled by an event set is a

shorthand for a transition for each event in the set.

Algorithm 15 construct-GtNF(N, ΣF )

1: Y1 ← {y0, y1, ...., yN}

2: Ym,1 ← Y1

3: δ1 ← ∅

4: for i = 0, ....., N − 1

5: δ1 ← δ1 ∪ {(yi, τ, yi)}

6: for σ ∈ ΣF

7: δ1 ← δ1 ∪ {(yi, σ, yi+1)}

8: end for

9: end for

10: δ1 ← δ1 ∪ {(yN , τ, yN)}

11: return (Y1, ΣF ∪ {τ}, δ1, yo, Ym,1)

ticktick

ΣF

tick

ΣF

0 1 2

Figure 4.8: Timed N-Fault Plant GtNF, N = 2

TDES GtNF has N transitions for each fault event, and one selflooped transition for
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tick at each state. As a result, synchronizing GtNF and Gt∆F with the plant will

allow at most N events from ΣF to occur, remove all excluded fault transitions, and

allow tick to occur without restriction. Algorithm 16 performs this synchronization

and then calls the standard timed controllability algorithm.

Algorithm 16 Verify timed N-fault tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F )

2: GtNF ← construct-GtNF(N, ΣF )

3: G′ ← G||Gt∆F||GtNF

4: pass ← vTCont(G′,S)

5: return pass;

4.5.3 Timed Non-repeatable N-Fault Tolerant Algorithm

For the timed non-repeatable N-fault tolerant controllability definition, we allow at

most N faults from ΣF to occur, at most one fault event from each fault set ΣFi
,

i = 0, . . . ,m, and remove all excluded fault transitions. We then apply the standard

timed controllability algorithm.

To achieve this, we introduce two algorithms. First, Algorithm 17 constructs a new

plant GtF,i for i = 1, . . . ,m, with event set ΣFi
∪{τ}, two marked states, a transition

for each fault event in ΣFi
from the initial state to state y1, and one selflooped

transition for tick at each state. Figure 4.9 shows an example of the constructed

plant, GtF,i.
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ticktick

ΣFi

0 1

Figure 4.9: Timed Non-Repeatable N-Fault Plant GtF,i

Algorithm 17 construct-GtF,i(ΣFi
, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: δi ← δi ∪ {(y0, τ, y0), (y1, τ, y1)}

5: for σ ∈ ΣFi

6: δi ← δi ∪ {(y0, σ, y1)}

7: end for

8: return (Yi, ΣFi
∪ {τ}, δi, yo, Ym,i)

TDES GtF,i has one transition for each fault event in ΣFi
, i = 0, . . . ,m, and one

selflooped transition for tick at each state. As a result, synchronizing Gt∆F, GtNF,

and GtF,i, i = 1, . . . ,m, with the plant allows at most N faults from ΣF to occur, at

most one fault event to occur from each fault set ΣFi
, and removes all the excluded

fault transitions, while allow tick to occur without restriction. Algorithm 18 performs

this synchronization and then calls the standard timed controllability algorithm.
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Algorithm 18 Verify timed non-repeatable N-fault tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F )

2: GtNF ← construct-GtNF(N, ΣF )

3: for i = 1, . . . ,m

4: GtF,i ← construct-GtF,i(ΣFi
, i)

5: end for

6: G′ ← G||Gt∆F||GtNF||GtF,1|| . . . ||GtF,m

7: pass ← vTCont(G′,S);

8: return pass

4.5.4 Timed Resettable Fault Tolerant Controllability Algo-

rithm

For timed resettable fault tolerant controllability definition, we allow at most one

fault event from each fault set ΣFi
, i = 0, . . . ,m, during each pass through a portion

of the system’s behavior, and remove all the excluded fault transitions. We then

apply the standard timed controllability algorithm.

To achieve this, we introduce two algorithms. First, Algorithm 19 constructs a new

plant GtTF,i for i = 1, . . . ,m, with events set ΣFi
∪ {τ} ∪ ΣTi

, two marked states,

and a transition for each fault event in ΣFi
from the initial state to state y1. Next,

it creates a transition for each reset event in ΣTi
from state y1 to the initial state,

and a selflooped transition at the initial state. Moreover, it creates one selflooped

transition for tick at each state. Typically, reset events can occur unrestricted, but

once a fault event occurs from ΣFi
, a second event from the same set is blocked until
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a reset event from the corresponding ΣTi
set occurs. Figure 4.10 shows an example

of the constructed plant, GtTF,i.

Algorithm 19 construct-GtTF,i(ΣFi
, ΣTi

, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: δi ← δi ∪ {(y0, τ, y0), (y1, τ, y1)}

5: for σ ∈ ΣFi

6: δi ← δi ∪ {(y0, σ, y1)}

7: end for

8: for σ ∈ ΣTi

9: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}

10: end for

11: return (Yi, ΣFi
∪ {τ} ∪ ΣTi

, δi, yo, Ym,i)

tick

ΣTi

ΣFi

ΣTi

tick

0 1

Figure 4.10: Timed Resettable Fault Plant GtTF,i

Synchronizing Gt∆F and GtTF,i, i = 1, . . . ,m, with the plant will only allow a second

fault event from a given fault set ΣFi
to occur after a reset event from ΣTi

has oc-

curred. It will also remove all the excluded fault transitions, and allow tick to occur

without restriction. Algorithm 20 performs this synchronization and then calls the
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standard timed controllability algorithm.

Algorithm 20 Verify timed resettable fault tolerant controllability timed

1: Gt∆F ← construct-Gt∆F(Σ∆F )

2: for i = 1,...,m

3: GtTF,i ← construct-GTF,i(ΣFi
, ΣTi

, i)

4: end for

5: G
′

← G||Gt∆F||GtTF,1|| . . . ||GtTF,m

6: pass ← vTCont(G′,S)

7: return pass
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Chapter 5

Timed Algorithm Correctness

In this chapter, we present several propositions and theorems that show that the timed

FT controllability algorithms introduced in Section 4.5 correctly verify that a timed

FT consistent system satisfies the timed FT controllability properties from Section

4.4. In Section 5.1, we present four propositions used to support the timed fault

tolerant controllability theorems. In Section 5.2, we present the timed FT theorems.

5.1 Fault Tolerant TDES Propositions

Propositions 5.1.1 - 5.1.4 basically assert that string s belongs to the closed behavior

of G′, if and only if s satisfies properties of timed fault tolerant controllable, timed

N-FT controllable, timed non-repeatable N-FT controllable, and timed resettable FT

controllable, respectively.

Propositions in this section will be used to support the timed fault tolerant control-

lability theorems in Section 5.2.
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Proposition 5.1.1. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algo-

rithm 14 Then:

(∀s ∈ L(G)) s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proof:.

Let Gt∆F be the TDES constructed in Algorithm 13

Let G∆F be the DES constructed in Algorithm 1.

We note that the two are identical except that Gt∆F adds tick to its event set, and

tick is selflooped at every state.

Let G′ = G||Gt∆F as per Algorithm 14.

Let G′′ = G||G∆F as per Algorithm 2.

As the event set of G already contains tick, and tick is selflooped at every state of

Gt∆F, it follows that L(G′) = L(G′′).

The result then follows from Proposition 3.7.1.

Proposition 5.1.2. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, N ≥ 0, and let G′ be the plant constructed

in Algorithm 16. Then:

(∀s ∈ L(G)) (s /∈ L∆F ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)

Proof:.

Let Gt∆F and GtNF be the TDES constructed in Algorithms 13 and 15.
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Let G∆F and GNF be the DES constructed in Algorithms 1 and 4.

We note that each pair is identical except that Gt∆F and GtNF add tick to their

event sets, and tick is selflooped at every state.

Let G′ = G||Gt∆F||GtNF as per Algorithm 16.

Let G′′ = G||G∆F||GNF as per Algorithm 5.

As the event set of G already contains tick, and tick is selflooped at every state of

Gt∆F and GtNF, it follows that L(G′) = L(G′′).

The result then follows from Proposition 3.7.2.

Proposition 5.1.3. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, N ≥ 0, and let G′ be the plant constructed

in Algorithm 18. Then:

(∀s ∈ L(G)) (s /∈ L∆F ∪ LNRF ) ∧ (s ∈ LNF ) ⇐⇒ s ∈ L(G′)

Proof:.

Let Gt∆F, GtNF and GtF,1, . . . ,GtF,m be the TDES constructed in Algorithm 13, 15

and 17.

Let G∆F, GNF, and GF,1, . . . ,GF,m be the DES constructed in Algorithm 1, 4 and 7.

We note that each pair is identical except that Gt∆F, GtNF, and GtF,1, . . . ,GtF,m

add tick to their event set, and tick is selflooped at every state.

Let G′ = G||Gt∆F||GtNF||GtF,1|| . . . ||GtF,m as per Algorithm 18.

Let G′′ = G||G∆F||GNF||GF,1|| . . . ||GF,m as per Algorithm 8.
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As the event set of G already contains tick, and tick is selflooped at every state of

Gt∆F, GtNF, and GtF,1, . . . ,GtF,m, it follows that L(G′) = L(G′′).

The result then follows from Proposition 3.7.3.

Proposition 5.1.4. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algo-

rithm 20. Then:

(∀s ∈ L(G)) (s /∈ L∆F ∪ LTF ) ⇐⇒ s ∈ L(G′)

Proof:.

Let Gt∆F, and GtTF,1, . . . ,GtTF,m be the TDES constructed in Algorithm 13 and 19.

Let G∆F, and GTF,1, . . . ,GTF,m be the DES constructed in Algorithm 1 and 10.

We note that each pair is identical except that Gt∆F, and GtTF,1, . . . ,GtTF,m add

tick to their event sets, and tick is selflooped at every state.

Let G′ = G||Gt∆F||GtTF,1|| . . . ||GtTF,m as per Algorithm 20.

Let G′′ = G||G∆F||GTF,1|| . . . ||GTF,m as per Algorithm 11.

As the event set of G already contains tick, and tick is selflooped at every state of

Gt∆F, and GtTF,1, . . . ,GTF,m, it follows that L(G′) = L(G′′).

The result then follows from Proposition 3.7.4.
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5.2 Fault Tolerant TDES Theorems

In this section, we introduce theorems to show that the timed fault tolerant control-

lability algorithms presented in Section 4.5 (Algorithms 14, 16, 18 and 20), return

true if and only if the timed fault tolerant consistent system satisfies the correspond-

ing timed fault tolerant controllability property. In essence, the theorems prove that

verifying that our original system satisfies the specified timed fault tolerant controlla-

bility property is equivalent to verifying that the system, with our augmented plant,

satisfies the original timed controllability property.

Theorem 5.2.1. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algo-

rithm 14. Then S is timed fault-tolerant controllable for G iff S is timed controllable

for G′.

Proof:.

Assume initial conditions for the theorem.

Must show S is timed fault tolerant controllable for G ⇐⇒ S is timed controllable

for G′.

From Algorithm 14, we have G′ = G||Gt∆F.

From Algorithm 13, we know that Gt∆F is defined over Σ∆F ∪ {τ}.

Let Pt∆F : Σ∗ → (Σ∆F ∪ {τ})∗ be a natural projection.

As G is defined over Σ, we have that L(G′) = L(G) ∩ P−1
t∆F L(Gt∆F). (T 5.1)

Part A) Show (⇒).

Assume S is timed fault tolerant controllable for G. (T 5.2)
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Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s) ⊇











EligL(G′)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G′)(s) ∩ Σfor = ∅

EligL(G′)(s) ∩ Σu if EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G′). (T 5.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T 5.4)

Must show implies sσ ∈ L(S).

To apply (T 5.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F , and

EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T 5.1), (T 5.3) and (T 5.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T 5.3), we conclude by Proposition 5.1.1 that: s /∈ L∆F

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).
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⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F), by (T 5.1)

To show sσ′ /∈ L(S) ∩ L(G), it is sufficient to show sσ′ ∈ P−1
t∆F L(Gt∆F).

As S and G are timed fault tolerant consistent and Σfor ⊆ Σact, it follows that

Σfor ∩ (Σ∆F ∪ {τ}) = ∅.

⇒ Pt∆F (sσ′) = Pt∆F (s)Pt∆F (σ′) = Pt∆F (s)

As s ∈ L(G′) by (T 5.3), we have s ∈ P−1
t∆F L(Gt∆F) by (T 5.1).

⇒ Pt∆F (s) ∈ L(Gt∆F)

⇒ Pt∆F (sσ′) ∈ L(Gt∆F)

⇒ sσ′ ∈ P−1
t∆F L(Gt∆F)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T 5.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is timed controllable for G′. (T 5.5)

Must show implies S and G are timed fault tolerant consistent (follows automatically

from initial assumptions) and that:
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(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G). (T 5.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F . (T 5.7)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F , and (B 1.2) σ /∈ Σ∆F .

Case B 1.1) σ ∈ Σ∆F

As the system is timed fault tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T 5.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F

To apply (T 5.5), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T 5.6), (T 5.7) and Proposition 5.1.1, we conclude: s ∈ L(G′) (T 5.8)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T 5.1) that s ∈ P−1
t∆F L(Gt∆F).

⇒ Pt∆F (s) ∈ L(Gt∆F) (T 5.9)
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We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T 5.9)

⇒ sσ ∈ P−1
t∆F L(Gt∆F)

Case B 1.2.2) σ = τ

By Algorithm 13, we know that τ is selflooped at every state in Gt∆F .

⇒ Pt∆F (s)σ ∈ L(Gt∆F), by (T 5.9)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by definition of Pt∆F

⇒ sσ ∈ P−1
t∆F L(Gt∆F)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆F L(Gt∆F).

Combining with (T 5.1) and (T 5.7), we have sσ ∈ L(G′). (T 5.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F) as L(S) ∩ L(G) ∩ P−1

t∆F L(Gt∆F) ⊆

L(S) ∩ L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T 5.1)
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We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T 5.6), (T 5.8), and (T 5.10), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T 5.5) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F .

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed fault tolerant controllable for

G iff S is timed controllable for G′.

Theorem 5.2.2. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, N ≥ 0, and let G′ be the plant constructed

in Algorithm 16. Then S is timed N-fault-tolerant controllable for G iff S is timed

controllable for G′.

Proof:.

Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 5.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.
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Must show S is timed N-fault tolerant controllable for G ⇐⇒ S is timed controllable

for G′.

From Algorithm 16, we have G′ = G||Gt∆F||GtNF.

From Algorithm 13, we know that Gt∆F is defined over Σ∆F ∪ {τ}, and from Algo-

rithm 15, we know that GtNF is defined over ΣF ∪ {τ}.

Let Pt∆F : Σ∗ → (Σ∆F ∪ {τ})∗ and PtF : Σ∗ → (ΣF ∪ {τ})∗ be natural projections.

As G is defined over event set Σ, it follows that L(G′) = L(G) ∩ P−1
t∆F L(Gt∆F) ∩

P−1
tF L(GtNF). (T 6.1)

Part A) Show (⇒).

Assume S is timed N-fault tolerant controllable for G. (T 6.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s) ⊇











EligL(G′)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G′)(s) ∩ Σfor = ∅

EligL(G′)(s) ∩ Σu if EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G′). (T 6.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T 6.4)

Must show implies sσ ∈ L(S).

To apply (T 6.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F ∧ s ∈

LNF , and EligL(S)∩L(G)(s) ∩ Σfor = ∅.
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We first note that (T 6.1), (T 6.3) and (T 6.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T 6.3), we conclude by Proposition 5.1.2 that: s /∈ L∆F ∧ s ∈ LNF

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF), by (T 6.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆F L(Gt∆F)∩P−1

tF L(GtNF).

As S and G are timed fault tolerant consistent and Σfor ⊆ Σact, it follows that

Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ′) = Pt∆F (s)Pt∆F (σ′) = Pt∆F (s) and PtF (sσ′) = PtF (s)PtF (σ′) = PtF (s)

As s ∈ L(G′) by (T 6.3), we have s ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) by (T 6.1).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtF (s) ∈ L(GtNF)

⇒ Pt∆F (sσ′) ∈ L(Gt∆F) and PtF (sσ′) ∈ L(GtNF)

⇒ sσ′ ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T 6.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅
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Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)∩

Σfor = ∅.

Part B) Show (⇐).

Assume S is timed controllable for G′. (T 6.5)

Must show implies S and G are timed fault tolerant consistent (follows automatically

from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ LNF ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G). (T 6.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF . (T 6.7)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault tolerant consistent, it follows that σ is self-looped at
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every state in S.

As s ∈ L(S) by (T 6.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T 6.5), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T 6.6), (T 6.7) and Proposition 5.1.2, we conclude: s ∈ L(G′) (T 6.8)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T 6.1) that s ∈ P−1
t∆F L(G∆F) ∩ P−1

tF L(GtNF).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtF (s) ∈ L(GtNF) (T 6.9)

We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T 6.9)

⇒ sσ ∈ P−1
t∆F L(Gt∆F)

As σ /∈ ΣF ∪ {τ}, we have PtF (σ) = ǫ.

⇒ PtF (sσ) = PtF (s)PtF (σ) = PtF (s)

⇒ PtF (sσ) ∈ L(GtNF), by (T 6.9)

⇒ sσ ∈ P−1
tF L(GtNF)

Case B 1.2.2) σ = τ

By Algorithm 13, we know that τ is selflooped at every state in Gt∆F.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), by (T 6.9)
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⇒ Pt∆F (sσ) ∈ L(Gt∆F), by definition of Pt∆F

⇒ sσ ∈ P−1
t∆F L(Gt∆F)

By Algorithm 15, we know that τ is selflooped at every state in GtNF.

⇒ PtF (s)σ ∈ L(GtNF), by (T 6.9)

⇒ PtF (sσ) ∈ L(GtNF), by definition of PtF

⇒ sσ ∈ P−1
tF L(GtNF)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆F L(Gt∆F) ∩

P−1
tF L(GtF).

Combining with (T 6.1) and (T 6.7), we have sσ ∈ L(G′). (T 6.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) as L(S) ∩ L(G) ∩

P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) ⊆ L(S) ∩ L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T 6.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T 6.6), (T 6.8), and (T 6.10), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T 6.5) that sσ ∈ L(S), as required.

75



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF .

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed N-fault tolerant controllable

for G iff S is timed controllable for G′.

Theorem 5.2.3. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, N ≥ 0, and let G′ be the plant constructed

in Algorithm 18. Then S is timed non-repeatable N-fault tolerant controllable for G

iff S is timed controllable for G′.

Proof:.

Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 5.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed non-repeatable N-fault tolerant controllable for G ⇐⇒ S is

timed controllable for G′.

From Algorithm 18, we have G′ = G||Gt∆F||GtNF||GtF,1|| . . . ||GtF,m.

From Algorithm 13, we know that Gt∆F is defined over Σ∆F ∪{τ}, from Algorithm 15,
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we know that GtNF is defined over ΣF ∪ {τ}, and from Algorithm 17, we know that

GtF,i is defined over ΣFi
∪ {τ}, i = 1, . . . ,m.

Let Pt∆F : Σ∗ → (Σ∆F ∪{τ})∗, PtF : Σ∗ → (ΣF ∪{τ})∗, and PtFi
: Σ∗ → (ΣtFi

∪{τ})∗,

i = 1, . . . ,m, be natural projections.

As G is defined over Σ, we have that L(G′) = L(G)∩P−1
t∆F L(Gt∆F)∩P−1

tF L(GtNF)∩

P−1
tF1

L(GtF,1) ∩ . . . ∩ P−1
tFm

L(GtF,m) . (T 7.1)

Part A) Show (⇒).

Assume S is timed fault tolerant controllable for G. (T 7.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s) ⊇











EligL(G′)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G′)(s) ∩ Σfor = ∅

EligL(G′)(s) ∩ Σu if EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G′). (T 7.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T 7.4)

Must show implies sσ ∈ L(S).

To apply (T 7.2), we need to show that s ∈ L(S)∩L(G), sσ ∈ L(G), s /∈ L∆F ∪LRF ,

and s ∈ LNF , and EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T 7.1), (T 7.3) and (T 7.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)
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As s ∈ L(G′) by (T 7.3), we conclude by Proposition 5.1.3 that: s /∈ L∆F ∪LRF , and

s ∈ LNF .

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S)∩L(G)∩P−1
t∆F L(Gt∆F)∩P−1

tF L(GtNF)∩P−1
tF1

L(GtF,1)∩· · ·∩P−1
tFm

L(GtF,m),

by (T 7.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆F L(Gt∆F)∩P−1

tF L(GtNF)∩

P−1
tF1

L(GtF,1) ∩ · · · ∩ P−1
tFm

L(GtF,m).

As S and G are timed fault tolerant consistent and Σfor ⊆ Σact, it follows that

Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ′) = Pt∆F (s)Pt∆F (σ′) = Pt∆F (s)

Similarly, we have PtF (sσ′) = PtF (s) and PtFi
(sσ′) = PtFi

(s), i = 1, . . . ,m.

As s ∈ L(G′) by (T 7.3), we have s ∈ P−1
t∆F L(Gt∆F)∩P−1

tF L(GtNF)∩P−1
tF1

L(GtF,1)∩

. . . ∩ P−1
tFm

L(GtF,m) by (T 7.1).

⇒ Pt∆F (s) ∈ L(Gt∆F), PtF (s) ∈ L(GtNF), and PtFi
(s) ∈ L(GtF,i), i = 1, . . . ,m

⇒ Pt∆F (sσ′) ∈ L(Gt∆F), PtF (sσ′) ∈ L(GtNF), and PtFi
(sσ′) ∈ L(GtF,i), i = 1, . . . ,m

⇒ sσ′ ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) ∩ P−1
tF1

L(GtF,1) ∩ . . . ∩ P−1
tFm

L(GtF,m)
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We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T 7.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is timed controllable for G′. (T 7.5)

Must show implies S and G are timed fault tolerant consistent (follows automatically

from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LRF ∧ s ∈ LNF ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G). (T 7.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LRF ∧ s ∈ LNF . (T 7.7)

Must show implies sσ ∈ L(S).
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We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T 7.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T 7.5), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T 7.6), (T 7.7) and Proposition 5.1.3, we conclude: s ∈ L(G′) (T 7.8)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T 7.1) that s ∈ P−1
t∆F L(G∆F)∩P−1

tF L(GtNF)∩P−1
tF1

L(GtF,1)∩

· · · ∩ P−1
tFm

L(GtF,m).

It thus follows that Pt∆F (s) ∈ L(Gt∆F), PtF (s) ∈ L(GtNF), and PtFi
(s) ∈ L(GtF,i),

i = 1, . . . ,m. (T 7.9)

We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ ΣF ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

Similarly, we have PtF (sσ) = PtF (s), and PtFi
(sσ) = PtFi

(s), i = 1, . . . ,m.

⇒ Pt∆F (sσ) ∈ L(Gt∆F), PtF (sσ) ∈ L(GtNF), and PtFi
(sσ) ∈ L(GtF,i), i = 1, . . . ,m,

by (T 7.9)

⇒ sσ ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) ∩ P−1
tF1

L(GtF,1) ∩ · · · ∩ P−1
tFm

L(GtF,m)
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Case B 1.2.2) σ = τ

By Algorithms 13, 15, and 17, we know that τ is selflooped at every state in Gt∆F,

GtNF, and GtF,i, i = 1, . . . ,m.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), PtF (s)σ ∈ L(GtNF), and PtFi
(s)σ ∈ L(GtF,i), i = 1, . . . ,m,

by (T 7.9)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), PtF (sσ) ∈ L(GtNF), and PtFi
(sσ) ∈ L(GtF,i), by definitions

of Pt∆F , PtF , and PtFi
, i = 1, . . . ,m

⇒ sσ ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tF L(GtNF) ∩ P−1
tF1

L(GtF,1) ∩ · · · ∩ P−1
tFm

L(GtF,m)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆F L(Gt∆F) ∩

P−1
tF L(GtNF) ∩ P−1

tF1
L(GtF,1) ∩ · · · ∩ P−1

tFm
L(GtF,m).

Combining with (T 7.1) and (T 7.7), we have sσ ∈ L(G′). (T 7.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P−1

tF L(GtNF)∩P−1
tF1

L(GtF,1)∩ · · ·∩

P−1
tFm

L(GtF,m) as L(S)∩L(G)∩ P−1
t∆F L(Gt∆F)∩ P−1

tF L(GtNF)∩ P−1
tF1

L(GtF,1)∩ · · · ∩

P−1
tFm

L(GtF,m)) ⊆ L(S) ∩ L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T 7.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.
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Combining with (T 7.6), (T 7.8), and (T 7.10), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T 7.5) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LRF ∧ s ∈ LNF .

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed non-repeatable N-fault toler-

ant controllable for G iff S is timed controllable for G′.

Theorem 5.2.4. Let system with a supervisor S = (X, Σ, ξ, xo, Xm) and a plant

G = (Y, Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algo-

rithm 20. Then S is timed resettable fault-tolerant controllable for G iff S is timed

controllable for G′.

Proof:.

Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 5.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed resettable fault tolerant controllable for G ⇐⇒ S is timed
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controllable for G′.

From Algorithm 20, we have G′ = G||Gt∆F||GtTF,1|| . . . ||GtTF,m.

From Algorithm 13, we know that Gt∆F is defined over Σ∆F ∪ {τ}, and from Algo-

rithm 19, we know that GtTF,i is defined over ΣFi
∪ ΣTi

∪ {τ}, i = 1, . . . ,m.

Let Pt∆F : Σ∗ → (Σ∆F ∪ {τ})∗, and PtTFi
: Σ∗ → (ΣFi

∪ΣTi
∪ {τ})∗, i = 1, . . . ,m, be

natural projections.

As G is defined over Σ, we have that L(G′) = L(G)∩P−1
t∆F L(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩

. . . ∩ P−1
tTFm

L(GtTF,m). (T 8.1)

Part A) Show (⇒).

Assume S is timed fault tolerant controllable for G. (T 8.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s) ⊇











EligL(G′)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G′)(s) ∩ Σfor = ∅

EligL(G′)(s) ∩ Σu if EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G′). (T 8.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T 8.4)

Must show implies sσ ∈ L(S).

To apply (T 8.2), we need to show that s ∈ L(S)∩L(G), sσ ∈ L(G), s /∈ L∆F ∪LTF ,

and EligL(S)∩L(G)(s) ∩ Σfor = ∅.
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We first note that (T 8.1), (T 8.3) and (T 8.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T 5.3), we conclude by Proposition 5.1.4 that: s /∈ L∆F ∪ LTF

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F) ∩ P−1

tTF1
L(GtTF,1) ∩ . . . ∩ P−1

tTFm
L(GtTF,m), by

(T 8.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆F L(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩

. . . ∩ P−1
tTFm

L(GtTF,m).

As s ∈ L(G′) by (T 8.3), we have s ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tTF1
L(GtTF,1) ∩ · · · ∩

P−1
tTFm

L(GtTF,m) by (T 8.1).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtTFi
(s) ∈ L(GtTF,i), i = 1, . . . ,m (T 8.5)

As S and G are timed fault tolerant consistent and Σfor ⊆ Σact, it follows that

Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ′) = Pt∆F (s)Pt∆F (σ′) = Pt∆F (s)

⇒ Pt∆F (sσ′) ∈ L(Gt∆F), by (T 8.5)

⇒ sσ′ ∈ P−1
t∆F L(Gt∆F) (T 8.6)
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We now have two cases to consider: (A 1.1) σ′ /∈
m
⋃

i=1

ΣTi
, and (A 1.1) σ′ ∈

m
⋃

i=1

ΣTi

Case A 1.1) σ′ /∈
m
⋃

i=1

ΣTi

As σ′ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PtTFi

(σ′) = ǫ, i = 1, . . . ,m.

⇒ PtTFi
(sσ′) = PtTFi

(s)PtTFi
(σ′) = PtTFi

(s), i = 1, . . . ,m

⇒ PtTFi
(sσ′) ∈ L(GtTF,i), i = 1, . . . ,m, by (T 8.5)

⇒ sσ′ ∈ P−1
tTF1

L(GtTF,1) ∩ . . . ∩ P−1
tTFm

L(GtTF,m)

Case A 1.2) σ′ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 19 states that all σ′′ ∈ ΣTi
are defined at every state in

GtTF,i, i = 1, . . . ,m.

Let j ∈ {1, . . . ,m}.

If σ′ ∈ ΣTj
, we have PtTFj

(σ′) = σ′ and PtTFj
(s)σ′ ∈ L(GtTF,j) (by (T 8.5)).

⇒ PtTFj
(sσ′) ∈ L(GtTF,j), by definition of PtTFj

Otherwise, σ′ /∈ ΣTj
. As we also have σ′ /∈ ΣF , it follows that PtTFj

(σ′) = ǫ.

⇒ PtTFj
(sσ′) = PtTFj

(s)PtTFj
(σ′) = PtTFj

(s)

⇒ PtTFj
(sσ′) ∈ L(GtTF,j), by (T 8.5).

We thus have sσ′ ∈ P−1
tTFj

L(GtTF,j) for both situations.

⇒ sσ′ ∈ P−1
tTF1

L(GtTF,1) ∩ . . . ∩ P−1
tTFm

L(GtTF,m)

By Cases (A 1.1) and (A 1.2), we can conclude: sσ′ ∈ P−1
tTF1

L(GtTF,1) ∩ . . . ∩

P−1
tTFm

L(GtTF,m)

Combining with (T 8.6), we have:

sσ′ ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tTF1
L(GtTF,1) ∩ . . .∩ P−1

tTFm
L(GtTF,m)
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We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T 8.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is timed controllable for G′. (T 8.7)

Must show implies S and G are timed fault tolerant consistent (follows automatically

from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LTF ⇒

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {τ}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let s ∈ L(S) ∩ L(G). (T 8.8)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF . (T 8.9)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .
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Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T 8.8), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T 8.7), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T 8.8), (T 8.9) and Proposition 5.1.4, we conclude: s ∈ L(G′) (T 8.10)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T 8.1) that s ∈ P−1
t∆F L(Gt∆F) ∩ P−1

tTF1
L(GtTF,1) ∩ . . . ∩

P−1
tTFm

L(GtTF,m)).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtTF,i(s) ∈ L(GtTF,i), i = 1, . . . ,m (T 8.11)

We have three possible cases: (B 1.2.1) (σ 6= τ) ∧ (σ /∈
m
⋃

i=1

ΣTi
), (B 1.2.2) σ = τ , and

(B 1.2.3) (σ 6= τ) ∧ (σ ∈
m
⋃

i=1

ΣTi
).

Case B 1.2.1) σ 6= τ and σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PtTFi

(σ) = ǫ, i = 1, . . . ,m.

⇒ PtTFi
(sσ) = PtTFi

(s)PtTFi
(σ) = PtTFi

(s), i = 1, . . . ,m

⇒ PtTFi
(sσ) ∈ L(GtTF,i), i = 1, . . . ,m, by (T 8.11)

⇒ sσ ∈ P−1
tTF1

L(GtTF,1) ∩ . . . ∩ P−1
tTFm

L(GtTF,m) (T 8.12)

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)
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⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T 8.11)

⇒ sσ ∈ P−1
t∆F L(Gt∆F)

Combining with (T 8.12), we have sσ ∈ P−1
t∆F L(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩ . . .∩P−1

tTFm

L(GtTF,m)).

Case B 1.2.2) σ = τ

By Algorithm 13, we know that τ is selflooped at every state in G∆F .

⇒ Pt∆F (s)σ ∈ L(Gt∆F), by (T 8.11)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by definition of Pt∆F

⇒ sσ ∈ P−1
t∆F L(Gt∆F) (T 8.13)

By Algorithm 19, we know that τ is selflooped at every state in GtTF,i, i = 1, . . . ,m.

⇒ PtTFi
(s)σ ∈ L(GtTF,i), i = 1, . . . ,m, by (T 8.11)

⇒ PtTFi
(sσ) ∈ L(GtTF,i), by definition of PtTFi

, i = 1, . . . ,m

⇒ sσ ∈ P−1
tTFi

L(GtTF,i), i = 1, . . . ,m

Combining with (T 8.13), we have sσ ∈ P−1
t∆F L(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩ . . .∩P−1

tTFm

L(GtTF,m)).

Case B 1.2.3) σ 6= τ and σ ∈
m
⋃

i=1

ΣTi

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T 8.11)

⇒ sσ ∈ P−1
t∆F L(Gt∆F) (T 8.14)

We now note that Algorithm 19 states that all σ′ ∈ ΣTi
are defined at every state in

GtTF,i, i = 1, . . . ,m.
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Let j ∈ {1, . . . ,m}.

If σ ∈ ΣTj
, we have PtTFj

(σ) = σ and PtTFj
(s)σ ∈ L(GtTF,j) (by (T 8.11)).

⇒ PtTFj
(sσ) ∈ L(GtTF,j), by definition of PtTFj

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF ∪ {τ}, it follows that PtTFj

(σ) = ǫ.

⇒ PtTFj
(sσ) = PtTFj

(s)PtTFj
(σ) = PtTFj

(s)

⇒ PtTFj
(sσ) ∈ L(GtTF,j), by (T 8.11).

We thus have sσ ∈ P−1
tTFj

L(GtTF,j) for both situations.

⇒ sσ ∈ P−1
tTF1

L(GtTF,1) ∩ . . . ∩ P−1
tTFm

L(GtTF,m)

Combining with (T 8.14), we have sσ ∈ P−1
t∆F L(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩ . . .∩P−1

tTFm

L(GtTF,m)).

By Cases (B 1.2.1), (B 1.2.2), and (B 1.2.3), we can conclude that sσ ∈ P−1
t∆F L(Gt∆F)∩

P−1
tTF1

L(GtTF,1) ∩ . . . ∩ P−1
tTFm

L(GtTF,m).

Combining with (T 8.1) and (T 8.9), we have sσ ∈ L(G′). (T 8.15)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P−1

tTF1
L(GtTF,1)∩. . .∩P−1

tTFm
L(GtTF,m)

as L(S) ∩ L(G) ∩ P−1
t∆F L(Gt∆F) ∩ P−1

tTF1
L(GtTF,1) ∩ . . . ∩ P−1

tTFm
L(GtTF,m) ⊆ L(S) ∩

L(G).

89



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T 8.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T 8.8), (T 8.10), and (T 8.15), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T 8.7) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF .

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed resettable fault tolerant con-

trollable for G iff S is timed controllable for G′.
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Chapter 6

Algorithm Implementation

As part of this thesis, we have implemented a verification algorithm for timed con-

trollability, as well as, the algorithms for untimed fault tolerant controllability (Algo-

rithms 2, 5, 8, 11) and nonblocking (Algorithms 3, 6, 9, 12), and timed fault tolerant

controllability (Algorithms 14, 16, 18, 20). These algorithms have been implemented

as part of the DES software research tool, DESpot [DES13].

DESpot has many features to create, edit and examine DES and DES projects.

DESpot is written in the C++ programming language [Rao12] with a graphical user

interface (GUI) implemented in QT4 [JB08].

In this chapter, we describe the implementation of our algorithms in software. In

Section 6.1, we describe the timed controllability algorithm. In Section 6.2, we discuss

the implementation of the fault tolerant algorithms.
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6.1 Timed Controllability Implementation

The untimed controllability algorithm has already been implemented in DESpot.

However, it does not support timing implementation. We extended this algorithm to

also verify timed controllability.

Normally, forcible events in a TDES system can be any non-tick event. However,

DESpot already supports sampled-data supervisory control [LWA14], which requires

a special case of TDES that requires Σfor = Σhib (i.e., the set of forcible events and

prohibitable events are the same).

6.1.1 Timed Controllability Algorithm

In this section, we present an algorithm for timed controllability. We assume that

both our TDES plant G = (Q, Σ, δ, qo, Qm) and supervisor S = (X, Σ, ξ, xo, Xm) are

defined over event set Σ. If one of them is not, we can simply add selfloops of the

missing events at each state of the TDES.

Algorithm 21 verifies the timed controllability. We define Ypend ⊆ Pwr(Q×X) which

represents the states of G||S that need to be processed. We also define Yfnd ⊆

Pwr(Q×X) which is the set of states in G||S that we have already encountered and

added to Ypend. We use push as a shorthand for adding an element to a set, and pop

as a shorthand for removing an element from a set.
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Algorithm 21 Timed Controllability Algorithm

1: Yfnd = ∅
2: Ypend = ∅
3: forcibleEventPossible = false
4: tickEventBlocked = false
5: push ((qo, xo), Yfnd)
6: push ((qo, xo), Ypend)
7: while (Ypend 6= ∅)
8: forcibleEventPossible = false
9: tickEventBlocked = false

10: (q, x) = pop (Ypend)
11: for σ ∈ Σ
12: if (δ(q, σ)!) then
13: if ¬(ξ(x, σ)!) then
14: if (σ ∈ Σu) then
15: return “not timed controllable at state (q, x), for event σ”
16: end if
17: if (σ = τ) then
18: tickEventBlocked = true
19: end if
20: else
21: y′ = (δ(q, σ), ξ(x, σ))
22: if (σ ∈ Σc & σ 6= τ) then
23: forcibleEventPossible = true
24: end if
25: if (y′ /∈ Yfnd) then
26: push (y′, Yfnd)
27: push (y′, Ypend)
28: end if
29: end if
30: end if
31: end for
32: if (tickEventBlocked & ¬forcibleEventPossible)
33: return “not timed controllable at state (q, x)”
34: end if
35: end while
36: return “system is timed controllable”
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In Algorithm 21, we examine the synchronous product of G and S. For each reach-

able state (q, x) of G||S (i.e., q is the current state of G and x is current state of S),

we loop through each σ ∈ Σ to determine of there is a σ transition at state (q, x). An

event transition is only possible in G||S if the event is possible at the corresponding

states in each DES. It is blocked if there is no transition at state q of G) or at state

x of S).

For timed controllability, we are primarily concerned about the case where σ is possi-

ble at q, but not at x (i.e., possible in the plant, but blocked by the supervisor). We

have three cases for the blocked event:

1. If σ is a prohibitable event, then controllability passes.

2. If σ is an uncontrollable event, then timed controllability fails.

3. If σ = tick, then we have to check if there exists a forcible event (in our setting, a

controllable event other than tick) with a defined transition at (q, x), otherwise

timed controllability fails.

6.1.2 Timed Controllability Class Description

Timed controllability is implemented as shown in Figure 6.12. The TimedCtrl class

inherits MultiCtrl class, a pre-existing class documented in [Han10]. The MultiC-

trl class implements the untimed controllability algorithm. The TimedCtrl class we

re-implements (i.e., overrides) parts of the MultiCtrl class to verify timed control-

lability. In particular, TimedCtrl adds the new methods isFlatProjectTimed(), is-

ForcibleEvent() and isTickEvent(), and re-implements the method runAlgo(). They
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are described below. Figure 6.11, shows DESpot’s flat project interface running a

timed controllability verification.

Figure 6.11: Screenshot for Timed Controllability Tool Extension

Figure 6.12: TimedCtrl Class Diagram
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• isFlatProjectTimed(): As every TDES must contain a tick event, this func-

tion loops through all the plant and supervisor DES in the project and checks

that their event set contains a tick event.

• runAlgo(): This is the main function of the class. It preforms the timed

controllability verification.

• isForcibleEvent(short eventId,short iSrc): This function returns true if

the specified event is a prohibitable event, otherwise it returns false.

• isTickEvent(short eventId,short iSrc): This function returns true if the

specified event is the tick event, otherwise it returns false.

6.2 Fault Tolerant Supervisory Control

We will now discuss our implementation of the untimed fault tolerant controllability

and nonblocking algorithms from Section 3.6 and the timed fault tolerant controllabil-

ity algorithms from Section 4.5. We will first discuss the changes to DESpot’s interface

to allow us to enter the fault information needed to verify the new algorithms. We

then discuss the new fault tolerant class we created to verify the algorithms.

6.2.1 DESpot Interface Extensions

To verify fault tolerant algorithms, we need more information than is currently avail-

able in a DESpot project. In particular, we need to be able to define which project

events belong to the excluded fault set Σ∆F , to each fault set ΣFi
(i = 1, . . . ,m), and
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to each set of reset events ΣTi
(i = 1, . . . ,m). For some FT definitions, we also need

to specify the value of N ≥ 0, the maximum number of fault events allowed. We

do not need to specify the unrestricted fault set ΣΩF
as these events are treated like

regular events.

To allow the user to enter this information, we create two dialog widgets for the set

information. Both widgets verify the FT consistency requirements for untimed and

timed DES.

The first dialog widget allows the user to specify which uncontrollable events are ex-

cluded fault events (Σ∆F ). Figure 6.13 shows an example of this widget.
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Figure 6.13: Screenshot for Default List Creation

The second dialog widget allows the user to specify the number of fault sets, and

which uncontrollable events are standard fault events (ΣFi
) and which events are re-

set events (ΣTi
). We require the user to enter at least one fault set. Also, we allow

the reset event sets to be empty. Figure 6.14 shows an example of this widget.

After the list information is entered. The user can run any algorithm. For the N -fault

scenario and non-repeatable N -fault scenario, we need to know the maximum number

of allowable faults, N ≥ 0. We thus require the user to enter N before running the

algorithms. Figure 6.15 shows an example.
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Figure 6.14: Screenshot for Fault Lists Verification

6.2.2 Fault Tolerant Classes Description

To manage the fault events information and implement the new algorithms, we cre-

ated the new FaultTolerant class. Figure 6.16 shows its class diagram. This class will

in turn make use of additional new classes, one for each (un)timed FT controllable

and nonblocking algorithm, that we will introduce later in the section.

The FaultTolerant class stores a list of the events in the project, as well as lists for the

events in various fault and reset sets. This information is used to check a number of

properties in the FT and TFT consistency properties. This class also creates a single
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Figure 6.15: Screenshot to Enter Maximum Number of Faults

point to interact with the various classes that implment each fault tolerant algorithm.

Now we review the FaultTolerant class functions:

• setNonFaultSet(const DesProject& currentProject): This function fills

in the m nonFaultSet member with all available events in the base project.

• setDFaultSet(const DesProject& currentProject , QWidget* parent

= 0): This function fills in the m DFaultSet (i.e., excluded fault set) member

with the events that the user chooses from the m nonFaultSet list.
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Figure 6.16: FaultTolerant Class Diagram

• setResetableSets(const DesProject& currentProject , QWidget* par-

ent = 0): This function fills in the m faultSets and m resetableSets mul-

timaps.

• runDFTCtrlTool(const DesProject& currentProject): This function cre-

ates an instance of the DefaultFTAlgo class to run the FT controllability algo-

rithm.

• runTimedDFTCtrlTool(const DesProject& currentProject): This func-

tion creates an instance of the DefaultFTAlgoTimed class to run the timed FT

controllability algorithm.

• runDFTNonBlockTool(const DesProject& currentProject): This func-

tion creates an instance of the DefaultFTNonBlock class to run the FT non-

blocking algorithm.
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• runNFTCtrlTool(const DesProject& currentProject, QWidget* par-

ent = 0): This function creates an instance of the NFaultsAlgo class to run

the N-fault tolerant controllability algorithm.

• runTimedNFTCtrlTool(const DesProject& currentProject, QWidget*

parent = 0): This function creates an instance of the NFaultsAlgoTimed class

to run the timed N-fault tolerant controllability algorithm.

• runNFTNonBlockTool(const DesProject& currentProject, QWidget*

parent = 0): This function creates an instance of the NFaultsNonBlock class

to run the N-fault tolerant nonblocking algorithm.

• runNonRepNFTCtrlTool(const DesProject& currentProject, QWid-

get* parent = 0): This function creates an instance of the NonRepFTAlgo

class to run the non-repeatable N-fault tolerant controllability algorithm.

• runTimedNonRepNFTCtrlTool(const DesProject& currentProject, QWid-

get* parent): This function creates an instance of the NonRepFTAlgoTimed

class to run the timed non-repeatable N-fault tolerant controllability algorithm.

• runNonRepNFTNonBlockTool(const DesProject& currentProject, QWid-

get* parent = 0): This function creates an instance of the NonRepFTNon-

Block class to run the non-repeatable N-fault tolerant nonblocking algorithm.

• runResettableFTCtrlTool(const DesProject& currentProject): This

function creates an instance of the ResetFTAlgo class to run the resettable

fault tolerant controllability algorithm.
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• runTimedResettableFTCtrlTool(const DesProject& currentProject):

This function creates an instance of the ResetFTAlgoTimed class to run the

timed resettable fault tolerant controllability algorithm.

• runResettableFTNonBlockTool(const DesProject& currentProject):

This function creates an instance of the ResetFTNonBlock class to run the

resettable fault tolerant nonblocking algorithm.

To evaluate the fault tolerant properties, we first create a new project instance and

then add all the plants and supervisors from our base project to the new project. We

then create any needed new plant components such as G∆F, GtNF, and so on. We

then add the new plant components to the new project, and then run the required

(un)timed controllability or nonblocking algorithm on the new project and report the

results. For each FT controllability or nonblocking algorithm, we created a new class

to implement it. We will now discuss each of these classes in turn.

The DefaultFTAlgo class implements the FT controllability algorithm. Figure 6.17

show its class diagram. The class functions are:

• runAlgo(): This function is the main function and it calls the other func-

tions in the class to construct the G∆F plant and to verify that the system is

controllable.

• constructGF(): This function constructs the G∆F plant.

• createDummyFlatProject(): This function create a dummy project that

contains all the plants and supervisors of the base project.

• addGF(): This function adds G∆F to the dummy project.
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• verifyFTCtrl(): This function verifies that the dummy project is controllable

and then returns the result.

Figure 6.17: DefaultFTAlgo Class Diagram

As shown in Figure 6.17, there are two classes derived from DefaultFTAlgo. The

first class is DefaultFTAlgoTimed and it implements the timed FT controllability

algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the Gt∆F plant and then to verify that the system is

timed controllable.

• verifyFTCtrl(): This function verifies that the dummy project is timed con-

trollable and then returns the result.
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The second class is DefaultFTAlgoNonBlock and it implements the FT nonblocking

algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other func-

tions in the class to construct the G∆F plant and to verify that the system is

nonblocking.

• verifyFTNonBlocking(): This function verifies that the dummy project is

nonblocking and then returns the result.

The NFaultsAlgo class is derived from the DefaultFTAlgo class and it implements the

N-fault tolerant controllability algorithm. Figure 6.18 show its class diagram. The

class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the G∆F and GNF plants, and to verify that the system

is controllable.

• constructGNF(): This function constructs the GNF plant.

• addGNF(): This function adds GNF to the dummy project.

• verifyFTCtrl(): This function verifies that the dummy project is controllable

and then returns the result.

As shown in Figure 6.18, there are two classes derived from NFaultsAlgo. The first

class is NFaultsAlgoTimed and it implements the timed N-fault tolerant controllabil-

ity algorithms. The class functions are:

105



M.A.Sc. Thesis - Amal Alsuwaidan McMaster - Software Engineering

Figure 6.18: NFaultsAlgo Class Diagram

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the Gt∆F and GtNF plants and to verify that the

system is timed controllable.

• constructGNF(): This function constructs the GtNF plant.

• addGNF(): This function adds GtNF to the dummy project.

• verifyFTCtrl(): This function verifies that the dummy project is timed con-

trollable and then returns the result.

The second class is NFaultsAlgoNonBlock and it implements the N-fault tolerant

nonblocking algorithm. The class functions are:
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• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the Gt∆F and GtNF plants and to verify that the

system is nonblocking.

• verifyFTNonBlocking(): This function verifies that the dummy project is

nonblocking and then returns the result.

The NonRepFTAlgo class is derived from the DefaultFTAlgo class and it implements

the non-repeatable N-fault tolerant controllability algorithm. Figure 6.19 show its

class diagram. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the G∆F, GNF, and GF,i plants, and to verify that the

system is controllable.

• constructGFi(): This function constructs the GF,i plants, for i = 1, . . . ,m.

• addGFi(Des* GFiDes): This function adds the GF,i plants to the dummy

project.

• verifyFTCtrl(): This function verifies that the dummy project is controllable

and then returns the result.

As shown in Figure 6.19, there are two classes derived from NonRepFTAlgo. The

first class is NonRepFTAlgoTimed and it implements the timed non-repeatable N-

fault tolerant controllability algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct Gt∆F, GtNF, and the GtF,i plants, and to verify that

the system is timed controllable.
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Figure 6.19: NonRepFTAlgo Class Diagram

• constructGFi(): This function constructs the GtF,i plants, for i = 1, . . . ,m.

• addGFi(Des* GFiDes): This function adds the GtF,i plants to the dummy

project.

• verifyFTCtrl(): This function verifies that the dummy project is timed con-

trollable and then returns the result.

The second class is NonRepFTAlgoNonBlock and it implements the non-repeatable

N-fault tolerant nonblocking algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the G∆F, GNF, and GF,i plants and to verify that the

system is nonblocking.
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• verifyFTNonBlock(): This function verifies that the dummy project is non-

blocking and then returns the result.

The ResetFTAlgo class is class from DefaultFTAlgo class and it implements the re-

settable fault tolerant controllability algorithm. Figure 6.20 show its class diagram.

The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the G∆F and GTF,i plants, and to verify that the

system is controllable.

• constructGTFi(): This function constructs the GTF,i plants, for i = 1, . . . ,m.

• addGTFi(Des* GTFiDes): This function adds the GTF,i plants to the

dummy project.

• verifyFTCtrl(): This function verifies that the dummy project is controllable

and then returns the result.

As shown in Figure 6.20, there are two classes derived from ResetFTAlgo. The first

class is ResetFTAlgoTimed and it implements the timed resettable fault tolerant

controllability algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the Gt∆F and GtTF,i plants, and to verify that the

system is timed controllable.

• verifyFTCtrl(): This function verifies that the dummy project is timed con-

trollable and then returns the result.
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Figure 6.20: ResetFTAlgo Class Diagram

The second class is ResetFTAlgoNonBlock and it implements the resettable fault

tolerant nonblocking algorithm. The class functions are:

• runAlgo(): This function is the main function and it calls the other functions

in the class to construct the G∆F and GTF,i plants, and to verify that the

system is nonblocking.

• verifyFTNonBlock(): This function verifies that the dummy project is non-

blocking and then returns the result.
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Chapter 7

Manufacturing Example

In this chapter we introduce a small example to illustrate our approach. In Section 7.1,

we present the example settings. In Section 7.2 we describe the plant model, and in

Section 7.3 we describe our supervisors. In Section 7.4, we present the example results.

7.1 Setting Introduction

This example is based on the small example from [MRD+15], which in turn was based

on the example from [Led96]. This example was designed to simulate the problems

of routing and collision in a simple manufacturing workcell. Figure 7.21 shows con-

ceptually the structure of the testbed’s track layout and sensors.

In this thesis, we focus on a single track loop, shown in Figure 7.22. The loop contains

eight sensors and two trains (train1 and train2), train1 starts between sensor 9 and

sensor 10, while train2 starts between sensor 15 and 16. Both trains only traverse the

track in a counter clockwise direction.
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Figure 7.21: Testbed Sensors Figure 7.22: Small Track Loop

7.2 Base Plant Models

The plant model of the testbed consists of: sensors, trains and the relationship be-

tween sensors and trains. We started with the untimed model from [MRD+15] and

added timing information.

7.2.1 Sensors Models

The sensors models indicate the presence or absence of a specific train. They also

ensure that only one train can activate a given sensor at a time. Figure 7.23 shows the
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untimed sensor model for sensor J ∈ {9, . . . , 16} without fault events or tick events.

For simplicity, we assume that only sensors 9, 10 and 16 can have intermittent faults.

Basically, sometimes the sensor would fail to detect the presence of a train. We would

model this by adding a new uncontrollable fault event t1F atJ to the model for sensor

J ∈ {9, 10, 16}, with respect to detecting train1. For each t1 atJ transition in the

sensor J plant model, an identical t1F atJ transition was added. As a result, we can

get the original detection event or the fault event instead. Similar changes was made

for train2. We add tick events to the model using the assumption that a tick must go

by before we can get a new non-tick event, and that the events do not have a specified

upper bound. Figure 7.25 shows the new sensor models with the added fault events

and tick transitions. For sensors J = {11, . . . , 15}, we simply added tick transition

(no fault events) and the result is shown in Figure 7.24.

The m = 4 fault and reset sets in this example are: Σ∆F = ΣΩF = ∅. Also,

m = 4, ΣF1
= {t1F at9, t1F at10}, ΣF2

= {t1F at16}, ΣF3
= {t2F at9, t2F at10},

ΣF4
= {t2F at16}, ΣT1

= {t1 at11}, ΣT2
= {t1 at14}, ΣT3

= {t2 at11}, and ΣT4
=

{t2 at14}.

For the single track loop considered here, there are no excluded fault events. If we

considered the full example shown in Figure 7.21, we would also have a number of

switches used for routing the trains. If one of them failed to change position, we

would be unable to detect this with the current sensors. Such a fault would have to

be an excluded fault as it would take adding additional sensors to the physical system

in order to be able to handle such faults.
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Figure 7.24: Sensor J = 11, . . . , 15 with tick Events
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Figure 7.25: Sensors J = 9, 10, 16 with Faults and tick Events

7.2.2 Sensor Interdependencies

With respect to the starting position of a specific train, sensors can only be reached

in a specific order. The plant models for each train are shown in Figures 7.26 and

7.27. For brevity, we have only shown the plant model with the tick and fault events

already added.
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7.2.3 Train Models

TrainK (K = 1, 2) can move only when its enablement event, en trainK, occurs. The

train can only move one single unit of distance (event umv trainK), before another

en trainK must occur. This allows the supervisor to control the movement of train

K by enabling and disabling the event en trainK as needed. Figure 7.28 shows the

corresponding DES model.

7.2.4 Relationship Between Sensors and Trains Models

A train can reach at most one sensor during a unit movement, and no sensors if it is

disabled. This behavior, including fault events, is shown in Figure 7.29.
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Figure 7.26: Sensor Interdependencies For
Train 1
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Figure 7.29: Sensors and Train K (K =
1, 2) with Fault and Tick Events

7.3 Modular Supervisors

In this section, we present the collision protection supervisors. For this example, four

supervisors been introduced to prevent collisions in the track sections with sensors

11-13, 15-16, 12-14, and 9-10. We will first present the original collision protection

supervisors that were designed with the assumption of no faults, and then present

new fault tolerant versions with added redundancy.

7.3.1 Collision Protection Supervisors

Figure 7.31 shows the collision protection supervisor CPS-11-13 for the track section

containing sensors 11 and 13. Once a train has reached sensor 11, the other train

is stopped at sensor 10 until the first train reaches sensor 15. Reaching sensor 15

indicates that the first has left the protected area. The stopped train is then allowed

to continue. Figures 7.30, 7.32, and 7.33 show similar supervisors for the remaining

track sections. Please note the nonstandard initial states of supervisors CPS-9-10
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and CPS-15-16. This is to take account the starting locations of each train.
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Figure 7.30: CPS9-10 Supervisor
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Figure 7.31: CPS-11-13 Supervisor
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Figure 7.32: CPS12-14 Supervisor
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Figure 7.33: CPS15-16 Supervisor

It is obvious that the supervisor CPS-11-13 is not timed fault tolerant. This is

because it relies on sensor 10 to prevent collisions. Using the software tool DESpot

that we implemented our algorithms in, we verified that the system failed all eight

timed fault tolerant controllability and fault tolerant nonblocking properties (N ≥ 1).
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7.3.2 Collision Protection Fault Tolerant Supervisors

The supervisors were modified to make them fault tolerant. For supervisor CPS-11-

13, a transition was added at states 1 and 4, to check if a train was at either sensor

9 or sensor 10. If sensor 10 fails but sensor 9 does not, we can still stop the train at

sensor 9 and avoid a collision. Figure 7.35 shows the modified CPS-11-13. Similar

changes were made to supervisors CPS-12-14, and CPS-9-10, as shown in Figures

7.36, and 7.34. Supervisor CPS-15-16 did not require any changes as it did not rely

on any of the sensors that had faults.

7.4 Discussion of Results

Using the developed software tool, we checked the timed fault tolerant controllability

and nonblocking properties for the modified supervisors. The results are shown in

Table 7.1. No results are shown for Non-repeatable N-FT (N = 4) nonblocking and

timed controllability, as these verifications failed to complete.

Table 7.1: Example Results

Verification Time (seconds)

Property State Size Timed Cont. Nonblocking

Timed fault tolerant 8.02629e + 06 1 F 33 F

Timed N-fault tolerant (N = 0) 5.19048e + 06 33 P 18 P

Timed N-fault tolerant (N = 1) 1.20008e + 07 77 P 42 P

Timed N-fault tolerant (N = 2) 2.00271e + 07 4 F 72 F

Timed Non-repeatable N-FT N = 4 9.60064e + 07 – –

Timed Resettable FT 9.36328e + 06 62 P 36 P
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Figure 7.34: CPS-9-10FT Supervisor
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Figure 7.35: CPS-11-13FT Supervisor
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Figure 7.36: CPS-12-14FT Supervisor
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Chapter 8

Conclusions and Future Work

In this chapter, we present our conclusions and suggestions for future work.

8.1 Conclusions

In this thesis, we investigated the problem of fault tolerance in timed discrete-event

systems. We extended the existing fault tolerant supervisory control result to include

timing information. We introduced our setting and provided different fault scenarios.

We then provide four fault tolerant definitions to verify that the system will remain

controllable in each scenario. Next, we introduced algorithms to verify timed con-

trollability for each scenario. We then proved that the algorithms correctly evaluated

the timed fault tolerant controllability properties that we defined.

We implemented a tool extension for the software research tool, DESpot, to verify

timed controllability. Furthermore, we implemented a tool extension to verify fault
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tolerant untimed controllability and nonblocking, and timed fault tolerant controlla-

bility for the fault scenarios.

Finally, we presented a simple example to illustrate our approach.

8.2 Future Work

As this method added timing information, it further added to the complexity of the

system. It would be useful to implement an hierarchical approach to make the method

more scalable.

Moreover, it would be useful to extend the approach to the sampled-data approach

of Wang et al. [WL12], which extends TDES to handle a number of concurrency and

implementation issues.
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