
Hierarchical Interface-Based Decentralized

Supervisory Control

HIERARCHICAL INTERFACE-BASED DECENTRALIZED

SUPERVISORY CONTROL

BY

HUAILIANG LIU, M.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Ph.D. in Computer Science

c© Copyright by Huailiang Liu, October, 2015

All Rights Reserved

Ph.D. in Computer Science (2015) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: Hierarchical Interface-Based Decentralized Supervisory

Control

AUTHOR: Huailiang Liu

M.Eng., (Computer Engineering)

Guangdong University of Technology, Guangzhou, China

SUPERVISOR: Dr. Ryan J. Leduc, Dr. S. L. Ricker

NUMBER OF PAGES: xi, 130

ii

To My Father and Mother

In those years, it could not be imagined how hard it was to survive, but you still

held extremely strong will to raise the family and sacrifice everything to give children

education opportunities!

Abstract

In decentralized control, agents have only a partial view and partial control of the

system and must cooperate to achieve the control objective. In order to synthesize a

decentralized control solution, a specification must satisfy the co-observability prop-

erty. Existing co-observability verification methods require the possibly intractable

construction of the complete system. To address this issue, we introduce an incre-

mental verification of co-observability approach. Selected subgroups of the system are

evaluated individually, until verification is complete. The new method is potentially

much more efficient than the monolithic approaches, in particular for systems com-

posed of many subsystems, allowing for some intractable problems to be manageable.

Properties of this new strategy are presented, along with a corresponding algorithm

and an example.

To further increase the scalability of decentralized control, we wish to adapt the ex-

isting Hierarchical Interface-Based Supervisory Control (HISC) to support it. We in-

troduce the Hierarchical Interface-Based Decentralized Supervisory Control (HIDSC)

framework that extends HISC to decentralized control. To adapt co-observability for

HIDSC, we propose a per-component definition of co-observability along with a ver-

ification strategy that requires only a single component at a time in order to verify

co-observability. Finally, we provide and prove the necessary and sufficient conditions

iv

for supervisory control existence in the HIDSC framework and illustrate our approach

with an example. As the entire system model never needs to be constructed, HIDSC

potentially provides significant savings.

v

Acknowledgements

A bunch of thanks should first be given to my supervisors Dr. Leduc and Dr. Ricker

for giving me insightful direction on my research and numerous good advice on im-

proving my Ph.D. study. Bi-weekly meetings and frequently email communications

with my supervisors give me plenty of fresh ideas and practical guide on how to do

my Ph.D. work.

Special thanks for Dr. Malik for giving me excellent suggestions for improving my

work on Incremental Verification of Co-observability.

A lot of thanks should be given to Dr. Down and Dr. Kahl for their guide in my

supervisor committee member meetings.

Thanks for Dr. Ricker and her student Micah for the excellent work of helping to

implement the software for the thesis.

Very importantly, I should thank the scholarship providers: my supervisors, the

School of Graduate Studies and the Department of Computing & Software at Mc-

Master University, and the Ontario Graduate Scholarship (OGS), which provide the

basis of my living for the four years of my Ph.D. study.

Last but not least, I need to thank my sister’s support for my secondary study,

my wife for doing so much work at home and giving me enough time to complete my

Ph.D. study, and my daughter of giving me such happy family life.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 4

1.3 Objectives . 5

1.4 Literature Review . 6

1.5 Contributions of the Thesis . 12

1.6 Outline of the Thesis . 14

2 Preliminaries 16

2.1 Languages . 16

2.2 Natural Projection and Inverse Projection 17

2.3 DES . 18

2.4 Product DES . 19

2.5 Synchronous Product . 20

2.6 Controllability . 21

vii

2.7 Decentralized Control . 22

2.8 Co-observability . 22

3 Incremental Verification of Co-observability 25

3.1 Co-observability of Multi-component Decentralized Systems 26

3.2 Algorithm . 47

3.2.1 Computational Complexity . 54

4 Case Study: Co-observability of the Data Transmission Problem 57

4.1 DTP as a Decentralized DES . 58

4.2 Incremental Verification of Co-observability of DTP 63

4.3 Heuristics . 66

4.4 Experimental Results . 68

5 Hierarchical Interface-Based Decentralized Supervisory Control 75

5.1 Definitions Used for HIDSC . 77

5.2 HISC Architecture . 81

5.3 HIDSC Architecture . 88

5.4 HIDSC Co-observability Definition and Theorem 91

5.4.1 HIDSC Co-observability Definition 92

5.4.2 HIDSC Co-observability Theorem 94

5.4.3 Complexity Analysis . 96

5.5 MNDSC Supervisor Existence Theorem 97

6 Example 106

6.1 Manufacturing System as an HIDSC 110

viii

6.2 Co-observability Verification for the Decentralized System 112

6.3 Complexity Analysis for the Decentralized System 114

7 Conclusions and Future Work 116

7.1 Conclusions . 116

7.2 Future Work . 117

ix

List of Figures

3.1 The Plant Components G1, G2. 28

3.2 The Specification H1. 29

3.3 Plant Components G3 and G4. 30

3.4 Specification H2. 33

3.5 Specification Automata H3 and H4. 35

3.6 Plants G5 and G6. 36

3.7 Plant G2 and Specification H5. 38

3.8 Plant Automaton G1 and Specification Automata H6 and H7 for Ex-

ample 6. 40

3.9 Plant Automata G5 and G6 from Example 4 and Specification Au-

tomata H6 and H7 from Example 6. 43

3.10 Plant Automaton G9 and Specification Automata H8 and H9 for Ex-

ample 8. 46

4.1 A Plant Automaton for a Sender. 60

4.2 A Plant Automaton for a Receiver. 60

4.3 A Plant Automaton for a Communication Channel 61

4.4 A Specification Automaton for the Delivery of Data. 61

x

4.5 The Specification Automata for Desired Behaviour of a Sender (SPECIFICATION2)

and a Receiver (SPECIFICATION3). 62

5.1 Interface Block Diagram with Low Data Events. 81

5.2 Two Tiered Structure of Parallel System 82

5.3 Example LD Interface . 83

5.4 Plant and Supervisor Subplant Decomposition 87

6.1 Block Diagram of Parallel Plant System. 107

6.2 Complete Parallel System. 108

6.3 Low-Level Subsystem j. 109

xi

Chapter 1

Introduction

In control theory, the dynamic behaviour of continuous-state systems is typically

modeled by differential or difference equations. Over the past few decades, the rapid

evolution of computing, communication, and sensor technologies has brought about

a new type of dynamic systems called discrete-event systems (DES). These systems

are often highly complex resulting in system models with large state spaces.

Formally, a DES can be thought of as a dynamic system, namely an entity

equipped with a state space and a state-transition structure. In particular, a DES is

discrete in time and in state space. It is asynchronous or event-driven which means

that it is driven by events other than, or in addition to, the tick of a clock. DES

are also nondeterministic in the sense that it is capable of transitional ‘choices’ by

internal chance or other mechanisms not necessarily modeled by the system analyst

[Won14].

Some typical examples of DES are flexible manufacturing systems; communica-

tion protocols; semiconductor chip design; real-time systems; computer networks;

1

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

automated manufacturing systems; traffic control systems; highly integrated com-

mand, control, communication, and information systems; advanced monitoring and

control systems in automobiles or large buildings; intelligent transportation systems;

distributed software systems; multi-agent systems and logistic (service) systems.

In supervisory control of DES, a discrete-event system is modeled as a set of

sequences of events that describes the behaviour of a physical process. A discrete-

event control problem arises when we want to restrict the system to performing a

specified subset of the overall system behaviour. A solution to a discrete-event control

problem exists when we can construct a controller (also called supervisors, or agents)

to achieve the desirable (or legal) behaviour by either preventing some events from

taking place (disabling a controllable event) or allowing—but not forcing—others to

occur (enabling an event). The two key properties we wish to evaluate for a discrete-

event system are controllability and nonblocking. Controllability tests to see if we can

correctly enforce our desired behaviour on a given plant (the uncontrolled system),

while nonblocking is a simple form of deadlock checking.

1.1 Motivation

Decentralized discrete-event control problems arise naturally through the investiga-

tion of a large variety of distributed systems such as communication networks, inte-

grated sensor networks, networked control systems, and automated guided vehicular

system. These systems have many controllers that jointly control a given system that

is inherently distributed. In decentralized control, agents have only a partial view and

partial control of the system and must cooperate to achieve the control objective. A

2

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

decentralized approach is used when the physical system is such that controllers im-

plemented at different locations would naturally only be able to see and effect events

occurring in their local vicinity, and have no access to other events. The goal is to

be able to implement a set of decentralized controllers that produce the same control

actions as a centralized controller with full view and control of the system.

Building the complete state space for the system model may lead to the com-

putation of a very large – possibly computationally intractable – number of states,

that grows exponentially and this is often referred to as the state-space explosion

problem. The existing approaches for verifying decentralized properties require the

construction of the complete system model. As systems requiring control become

more complex, computing the complete system may be, at best, an example of the

state-space explosion problem, and at worst intractable. To address the decentralized

control of interesting systems, it is necessary to improve on the existing monolithic

strategies. We first want to examine incremental approaches that allow the verifica-

tion of properties relevant to the synthesis (construction) of decentralized controllers,

without the need to construct the entire system model.

Decentralized problems do not just occur in isolation. In many systems of inter-

est, decentralized problems are embedded into the description of more complicated

frameworks. In particular, the control of hierarchical systems has not yet evolved to

include decentralized architectures with partial observation. To extend DES theory

to be useful to a wider variety of real systems, we are interested in incorporating the

power of decentralized control strategies to the existing Hierarchical Interface-Based

Supervisory Control (HISC) framework [Led02, Led09]. The HISC approach decom-

poses a system into a high-level subsystem (component) which communicates with

3

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

n ≥ 1 parallel low-level subsystems through separate interfaces that restrict the inter-

action of the subsystems. We wish to develop a per-component verification method

of decentralized properties using the HISC structure.

1.2 Problem Statement

One of the main obstacles in the control of DES is the combinatorial explosion of the

product state space which can increase in size very quickly. In practice, a complex

DES is often modeled as the product of a number of simpler components. Each time

a new component is added (such as with state space size N), the state size of the

whole system is multiplied, worst case, by N; thus, the size of the model increases

exponentially with the number of components.

To effectively address the control of systems composed of many smaller subsys-

tems, existing monolithic strategies must be replaced with those that consider com-

putation at the subsystem level. In many cases, the classic approach succumbs to the

state-space explosion problem, or worse, is computationally infeasible.

The verification of the property of co-observability [RW92b] is key to the synthe-

sis of decentralized controllers. However, it requires that the complete state space

be constructed before the verification algorithm is performed, after which an even

larger structure is built. Incremental verification strategies, where verification can be

performed on subsystems instead of the entire system, have been successfully applied

to centralized DES. We are interested in extending these ideas to co-observability.

Finally, we will incorporate decentralized architectures into a hierarchical frame-

work (HISC). We will keep the HISC structure, but replace the centralized controller

4

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

of each component with a set of decentralized controllers. In addition, to avoid com-

putational issues (e.g. intractability), we want to extend the HISC component-based

verification strategies to verify the desired decentralized properties. The addition of

decentralized controllers into this framework will allow for the application of decen-

tralized supervisory control to more complex systems.

1.3 Objectives

In this work, our goal is to develop a scalable method that can handle the combina-

torial explosion of the product state space in decentralized supervisory control with

partial observations.

• We are interested in applying an incremental strategy to the verification of

co-observability, one of the properties that must be satisfied for synthesizing

solutions to decentralized supervisory control problems. Similar strategies have

been introduced in the verification of centralized DES properties such as con-

trollability, and have been shown to be successful in reducing the state space

that must be computed to check the property in question. Such a strategy has

particular interest for the study of decentralized architectures, where the un-

controlled system is often composed of many subsystems. In many cases, the

construction of the complete system model, which is required for the current

method for verifying co-observability, is simply intractable.

• We introduce decentralized control to the Hierarchical Interface-Based Super-

visory Control (HISC) framework as this framework does not support decen-

tralized control but has been shown to be very scalable. The new framework is

5

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

called Hierarchical Interface-Based Decentralized Supervisory Control (HIDSC).

This requires the identification of the necessary and sufficient conditions for the

existence of decentralized controllers in HIDSC. As co-observability must still

be verified in this new framework, we will introduce a per-component strategy

for verifying co-observability in HIDSC, which we expect to be useful in working

with large distributed systems.

1.4 Literature Review

In supervisory control of DES, the computation and complexity for many of the

control solutions entail only polynomial effort in the model’s state size. Never-

theless, some of them need non-polynomial time, for instance, the supervisor de-

sign problem in DES is proved to be NP-hard [GW00, AM96, SW04]. Further-

more, the the computation and complexity is worse in the case of control with

partial observations: some problem with full observation is polynomial, however it

is exponential (rather than polynomial) when the situation is partially observable

[Tsi89, RW95, RYL03, Tri04, TL09, YL02b].

On the topic of computational complexity results for decentralized DES control,

several papers provide different ways of examining the undecidability of decentralized

DES control: [TL09, Tri04, Tsi89, RW95]. In addition, some further results on

complexity have been considered [RYL03, YL02b]. The computational complexity to

verify co-observability using the monolithic approach is discussed in [RW95].

We will use incremental methods to verify co-observable property to reduce the

state-space explosion problem in decentralized supervisory control with partial obser-

vations. Currently, incremental methods have been successfully used in verification

6

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

of controllability in the work of [BMM04]. Nonblocking verification is addressed by a

compositional approach in [PCL06, FM06a, FM09], which construct the global sys-

tem incrementally using abstraction in order to reduce the complexity of verification.

This approach is based on making abstractions, at the modular level, that reduce the

state-space explosion without qualitatively changing the system. In [PCL06], natural

projection with the observer property introduced by [WW96] that preserves obser-

vation equivalence, is used to calculate appropriate abstractions. In contrast, work

in [FM06a, FM09] uses a process-algebraic equivalence, namely conflict equivalence

[MSR04], in order to obtain better abstraction of nondeterministic models. These

works are very useful, but still leave the problem of what to do if conflict is detected.

An approach to create equivalent simpler supervisors from a given monolithic

supervisor has been proposed in [SW04]. This work also showed that finding a su-

pervisor of minimal size is NP-hard. The results are very impressive, but the method

relies on a monolithic supervisor to be constructed first, and thus remains limited by

its size.

Research work in [FM06b, FMFÅ07] employ a different type of abstraction based

on supervision equivalence to incrementally construct the monolithic supervisor for a

system. This work is not a modular approach to control, but succeeds in producing

a very compact representation of the monolithic solution.

The work of [WW98] applies notions of hierarchical and modular control to reduce

complexity. Their approach specifically builds modular supervisors then adds another

level of control to resolve the conflict between the supervisors. Abstraction is em-

ployed to further reduce the complexity. Nonblocking control is achieved by requiring

7

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

an observer property of the abstraction and optimality (in the sense of maximally per-

missive) is achieved by additionally requiring an output control-consistency property.

Although the work provides results for general abstractions and control structures,

the work is rather theoretically complex and it is very hard to create computational

tools to carry out the proposed methods.

The work of [FW06a, FW06b, FW08, FCW09] also employs this kind of abstrac-

tion method, but considers the specific case of natural projection with the observer

property and a supervisory control structure to overcome the theoretical complexity.

Their approaches result in a greater number of relatively simple decentralized super-

visors: some are dedicated to the given control specifications, preferably in one-to-one

correspondence, while others are dedicated only to resolving conflicts.

Abstraction methods in hierarchical architecture were also proposed in [SM06,

SMP08, SB11], but have different objectives. The work in [FW06a, FW06b, FW08,

FCW09] is to reduce the computational complexity of designing an optimal and non-

blocking supervision using the hierarchical architecture, while the main objective of

[SM06, SMP08, SB11] is to implement a given (hierarchical) control by decentralized

supervisors.

Similarly, work in [HT06, HT08] have proposed an incremental hierarchical com-

putational approach, which uses control architecture and model abstraction. Their

approach does not, however, allow subsystems at the same level to share events. The

result is a hierarchy with more levels. Furthermore, the supervisors in [HT06, HT08]

may combine control actions for enforcing control specifications with actions that

resolve system blocking, and does not guarantee maximally permissive control.

8

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

In addition, all the above literature based on their work on the condition of su-

pervisors with full observations, and did not address the condition when supervisors

only have partial observations and can only control part of the controllable events.

We will consider the more general situation that supervisors have partial observations

and can only control part (possibly overlapping) of the controllable events.

The evolution of the centralized architecture with partial observation of one con-

troller (also called supervisor or agents) into a decentralized architecture with partial

observation of more than one controller is described as follows.

On the topic of partial observation with multiple controllers who of enable by

default and unconditional co-observability, the following papers investigated the syn-

thesis of decentralized controllers under conditions of partial observation: [LW88b,

CDFV88, RW92b]. Most of the conditions required for synthesizing decentralized con-

trollers that solve the decentralized DES problem were formulated in [RW92b]. Some

follow-up fully decentralized solutions of supervisory control problems are described

in [KW95]. Additional examination of state-based control appeared in [TKU94].

These papers all dealt with a scenario where the default decision (when a controller

is uncertain of the correct control decision to take) is to enable. In the work of

[RW92b], the property of co-observability is introduced, and involves the fusion of the

local decisions of the decentralized controllers by performing their conjunction (i.e.,

disable = 0 and enable = 1). Decision fusion is discussed in [PKK97]. Verification

of co-observability is presented in [RW95]. Several variations of the original problem

are described in [TU00]. An interesting formulation based on Nash Equilibrium was

described by [OvS00]. An update on super/sub-languages for decentralized DES

appears in [TKU05].

9

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

The state-space explosion problems become a bottleneck for the application of

supervisory control of DES. It is surely attractive to refine the approach and explore

structured system architecture methods to render large complex DES more manage-

able. So far, there are two kinds of well known existing architectures to lower the

complexity: horizontal and vertical modularity, or so called modular and hierarchical

control.

Modular control (under full observation) [WR88, CCdB93, DQC00, SB01] is one

of the earliest and useful methods. As opposed to the monolithic control, this method

designs multiple supervisors and each supervisor implements a portion of the control

specification.

This method led to modular control under partial observation, the form of decen-

tralized control with partial observation addressed in [LW88b, LW90], in which each

supervisor can access only partial information and is allowed to disable only a subset

of controllable events.

The modular control approaches are able to provide controllability, but do not

guarantee nonblocking unless the modular supervisors are shown to be nonconflict-

ing. Unfortunately, verifying nonconflicting property typically is as computationally

expensive as building the monolithic DES [WR88, Won14]. Although some of the

work in modular control achieved good results for verifying controllability, nonblock-

ing was still not addressed [BMM04, GM04, KvS06, KvSGM05, KvSGM08]. The

existing algorithms for modular control in general still require a large computation

and complexity. Therefore the interest in hierarchical control was invoked.

Hierarchical supervisory control in DES is an architecture method by exploit-

ing the advantages of vertical modularity. The hierarchical supervisory control was

10

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

initially introduced in [ZW90], in which a low-level DES and a high-level aggre-

gate DES were proposed. In this paper, hierarchical consistency was introduced

to ensure that the abstract high-level supervisor can actually be implemented in

the actual low-level DES, and output-control consistency was employed to guaran-

tee optimality of the behaviour achieved at the low level. Later, this theory was

generalized by [WW96], based on the concepts of control structures and observers,

and the hierarchical consistency can be achieved from a new condition called con-

trol consistency. This kind of hierarchical control is bottom-up in the sense that

aggregate models are derived from actual low-level DES to the abstract high-level

DES by using either state-based or language-based aggregation methods. There

are also some other related work based on this kind of model aggregation methods

[CH00, CL01, EC01, HC98, QJ99, SC02, SM06, SMP08, SB11, FW08, FCW09].

Although the model aggregation approach can be effective in constructing high-

level models with reduced state spaces, they suffer some drawbacks: First, there is

no direct connection between control actions at the high level, and at lower levels.

To create an implementation, a control action at the high level may need to be

“interpreted” as equivalent control action(s) at the low level. Second, they require

that the monolithic system be built before the abstraction is applied. But, due to the

state-space explosion problem, the monolithic system may be too large to be built

at first or is too computationally expensive. Third, these aggregate models must

be constructed sequentially from the bottom up, starting from the lowest level; thus

a given level can not be constructed and verified in parallel with the levels below

it, making the distributed design process difficult. Fourth, the requirements on the

abstractions used may be too strict and will limit the amount of model reduction

11

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

that can be achieved. Finally, this approach causes the individual levels to be tightly

coupled; a change made to the lowest level may require that all aggregate models and

results have to be re-evaluated.

The Hierarchical Interface-Based Supervisory Control (HISC) framework proposed

by Leduc et al. in [Led02, LBLW05, LLW05, LLD06, LDS09, Led09] does not have

the above drawbacks and can alleviate the state-space explosion problem. The HISC

approach decomposes a system into a high-level subsystem which communicates with

n ≥ 1 parallel low-level subsystems through separate interfaces that restrict the

interaction of the subsystems. It provides a set of local conditions that can be used

to verify global conditions such as nonblocking and controllability, such that the

complete system model never needs to be constructed. The sufficient conditions of

HISC allow the independent design and verification of different levels, ensuring that

a change to one level of the hierarchy will not impact the others.

To the best of our knowledge, there is no existing work where HISC supports

decentralized discrete-event control architecture. Although there is some literature

proposing hierarchical control of decentralized discrete event systems [SM06, SMP08,

SB11] these approaches assume full observation. Note that to say decentralized con-

trol, partial observation is implied, otherwise the problem is trivially reduced to the

centralized problem. Henceforth, when we say decentralized control, we assume par-

tial observation.

1.5 Contributions of the Thesis

Contributions of this thesis are as follows:

12

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

• Incremental verification for co-observable property.

Using the above method, checking co-observability is done incrementally by eval-

uating selected sub-groupings of the system individually until the entire system has

been shown to be co-observable. A set of properties for this new strategy are pre-

sented and proved, along with a corresponding algorithm and an example. Compared

to the traditional monolithic method, the new method should be much more efficient,

especially for very large, distributed systems composed of many sub-systems.

• Per-component verification for co-observability property.

The main job here is to verify co-observability (we call it level-wise co-observability)

for each component. For each low-level component, the component supervisor syn-

chronized with its interface will act as the specification for the component plant. For

the high level, the high-level supervisor will be looked on as the representation of the

specification, and be verified whether it is co-observable with respect to the high-level

plant and the interfaces.

In this approach, we do per-component decentralized control, but achieve the same

control decisions as centralized HISC supervisors. Since the system satisfies both

HISC and co-observable properties, therefore if the centralized version is nonblocking

and controllable, the decentralized version will also be nonblocking and controllable.

• Verification of co-observability for the global system based on per-component

verification.

We show that the above level-wise HIDSC co-observability implies that the global

system is co-observable. The research result here is to prove the HIDSC co-observability

13

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

theorem in this form: if the system is level-wise co-observable, then the global system

is co-observable.

The tricky problem here is that in level-wise co-observable verification, we only

consider the local specification and local Ni decentralized observers (controllers) for

each component i. But for the global system, the specification is the global specifica-

tion, and the decentralized observers are the total of all the observersN = N1+...+Nn,

where n is the number of components including the high-level plant component.

Note that the global specification is represented as local supervisors and their

interfaces synchronized together, which may be very large. It may not be possible to

construct them explicitly, and possibly can only be specified theoretically due to the

state-space explosion problem.

• Supervisory control existence theorem in HIDSC.

We provide a supervisory control existence theorem for HIDSC systems, and

proved the necessary and sufficient conditions for decentralized control in HIDSC.

The new HIDSC approach allows marking non-blocking decentralized supervisory

control, which is more expressive compared with traditional methods.

1.6 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we review the rele-

vant definitions and results from supervisory control theory. In Chapter 3 we present

a strategy for verifying co-observability in an incremental way, potentially allowing for

more straightforward verification of this property for large distributed architectures.

We provide the theoretical conditions for the incremental approach, culminating in

14

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

the presentation of a new algorithm. Chapter 4 contains results from a case study on

verifying co-observability for the data transmission problem. We examine the effect of

performance heuristics on the incremental algorithm of Chapter 3, and compare this

to the performance of the classical monolithic algorithm for verifying co-observability.

Chapter 5 introduces our results on incorporating decentralized decision-making into

the HISC framework. We introduce a per-component co-observability definition and

show that the new property implies global co-observability. We present a necessary

and sufficient condition for solving the control problem within this new framework.

In Chapter 6 we examine the results of a case study for the verification of HIDSC

modeling of a small manufacturing system. We summarize our results in Chapter 7

and describe areas for further research.

15

Chapter 2

Preliminaries

This chapter provides a brief review of the key DES concepts used in this thesis.

Readers unfamiliar with the notation and definitions may refer to [CL08, Won14].

2.1 Languages

Event sequences and languages are simple ways to describe DES behaviour. Let Σ be

a finite set of distinct symbols (events), and let Σ+ be the set of all finite nonempty

sequences of events. Let Σ∗ := Σ+ ∪ {ε} be the set of all finite sequences of events

plus ε, the empty string. A language L over Σ is any subset L ⊆ Σ∗.

The concatenation of two strings s, t ∈ Σ∗, is written as st. Languages and

alphabets can also be concatenated. For L ⊆ Σ∗ and Σ′ ⊆ Σ, the concatenation of

language L and event set Σ′ is defined as LΣ′ := {sσ|s ∈ L, σ ∈ Σ′}.

For strings s, t ∈ Σ∗, we say that t is a prefix of s (written t ≤ s) if s = tu,

for some u ∈ Σ∗. We also say that t can be extended to s. The prefix closure L

of a language L ⊆ Σ∗ is defined as follows: L := {t ∈ Σ∗|t ≤ s for some s ∈ L}. A

16

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

language L is said to be prefix-closed if L = L.

Let Pwr(Σ) denote the power set of Σ (i.e., the set of all subsets of Σ). For

language L, the eligibility operator EligL : Σ∗ → Pwr(Σ) is given by EligL(s) := {σ ∈

Σ |sσ ∈ L} for s ∈ Σ∗.

2.2 Natural Projection and Inverse Projection

Let Σo ⊆ Σ. Let s ∈ Σ∗, and σ ∈ Σ. To capture the notion of partial observation, we

define the natural projection P : Σ∗ → Σ∗o according to:

P (ε) := ε

P (σ) :=


ε, if σ /∈ Σo

σ, if σ ∈ Σo

P (sσ) := P (s)P (σ)

The effect of the natural projection P on a given string s ∈ Σ∗ is to erase those

events in string s that are not in the alphabet of Σo, but keep those events in Σo

unchanged.

Given any language L ⊆ Σ∗, the natural projection of a language L, is

P (L) :={P (s) | s ∈ L}.

The inverse projection P−1: Pwr(Σ∗o) → Pwr(Σ∗) is defined over subsets of

languages, where Pwr(Σ∗o) and Pwr(Σ∗) denote all subsets of Σ∗o and Σ∗, respectively.

Given any L ⊆ Σ∗o, the inverse projection of L is defined as:

P−1(L) := {s ∈ Σ∗ | P (s) ∈ L}.

17

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

2.3 DES

A DES is represented as a tuple:

G :=(Q, Σ, δ, q0, Qm),

with finite state setQ, finite alphabet set Σ, partial transition function δ : Q×Σ→ Q,

initial state q0, and the set of marker states Qm. We will always assume that a DES

has a finite state and event set, and is deterministic. By deterministic, we mean the

DES has a single initial state and at most one transition defined at a given state for

any σ ∈ Σ.

We use δ(q, σ)! to represent that δ is defined for σ ∈ Σ at state q ∈ Q. Function

δ can be extended to Σ∗ by defining:

δ(q, ε) := q and δ(q, sσ) := δ(δ(q, s), σ),

provided that q′ = δ(q, s)! and δ(q′, σ)!, for s ∈ Σ∗ and q ∈ Q.

For DES G, its closed behaviour is denoted by:

L(G) := {s ∈ Σ∗|δ(q0, s)!}.

The marked behaviour of G, is defined as:

Lm(G) := {s ∈ L(G)| δ(qo, s) ∈ Qm}.

The reachable state subset of DES G, denoted as: Qr, is defined as

Qr := {q ∈ Q|(∃s ∈ Σ∗)δ(q0, s) = q}.

A DES G is reachable if Qr = Q.

The coreachable state subset, denoted by Qcr, is

18

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Qcr := {q ∈ Q| (∃s ∈ Σ∗) δ(q, s) ∈ Qm}.

A DES is coreachable if Qcr = Q.

An important concept is nonblocking, a simple form of deadlock checking.

Definition 2.3.1. A DES G is said to be nonblocking if

Lm(G) = L(G).

This is equivalent to saying that every reachable state is also coreachable.

Definition 2.3.2. Let K ⊆ Lm(G) ⊆ Σ∗. We say that the language K is Lm(G)-

closed if

K = K ∩ Lm(G).

We note that K being Lm(G)-closed means it contains all of its prefixes that belong

to Lm(G).

2.4 Product DES

Let G1 = (Q1, Σ, δ1, q0,1, Qm1) and G2 = (Q2, Σ, δ2, q0,2 Qm2) be two automata,

over the alphabet Σ. The product of the two DES is defined as:

G1 ×G2 = (Q1 ×Q2, Σ, δ1 × δ2, (q0,1, q0,2), Qm1 ×Qm2),

where δ1 × δ2: Q1 ×Q2 × Σ→ Q1 ×Q2 is given by

(δ1 × δ2)((q1, q2), σ) = (δ1(q1, σ), δ2(q2, σ)), whenever δ1(q1, σ)! and δ2(q2, σ)!.

Note that L(G1×G2) := L(G1)∩L(G2) and Lm(G1×G2) := Lm(G1)∩Lm(G2).

19

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

2.5 Synchronous Product

Let Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗1 and L1 ⊆ Σ∗2. For i = 1, 2, let Pi : Σ∗ → Σ∗i be natural

projections. The synchronous product of languages L1 and L2, denoted by L1||L2, is

defined to be:

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2).

where P−1
i : Pwr(Σ∗i)→ Pwr(Σ∗) is the inverse image function of Pi (i = 1, 2).

If both L1 and L2 are over the same event set Σ, then their languages have the

following property:

L1||L2= P−1
1 (L1) ∩ P−1

2 (L2)= L1 ∩ L2.

Definition 2.5.1. Let Gi = (Qi, Σi, δi, q0,i, Qmi), i = 1, 2. We define the syn-

chronous product of G1 and G2, denoted G1||G2, as:

G1||G2 = (Q1 ×Q2, Σ1 ∪ Σ2, δ, (q0,1, q0,2), Qm1 ×Qm2),

where δ((q1, q2), σ) is defined as:

(δ1(q1, σ), δ2(q2, σ)), ifσ ∈ Σ1 ∩ Σ2, δ1(q1, σ)!, δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1\Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2\Σ1 and δ2(q2, σ)!;

Undefined, otherwise.

Therefore, the synchronous product of DES G1 and G2 is a DES G =G1||G2 with

event set Σ = Σ1 ∪ Σ2 and properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2).

20

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

We use the synchronous product symbol || for both languages and automata, and

the choice of arguments will make the meaning clear.

For our purposes, we will assume that G1||G2 is implemented by first adding

selfloops to all states of Gi (i = 1, 2) for events in Σ\Σi, and then constructing the

product of the two DES.

If both G1 and G2 are over the same event set Σ, then:

G1||G2 = G1 ×G2.

2.6 Controllability

Another important concept in DES is controllability. It is essentially a test to see if

a set of controllable behaviour represented by language K ⊆ Σ∗ is enforcible against

the systems uncontrolled behaviour represented by language L = L ⊆ Σ∗.

In supervisory control, the event set Σ is partitioned into two disjoint sets: the

controllable event set Σc and the uncontrollable event set Σuc. Controllable events

can be prevented from happening (disabled) by a supervisor, while uncontrollable

events cannot be disabled.

Definition 2.6.1. Let K and L = L be languages over event set Σ. K is said to be

controllable with respect to L and Σuc if and only if,

KΣuc ∩ L ⊆ K.

21

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

2.7 Decentralized Control

A decentralized controller is an automaton Si, for an index set of decentralized con-

trollers I = {1, ..., n}, that has only a partial view of the system behaviour and control

a subset of the controllable events. Each controller issues its own local control decision

and a final control decision is taken by fusing or combining all the local decisions with

a particular fusion rule. The rule varies depending on the decentralized architecture

in use.

To describe events that each decentralized controller i ∈ I controls, we use the

notation Σc,i ⊆ Σc, where ∪ni=1Σc,i = Σc and each Σc,i is not necessarily disjoint. We

refer to the set of controllers that control σ ∈ Σc by Ic (σ) := {i ∈ I |σ ∈ Σc,i}.

In decentralized control, the event set Σ is further partitioned into observable

events Σo and unobservable events Σuo. To describe events that each decentralized

controller i ∈ I observes, we use the notation Σo,i ⊆ Σo, where ∪ni=1Σo,i = Σo and

each Σo,i is not necessarily disjoint. We refer to the set of controllers that observe

event e ∈ Σo by Io (e) := {i ∈ I |e ∈ Σo,i}. Correspondingly, the natural projection

describing the partial view of each controller is denoted by Pi : Σ∗ → Σ∗o,i, for all

i ∈ I.

2.8 Co-observability

The property of co-observability was introduced in [RW92b], whereas the verification

algorithm was introduced in [RW95]. The following is the definition of co-observability

adapted from [RW92b, BL00].

Definition 2.8.1. Let K, L = L be languages over event set Σ. Let I = {1, ..., n}

22

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

be an index set. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of controllable and observable

events, respectively, for i ∈ I, where Σc = ∪ni=1Σc,i and Ic (σ) := {i ∈ I |σ ∈ Σc,i}.

Let Pi : Σ∗ → Σ∗o,i be natural projections. A language K is said to be co-observable

with respect to L, Σo,i, Σc,i, i ∈ I, if,

(∀t ∈ K ∩ L) (∀σ ∈ Σc) tσ ∈ L\K ⇒ (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

Notice that in the definition of co-observability, when there is only one controller,

i.e. I = {1}, the property is called observability [LW88a]. Since the specification K

is not necessarily a subset of L, unlike the original definition, we do not require that

K ⊆ L. Instead of checking all strings in K, reasonably, we check all strings in K∩L.

In the co-observable scenario, decentralized controllers take local control decisions

based on their partial observations. When the system leaves K (i.e., tσ ∈ L\K,

where tσ ∈ L and tσ /∈ K) there must be at least one controller (i.e., ∃i ∈ Ic (σ))

that has sufficient information from its own view of the system to take the correct

control decision (i.e., disable σ) for each σ ∈ Σc. Note that a controller i will enable

all events σ ∈ Σ\Σc,i by default.

If an event σ needs to be disabled (i.e., t ∈ K, tσ ∈ L\K), then at least one of the

controllers that control σ must unambiguously know that it must disable the event σ

(i.e., P−1
i [Pi(t)]σ∩K ∩L = ∅). So, from this supervisor’s viewpoint, disabling σ does

not prevent any string in K ∩ L. For all other controllers that are uncertain about

whether they should disable the event σ, they will enable the event σ, and the final

fusion rule used here is the conjunction of all the decisions of controllers.

We can synthesize decentralized controllers that cooperate to ensure that the

supervised system generates exactly the behaviour in the specification K if K is con-

trollable, Lm(G)-closed, and satisfies co-observability. In Chapter 5, we will present

23

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

a result that removes the Lm(G)-closure requirement.

The co-observability defined in this thesis is called C&P-coobservability [YL02a],

where the C refers to the “conjunctive” architecture for controllable events, and the

P refers to the “permissive” local decision rule. There are analogous architectures,

such as D&A-coobservability and general architecture [YL02a], and conditional co-

observability [YL04]. In this thesis, when we talk about co-observability, we mean

the C&P-coobservability.

In the following chapters, when there is no ambiguity, instead of saying that K

is co-observable with respect to L, Σo,i, Σc,i, i = 1, ..., n, we will say that K is co-

observable w.r.t. L.

24

Chapter 3

Incremental Verification of

Co-observability

Due to the distributed nature of the system, in decentralized supervisory control of

DES, each decentralized supervisor controls and partially observes some subset of the

system’s behaviour. Here we assume that the common goal is to exactly realize the

specification language using the decentralized decision-making process of fusing local

control decisions to arrive at the final control decision. The synthesis of decentralized

supervisors requires that the specification satisfies co-observability [RW92b].

When the system is very large and composed of many subsystems, verifying co-

observability using existing monolithic methods requires the construction of the com-

plete system model which may be intractable in practice due to the state-space ex-

plosion problem.

To address this problem, we introduce a new approach called incremental ver-

ification of co-observability. Using this method, verifying co-observability is done

incrementally by evaluating selected subgroups of the system individually, until the

25

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

entire system has been shown to be co-observable. The incremental selection of suit-

able subgroups is guided by counter examples, which are defined in Section 3.2.

Properties of verifying co-observability for plants that are composed of multiple

components (and the associated specifications) are presented, along with illustrative

small examples. These results lead directly to the introduction of the algorithm for

incremental verification of co-observability.

Most of the material in this chapter first appeared in a joint paper with R. Malik,

R. Leduc and L. Ricker [LLMR14].

3.1 Co-observability of Multi-component Decen-

tralized Systems

We consider decentralized control problems where the plant and specification lan-

guages are defined in terms of the synchronous product of many smaller languages,

i.e., L = L1|| · · · ||Lm and K = K1|| · · · ||Kr. Verifying key properties of such a system

may be better accomplished, in terms of computational feasibility, by only examining

subsets of these component languages. In this section we focus on the verification

of co-observability, one of the key properties that must be satisfied to synthesize

decentralized controllers.

Recall that if languages are defined over the same event set Σ, then the syn-

chronous product of L (and, by extension, K) has the following property: L =

L1|| · · · ||Lm = L1 ∩ · · · ∩ Lm. We will use this result throughout this chapter.

We first apply the property of co-observability to sublanguages.

Proposition 3.1.1. Let K, L = L, and M = M be languages defined over Σ. If K

26

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

is co-observable w.r.t. M and L ⊆ M , then K is co-observable with respect to L.

Proof. Assume K is co-observable w.r.t. M and L ⊆M .

Must show K is co-observable w.r.t. L.

Let t ∈ K ∩ L and σ ∈ Σc.

Assume tσ ∈ L\K.

Sufficient to show (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

As L ⊆M and t ∈ K ∩ L, we have t ∈ K ∩M .

As tσ ∈ L\K, we have tσ ∈ L and tσ /∈ K.

⇒ tσ ∈M and tσ /∈ K, as L ⊆M .

⇒ tσ ∈M\K.

Then t ∈ K ∩M and tσ ∈M\K.

As K is co-observable w.r.t. M , we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩M = ∅.

As L ⊆M , we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

As t ∈ K ∩ L and σ ∈ Σc were chosen arbitrarily, we conclude that K is co-

observable w.r.t. L.

We illustrate the utility of Proposition 3.1.1 with the following example.

Example 1. Consider the plant automaton G1 in Figure 3.1 and associated specifi-

cation automaton H1 in Figure 3.2.

Suppose that I = {1, 2} and Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and Σc,2 =

{b, g}. We can determine that L(H1) = {abg, bag} is co-observable w.r.t L(G1) =

{abg, bag, aag, bbg} as follows. According to Definition 2.8.1, the sequences tσ in-

volved in disablement decisions are those in L(G1)\(L(H1)∩L(G1)) = {aa, bb, aag, bbg}.

We examine each in turn.

27

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2

3

4

G1

ab

ba

g

1

2 3

4

5

6

G2

a b

a

b

b

a

g

Figure 3.1: The Plant Components G1, G2.

Let tσ = aa. Since Ic(a) = 1, we compute P−1
1 [P1(a)]a ∩ L(G1) = {aa, aag}.

Subsequently, we take the intersection of this with L(H1)∩L(G1) = {abg, bag}, which

is ∅.

We continue with tσ = bb. Since Ic(b) = {2}, we compute P−1
2 [P2(b)]b∩L(G1) =

{bb, bbg}. Taking the intersection with L(H1) ∩ L(G1) = {abg, bag} is also ∅.

The next sequence to examine is tσ = aag. Here Ic(g) = {1, 2}, so we must

compute P−1
1 [P1(aa)]g ∩ L(G1) = {aag} or P−1

2 [P2(aa)]g ∩ L(G1) = {aag}. Although

we need only one i ∈ Ic(g) to satisfy Definition 2.8.1 for this particular tσ, in this case

all i ∈ Ic(g) result in P−1
i [Pi(aa)]g∩L(G1)∩{abg, bag} = ∅. Thus, either controller is

capable of taking the correct control decision regarding g after its partial observation

of the occurrence of aa.

A nearly-identical argument follows for the controllers in Ic(g) when tσ = bbg.

We conclude that for each of the disablement decisions that must be taken, there is at

least one controller that will correctly disable the relevant event. Thus, we conclude

28

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

that L(H1) is co-observable w.r.t.

L(G1).

1

2 3

4

5

H1

a b

b a

g

Figure 3.2: The Specification H1.

We want to know if L(H1) is also co-observable w.r.t.

L(G2) = {abg, bag, aa, bb}, with its corresponding automaton in Figure 3.1. We

first check to see if L(G2) ⊆ L(G1), an operation for which a polynomial-time al-

gorithm exists—a significant improvement on the exponential time verification of co-

observability. Since L(G2) ⊆ L(G1), we conclude, using Proposition 3.1.1, that L(H1)

is co-observable w.r.t.

L(G2).

Proposition 3.1.1 is a fundamental proposition which can be paraphrased as fol-

lows: if a specification language K is co-observable w.r.t. a language M , then it must

be co-observable w.r.t. all the prefix-closed sublanguages of M . We also know that if

L1 and L2 are prefix-closed, so is L = L1 ∩ L2.

Corollary 3.1.1. Let K, L1 = L1, and L2 = L2 be languages defined over Σ. If K is

co-observable with respect to L1 then K is co-observable with respect to L = L1 ∩ L2.

29

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4 5 6

7 8

G3

a b

a b a b

g g

1

2 3

4 5 6

78

G4

a b

a b a b

gg

Figure 3.3: Plant Components G3 and G4.

Proof. Since K is co-observable w.r.t. L1 and L = L1∩L2 ⊆ L1, by Proposition 3.1.1,

we have K is co-observable w.r.t. L.

Example 2. Consider plant automata G3 and G4 in Figure 3.3 and their correspond-

ing languages L(G3) = {aag, abg, bag, bb} and L(G4) = {aa, abg, bag, bbg}. We reuse

the specification automaton H1 in Figure 3.2, where L(H1) = {abg, bag}. Suppose

that I = {1, 2} such that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and Σc,2 = {b, g}.

Table 3.1 summarizes, with reference to the components of Definition 2.8.1, the

verification that L(H1) is co-observable w.r.t. L(G3). In the event that |Ic(σ)| > 1,

it is enough to establish that only one of the controllers satisfies the condition in

column 3 of the table; however, we include all computations for completeness. Note

that the sequences outside of the specification language are L(G3) \ (L(H1) ∩ L(G3))

= {aa, aag, bb}. Also L(H1) ∩ L(G3) = L(H1).

We want to determine whether L(H1) is co-observable w.r.t. L(G3) ∩ L(G4). By

Corollary 3.1.1, since L(H1) is co-observable w.r.t. L(G3), we can conclude exactly

that. The same conclusion can be drawn if one starts with L(G4) in place of L(G3).

30

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.1: Verification that L(H1) is co-observable w.r.t. L(G3).

tσ ∈ L(G3) \ (L(H1) ∩ L(G3)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G3) ∩(L(H1) ∩ L(G3))

aa 1 {aa} ∩ {abg, bag} = ∅
aag 1 {aag} ∩ {abg, bag} = ∅

2 {aag} ∩ {abg, bag} = ∅
bb 2 {bb} ∩ {abg, bag} = ∅

For ease of exposition, the uncontrolled system is described by only two automata

components; however, our results can be extended to a system containing any num-

ber of components. For example, suppose that we have a plant consisting of many

components G = G1||...||Gm and a single specification automaton H. We want to

verify whether L(H) is co-observable with respect to L(G) = L(G1)||...||L(Gm). All

we need to do is determine that L(H) is co-observable w.r.t. L(Gj) for j ∈ {1, . . . ,m},

then we can conclude that L(H) is co-observable w.r.t. L(G).

Furthermore, if no single component can be identified, then we need only find a

subset index {j1, ..., jk} ⊆ {1 . . . ,m} such that L(H) is co-observable with respect

to L(Gj1)||...||L(Gjk) ⊆ L(G), then we will know that L(H) is co-observable w.r.t.

L(G). This follows from Corollary 3.1.1.

Another aspect of incremental verification arises when examining whether or not

the intersection of two co-observable languages is itself co-observable. In the fol-

lowing proposition, we require that K1 and K2 be prefix-closed since in general co-

observability is not closed under intersection. Also note that co-observability of K is

equivalent to co-observability of K.

Proposition 3.1.2. Let K1, K2 and L be prefix-closed languages defined over Σ. If

both K1 and K2 are co-observable w.r.t. L, then K1 ∩K2 is co-observable w.r.t. L.

31

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Proof. Assume K1, K2 and L are prefix-closed languages defined over Σ. Suppose

that K1 and K2 are both co-observable w.r.t. L.

Must show K1 ∩K2 is co-observable w.r.t. L.

Let t ∈ K1 ∩K2 ∩ L and let σ ∈ Σc.

Assume tσ ∈ L\K1 ∩K2.

Sufficient to show (∃i ∈ Ic(σ)) P−1
i [Pi(t)]σ ∩K1 ∩K2 ∩ L = ∅.

As K1 ∩K2, K1 and K2 are prefix-closed, we have K1 ∩K2 = K1 ∩K2.

As t ∈ K1 ∩K2 ∩ L, we have t ∈ K1 ∩K2 ∩ L.

⇒ t ∈ K1 ∩ L and t ∈ K2 ∩ L.

As tσ ∈ L \K1 ∩K2, we have tσ ∈ L and tσ /∈ K1 ∩K2.

As tσ /∈ K1 ∩K2, and K1 ∩K2 = K1 ∩K2, we have tσ /∈ K1 or tσ /∈ K2.

⇒ tσ /∈ K1 and tσ ∈ L or tσ /∈ K2 and tσ ∈ L.

Case 1) tσ /∈ K1 and tσ ∈ L.

Then t ∈ K1 ∩ L, tσ /∈ K1 and tσ ∈ L.

⇒ t ∈ K1 ∩ L, tσ ∈ L\K1.

As K1 is co-observable w.r.t. L, we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩ L = ∅.

As K ⊆ K1, we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

Case 2) tσ /∈ K2 and tσ ∈ L.

Then t ∈ K2 ∩ L, tσ /∈ K2 and tσ ∈ L.

⇒ t ∈ K2 ∩ L, tσ ∈ L\K2.

As K2 is co-observable w.r.t. L, we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K2 ∩ L = ∅.

As K ⊆ K2, we have (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K ∩ L = ∅.

As t ∈ K1 ∩K2 and σ ∈ Σc are chosen arbitrarily, we conclude by Cases 1) and

2) that K1 ∩K2 is co-observable w.r.t. L.

32

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Example 3. Consider the specification automata H1 in Figure 3.2 and H2 in Fig-

ure 3.4. Suppose that I = {1, 2} such that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and

Σc,2 = {b, g}.

We want to examine co-observability of L(H1) and L(H2) w.r.t. the language gen-

erated by the plant automaton G1 in Figure 3.1.

In Example 1, we established that L(H1) is co-observable w.r.t. L(G1), so now we

examine L(H2).

Table 3.2 summarizes the details of verifying that L(H2) is co-observable w.r.t.

L(G1). We thus know, by Proposition 3.1.2, that L(H1) ∩ L(H2), which in this case

is simply L(H2), is co-observable w.r.t. L(G1).

1

2 3

4 5

H2

a b

b a

Figure 3.4: Specification H2.

Proposition 3.1.2 can also be extended to an arbitrary number of specification

languages.

In the incremental verification of co-observability, given a specification language

K = K1 ∩ · · · ∩Kr and a language L, if we want to verify whether K is co-observable

w.r.t. L, it is enough to simply show that for each j ∈ {1, ..., r}, Kj is co-observable

33

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.2: Verification that L(H2) is co-observable w.r.t. L(G1).

tσ ∈ L(G1) \ (L(H2) ∩ L(G1)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G1) ∩(L(H2) ∩ L(G1))

aa 1 {aa} ∩ {ab, ba} = ∅
bb 2 {bb} ∩ {ab, ba} = ∅
aag 1 {aag} ∩ {ab, ba} = ∅

2 {aag} ∩ {ab, ba} = ∅
bbg 1 {bbg} ∩ {ab, ba} = ∅

2 {bbg} ∩ {ab, ba} = ∅
abg 1 {abg, bag} ∩ {ab, ba} = ∅

2 {abg, bag} ∩ {ab, ba} = ∅
bag 1 {abg, bag} ∩ {ab, ba} = ∅

2 {abg, bag} ∩ {ab, ba} = ∅

w.r.t. L. Combining this with Proposition 3.1.1, we see that we can use a subsystem

L′ instead of the global system L for the verification.

Proposition 3.1.3. Let K1, K2, M1 and M2 be prefix-closed languages defined over

Σ. If K1 is co-observable w.r.t. M1 and K2 is co-observable with respect to M2, then

K1 ∩K2 is co-observable w.r.t. M1 ∩M2.

Proof. Assume K1, K2, M1, and M2 are prefix-closed. Suppose that K1 is co-

observable w.r.t. M1 and K2 is co-observable w.r.t. M2.

Must show K is co-observable w.r.t. M1 ∩M2.

We (trivially) have M1 ∩M2 ⊆M1 and M1 ∩M2 ⊆M2.

As K1 is co-observable w.r.t. M1, and M1∩M2 ⊆M1, we have K1 is co-observable

w.r.t. M1 ∩M2, by Proposition 3.1.1.

As K2 is co-observable w.r.t. M2, and M1∩M2 ⊆M2, we have K2 is co-observable

w.r.t. M1 ∩M2, by Proposition 3.1.1.

34

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4 5 6

7 8

H3

a b

a b a b

g g

1

2 3

4 5 6

78

H4

a b

a b a b

gg

Figure 3.5: Specification Automata H3 and H4.

As K1 and K2 are both co-observable w.r.t. M1 ∩M2, and since K1, K2, and M

are prefix-closed, we have K1 ∩ K2 is co-observable w.r.t. M1 ∩M2 by Proposition

3.1.2.

Example 4. In this example, we recast the plant automata from Example 2 as spec-

ification automata in Figure 3.5. Thus we have two specification languages L(H3) =

{aag, abg, bag, bb} and L(H4) = {aa, abg, bag, bbg}. Again, we let I = {1, 2} such

that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and Σc,2 = {b, g}. We want to examine the

co-observability of these languages w.r.t. the languages generated by two new plant au-

tomata G5 and G6, namely L(G5) ={abg, bag, aag, aaa, bbg} and L(G6)={abg, bag, aag,

bbg, bbb}. The plant component automata are illustrated in Figure 3.6.

We want verify that L(H3) is co-observable w.r.t. L(G5) and that L(H4) is co-

observable w.r.t. L(G6). Then by Proposition 3.1.3, we will know that L(H3)∩L(H4)

is co-observable w.r.t. L(G5) ∩ L(G6).

Table 3.3 summarizes the particulars of why L(H3) is co-observable w.r.t. L(G5),

whereas Table 3.4 summarizes the specifics in showing that L(H4) is co-observable

w.r.t. L(G6). Thus, we can conclude, by Proposition 3.1.3, that L(H3) ∩ L(H4) is

35

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4 5 6

7 8 9 10

G5

a b

a b a b

a
g

g g

1

2 3

4 5 6

7 8 9 10

G6

a b

a b a b

g g
g

b

Figure 3.6: Plants G5 and G6.

co-observable w.r.t. L(G5) ∩ L(G6).

Table 3.3: Verification that L(H3) is co-observable w.r.t. L(G5).

tσ ∈ L(G5) \ (L(H3) ∩ L(G5)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G5) ∩(L(H3) ∩ L(G5))

aaa 1 {aaa} ∩ {abg, bag, aag, bb} = ∅
bbg 1 {bbg} ∩ {abg, bag, aag, bb} = ∅

2 {bbg} ∩ {abg, bag, aag, bb} = ∅

The result of Proposition 3.1.3 can be extended to any system that contains an

arbitrary number of specification and plant languages.

We also consider the case when the specification language is a super language of

the plant language.

Proposition 3.1.4. Let K and L be prefix-closed languages defined over Σ. If K ⊇ L

then K is co-observable w.r.t. L.

Proof. Assume K ⊇ L.

36

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.4: Verification that L(H4) is co-observable w.r.t. L(G6).

tσ ∈ L(G6) \ (L(H4) ∩ L(G6)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G6) ∩(L(H4) ∩ L(G6))

aag 1 {aag} ∩ {abg, bag, aa, bbg} = ∅
2 {aag} ∩ {abg, bag, aa, bbg} = ∅

bbb 2 {bbb} ∩ {abg, bag, aa, bbg} = ∅

Then every string in L is also in K.

⇒ L\K = ∅.

Therefore the pre-condition of co-observability, tσ ∈ L\K, is always false.

As there does not exist tσ ∈ L\K satisfying the precondition of Definition 2.8.1,

the result that K is co-observable w.r.t. L is trivially true.

We thus conclude that K is co-observable w.r.t. L.

Example 5. Consider the uncontrolled plant G2, generating L(G2) = {abg, bag, aa, bb},

and specification H5, with associated language L(H5) = {abg, bag, aag, bbg} in

Figure 3.7. Let I = {1, 2} such that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and

Σc,2 = {b, g}. We want to ascertain whether L(H5) is co-observable w.r.t. G2.

In this case, L(H5) ⊇ L(G2). Thus, by Proposition 3.1.4, we assert that L(H5)

is co-observable w.r.t. L(G2). Since G2 does not generate any sequences that require

disablement actions to be taken, the system is vacuously co-observable.

Proposition 3.1.4 indicates that any language is co-observable w.r.t. all its sub-

languages.

We next consider the effect that intersection has on the preservation of co-observability.

37

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4

5

6

G2

a b

a

b

b

a

g

1

2

3

4

H5

ab

ba

g

Figure 3.7: Plant G2 and Specification H5.

Proposition 3.1.5. Let K1, K2 and M be prefix-closed languages defined over Σ. If

K1 is co-observable w.r.t. M ∩K2, and K2 is co-observable w.r.t. M , then K1 ∩K2

is co-observable w.r.t. M .

Proof. Assume K1 is co-observable w.r.t. M ∩K2.

Assume K2 is co-observable w.r.t. M .

Assume K1, K2 and M are prefix-closed.

Must show K1 ∩K2 is co-observable w.r.t. M .

Let t ∈ K1 ∩K2 ∩M .

Let σ ∈ Σc.

Assume tσ ∈M\K1 ∩K2.

Sufficient to show (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩K2 ∩M = ∅.

As t ∈ K1 ∩K2 ∩M and K1 ∩K2 = K1 ∩K2, for prefix-closed languages we have

t ∈ K1 ∩M and t ∈ K2 ∩M .

38

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

As tσ ∈M\K1 ∩K2, we have tσ ∈M and tσ /∈ K1 ∩K2.

⇒ tσ ∈M and (tσ /∈ K1 or tσ /∈ K2) for prefix-closed languages.

⇒ (tσ ∈M and tσ /∈ K1) or (tσ ∈M and tσ /∈ K2).

Case 1) tσ ∈M and tσ /∈ K2.

Then tσ ∈M\K2.

⇒t ∈ K2 ∩M and tσ ∈M\K2.

As K2 is co-observable w.r.t. M , we have: (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ∩K2∩M = ∅.

As K1 ∩K2 ⊆ K2, we have: (∃i ∈ Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩K2 ∩M = ∅.

Case 2) tσ ∈M and tσ /∈ K1.

Under this case, there are still two cases: tσ /∈ K2 or tσ ∈ K2.

As tσ /∈ K2 is the same as case 1), we only consider tσ ∈ K2.

⇒ tσ ∈M and tσ /∈ K1 and tσ ∈ K2.

We will use the assumption that K1 is co-observable w.r.t. M ∩K2 to prove the

result.

We will thus look on K1 as a specification, and M ∩K2 as a plant.

As tσ ∈M and tσ /∈ K1 and tσ ∈ K2, we have: tσ ∈M ∩K2 and tσ /∈ K1.

⇒ tσ ∈ (M ∩K2)\K1.

As t ∈ K1 ∩M and t ∈ K2 ∩M , we have: t ∈ K1 ∩ (M ∩K2).

⇒ t ∈ K1 ∩ (M ∩K2) and tσ ∈ (M ∩K2)\K1.

As K1 is co-observable w.r.t. M ∩K2, we have: (∃i ∈ Ic(σ)) P−1
i [Pi (t)]σ ∩K1 ∩

(M ∩K2) = ∅.

⇒ (∃i ∈ Ic(σ)) P−1
i [Pi (t)]σ ∩ (K1 ∩K2 ∩M) = ∅.

As t ∈ K1 ∩K2 and σ ∈ Σc are chosen arbitrarily, we conclude by cases 1) and

2), that K1 ∩K2 is co-observable w.r.t. M .

39

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2

3

4

G1

ab

ba

g

1

2 3

4 5

6

H6

a b

a b a

g

1

2 3

4 5

6

H7

a b

b ba

g

Figure 3.8: Plant Automaton G1 and Specification Automata H6 and H7 for Exam-
ple 6.

Example 6. In this example, we consider two specification automata in Figure 3.8

and their corresponding languages L(H6) = {abg, bag, aa} and L(H7) = {abg, bag, bb}.

We once again visit the plant language from Example 1, namely, L(G1) ={abg, bag,

aag, bbg}, and we let I = {1, 2} such that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and

Σc,2 = {b, g}.

We first want to verify that L(H6) is co-observable w.r.t. L(G1) ∩ L(H7). There

is only one sequence to check, since (L(G1) ∩ L(H7)) \ (L(H6) ∩ (L(G1) ∩ L(H7)) =

{abg, bag, bb} \ {abg, bag} = {bb}. According to Table 3.5, L(H6) is co-observable

w.r.t. L(G1) ∩ L(H7).

We next want to verify that L(H7) is co-observable w.r.t. L(G1). There are

several sequences to check since L(G1) \ (L(H7) ∩ L(G1)) = {abg, bag, aag, bbg} \

{abg, bag, bb} = {bbg, aag, aa}. Table 3.6 confirms that L(H7) is co-observable w.r.t.

L(G1). We can thus apply Proposition 3.1.5 to conclude that L(H6) ∩ L(H7) is co-

observable w.r.t. L(G1).

We will use Proposition 3.1.5 to show co-observability when K2 is co-observable

40

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.5: Verification that L(H6) is co-observable w.r.t. L(G1)∩L(H7). Let L(G) =
L(G1) ∩ L(H7) for readability.

tσ ∈ L(G) \ (L(H6) ∩ L(G)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G) ∩(L(H6) ∩ L(G))

bb 1 {bb} ∩ {abg, bag} = ∅

Table 3.6: Verification that L(H7) is co-observable w.r.t. L(G1).

tσ ∈ L(G1) \ (L(H7) ∩ L(G1)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G1) ∩(L(H7) ∩ L(G1))

bbg 1 {bbg} ∩ {abg, bag, bb} = ∅
2 {bbg} ∩ {abg, bag, bb} = ∅

aag 1 {aag} ∩ {abg, bag, bb} = ∅
2 {aag} ∩ {abg, bag, bb} = ∅

aa 1 {aa} ∩ {abg, bag, bb} = ∅

w.r.t. M but K1 is not co-observable w.r.t. M . Recall we still have that K = K1∩K2

is co-observable w.r.t. M if K1 is co-observable w.r.t. the extended system M ∩K2,

according to Proposition 3.1.5.

Essentially, Proposition 3.1.5 allows us to treat specification K2 as a plant com-

ponent once we have shown that K2 is co-observable w.r.t. M . To see why this is

an advantage, consider the definition of co-observability (Definition 2.8.1). It states

we need to check a property with respect to languages K1 ∩ K2 and M for every

tσ ∈ M\K1 ∩K2. If we treat K2 as a plant, we only have to check the property for

every tσ ∈ (M ∩K2)\K1. We both potentially reduce the number of strings that we

have to check and that could cause the check to fail. Moreover, if we treated K2 as

a specification, we would likely have to add the required additional plant component

and specifications that were needed during the incremental check of K2 (see Algo-

rithm 1, discussed later in the chapter, for details) to those needed to check just K1,

41

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

resulting in a larger sized subsystem to check.

Proposition 3.1.6. Let K1, K2, M1 and M2 be prefix-closed languages defined over

Σ. If K1 is co-observable w.r.t. M1 ∩ K2, and K2 is co-observable w.r.t. M2, then

K1 ∩K2 is co-observable w.r.t. M1 ∩M2.

Proof. Assume K1, K2, M1 and M2 are prefix-closed.

Assume K1 is co-observable w.r.t. M1 ∩K2.

Assume K2 is co-observable w.r.t. M2.

Must show K1 ∩K2 is co-observable w.r.t. M1 ∩M2.

As M1 ∩M2 ⊆M1, we have M1 ∩M2 ∩K2 ⊆M1 ∩K2.

As K1 is co-observable w.r.t. M1 ∩ K2, by Proposition 3.1.1, we have K1 is co-

observable w.r.t. M1 ∩M2 ∩K2.

As K2 is co-observable w.r.t. M2, and M1 ∩M2 ⊆ M2, by Proposition 3.1.1, we

have K2 is co-observable w.r.t. M1 ∩M2.

⇒ K1 is co-observable w.r.t. M1∩M2∩K2, and K2 is co-observable w.r.t. M1∩M2.

We thus have that K1 ∩K2 is co-observable w.r.t. M1 ∩M2, by Proposition 3.1.5.

Example 7. In this example, we revisit plant automata G5 and G6 and exam-

ine them along with the specification automata from Example 6. This collection

of automata is shown in Figure 3.9. As a reminder, the associated languages are:

L(G5) = {abg, bag, aag, aaa, bbg}, L(G6) = {abg, bag, aag, bbg, bbb}, L(H6) =

{abg, bag, aa} and L(H7) = {abg, bag, bb}. As before, we suppose that I = {1, 2}

such that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and Σc,2 = {b, g}.

We first determine that L(H6) is co-observable w.r.t. L(G5)∩L(H7), the evidence

for which can be seen in Table 3.7. We then establish that L(H7) is co-observable w.r.t.

42

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4 5 6

7 8 9 10

G5

a b

a b a b

a
g

g g

1

2 3

4 5 6

7 8 9 10

G6

a b

a b a b

g g
g

b

1

2 3

4 5

6

H6

a b

a b a

g

1

2 3

4 5

6

H7

a b

b ba

g

Figure 3.9: Plant Automata G5 and G6 from Example 4 and Specification Automata
H6 and H7 from Example 6.

L(G6), as illustrated in Table 3.8. Since we verified that L(H6) is co-observable w.r.t.

L(G5) ∩ L(H7), and L(H7) is co-observable w.r.t. L(G6), we can apply Proposition

3.1.6 and conclude that L(H6) ∩ L(H7) is co-observable w.r.t. L(G5) ∩ L(G6).

Table 3.7: Verification that L(H6) is co-observable w.r.t. L(G5)∩L(H7). Let L(G) =
L(G5) ∩ L(H7) for readability.

tσ ∈ L(G) \ (L(H6) ∩ L(G)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G) ∩(L(H6) ∩ L(G))

bb 1 {bb} ∩ {abg, bag} = ∅

Compared to Proposition 3.1.5, Proposition 3.1.6 provides us with a more general

way to incrementally verify co-observability, especially for systems composed of a

43

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.8: Verification that L(H7) is co-observable w.r.t. L(G6).

tσ ∈ L(G6) \ (L(H7) ∩ L(G6)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G6) ∩(L(H7) ∩ L(G6))

aag 1 {aag} ∩ {abg, bag, bb} = ∅
2 {aag} ∩ {abg, bag, bb} = ∅

bbg 1 {bbg} ∩ {abg, bag, bb} = ∅
2 {bbg} ∩ {abg, bag, bb} = ∅

bbb 2 {bbb} ∩ {abg, bag, bb} = ∅

large number of subsystems. As was the case with Proposition 3.1.3, this result can

be extended to systems that have an arbitrary number of plant and/or specification

components.

We now want to examine when co-observability does not hold among multiple

languages.

Proposition 3.1.7. Let K1, K2 and M be prefix-closed languages defined over Σ.

If K1 is not co-observable w.r.t. M ∩K2, then K1 ∩K2 is not co-observable w.r.t. M .

Proof. Assume K1, K2, and M are prefix-closed.

Assume K1 is not co-observable w.r.t. M ∩K2.

Must show K1 ∩K2 is not co-observable w.r.t. M .

Sufficient to show (∃t ∈ K1 ∩K2 ∩M) (∃σ ∈ Σc) tσ ∈ M\K1 ∩K2 and (∀i ∈

Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩K2 ∩M 6= ∅.

We will use the condition that K1 is not co-observable w.r.t. M ∩K2 to prove the

result.

We thus look on K1 as a specification, and M ∩K2 as a plant.

As K1 is not co-observable w.r.t. M ∩ K2, it follows that: (∃t ∈ K1 ∩ (M ∩

K2)) (∃σ ∈ Σc) tσ ∈ (M ∩K2)\K1 and (∀i ∈ Ic (σ)) P−1
i [Pi(t)]σ∩K1∩ (M ∩K2) 6= ∅.

44

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

⇒ (∃t ∈ K1 ∩ (M ∩ K2)) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 and (∀i ∈

Ic (σ)) P−1
i [Pi(t)]σ ∩K1 ∩ (M ∩K2) 6= ∅.

⇒ (∃t ∈ K1 ∩ (M ∩ K2)) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩ (M ∩K2)) Pi(t) = Pi(ti), tiσ ∈ K1 ∩ (M ∩K2).

⇒ (∃t ∈ K1 ∩ K2 ∩ M) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M .

⇒ (∃t ∈ K1 ∩ K2 ∩ M) (∃σ ∈ Σc) tσ ∈ M ∩ K2, tσ /∈ K1 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M , as K2 is prefix-closed.

⇒ (∃t ∈ K1 ∩K2 ∩M) (∃σ ∈ Σc) tσ ∈ M ∩K2, tσ /∈ K1 ∩K2 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M .

⇒ (∃t ∈ K1 ∩K2 ∩M) (∃σ ∈ Σc) tσ ∈ M ∩K2, tσ /∈ K1 ∩K2 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M , as K1 ∩K2 = K1 ∩K2, since

K1 and K2 are prefix-closed.

⇒ (∃t ∈ K1 ∩K2 ∩ M) (∃σ ∈ Σc) tσ ∈ M , tσ /∈ K1 ∩K2 and (∀i ∈ Ic (σ))

(∃ti ∈ K1 ∩K2 ∩M), Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M , as M ∩K2 ⊆M .

⇒ (∃t ∈ K1 ∩K2 ∩ M) (∃σ ∈ Σc) tσ ∈ M\K1 ∩K2 and (∀i ∈ Ic (σ)) (∃ti ∈

K1 ∩K2 ∩M) Pi(t) = Pi(ti), tiσ ∈ K1 ∩K2 ∩M .

⇒ (∃t ∈ K1 ∩K2∩M) (∃σ ∈ Σc) tσ ∈M\K1 ∩K2 and (∀i ∈ Ic (σ)) P−1
i [Pi(t)]σ∩

K1 ∩K2 ∩M 6= ∅.

We thus conclude that K1 ∩K2 is not co-observable w.r.t. M .

Proposition 3.1.7 is used for incremental verification to determine when a specifi-

cation is not co-observable. If we can show that K1 is not co-observable w.r.t. M∩K2,

then we can conclude that K = K1 ∩K2 is not co-observable w.r.t. M .

45

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

2 3

4

5 6

7

8

G9

a b

b

a b

g

g

1

2 3

4

5 6

7

H8

a b

b

ba

g

1

2 3

4 5

6

7

8

H9

a b

a b

a

g

g

Figure 3.10: Plant Automaton G9 and Specification Automata H8 and H9 for Exam-
ple 8.

Example 8. In this example, we consider the specification languages L(H8) = {abg, ba, bb}

and L(H9) = {aa, abg, bag} and the uncontrolled plant language L(G9) = {abg, bag, bb}.

The associated automata are shown in Figure 3.10. Also, suppose that I = {1, 2} such

that Σo,1 = {a}, Σc,1 = {a, g}, Σo,2 = {b} and Σc,2 = {b, g}.

We want to determine whether L(H8) is co-observable w.r.t. L(G9) ∩ L(H9). By

the results in Table 3.9, it is clear that since neither controller can take the correct

control decision about g after its partial observation of bag, L(H8) is not co-observable

w.r.t. L(G9) ∩ L(H9).

By Proposition 3.1.7, we can conclude that L(H8) ∩ L(H9) is not co-observable

w.r.t. L(G9). Although, it is interesting to note that L(H9) is co-observable w.r.t.

L(G9) (refer to Table 3.10).

In the incremental verification of co-observability, we can use each of the above

propositions independently. Furthermore, we also can combine any of the above

propositions to verify co-observability in a very flexible way.

46

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Table 3.9: Verification that L(H8) is not co-observable w.r.t. L(G9) ∩ L(H9). Let
L(G) = L(G9) ∩ L(H9) for readability.

tσ ∈ L(G) \ (L(H8) ∩ L(G)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G) ∩(L(H8) ∩ L(G))

bag 1 {bag, abg} ∩ {abg} = abg

2 {bag, abg} ∩ {abg} = abg

Table 3.10: Verification that L(H9) is co-observable w.r.t. L(G9).

tσ ∈ L(G9) \ (L(H9) ∩ L(G9)) i ∈ Ic(σ) P−1
i [Pi(t)]σ ∩ L(G9) ∩(L(H9) ∩ L(G9))

bb 2 {bb} ∩ {abg, bag} = ∅

3.2 Algorithm

The previous section provides us with the theoretical foundations on which we can de-

sign an algorithm to verify co-observability without necessarily building the complete

system. We have taken inspiration from a family of so-called incremental verification

algorithms, e.g., [BMM04], where we choose which subsystem to examine next based

on the idea of counter examples.

Definition 3.2.1. Let K and L be prefix-closed languages defined over Σ. Let I =

{1, ..., n} be an index set. Let Σc,i ⊆ Σ and Σo,i ⊆ Σ be sets of controllable and

observable events, respectively, for i ∈ I, where Ic (σ) := {i ∈ I |σ ∈ Σc,i}. Let Pi :

Σ∗ → Σ∗o,i be natural projections. A counter example for the specification K and

the plant L is a tuple

C = (σ, t, t1, . . . , ti, . . . , tn),

where

47

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

• σ ∈ Σc;

• t ∈ K ∩ L and tσ ∈ L\K;

• (∀i ∈ Ic (σ)) tiσ ∈ K ∩ L;

• (∀i ∈ Ic (σ)) Pi(t) = Pi(ti).

A counter example encodes a violation of co-observability w.r.t. controllable event

σ. It includes a sequence generated by the system after which σ must be disabled

as well as a set of sequences, one for each controller in Ic(σ), whereby the controller

believes that it is observing a sequence that remains in the specification after σ

occurs (i.e., must be enabled). We are not concerned about the observations of those

controllers j ∈ I \ Ic(σ), and will therefore, when applicable, denote their entries in

C by a “-”.

For purposes of developing our algorithm, we want to define when a counter

example is rejected by a plant component

Definition 3.2.2. Let C = (σ, t, t1, . . . , ti, . . . , tn) be a counter example w.r.t. spec-

ification language L(H1) and plant language L(G1), defined over Σ. We say that

prefix-closed plant language L(G2) (also defined over Σ) rejects C if either

• tσ /∈ L(G2); or

• (∃i ∈ Ic(σ)) tiσ /∈ L(G2).

The intention is that if we replace L in Definition 3.2.1, by L(G1)∩L(G2), then C is

no longer a valid counter example (i.e., no longer a violation of co-observability).

Similarly, we define when a counter example is rejected by a specification com-

ponent. We note that Definition 3.2.2 and 3.2.3 are essentially the same except that

48

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

a plant component can reject string tσ while a specification can only reject string t.

This demonstrates that a plant component is more powerful at rejecting a counter

example and highlights the advantage of treating a specification as a plant once it

has been shown to be co-observable.

Definition 3.2.3. Let C = (σ, t, t1, . . . , ti, . . . , tn) be a counter example w.r.t. prefix-

closed specification language L(H1) and prefix-closed plant language L(G1), defined

over Σ. We say that prefix-closed specification language L(H2) (also defined over

Σ) rejects C if either:

• t /∈ L(H2); or

• (∃i ∈ Ic(σ)) tiσ /∈ L(H2).

Analogously, the idea here is that if we replace K in Definition 3.2.1, by L(H1) ∩

L(H2), then C is no longer a valid counter example (i.e., no longer a violation of

co-observability).

The input to the algorithm are two sets of automata: one consisting of the plant

components G = {G1, G2, . . . , Gv} and the other being the specification automata

H = {H1, H2, . . . , Hw}. When convenient we will use the notation L(G), respectively

L(H), to refer to L(G1)||L(G2)|| . . . ||L(Gv), respectively L(H1)||L(H2)|| . . . ||L(Hw).

The design of the algorithm is influenced by the previously-presented propositions

as follows:

1. The core idea of the algorithm design revolves around Proposition 3.1.1 and

Corollary 3.1.1. They state that to verify that L(H) is co-observable w.r.t.

L(G), we just need to verify that L(H) is co-observable w.r.t. the language

generated by some subsystem of G.

49

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

2. By Propositions 3.1.2 and 3.1.3, we know that we in order to verify that L(H)

is co-observable w.r.t. L(G), it is sufficient to verify that for each Hj ∈ H,

j ∈ {1, . . . , w}, L(Hj) is co-observable w.r.t. L(G).

3. To implement the above steps, we typically end up verifying that the lan-

guage generated by some subset of H, say L(H′) = L(Hj1)|| . . . ||L(Hja), for

{j1, ..., ja} ⊆ {1, . . . , w}, is co-observable w.r.t. the language generated by some

subset of G, say L(G ′) = L(Gk1)|| . . . ||L(Gkb), for {k1, ..., kb} ⊆ {1, . . . , v}. We

then simply need to find enough suitable subsets of H so that each Hj ∈ H,

j ∈ {1, . . . , w}, is included in at least one subset.

4. According to Propositions 3.1.5 and 3.1.6, if we have a component Hj of H such

that L(Hj) is co-observable w.r.t. the language generated by some subset of G,

then we can treat Hj as a plant automaton to be synchronized with G.

5. If we find a counter example C for L(H) with respect to L(G), we know that

L(H) is NOT co-observable w.r.t. L(G).

6. If we find a counter example C for L(Hj)|| · · · ||L(Hw) with respect to L(G)||L(H1)||

· · · ||L(Hj−1) (i.e. we were treating specifications H1, · · · , Hj−1 as plant com-

ponents after applying Propositions 3.1.5 and 3.1.6), we can apply Proposi-

tion 3.1.7 and conclude that L(H) is NOT co-observable w.r.t. L(G).

We focus now on some specific aspects of Algorithm 1. Notice that at line 3,

the algorithm terminates successfully when all elements of H have been considered.

Initially, on line 4, an element of H is selected.

On line 7, we begin by checking to see if L(H′) is co-observable w.r.t. the set of

all finite strings, i.e., L(GΣ∗) = Σ∗. If this is the case, then by Proposition 3.1.1,

50

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Algorithm 1 Incremental Co-observability Verification

1: input plant automata G = {G1, . . . , Gv},
specification automata H = {H1, . . . , Hw}

2: output true if L(H) is co-observable w.r.t. L(G)
false if L(H) is not co-observable w.r.t. L(G)

3: while H 6= ∅ do
4: Choose Hj ∈ H
5: Let H′ = {Hj}
6: Let G ′ = {GΣ∗}
7: while L(H′) is not co-observable w.r.t. L(G ′) do
8: Let C be a counter example w.r.t. L(H′) and L(G ′);
9: Find a component Gk ∈ G \ G ′ or Hm ∈ H \ H′ that rejects C
10: if there is no such component then
11: return false
12: else if the component found in line 9 is in G then
13: Let G ′ = G ′ ∪ {Gk}
14: else
15: Let H′ = H′ ∪ {Hm}
16: end if
17: end while
18: Let H = H \H′
19: Let G = G ∪ H′
20: end while
21: return true

51

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

L(H′) is also co-observable w.r.t. L(G). Otherwise, we obtain a counter example C

that illustrates that L(H′) is not co-observable w.r.t. L(G ′). In this case there are

two options:

(a) Look for a plant automaton Gk ∈ G \ G ′ that rejects C. If we find such an

automaton, in the next iteration, we will check to see if L(H′) is co-observable

w.r.t. L(G ′)||L(Gk)

(b) Look for a specification automaton Hm ∈ H \ H′ that rejects C. If we find

such an automaton, in the next iteration we will check to see if L(H)||L(Hm) is

co-observable w.r.t. L(G ′).

Steps (a) and (b) are repeated until such time as co-observability is verified for L(H′)

w.r.t. L(G ′), i.e., no more counter examples are found, or all remaining components

in G \G ′ and H\H′ accept C. In this latter situation, this means that there exist dis-

ablement decisions that cannot be taken correctly by any of the relevant controllers,

i.e., L(H) is not co-observable, and the algorithm terminates with an output of false.

As long as co-observability continues to hold as each successive element of H is ex-

amined, the algorithm eventually terminates with an output of true. Note that on

Line 19, after verifying that L(H′) is co-observable w.r.t. L(G ′), H′ is removed from

H and added to the set of plant automata. As such, the elements of H′ are treated as

plant components for the remainder of the algorithm, according to Proposition 3.1.5.

On line 8, we acquire a counter example C = (σ, t, t1, . . . , tn) that encodes a

violation of co-observability for L(H′) and L(G ′). The question of which counter

example to choose gives rise to a set of heuristics. We are interested in two strategies.

For the first strategy, we choose C such that |t| is the shortest length of any of the

valid counter examples that we find. For the second strategy, we choose C such that

52

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

|ti|, for i ∈ Ic (σ), is the longest length of any of the ti in any of the other valid counter

examples that we find.

Line 9 also introduces some heuristics for the execution of the algorithm. As

this is a strategy “guided by counter examples”, regardless of how we choose the

counter example, we have a choice as to which component to select, should it reject

the counter example C = (σ, t, t1, . . . , tn), according to Definition 3.2.2 or Definition

3.2.3. We consider the following heuristics for choosing a component:

(i) always choose a plant component over a specification component;

(ii) always choose a specification component over a plant component;

(iii) randomly choose a component;

(iv) choose a component that rejects C the “earliest”;

(v) choose a component that rejects C the “latest”;

(vi) choose a component that has the smallest number of states; and,

(vii) choose a component that has the smallest number of transitions.

The last four heuristics are from [BMM04], and the others are new. We examine the

effect of these heuristics in the next chapter when we introduce our first case study,

the data transmission problem.

If all the relevant components on line 9 accept C, then we have found a violation

of co-observability for L(H) w.r.t. L(G) and the algorithm will terminate and return

an output of false. If, though, we do find a component that rejects C, then we want

to incorporate it into either the interim specification language L(H′) or the interim

plant language L(G ′) that we continue to verify in the loop at line 7.

53

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Assuming that eventually line 7 is not satisfied, i.e., L(H′) is co-observable w.r.t.

L(G ′), then the algorithm continues examining the remaining specification automata

until either line 3 evaluates to false and co-observability is asserted, or line 10 evaluates

to true and co-observability fails.

3.2.1 Computational Complexity

We will use the following notation to describe the complexity of Algorithm 1:

(i) |G|, respectively |H|, is the number of plant (specification) components for the

system;

(ii) |Q| is the size of the largest state set amongst the plant and specification com-

ponents;

(iii) n is the number of controllers of the system; and,

(iv) |Q| is the size of the state set of the verification structure, which best case is

of size |Q|n+1 and in the worst case is (|Q||G|+|H|)n+1, which is the value we will

assume for the analysis.

The algorithm is governed by two loops (line 3 and line 7): the outer loop is

executed at most |H| times, whereas the inner loop is executed a maximum of |G| +

|H| times. The bulk of the effort is contained in lines 7 through 9.

Line 7 involves the monolithic verification of co-observability. We have imple-

mented the strategy described in [Ric08], where verifying co-observability requires

a breadth-first search of the verification structure. The complexity of this classical

search is O(|V | + |E|), where V is the set of vertices and E is the set of edges in

54

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

the structure being searched. For our purposes, this corresponds to the state set and

the transition function of the verification structure: |V | = |Q| ≤ |Q|G|+|H||n+1 and

|E| = |Q||Σ|n+1 ≤ (|Q|G|+|H|||Σ|)n+1; thus the complexity of monolithic verification of

co-observability is O((|Q|G|+|H|||Σ|)n+1).

Note that the first time line 7 is executed, we require the construction of a structure

that has a maximum of |Q|n+1 states. With each iteration of the inner loop, we build

a verification structure that involves consideration of one more component. Thus,

on the second iteration we build a structure with a maximum of |Q||Q|n+1 states up

until, in the worst-case, the (|G|+ |H|)th, i.e., last, iteration where we could have as

many as (|Q||G|+|H|)n+1 states. We can rewrite this as (|Q|+ |Q|2 + . . .+ |Q||G|+|H|)n+1.

The sum of the number of states is actually in the form of a well-known geometric

series and can be rewritten as the (1−|Q||G|+|H|)
1−|Q| = O(|Q||Q||G|+|H|−1)= O(|Q||G|+|H|).

Thus we can use (|Q||G|+|H|)n+1 as our upper bound for the number of states in the

verification structure, as noted in the previous paragraph.

To find a counter example C = (σ, t, t1, . . . , tn) at line 8 requires a search of the

verification structure with |Σ| |Q| steps. Finally, at line 9 the search for a component

that rejects C requires a search, in the worst case, of all the components in the system,

i.e., |G| + |H|. This is followed by a search to determine acceptance or rejection of

all the elements of C, i.e., |Ic(σ)|+ 1, that, again in the worst case, requires a search

of the length of the counter example, which could involve all states in the largest

component, i.e., |Q|. Thus we have (n + 1)|Q|(|G| + |H|) steps for line 9. But the

complexity of these steps are insignificant in comparison to the effort at line 7.

55

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Combining all of this information, and ignoring the minor contributions of the

overhead for the set operations in lines 13, 15, 18 and 19, we have an overall (worst-

case) complexity for Algorithm 1 of O(|H|(|G|+ |H|)(|Q|G|+|H|||Σ|)n+1).

In contrast, the complexity for verifying co-observability with the monolithic struc-

ture has a (worst-case) complexity of

O((|Q1||Q2| . . . |Qv|)n+1 ∗ |Σ|n+1) = O((|Q1||Q2| . . . |Qv||Σ|)n+1) ≤ O((|Q||G||Σ|)n+1).

Based on worst-case complexity analysis, it is not difficult to see that if given the

worst possible input, Algorithm 1 multiplies the monolithic complexity by a quadratic

factor in the number of components. This is because of the possibility of entering

the loop at line 7 and having to compute successive verification structures in each

iteration, up to and including the computation of the monolithic structure. But it

is not clear that the systems we want to test will always generate the worst possible

input that will force the algorithm to perform worse than the monolithic algorithm.

To ameliorate this situation, we focus on the performance of the algorithm. We

have incorporated heuristics to organize the input in such a way as to steer the

algorithm towards the best possible case: when there is only one iteration of loop 7

per component in H. We discuss the effect that heuristics have on the performance

of our algorithm in the next chapter.

56

Chapter 4

Case Study: Co-observability of

the Data Transmission Problem

The data transmission problem [BSW69] has been widely studied in the literature of

communication protocols and can be stated as follows. Consider two agents commu-

nicating asynchronously across a faulty channel: a sender and a receiver. The sender

is responsible for transmitting a message to the receiver in the form of a sequence of

data packets, retrieved from the source host. The receiver then passes the packets

on to a target host such that the packets are passed on in the correct order and no

packets are accidentally sent more than once. To distinguish a new packet from a

re-transmitted packet, the sender may alternate appending a control bit with a value

of 0 or 1 to the data. Subsequently, the receiver can acknowledge that it received a

message appended with a 0 or 1.

In the supervisory control framework, the data transmission problem has been

modeled in [CDFV88, Rud92, RW92a, WvS96a]. The motivation in [Rud92] was to

synthesize, as a decentralized control solution, the solution to the data transmission

57

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

problem, namely, the alternating bit protocol, and a selection of plant automata of

varying levels of detail were presented to explore this problem. The model we use here

is adapted from [Rud92, RW92a]. Our model differs slightly in that we have added

two additional specifications, automata that were previously used as possible plant

models in [Rud92]. Furthermore, our motivation is purely to illustrate our algorithm

for the incremental verification of co-observability.

4.1 DTP as a Decentralized DES

The event set for the entire problem is given by

Σ = {getFrame, send0, send1, rcvAck0, rcvAck1, loss, sendAck0, sendAck1,

rcv0, rcv1, passToHost},

where the events are described as follows.

getFrame: get new data frame from source host;

send0: send data with control bit set to 0;

send1: send data with control bit set to 1;

rcv0: receive data with control bit set to 0;

rcv1: receive data with control bit set to 1;

passToHost: data frame passed from receiver to target host;

sendAck0: acknowledge data with control bit set to 0;

58

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

sendAck1: acknowledge data with control bit set to 1;

rcvAck0: receive acknowledgement with control bit set to 0;

rcvAck1: receive acknowledgement with control bit set to 1;

loss: contents in the channel are lost.

For this example, we have I = {1, 2}, representing a controller for the sender side

(controller 1) and one for the receiver side (controller 2). The observable and con-

trollable partitions of Σ are as follows:

Σo,1 := {getFrame, send0, send1, rcvAck0, rcvAck1, loss},

Σo,2 := {sendAck0, sendAck1, rcv0, rcv1, passToHost},

Σc,1 := {getFrame, send0, send1},

Σc,2 := {sendAck0, sendAck1, passToHost}.

Note that the controllers have no jointly-observable events, i.e., Σo,1 ∩ Σo,2 = ∅, nor

do they have jointly-controllable events, i.e., Σc,1 ∩ Σc,2 = ∅. Also note, that at each

state of the automata described in this chapter, we assume (even when not explicitly

shown) self-loops of events in Σ minus the events that appear in the description of

each component, e.g., see Figure 4.4 where the self-loops are present.

Figure 4.1 contains the automaton SENDER, the first of three plant components.

This component captures the more general behaviour of getting new data, sending it

to the receiver with either a 0 or 1 appended. Then either the data is lost, in which

case the data is re-sent or an acknowledgement from the receiver arrives, which can

trigger a re-sending of the data or, if the correct acknowledgement is received, repeat

the transmission cycle with new data.

59

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1 2 3 4

SENDER

getFrame

send0, send1 rcvAck0, rcvAck1

loss send0, send1

getFrame

Figure 4.1: A Plant Automaton for a Sender.

1 2 3 4 5

RECEIVER

rcv0, rcv1 passToHost sendAck0, sendAck1

rcv0, rcv1

passToHost

sendAck0, sendAck1

Figure 4.2: A Plant Automaton for a Receiver.

Figure 4.2 features the automaton RECEIVER, another plant component. A re-

ceiver acquires data that has either a 0 or 1 appended to it. The data is passed to the

host and an acknowledgement of the type of data received is directed to the sender.

The subsequent reception of data will either lead to an acknowledgement being resent

or the data being passed to the host, whereby the reception cycle continues.

Figure 4.3 features the automaton CHANNEL, the final plant component. The

communication channel simply describes how data sent from the sender to the receiver

is either successfully delivered or lost. In the event that the data is lost, the sender re-

transmits the data, otherwise, the receiver accepts the data and an acknowledgement

of receipt is sent. Then the transmission cycle begins again with new data.

The behaviour of the whole plant system G is represented by the synchronous

product of the languages generated by the plant components: L(G) = L(SENDER)||

60

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1

23

4 5

CHANNEL

send0

sendAck1

send1

sendAck0

rcv0, loss

rcvAck1, loss

rcv1, loss

rcvAck0, loss

Figure 4.3: A Plant Automaton for a Communication Channel

L(RECEIVER)||L(CHANNEL).

While L(G) describes the language of the uncontrolled system, we also have some

behaviour that we want the decentralized controllers to jointly enforce via their control

decisions. In particular, we first want to ensure that a data packet is acquired from the

source host by the sender before it is passed along to the target host by the receiver.

We do not care about the order in which the remaining events in Σ occur, and this

is captured by the selfloops at states 1 and 2 of SPECIFICATION1 in Figure 4.4.

1 2

SPECIFICATION1

getFrame

Σ \ {getFrame, passToHost}

passToHost

Σ \ {getFrame, passToHost}

Figure 4.4: A Specification Automaton for the Delivery of Data.

The remaining two specification automata prescribe the behaviour of the sender

and the receiver. Specifically, the general behaviour of the sender, as described by the

plant automaton SENDER in Figure 4.1, is updated in SPECIFICATION2 in Figure 4.5

61

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

1 2 3

456

SPECIFICATION2

getFrame send0

rcvAck0

loss, rcvAck1

getFramesend1

rcvAck1

loss, rcvAck0

1 2 3

456

SPECIFICATION3

rcv0

rcv1

passToHost

sendAck0

rcv1

rcv0

passToHost

sendAck1

Figure 4.5: The Specification Automata for Desired Behaviour of a Sender
(SPECIFICATION2) and a Receiver (SPECIFICATION3).

(top) by prescribing the explicit alternation of messages with attached control bits

of 0 or 1. A new data packet is not retrieved from the source host until the correct

sequence of acknowledgements, in the face of data loss, is acquired from the sender.

Similar explicit behaviour for the receiver is described by automaton SPECIFICATION3

(bottom of Figure 4.5): a data packet with a control bit of 0 (respectively, 1) is passed

to the target host after which the receiver acknowledges that it received the data; if

the next packet it receives is appended with the same control bit, it retransmits the

acknowledgement; otherwise it passes along the new data to the target host and the

process continues.

62

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

The global specification K is captured by the synchronous product of the three

specification automata: K = SPECIFICATION1||SPECIFICATION2||SPECIFICATION3.

Subsequently, L(K) = L(SPECIFICATION1)||L(SPECIFICATION2)||L(SPECIFICATION3).

4.2 Incremental Verification of Co-observability of

DTP

We want to verify whether the global specification L(K) is co-observable w.r.t. L(G).

Thus, we will use Algorithm 1 with our collection of plant and specification automata,

to incrementally verify co-observability of L(K).

According to line 1, let G = {SENDER, RECEIVER, CHANNEL} and H =

{SPECIFICATION1, SPECIFICATION2, SPECIFICATION3}.

At line 3, it is clear that H 6= ∅, so we continue and (arbitrarily) choose SPECI-

FICATION2. Thus H′ = {SPECIFICATION2} and G ′ = {GΣ∗}. In the case of SPECI-

FICATION2, since all the events in the automaton are observable to controller 1 (i.e.,

there are no observational ambiguities because of partial observations for controller

1) and all the controllable events in SPECIFICATION2 are controlled by controller 1,

L(H′) is trivially co-observable w.r.t. L(G ′). So we continue to line 18 and update

H = {SPECIFICATION1, SPECIFICATION3}, whereas now G = {SENDER, RECEIVER,

CHANNEL, SPECIFICATION2}.

We return to line 3 again, and as H is still not empty, we continue by (arbitrarily)

choosing SPECIFICATION3 from H. Thus we now want to see if L(SPECIFICATION3)

63

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

is co-observable w.r.t. L(G ′), i.e., Σ∗. As before, since all events in SPECIFICA-

TION3 are observable to controller 2, and all the controllable events in this automa-

ton are controlled by controller 2, L(H′) is trivially co-observable w.r.t. L(G ′). At

this point we now have H = {SPECIFICATION1} and G = {SENDER, RECEIVER,

CHANNEL, SPECIFICATION2, SPECIFICATION3}

Finally, we have only one element left in H, so we choose it: SPECIFICATION1.

Now we must verify that L(SPECIFICATION1) is co-observable w.r.t. Σ∗. In this case,

the specification automaton involves partial observation and controllable events for

both controllers, so we use the monolithic strategy to verify co-observability, which

returns false.

• One counter example for this pair of languages is C = (passToHost, ε, -, getFrame).

• Since Ic(passToHost) = {2} and it is the case that P2(ε) = P2(getFrame) = ε,

controller 2 will not be able to take the correct control decision about passToHost

after the occurrence of either of these sequences: enable after getFrame occurs

but disable otherwise.

• According to line 9, we need to find a component in G \ G ′ = {SENDER,

RECEIVER, CHANNEL, SPECIFICATION2, SPECIFICATION3} or H\H′ = ∅ that

rejects C.

• C is rejected by both RECEIVER and SPECIFICATION3. As we only need to

choose one of these automata, we choose SPECIFICATION3.

• By line 13 update G ′ = {GΣ∗} ∪ {SPECIFICATION3}.

We need to check whether L(SPECIFICATION1) is co-observable w.r.t. L(G ′) =

64

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

L(GΣ∗)||L(SPECIFICATION3) = L(SPECIFICATION3). Again, we perform the mono-

lithic co-observability test which returns false.

• One counter example for this pair of languages is C = (getFrame, getFrame,

getFrame rcv0 passToHost,−).

• Since Ic(getFrame) = {1} and P1(getFrame) = P1(getFrame rcv0 passToHost) =

getFrame, controller 1 cannot take the correct control decision for getFrame.

• We must find a component in G\G ′ = {SENDER, RECEIVER, CHANNEL, SPEC-

IFICATION2} or H \H′ = ∅ that rejects C.

• C is rejected by both SENDER and SPECIFICATION2. As we only need to choose

one of these automata, we choose SPECIFICATION2.

• Update G ′ = {GΣ∗ , SPECIFICATION3} ∪ {SPECIFICATION2}.

We need to check whether L(SPECIFICATION1) is co-observable w.r.t. L(G ′) =

L(GΣ∗)||L(SPECIFICATION3)||L(SPECIFICATION2) = L(SPECIFICATION3)||

L(SPECIFICATION2). We perform the monolithic co-observability test, which again

returns false.

• One counter example for this pair of languages is C = (getFrame, getFrame

send0 rcvAck0, getFrame send0 rcv0 passToHost sendAck0 recAck0, -).

• Since Ic(getFrame) = {1} and P1(getFrame send0 rcvAck0) = P1(getFrame send0

rcv0 passToHost sendAck0 recAck0) = getFrame send0 rcvAck0, controller 1 cannot

take the correct control decision for getFrame.

• We must find a component in G \ G ′ = {SENDER, RECEIVER, CHANNEL} or

H \H′ = ∅ that rejects C.

65

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

• In this case, CHANNEL is the only component that rejects C, so we update

G ′ = {GΣ∗ , SPECIFICATION3, SPECIFICATION2} ∪ {CHANNEL}.

We need to check whether L(SPECIFICATION1) is co-observable w.r.t. L(G ′) =

L(GΣ∗)||L(SPECIFICATION3)||L(SPECIFICATION2)||L(CHANNEL). Again, we per-

form the monolithic co-observability test which, this time, returns true.

At this point, we continue to line 18 and update H = H\{SPECIFICATION1} = ∅

and update G = G ∪ {SPECIFICATION1}. Then continuing to line 3, which evaluates

now to false, we drop down to line 21 and return true, indicating that the system is

overall co-observable.

4.3 Heuristics

In keeping with the incremental verification strategy introduced in [BMM04], our al-

gorithm is directed by counter examples (line 8 of Algorithm 1). Ideally, we want to

steer our algorithm towards the best-case computational scenario and avoid perform-

ing the monolithic test for the entire system. We introduce two sets of heuristics: one

to guide the selection of the counter example C and the other to guide the selection

of the component that rejects C. Our purpose is to investigate the effect of a number

of heuristics in order to gauge their effectiveness.

(a) ShortC. Choose C = (σ, t, t1, . . . , tn) such that |t| is the shortest length of any of

the other valid counter examples.

(b) LongC. Choose C = (σ, t, t1, . . . , tn) such that |ti|, for i ∈ Ic(σ), is the longest of

any of the other ti in any additional valid counter examples.

66

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

While this is certainly not a comprehensive list, we were interested in determining

whether or not the choice of the size of the counter example would affect performance.

When we have a choice as to which component rejects the counter example (line

9), it may be possible to reduce the total computation required to incrementally verify

co-observability by selecting components that exhibit particular characteristics. To

that end we introduce some heuristics to guide the behaviour of our algorithm.

(i) PlantOverSpec. This heuristic selects an element of G \ G ′ over an element of

H \H′.

(ii) SpecOverPlant. This heuristic selects an element of H \ H′ over an element of

G \ G ′.

(iii) Alternating. This heuristic alternately selects a component that rejects C from

(G \ G ′) first, and then (H \H′) throughout the run of the algorithm.

(iv) FirstMatch. This heuristic chooses the first component that rejects C.

(v) EarlyReject. This heuristic chooses the component that rejects C in the fewest

number of steps (i.e., events).

(vi) LateReject. This heuristic chooses the component that rejects C in the most

number of steps.

(vii) MinStates. This heuristic selects the component with the smallest number of

states that rejects C.

(viii) MinTransitions. This heuristic selects the component with the smallest number

of transitions that rejects C.

67

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

There is one final pair of heuristics that is related specifically to the Java imple-

mentation of the algorithm: when creating the list of elements in G ∪ H′ (line 19),

those components that were originally in H are either inserted at the beginning of

the list or the end of the list.

• SpecsStart: H′ components are inserted at the start of the data structure storing

G.

• SpecsEnd: H′ components are inserted at the end of the data structure storing

G.

These heuristics have been implemented and their effect on the overall compu-

tation required to incrementally verify co-observability of the DTP case study is

explored in the next section.

4.4 Experimental Results

The trials for the case study were conducted on an iMac with 2.7 GHz Intel Core i5

processor and 8 GB 1600 MHz DDR3 memory.

We first examine the time to verify co-observability of DTP using the monolithic

strategy. In this case, we tested whether or not L(SPECIFICATION3) ||L(SPECIFICATION1)||

L(SPECIFICATION2) was co-observable w.r.t. L(RECEIVER) ||L(CHANNEL)||L(SENDER).

The total time for the test was 132 seconds. The size of the monolithic automaton

was 114 states, whereas the size of the monolithic verification structure was 7684

states.

In contrast, the best time for Algorithm 1 used component ordering G = {RECEIVER,

CHANNEL, SENDER} andH = {SPECIFICATION3, SPECIFICATION1, SPECIFICATION2}.

68

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

We used LongC to select the counter example. The first heuristic used to select a

rejecting component was PlantOverSpec. This heuristic produced a choice of compo-

nents, so we used EarlyReject to make the final selection. Finally, the building of G in

line 19 of the algorithm was governed by the SpecsFirst heuristic. The runtime was

3.24 seconds. This represents a speedup of 40.74 times, compared to the monolithic

runtime. The U structure had a maximum number of 4209 states.

The worst time for Algorithm 1 used component ordering G = {SENDER, CHANNEL,

RECEIVER} and H = {SPECIFICATION3, SPECIFICATION1, SPECIFICATION2}. To

select the counter example, we used heuristic LongC. Then the rejecting component

was chosen using SpecOverPlant. This heuristic produced a choice of components, so

we used LateReject to make the final selection. Additionally, the heuristic SpecsEnd

governed the operation of line 19. In this case, the runtime was 168.9 seconds. The

U structure had a maximum number of 10323 states.

We performed exhaustive testing with respect to the ordering of G andH. For each

test configuration of heuristics, we performed a set of 36 tests covering the possible

ordering of plants and specifications. A summary of our results is presented in Ta-

bles 4.1 to 4.3. The minimum runtime represented the ordering that performed best,

and the worst runtime was the ordering that performed worst. The average runtime

was the average time taken across the 36 test variations for a specific configuration

of heuristics. We also track the average number of states in the computation of the

larger of the two automata that generated L(H′) and L(G ′). This affects the size of the

monolithic verification structure U that is computed to perform the co-observability

test in line 7 of the algorithm.

Tables 4.1, 4.2, and 4.3 represent the results from our suite of tests with the

69

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

primary tests concerning the primary heuristics PlantOverSpec, SpecOverPlant, and

Alternating, respectively. Each table is then further broken down based on heuristics

regarding counter example selection, ShortC and LongC, followed by the ordering

heuristic for where specifications are added to the list of plant components, namely

SpecsStart versus SpecsEnd, and, finally, the remaining five heuristics concerned with

selecting a rejecting component.

Examining the results, it is immediately clear that the initial ordering of the plant

and specification components plays a significant role in the runtime. For the test with

heuristics PlantOverSpec, LongC, SpecsStart, and EarlyReject, we saw a minimum run-

time of 3.24 seconds, and a maximum runtime of 149 seconds: the only difference

between these two cases is the initial ordering of the components. A heuristic to

select the initial component would be highly desirable addition to the current heuris-

tics. That being said, we also note that the combination of heuristics SpecOverPlant

and SpecsStart produced a consistent runtime of about 51-53 seconds, independent

of the initial ordering. This did not produce the 40.74 times speedup of the best

configuration, but it did produce a consistent speedup of about 2.5 times.

After considering the effect of varying the three primary heuristics, we see that

they produce similar minimum, maximum, and average run times, with PlantOverSpec

producing the fastest runtime. Overall, SpecOverPlant produced smaller maximum

runtimes, while Alternating produced the largest.

We next examine the effect of choosing a counter example via ShortC versus LongC.

Note that with respect to our three primary heuristics, LongC gives us our shortest

runtime for all three; however, with respect to average and maximum runtime, the

difference between the two heuristics is negligible.

70

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

As far as the effect of SpecsStart versus SpecsEnd is concerned, we see that Plan-

tOverSpec tends to produce the slowest runtimes for SpecsStart while SpecOverPlant

produced both its fastest and slowest runtimes with SpecsEnd.

Finally, we examine the effect of the remaining heuristics that govern how to

choose a rejecting component. After the previously mentioned heuristics have been

applied, it is difficult to discern a significant difference between the heuristics. Al-

though we do note that LateReject has a tendency to produce the worst runtimes.

One thing that is clear from our results: we need to test our heuristics on more

examples that consist of many more (larger) components to get a better appreciation

for the effect of the various heuristics. By studying a wider variety of examples, it

may be the case that certain heuristics are better suited (i.e., encourage better perfor-

mance) for particular types of systems (e.g., high number of components with many

observable events in common versus high number of components with few observable

events in common).

We note that in Chapter 6, we present an HIDSC example that contains a high-

level subsystem and three low-level subsystems. Each low level was identical up to

relabeling. The state size of the high level was 3120, whereas each low level was 550.

For both the high level and the low level, the monolithic algorithm ran for 5 hours

without completing, so we stopped them. Our incremental algorithm ran in 424.78

seconds for the high level and 4.76 seconds for the low level. This was the fastest time

of all the heuristic configurations. We only were able to run it for a single ordering

of the components due to time constraints.

71

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

T
ab

le
4.

1:
T

h
e

D
T

P
p
ro

b
le

m
u
si

n
g
P
la
nt
O
ve
rS
p
ec

h
eu

ri
st

ic
as

p
ri

m
ar

y
ru

le
.

h
eu

ri
st

ic
h
eu

ri
st

ic
h
eu

ri
st

ic
av

g.
av

g.
st

at
es

av
g.

st
at

es
m

in
av

g
m

ax
2

3
4

it
er

.
in
m
a
x

(G
′ ,
H
′)

in
U

ti
m

e
(s

)
ti

m
e

(s
)

ti
m

e
(s

)
S
ho
rt
C

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

4
25

43
24

.5
51

.2
75

.7
15

0
M
in
T
ra
ns

4
25

43
24

.5
51

.2
75

.8
15

0
M
in
S
ta
te
s

4
25

43
24

.5
51

.2
75

.7
15

0
E
ar
ly
R
ej
ec
t

4
25

43
24

.5
51

.2
83

15
1

L
at
eR

ej
ec
t

4
25

43
24

.5
51

.2
68

.5
15

1
S
p
ec
sE
nd

F
ir
st
M
at
ch

5
26

.3
3

54
27

52
.6

74
.7

97
.1

M
in
T
ra
ns

5
26

.3
3

54
27

52
.6

74
.8

96
.7

M
in
S
ta
te
s

5
26

.3
3

54
27

52
.6

74
.8

97
.3

E
ar
ly
R
ej
ec
t

5
26

.3
3

54
27

52
.9

89
.2

97
.3

L
at
eR

ej
ec
t

5
32

.8
3

54
27

52
.6

10
7

16
1

L
on
gC

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

4
31

.8
3

34
96

.8
9

4.
31

65
.4

15
2

M
in
T
ra
ns

4
31

.8
3

34
96

.8
9

4.
31

65
.5

15
2

M
in
S
ta
te
s

4
31

.8
3

34
96

.8
9

4.
31

65
.5

15
2

E
ar
ly
R
ej
ec
t

4
24

.5
36

61
.5

3.
24

44
.4

14
9

L
at
eR

ej
ec
t

4
33

29
36

.3
3

4.
96

68
.0

15
2

S
p
ec
sE
nd

F
ir
st
M
at
ch

5
26

.3
3

38
95

.6
6

4.
31

43
.2

96
.9

M
in
T
ra
ns

5
26

.3
3

38
95

.6
6

4.
31

43
.2

96
.7

M
in
S
ta
te
s

5
26

.3
3

38
95

.6
6

4.
31

43
.2

96
.9

E
ar
ly
R
ej
ec
t

5
30

.1
7

42
09

4.
31

43
.2

57
.8

L
at
eR

ej
ec
t

5
59

.8
3

61
68

.6
7

4.
31

38
.1

12
6

72

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

T
ab

le
4.

2:
T

h
e

D
T

P
p
ro

b
le

m
u
si

n
g
S
p
ec
O
ve
rP
la
nt

h
eu

ri
st

ic
as

p
ri

m
ar

y
ru

le
.

h
eu

ri
st

ic
h
eu

ri
st

ic
h
eu

ri
st

ic
av

g.
av

g.
st

at
es

av
g.

st
at

es
m

in
av

g
m

ax
2

3
4

it
er

.
in
m
a
x

(G
′ ,
H
′)

in
U

ti
m

e
(s

)
ti

m
e

(s
)

ti
m

e
(s

)
S
ho
rt
C

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

3
25

.3
3

32
22

51
.4

51
.8

52
.4

M
in
T
ra
ns

3
25

.3
3

32
22

51
.4

51
.9

52
.7

M
in
S
ta
te
s

3
25

.3
3

32
22

51
.4

51
.9

52
.5

E
ar
ly
R
ej
ec
t

3
25

.3
3

32
22

51
.4

51
.8

52
.7

L
at
eR

ej
ec
t

3
25

.3
3

32
22

51
.4

51
.8

52
.7

S
p
ec
sE
nd

F
ir
st
M
at
ch

4
30

43
24

.5
51

.2
75

.7
15

1
M
in
T
ra
ns

4
30

43
24

.5
51

.2
75

.7
15

1
M
in
S
ta
te
s

4
30

43
24

.5
51

.2
75

.8
15

0
E
ar
ly
R
ej
ec
t

4
30

43
24

.5
51

.2
83

.0
15

1
L
at
eR

ej
ec
t

4
34

.3
3

43
80

.5
51

.2
10

4
16

2
L
on
gC

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

3
30

.6
7

32
64

51
.9

52
.4

53
.4

M
in
T
ra
ns

3
30

.6
7

32
64

51
.8

52
.4

53
.1

M
in
S
ta
te
s

3
30

.6
7

32
64

51
.8

52
.3

53
.0

E
ar
ly
R
ej
ec
t

3
25

.3
3

31
82

51
.8

52
.1

52
.9

L
at
eR

ej
ec
t

3
30

.6
7

32
64

51
.9

52
.3

53
.3

S
p
ec
sE
nd

F
ir
st
M
at
ch

4
30

34
10

.9
7

5.
03

65
.5

15
1

M
in
T
ra
ns

4
30

34
10

.9
7

5.
01

65
.5

15
2

M
in
S
ta
te
s

4
30

34
10

.9
7

4.
98

65
.4

15
1

E
ar
ly
R
ej
ec
t

4
32

.3
3

35
47

51
.2

70
15

0
L
at
eR

ej
ec
t

4
55

.6
7

63
54

.6
7

51
.9

10
5

16
8.

9

73

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

T
ab

le
4.

3:
T

h
e

D
T

P
p
ro

b
le

m
u
si

n
g
A
lt
er
na
ti
ng

h
eu

ri
st

ic
as

p
ri

m
ar

y
ru

le
.

h
eu

ri
st

ic
h
eu

ri
st

ic
h
eu

ri
st

ic
av

g.
av

g.
st

at
es

av
g.

st
at

es
m

in
av

g
m

ax
2

3
4

it
er

.
in
m
a
x

(G
′ ,
H
′)

in
U

ti
m

e
(s

)
ti

m
e

(s
)

ti
m

e
(s

)
S
ho
rt
C

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

4
25

43
24

.5
51

.2
75

.8
15

0
M
in
T
ra
ns

4
25

43
24

.5
51

.2
75

.8
15

1
M
in
S
ta
te
s

4
25

43
24

.5
51

.2
75

.8
15

1
E
ar
ly
R
ej
ec
t

4
25

43
24

.5
51

.2
82

.3
15

1
L
at
eR

ej
ec
t

4
25

43
24

.5
51

.2
68

.5
15

0
S
p
ec
sE
nd

F
ir
st
M
at
ch

5
26

.3
3

54
27

52
.6

74
.7

96
.6

M
in
T
ra
ns

5
26

.3
3

54
27

52
.6

74
.6

96
.9

M
in
S
ta
te
s

5
26

.3
3

54
27

52
.6

74
.8

97
.2

E
ar
ly
R
ej
ec
t

5
26

.3
3

54
27

52
.9

89
.3

97
.4

L
at
eR

ej
ec
t

4.
83

32
.8

3
55

11
52

.6
11

5
16

6
L
on
gC

S
p
ec
sS
ta
rt

F
ir
st
M
at
ch

3.
38

30
.6

7
37

79
.7

5
50

.8
68

.2
15

1
M
in
T
ra
ns

3.
38

30
.6

7
37

79
.7

5
50

.8
68

.3
15

1
M
in
S
ta
te
s

3.
38

30
.6

7
37

79
.7

5
50

.8
68

.2
15

1
E
ar
ly
R
ej
ec
t

3.
5

24
.5

31
80

.3
3

50
.8

52
.2

55
.1

L
at
eR

ej
ec
t

3.
83

32
.3

3
60

62
.5

52
.2

87
.6

12
5

S
p
ec
sE
nd

F
ir
st
M
at
ch

4.
56

28
.1

7
42

78
.8

1
4.

98
78

.6
15

1
M
in
T
ra
ns

4.
56

28
.1

7
42

78
.8

1
4.

98
78

.6
15

2
M
in
S
ta
te
s

4.
56

28
.1

7
42

78
.8

1
5.

01
78

.6
15

2
E
ar
ly
R
ej
ec
t

4.
5

30
.1

7
34

66
50

.8
54

58
.1

L
at
eR

ej
ec
t

4.
83

58
.3

3
95

92
12

4
13

2
16

8

74

Chapter 5

Hierarchical Interface-Based

Decentralized Supervisory Control

The Hierarchical Interface-Based Supervisory Control (HISC) framework proposed

in [Led02, LBLW05, LLW05, LLD06, Led09] can alleviate the state-space explosion

problem, which is one of the main challenges in the control of Discrete Event Systems.

HISC provides a set of local properties that can be used to verify global properties,

such as nonblocking and controllability, so that the complete system model never

needs to be constructed. The sufficient conditions of HISC allow the independent

design and verification of different levels, ensuring that a change to one level of the

hierarchy will not impact the others.

The current HISC framework does not support decentralized control problems,

which arise naturally through the investigation of a large variety of distributed sys-

tems. These systems have many controllers that jointly control the distributed ar-

chitecture. Further, these controllers at different sites in the distributed system may

75

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

see the effect of different sets of sensors and may control different sets of control-

lable events. The controllers must coordinate the disabling and enabling of events to

realize the legal or desired behaviour. Also, the synthesis of decentralized supervi-

sors requires that the specification satisfies co-observability [RW92b]. Nevertheless,

when the system is composed of many sub-systems, checking co-observability using

the existing monolithic method [RW95] requires the construction of the whole system

model, which may be not possible due to the combinatorial explosion of the product

state space.

To address the above problems, we propose an approach called the Hierarchical

Interface-Based Decentralized Supervisory Control (HIDSC) framework that allows

HISC to manage decentralized control problems. The proposed HIDSC framework is

a scalable method that can mitigate the product state-space explosion problem, and

make decentralized control scale better. We introduce a level-wise co-observability

definition which does not require the synchronization of all the components. We

then prove that if a system is level-wise co-observable, it is globally co-observable.

This should allow larger problems to be solved. Further, we provide and prove the

necessary and sufficient conditions for supervisor existence in HIDSC, which relies on

a closed-loop system to be nonblocking, instead of the existing results that require

Lm(G)-closure.

Most of the material in this chapter first appeared in a joint paper with R. Leduc

and L. Ricker [LLR15].

76

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

5.1 Definitions Used for HIDSC

For decentralized control, there is an index set of N > 1 decentralized controllers,

D = {1, ..., N}. These controllers have only a partial view of the system behaviour and

control only a subset of the controllable events. To describe events that each decen-

tralized controller i ∈ D controls, we use the notation Σc,i ⊆ Σc, where ∪Ni=1Σc,i = Σc.

We refer to the set of controllers that control σ ∈ Σc as Dc (σ) := {i ∈ D |σ ∈ Σc,i}.

To describe events that each decentralized controller i ∈ D observes, we use

the notation Σo,i ⊆ Σo, where ∪N
i=1Σo,i = Σo. We refer to the set of controllers

that observe σ ∈ Σo by Do (σ) := {i ∈ D |σ ∈ Σo,i}. Correspondingly, the natural

projection describing the partial view of each controller is denoted by Pi : Σ∗ → Σ∗o,i,

for i ∈ D.

For decentralized control with a conjunctive architecture [RW92b], the fusion rule

is the conjunction of all local control decisions, i.e., an event is globally enabled if not

locally disabled. We use the conjunctive architecture in our work.

We now present a set of definitions for decentralized supervisory control in HIDSC.

For decentralized control, we define a group of local partial-observation decentralized

supervisors to exercise control over the plant. The following definition describes the

decision rules of individual decentralized supervisors and the conjunction rule that

combines their local control decisions into global control decisions.

Definition 5.1.1. Let K ⊆ Σ∗ be the desired language, i ∈ D, and t ∈ L(G). Then

the decision rule for a local partial-observation decentralized supervisor is

a function: SPi
(t) := (Σ\Σc,i) ∪ {σ ∈ Σc,i | P−1

i [Pi(t)]σ ∩ K ∩ L(G) 6= ∅}. The

conjunction of SPi
, i ∈ D, denoted by SCon, is defined as: SCon(t) := ∩Ni=1SPi

(t) =

∩Ni=1SPi
(Pi(t)).

77

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

We note that SPi
(t) = SPi

(Pi(t)) as the natural projection is idempotent, i.e.,

Pi(t) = Pi(Pi(t)).

We now define the closed behaviour for the closed-loop system of G under the

control of SCon.

Definition 5.1.2. Given G and SCon, the resulting closed-loop system is denoted

by SCon/G. The system’s closed behaviour L(SCon/G), is recursively defined as

follows:

I) ε ∈ L(SCon/G)

II) t ∈ L(SCon/G), σ ∈ SCon(t), and tσ ∈ L(G) if and only if tσ ∈ L(SCon/G).

The following is the definition of decentralized supervisory control.

Definition 5.1.3. Given G and SCon, we say SCon is a decentralized supervisory

control if the decision rule is defined as in Definition 5.1.1, and the resulting closed-

loop system and closed behaviour is defined as in Definition 5.1.2.

The following is the definition of nonblocking decentralized supervisory control. It

states that the marked language of the closed-loop system is the set of strings marked

by G and one still possible in the system’s closed-loop behaviour.

Definition 5.1.4. We say that SCon is a nonblocking decentralized supervi-

sory control (NDSC) for G if Lm(SCon/G) = L(SCon/G) where Lm(SCon/G) :=

L(SCon/G) ∩ Lm(G).

It is useful to introduce a generalization of NDSC in which the supervisory action

also includes marking as well as control, since allowing supervisors to add marking

78

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

information makes them more expressive. Now, the marked language of the closed-

loop system is the set of strings marked by K ⊆ Lm(G) that are still possible in the

system’s closed-loop behaviour.

Definition 5.1.5. Let K ⊆ Lm(G). We say that Scon is a marking nonblocking

decentralized supervisory control (MNDSC) for (K, G) if Lm(SCon/G) =

L(SCon/G) where Lm(Scon/G) := L(Scon/G) ∩ K.

The next definition creates an equivalence between theoretical decentralized su-

pervisory controls and DES supervisors. The idea is that the marking and control

information of SCon is represented by specification H, and that the closed-loop be-

haviour of H||G is equivalent to Scon/G.

Definition 5.1.6. Let SCon be a MNDSC for plant G = (Q, Σ, δ, q0, Qm) and

K ⊆ Lm(G), with Lm(SCon/G) = L(Scon/G) ∩ K and L(SCon/G) = K. Let H =

(X, Σ, ξ, x0, Xm) be a specification automaton. We say that H||G has equivalent

MNDSC behaviour with SCon/G, if K = Lm(H) ∩ Lm(G) and K = L(H) ∩ L(G).

Alternatively, we say that H is an equivalent theoretical implementation of

MNDSC SCon for G.

In our work, we focus on MNDSC, which is a more expressive supervisory control

paradigm. In particular, it will allow us to later introduce a decentralized supervisor

existence result that relies on the closed-loop system H||G to be nonblocking, instead

of the existing results that require K to be Lm(G)-closed. This is essential to adapting

decentralized control to the HISC approach as HISC provides a scalable method to

verify nonblocking, but not Lm(G)-closure.

We note that in decentralized control, there is no real implementation of the

centralized supervisor H. The above MNDSC SCon, defined as the control policy of

79

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

the conjunction of a group of decentralized supervisors, is the real supervisor. We also

note that for an HISC system, H will correspond to the theoretical flat supervisor of

the system defined in Section 5.2, and will be used to determine if the flat system is

nonblocking.

For reference, below is the traditional nonblocking decentralized supervisory con-

trol existence theorem that requires that K be Lm(G)-closed. We will later introduce

a decentralized supervisory control existence result in Section 5.4 which does not re-

quire that K be Lm(G)-closed, but instead will be based upon marking nonblocking

decentralized supervisory control.

Theorem 5.1.1 ([CL08]). Consider DES G = (Q, Σ, δ, q0, Qm), where Σuc ⊆ Σ

is the set of uncontrollable events, Σc = Σ\Σuc is the set of controllable events,

and Σo ⊆ Σ is the set of observable events. For each site i, where i = 1, ..., N

consider the set of controllable events Σc,i and the set of observable events Σo,i; overall,⋃N
i=1 Σc,i = Σc and

⋃N
i=1 Σo,i = Σo. Let Pi be the natural projection from Σ∗ to Σ∗o,i,

where i = 1, ..., N . Consider also the language K ⊆ Lm(G), where K 6= ∅. There

exists a nonblocking decentralized supervisor Scon for G such that Lm(Scon/G) = K

and L(Scon/G) = K if and only if the following three conditions hold:

1. K is controllable with respect to L(G) and Σuc;

2. K is co-observable with respect to L(G), Σo,i, and Σc,i, i = 1, ..., N ;

3. K is Lm(G)-closed.

80

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Figure 5.1: Interface Block Diagram with Low Data Events.

5.2 HISC Architecture

The HISC [Led02, LBLW05, LLW05, LLD06, Led09] approach decomposes a system

into a high-level subsystem which communicates with n ≥ 1 parallel low-level subsys-

tems through separate interfaces that restrict the interaction of the subsystems. The

high-level subsystem communicates with each low-level subsystem through a separate

interface.

In HISC there is a master-slave relationship. A high-level subsystem sends a

command to a particular low-level subsystem, which then performs the indicated

task and returns a response (answer). Figure 5.1 shows conceptually the structure

and information flow of the system. The overall structure of the system is shown

in Figure 5.2. This style of interaction is enforced by an interface that mediates

communication between the two subsystems. All system components, including the

interfaces, are modeled as automata.

To restrict information flow and decouple the subsystems, the system alphabet is

partitioned into pairwise disjoint alphabets:

81

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

High-Level

Low-Level 1

G
L1

G
H

G
I1

Low-Level n

G
Ln

G
In

Figure 5.2: Two Tiered Structure of Parallel System

Σ := ΣH ∪̇
⋃̇

j=1,...,n

[ΣLj
∪̇ΣRj

∪̇ΣAj
∪̇ΣLDj

] (5.1)

where we use ∪̇ to represent disjoint union.

The events in ΣH are called high-level events and the events in ΣLj
are the jth

low-level events (j = 1, . . . , n) as these events appear only in the high level and

jth low-level subsystem models, GH and GLj
respectively. We then have GH de-

fined over event set ΣH∪̇(∪̇j∈{1,...,n}[ΣRj
∪̇ΣAj

∪̇ΣLDj
]) and GLj

defined over event set

ΣLj
∪̇ΣRj

∪̇ΣAj
∪̇ΣLDj

. We model the jth interface by DES GIj , which is defined over

event set ΣRj
∪̇ΣAj

∪̇ΣLDj
. For the remainder of this thesis, we assume j ∈ {1, . . . , n}.

The events in ΣRj
, called request events, represent commands sent from the

high-level subsystem to the jth low-level subsystem. The events in ΣAj
are an-

swer events and represent the low-level subsystem’s responses to the request events.

The events in ΣLDj
are called low data events which provide a means for a low

level to send information (data) through the interface. Request, answer, and low

82

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

data events are collectively known as the set of LD interface events, defined as

ΣI := ∪̇k∈{1,...,n}[ΣRk
∪̇ΣAk

∪̇ΣLDk
], and GIj is an LD interface defined below. Please

see [Led09] for a discussion of the various points.

Figure 5.3 shows an example of an LD interface. It could correspond to a machine

at the low level with an effective internal buffer of two. In this diagram, the initial

state can be recognized by a thick outline, and marked states are filled.

GIj
start

done

isD
on

e

no
tD

on
e

start

done

isD
on

e

no
tD

on
e

0

1

3 4

2

SRj={isDone,start},SAj={done},SLDj={notDone}

Figure 5.3: Example LD Interface

Definition 5.2.1. The jth interface DES GIj = (Xj,ΣIj , ξj, xoj , Xmj
) is a LD inter-

face if the following properties are satisfied:

1. xoj ∈ Xmj

2. (∀x ∈ Xmj
)(∀σ ∈ ΣIj) ξj(x, σ)!⇒ [σ ∈ ΣRj

] ∨ [σ ∈ ΣLDj
∧ ξj(x, σ) ∈ Xmj

]

3. (∀x ∈ Xj −Xmj
)(∀σ ∈ ΣIj) ξj(x, σ)!⇒

[σ ∈ ΣAj
∧ ξj(x, σ) ∈ Xmj

] ∨ [σ ∈ ΣLDj
]

To simplify notation in our exposition, we bring in the following event sets, natural

projections, and languages.

83

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

ΣIj := ΣRj
∪̇ΣAj

∪̇ΣLDj
, PIj : Σ∗ → Σ∗Ij

ΣILj
:= ΣLj

∪ΣIj , PILj
: Σ∗ → Σ∗ILj

ΣIH := ΣH ∪
⋃

k∈{1,...,n}

ΣIk , PIH : Σ∗ → Σ∗IH

H := P−1
IH (L(GH)), Hm := P−1

IH (Lm(GH)) ⊆ Σ∗

Lj := P−1
ILj

(L(GLj
)), Lmj

:= P−1
ILj

(Lm(GLj
)) ⊆ Σ∗

Ij := P−1
Ij

(L(GIj)), Imj
:= P−1

Ij
(Lm(GIj)) ⊆ Σ∗

I := ∩k∈{1,...,n}Ik, Im := ∩k∈{1,...,n}Imk

ΣLD :=
⋃

k∈{1,...,n}

ΣLDk

We define our flat system to be G = GH ||GI1||GL1|| . . . ||GIn||GLn . By flat system

we mean the equivalent DES if we ignored the interface structure.

We now present the properties that an HISC system must satisfy to ensure that

it interacts with the interfaces correctly. Please see [Led09] for a discussion of the

various points.

Definition 5.2.2. The nth degree (n ≥ 1) interface system composed of DES

GH ,GI1 , GL1 , . . . ,GIn ,GLn, is LD interface consistent with respect to the alphabet

partition given by (5.1), if for all j ∈ {1, . . . , n}, the following conditions are satisfied:

Multi-level Properties

1. The event set of GH is ΣIH , and the event set of GLj
is ΣILj

.

84

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

2. GIj is a LD interface.

High-Level Property

3. (∀s ∈ H ∩ I) EligIj(s) ∩ (ΣAj
∪̇ΣLDj

) ⊆ EligH(s)

Low-Level Properties

4. (∀s ∈ Lj ∩ Ij) EligIj(s) ∩ ΣRj
⊆ EligLj(s)

5. (∀s ∈ Σ∗.ΣRj
∩ Lj ∩ Ij)

EligLj ∩Ij(sΣ
∗
Lj

) ∩ ΣAj
= EligIj(s) ∩ ΣAj

where

EligLj∩Ij(sΣ
∗
Lj

) :=
⋃

l∈Σ∗Lj

EligLj∩Ij(sl)

6. (∀s ∈ Lj ∩ Ij)

s ∈ Imj
⇒ (∃l ∈ Σ∗Lj

) sl ∈ Lmj
∩ Imj

.

We now provide an additional set of properties that the system must satisfy if the

flat system G is to be nonblocking. Please see [Led09] for a discussion of the various

points.

Definition 5.2.3. The nth degree (n ≥ 1) interface system composed of DES GH ,GI1 ,

GL1 , . . . ,GIn ,GLn, is said to be LD level-wise nonblocking if the following conditions

are satisfied:

(I) LD nonblocking at the high level:

(∀s ∈ H ∩ I)(∃s′ ∈ (Σ− ΣLD)∗)

ss′ ∈ Hm ∩ Im

85

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

(II) nonblocking at the low level:

(∀j ∈ {1, . . . , n})Lmj
∩ Imj

= Lj ∩ Ij

The theorem bellow states that verifying the LD level-wise nonblocking and LD

interface consistent conditions is sufficient to verify that our flat system is nonblock-

ing.

Theorem 5.2.1 ([Led09]). If the nth degree (n ≥ 1) interface system composed

of DES GH ,GI1 , GL1 , . . . ,GIn ,GLn, is LD level-wise nonblocking and LD interface

consistent with respect to the alphabet partition given by (5.1), then

L(G) = Lm(G) where G = GH ||GL1||GI1|| . . . ||GLn||GIn

Since checking that the LD level-wise nonblocking and LD interface consistent

conditions only require a single component at a time, we note that we can evaluate

each level independently. This means we do not need to construct the entire system

model, which provides a potentially significant reduction in computational resources.

For controllability, we need to separate the subsystems into their plant and su-

pervisor sub-components. We will do this as in Figure 5.4. We define the high-level

plant to be Gp
H , and the high-level supervisor to be SH (defined over event set ΣIH).

We define the jth low-level plant and supervisor to be Gp
Lj

and SLj
(defined over

ΣILj
) respectively. We next define the high-level subsystem to be GH := Gp

H ||SH ,

and define the jth low-level subsystem to be GLj
:= Gp

Lj
||SLj

. We note that in HISC

systems, interfaces are always supervisors.

We can now define our flat supervisor and plant as well as some other languages

as follows:

86

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

High level

Low level

G G SL L L= ||
p

G
p

L SL

GI

G G SH H H= ||
p

G
p

H SH

Figure 5.4: Plant and Supervisor Subplant Decomposition

Plant := Gp
H ||G

p
L1
|| . . . ||Gp

Ln
,

Sup := SH ||SL1|| . . . ||SLn||GI1|| . . . ||GIn ,

Hp := P−1
IHL(Gp

H), SH := P−1
IHL(SH) ⊆ Σ∗,

Lp
j := P−1

ILj
L(Gp

Lj
), SLj

:= P−1
ILj
L(SLj

) ⊆ Σ∗.

The controllability requirements that each level must satisfy are given in the fol-

lowing definition.

Definition 5.2.4. The nth degree (n ≥ 1) interface system composed of DES

Gp
H ,SH , Gp

L1
,SL1 ,GI1 , . . . ,G

p
Ln
,SLn ,GIn, is LD level-wise controllable with respect

to the alphabet partition given by (5.1), if for all j ∈ {1, . . . , n} the following condi-

tions hold:

(I) The alphabet of Gp
H and SH is ΣIH , the alphabet of Gp

Lj
and SLj

is ΣILj
,

and the alphabet of GIj is ΣIj

(II) (∀s ∈ Lp
j ∩ SLj

∩ Ij) EligLpj (s) ∩ Σu ⊆ EligSLj
∩Ij(s)

87

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

(III) (∀s ∈ Hp ∩ I ∩ SH) EligHp∩I(s) ∩ Σu ⊆ EligSH (s)

The theorem below states that verifying LD level-wise controllable is sufficient to

verify that the flat supervisor is controllable for the flat plant.

Theorem 5.2.2 ([Led09]). If nth degree (n ≥ 1) interface system composed of DES

Gp
H ,SH , Gp

L1
,SL1 ,GI1 , . . . ,G

p
Ln
,SLn ,GIn is LD level-wise controllable with respect to

the alphabet partition given by (5.1), then

(∀s ∈ L(Plant) ∩ L(Sup))

EligL(Plant)(s) ∩ Σu ⊆ EligL(Sup)(s)

Since checking that the LD level-wise controllable condition only requires at most

a single component at a time, we note that we can evaluate each level independently.

As such we again do not need to construct the entire system model.

5.3 HIDSC Architecture

In Section 5.2, we described a system composed of plant DES Gp
H , Gp

L1
, . . . , Gp

Ln
,

supervisor DES SH , SL1 , . . . ,SLn , and interface DES GI1 , . . . ,GIn . Although the

level-wise controllability condition [Led02, Led09] does effectively limit the high-level

supervisor to events in ΣIH , and the jth low-level supervisor to events in ΣILj
, it

requires the HISC structure and does not allow further restrictions outside of this

structure. In order to allow decentralized supervisors within components, we need to

extend the HISC structure. We will now introduce the Hierarchical Interface-based

Decentralized Supervisory Control (HIDSC) architecture. HIDSC is an extension of

HISC from centralized control to a decentralized architecture by allowing decentral-

ized supervisors within a subsystem, but without additional HISC restrictions.

88

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

In the HIDSC framework, all the HISC supervisors are replaced by corresponding

“specification” DES. In decentralized control, these specification DES represent the

control behaviours we wish to implement as decentralized controllers, not specifica-

tions for synthesizing a centralized maximally permissive supervisor.

For HIDSC, we will replace supervisor SH by specification DES FH (defined over

ΣIH), and we will replace supervisor SLj
by specification DES FLj

(defined over

ΣILj
). Typically, FH will express system-wide constraints about how the components

interact and what tasks the low levels should perform. FLj
expresses how the jth

low level will perform the tasks (requests) given to it by the high level. For each

component, there is a different index set of decentralized controllers.

We are now ready to define the structure of an HIDSC system.

Definition 5.3.1. The nth degree decentralized specification interface sys-

tem with respect to the alphabet partition given by (5.1) is composed of plant DES

Gp
H , Gp

L1
, . . . ,Gp

Ln
, specification DES FH , FL1 , . . . ,FLn, interface DES GI1 , . . . ,GIn,

and high-level and low-level decentralized controllers. The system has the following

structure.

High level:

• The high-level decentralized controllers have an index set DH := {NH,1, . . . , NH,n0}.

• The event set for Gp
H , FH and the corresponding decentralized controllers is

ΣIH .

• For i ∈ DH , ΣH,c,i ⊆ Σc∩ΣIH and ΣH,o,i ⊆ Σo∩ΣIH are the corresponding con-

trollable and observable event subsets for the high-level decentralized controllers.

Low level:

89

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

• For j ∈ {1, . . . , n}, the jth low-level component has an index set DLj
:= {NLj ,1, . . . , NLj ,nj

}

for its own decentralized controllers.

• The event set of each low-level component Gp
Lj

, FLj
and the corresponding de-

centralized controllers is ΣILj
.

• For i ∈ DLj
, ΣLj ,c,i ⊆ Σc ∩ ΣILj

and ΣLj ,o,i ⊆ Σo ∩ ΣILj
are the correspond-

ing controllable and observable event subsets for the low-level decentralized con-

trollers.

Multi-level:

• The index set for all decentralized controllers in the system is D := DH∪̇
⋃̇n

j=1DLj
=

{1, ..., N}.

For the rest of this section, we will refer to such a system as an nth degree de-

centralized specification interface system Ψ, or simply Ψ. Note that in Ψ, we do not

specify the index of decentralized controllers by {1, ..., n0}, {1, ..., nj}, etc., because

once combined they would overlap. We create the system index set using disjoint

union.

The flat system G is the synchronization of all the plant, specification, and inter-

face components in the system, i.e., G = Gp
H || G

p
L1
|| . . . || Gp

Ln
|| FH || FL1 || . . .

|| FLn || GI1 || . . . || GIn . We use the term flat system to mean the overall system

ignoring the HIDSC structure.

It is important to note that for an HIDSC system, we would first design level-wise

supervisors for the original HISC system while ignoring any decentralized restrictions.

We would then use the HISC structure to verify that the system is nonblocking

90

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

and controllable. We would next use these level-wise supervisors (which include

the system’s interface DES) as “specifications” for the design of the per-component

decentralized supervisors specified by the HIDSC system. The final system would not

contain any of these specification DES, just the resulting decentralized controllers that

would provide us with equivalent closed-loop behaviour (see Corollary 5.5.1 in Section

5.5).

5.4 HIDSC Co-observability Definition and Theo-

rem

The main focus here is to verify co-observability in an HIDSC system Ψ without

explicitly constructing the flat system. We will only perform a per-component co-

observability verification, but guarantee that the whole system is co-observable.

To aid in defining our per-component co-observability definition and HIDSC co-

observability theorem, we specify some decentralized notations for Ψ.

We use DH,c (σ) := {i ∈ DH |σ ∈ ΣH,c,i} to denote the set of decentralized con-

trollers in the high level that can control the event σ. We useDH,o (σ) := {i ∈ DH |σ ∈ ΣH,o,i}

to denote the set of decentralized controllers in the high level that can observe the

event σ. Correspondingly, PH,i : Σ∗ → (ΣH,o,i)
∗ is the natural projection describing

the partial view of controller i ∈ DH .

For j ∈ {1, . . . , n}, DLj ,c (σ) :=
{
i ∈ DLj

|σ ∈ ΣLj ,c,i

}
is the set of decentralized

controllers in the jth low-level component that can control the event σ. We use

DLj ,o (σ) :=
{
i ∈ DLj

|σ ∈ ΣLj ,o,i

}
to represent the set of decentralized controllers in

the jth low-level component that can observe the event σ. Correspondingly, PLj ,i :

91

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Σ∗ → (ΣLj ,o,i)
∗ is the natural projection describing the partial view of controller

i ∈ DLj
.

We use Dc (σ) := {i ∈ D |σ ∈ Σc} to denote the set of decentralized controllers

that can control the event σ.

Further, we introduce a few languages used for the HIDSC co-observability defi-

nition and theorem.

FH := P−1
IH (L(FH)), FLj

:= P−1
ILj

(L(FLj
)),

F := FH ∩ FL1 ∩ . . . ∩ FLn , P := Hp ∩ Lp
1 ∩ . . . ∩ Lp

n, L(G) := P .

Language FH represents the behaviour of the specification automata in the high-level

subsystem, while FLj
represents the behaviour of the specification automata for com-

ponent j in the low-level subsystem. Language F represents the global specification

of the flat system, and P represents the behaviour of the flat plant.

5.4.1 HIDSC Co-observability Definition

We now present the per-component level-wise co-observability definition for HIDSC

system Ψ. We note that each individual condition needs at most a single subsystem

for its verification.

Definition 5.4.1. Let Ψ be an HIDSC nth degree decentralized specification interface

system. Then Ψ is level-wise co-observable if for all j ∈ {1, . . . , n} the following

conditions hold:

I) (∀t ∈ FH ∩Hp ∩ I)(∀σ ∈ Σc)

tσ ∈ (Hp ∩ I)\FH⇒ (∃i ∈ DH,c (σ)) P−1
H,i[PH,i(t)]σ ∩ FH ∩Hp ∩ I = ∅,

II) (∀t ∈ FLj
∩ Ij ∩ Lp

j)(∀σ ∈ Σc)

tσ ∈ Lp
j\(FLj

∩ Ij) ⇒ (∃i ∈ DLj ,c (σ))P−1
Lj ,i

[PLj ,i(t)]σ ∩ FLj
∩ Ij ∩ Lp

j = ∅.

92

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Definition 5.4.1 states that HIDSC system Ψ is level-wise co-observable if the

high-level component is co-observable and each low-level component is co-observable.

We note that the interfaces are treated as specifications at the low level and

treated as plants at the high level. This is done this way because interfaces represent

the behaviour provided by its low level and the information needed to verify that it

is co-observable is typically present at the low level but not the high level. To avoid

having to repeat this information at the high level, we use the results of [LLMR14]

that allow us to treat supervisors as if they are plants once we verify they are co-

observable. By treating interfaces as plants at the high level, we allow the high-level

supervisor to be more permissive in general as there will typically be fewer strings

that can cause the co-observability verification to fail.

We now restate the co-observability definition in terms of our HIDSC system. We

note that from their definition, we know that languages F , I, and P are prefix-closed.

We also note that according to Definition 5.4.1, each i ∈ D represents some i1 ∈ DH

as some i2 ∈ DLj
, j ∈ {1, ..., n}.

Definition 5.4.2. Let Ψ be an HIDSC nth degree decentralized specification interface

system. Let D = {1, ..., N} =DH∪̇
⋃̇n

j=1DLj
be the index set for Ψ. Let Σc,i ⊆ Σ and

Σo,i ⊆ Σ be sets of controllable and observable events, respectively, for i ∈ D, where

Dc(σ) = {i ∈ D |σ ∈ Σc,i}. Let Pi : Σ∗ → Σ∗o,i, i ∈ D, be natural projections. Then

Ψ is globally co-observable if

(∀t ∈ F ∩ I ∩P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I)⇒(∃i ∈ Dc (σ))P−1
i [Pi(t)]σ ∩F ∩ I ∩

P = ∅.

Note that Definition 5.4.2 is the property we want to verify but we will do so

by using our per-component co-observability definition. We do not need to combine

93

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

the flat specifications, interfaces and plant components together in order to verify

Definition 5.4.2, thus potentially saving computation and helping to alleviate the

state-space explosion problem.

5.4.2 HIDSC Co-observability Theorem

The following is the HIDSC co-observability theorem which states that the level-

wise co-observability property is sufficient to guarantee that the flat system is co-

observable. This means that co-observability for the system can be verified while

only constructing a single component at a time.

Theorem 5.4.1. Let Ψ be an HIDSC nth degree decentralized specification interface

system. If Ψ is level-wise co-observable then Ψ is globally co-observable.

Proof. Let Ψ be an HIDSC nth degree decentralized specification interface system.

Assume Ψ is level-wise co-observable. We will now show that Ψ is globally co-

observable.

Sufficient to show that:

(∀t ∈ F ∩ I ∩P) (∀σ ∈ Σc) tσ ∈ P\(F ∩ I)⇒(∃i ∈ Dc (σ))P−1
i [Pi(t)]σ ∩F ∩ I ∩

P = ∅.

Let t ∈ F ∩ I ∩ P and σ ∈ Σc.

Assume tσ ∈ P\(F ∩ I).

As F = FH ∩FL1 ∩ . . .∩FLn , P = Hp ∩Lp
1 ∩ . . .∩Lp

n, I = I1 ∩ . . .∩In and their

corresponding component languages are all prefix-closed by definition, we conclude

from t ∈ F ∩ I ∩ P that:

t ∈ FH ∩ Hp ∩ I, (∀j ∈ {1, . . . , n}) t ∈ FLj
∩ Ij ∩ Lp

j , and (∀j ∈ {1, . . . , n})

t ∈ Ij ∩ Lp
j (1)

94

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

As tσ ∈ P\(F ∩ I), we have: tσ ∈ P and tσ /∈ F ∩ I.

⇒ tσ /∈ FH ∩ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In, by definition of F and I.

⇒ tσ ∈ P and tσ /∈ FH , or tσ ∈ P and (∃j ∈ {1, . . . , n}) tσ /∈ FLj
∩ Ij (2)

Case 1) (∃j ∈ {1, . . . , n}) tσ /∈ FLj
∩ Ij.

Let j ∈ {1, . . . , n}.

We also have t ∈ FLj
∩ Ij ∩ Lp

j , by (1).

⇒ t ∈ FLj
∩Ij∩Lp

j , tσ ∈ L
p
j and tσ /∈ FLj

∩Ij as tσ ∈ P and P = Hp∩Lp
1∩. . .∩Lp

n.

As Ψ is level-wise co-observable, we have:

(∃i ∈ DLj ,c (σ)) P−1
Lj ,i

[PLj ,i(t)]σ ∩ FLj
∩ Ij ∩ Lp

j = ∅.

⇒ (∃i ∈ Dc (σ)) P−1
Lj ,i

[PLj ,i(t)]σ ∩ FLj
∩ Ij ∩ Lp

j = ∅, as DLj ,c (σ) ⊆ Dc (σ).

Let i ∈ Dc (σ).

⇒ P−1
i [Pi(t)]σ ∩ FLj

∩ Ij ∩ Lp
j = ∅, as PLj ,i(t) : Σ∗ → (ΣLj ,o,i)

∗ and Pi(t) : Σ∗ →

(ΣLj ,o,i)
∗.

We note that the above i ∈ DLj ,c(σ) represents the same decentralized supervisor

as the i ∈ Dc(σ). They thus have the same set of observable events, thus PLj ,i = Pi.

⇒ P−1
i [Pi(t)]σ∩F ∩ I∩P = ∅, as F ∩ I∩P⊆ FLj

∩Ij∩Lp
j , thus s ∈ F ∩ I∩P ⇒

s ∈ FLj
∩ Ij ∩ Lp

j which would cause a contradiction.

Case 2) (∀j ∈ {1, . . . , n}) tσ ∈ FLj
∩ Ij.

From earlier we have: tσ ∈ P and tσ /∈ FH ∩ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In.

As (∀j ∈ {1, . . . , n}) tσ ∈ FLj
∩ Ij, we have tσ ∈ FL1 ∩ . . . ∩ FLn∩I1 ∩ . . . ∩ In.

⇒ tσ /∈ FH and tσ ∈ I.

⇒ tσ /∈ FH and tσ ∈ Hp ∩ I, as P = Hp ∩ Lp
1 ∩ . . . ∩ Lp

n ⊆ Hp.

We also have t ∈ FH ∩Hp ∩ I by (1).

95

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

As Ψ is level-wise co-observable, we have:

(∃i ∈ DH,c (σ)) P−1
H,i[PH,i(t)]σ ∩ FH ∩ I ∩Hp = ∅.

⇒ (∃i ∈ Dc (σ)) P−1
H,i[PH,i(t)]σ ∩ FH ∩ I ∩Hp = ∅, as DH,c (σ) ⊆ Dc (σ).

Let i ∈ Dc (σ) as specified in the above line and with the indicated properties.

⇒ P−1
i [Pi(t)]σ ∩ FH ∩ I ∩ Hp = ∅, as PH,i(t): Σ∗ → (ΣH,o,i)

∗ and Pi(t): Σ∗ →

(ΣH,o,i)
∗.

We note that the above i ∈ DH,c(σ) represents the same decentralized supervisor

as the i ∈ Dc(σ). They thus have the same set of observable events, thus PH,i = Pi.

⇒ P−1
i [Pi(t)]σ∩F ∩ I∩P = ∅, as F ∩ I∩P ⊆ FH∩I∩Hp, thus s ∈ F ∩ I∩P ⇒

s ∈ FH ∩ I ∩Hp which would cause a contradiction.

By Case 1) and 2), we have: (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩ F ∩ I ∩ P = ∅.

As t ∈ F ∩ I∩P and σ ∈ Σc are chosen arbitrarily, we conclude that Ψ is globally

co-observable.

5.4.3 Complexity Analysis

In monolithic verification, the n low-level subsystems are composed directly with the

high-level system without using the interface structure. The size of the state space

for the monolithic method is the size of the product state space of GH || GL1 || . . .

|| GLn . If the size of the state space of GH is bounded by NH , and the size of the

state space for each GLj
is bounded by NL, then the size of the state space of the

monolithic method is bounded by NHN
n
L .

Our method verifies each component separately, therefore the size of the state

space is bounded by the size of the component combined with its interface. For

96

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

j = 1, ..., n, if we assume that the size of the state space of GIj is bounded by NI , then

each low-level subsystem GLj
||GIj is bounded by NLNI . The high-level subsystem

GH ||GI1|| . . . ||GIn is bounded by NHN
n
I . Therefore, our method is bounded by the

larger of NHN
n
I and NLNI . Typically in an HIDSC design, the size of the high level

is the limiting factor. This means that as long as NI � NL, we should achieve

significant computational savings [LLW05].

5.5 MNDSC Supervisor Existence Theorem

We now present the marking nonblocking decentralized supervisory control (MNDSC)

existence theorem, which shows that there exists an MNDSC to achieve the specifi-

cation if and only if K is controllable and co-observable.

Note that in Theorem 5.5.1 bellow we do not require that K be Lm(G)-closed

which is assumed by traditional decentralized control [CL08]. This will allow us to

apply the result to our HIDSC system as we have an HISC nonblocking result but

not an HISC Lm(G)-closed result.

Theorem 5.5.1. Let Plant := (Q, Σ, δ, q0, Qm), K ⊆ Lm(Plant), and K 6= ∅.

There exists an MNDSC SCon for (K, Plant) such that Lm(SCon/Plant) = K if and

only if K is controllable and co-observable with respect to L(Plant).

Proof. Let K ⊆ Lm(Plant), K 6= ∅.

If part)

Assume K is controllable and co-observable with respect to L(Plant).

We will show that there exists a marking nonblocking decentralized supervisory

control SCon for (K, Plant) such that Lm(SCon/Plant) = K.

97

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

We must first construct a suitable decentralized supervisory control SCon for

Plant.

For each i ∈ D and t ∈ L(Plant), we define the local decentralized supervisory

control as follows:

SPi
(t) := Σuc ∪ (Σc\Σc,i) ∪ {σ ∈ Σc,i | P−1

i [Pi(t)]σ ∩K ∩ L(Plant) 6= ∅}.

SPi
enables all events in Σuc ∪ (Σc\Σc,i) and events in {σ ∈ Σc,i | P−1

i [Pi(t)]σ ∩

K ∩L(Plant) 6= ∅}. Only events in {σ ∈ Σc,i | P−1
i [Pi(t)]σ ∩K ∩L(Plant) = ∅} are

not in SPi
(t), for each i ∈ D.

The global decentralized supervisory control policy SCon is defined as the conjunc-

tion of SPi
, i ∈ D, described as follows: SCon(t) := ∩N

i=1SPi
(t).

The language L(SCon/Plant) is defined in Definition 5.1.2.

Clearly, SCon is a decentralized supervisory control as defined in Definition 5.1.3.

We will now show that Lm(SCon/Plant) = K and that SCon is nonblocking. To do

this, our first step is to show that L(SCon/Plant) = K.

Step 1.1) Show that L(SCon/Plant) = K.

We will show that L(SCon/Plant) ⊆ K and K ⊆ L(SCon/Plant).

Part A) Show that L(SCon/Plant) ⊆ K.

Let t ∈ L(SCon/Plant).

We will now prove by induction on the length of string t that t ∈ K.

Base case: t = ε.

We know that ε ∈ L(SCon/Plant) by definition. Further, ε ∈ K since K 6= ∅ by

assumption. We thus have t ∈ K.

Inductive step: For σ ∈ Σ, we assume tσ ∈ L(SCon/Plant) and t ∈ K.

We will now show this implies tσ ∈ K .

98

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

⇒ t ∈ L(SCon/Plant), (∀i ∈ D)σ ∈ SPi
(t), and tσ ∈ L(Plant), by definition of

L(SCon/Plant).

We note that we also have t ∈ K, by inductive assumption.

We have two cases: σ ∈ Σuc or σ ∈ Σc.

Case A.1) σ ∈ Σuc.

From above, we have: t ∈ K, σ ∈ Σuc, and tσ ∈ L(Plant).

As K is controllable, we have: KΣuc ∩ L(Plant) ⊆ K.

⇒ tσ ∈ K.

Case A.2) σ ∈ Σc.

From above, we have:

t ∈ K, σ ∈ Σc, (∀i ∈ D)σ ∈ SPi
(t), and tσ ∈ L(Plant).

We will show tσ ∈ K using proof by contradiction.

Assume tσ /∈ K.

⇒ tσ ∈ L(Plant)\K.

As K is co-observable with respect to L(Plant), we have:

(∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩K ∩ L(Plant) = ∅.

⇒ (∃i ∈ Dc (σ))σ /∈ SPi
(t).

⇒ (∃i ∈ D)σ /∈ SPi
(t).

⇒ σ /∈ SCon(t), by definition of SCon(t).

⇒ tσ /∈ L(SCon/Plant).

This is a contradiction. We thus conclude that tσ ∈ K.

This completes the proof for the inductive step.

We thus conclude by induction that L(SCon/Plant) ⊆ K.

This completes the proof for part A).

99

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Part B) Show that K ⊆ L(SCon/Plant).

Let t ∈ K.

We will prove by induction on the length of string t that t ∈ L(SCon/Plant).

Base case: t = ε.

We know that ε ∈ K since K 6= ∅ by assumption. Further, we have ε ∈

L(SCon/Plant) by definition. We thus have t ∈ L(SCon/Plant).

Inductive step: For σ ∈ Σ, we assume tσ ∈ K and t ∈ L(SCon/Plant).

We will now show this implies tσ ∈ L(SCon/Plant).

We thus have:

t ∈ K and tσ ∈ L(Plant) by the assumption thatK ⊆ Lm(Plant) ⊆ L(Plant).

We note that we also have t ∈ L(SCon/Plant) by the inductive assumption.

We have two cases: σ ∈ Σuc or σ ∈ Σc.

Case B.1) σ ∈ Σuc.

⇒ σ ∈ SCon(t), as uncontrollable events are enabled by default for supervisor

SCon(t).

From above we have:

t ∈ L(SCon/Plant), σ ∈ SCon(t) and tσ ∈ L(Plant).

⇒ (∀i ∈ D)σ ∈ SPi
(t) by definition of SCon(t).

⇒ tσ ∈ L(SCon/Plant) by definition of L(SCon/Plant).

Case B.2) σ ∈ Σc.

From above we have: t ∈ L(SCon/Plant), t ∈ K, tσ ∈ K, σ ∈ Σc, and tσ ∈

L(Plant).

From the definition of L(SCon/Plant), to show that tσ ∈ L(SCon/Plant), it is

sufficient to show that (∀i ∈ D)σ ∈ SPi
(t).

100

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Let i ∈ D.

If σ /∈ Σc,i, we immediately have: σ ∈ SPi
(t) as σ ∈ Σc\Σc,i.

We now consider σ ∈ Σc,i. It is sufficient to show that: P−1
i [Pi(t)]σ ∩ K ∩

L(Plant) 6= ∅.

We first note that: t ∈ P−1
i [Pi(t)] := {s ∈ Σ∗|Pi(s) ∈ {Pi(t)}}

⇒ tσ ∈ P−1
i [Pi(t)]σ.

As we have tσ ∈ K and tσ ∈ L(Plant) from above, we have:

tσ ∈ P−1
i [Pi(t)]σ ∩K ∩ L(Plant).

⇒ P−1
i [Pi(t)]σ ∩K ∩ L(Plant) 6= ∅.

We thus conclude tσ ∈ L(SCon/Plant).

This completes the proof for the inductive step.

We thus conclude by induction that K ⊆ L(SCon/Plant).

This completes the proof for part B).

By part A) and part B), we have L(SCon/Plant) = K.

This completes the proof for Step 1.1).

Step 1.2) Show that Lm(SCon/Plant) = K.

By the definition of marking nonblocking decentralized supervisory control, we

have: Lm(SCon/Plant) = L(SCon/Plant) ∩ K.

Substituting L(SCon/Plant) = K (by the result of Step 1.1), we have:

Lm(SCon/Plant) = K ∩ K = K.

Step 1.3) Show that SCon is nonblocking.

It is sufficient to show that Lm(SCon/Plant) = L(SCon/Plant).

The result is automatic since by Step 1.1) L(SCon/Plant) = K and by Step

1.2) Lm(SCon/Plant) = K.

101

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

By Steps 1.1), 1.2) and 1.3), we conclude that there exists a marking nonblock-

ing decentralized supervisory control SCon for Plant such that Lm(SCon/Plant) = K.

If part is complete.

Only if part)

Assume there exists a marking nonblocking decentralized supervisory control SCon

for (K, Plant) such that Lm(SCon/Plant) = K.

We will now show this implies thatK is controllable and co-observable with respect

to L(Plant).

We first note that as SCon is nonblocking, K = Lm(SCon/Plant) = L(SCon/Plant).

Step 2.1) Show that K is controllable with respect to L(Plant).

Sufficient to show that KΣuc∩L(Plant)⊆K.

Let t ∈ K, σ ∈ Σuc and tσ ∈ L(Plant).

⇒ t ∈ L(SCon/Plant) and σ ∈ SCon(t), as L(SCon/Plant) = K and by the

definition of SCon(t).

⇒ tσ ∈ L(SCon/Plant), by definition of L(SCon/Plant).

⇒ tσ ∈ K, as L(SCon/Plant) = K.

⇒ KΣu∩L(Plant)⊆K.

This completes the proof that K is controllable with respect to L(Plant).

Step 2.2) Show that K is co-observable with respect to L(Plant).

Sufficient to show that:

(∀t ∈ K∩L(Plant)) (∀σ ∈ Σc) tσ ∈ L(Plant)\K ⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ∩

K ∩ L(Plant) = ∅.

Let t ∈ K ∩ L(Plant), σ ∈ Σc and tσ ∈ L(Plant)\K.

⇒ tσ ∈ L(Plant) and tσ /∈ K.

102

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

⇒ tσ /∈ L(SCon/Plant) as L(SCon/Plant) = K.

⇒ (∃i ∈ D)σ /∈ SPi
(t)), by the definition of L(SCon/Plant).

⇒ (∃i ∈ D) (σ ∈ Σc,i), (P−1
i [Pi(t)]σ ∩ K ∩ L(Plant) = ∅), by the definition of

SPi
(t), as only events in {σ ∈ Σc,i | P−1

i [Pi(t)]σ∩K∩L(Plant) = ∅} are not in SPi
(t).

⇒ (∃i ∈ Dc (σ)) P−1
i [Pi(t)]σ ∩K ∩ L(Plant) = ∅, by the definition of Dc (σ).

This completes the proof that K is co-observable with respect to L(Plant).

By Step 2.1 and Step 2.2 we conclude that K is controllable and co-observable

with respect to L(Plant).

Only if part is complete.

By If part and Only if part, we conclude that there exists a marking nonblocking

decentralized supervisory control SCon for (K, Plant) such that Lm(SCon/Plant) =

K if and only if K is controllable and co-observable with respect to L(Plant).

We will now relate Theorem 5.5.1 to our HIDSC system and nonblocking. In

essence, we are requiring Ψ to have equivalent MNDSC behaviour with SCon/Plant,

which ensures our HIDSC system implementation will be nonblocking.

Corollary 5.5.1. Let Ψ be an HIDSC nth degree decentralized specification interface

system. Let Plant := Gp
H ||G

p
L1
|| . . . ||Gp

Ln
, Spec := FH ||FL1|| . . . ||FLn||GI1 || . . . ||GIn .

Let Lm(Spec) ∩ Lm(Plant) 6= ∅. There exists an MNDSC SCon for (Lm(Spec) ∩

Lm(Plant), Plant) such that Lm(SCon/Plant) = Lm(Spec) ∩ Lm(Plant), and

L(SCon/Plant) = L(Spec)∩L(Plant), if and only if Lm(Spec)∩Lm(Plant) is con-

trollable and co-observable with respect to L(Plant), and Lm(Spec) ∩ Lm(Plant) =

L(Spec) ∩ L(Plant).

Proof.

103

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

If part)

Assume Lm(Spec) ∩ Lm(Plant) is nonblocking, controllable and co-observable

with respect to L(Plant), and Lm(Spec) ∩ Lm(Plant) = L(Spec) ∩ L(Plant).

Take K = Lm(Spec) ∩ Lm(Plant) and we have by Theorem 5.5.1 there exists

an MNDSC SCon for (Lm(Spec) ∩ Lm(Plant), Plant) such that Lm(SCon/Plant) =

Lm(Spec) ∩ Lm(Plant).

As SCon is nonblocking by Theorem 5.5.1, we have:

Lm(Spec) ∩ Lm(Plant) = Lm(SCon/Plant) = L(SCon/Plant).

As Lm(Spec) ∩ Lm(Plant) = L(Spec) ∩ L(Plant) by assumption, we have:

L(SCon/Plant) = L(Spec) ∩ L(Plant).

Only if part)

Assume There exists an MNDSC SCon for (Lm(Spec) ∩ Lm(Plant), Plant) such

that Lm(SCon/Plant) = Lm(Spec) ∩ Lm(Plant).

TakeK = Lm(Spec)∩Lm(Plant) and we have by Theorem 5.5.1 that Lm(Spec)∩

Lm(Plant) is controllable and co-observable with respect to L(Plant).

As SCon is nonblocking, we have:

Lm(Spec) ∩ Lm(Plant) = Lm(SCon/Plant) = L(SCon/Plant) = L(Spec) ∩

L(Plant).

For HIDSC system Ψ, Corollary 5.5.1 tells us that the marked behaviour of our

MNDSC and flat plant is equal to Lm(Spec) ∩ Lm(Plant) and their closed behaviour

is equal to L(Spec) ∩ L(Plant). To apply Corollary 5.5.1, we need to first show that

Ψ is co-observable, nonblocking, and controllable. For scalability, we want to verify

all these global properties using only per-component properties. Theorem 5.4.1 shows

104

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

us that level-wise co-observability gives us global co-observability. Theorem 5.2.1 and

5.2.2 tell us that the HISC LD level-wise nonblocking, LD interface consistent, and

level-wise controllability properties together imply that our flat system is nonblocking

and controllable. We can thus verify all needed global properties using per-component

checks. As we never need to construct the full system model, this offers potentially

great computational savings.

105

Chapter 6

Example

To demonstrate the HIDSC method, we adapt a small manufacturing system from

[Led02], that was originally modeled as an HISC system. See Figure 6.1. The system

is composed of three manufacturing units running in parallel, a testing unit, material

feedback, a packaging unit, plus three buffers to insure the proper flow of material.

Figure 6.2 shows which DES belong to the high-level subsystem (GH), high-level

plant (GH), the high-level specification automata (SH), the jth low-level subsystem

(GLj
), the jth low-level plant (GLj

), the jth low-level specification automata (SLj
),

and the jth interface DES (GIj), j = I, II, III. We note that the three low-level

subsystems shown in Figure 6.2 are identical up to relabeling. Figure 6.3 shows the

low-level subsystems in detail.

Controllable events are those with a slash on the transition arrow, marked states

are states with an unlabeled incoming arrow, and initial states are states with an

unlabeled outgoing arrow.

106

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

4
 slo

t
in

p
u
t

b
u

ffer

4
 slo

t
o
u
tp

u
t

b
u

ffer

p
ack

ag
in

g
u

n
it

4
 slo

t
p
ack

ag
e

b
u

ffer

test
u
n
it

so
u

rce

m
an

u
factu

rin
g

 u
n

it I

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p

o
l

d
ip

_
acid

,

p
o

lishstr_rlse

co
m

p
l_

p
o

l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p
tA

str_
p
tB

cm
p
l_

A

cm
p
l_

B

ret_
p
t

D
efin

e N
ew

 E
v
en

ts-j

attch
_
p
tA

,
attch

_
p
tB

,

fin
A

_
attch

, fin
B

_
attch

P
a

th
 F

lo
w

 M
o

d
el-j

p
art_

en
t

p
art_

arr1
p

art_
lv

1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_

A

reco
g

_
B

p
art_

lv
3m

an
u

factu
rin

g
 u

n
it II

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p

o
l

d
ip

_
acid

,

p
o

lishstr_rlse

co
m

p
l_

p
o

l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p
tA

str_
p
tB

cm
p
l_

A

cm
p
l_

B

ret_
p
t

D
efin

e N
ew

 E
v
en

ts-j

attch
_
p
tA

,
attch

_
p
tB

,

fin
A

_
attch

, fin
B

_
attch

P
a

th
 F

lo
w

 M
o

d
el-j

p
art_

en
t

p
art_

arr1
p

art_
lv

1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_

A

reco
g

_
B

p
art_

lv
3m

an
u

factu
rin

g
 u

n
it III

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p

o
l

d
ip

_
acid

,

p
o

lishstr_rlse

co
m

p
l_

p
o

l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p
tA

str_
p
tB

cm
p
l_

A

cm
p
l_

B

ret_
p
t

D
efin

e N
ew

 E
v
en

ts-j

attch
_
p
tA

,
attch

_
p
tB

,

fin
A

_
attch

, fin
B

_
attch

P
a

th
 F

lo
w

 M
o

d
el-j

p
art_

en
t

p
art_

arr1
p

art_
lv

1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_

A

reco
g

_
B

p
art_

lv
3

Figure 6.1: Block Diagram of Parallel Plant System.

107

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

High level Subsystem

GH

SH

new_part

Source Sink

allow_exit

Packaging System

take_item

p
ack

ag
e

allow_exit

Test Unit

part_f_obuff part_passes

p
art_

fails

ret_inbuff

deposit_part

GH

Low Level Subsystem I Low Level Subsystem IIILow Level Subsystem II

GI-I part_ent-I

fin_exit-I

GI-II part_ent-II

fin_exit-II

GI-III part_ent-III

fin_exit-III

G , j = IL-I G , j = IIL-II
G , j = IIIL-III

G L-I

S L-I

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-II

S L-II

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-III

S L-III

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

in_buff ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

package
buffer deposit_part deposit_part deposit_part deposit_part

take_item take_item take_item take_item

out_buff

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

part_ent-I,
part_ent-II,
part_ent-III

part_ent-I,
part_ent-II,
part_ent-III

part_f_obuff part_f_obuff part_f_obuff part_f_obuff

Ensure_matFb
new_part new_part new_part new_part

part_passes part_passes part_passes part_passes

Figure 6.2: Complete Parallel System.
108

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

GLj

GLj

SLj

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p

o
l-j

co
m

p
l_

p
o

l-j

GI (j , i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_

p
tA

-jfinA_attch-j take_pt-j

str_
p

tB
-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

Figure 6.3: Low-Level Subsystem j.

109

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

6.1 Manufacturing System as an HIDSC

Originally this example was modeled as an HISC system. We will now adapt it to

an HIDSC system. Typically, we would only do this if the system had an inherent

distributed nature forcing us to implement supervisors with partial observations and

partial controllability beyond the compartmentalized limitations imposed by the HISC

structure.

We define the alphabet partition Σ :=[∪̇j∈{I,II,III}(ΣLj
∪̇ΣRj

∪̇ΣAj
)] ∪̇ ΣH below:

ΣH = {take item, package, allow exit ,

new part , part f obuff , part passes ,

part fails , ret inbuff , deposit part}

ΣRj
= {part ent-j}

ΣAj
= {fin exit-j}

110

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

ΣLj
= {start pol-j , attch ptA-j , attch ptB-j ,

start case-j , comp pol-j , finA attch-j ,

finB attch-j , compl case-j , part arr1-j ,

part lv1-j , partLvExit-j , str exit-j ,

part arr2-j , recog A-j , recog B-j ,

part lv2-j , part arr3-j , part lv3-j ,

take pt-j , str ptA-j , str ptB-j ,

compl A-j , compl B-j , ret pt-j ,

dip acid-j , polish-j , str rlse-j , Attch case-j}

Our first step is to replace the existing supervisors with specification automata;

thus let FH = SH and FLj
= SLj

, j = I, II, III.

Now we only consider a sample run for the low-level controllers for a single low-

level subsystem, as the other low-level subsystems are identical up to relabel.

We next design decentralized controllers (H1, H2, LI1 , LI2 , LII1 , LII2 , LIII1 , LIII2)

to define our HIDSC problem.

For the high-level subsystem, the observable and controllable alphabet for con-

troller H1 is specified as:

ΣH,o,1 = ΣI ∪ {new part, ret inbuff , part f obuff },

ΣH,c,1 = (ΣI ∩ Σc) ∪ {part f obuff }.

The observable and controllable alphabet for controller H2 is specified as:

ΣH,o,2 = (ΣI ∩ Σuc) ∪ {take item, package, allow exit, new part, part passes,

111

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

part fails , ret inbuff , deposit part}

ΣH,c,2 = {take item, allow exit, new part, part f obuff , part passes, ret inbuff ,

deposit part}.

For the jth low-level subsystem (j = I, II, III), the observable alphabet for con-

trollers Lj1 and Lj2 is specified as:

ΣL,o,j1 = {part ent-j , fin exit-j , start pol-j , part arr1-j}

ΣL,o,j2 = ΣLj

The controllable alphabet for controllers Lj1 and Lj2 is specified as:

ΣL,c,j1 = {part ent-j , start pol-j}

ΣL,c,j2 = (ΣLj
∩ Σc) \ {start pol-j}

The index sets of decentralized controllers for each component are: DH={H1,

H2}, DLI
={LI1 , LI2}, DLII

={LII1 , LII2}, and DLIII
={LIII1 , LIII2}.

We now define the flat plant, and the flat specification automata as follows:

Plant := GH ||GLI
||GLII

||GLIII

Spec := FH ||FLI
||FLII

||FLIII
||GII

||GIII
||GIIII

6.2 Co-observability Verification for the Decentral-

ized System

We now need to verify whether Lm(Spec) is co-observable w.r.t. L(Plant). We

can then conclude, in combination with checking controllability and nonblocking, by

Corollary 5.5.1 that there exists an MNDSC decentralized supervisory control and

that its resulting closed-loop behaviour is the same as that of the flat system of our

HIDSC system. By Theorem 5.4.1, we know that to check co-observability of the

112

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

HIDSC system, it is sufficient to verify level-wise co-observability.

The following steps for level-wise co-observability verification are:

Step 1. Verify whether the first low-level subsystem satisfies its portion of the level-

wise co-observable definition, i.e., whether L(FLI
||GII

) is co-observable w.r.t.

L(GLI
), ΣL,c,i, ΣL,o,i for i ∈ DLI

.

Using our research software tool, we verified that the first low-level component

satisfies its portion of the level-wise co-observable definition. The monolithic

verification ran for 5 hours without finishing, so we stopped it. The best run

time of the incremental verification algorithm was 4.76 seconds. The state size

for the low level was 550.

Step 2. Step 1 is sufficient to verify all three low levels as they are identical up to

relabeling.

Step 3. Verify whether the high-level subsystem satisfies its portion of the level-wise

co-observable definition, i.e., verifying whether L(FH) is co-observable w.r.t.

L(GH ||GII
), ΣH,c,i, ΣH,o,i, for i ∈ DH .

Using our research software tool, we verified that the high-level component

satisfies its portion of the level-wise co-observable definition. The monolithic

verification ran for 5 hours without finishing, so we stopped it. The best run

time of the incremental verification algorithm was 424.78 seconds. The state

size for the high level was 3120.

By completing Steps 1-3, we conclude that the decentralized system is level-wise

co-observable, thus globally co-observable by Theorem 5.4.1. The total verification

113

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

run time was thus 429.54 seconds for a system whose complete system model has a

state size of 2.78× 1010.

We applied our incremental verification algorithm to the entire system model (i.e.

to the flat system), but our software still had not completed after 5 hours, so we

stopped it.

Using our software tool DESpot [DES14], we verified that the system is level-wise

controllable, LD level-wise nonblocking, and LD interface consistent. We can thus

conclude by Theorem 5.2.1 and Theorem 5.2.2 that our flat system is nonblocking

and controllable. We conclude by Corollary 5.5.1 that there exists a marking non-

blocking decentralized supervisory control SCon for Plant, and that Spec||Plant has

equivalent MNDSC behaviour with SCon/Plant. This means that since Spec||Plant

is nonblocking, SCon/Plant is also nonblocking.

6.3 Complexity Analysis for the Decentralized Sys-

tem

Applying DESpot to the small manufacturing system example, we found that the

state size of the entire system was 2.78 × 1010. However, the high-level state size

was 3120 and the low-level state size was 550. As an HIDSC check only requires

constructing a single component at a time, this is a potential savings of about seven

orders of magnitude.

The computational complexity to verify co-observability using the monolithic ap-

proach in [RW95] is O(|Σ||Y |2(N+2)), where Σ is the event set, Y is the state space,

114

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

and N is the number of decentralized controllers. Substituting in for the small man-

ufacturing system example, verifying co-observability using the above method gives

a computation bounded by |42||2.78× 1010|2(8+2) = 3.19× 10210. Using our method,

the computation is bounded by |15||3120|2(2+2) = 1.35× 1029. The potential compu-

tational saving is a 180 order of magnitude reduction.

115

Chapter 7

Conclusions and Future Work

In this chapter, we present our conclusions and discuss future work.

7.1 Conclusions

In decentralized control, agents have only a partial view and partial control of the

system and must cooperate to achieve the control objective. In order to synthesize a

decentralized control solution, a specification must satisfy the co-observability prop-

erty. Existing co-observability verification methods require the possibly intractable

construction of the complete system. To address this issue, we introduced an incre-

mental verification of co-observability approach. Selected subgroups of the system are

evaluated individually, until verification is complete. The new method is potentially

much more efficient than the existing monolithic approaches, in particular for systems

composed of many subsystems.

We applied our incremental algorithm to a small example of 114 states, made up

of three plant components and 3 specifications. Each run used a different component

116

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

ordering and a different configuration of our selection heuristics. The fastest version

had a speedup of 40.74 times over the monolithic algorithm, while the slowest was

20% slower. It was clear that we need to apply our software to a wider range of

examples, and that we need to develop better heuristics, particularly with respect to

the initial ordering of the components.

To further increase the scalability of decentralized control, we adapted the exist-

ing Hierarchical Interface-Based Supervisory Control (HISC) to support it. We intro-

duced the Hierarchical Interface-Based Decentralized Supervisory Control (HIDSC)

framework that included a per-component definition of co-observability that allows

co-observability to be evaluated using only a single component at a time. As a result,

the entire system model never needs to be constructed which potentially provides

significant savings. Finally, we provided and proved the necessary and sufficient con-

ditions for supervisory control existence in the HIDSC framework.

We applied our approach to a small manufacturing example. It contained a high

level with 3120 states, three low levels with 550 states each, and a flat model with

2.78× 1010 states. We verified the per-component co-observability property in 429.54

seconds. The incremental algorithm was used since the monolithic version failed to

complete after five hours of trying to verify a low level. We applied the incremental

algorithm to verify the HIDSC system as a flat model but our software still had not

completed after 5 hours, so we stopped it.

7.2 Future Work

For incremental verification of co-observability, we need to apply our software to many

more examples, in particular examples with more components, and larger components.

117

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

We also need to investigate better heuristics, in particular with respect to the initial

ordering of the components. We would also like to extend our incremental verification

method to state-based co-observability [Aga14].

For HIDSC framework, we recommend the following items. First, we recommend

extending HIDSC from the current two level approach to a multi-level method to

make HIDSC handle even larger systems in a flexible manner.

Second, if a component is not co-observable, then we could introduce communi-

cation to “allow” certain events to be observable [WVS96b, BL00, RC11], in order

to make the whole system co-observable. We would call this HIDSC co-observability

with communication.

Third, we would look into incorporating stronger properties such as strong decom-

posability [RW92b] in order to add synthesis of maximally permissive supervisors to

HIDSC. Because strong decomposability implies co-observability, systems satisfying

the strong decomposable property must also satisfy the co-observable property. As

strong decomposability is closed under arbitrary union, it is thus readily adaptable

to synthesis. It would thus be possible to automatically synthesize the supremal con-

trollable, nonblocking and strongly decomposable supervisors for the HIDSC system.

118

Bibliography

[Aga14] Urvashi Agarwal. Symbolic decentralized supervisory control.

Master’s thesis, Dept. of Computing and Software, McMas-

ter University, Hamilton, Ont., 2014. [ONLINE] Available:

http://www.cas.mcmaster.ca/~leduc.

[AM96] M Antoniotti and B Mishra. NP-completeness of the supervisor synthe-

sis problem for unrestricted CTL specifications. In Proceedings of the

third International Workshop on Discrete Event Systems, Edinburgh,

UK, Aug 1996.

[BL00] George Barrett and Stephane Lafortune. Decentralized supervisory con-

trol with communicating controllers. IEEE Transactions on Automatic

Control, 45(9):1620–1638, 2000.

[BMM04] Bertil A Brandin, Robi Malik, and Petra Malik. Incremental verifica-

tion and synthesis of discrete-event systems guided by counter examples.

IEEE Transactions on Control Systems Technology, 12(3):387–401, 2004.

[BSW69] Keith A Bartlett, Roger A Scantlebury, and Peter T Wilkinson. A note

119

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

on reliable full-duplex transmission over half-duplex links. Communica-

tions of the ACM, 12(5):260–261, 1969.

[CCdB93] M Courvoisier, M Combacau, and A de Bonneval. Control and moni-

toring of large discrete event systems: a generic approach (to EMS). In

Proceedings of IEEE International Symposium on Industrial Electronics,

pages 571–576, Budapest, Hungary, Jun 1993.

[CDFV88] Randy Cieslak, C Desclaux, Ayman S Fawaz, and Pravin Varaiya. Su-

pervisory control of discrete-event processes with partial observations.

IEEE Transactions on Automatic Control, 33(3):249–260, 1988.

[CH00] Haoxun Chen and H-M Hansich. Model aggregation for hierarchical

control synthesis of discrete event systems. In Proceedings of the 39th

IEEE Conference on Decision and Control, volume 1, pages 418–423,

Sydney, Australia, December 2000.

[CL01] Yi-Liang Chen and Feng Lin. Hierarchical modeling and abstraction

of discrete event systems using finite state machines with parameters.

In Proceedings of the 40th IEEE Conference on Decision and Control,

volume 5, pages 4110–4115, Orlando, FL, USA, December 2001.

[CL08] Christos G Cassandras and Stephane Lafortune. Introduction to discrete

event systems (second edition). Springer, 2008.

[DES14] DESpot. The official website for the DESpot project. [Online]. Available:

http://www.cas.mcmaster.ca/~leduc/DESpot.html, 2014.

120

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[DQC00] Max H De Queiroz and José ER Cury. Modular supervisory control of

large scale discrete event systems. In Proceedings of 5th International

Workshop on Discrete Event Systems, pages 103–110, Ghent, Belgium,

Aug 2000.

[EC01] Jose M Eyzell and Jose ER Cury. Exploiting symmetry in the synthesis of

supervisors for discrete event systems. IEEE Transactions on Automatic

Control, 46(9):1500–1505, 2001.

[FCW09] Lei Feng, Kai Cai, and WM Wonham. A structural approach to the non-

blocking supervisory control of discrete-event systems. The International

Journal of Advanced Manufacturing Technology, 41(11-12):1152–1168,

2009.

[FM06a] Hugo Flordal and Robi Malik. Modular nonblocking verification using

conflict equivalence. In Proceedings 8th International Workshop on Dis-

crete Event Systems, pages 100–106, Ann Arbor, Michigan, USA, July

2006.

[FM06b] Hugo Flordal and Robi Malik. Supervision equivalence. In Proceedings of

8th International Workshop on Discrete Event Systems, pages 155–160,

Ann Arbor, Michigan, USA, July 2006.

[FM09] Hugo Flordal and Robi Malik. Compositional verification in supervisory

control. SIAM Journal on Control and Optimization, 48(3):1914–1938,

2009.

121

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[FMFÅ07] Hugo Flordal, Robi Malik, Martin Fabian, and Knut Åkesson. Compo-

sitional synthesis of maximally permissive supervisors using supervision

equivalence. Discrete Event Dynamic Systems, 17(4):475–504, 2007.

[FW06a] Lei Feng and W Murray Wonham. Computationally efficient supervisor

design: Abstraction and modularity. In Proceedings of 8th International

Workshop on Discrete Event Systems, pages 3–8, Ann Arbor, Michigan,

USA, July 2006.

[FW06b] Lei Feng and WM Wonham. Computationally efficient supervisor de-

sign: control flow decomposition. In Proceedings of 8th International

Workshop on Discrete Event Systems, pages 9–14, Ann Arbor, Michi-

gan, USA, July 2006.

[FW08] Lei Feng and WM Wonham. Supervisory control architecture for

discrete-event systems. IEEE Transactions on Automatic Control,

53(6):1449–1461, 2008.

[GM04] B Gaudin and H Marchand. Modular supervisory control of a class of

concurrent discrete event systems. In Proceedings of 7th International

Workshop on Discrete Event Systems, pages 181–186, Reims, France,

Sep 2004.

[GW00] Peyman Gohari and W. Murray Wonham. On the complexity of super-

visory control design in the RW framework. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part B: Cybernetics, 30(5):643–652, 2000.

[HC98] Paul Hubbard and Peter E Caines. Trace-dc hierarchical supervisory

122

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

control with applications to transfer-lines. In Proceedings of the 37th

IEEE Conference on Decision and Control, volume 3, pages 3293–3298,

Tampa FL, USA, December 1998.

[HT06] Richard C Hill and Dawn M Tilbury. Modular supervisory control

of discrete-event systems with abstraction and incremental hierarchical

construction. In Proceedings of 8th International Workshop on Discrete

Event Systems, pages 399–406, Ann Arbor, Michigan, USA, July 2006.

[HT08] RC Hill and DM Tilbury. Incremental hierarchical construction of modu-

lar supervisors for discrete-event systems. International Journal of Con-

trol, 81(9):1364–1381, 2008.

[KvS06] Jan Komenda and Jan H van Schuppen. Optimal solutions of modu-

lar supervisory control problems with indecomposable specification lan-

guages. In Proceedings of 8th International Workshop on Discrete Event

Systems, pages 143–148, Ann Arbor, Michigan, USA, July 2006.

[KvSGM05] Jan Komenda, Jan H van Schuppen, Benoit Gaudin, and Hervé Marc-

hand. Modular supervisory control with general indecomposable speci-

fication languages. In Proceedings of 44th IEEE Conference on Decision

and Control, 2005 and 2005 European Control Conference, pages 3474–

3479, Seville, Spain, December 2005.

[KvSGM08] Jan Komenda, JH van Schuppen, Benoit Gaudin, and Hervé Marchand.

Supervisory control of modular systems with global specification lan-

guages. Automatica, 44(4):1127–1134, 2008.

123

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[KW95] P Kozak and WM Wonham. Fully decentralized solutions of super-

visory control problems. IEEE Transactions on Automatic Control,

40(12):2094–2097, 1995.

[LBLW05] Ryan J. Leduc, Bertil A Brandin, Mark Lawford, and WM Wonham.

Hierarchical interface-based supervisory control-part I: serial case. IEEE

Transactions on Automatic Control, 50(9):1322–1335, 2005.

[LDS09] Ryan J. Leduc, Pengcheng Dai, and Raoguang Song. Synthesis method

for hierarchical interface-based supervisory control. IEEE Transactions

on Automatic Control, 54(7):1548–1560, 2009.

[Led02] R. J. Leduc. Hierarchical Interface-based Supervisory Control. PhD

thesis, Department of Electrical and Computer Engineering, University

of Toronto, Toronto, Ont., 2002.

[Led09] Ryan J. Leduc. Hierarchical interface-based supervisory control with

data events. International Journal of Control, 82(5):783–800, 2009.

[LLD06] Ryan J. Leduc, Mark Lawford, and Pengcheng Dai. Hierarchical

interface-based supervisory control of a flexible manufacturing system.

IEEE Transactions on Control Systems Technology, 14(4):654–668, 2006.

[LLMR14] Huailiang Liu, Ryan J. Leduc, Robi Malik, and S. L. Ricker. Incremental

verification of co-observability in discrete-event systems. In Proc. of

2014 American Control Conference, pages 5446–5452, Portland, Oregon,

USA, June 2014.

124

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[LLR15] Huailiang Liu, Ryan J. Leduc, and S. L. Ricker. Hierarchical interface-

based decentralized supervisory control. In Proceedings of 54th IEEE

Conference on Decision and Control, to appear, Osaka, Japan, December

2015.

[LLW05] Ryan J. Leduc, Mark Lawford, and W Murray Wonham. Hierarchical

interface-based supervisory control-part II: parallel case. IEEE Trans-

actions on Automatic Control, 50(9):1336–1348, 2005.

[LW88a] F. Lin and W. M. Wonham. On observability of discrete-event systems.

Infomation Sciience, 44:173–198, 1988.

[LW88b] Feng Lin and W Murray Wonham. Decentralized supervisory control of

discrete-event systems. Information Sciences, 44(3):199–224, 1988.

[LW90] Feng Lin and W Murray Wonham. Decentralized control and coordina-

tion of discrete-event systems with partial observation. IEEE Transac-

tions on Automatic Control, 35(12):1330–1337, 1990.

[MSR04] Robi Malik, David Streader, and Steve Reeves. Fair testing revisited: A

process-algebraic characterisation of conflicts. In Automated Technology

for Verification and Analysis, volume 3299, pages 120–134. Springer,

2004.

[OvS00] Ard Overkamp and Jan H van Schuppen. Maximal solutions in decentral-

ized supervisory control. SIAM Journal on Control and Optimization,

39(2):492–511, 2000.

125

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[PCL06] Patrıcia N Pena, José ER Cury, and Stéphane Lafortune. Testing mod-

ularity of local supervisors: An approach based on abstractions. In

Proceedings of 8th International Workshop on Discrete Event Systems,

pages 107–112, Ann Arbor, Michigan, USA, July 2006.

[PKK97] Joseph H Prosser, Moshe Kam, and Harry G Kwatny. Decision fu-

sion and supervisor synthesis in decentralized discrete-event systems. In

Proceedings of the 1997 American Control Conference, volume 4, pages

2251–2255, Albuquerque, New Mexico, USA, June 1997.

[QJ99] Robin G Qiu and Sanjay B Joshi. A structured adaptive supervisory

control methodology for modeling the control of a discrete event manu-

facturing system. IEEE Transactions on Systems, Man and Cybernetics,

Part A: Systems and Humans, 29(6):573–586, 1999.

[RC11] Laurie Ricker and Benoit Caillaud. Mind the gap: Expanding com-

munication options in decentralized discrete-event control. Automatica,

47(11):2364–2372, 2011.

[Ric08] SL Ricker. Asymptotic minimal communication for decentralized

discrete-event control. In 9th International Workshop on Discrete Event

Systems, 2008. WODES 2008., pages 486–491, 2008.

[Rud92] Karen Rudie. Decentralized Control of Discrete-event Systems. PhD

thesis, Department of Electrical and Computer Engineering, University

of Toronto, Toronto, Ont., 1992.

126

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[RW92a] K. Rudie and W. M. Wonham. Protocol verification using discrete-event

systems. In Proc. 31st Conf. Decision Contr., pages 3770–3777, 1992.

[RW92b] Karen Rudie and W Murray Wonham. Think globally, act locally: De-

centralized supervisory control. IEEE Transactions on Automatic Con-

trol, 37(11):1692–1708, 1992.

[RW95] Karen Rudie and Jan C Willems. The computational complexity of

decentralized discrete-event control problems. IEEE Transactions on

Automatic Control, 40(7):1313–1319, 1995.

[RYL03] Kurt Rohloff, Tae-Sic Yoo, and Stéphane Lafortune. Deciding co-

observability is PSPACE-complete. IEEE Transactions on Automatic

Control, 48(11):1995–1999, 2003.

[SB01] Geert Stremersch and RK Boel. Decomposition of the supervisory con-

trol problem for Petri nets under preservation of maximal permissiveness.

Automatic Control, IEEE Transactions on, 46(9):1490–1496, 2001.

[SB11] Klaus Schmidt and Christian Breindl. Maximally permissive hierarchical

control of decentralized discrete event systems. IEEE Transactions on

Automatic Control, 56(4):723–737, 2011.

[SC02] Gang Shen and Peter E Caines. Hierarchically accelerated dynamic pro-

gramming for finite-state machines. IEEE Transactions on Automatic

Control, 47(2):271–283, 2002.

[SM06] Klaus Schmidt and Thomas Moor. Marked-string accepting observers for

the hierarchical and decentralized control of discrete event systems. In

127

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

Proceedings of 8th International Workshop on Discrete Event Systems,

pages 413–418, Ann Arbor, Michigan, USA, July 2006.

[SMP08] Klaus Schmidt, Thomas Moor, and Sebastian Perk. Nonblocking hierar-

chical control of decentralized discrete event systems. IEEE Transactions

on Automatic Control, 53(10):2252–2265, 2008.

[SW04] Rong Su and W Murray Wonham. Supervisor reduction for discrete-

event systems. Discrete Event Dynamic Systems, 14(1):31–53, 2004.

[TKU94] Shigemasa Takai, Shinzo Kodama, and Toshimitsu Ushio. Decentral-

ized state feedback control of discrete event systems. Systems & control

letters, 22(5):369–375, 1994.

[TKU05] Shigemasa Takai, Ratnesh Kumar, and Toshimitsu Ushio. Char-

acterization of co-observable languages and formulas for their su-

per/sublanguages. IEEE Transactions on Automatic Control, 50(4):434–

447, 2005.

[TL09] JG Thistle and HM Lamouchi. Effective control synthesis for partially

observed discrete-event systems. SIAM Journal on Control and Opti-

mization, 48(3):1858–1887, 2009.

[Tri04] Stavros Tripakis. Undecidable problems of decentralized observation and

control on regular languages. Information Processing Letters, 90(1):21–

28, 2004.

[Tsi89] John N Tsitsiklis. On the control of discrete-event dynamical systems.

Mathematics of Control, Signals and Systems, 2(2):95–107, 1989.

128

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[TU00] Shigemasa Takai and Toshimitsu Ushio. Reliable decentralized supervi-

sory control of discrete event systems. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 30(5):661–667, 2000.

[Won14] W.M. Wonham. Supervisory control of discrete-event systems. Depart-

ment of Electrical and Computer Engineering, University of Toronto,

July 2014. [Online] Available: http://www.control.toronto.edu/DES/.

[WR88] W Murray Wonham and Peter J Ramadge. Modular supervisory control

of discrete-event systems. Mathematics of control, Signals and Systems,

1(1):13–30, 1988.

[WvS96a] K. C. Wong and J. H. van Schuppen. Decentralized supervisory control

of discrete-event systems with communication. In Proc. Int. Workshop

on Discrete Event Systems, pages 284–289, 1996.

[WVS96b] KC Wong and JH Van Schuppen. Decentralized supervisory control

of discrete-event systems with communication. Report-Department of

Operations Research, Statistics, and System Theory, (6):1–10, 1996.

[WW96] Kai C Wong and W Murray Wonham. Hierarchical control of discrete-

event systems. Discrete Event Dynamic Systems, 6(3):241–273, 1996.

[WW98] Kai C Wong and W Murray Wonham. Modular control and coordination

of discrete-event systems. Discrete Event Dynamic Systems, 8(3):247–

297, 1998.

129

Ph.D. Thesis - Huailiang Liu McMaster - Computer Science

[YL02a] T-S Yoo and Stéphane Lafortune. A general architecture for decen-

tralized supervisory control of discrete-event systems. Discrete Event

Dynamic Systems, 12(3):335–377, 2002.

[YL02b] Tae-Sic Yoo and Stephane Lafortune. NP-completeness of sensor selec-

tion problems arising in partially observed discrete-event systems. IEEE

Transactions on Automatic Control, 47(9):1495–1499, 2002.

[YL04] Tae-Sic Yoo and Stéphane Lafortune. Decentralized supervisory control

with conditional decisions: Supervisor existence. IEEE Transactions on

Automatic Control, 49(11):1886–1904, 2004.

[ZW90] Hao Zhong and W Murray Wonham. On the consistency of hierarchical

supervision in discrete-event systems. IEEE Transactions on Automatic

Control, 35(10):1125–1134, 1990.

130

