
Implementation of Sampled-data
Supervisory Control

By

Abubaker Hamid, M.Sc

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

Master of Science
Department of Computing and Software

McMaster University

c© Copyright by Abubaker Hamid, June 17, 2014

ii

MASTER OF SCIENCE(2014) McMaster University
(Computer Science) Hamilton, Ontario

TITLE: Implementation of Sampled-data Supervisory Control

AUTHOR: Abubaker Hamid, M.Sc(Sudan University of Science and Technology)

SUPERVISOR: Prof. Ryan J. Leduc

NUMBER OF PAGES: i, 183

Dedication

To my son, Abdul Rahman Abubaker Mahmoud.

iii

iv 0. Dedication

Abstract

This thesis focuses on the issues related to the implementation of theoretical timed
discrete-event systems (TDES) supervisors. In particular, we examine issues related
to implementing TDES as sampled-data (SD) controllers, which were introduced by
Wang and Leduc. [18], [21], and [22]. An SD controller is driven by a periodic clock
and sees the system as a series of inputs and outputs. On each clock edge (tick event),
it samples its inputs, changes state, and updates its outputs.

We first introduce the sampled-data setting from Wang, and then define the
sampled-data properties he identified, including the SD controllability property. We
then introduce Wang’s formal representation of an SD controller as a Moore syn-
chronous finite state machine (FSM). We then discuss Wang’s modular and central-
ized translation method.

We next introduced new modular results for the SD controllability point 3.1, SD
controllability point 3.2, SD controllability point 4, activity loop free and S-singular
prohibitable behaviour that allow one to verify the properties using only a portion of
the system, instead of having to construct the entire system model. This should allow
faster verification times as well as allow larger systems to be verified. As a part of
this work, we broke down into individual algorithms one of the large algorithms from
Wang that checked multiple properties at once. We can now check each property
individually. We then introduce for the first time algorithms to verify Wang’s CS
Deterministic and non self-loop ALF properties.

The remainder of the thesis focuses on developing algorithms and software to au-
tomatically convert a TDES first into an FSM, and then into a VERILOG module.
VERILOG is a hardware description language which allows our FSM to be compiled
and implemented on digital logic devices such as an FPGA.

We then tested our method by modelling a simple door locking system as TDES,
checking that the system satisfies the required sampled-data properties, and then

v

vi 0. Abstract

translating the result into VERILOG. The above algorithms and methods have all
been implemented as a part of the graphical DES research tool, DESpot.

Acknowledgements

Thank you God, in the beginning and in the end, for giving me the power to continue
and finish this work. I would like to thank Professor Ryan J. Leduc, who patiently
guided me through the dark corridors of the discrete-events systems area, enlightening
these corridors and providing me with enough resources for the research. I would like
to thank Yu Wang for the clarity and organization of his thesis, about the areas that
needed to be extended and implemented.

vii

viii 0. Acknowledgements

Notation and Abbreviations

In this thesis we will use the following notations and abbreviations

DES: Discrete event systems.

TDES: Timed discrete event systems.

SD: Sampled Data.

FSM: Finite State Machine.

VERILOG: IEEE: 1364-2005 - Hardware definition language.

ALF: Activity Loop Free.

NSL ALF: Non-self-loop Activity Loop Free.

SPB: Singular prohibitable behaviour.

SSPB: S-Singular prohibitable behaviour.

CS Deterministic: Concurrent string deterministic.

PTB: Proper time behaviour.

ix

x 0. Notation and Abbreviations

Contents

Dedication iii

Abstract v

Acknowledgements vii

Notation and Abbreviations ix

Contents xi

List of Figures xv

1 Introduction 1
1.1 Previous Work . 1
1.2 Objectives . 3

2 Introduction to Discrete-Event Systems 5
2.1 Linguistic and Algebraic Preliminaries 5

2.1.1 Alphabets and Strings . 5
2.1.2 Languages . 6
2.1.3 λ− equivalence Relation . 8

2.2 Timed Discrete Event Systems . 8
2.2.1 TDES . 8
2.2.2 Synchronization and Product TDES 12
2.2.3 TDES Properties . 14

3 Sampled-Data Controllers 19
3.1 Introduction to SD Controllers . 19
3.2 SD Controller’s Input . 21
3.3 SD Controllable Languages . 25

xi

xii CONTENTS

4 Moore Finite State Machines (FSM) and VERILOG 31
4.1 Moore FSM . 31
4.2 Formal Model . 31
4.3 Translation Method Introduction . 33
4.4 Event Mapping Functions . 37
4.5 Centralized Translation Method . 38
4.6 Output Equivalence . 39
4.7 Modular Translation Method . 40
4.8 FSM as VERILOG Module . 42
4.9 Field-Programmable Gate Array . 43

5 Modular Verification of Sampled-Data Properties 45
5.1 Introduction to Previous Work . 45
5.2 ALF Modularity . 46
5.3 SPB and SSPB Modularity . 47

5.3.1 SPB implies SSPB . 47
5.3.2 SPB Modularity . 48

5.4 SD Controllability Modularity . 50
5.4.1 SD-Cont-iii.1 Modularity . 50
5.4.2 SD-Cont-iii.2 Modularity . 55
5.4.3 SD-Cont-iv Modularity . 55

6 Algorithmic Improvements 59
6.1 Introduction . 59
6.2 Predicate Verification Preliminaries 59

6.2.1 State Predicates . 60
6.2.2 Predicate Transformers . 61

6.3 Previous Approach . 62
6.4 Modular Verification Algorithm . 67
6.5 Modular Version of VerifySub . 78
6.6 System ALF Algorithm . 80
6.7 Non-selfloop ALF Algorithm . 83
6.8 SD Controllability, SSPB and CS Deterministic Algorithms 84

6.8.1 CheckSDCont SSPB CSDet Algorithm 86
6.8.2 AnalyseSampledState Algorithm 88

7 VERILOG Translation 95
7.1 Introduction . 95
7.2 TDES to FSM . 95
7.3 FSM to VERILOG . 100

CONTENTS xiii

7.4 Centeral FSM for SD Controllers . 104
7.5 Central Module for SD Controllers 106
7.6 Translation Algorithms . 109

7.6.1 writeFSM() Algorithm . 115
7.6.2 writeHFSM() Algorithm . 117
7.6.3 mainVERILOG() Algorithm 121
7.6.4 writeVERILOG() Algorithm 126
7.6.5 mainFSM() Algorithm . 135

7.7 Removing Redundant Transitions . 137

8 Lock System Example 139
8.1 Problem Description . 139

8.1.1 System Components . 141
8.2 Components Design . 143

8.2.1 Signal Outputs and Transitions 146
8.2.2 Supervisor SupOpen . 148
8.2.3 Supervisor SupChange . 152
8.2.4 Supervisor SupAlarm . 159
8.2.5 The Main Controller FSM . 169

8.3 Performance Results . 172
8.4 Other Projects Performance Results 174

8.4.1 Flexible Manufacturing System 174
8.4.2 Test Station of Manufacturing System 175

9 Conclusion 177
9.1 Conclusion . 177
9.2 Future Work . 179

Bibliography 181

xiv CONTENTS

List of Figures

2.1 ADAM Language Automata . 7
2.2 An Example TDES . 11
2.3 An Example Failing ALF Property, from Wang [21] 15
2.4 An Example Failing the Proper Time Behavior Property, from Wang [21] 17

3.1 Sampling Data Global tick . 20
3.2 Nonminimal Example . 24
3.3 An Example for Point ii, from Leduc et al [18] 27
3.4 An Example for Point iii.1, from Leduc et al [18] 29
3.5 An Example for Point iii.2 and Point iv, from Leduc et al [18] . . 30

4.1 FSM Translation Example . 33
4.2 General Structure of FPGA, [9]. 44

7.1 Supervisor SupOpen . 97
7.2 FSM of Supervisor SupOpen . 98
7.3 FSMCarrier Class UML Diagram . 111
7.4 Transition Struct UML [1] Diagram 112

8.1 Lock System Black Box Diagram . 140
8.2 Lock System Block Diagram . 142
8.3 FSM Detailed Sub-Modules . 143
8.4 Lock System Plants Components . 146
8.5 Supervisor SupOpen . 148
8.6 FSM for supervisor SupOpen . 149
8.7 Supervisor SupChange . 153
8.8 FSM for supervisor SupChange . 154
8.9 Supervisor SupAlarm. 160
8.10 FSM for Supervisor SupAlarm . 161

xv

xvi LIST OF FIGURES

Chapter 1

Introduction

1.1 Previous Work

Since ancient times such as 300 BC in Greece, man has been fond of controlling nat-

ural aspects around him. He started this control spree by inventing the clock (Time

monitoring machine) with combined effort between Arabs and Greeks. The spree

started by creating machines to track aspects around man, then continued to cover

instruments for tracking the moon and other planet’s motion, the direction of air

flow, the prediction of seasons and most importantly, the compass.

Systems control theory had been there for a long time in the beginning of the

steam engine era (18th century). However, implementing these theories in a practical

methodology had only taken serious shape in the last few decades, with the introduc-

tion of a vast quantity of hardware controllers such as PLC [23], and the sophistication

of Hardware Description Languages (HDL) such as VHDL [10], VERILOG [9].

The area of discrete event systems (DES) had been a target for serious theoretical

studies, creating a base for a linguistic approach, that helps in analysing and applying

properties, such as nonblocking, controllability. These serious studies can be found

in [16] and [26]. The linguistic approach is inspired by looking at systems as languages

and model them in terms of sentences and words.

1

2 1. Introduction

A solid approach to implement supervisors as Sampled-data controllers was led

by Leduc and Wang [18] [21] [22]. They introduced the concept of Sampled-data

controllers as well as new properties such as SD controllability to make sure the be-

haviour of the controllers was closer to the theoretical model. This method focuses

on timed DES [8] and [7]. We will be extending Wang’s work.

An earlier attempt to implement untimed supervisors is the the implementation of

Leduc in [14] and [15] of an finite state machine (FSM) version named Clocked Moore

Synchronous State Machine (CMSSM) on a programmable logic controller (PLC). A

test bed system was implemented which contains 29 DES supervisors. The system’s

synchronous product was order of 1016 states, worst case estimate. For additional

examples of early works, see [18].

As for the modular verification we implemented in this thesis, it was inspired by

the modular incremental verification for controllability by Malik et al [5]. This was

a new approach, to verify systems and do synthesis, based on subsystem verification

and combined use of counterexamples and heuristics to identify suitable subsystems

incrementally. We also build upon the work by Wang [21] and Baloch [3].

There were plenty of good efforts in implementing system controls in variety of

ways. Julien Provost, Jean-Marc Roussel and Jean-Marc Faure [13] had implemented

a system that evaluates that the specifications of a system is testable, then imple-

mented this using a Mealy FSM and PLC.

Aside from systems control, OMNET++ [20] is a huge work done in C++. OM-

NET++ is an open source library for C++ development that helps a lot in the area

of discrete event systems’ simulation. It has module building blocks for the system

and uses messaging to enable the sub modules to communicate with each other. It

is very useful in simulation, particularly network simulation and telecommunication

systems simulation.

1. Introduction 3

1.2 Objectives

Our objective in this work has two focuses. The first is to enhance the performance

of the current SD controllability verification automation in DESpot, by enhancing

the algorithms implemented so far. We do this by either splitting algorithms that are

combined in function such as SSPB, SD controllability and CS deterministic, or by

enhancing the code of the BDD-based algorithms themselves.

We also have to build new algorithms for the properties such as non-self loop activ-

ity free loop (NSL ALF), CS deterministic and translation algorithms that translates

supervisors first into intermediate Moore FSM modules, and then then into VER-

ILOG modules.

Our second focus is the implementation of sampled data supervisors. All the

properties and theories of sampled data supervisory control is useless if not converted

into a practical hardware or software implementation. In this work, we will translate

traditional TDES supervisors into real VERILOG modules that will be programmed

into digital hardware such as FPGA, to create concrete implementation of our super-

visors. Please see Chapter 4 for more information about FPGA.

We are continuing the work done by Leduc et al [18] in developing properties

that must be passed by a TDES project to be a good fit of a project ready to be

implemented in hardware or software.

Chapter 2 in this thesis gives an introduction about the linguistic approach to

system modelling. We also introduce TDES and its characteristics that enable us

to produce SD controllers. TDES systems have the ability to be driven by a global

central clock represented by the tick event that orchestrate the overall system to work

in a synchronous manner.

Chapter 3 is about Sampled Data controllers; the concept and overview about

how we are planning to implement them.

4 1. Introduction

Chapter 4 is about the model of finite state machines (FSM) introduced by Ed-

ward F. Moore in the 1950(s). Worth mentioning here that most of the hardware

description languages such as VHDL, and VERILOG include the ability to model the

hardware in building blocks, where each block is an FSM.

Chapter 5 is about introducing new algorithms to the verification process. We

do this by proposing new propositions and proving them. We then implement them

as algorithms to be used in our software program, DESpot [12]. In this chapter, we

introduce our main addition to the area by introducing modular verification concepts.

Modular verification is an important contribution to this work as it allows one to avoid

checking properties using the synchronous product of the entire system, and instead

to check these properties on individual components. If the individual components all

pass, then the synchronous product of the system also passes.

Chapter 6 describes our effort in enhancing the algorithms from Wang [21] as well

as our newly built ones.

Chapter 7 is about the algorithms built to translate our supervisors, and conse-

quently the TDES project, into a hardware module (VERILOG). The reason we split

this chapter from the previous one is that it has many algorithms that are all focused

on producing FSM machines in XML format, and VERILOG files.

Chapter 8 presents a lock system that we modelled as TDES. We verified that

it passes all the properties we developed so far to assure its validity as a hardware

SD controller. We used this example to show the files we generated and explain the

translation process.

Chapter 9 contains our conclusions, and future work discussion.

Chapter 2

Introduction to Discrete-Event

Systems

Discrete-Event Systems are systems that are driven by events, and these systems

include but not limited to manufacturing systems, traffic lights systems, database

management systems, security systems and production line systems [25].

2.1 Linguistic and Algebraic Preliminaries

In this thesis we consider discrete-event systems (DES) from a linguistic approach.

We look at the events in the system as symbols from an alphabet, is a sequence of

events as words from a language.

2.1.1 Alphabets and Strings

An alphabet is a collection of symbols we refer as Σ. An example of an alphabet

is Σ = {σ, β, γ}. A string is an arbitrary non-empty sequence constructed from an

alphabet. Example strings constructed from the previous mentioned alphabet are as

follows: ασσ, γββσ ...etc. We refer to the set of finite, non empty strings that can be

constructed from this alphabet as Σ+. The empty string ε is not in this set : ε 6∈ Σ.

5

6 2. Introduction to Discrete-Event Systems

When we add the empty string to Σ+ we get the set Σ∗.

Definition 2.1.1. The length of a string is a unary function that takes s ∈ Σ∗ and

returns the number of symbols this string contains.

| | : Σ∗ → N

.

Let s = σ1σ2...σn, ∈ Σ+ such that σi ∈ Σ, for i = {1, 2..., n}. We thus have |s| = n

The empty string ε is the string that does not have any symbols: |ε| = 0.

Definition 2.1.2. The concatenation function is a binary function that takes two

strings s1, s2 from Σ∗ and returns the string s1s2.

cat : Σ∗ × Σ∗ → Σ∗

Let s1 = σ1σ2...σm with σi ∈ Σ and i = {1, 2...,m} and s2 = β1β2...βn with βj ∈ Σ

and j = {1, 2..., n}. Then cat(s1, s2) = s1s2 = σ1σ2...σmβ1β2...βn, and |s1s2| = m+ n

It follows from the above definitions that for any s ∈ Σ∗ s = εs = sε.

Definition 2.1.3. Let s, t ∈ Σ∗. We say s is a prefix of t, denoted as s ≤ t, if

(∃u ∈ Σ∗)su = t

It is then obvious that any string is a prefix to itself, s ≤ s since sε = s, and

ε ∈ Σ∗.

Definition 2.1.4. For alphabet Σ1 and alphabet Σ2 , we define the set subtraction

operation as Σ1 − Σ2:={σ|σ ∈ Σ1 ∧ σ 6∈ Σ2}.

2.1.2 Languages

A language L ⊆ Σ∗ is any subset of Σ∗. We can represent a language using the concept

of an Automata. For example the ADAM language from Figure 2.1 will be repre-

sented by the following tuple automata ADAM = (Y,Σ, η, y0, Ym). We have y0 is the

initial state, Y is the set of all states in the automata, while Ym ⊆ Y are the marked

2. Introduction to Discrete-Event Systems 7

states. In this ADAM automata we have only one marked state that is also the initial

state. The function η : Y ×Σ∗ → Y is the transition function and is a partial function.

We also partition Σ into controllable events, Σc, and uncontrollable events Σu.

Controllable events are events that an external agent can disable and prevent from

occurring. Uncontrollable events can not be disabled.

Definition 2.1.5. The prefix closure of a language, denoted as L, is the set of all

strings in Σ∗ that can be continued to construct a string in L.

L = {s ∈ Σ∗|(∃t ∈ L)s ≤ t}

.

Since it is clear from the previous section that any string is a prefix of itself, then

the prefix closure contains the language itself. ie L ⊆ L.

Figure 2.1: ADAM Language Automata

Definition 2.1.6. For a Language L ⊆ Σ∗ we define the Nerode equivalence relation

mod L as:

(∀s, t ∈ Σ∗)s ≡L t or s ≡ t(mod L) ⇐⇒ [(∀u ∈ Σ∗)su ∈ L ⇐⇒ tu ∈ L]

8 2. Introduction to Discrete-Event Systems

2.1.3 λ− equivalence Relation

Let X be a nonempty set, and let E ⊆ X ×X be a binary relation on X.

Definition 2.1.7. The relation E is an equivalence relation on X if:

• (∀x ∈ X)xEx (E is reflexive)

• (∀x, x′ ∈ X)xEx′ =⇒ x′Ex (E is symmetric)

• (∀x, x′, x′′ ∈ X)xEx′&x′Ex′′ =⇒ xEx′′ (E is transitive).

For xEx′ we may also write x ≡ x′ (mod E).

We now introduce the λ− equivalence relation.

Definition 2.1.8. Let G = (Q,Σ, δ, q0, Qm) and let λ be an equivalence relation on

Q such that for q, q′ ∈ Q, q ≡ q′ mod λ if and only if

1. (∀s ∈ Σ∗)δ(q, s)! ⇐⇒ δ(q′, s)!

2. (∀s ∈ Σ∗)[δ(q, s)! & δ(q, s) ∈ Qm] ⇐⇒ [δ(q′, s)! & δ(q′, s) ∈ Qm]

Basically, for states q and q′ such that q ≡ q′ mod λ, they have the same future

with respect to the closed loop behavior, namely L(G). They also have the same

future with respect to the marked behaviour, namely Lm(G).

2.2 Timed Discrete Event Systems

The common way is to introduce untimed DES, then introduce timed discrete-event

system (TDES) as a special case of DES. But since this thesis is all about TDES and

modelling the TDES in a way to be easy to turn it into an SD controller, we will start

with TDES.

2.2.1 TDES

A TDES has a tick event in the set of events, Σ, and all the other events are con-

sidered activity events (Σact). This makes Σ = Σact∪̇{tick}. We sometimes use τ to

2. Introduction to Discrete-Event Systems 9

stand for the tick when brevity is needed. The occurrence of the tick event correspond

to the tick of global clock.

We also have the concept of forcible events, Σfor ⊆ Σact. These are events we

can ensure occur before the next tick. In TDES forcible events can be controllable or

uncontrollable. However, for sampled-data systems we require that all forcible events

be also controllable. This simplifies our definitions while still providing a flexible

modelling approach.

We model forcing by having an external agent disables the tick event when a

forcible event is required to occur before the tick. The agent is not preventing the

tick from occurring, but instead removing the path of behaviour where a tick occurs

before the event to be be forced, so that the TDES behaviour matches what will

actually physically occur. Of course there must be a forcible event possible to occur,

and preempt the tick event. We capture this requirement in the TDES controllability

definition in the Section 2.2.19.

We also introduce the concept of prohibitable events, Σhib ⊆ Σact. These are activ-

ity events that are controllable. We thus have Σc = {τ} ∪ Σhib. In the sampled-data

setting, we thus have Σhib = Σfor.

We usually model a TDES formally as a generator G, which is a five tuple defined

as the following:

G = (Q,Σ, δ, q0, Qm)

where

Q is the finite state set of the TDES.

Σ is the finite set of distinct symbols representing event labels. This set

is partitioned into two sets:

Σ = Σc ∪̇ Σu

10 2. Introduction to Discrete-Event Systems

δ : Q× Σ→ Q is the (partial) transition function where each transition

is a tuple (q, σ, q′), where δ(q, σ) = q′. We refer to q as the exit

(source) state, and q′ as the entrance (destination) state. We write

δ(q, σ)! if δ(q, σ) is defined. The transition function can be extended

to: δ : Q× Σ∗ → Q as

δ(q, ε) = q for q ∈ Q.

δ(q, sσ) = δ(δ(q, s), σ) for s ∈ Σ∗, σ ∈ Σ, and q ∈ Q.

as long as q′ = δ(q, s)! and δ(q′, σ)!.

q0 ∈ Q is the initial state.

Qm ⊆ Q is the subset of marked states.

Example 2.1. Let G = (Q,Σ, δ, q0, Qm) be the TDES shown in Figure 2.2. The

convention we are following in this example and most of the examples in this thesis is

that the initial state is the one that has two circles one outer and one inner. Marked

states are shown as a solid circle. A controllable event is written in plain text, an

uncontrollable event is written in italic and with a leading exclamation mark.

Q = {0, 1, 2, ..., 7};

Σ = Σc ∪̇ Σu, where Σc = {tick, open} and Σu = {enter, equal};

δ = {(0, tick, 0), (0, enter, 1), (0, equal, 2), (1, equal, 3), (1, tick, 0),

(2, tick, 0), (2, enter, 3), (3, tick, 4), (4, equal, 4), (4, open, 5), (4, enter, 7), (5, equal, 5),

(5, tick, 4), (5, equal, 5), (5, enter, 6), (6, equal, 6), (6, tick, 0), (7, equal, 7), (7, open, 6)};

q0 = 0; Qm = {0}

Given TDES G = (Q,Σ, δ, q0, Qm), we have the following definitions.

Definition 2.2.1. A state q ∈ Q is reachable if

(∃s ∈ Σ∗)δ(q0, s)! and q = δ(q0, s)

Definition 2.2.2. A state q ∈ Q is coreachable if

(∃s ∈ Σ∗)δ(q, s)! and δ(q, s) ∈ Qm

2. Introduction to Discrete-Event Systems 11

Figure 2.2: An Example TDES

In this thesis we will always assume that a TDES is reachable unless stated oth-

erwise.

Definition 2.2.3. The closed behavior of TDES G is

L(G) = {s ∈ Σ∗|δ(q0, s)!}

Definition 2.2.4. The marked behavior of TDES G is

Lm(G) = {s ∈ Σ∗|δ(q0, s)! & δ(q0, s) ∈ Qm}

Clearly, Lm(G) ⊆ L(G).

Definition 2.2.5. The control action for some q ∈ Q for TDES G is defined to be

a mapping ζ : Q → Pwr(Σhib) that takes q and returns a set of prohibitable events

enabled at q.

Example 2.2. Example for control action from Figure 2.2 is ζ(0) = {}, ζ(3) =

{}, ζ(4) = {open}.

Definition 2.2.6. TDES G is said to be nonblocking if every reachable state is also

coreachable. This can also be expressed using languages as follows:

12 2. Introduction to Discrete-Event Systems

L(G) = Lm(G)

Definition 2.2.7. TDES G is said to be minimal, if

(∀q, q′ ∈ Q)q ≡ q′ (mod λ) ⇐⇒ q = q′

TDES G is minimal if it does not have two distinct states in Q that are λ equiv-

alent.

2.2.2 Synchronization and Product TDES

It is always recommended to model the system plant as individual components instead

of one large DES. Each component describes a small activity in the system (e.g: if

a person is sensed by the camera, the door opens). We then create a synchronous

product of all these small TDES components to be the plant. We now define the

natural projection function and its inverse function:

Let G = (Q,Σ, δ, q0, Qm) be a TDES. Take Σo ⊆ Σ to be the set of observable

events.

Definition 2.2.8. The natural projection P : Σ∗ → Σ∗o is defined as follows. For

s ∈ Σ∗, σ ∈ Σ,

P (ε) = ε

P (σ) =

{
ε if σ /∈ Σo

σ if σ ∈ Σo

P (sσ) = P (s)P (σ)

Example 2.3. For Σ = {α, β, γ}, Σo = {α, β} and s = αβαγβα,

P (s) = P (α)P (β)P (α)P (γ)P (β)P (α) = αβαβα

Definition 2.2.9. For a given set X, we define Pwr(X) to be the set of all subsets

of X:

2. Introduction to Discrete-Event Systems 13

Pwr(X) := {X ′|X ′ ∈ X}

Example 2.4. Let X be a set such that: X = {a, b, c}. We then have Pwr(X) =

{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Let L ⊆ Σ∗. We define P (L) ⊆ Σ∗o as an extension of the natural projection as

P (L) := {P (s)|s ∈ L}

We also define its inverse image P−1 : Pwr(Σ∗o)→ Pwr(Σ∗) such that, for H ⊆ Σ∗o

P−1(H) := {s ∈ Σ∗|P (s) ∈ H}

Definition 2.2.10. For i = 1, 2, let Li ⊆ Σ∗i , Σ = Σ1 ∪ Σ2 and Pi : Σ∗ → Σ∗i be

natural projections. The synchronous product of L1 and L2 is defined to be

L1||L2 = P−1
1 (L1) ∩ P−1

2 (L2)

In this thesis when we speak about the synchronous product of two TDES au-

tomata, we always assume that both of them are over the same set of events, Σ.

Definition 2.2.11. Let G1 = (Q1,Σ, δ1, qo,1, Qm,1) and G2 = (Q2,Σ, δ2, qo,2, Qm,2)

be two TDES defined over event set Σ. The product of two TDES is defined as

G1 ×G2 = (Q1 ×Q2,Σ, δ1 × δ2, (qo,1, qo,2), Qm,1 ×Qm,2)

where δ1 × δ2 : Q1 ×Q2 × Σ→ Q1 ×Q2 is defined as

(δ1 × δ2)((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ))

whenever δ1(q1, σ)! and δ2(q2, σ)!.

By Definition 2.2.11, we have L(G1×G2) = L(G1)∩L(G2) and Lm(G1×G2) =

Lm(G1) ∩ Lm(G2)

14 2. Introduction to Discrete-Event Systems

Definition 2.2.12. The synchronous product of TDES Gi = (Qi,Σi, δi, qoi , Qmi
)

(i = 1, 2), denoted G1||G2, is defined to be a reachable TDES G = (Q,Σ, δ, q0, Qm)

with event set Σ = Σ1 ∪ Σ2 and properties:

Lm(G) = Lm(G1)||Lm(G2), L(G) = L(G1)||L(G2)

Definition 2.2.13. Let G be a TDES defined over Σ and Σ′ be another set of events

such that Σ ∩ Σ′ = ∅. The selfloop operation on G is defined as

selfloop(G,Σ′) = (Q,Σ ∪ Σ′, δ′, qo, Qm)

where δ′ : Q× (Σ ∪ Σ′)→ Q is a partial function defined as

δ′(q, σ) :=

{ δ(q, σ) σ ∈ Σ, δ(q, σ)!

q σ ∈ Σ′

undefined otherwise

For a TDES G′i (i = 1, 2) defined over event set Σi, the synchronous product

operator of these two TDES components is created by first extending each TDES to be

over Σ by adding self-loops of events that are not in the local TDES alphabet Σi, and

then using the product operator. We take Σ = Σ1∪Σ2, and Gi = selfloop(G′i,Σ−Σi),

i=1,2. We thus have G′1||G′2 = G1 ×G2

2.2.3 TDES Properties

We now introduce several TDES properties that we will need in this thesis. Plant

completeness in TDES is given by the following definition:

Definition 2.2.14. Let TDES G = (Q,Σ, δ, q0, Qm) be a plant and TDES S =

(Y,Σ, ζ, y0, Ym) be a supervisor. G is TDES complete for S if

(∀s ∈ L(G) ∩ L(S))(∀σ ∈ Σhib)sσ ∈ L(S) =⇒ sσ ∈ L(G)

The above definition is the same as the untimed DES version from [2] but the

concept of controllable events now has been changed to the concept of prohibitable

events. Plant completeness says that in any state of the synchronous product of the

2. Introduction to Discrete-Event Systems 15

plant and the supervisor, if a prohibitable event σ is eligible in the supervisor then it

must be eligible in the plant as well.

Now we would like to introduce the definition of activity loop free, which requires

that a tick in a TDES will not be preempted indefinitely by activity events, as this

situation is not realistic.

Definition 2.2.15. TDES G = (Q,Σ, δ, q0, Qm) has an activity loop if

(∃q ∈ Q)(∃s ∈ Σ+
act)δ(q, s) = q

Definition 2.2.16. TDES G = (Q,Σ, δ, q0, Qm) is activity loop free (ALF) if

(∀q ∈ Qr)(∀s ∈ Σ+
act)δ(q, s) 6= q

where Qr is the set of reachable states for G. We do not require the unreach-

able states to be ALF. Instead we only consider the reachable states, because the

unreachable states do not contribute anything to the closed and marked behavior of

the TDES. We see an example that violates the ALF property in Figure 2.3.

Figure 2.3: An Example Failing ALF Property, from Wang [21]

Another important thing is that the supervisors by their nature contains many

self loops, and this will definitely violate the activity loop free property. Therefore,

we will only require that the synchronous product of the entire system be ALF and

not each TDES component.

Because supervisors often employ self loops, we will introduce a new condition on

supervisors that they must be non-self loop activity loop free. This definition will be

used later as a design guide to make it easier to translate TDES supervisors into SD

controllers.

The non-self loop activity loop free concept is given by the following definition:

16 2. Introduction to Discrete-Event Systems

Definition 2.2.17. Let G = (Q,Σ, δ, q0, Qm) be a TDES, and let G′ be G with all

activity event self loops removed. G is non-selfloop activity loop free iff G′ is ALF.

This means that if we remove all the self activity events loops in the TDES, we

must end up with a TDES that is ALF.

The proposition below was introduced by Wang [21]. It states that if two TDES

automata are ALF then the synchronous product is also ALF.

Proposition 2.1. [21] For TDES G1 = (Q1,Σ1, δ1, q0,1, Qm,1) and G2 = (Q2,Σ2, δ2, q0,2, Qm,2),

if G1 and G2 are each ALF, then their synchronous product G = G1||G2, is ALF.

We also have a more fruitful proposition by Wang that says that if we do not have

two TDES passing the ALF property, then instead one of them needs to pass the

property and the other must not introduce any new events that is not already in the

first TDES. In this case, we know that the synchronous product will also be activity

loop free. This proposition helps a lot as supervisors typically have activity loops.

We will thus only require that the plant TDES components be ALF to assure that

the synchronous product is ALF.

Proposition 2.2. [21] Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2)

be two TDES. If G1 is ALF and Σ1 ⊇ Σ2, then G1||G2 is also ALF.

We will now introduce another property that helps us to prevent the unrealistic

situation where we reach a state from which there is no path to a tick event. We

now state the concept of proper time behaviour that was introduce by Kai Wong et

al. [24].

Definition 2.2.18. TDES G has a proper time behavior if

(∀q ∈ Qr)(∃σ ∈ Σu ∪ {τ}) δ(q, σ)!

Proper time behaviour is required to be satisfied by the system plant, and it says

that at all states either a tick or an uncontrollable event is eligible. The reason is as

follows: assume that a plant has a finite state space and at one of its states we have

only a controllable event eligible, and no tick or uncontrollable event eligible. Now

2. Introduction to Discrete-Event Systems 17

assume that supervisor disables this controllable event. This means the system stops

forever, with no ticks and no more uncontrollable event possible. This can happen

even if the supervisor is controllable. Therefore, this property, namely proper time

behaviour, will ensure that the system will not reach this dead state. An example of a

plant that violates the proper time behaviour is shown in Figure 2.4. In the example,

after the first tick we only have β eligible which is a controllable event, and thus it

fails the PTB definition.

Figure 2.4: An Example Failing the Proper Time Behavior Property, from Wang [21]

Proposition 2.3 was proposed by Wang in [21]. It says that if the TDES G has

a finite state space, is activity loop free and has proper time behaviour, then at any

reachable state we can do a tick event after at most a finite number of activity events.

Proposition 2.3. [21] If a TDES G = (Q,Σ, δ, q0, Qm) has a finite state space, is

activity loop free and has proper time behaviour, then

(∀q ∈ Qr)(∃s ∈ Σ∗) δ(q, sτ)!

where Qr is the set of reachable states.

TDES controllability is given in the following definition. In this thesis when we

say a TDES is controllable we mean TDES controllability, as opposed to the untimed

definition.

Definition 2.2.19. We define the arbitrary language K ⊆ L(G) to be TDES con-

trollable with respect to G if,

(∀s ∈ K)EligK(s) ⊇

{
EligL(G)(s) ∩ (Σu ∪ {τ}) if EligK(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligK(s) ∩ Σfor 6= ∅

In other words definition 2.2.19 states that K must have an uncontrollable event

eligible if it is eligible in the plant, and it must also have a tick event eligible if the

tick event is eligible in the plant, and there is no forcible events eligible to preempt

the tick event from occurring.

18 2. Introduction to Discrete-Event Systems

Chapter 3

Sampled-Data Controllers

In this chapter we will review the Sampled-Data systems and how we translate a

TDES automaton to an SD controller (Sampled-Data Controller). This material is

taken from Wang [21] and Leduc et al [18].

3.1 Introduction to SD Controllers

Sampled-data systems are systems that are driven by a global clock. As shown in

Figure 3.1, a controller samples input on the rising edge of the clock (clock signal

rises from zero to one), and internally only stores if a given input was true or false

(high or low) at the clock edge.

The behaviour of the controller is to sample its inputs on the clock edge and then

change state based on the current input values and its current state. It then sets its

outputs to be true or false based on the current state. If an output is set to true, the

controller will cause the correspondent event to occur before the next clock edge.

When we are using an SD controller to manage a given TDES system, we associate

an input with each event and an output with each prohibitable event. We consider

an event to have occurred when its corresponding input has gone true during a given

clock period. We consider a prohibitable event to be enabled when its corresponding

output has been set true by the controller, disabled otherwise. Finally, we associate

19

20 3. Sampled-Data Controllers

the clock edge that drives the SD controller with the occurrence of the TDES tick

event.

Figure 3.1: Sampling Data Global tick

We will assume the following facts while modelling SD controllers:

• We assume that the set of prohibitable events equals the set of forcible events

i.e Σhib = Σfor.

• We will consider that our SD controllers all are driven by the same global clock.

This means they all sample inputs and change state at the same time, and they

update their outputs at the same time.

• Prohibitable events will be allowed to occur at most once per sampling period.

• We will consider an event to have occurred if its input went true since the last

clock edge. If an event occurs so close to the clock edge that it is missed and is

seen in the next clock period, then it will not be considered to have happen in

this sampling period, but in the next one.

3. Sampled-Data Controllers 21

• When we enable a prohibitable event in the sampling period, we force it to

occur before the next clock edge.

• The input signal length for an event must be designed carefully. It must be

short enough that it begins and ends before the rising edge of the clock (namely

shorter than the clock period), but not too long that it spans more than one

clock period, when the event actually only occurred once.

3.2 SD Controller’s Input

To manipulate the TDES theory to work properly with the SD controllers theory

we will consider that each TDES system has a shared event in its events set called

tick (τ). This is the global clock event that indicates to all SD controllers to start

sampling and processing its input. This means that an SD controller can observe

only those strings that ends with a tick event, and the empty string. We consider

the empty string as a sampled string because it represents the initial state of the

controller which is known. Therefore, ε is a legitimate sampled string.

Definition 3.2.1. Given a event set Σ, the set of sampled strings is denoted by Lsamp

and is define as

Lsamp = Σ∗.τ ∪ {ε}

The SD controller changes its state at a clock edge (tick). Its next state is de-

termined by the strings that occur containing a single tick at the end since the last

clock tick. We refer to these strings as concurrent strings. An SD controller starts

at its initial state (reset) and then changes state according to the concurrent strings

that occur.

Definition 3.2.2. Given an event set Σ, we denote the set of concurrent strings as

Lconc, defined as

Lconc = Σ∗act.τ ⊂ Lsamp

22 3. Sampled-Data Controllers

Obviously, Lconc is a strict subset of Lsamp since the empty string is not found in

Lconc.

When a concurrent string occurs, the SD controller can not tell the order that

the events in the string happened in. It also can not tell the difference whether the

event occurred once or many times in the sampling period. Therefore, the following

concurrent strings appear the same to an SD controller: αβββτ , βατ , and αβαβτ .

It means if two concurrent strings have the same occurrence image (set of events that

the string contains) the SD controller will see them as the same concurrent string.

We capture this concept with the following operator.

Definition 3.2.3. For s ∈ Σ∗, the occurrence operator is a function Occu : Σ∗ →
Pwr(Σ) defined as below:

Occu(s) := {σ ∈ Σ | s ∈ Σ∗.σ.Σ∗}

As the SD controllers only see strings that end with a tick (sampled strings),

therefore only states in the SD controller entered by a tick are considered observable

points in the SD controllers. We refer to theses states as sampled states.

Definition 3.2.4. A state x ∈ X from TDES S = (X,Σ, ξ, xo, Xm), is a sampled

state for S if

(∃s ∈ L(S) ∩ Lsamp) ξ(xo, s) = x

We call Xsamp ⊆ X the set of sampled states for S. Since ε ∈ Lsamp, then by

definition xo ∈ Xsamp. Namely the initial state in a TDES (SD controller) is always

observable at least when the system is started up.

To convert TDES S into SD controller C, we take the sampled states of S as

the states of C. The initial or reset state state of C would be the initial state of S.

We then determine which concurrent strings are possible from a given sampled state.

The occurrence image of these concurrent strings would then define our next state

conditions. i.e. the sampled state in S that the concurrent string takes us to.

For state x of C, an output (enablement of some σ ∈ Σhib) is set to be true if the

corresponding event is possible at state x in S. We notice that outputs (enablement

3. Sampled-Data Controllers 23

information) are constant for the clock period. For a formal definition of SD con-

trollers and the conversion process from a TDES, please see Section 4.2 of Chapter 4.

Now we see that a problem arises here: what if in the TDES S we have one sampled

state x where two possible concurrent strings are defined, but these two concurrent

strings have the same occurrence image, say αβτ and ββατ . Let one concurrent

string lead to state xi and the other one lead to xj. We then face a situation with

the possibilities:

• xi, xj are the same state: this is the desired situation and does not cause a

problem.

• xi, xj are not the same state: since the concurrent strings appear the same to

the controller, it will not know which state to choose.

Now we present a property from [18] and [21] that ensures the above problem does

not happen. We call this property CS deterministic.

Definition 3.2.5. A TDES S = (X,Σ, ξ, xo, Xm) is concurrent string deterministic

or CS deterministic, if

(∀s ∈ L(S) ∩ Lsamp)(∀s′, s′′ ∈ Lconc)

[ss′, ss′′ ∈ L(S) ∧Occu(s′) = Occu(s′′)] =⇒

[ss′ ≡L(S) ss
′′ ∧ ss′ ≡Lm(S) ss

′′ ∧ ξ(xo, ss′) = ξ(xo, ss
′′)]

To see how a non-minimal TDES would cause problems, consider Figure 3.2.

For this example, let α, β ∈ Σact and xn, x
′, x′′ ∈ Xsamp for some TDES S =

(X,Σ, ξ, xo, Xm). In Figure 3.2, part (a) shows a portion of S that is not minimized,

such that s′ = αβτ and s′′ = βατ end up at two different states, x′ and x′′ respectively.

But (b) shows the minimized version where x′ and x′′ have been merge into a single

state x. Clearly in (a), Occu(s′) ∩ Σact = Occu(s′′) ∩ Σact but ξ(xn, s
′) 6= ξ(xn, s

′′).

This means the translation function of the SD controller will be non-deterministic.

However in (b), everything is fine. Another problem would be if x′ and x′′ were not

λ-equivalent. This would mean that we cannot merge the two states, and we would

24 3. Sampled-Data Controllers

Figure 3.2: Nonminimal Example

not be currently able to convert this TDES into an SD controller.

To aid in defining the conversion from a TDES to an SD controller, we define the

next sampling state function, it will be used in later chapters.

Definition 3.2.6. For CS deterministic TDES S = (X,Σ, ξ, xo, Xm), we define the

next-sampling-state partial function: ∆ : Xsamp × Pwr(Σact)→ Xsamp as follows. For

x ∈ Xsamp ⊆ X and Σ′ ⊆ Σact,

∆(x,Σ′) :=

{
ξ(x, s) if (∃s ∈ Lconc)ξ(x, s)! & Occu(s) ∩ Σact = Σ′

undefined otherwise

We want to introduce the prohibited action function, as defined in [18], that we will

used later in our translation from TDES to SD controller, prohibited action function

in short is the enablement that is done by the supervisor at any sampled states.

Definition 3.2.7. For TDES supervisor S = (X,Σ, ξ, xo, Xm) the prohibited action

function: ζ : Xsamp → Pwr(Σhib) is defined for x ∈ Xsamp ⊆ X as follows:

ζ(x) := {σ ∈ Σhib|ξ(x, σ)!}

We will assume that each prohibitable event occurs at most once per concur-

rent string because SD controllers can not tell how many times the event occurred.

3. Sampled-Data Controllers 25

Therefore, we will assume that our plant should reflect this concept by the following

definition from [18] and [21].

Definition 3.2.8. (Old version) For TDES G = (Y,Σ, δ, yo, Ym), we say that G has

singular prohibitable behavior if,

(∀s ∈ L(G) ∩ Lsamp)(∀s′ ∈ Lconc)ss′ ∈ L(G)

=⇒ (∀σ ∈ Occu(s′) ∩ Σhib)(∃s1, s2 ∈ (Σact − {σ})∗)s′ = s1σs2τ

We now define the S-singular prohibitable behaviour.

Definition 3.2.9. [22] For plant G and supervisor S, we say that G has S-singular

prohibitable behaviour if:

(∀s ∈ L(S)∩Lsamp)(∀s′ ∈ Σ∗act)ss
′ ∈ L(S)∩L(G) =⇒ (∀σ ∈ Occu(s′)∩Σact)σ 6∈

ElligL(G)(ss
′)

3.3 SD Controllable Languages

Up to now we have required that our TDES system must satisfy the following proper-

ties: have a finite state space, be ALF and nonblocking, our plant must have proper

time behaviour and be complete for our supervisor, and our supervisor be control-

lable for our plant. However, these conditions are not sufficient to translate a TDES

supervisor into an SD controller and get the behaviour we expect. Our actual system

behaviour under the control of the corresponding SD controller could block, violate

our control law, or even exhibit behaviour not contained in our plant model. There-

fore, we now need to also use the SD controllability property from Wang in [21]

and [18].

Let G = (Q,Σ, δ, q0, Qm) be a TDES where Σ = Σc ∪̇ Σu for controllable

and uncontrollable events. Remember that we require that for a TDES system,

Σc = Σhib∪{τ} and that Σfor = Σhib. As we will see later, this new condition implies

our TDES controllability definition so that we do not have to test this condition sep-

arately.

26 3. Sampled-Data Controllers

Definition 3.3.1. A supervisor S = (X,Σ, ξ, xo, Xm) is said to be SD controllable

with respect to G = (Q,Σ, δ, q0, Qm) if, ∀s ∈ L(S) ∩ L(G), the following statements

are satisfied:

i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If τ ∈ EligL(G)(s) then

τ ∈ EligL(S)(s) ⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1. (∀s′ ∈ Σ∗act)[ss
′ ∈ L(S) ∩ L(G)] =⇒

[EligL(S)∩L(G)(ss
′) ∪Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2. (∀s′, s′′ ∈ Lconc) [ss′, ss′′ ∈ L(S) ∩ L(G) ∧Occu(s′) = Occu(s′′)]⇒

ss′ ≡L(S)∩L(G) ss
′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss

′′

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

Point i : This is the normal untimed controllability.

Point ii : The (⇐) direction and point i imply standard TDES controllability. The

(⇒) part says if we enable a prohibitable event, we must disable tick. This

captures notion that we only enable a prohibitable event when we want to force

it. This makes it easier to translate supervisor S into an SD controller.

Point iii : When s is a sampled string then the following two conditions must be

fulfilled:

iii.1) This condition states that prohibitable events that are enabled when

the system changes states must remain enabled until the next sampling tick

without addition or subtraction.

3. Sampled-Data Controllers 27

iii.2) This condition is saying that in any sampling period, if two concurrent

strings are eligible, and these two concurrent strings have the same occurrence

image, then they must have the same future with respect to the system’s closed

behaviour and marked behaviour.

Point iv : This point says that marked strings must be sampled strings (ε or end in

a tick).

Let us now discuss some examples that illustrate some of the SD controllability

properties to understand the above conditions. We explore these conditions without

Point i, as it is the standard untimed controllability. The examples below are taken

from [18].

Plant Sup1 Sup2

tick
tick tick

a
a

a
a a

a
a

tick
tick ticktick

tick
1

1 13
3

2
2 2

4
4 3

Figure 3.3: An Example for Point ii, from Leduc et al [18]

In Figure 3.3, supervisor Sup1 does not satisfy (=⇒) of Point ii at states 1 and

2 because at these states we have both a tick and a prohibitable event enabled at

the same state. This makes Sup1 difficult to convert to an SD controller as we do

not know whether we should force event α at state 1, 2, or state 3. Supervisor Sup2

satisfies (=⇒) of Point ii. Sup2 is essentially Sup1 with the event α forced at state

2 and the unused behaviour removed.

In the example automata shown in Figure 3.4, we have a cannon set to fire through

an open door. We note that supervisor Sup1 is controllable and nonblocking with

Plant1, but it fails Point iii.1 at state 3. This is because prohibitable event fire was

possible at state 2 immediately after the tick, but is not possible at state 3 although

28 3. Sampled-Data Controllers

it has not yet occurred. Essentially, Sup1 says: fire the cannon in this clock cycle

but only if the door has not yet closed. Because we have no information telling us

when the cannon will fire and when the door will close during the clock cycle, it is

possible they could occur close together meaning there is no way we can ensure that

the cannon will not fire after the door closes, violating our control law. Worse, the SD

controller will not even know the door has closed until the next tick, at which time it

will be too late to react. It is important to note that although Sup1 is controllable

and nonblocking with Plant1, our implementation may not perform correctly.

Supervisor Sup2 is also controllable and nonblocking with Plant1, but it fails

Point iii.1 at state 3. The problem is that prohibitable event fire was not possible

at the start of the sampling period (namely state 2), but it is enabled and forced at

state 3. In essence, supervisor Sup2 says to wait until the door closes and then the

cannon must be fired before the next tick. However, the SD controller will not know

that the door has closed until the next tick. At this time it is too late to meet the

required deadline, violating our control law.

Supervisor Sup3 is controllable and nonblocking with Plant1, and it satisfies

Point iii.1. It shows that if we are to ensure a prohibitable event occurring in a spe-

cific order relative to another event, then the two events must occur in two separate

clock periods.

Finally, considering the combination of Plant2 and Sup1. They are also control-

lable and nonblocking, but they fail Point iii.1 at state 3. However, this time the

plant model is specifying that prohibitable event fire cannot occur at state 3. Obvi-

ously the event could occur and our plant model is invalid and will give the designer

a false idea of security.

In the example shown in Figure 3.5, supervisor Sup1 is controllable and nonblock-

ing with Plant, but it fails Point iii.2 at states 4 and 7. This is because concurrent

strings αβtick and βαtick have the same occurrence image, but they are not Nerode

equivalent with respect to the closed-loop systems closed behaviour. Particularly, we

see that Sup1 enables ω after αβtock , but enables γ after βαtick. Because an SD

3. Sampled-Data Controllers 29

Plant1

Plant2

tick

tick

tick

tick

tick

tick

tick

tick

1

1

3

3

2

2

4

4

tick

tick

!close

!close

!close

!close

fire

fire

fire

fire

fire

5

5

6

6

Sup1

tick

tick

tick

1 32

!close

!close

fire

4 5

Sup3

tick

tick

1 32

!close

fire

4

tick
Sup2

tick

tick

1 32

!close

fire

4

Figure 3.4: An Example for Point iii.1, from Leduc et al [18]

controller will not be able to tell the difference between these two strings, it will not

know which action to take. Sup1 can thus not be implemented as an SD controller.

We also note supervisor Sup2 is controllable and nonblocking with Plant, but it

fails Point iii.2 at states 4 and 7. This is because concurrent string βαtick can be

extended to a marked string by adding an ω while string αβtick can not.

Take into consideration that in the physical system we might only get string αβtick

and never βαtick or vice versa. This might be due to a choice during the implementa-

tion of our controller or the fact that in our specific controller implementation, event

α always takes less time to complete than event β. In situations like this, our physical

system would block despite the fact our TDES model is nonblocking. If we moved

the marker state of Sup2 from state 8 to state 1, the system would now pass Point

iii.2 and our physical system would be nonblocking even if only one of strings αβtick

and βαtick was possible.

We next note that in Figure 3.5, despite the fact that Sup3 is controllable, non-

30 3. Sampled-Data Controllers

blocking with Plant and passes Point iii.2, its implementation would still block if

only αβtick could occur. We note though that Sup3 fails Point iv at state 5 as

string β is marked and is not a sampled string. Moving the marking from state 5 to

state 4 would solve the problem.

Plant

Sup3

Sup1

Sup2

tick

tick

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

w,g

w

g

w

w

w

tick

tick

tick

tick

tick

tick

tick

tick

tick

tick

1

1

1

1

3

3

3

3

6

6

4

4

4

4

9

9

2

2

2

2

tick tick

5

5

5

5

6

6

8

8

7

7

Figure 3.5: An Example for Point iii.2 and Point iv, from Leduc et al [18]

Chapter 4

Moore Finite State Machines

(FSM) and VERILOG

The material in Sections 4.1-4.7 is largely taken from [18] and [22], with permission.

4.1 Moore FSM

In this chapter, we introduce a formal representation for SD controllers and a trans-

lation method for TDES supervisors. We will model SD controllers as Moore syn-

chronous FSM. Please see [9]. Our choice to do so is based on the work of Leduc

in [14] and [15] who implemented, in an ad hoc fashion, untimed DES as FSM. Using

FSM to define SD controllers is a good choice as it provides a concrete definition of

the controller, yet an FSM still allows a variety of physical implementations such as

a PLC program as in Bolton [6], using digital logic [9], or as a software program on

a computer.

4.2 Formal Model

Before we give a formal definition of an SD controller, we first need to discuss some

notation. We will often be discussing Boolean vectors that change periodically with

respect to some clock. A Boolean vector is a vector whose individual elements can

only be assigned the values of true (1) or false (0). We say “at time k” to indicate the

31

32 4. Moore Finite State Machines (FSM) and VERILOG

point of time at which k clock ticks have gone by since our starting reference point

at k = 0. For any vector v = [v1, v2, ..., vn], we write “v(k)” and “vj(k)” to denote

the value of v and vj (j ∈ {1, . . . , n}) at time k. As our index k takes on new values,

our vector v defines a sequence with respect to ticks of our clock, which we define

to be {v(k)|k = 0, 1, ...}, and is denoted as {v(k)}. When we are discussing an SD

controller, we can think of k = 0 as representing the time when the controller has

just been turned on or reset. For TDES systems, a “clock tick” corresponds to the

occurrence of a tick event.

Definition 4.2.1. We define an SD controller C as the tuple

C = (I, Z,Q,Ω,Φ,qres)

where:

• I is the set of possible Boolean vectors that the inputs to our controller can

take on. Each vector i = [i0, i1, .., iv−1] ∈ I has v input variables. Each element

of i corresponds to a unique activity event in our system. When an element is

set to 1, this indicates that the corresponding event has occurred at least once

in the previous clock period, when an element is set to 0 this means it did not

occur.

• Z is the set of possible Boolean vectors that the controller outputs can take on.

Each vector z = [z0, z1, .., zr−1] ∈ Z has r output variables. Each element of z

corresponds to a unique prohibitable event in our system. When an element is

set to 1, this means that corresponding event is enabled and that the controller

will make the event occur before the next clock tick (force it), where 0 means it is

disabled. Note that for the controller, both enabling and forcing a prohibitable

event are indicated by setting the corresponding element of z to 1. Also, forcing

and enablement of an event is constant for the controller for the given sampling

period.

• Q is the set of possible Boolean vectors that the state of the controller can take

on. Each vector q = [q0, q1, .., ql−1] ∈ Q has l state variables.

4. Moore Finite State Machines (FSM) and VERILOG 33

• qres ∈ Q is the initial (reset) state for the controller when it starts operating or

is reset. We take q(0) = qres.

• Ω : Q× I → Q is the next-state function which takes the current state q(k) ∈
Q and an input vector i(k + 1) ∈ I, and returns the next state q(k + 1) =

Ω(q(k)i(k + 1)).

• Φ : Q→ Z is the state-to-output map.

For a specific run of our controller, we would receive a specific sequence of in-

puts {i(k)}, starting at time k = 0. This sequence, combined with qres, and Ω,

will uniquely define our current sequence of states, {q(k)}. In turn, {q(k)} and Φ

will uniquely define our current sequence of outputs {z(k)}. If we wish to distin-

guish between two vector sequences, we will use different variables such as {i(k)} and

{i(k′)}.

4.3 Translation Method Introduction

We will now present an informal translation method using the supervisor shown in

Figure 4.1(a) to illustrate the translation steps.

(a) Original TDES

��������
�����������

�����

����

��������
�����������

�	
	
�
�
�
�����
�
�
�
	
���

����

��������
�����������

��
�
�
�
�
	��

��
�
	
	
�
���

����

(b) FSM Translation

������������ �	
������������������� ������������������	
������������������ ����������������	
���������������������������������������
(c) Abbreviated FSM

Figure 4.1: FSM Translation Example

1. To convert TDES S = (X,Σ, ξ, xo, Xm) into SD controller C, our first step is to

define the input and output sets, I, and Z. As they represent all possible assign-

34 4. Moore Finite State Machines (FSM) and VERILOG

ments of Boolean vectors, we first need to define the size (number of elements/-

variables) of each vector. The size of each input vector i ∈ I is defined to be

v = |Σact|. The size of each output vector z ∈ Z is defined to be r = |Σhib|. The

next step is to identify each element of vectors i = [i0, i1, .., iv−1] ∈ I to a unique

activity event, and to identify each element of vectors z = [z0, z1, .., zr−1] ∈ Z
to a unique prohibitable event.

For the example in Figure 4.1(a), we have Σact = {α1, α2, µ1, µ2, β, λ}, and

Σhib = {α1, α2, µ1, µ2}. This gives v = 6 and r = 4. We identify the elements

i0, i1, .., i5 with α1, α2, µ1, µ2, β, λ and the elements z0, z1, .., z3 with α1, α2, µ1, µ2.

For example, input vector [1, 1, 0, 0, 0, 0] ∈ I means that only events α1, and

α2 occurred since the last clock tick. Also, output vector [0, 0, 1, 1] ∈ Z means

that only prohibitable events µ1, and µ2 are enabled in the current clock period.

2. The next step we define the controller’s state set, Q. We need to define the

size of the state vectors, l, so that a state vector is large enough to encode

a value for each sampled state x ∈ Xsamp ⊆ X. We thus choose l to satisfy

2l−1 < |Xsamp| ≤ 2l. We then identify each sampled state x ∈ Xsamp of our

supervisor with a unique state q ∈ Q. We note that if |Xsamp| < 2l, then Q

will contain some vector assignments that do not correspond to sampled states,

but they will be unreachable. Next, we define the controller’s initial state, qres,

to be equal to the state q ∈ Q that we associated with the supervisor’s initial

state, xo. Finally, we can define the state set mapping function, Λ : Xsamp → Q,

which has Λ(xo) = qres. For simplicity, we will typically assume that Q has

no unused states and that Λ is bijective. If Q does have unused states, we can

restrict Λ to the set of controller states we have associated with sampled states,

and we get our desired bijective function.

We see that the sampled states of the supervisor in Figure 4.1(a) are states

I (initial state), W and D (only other states with incoming tick event). As

21 < 3 ≤ 22, we take l = 2. We then equate the states of our SD controller

(FSM) in Figure 4.1(b) as qres = [0, 0] to I, [0, 1] to W and [1, 0] to D. We see

4. Moore Finite State Machines (FSM) and VERILOG 35

that the remaining fourth state, [1, 1] ∈ I, is unused.

3. We next define our state-to-output map, Φ. For a given sampled state x ∈ Xsamp

of our supervisor, let Σenb := {σ ∈ Σhib| ξ(x, σ)!}. If state q ∈ Q is the con-

troller state that corresponds to state x, we would then define Φ(q) = z =

[z0, z1, .., zr−1] such that each element zi (i = 0, . . . , r − 1) would be set to zero

unless σi ∈ Σhib, where σi the the corresponding prohibitable event for zi, in

which case zi would be set to one.

In the Figure 4.1(a), the only prohibitable events defined at sampled state I

are α1, and α2. We thus set Φ([0, 0]) = [1, 1, 0, 0]. The remaining values of

Φ for states [0, 1] and [1, 0] can be seen in Figure 4.1(b). We can set Φ([1, 1])

arbitrarily as state [1, 1] is unused and unreachable.

4. Finally, we define our next-state function, Ω. For each sampled state x ∈ Xsamp

of our supervisor, let q ∈ Q be the unique controller state associated with x

(i.e. Λ(x) = q). Let CB(x) := {s ∈ Lconc| ξ(x, s)!} be the set of concurrent

strings defined at state x. For each string s ∈ CB(x), let i = [i0, i1, .., iv−1] ∈ I
be the input vector that corresponds to the occurrence image of s, Occu(s).

This means that each element ij (j = 0, . . . , v − 1) of i would be set to zero

unless σj ∈ Occu(s), where σj the the corresponding activity event for ij, in

which case ij would be set to one. We would then define Ω(q, i) = Λ(ξ(x, s)).

We note that any remaining combination of q′ ∈ Q and i′ ∈ I not defined in the

above process represent either unused states in the controller, or combination of

concurrent strings that can not occur at the corresponding sampled state. We

can thus define Ω(q′, i′) arbitrarily. If q′ is associated with a sampled state, we

typically define Ω(q′, i′) = q′ to make the design more robust.

Studying state I ([0, 0]) in Figure 4.1(a), we see that the only concurrent strings

leaving it are α1α2τ and α2α1τ , which takes us to state W ([0, 1]). As Occu(α1

α2τ) = Occu(α2α1τ) = {α2, α1, τ}, the corresponding input vector is [1, 1, 0, 0,

0, 0]. We would thus define Ω([0, 0], [1, 1, 0, 0, 0, 0]) = [0, 1]. The remaining

transitions for defined sampled state and concurrent string pairs are shown in

36 4. Moore Finite State Machines (FSM) and VERILOG

Figure 4.1(b). The transitions leaving unused state [1, 1] are defined arbitrarily.

As Ω is a total function, we usually have to add to diagrams a DEF, or default

transition, to cover input combination that we have not explicitly specified (i.e.

it matches all remaining unspecified input combination), as shown in Figure

4.1(b). This is done solely as a shorthand to keep the diagram uncluttered.

We see that our translation method states that enablement and forcing informa-

tion for a sampling period is completely defined by the sampled state reached by the

last tick event. Therefore, every prohibitable event enabled at this state will remain

enabled for the entire sampling period, and the controller must force every one of

them to occur before the next tick. This makes it easy to extract this information

from the supervisor and ensures that if multiple prohibitable events are available to

be forced, there is no uncertainty on which one to generate; they all must occur.

In Figure 4.1(c), we present a more compact and human-readable version of the

FSM. At each state in the FSM, we only list prohibitable events whose outputs are

set to true. For next-state conditions, we use Boolean equations to express input

conditions and we simplify them to only include input events possible at that state.

For example, at state 1 of FSM we see the next-state condition [β]·![λ] which

means event β occurred in the last sampling period, but event λ did not. It will

match any input vector for which this is true. Here we are representing logical AND

as “·,” and logical negation as “!.” We also represent logical OR as “+.” In the

FSM, we enclose event names by “[]” to distinguish between an event label and its

corresponding input being set to 1.

The operation of our FSM is that at system reset, it starts operating at state

qres = [0, 0] with its outputs set to enable only α1 and α2. At each clock tick, it

samples its inputs creating a new input vector, i, which is matched to the current

state’s next-state conditions to determine its new state and output. It then changes

to the new state, updates its outputs, and then waits for the next clock tick. For an

example of how to implement an FSM on a programmable logic controller, see [14]

and [15].

To be able to translate a TDES supervisor into an SD controller, we only require

that it be CS deterministic to ensure that the resulting FSM will be deterministic.

In practice, we also require that the TDES be non-selfloop ALF as a design aid.

4. Moore Finite State Machines (FSM) and VERILOG 37

This makes it more likely that the TDES be CS deterministic and typically makes

the translation easier and more compact as we will see in Chapter 8. As a TDES

that fails to be non-selfloop ALF can not model a physical system, this additional

constraint is not a limitation.

4.4 Event Mapping Functions

As we will often be discussing vectors whose elements refer to specific events in

Σact, we need a way to map events to a vector’s elements and vice versa. Let G =

(Y,Σ, δ, yo, Ym) be the TDES plant to be controlled and let S = (X,ΣS, ξ, xo, Xm) be

a CS deterministic TDES supervisor for G with ΣS ⊆ Σ. Let C = (I, Z,Q,Ω,Φ,qres)

be the SD controller for S.

As we could have multiple controllers, each using their own event orderings, we

first need define a default bijective map, γg, between our activity event set and a

default index set that we will use for labeling the events. To simplify things, we will

require the event mapping functions for each controller to respect the event ordering

imposed by γg. This means that γg will induce a single way to define the various

mapping functions for our controller.

Definition 4.4.1. Let bijective map γg : Σact → {0, . . . , |Σact| − 1} be the canonical

event mapping function for Σact.

We now define input and output mapping functions for our controller. Each

function will map events to the index value for the corresponding variable in the

specified vector (I or Z).

Definition 4.4.2. The input event mapping function for C is defined to be a bijective

map γ : ΣS ∩ Σact → {0, 1, . . . , v − 1} with v = |ΣS ∩ Σact| such that

(∀σ1, σ2 ∈ ΣS ∩ Σact)γg(σ1) < γg(σ2) =⇒ γ(σ1) < γ(σ2)

Definition 4.4.3. The output event mapping function for C is defined to be a bijective

map η : ΣS ∩ Σhib → {0, 1, .., r − 1} with r = |ΣS ∩ Σhib| such that

(∀σ1, σ2 ∈ ΣS ∩ Σhib)γg(σ1) < γg(σ2) =⇒ η(σ1) < η(σ2)

38 4. Moore Finite State Machines (FSM) and VERILOG

As these functions are bijective, their inverse functions always exist. We can thus

use their inverse functions to map an index value to its corresponding activity event.

4.5 Centralized Translation Method

We will now discuss how to translate a TDES supervisor into a single centralized

controller. Let TDES S = (X,Σ, ξ, xo, Xm) be CS deterministic. To translate S into

a controller C = (I, Z,Q,Ω,Φ,qres), we need to determine values for the members of

the tuple.

We will start with I, Z, and Q. As they represent all possible assignments of

Boolean vectors, we first need to define the size (number of elements/variables) of

each vector. The size of each input vector i ∈ I is defined to be v = |Σact|. The size

of each output vector z ∈ Z is defined to be r = |Σhib|.
We now specify Q. We need to define the size of the state vectors, l, so that a

state vector is large enough to encode a value for each sampled state x ∈ Xsamp ⊆ X.

We thus choose l to satisfy 2l−1 < |Xsamp| ≤ 2l. We note that if |Xsamp| < 2l, then Q

will contain some vector assignments that do not correspond to sampled states but

they will be unreachable.

To complete our definition of I, Z, and Q, we now need to associate activity events

with individual input variables, prohibitable events with individual output variables,

and sampled states with state assignments of Q.

Definition 4.5.1. Let γ be the input event mapping function for controller C. We

define for C the input set mapping bijective function, ΓI : Pwr(Σact)→ I, as follows.

For Σ′ ⊆ Σact, we have ΓI(Σ
′) = [i0, i1, .., iv−1] such that for j = 0, 1, .., v − 1,

ij :=

{
1 if (∃σ ∈ Σ′)γ(σ) = j

0 otherwise

Definition 4.5.2. Let η be the output event mapping function for controller C. We

define for C the output set mapping bijective function, ΓZ : Pwr(Σhib)→ Z, as follows.

For Σ′ ⊆ Σhib, we have ΓZ(Σ′) = [z0, z1, .., zr−1] such that for j = 0, 1, .., r − 1,

zj :=

{
1 if (∃σ ∈ Σ′)η(σ) = j

0 otherwise

4. Moore Finite State Machines (FSM) and VERILOG 39

Definition 4.5.3. We define for controller C the state set mapping function, Λ :

Xsamp → Q, to be an arbitrary injective function of the designer’s choice.

We can now define the reset state for C as qres = Λ(xo). Next, we define the

next-state and state-to-output maps.

Definition 4.5.4. Let ∆ be the next-sampling-state partial function for supervisor

S. For state q ∈ Q and input i ∈ I, the next-state function, Ω, is defined to be

Ω(q, i) :=

{Λ(∆(x,Γ−1
I (i))) if (∃x ∈ Xsamp)q = Λ(x) &

∆(x,Γ−1
I (i))!

arbitrary otherwise

Definition 4.5.5. Let ζ be the prohibited action function for supervisor S. For state

q ∈ Q, the state-to-output map Φ is defined to be

Φ(q) :=

{
ΓZ(ζ(x)) if (∃x ∈ Xsamp)q = Λ(x)

ΓZ(∅) otherwise

We now have completely defined our controller C for TDES supervisor S. As long

as S is CS deterministic, then its next-sampling-state partial function ∆ will be well

defined, allowing us to do the translation.

So far we have assumed our supervisor’s event set is Σ. If instead our supervisor

is defined over a subset ΣS ⊂ Σ, we would simply add to every state of our supervisor

selfloops for each σ ∈ Σ− ΣS and use this new supervisor for the translation.

4.6 Output Equivalence

Before we define a modular translation method, we first need to consider how to de-

termine if two different controllers would produce equivalent output (i.e. enablement

information) for the same input sequence. The problem is that the controllers could

be defined over different sets of input events and might use different event ordering

for their vectors.

To handle different input requirements, we will assume that we have a system input

vector, ig, containing all activity events and ordered with respect to the canonical

40 4. Moore Finite State Machines (FSM) and VERILOG

event mapping function, γg. We call {ig(k)} a canonical input sequence and ig ∈
{ig(k)} a canonical input vector. We can then map each ig to a corresponding input

vector for each controller using γg and the controllers own output event mapping

function, γ. For example, we can map ig = [ig,0, ig,1, .., ig,vg−1] (vg = |Σact|) to i =

[i0, i1, .., iv−1] by setting il = ig,l′ for l = 0, . . . , v − 1, with l′ = γg((γ
−1(l))).

In particular, we are interested in comparing two controllers C1 and C2 that have

been defined relative to the same CS deterministic supervisor S = (X,Σ, ξ, xo, Xm).

We are thus only interested in determining if they generate the same output with

respect to input sequences that represent valid input strings to S (i.e. s ∈ L(S) ∩
Lsamp).

Definition 4.6.1. A canonical input sequence {ig(k)} is input valid for S, if

(∀k′ ∈ {1, 2, ...})(∃s1, s2, . . . , sk′ ∈ Lconc) [s1s2 . . . sk′ ∈ L(S)]∧[(∀n ∈ {1, 2, . . . , k′})(∀σ ∈
Σact)

ig,γg(σ)(n) = 1 iff σ ∈ Occu(sn)]

Essentially in the above definition, we are requiring the sequence {ig(k)} to cor-

respond to a sequence of concurrent strings that supervisor S will accept.

Definition 4.6.2. Let Cj = (Ij, Zj, Qj,Ωj,Φj,qres,j) be an SD controller with output

mapping function ηj, j = 1, 2. We say C1 and C2 are output equivalent with respect

to S if for any canonical input sequence {ig(k)} that is input valid for S, and induced

outputs zj(k
′) = [zj,1(k′), zj,2(k′), .., zj,rj(k

′)] ∈ Zj (j = 1, 2) at time k′ = {0, 1, 2, . . .},
the follow conditions are satisfied:

1. r1 = r2

2. (∀0 ≤ i < r1)η−1
1 (i) = η−1

2 (i)

3. (∀k′ ∈ {0, 1, ..})z1(k′) = z2(k′)

4.7 Modular Translation Method

For large systems, we typically define multiple modular supervisors rather than a

single centralised supervisor. We would like to translate each individual supervisor

4. Moore Finite State Machines (FSM) and VERILOG 41

into their own modular controller, and then combine their outputs to produce the

equivalent enablement information of a centralized controller.

Let TDES S = S1||S2||..||Sn = (X,Σ, ξ, xo, Xm) be a CS deterministic supervisor

where each modular supervisor Sj = (Xj,Σj, ξj, xo,j, Xm,j), j = 1, 2, .., n, is also CS

deterministic. Let Σj = Σact,j∪̇{τ}, Σhib,j := Σhib ∩ Σact,j, and Σ =
⋃

l∈{1,2,..,n}
Σl.

For the following discussion, we will define the logical AND of vectors u =

[u1, u2, .., um] and v = [v1, v2, .., vm] as u ∧ v = [u1 ∧ v1, u2 ∧ v2, .., um ∧ vm]. We

define the concatenation of vectors u = [u1, u2, .., um1] and v = [v1, v2, .., vm2] as

uv = [u1, u2, .., um1 , v1, v2, .., vm2].

Definition 4.7.1. For j = 1, 2, .., n, the jth modular translation of CS deterministic

supervisor Sj to modular controller Cj = (Ij, Zj, Qj,Ωj,Φj,qres,j) is performed using

the method defined in Section 4.5 after replacing Σact by Σact,j, and Σhib with Σhib,j

in the definitions.

To define how we combine the individual outputs of the modular controllers to-

gether, we need to define the composite controller of our n modular controllers.

Definition 4.7.2. The composite controller for C1,C2, . . . ,Cn, C = (I, Z,Q,Ω,Φ,qres) =

comp(C1,C2, . . . , Cn), is defined as follows:

• The size of each input vector i ∈ I is defined to be v = |Σact|. The size of each

output vector z ∈ Z is defined to be r = |Σhib|. Let γ to be the input event

mapping function for C and η to be the output event mapping function.

• The number of state variables for vectors q ∈ Q is defined to be l =
∑n

j=1 lj,

where lj is the number of state variables for Qj. The reset state is defined to

be qres = qres,1qres,2 . . .qres,n.

• The next-state function Ω is defined such that, for q(k) = q1(k)q2(k)..qn(k) ∈
Q and i(k + 1) ∈ I,

q(k + 1) = Ω(q(k), i(k + 1))

= Ω1(q1(k), i1(k + 1)) . . .Ωn(qn(k), in(k + 1))

where input vector i(k + 1) in canonical form with respect to γg, was mapped

to input vector ij(k + 1) (j = 1, . . . , n) as described in Section 4.6.

42 4. Moore Finite State Machines (FSM) and VERILOG

• The state-to-output map Φ is defined as follows. For q = q1q2..qn ∈ Q, let

zj = Φj(qj) = [zj,0, zj,1, . . . , zj,rj−1] ∈ Zj, j = 1, . . . , n. For each zj, we

translate it to z′j = [z′j,0, z
′
j,1, .., z

′
j,r−1] ∈ Z such that,

(∀σ ∈ Σhib)z
′
j,η(σ) =

{
zj,ηj(σ) if σ ∈ Σhib,j

1 otherwise

We can now define:

Φ(q) =
∧

j∈{1,2,..,n}

z′j

The following theorem essentially states that the enablement information of the

composite controller is equivalent to that of the centralized controller.

Theorem 4.1. [22] Let CS deterministic supervisors S = S1||S2|| . . . ||Sn and Sj

(j = 1, 2, . . . , n) be defined as above. Let Cj be the modular controller for Sj,

C′ = comp(C1,C2, . . . ,Cn) be the composite controller, and C be the centralized

controller translated from S; then C and C′ are output equivalent with respect to S.

4.8 FSM as VERILOG Module

Our implementation is a two step process. The first step is to translate the TDES

supervisors to FSM. The second step is to translate the FSM to VERILOG modules.

VERILOG is a Hardware Description Language (HDL). See [9] for more details about

VERILOG and digital logic design.

In this thesis we focus on implementing our SD controllers as FSM defined as

VERILOG modules. This makes a good way to implement the supervisor in hard-

ware using field programmable gate array (FPGA) discussed in the next section.

Alternatively, the FSM could have been translated to a programming language such

as C++ [4] and implemented in software. This has been left as future work.

4. Moore Finite State Machines (FSM) and VERILOG 43

4.9 Field-Programmable Gate Array

SD controllers can be implemented in hardware using a field programmable gate array

(FPGA) device. An FPGA is a common type of programmable logic device that uses

small units of logic called logic blocks. See [9] for more information.

The logic block employs one or more of the following:

• Transistor gates.

• Flip-flops.

• Multiplexers.

• Look up tables (LUT’s).

44 4. Moore Finite State Machines (FSM) and VERILOG

Figure 4.2: General Structure of FPGA, [9].

In Figure 4.2, we have logic blocks shown in thick black squares that are connected

together with configurable wires and switches shown in tan lines and squares.

Chapter 5

Modular Verification of

Sampled-Data Properties

5.1 Introduction to Previous Work

In [21] Wang introduced a number of predicate based algorithms to verify the majority

of the sampled data conditions that we have discussed already. All of these algorithms

were intended to work on the synchronous product of the system that contains plant

G and supervisor S. However, in large systems in may be the case that constructing

and verifying G||S may either take too much memory or time, as due to the large

state space of G||S.

For large systems our plant is usually defined as a set of automata G1, . . . ,Gm

and our supervisor as a set of automata S1, . . . ,Sn. Our system plant would thus be

G = G1||G2 . . . ||Gm, and our system supervisor would be S = S1||S2|| . . . ||Sn. It is

easy to see that if we could check our property on the individual automata instead of

on G||S, this would save a lot of time and memory.

In this chapter we investigate modular approach for verifying the following prop-

erties:

• ALF: Activity loop free.

• SPB: Singular prohibitable behaviour

• SD-Cont-iii.1: SD controllability point 3.1.

45

46 5. Modular Verification of Sampled-Data Properties

• SD-Cont-iii.2: SD controllability point 3.2.

• SD-Cont-iv: SD controllability point 4.

By modular approaches, we wish to develop results such that if automata G1 and

G2 satisfy a property, then G1||G2 satisfies the property. Such a result can be easily

extended to an arbitrary number of automata.

5.2 ALF Modularity

The first property we investigate is the ALF property. The ALF property requires

a TDES to not contain any loops of activity events. This is to be sure that the oc-

currence of the tick event can not be infinitely preempted, a physically unrealistic fact.

In his masters thesis Wang has already started investigating modular methods for

verifying ALF with the proposition below.

Proposition 5.1. [21] For TDES G1 = (Q1,Σ1, δ1, q0,1, Qm,1) and G2 = (Q2,Σ2, δ2, q0,2, Qm,2),

if G1 and G2 are each ALF, then their synchronous product G = G1||G2, is ALF.

The problem is that supervisors often contain self loops and thus are not ALF

themselves. Wang in [21] provided a further result to address this problem. If all

the plant TDES components of the system are ALF and all the supervisor TDES

components do not contribute any new event to the system, then the synchronous

product of the overall components also is ALF. This is given in the proposition below.

Where G1 would be the plant and G2 would be the supervisor.

Proposition 5.2. [21] Let G1 = (Q1,Σ1, δ1, qo,1, Qm,1) and G2 = (Q2,Σ2, δ2, qo,2, Qm,2)

be two TDES. If G1 is ALF and Σ1 ⊇ Σ2, then G1||G2 is also ALF.

.

Although Wang proved that the ALF property could be verified modularly he only

implemented a monolithic ALF checker. Our contribution is to implement a modular

ALF checker.

5. Modular Verification of Sampled-Data Properties 47

5.3 SPB and SSPB Modularity

Singular prohibitable behaviour (SPB) says that any prohibitable event is allowed to

occur at most once in any concurrent string in an SD controller. This was expressed

by Wang [21] as the following definition, which is applied to the system plant G.

Definition 5.3.1. For TDES G = (Y,Σ, δ, yo, Ym), we say that G has singular pro-

hibitable behaviour (old version) if,

(∀s ∈ L(G) ∩ Lsamp)(∀s′ ∈ Lconc)ss′ ∈ L(G)

=⇒ (∀σ ∈ Occu(s′) ∩ Σhib)(∃s1, s2 ∈ (Σact − {σ})∗)s′ = s1σs2τ

Another way to capture this concept is to say that if σ ∈ Σhib has already occurred

since the last tick then σ must not be eligible again until after the next tick. This gives

us the new definition below. It is easy to see that the two definitions are equivalent.

From now and on, whenever we refer to the SPB definition we mean Definition 5.3.2.

Definition 5.3.2. For TDES G = (Y,Σ, δ, yo, Ym), we say that G has singular pro-

hibitable behavior if:

(∀s ∈ L(G) ∩ Lsamp)(∀s′ ∈ Σ∗act)ss
′ ∈ L(G) =⇒ (∀σ ∈ Occu(s′) ∩ Σhib)σ 6∈

EligL(G)(ss
′).

The reason we are introducing a new version of the SPB property is that we want

to prove that SPB implies S-singular prohibitable behaviour(SSPB) that is defined

in Definition 3.2.9 and this new form more clearly matches how the SSPB definition

is expressed, as well as how our software evaluates the property. We will then show

that the SPB property can be verified modularly, which then gives us a way to verify

the SSPB property modularly. The reason we do not try to directly verify the SSPB

property modularly is because it involves both the plant G and supervisor S, where

the SPB property only involves the plant. It also lends itself better to modular checks.

5.3.1 SPB implies SSPB

We now prove that singular prohibitable behaviour implies S-singular prohibitable

behaviour. In Proposition 5.3 below, it is important that S is defined over the same

48 5. Modular Verification of Sampled-Data Properties

alphabet of G. Otherwise, this proposition is not guaranteed to be correct.

Proposition 5.3. Let G = (Q,Σ, δ, q0, Qm) and S = (X,Σ, η, x0, Xm). If G has

singular prohibitable behaviour then G has S-singular prohibitable behaviour.

Proof. Assume G has singular prohibitable behaviour. This implies:

(∀s ∈ L(G) ∩ Lsamp)(∀s′ ∈ Σ∗act)ss
′ ∈ L(G) =⇒ (∀σ ∈ Occu(s′) ∩ Σhib)σ 6∈

EligL(G)(ss
′). (1)

Must show that G has S-singular prohibitable behaviour.

Sufficient to show:

(∀s ∈ L(S) ∩ Lsamp)(∀s′ ∈ Σ∗act)ss
′ ∈ L(S) ∩ L(G) =⇒ (∀σ ∈ Occu(s′) ∩ Σact)σ 6∈

ElligL(G)(ss
′)

Let s ∈ L(G) ∩ L(S) ∩ Lsamp. (2)

Let s′ ∈ Σ∗act.

Assume ss′ ∈ L(G) ∩ L(S). (3)

Let σ ∈ Occu(s′) ∩ Σhib. (4)

Must show implies σ 6∈ EligL(G)(ss
′).

By (2), we have s ∈ L(G) ∩ Lsamp. (5)

By (3), we have ss′ ∈ L(G). (6)

By (4), we have σ ∈ Occu(s′) ∩ Σhib.

=⇒ σ 6∈ EligL(G)(ss
′). (by 1)

5.3.2 SPB Modularity

We now proof that if plant component G1 is SPB, and plant component G2 is SPB,

then G = G1||G2 is also SPB. In other words the property SPB is modular.

Proposition 5.4. Let G1 = (Y1,Σ1, δ1, y0,1, Ym,1) and G2 = (Y2,Σ2, δ2, y0,2, Ym,2) be

two TDES.

If G1,G2 both have singular prohibitable behaviour then G = G1||G2 has singular

prohibitable behaviour.

5. Modular Verification of Sampled-Data Properties 49

Proof. Let Σ = Σ1 ∪ Σ2.

Let Pi : Σ∗ 7→ Σ∗i , i = 1, 2, be natural projection.

Let Lsamp = Σ∗.τ ∪ {ε}
Assume that both plants G1 and G2 are SPB. (1).

Must show this implies that G = G1||G2 is also SPB.

Sufficient to show that:

(∀s ∈ L(G) ∩ Lsamp)(∀s′ ∈ Σ∗act)ss
′ ∈ L(G) =⇒ (∀σ ∈ Occu(s′) ∩ Σhib)σ 6∈

EligL(G)(ss
′).

Let s ∈ L(G) ∩ Lsamp and s′ ∈ Σ∗act. (2)

Assume ss′ ∈ L(G). (3)

Let σ ∈ Occu(s′) ∩ Σhib. (4)

Must show implies σ 6∈ ElligL(G)(ss
′).

Sufficient to show: ss′σ 6∈ L(G).

From (2), we have s ∈ L(G) = P−1
1 (G1) ∩ P−1

2 (G2).

=⇒ Pi(s) ∈ L(Gi), i = 1, 2.

=⇒ Pi(s) ∈ L(Gi) ∩ Lsamp, by (2) and as τ ∈ Σi, i = 1, 2, since Gi are TDES. (5)

By (2), we have: Pi(s
′) ∈ Σ∗act, i = 1, 2. (6)

By (3), we have: Pi(ss
′) ∈ L(Gi), i = 1, 2.

=⇒ Pi(s
′)Pi(s

′) ∈ L(Gi), i = 1, 2, as Pi is cantenative. (7)

By (4), we have that σ ∈ Σhib.

As Σhib ⊆ Σ = Σ1 ∪ Σ2 we have two cases: (1) σ ∈ Σ1 or (2) σ ∈ Σ2.

Case 1) σ ∈ Σ1

By (4), we have that σ ∈ Occu(s′).

As σ ∈ Σ1, we have P1(σ) = σ. (8)

=⇒ σ ∈ Occu(P1(s′)).

Combining (5),(6) and (7), we have: P1(s) ∈ L(G1) ∩ Lsamp) ∧ (P1(s′) ∈ Σ∗act) ∧
(P1(s)P1(s′) ∈ L(G1)

As G1 is SPB we can then conclude: σ 6∈ EligL(G1)(P1(s)P1(s′)).

=⇒ P1(s)P1(s′)σ 6∈ L(G1).

=⇒ P1(ss′σ) 6∈ L(G1) by (8) and fact P1 is catenative.

=⇒ ss′σ 6∈ P−1
1 (G1)

=⇒ ss′σ 6∈ L(G) = P−1
1 (G1) ∩ P−1

2 (G2).

50 5. Modular Verification of Sampled-Data Properties

Case 2) σ ∈ Σ2

Proof is identical to case (1) up to relabelling Σ1, P1,G1 to Σ2, P2,G2.

By case (1) and case (2), we have that: ss′σ 6∈ L(G), thus σ 6∈ EligL(G)(ss
′).

We thus have that G is SPB, as required.

5.4 SD Controllability Modularity

SD controllability, as defined in Chapter 3, contains five properties since property

(iii) contains two distinct sub-properties. The first property of SD controllability is

essentially untimed controllability. This is a well known modular property and is

examined in detail in [5]. As the second property is not modular, we will not discuss

it here. We now prove the remaining properties, SD-Cont-iii.1, SD-Cont-iii.2, and

SD-Cont-iv, are modular.

5.4.1 SD-Cont-iii.1 Modularity

In Chapter 3, the SD controllability property iii.1 was expressed in terms of a plant

and a supervisor. For simplicity, we re-express it in terms of an arbitrary TDES G.

Definition 5.4.1. We say that TDES G satisfies SD-Cont-iii.1 if and only if:

(∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗act)st ∈ L(G)

=⇒ (ElligL(G)(st) ∪Occu(t)) ∩ Σhib = ElligL(G)(S) ∩ Σhib.

Theorem 5.1. Let Gi = (Qi,Σi, δi, qi,0, Qi,m) be two arbitrary TDES, i = 1, 2. If

G1 satisfies SD-Cont-iii.1, and G2 satisfies SD-Cont-iii.1, then G = G1||G2 satisfies

SD-Cont-iii.1.

Proof. Let Σ = Σ1 ∪ Σ2.

Let Pi : Σ∗ → Σ∗i for, i = 1, 2, be natural projections.

Let Lsamp = Σ∗.τ ∪ {ε}.
Assume G1,G2 both satisfy SD-Cont-iii.1

Must show implies G = G1||G2 satisfies SD-Cont-iii.1. (1)

5. Modular Verification of Sampled-Data Properties 51

Sufficient to show:

(∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗act)st ∈ L(G) =⇒
(EligL(G)(st) ∪Occu(t)) ∩ Σhib = EligL(G)(S) ∩ Σhib

Let s ∈ L(G) ∩ Lsamp and t ∈ Σ∗act. (2)

Assume st ∈ L(G). (3)

Must show implies:

(EligL(G)(st) ∪Occu(t)) ∩ Σhib = EligL(G)(S) ∩ Σhib

Sufficient to show: ⊆ and ⊇

Part A) Show: (EligL(G)(st) ∪Occu(t)) ∩ Σhib ⊆ EligL(G)(S) ∩ Σhib.

Let σ ∈ (EligL(G)(st) ∪Occu(t)) ∩ Σhib. (4)

Must show: σ ∈ EligL(G)(S) ∩ Σhib

Sufficient to show: sσ ∈ L(G) = P−1
1 (G1) ∩ P−1

2 (G2).

It is thus sufficient to show: (∀i ∈ {1, 2})Pi(sσ) ∈ L(Gi).

Let i ∈ {1, 2}
From (4), we have σ ∈ Σhib and either: (a) σ ∈ Occu(t) or (b) stσ ∈ L(G). (5)

We have two cases: (1) σ 6∈ Σi or (2) σ ∈ Σi.

Case 1) σ 6∈ Σi.

From (2), we have s ∈ L(G)

=⇒ Pi(s) ∈ L(Gi)

As σ 6∈ Σi we have Pi(σ) = ε, by definition of natural projection.

=⇒ Pi(sσ) = Pi(s)Pi(σ) = Pi(s) ∈ L(Gi), as Pi is catenative.

Case (1) complete.

Case 2) σ ∈ Σi (6)

=⇒ Pi(σ) = σ

From (2), we have s ∈ Lsamp and Pi(s) ∈ L(Gi)

As Gi is a TDES, τ ∈ Σi, thus: Pi(τ) = τ

We thus have: s ∈ Lsamp =⇒ Pi(s) ∈ Lsamp
=⇒ Pi(s) ∈ L(Gi) ∩ Lsamp

52 5. Modular Verification of Sampled-Data Properties

From (2), we also have Pi(t) ∈ Σ∗act as Pi removes events but does not add them.

From (3), we have Pi(st) = Pi(s)Pi(t) ∈ L(Gi)

As Gi satisfies SD-Cont-iii.1, it thus follows:

(EligL(Gi)(Pi(s)Pi(t)) ∪Occu(Pi(t))) ∩ Σhib = EligL(Gi)(Pi(s)) ∩ Σhib. (7)

By (5), we have σ ∈ Σhib and either: a) σ ∈ Occu(t) or b) Pi(stσ) = Pi(s)Pi(t)Pi(σ) ∈
L(Gi)

We first note that as σ ∈ Σi by (6), Pi(σ) = σ.

Case a) σ ∈ Occu(t)

=⇒ t ∈ Σ∗.σ.Σ∗

=⇒ Pi(t) ∈ Σ∗.σ.Σ∗

=⇒ σ ∈ Occu(Pi(t))

=⇒ σ ∈ (EligL(Gi)(Pi(s)Pi(t)) ∪Occu(Pi(t))) ∩ Σhib

=⇒ σ ∈ EligL(Gi)(Pi(s)) by (7).

=⇒ Pi(s)σ ∈ L(Gi) by definition of Elig operator.

=⇒ Pi(sσ) ∈ L(Gi), as σ ∈ Σi.

Case (a) complete.

Case b) Pi(s)Pi(t)Pi(σ) ∈ L(Gi).

=⇒ Pi(s)Pi(t)σ ∈ L(Gi), as σ ∈ Σi

=⇒ σ ∈ EligL(Gi)(Pi(s)Pi(t)) ∩ Σhib

=⇒ σ ∈ EligL(Gi)(Pi(s)), by (7).

=⇒ Pi(s)σ ∈ L(Gi)

=⇒ Pi(s)Pi(σ) = Pi(sσ) ∈ L(Gi), as σ ∈ Σi.

Case (b) complete. By case (a) and (b) we thus conclude Pi(sσ) ∈ L(Gi)

Case (2) complete.

By case (1) and (2), we have Pi(sσ) ∈ L(Gi), for i = 1, 2.

We thus conclude that σ ∈ EligL(G)(S) ∩ Σhib

Part A complete.

Part B) Show: EligL(G)(S) ∩ Σhib ⊆ (EligL(G)(st) ∪Occu(t)) ∩ Σhib

5. Modular Verification of Sampled-Data Properties 53

Let σ ∈ EligL(G)(S) ∩ Σhib (8)

Must show implies: σ ∈ (EligL(G)(st) ∪Occu(t)) ∩ Σhib.

Sufficient to show either (a) σ ∈ Occu(t) or (b) σ ∈ EligL(G)(st)

We will assume σ 6∈ Occu(t) and show this implies σ ∈ EligL(G)(st)

As L(G) = P−1
1 (L(G1)) ∩ P−1

2 (L(G2)) it is thus sufficient to show:

(∀i ∈ {1,2})Pi(stσ) ∈ L(Gi)

Let i ∈ {1, 2}
Must show implies Pi(stσ) ∈ L(Gi)

We have two cases: (a) σ 6∈ Σi or (b) σ ∈ Σi

Case a) σ 6∈ Σi.

=⇒ Pi(σ) = ε.

From (3), we have st ∈ L(G).

=⇒ Pi(st) ∈ L(Gi).

=⇒ Pi(stσ) = Pi(st)Pi(σ) = Pi(st) ∈ L(Gi).

Case (a) complete.

Case b) σ ∈ Σi.

=⇒ Pi(σ) = σ. (10)

From (8), we have σ ∈ Σhib and sσ ∈ L(G).

=⇒ Pi(sσ) = Pi(s)σ ∈ L(Gi).

=⇒ σ ∈ EligL(Gi)(Pi(s)) ∩ Σhib. (11)

From (2), we have s ∈ Lsamp and Pi(s) ∈ L(Gi).

As Gi is a TDES, τ ∈ Σi, thus: Pi(τ) = τ .

We thus have s ∈ Lsamp =⇒ Pi(s) ∈ Lsamp
=⇒ Pi(s) ∈ L(Gi) ∩ Lsamp
From (2), we also have Pi(t) ∈ Σ∗act as Pi removes events, it does not add them.

From (3), we have Pi(st) = Pi(s)Pi(t) ∈ L(Gi)

We thus have Pi(s) ∈ L(Gi) ∩ Lsamp, Pi(t) ∈ Σ∗act, and Pi(s)Pi(t) ∈ L(Gi).

54 5. Modular Verification of Sampled-Data Properties

As Gi satisfies SD-Cont-iii.1:

(EligL(Gi)(Pi(s)Pi(t)) ∪Occu(Pi(t))) ∩ Σhib = EligL(Gi)(Pi(s)) ∩ Σhib

By (11), we thus have: σ ∈ (EligL(Gi)(Pi(s)Pi(t)) ∪Occu(Pi(t))). (12).

By (9), we have σ 6∈ Occu(t).

=⇒ t 6∈ Σ∗.σ.Σ∗.

=⇒ Pi(t) 6∈ Σ∗.σ.Σ∗, as Pi(σ) = σ.

=⇒ σ 6∈ Occu(Pi(t)).

=⇒ σ ∈ EligL(Gi)(Pi(s)Pi(t)), by (12)

=⇒ Pi(s)Pi(t)σ = Pi(s)Pi(t)Pi(σ) = Pi(stσ) ∈ L(Gi).

Case (b) complete.

By case (a) and (b), we thus have: Pi(stσ) ∈ L(Gi).

We thus have (∀i ∈ {1, 2})Pi(stσ) ∈ L(Gi).

=⇒ stσ ∈ L(G)

=⇒ σ ∈ EligL(G)(st)

We thus have: σ ∈ EligL(G)(st) ∪Occu(t)

Part (B) complete.

By Part (A) and Part (B), we thus conclude:

(EligL(G)(st) ∪Occu(t)) ∩ Σhib = EligL(G)(S) ∩ Σhib

5. Modular Verification of Sampled-Data Properties 55

5.4.2 SD-Cont-iii.2 Modularity

Fortunately for us it has already been proven that SD-Cont-iii.2 is modular. Please

see Baloch [3] for details.

5.4.3 SD-Cont-iv Modularity

We now want to prove that SD-Cont-iv is modular. As for SD-cont-iii.1, we re-express

the property below in terms of a single arbitrary TDES G.

Definition 5.4.2. For a TDES G = (Q,Σ, δ, q0, Qm), we say that G satisfies SD-

Cont-iv if:

Lm(G) ⊆ Lsamp

.

Theorem 5.2. Let Gi = (Qi,Σi, δi, q0,i, Qm,i), i = 1, 2, be two TDES. If G1 and G2

each satisfy SD-Cont-iv then G = G1||G2 satisfies SD-Cont-iv.

Proof. Let Σ = Σ1 ∪ Σ2.

Let Pi : Σ∗ 7→ Σ∗i , i = 1, 2, be natural projections.

Let Lsamp = Σ∗.τ ∪ {ε}.

Assume G1 and G2 satisfy SD-Cont-iv. (1)

Must show G = G1||G2 satisfy SD-Cont-iv.

Sufficient to show : Lm(G) = P−1
1 (Lm(G1)) ∩ P−1

2 (Lm(G2)) ⊆ Lsamp.

Let s ∈ P−1
1 (Lm(G1)) ∩ P−1

2 (Lm(G2)). (2)

Sufficient to show s ∈ Lsamp
We have two cases: s = ε or s 6= ε.

Case 1) s = ε

We immediately have s ∈ Lsamp
Case 2) s 6= ε

This implies P1(s) 6= ε or P2(s) 6= ε, as Σ = Σ1 ∪ Σ2. As G1 and G2 are arbitrary

TDES, we can assume P1(s) 6= ε without any loss of generality.

From (2) we have: s ∈ P−1
1 (Lm(G1))

56 5. Modular Verification of Sampled-Data Properties

=⇒ P1(s) ∈ Lm(G1)

From (1) we have: Lm(G1) ⊆ Lsamp

=⇒ P1(s) ⊆ Lsamp

As P1(s) 6= ε we have: P1(s) ∈ Σ∗.τ

We note that by definition of TDES, τ ∈ Σ1 and τ ∈ Σ2, thus:

P1(τ) = P2(τ) = τ

=⇒ (∃s′ ∈ Σ∗.τ)(∃s1 ∈ (Σ− Σ1)∗) such that s′s1 = s. (3)

=⇒ P2(s) 6= ε and P2(s) ∈ Σ∗.τ as P2(s) ∈ Lm(G2) (by 2) and by (1).

=⇒ (∃s2 ∈ (Σ− Σ2)∗)s′s2 = s.

=⇒ s1 = s2.

=⇒ s1 = s2 = ε, as (Σ− Σ2)∗ ∩ (Σ− Σ1)∗ = ε since Σ = Σ1 ∪ Σ2.

=⇒ s = s′

=⇒ s ∈ Σ∗.τ ⊆ Lsamp by (3)

By case 1 and 2, we have s ∈ Lsamp.

When checking ALF, we saw that if G1 is ALF and G2 is under the same alpha-

bet of G1 (i.e Σ2 ⊆ Σ1), then G1||G2 is also ALF. We will now prove that a similar

result is true for SD-Cont-iv. If G1 satisfies SD-Cont-iv and ΣG2 ⊆ ΣG1 then G1||G2

satisfies SD-Cont-iv. This will allow us to only check the TDES plant components as

long as all supervisors have the same alphabet as the plants. This means we do not

need to make each marked state in the supervisors a sampled state as well.

Proposition 5.5. Let G1 = (Y1,Σ1, δ1, y0,1, Ym,1) and G2 = (Y2,Σ2, δ2, y0,2, Ym,2)

be two TDES. If G1 satisfies SD-Cont-iv and Σ2 ⊆ Σ1 then G = G1||G2 satisfies

SD-Cont-iv.

Proof. Let Σ = Σ1 ∪ Σ2.

Define natural projection P2 : Σ∗ → Σ∗2.

Assume G1 satisfies SD-Cont-iv and Σ2 ⊆ Σ1. (1)

Sufficient to show that Lm(G1||G2) ⊆ Lsamp = Σ∗.τ ∪ {ε}.
Let s ∈ Lm(G1||G2). (2)

Must show s ∈ Lsamp.
From (1), we have:

5. Modular Verification of Sampled-Data Properties 57

Lm(G1||G2) = Lm(G1) ∩ P−1
2 (Lm(G2)), as Σ2 ⊆ Σ1.

=⇒ s ∈ Lm(G1) by (2).

We have Lm(G1) ⊆ Lsamp as G1 satisfies SD-Cont-iv.

=⇒ s ∈ Lsamp, as required.

58 5. Modular Verification of Sampled-Data Properties

Chapter 6

Algorithmic Improvements

6.1 Introduction

The contribution we did on the algorithmic side is implementing the modular verifi-

cation we introduced in Chapter 5. To implement this, we built upon the algorithms

introduced by Wang [21]. We divided verification into two types: modular and non-

modular. The modular properties where verified modularly, and the non-modular

properties were verified on the synchronous product of the system.

In this chapter, we will briefly discuss the previous work, and then explain the

algorithms for modular verification. We also introduce new algorithms for checking

non-selfloop ALF and the CS deterministic properties.

6.2 Predicate Verification Preliminaries

In this section we will give a brief introduction about verification with predicates.

Our work here is based on the work of Wang [21]. Please see first section of Chapter

6 of [21] for more details about predicate-based verification.

59

60 6. Algorithmic Improvements

6.2.1 State Predicates

In this thesis we use the notation ‘≡’ to mean logical equivalence between state

predicates. We will use ”T” and ”F” for logical true and false.

Let G = (Q,Σ, δ, q0, Qm) be a TDES.

Definition 6.2.1. A predicate P defined on state set Q is a function

P : Q→ {T, F}

identified by the corresponding state subset

QP := {q ∈ Q|P (q) = T} ⊆ Q

The state predicate true is identified by the set Q, while the state predicate false

is identified by ∅, and the state predicate Pm is identified by Qm.

We write q |= P , if q ∈ QP and say “q satisfies P” or “P includes q”. Thus we

have:

q |= P ⇐⇒ P (q) = T

We write Pred(Q) to mean the set of all predicates defined on the set of states Q;

therefore Pred(Q) is identified by Pwr(Q). For P ∈ Pred(Q), we write st(P) for the

corresponding state subset QP ⊆ Q which identifies P . We write pr(Q) to represent

the predicate that is identified by Q.

Definition 6.2.2. For P1, P2, P3 ∈ Pred(Q) and q ∈ Q, we can build boolean ex-

pressions by using the following predicate operations.

(¬P)(q) = T ⇐⇒ P (q) = F .

(P1 ∧ P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = T .

(P1 ∨ P2)(q) = T ⇐⇒ P1(q) = T or P2(q) = T .

(P1 − P2)(q) = T ⇐⇒ P1(q) = T and P2(q) = F .

6. Algorithmic Improvements 61

6.2.2 Predicate Transformers

Let G = (Q,Σ, δ, q0, Qm) be a TDES and P ∈ Pred(Q). A predicate transformer

is a function f : Pred(Q) → Pred(Q). Here we mention some essential predicate

transformers from [21] which are required in this chapter:

• R(G, P): The reachability predicate R(G, P) is true for all the states in G that

can be reached from qo by states satisfying P . This means that R(G, true)

represents all states that are reachable in G.

• CR(G, P): The coreachability predicate CR(G, P) is true for exactly the states

in G that can reach a marked state by states satisfying P . This means that

CR(G, true) represents all the states that are coreachable in G.

Let G = (Q,Σ, δ, qo, Qm) = G1||G2||..||Gn be a TDES, where Gi =

(Qi,Σi, δi, qo,i, Qm,i), i=1,...,n. Let q ∈ Q and σ ∈ Σ. We want to compute the

transition δ(q, σ) using the symbolic representation introduced by Wang in [21]. To

do this, for QP ⊆ Q, where P ∈ Pred(Q), we can compute

Q′P =
⋃
q∈Qp

{δ(q, σ)}

and then evaluate P ′ := pr(Q′P). However, computing δ(q, σ) one by one is not going

to be efficient for large systems. Instead we want to compute P ′ directly from P . To

do this, we introduce the following functions.

The first function δ̂ : Pred(Q) × Σ → Pred(Q), calculates a predicate that rep-

resents all states reachable by a σ ∈ Σ transition from any state that satisfies a

predicate P ∈ Pred(Q).

δ̂(P, σ) := pr({q′ ∈ Q|(∃q |= P)δ(q, σ) = q′})

The second function δ̂−1 : Pred(Q) × Σ → Pred(Q), calculates a predicate that

represents all states that can reach a state that satisfies P ∈ Pred(Q) by a σ ∈ Σ

transition.

62 6. Algorithmic Improvements

δ̂−1(P, σ) := pr({q ∈ Q|δ(q, σ) |= P})

For more details on how these two predicates operators are implemented, please

see Wang [21].

Given a plant G = (Y,Σ, δ, y0, Ym) and a supervisor S = (X,Σ, ξ, x0, Xm). Let

Q = Y × X be state space of G||S, our closed loop system. Sometimes we need a

transition function δ̂ and δ̂−1 for G||S and transition functions δ̂G and δ̂G
−1

for the

plant and ξ̂ and ξ̂−1 for the supervisors, all defined to be for Pred(Q)×Σ→ Pred(Q).

As G||S has state set Q, δ̂ and δ̂−1 are defined as above, but with δ replaced by δ× ξ.

For plant G, let σ ∈ Σ, and P ∈ Pred(Q). Then:

δ̂G(P, σ) := pr({q′ = (y′, x′) ∈ Q|(∃q = (y, x) |= P)δ(y, σ) = y′})

δ̂G
−1

(P, σ) := pr({q = (y, x) ∈ Q|(∃x′ ∈ X)(δ(y, σ), x′) |= P})

For supervisor S, let σ ∈ Σ, and P ∈ Pred(Q). Then:

ξ̂(P, σ) := pr({q′ = (y′, x′) |= P |(∃q = (y, x) ∈ Q)ξ(x, σ) = x′})

ξ̂−1(P, σ) := pr({q = (y, x) ∈ Q|(∃y′ ∈ Y)(y′, ξ(x, σ)) |= P})

6.3 Previous Approach

Algorithm 6.1 shows the original algorithm approach from Wang [21] that verifies the

system according to the synchronous product of its components. It is easy to see

that the first thing we do in verifying the system is to build the synchronous product

of the system from the plants Gi = (Qi,Σi, δi, qo,i, Qm,i), i=1,...,m and supervisors

Si = (Xi,Σi, ξi, xo,i, Xm,i), i=1,...,n, and we pass it to Algorithm 6.2. The algorithm

constructs the system plant G, and supervisor S which is passed to Algorithm 6.2

(VerifySub). Algorithm 6.2 then performs BDD-based test on the desired proper-

ties. The algorithm fails if any property test fails.

6. Algorithmic Improvements 63

In this algorithm, the notation ”¬” means logical NOT. The variable result is a

Boolean variable holds the value returned by algorithm VerifySub.

Algorithm 6.1 BddSDCheckProp()

1: G← G1||G2||...||Gm

2: S← S1||S2||...||Sn
3: result← V erifySub(G,S)

4: if (¬result) then

5: return False

6: else

7: return True

8: end if

The subalgorithm, VerifySub, is shown in Algorithm 6.2. This is the version from

Wang [21]. The following variables are used in the algorithm, as described below:

• bddConBad: The predicate for untimed controllability check.

• bddPLCOMPBad: The predicate for plant completeness check.

• bddNBBad: The predicate for nonblocking check.

• bddALFBad: The predicate for ALF check.

• bddPTBBad: The predicate for proper time behaviour check.

• bddSDBad: The predicate for SD controllability check.

• bddReach: The reachability predicate for the system.

• bddCoReach: The co-reachability predicate for the reachable states in the

system.

We also list the following sub algorithms that were created by Wang [21] to do

the corresponding test. For more information on these algorithms see [21]:

• R(G, true): Find all reachable states in the system.

64 6. Algorithmic Improvements

• CR(G, bddReach): Find all co-reachable states that are reachable.

• VeriConBad: Test if S is untimed controllable for G. This corresponds to

Algorithm 6.3 of Wang [21].

• VeriBalemiBad: Test if the plant G is complete for S. This corresponds to

Algorithm 6.4 of Wang [21].

• Nonblocking: Test that all states that satisfy R(G||S, true), also satisfy

CR(G||S, R(G||S, true)). This corresponds to Algorithm 6.5 of Wang [21]

• VeriALF: Test if the system G||S is activity free loop. This corresponds to

Algorithm 6.6 of Wang [21]

• VeriProperTimedBehavior: Test if the plant G has proper time behaviour.

This corresponds to Algorithm 6.7 of Wang [21]

• CheckSDControllability: Test if S is SD controllable for G. This corre-

sponds to Algorithm 6.8 of Wang [21]

The old version of algorithm VerifySub tests all the properties together and fails

if any one of the tests fail. Lines 1-8 of the algorithm initializes predicates to false.

On line 9, the algorithm fails if there are no reachable states in the system. Line 12

returns False if the system is blocking. Line 15 tests untimed controllability. Lines

16-17 returns False if BddConBad contains any reachable states that fail the test.

On lines 19, 23, 27, and 31, the indicated algorithm is called. The algorithm re-

turns False if the indicated predicate predicate is returned containing reachable states

that fail the test. The algorithm returns with True if all tests succeeded.

6. Algorithmic Improvements 65

Algorithm 6.2 VerifySub(G,S) Part A

1: bddConBad ← false

2: bddPLCOMPBad ← false

3: bddNBBad ← false

4: bddALFBad ← false

5: bddPTBBad ← false

6: bddSDBad ← false

7: bddReach ← R(G||S, true)
8: bddCoReach ← CR(G||S,bddReach)

9: if (bddReach≡ false) then

10: return False

11: end if

12: if (bddCoReach 6≡ bddReach) then

13: return False

14: end if

15: VeriConBad(bddConBad,bddReach)

16: if (bddConBad6≡ false) then

17: return False

18: end if

66 6. Algorithmic Improvements

Algorithm 6.2 VerifySub(G,S) Part B

19: VeriBalemiBad(bddPLCOMPBad, bddReach)

20: if (bddPLCOMPBad6≡ false) then

21: return False

22: end if

23: VeriALF(bddALFBad, bddReach)

24: if (bddALFBad 6≡ false) then

25: return False

26: end if

27: VeriProperTimedBehavior(bddPTBBad, bddReach)

28: if (bddPTBBad 6≡ false) then

29: return False

30: end if

31: CheckSDControllability(bddSDBad, bddReach)

32: if (bddSDBad 6≡ false) then

33: return False

34: end if

35: return True

6. Algorithmic Improvements 67

6.4 Modular Verification Algorithm

We now introduce a new version of the BddSDCheckProp algorithm (Algorithm

6.3) that is designed to support modular tests. In section 6.5, we will introduce a

new VerifySub algorithm that will also support modular tests.

We first need to introduce a new Boolean array named testType. The purpose of

the array is to specify exactly which test should be performed. It is defined as follows:

• testType[0]: Do all the BDD properties test.

• testType[1]: Do nonblocking and untimed controllability test.

• testType[2]: Do untimed controllability test.

• testType[3]: Do nonblocking test.

• testType[4]: Do proper time behaviour test.

• testType[5]: Do plant completeness test.

• testType[6]: Do SD controllability test.

• testType[7]: Do SD controllability point i.

• testType[8]: Do SD controllability point ii.

• testType[9]: Do SD controllability point iii.1.

• testType[10]: Do SD controllability point iii.2.

• testType[11]: Do SD controllability point iv.

• testType[12]: Do activity loop free (ALF) test.

• testType[13]: Do S-singular prohibitable behaviour (SSPB) test.

• testType[14]: Do non-selfloop ALF test.

68 6. Algorithmic Improvements

• testType[15]: Check that all supervisors are non-selfloop activity loop free.

• testType[16]: Check that all supervisors are CS deterministic.

In the following algorithms in this chapter, we will use the following indices names

to specify positions in testType. For example, to specify that we wish to do the

nonblocking test, we will set testType[DoNB]=1.

• DoAll: Index (0).

• DoNBandCont: Index (1).

• DoCont: Index (2).

• DoNB: Index (3).

• DoPTB: Index (4).

• DoPCOMPL: Index (5).

• DoSDCont: Index (6).

• DoSDCont1: Index (7).

• DoSDCont2: Index (8).

• DoSDCont31: Index (9).

• DoSDCont32: Index (10).

• DoSDCont4: Index (11).

• DoALF: Index (12).

• DoSSPB: Index (13).

• DoNSLALF: Index (14).

• DoAllSupsNSLALF: Index (15).

6. Algorithmic Improvements 69

• DoAllSupsCSDet: Index (16).

We now presents a modular version of Algorithm 6.1, namely Algorithm 6.3. It is

assumed that when Algorithm 6.3 is initially called by the system, only one position

of the testType will be set to True.

For Algorithm 6.3, we will split it over several pages to show the various tests. In

Algorithm 6.3, we use the following parameters and identifiers:

Plants : All system plant components, Plants={G1,G2, ...,Gm}.

Gi : A single plant from the system plants, i ∈ {1, ...,m}

Sups : All system supervisor components, Sups={S1,S2, ...,Sn}

Sj : A single supervisor from the system supervisors, j ∈ {1, ..., n}

PGS: All system components, plants and supervisors, PGS =Plants∪Sups

Ah : A single component from the system, h ∈ {1, ...,m + n}. It could be a plant

or a supervisor.

The DoAllSupsNSLALF check on lines 3-11, iterates over all the supervisors to

check that they are non-selfloop ALF. It uses Algorithm 6.7, CheckNSLALF, to check

that the supervisor is NSL ALF. If at least one test fails, the check returns false.

The DoAllSupsCSDet check (lines 12-20), iterates over all the supervisors and checks

that each TDES is CS deterministic using Algorithm 6.8, CheckSDCont SSPB CSDet.

This check fails if at least one supervisor fails.

The DoALF check on lines 21-24, uses Algorithm 6.5 to determine if the system is

ALF. This algorithm uses modular verifications first, and only checks the full system

if the modular check fails. The DoSSPB check on lines 25-34, uses modular verifica-

tion first by iterating over all the plants to verify that they have singular prohibitable

behaviour. If this check fails, then SSPB property is checked on the entire system.

For the next part of Algorithm 6.3, we use the following new identifiers:

70 6. Algorithmic Improvements

Algorithm 6.3 BddSDCheckProp(Plants, Sups, testType) Part A

1: G = G1||....||Gm

2: S = S1||....||Sn
3: if (testType[DoAllSupsNSLALF]) then

4: for all (Sj ∈ Sups) do

5: result ← CheckNSLALF(Sj)

6: if (¬result) then

7: return False

8: end if

9: end for

10: return True

11: end if

12: if (testType[DoAllSupsCSDet]) then

13: for all (Sj ∈ Sups) do

14: result ← CheckSDCont SSPB CSDet(Sj,Sj, testType)

15: if (¬result) then

16: return False

17: end if

18: end for

19: return True

20: end if

rDoSDCont31 : We set this Boolean variable to true if the SD controllability point

iii.1 modular check fails, and needs to be repeated for the entire system.

rDoSDCont32 : We set this Boolean variable to true if the SD controllability point

iii.2 modular check fails, and needs to be repeated for the entire system.

rDoSDCont4 : We set this Boolean variable to true if the SD controllability point

iv modular check fails, and needs to be repeated for the entire system.

The DoSDCont check starts on line 35 by checking the modular SD controllability

properties first; namely,SD controllability point iii.1, SD controllability point iii.2 and

SD controllability point iv. It checks each one by iterating over all automata in the

6. Algorithmic Improvements 71

Algorithm 6.3 BddSDCheckProp(Plants,Sups, testType) Part B

21: if (testType[DoALF]) then

22: result ← CheckSystemIsALF(Plants,Sups)

23: return result

24: end if

25: if (testType[DoSSPB]) then

26: for all (Gi ∈ Plants) do

27: result ← CheckSDCont SSPB CSDet(Gi, Gi, testType)

28: if (¬result) then

29: result ← CheckSDCont SSPB CSDet(G, S, testType)

30: return result

31: end if

32: end for

33: return True

34: end if

system. As the subalgorithm that does the check expects two automata which it will

internally synchronize together, we can reuse the algorithm to test a single TDES,

Ai, by passing in two copies of Ai, as Ai||Ai = Ai. However, for SD controllability

point iv, we have two strategies for the modular check. The first strategy is to check

the property against only the plants automata if the supervisors do not introduce

new events. If the supervisors do introduce new events, we then test the property

against each automata Ai ∈ PGS. We note that if DoSDCont is set in testType at

line 35, we can assume that all other positions of testType have been set to False.

When the algorithm finishes the modular checks, it then calls the subalgorithem

to build the system synchronous product to test SD controllability points i, ii and the

points that failed the modular verification.

On line 36, the algorithm first sets testType[DoSDCont31] to 1 indicating to

only do this part of the test. We set rDoSDCont31 to false to indicate that we do

not have to repeat the DoSDCont31 test. Variable rDoSDCont31 will be set to

true if the modular test fails. For lines 38-44, we test each automata in the system

72 6. Algorithmic Improvements

Algorithm 6.3 BddSDCheckProp(Plants,Sups , testType) Part C

35: if (testType[DoSDCont]) then

36: testType[DoSDCont31] ← 1

37: rDoSDCont31 ← False

38: for all (Ai ∈ PGS) do

39: result ← CheckSDCont SSPB CSDet(Ai,Ai, testType)

40: if (¬result) then

41: rDoSDCont31 ← True

42: exit for

43: end if

44: end for

45: testType[DoSDCont31] ← 0

46: testType[DoSDCont32] ← 1

47: rDoSDCont32 ← False

48: for all (Ai ∈ PGS) do

49: result ← CheckSDCont SSPB CSDet(Ai,Ai, testType)

50: if (¬result) then

51: rDoSDCont32 ← True

52: exit for

53: end if

54: end for

for SD controllability point iii.1 only. On lines 45-54, we disable the iii.1 test, and

enable the iii.2 test. Lines 48-54, then test each automata for point iii.2.

For the next part of the algorithm (lines 55-74), we also use the following new

variables:

• Σpln: The set of events contained in the event set of the system’s plants.

• Σsup: The set of events contained in the event set of the system’s supervisors.

On lines 55-74, we start the modular check of the SD controllability point iv.

First, if the supervisors do not introduce any new events, then we can check just the

plants, as per Theorem 5.5 in Chapter 5. If the supervisor introduces new events, we

6. Algorithmic Improvements 73

then need to iterate over all of the system components to check for SD controllability

point iv. If the two previous steps fail, then we need to set SD controllability identifier

rDoSDCont4 to true to repeat this test using the entire system.

Algorithm 6.3 BddSDCheckProp(Plants,Sups, testType) Part D

55: testType[DoSDCont32] ← 0

56: testType[DoSDCont4] ← 1

57: rDoSDCont4 ← False

58: if (Σsup ⊆ Σpln) then

59: for all (Gi ∈ Plants) do

60: result ← CheckSDCont SSPB CSDet(Gi,Gi, testType)

61: if (¬result) then

62: rDoSDCont4 ← True

63: exit for

64: end if

65: end for

66: else

67: for all (Ai ∈ PGS) do

68: result ← CheckSDCont SSPB CSDet(Ai,Ai, testType)

69: if (¬result) then

70: rDoSDCont4 ← True

71: exit for

72: end if

73: end for

74: end if

When we have finished all the modular checks for SD controllability, we then know

which modular checks failed as their corresponding identifiers, rDoSDcont31, rDoS-

Dcont32, rDoSDcont4 will be set to True. Our next step is to test the properties

that failed the modular tests on the entire system, as well as test the non-modular

properties, namely SD controllability points i and ii. This occurs on lines 75-93.

On line 75 we clear the flag for point iv. We then start by setting the testType

74 6. Algorithmic Improvements

flags for points i and ii (Lines 76-77). We then set the flags for points iii.1, iii.2, and

iv to 1 only if their corresponding re-test flags have been set (lines 78, 81, 84). Line

87 performs all of the required tests on the entire system.

Algorithm 6.3 BddSDCheckProp(Plants, Sups, testType) Part E

75: testType[DoSDCont4] ← 0

76: testType[DoSDCont1] ← 1

77: testType[DoSDCont2] ← 1

78: if (rDoSDCont31) then

79: testType[DoSDCont31] ← 1

80: end if

81: if (rDoSDCont32) then

82: testType[DoSDCont32] ← 1

83: end if

84: if (rDoSDCont4) then

85: testType[DoSDCont4] ← 1

86: end if

87: result ← CheckSDCont SSPB CSDet(G,S, testType)

88: if (¬result) then

89: return False

90: else

91: return True

92: end if

93: end if

The remaining part of Algorithm 6.3, (lines 94-133) perform the DoNB, DoCont,

DoNBandCont, DoPTB, DoPCOMPL, and the DoAll checks. The first five just use

the existing methods from Wang [21], via calls to VerifySub (Algorithm 6.4).

We will now discuss how we perform the DoAll test, (lines 134-147). We use the

following identifiers:

• i: An integer variable.

6. Algorithmic Improvements 75

Algorithm 6.3 BddSDCheckProp(Plants, Sups, testType) Part F

94: if (testType[DoNB]) then

95: result← VerifySub(G,S, testType)

96: if (¬result) then

97: return False

98: else

99: return True

100: end if

101: end if

102: if (testType[DoCont]) then

103: result← VerifySub(G,S, testType)

104: if (¬result) then

105: return False

106: else

107: return True

108: end if

109: end if

• testIndex: An integer index representing the current test to be done.

• resTemp: A temporary Boolean variable.

• result: A Boolean variable.

The DoAll check iterates over all the checks and executes them. However, check-

ing that all the supervisors are CS deterministic or NSL ALF is not part of the DoAll

check so they are not performed here. For each check, we start by clearing all the

flags for testType as they may have been modified by the previous call to BDDSD-

Checkprop (lines 137-139). We then set the flag for the desired check and execute it

(lines 140-141). If any checks fails, we will return False. In the actual DESpot [12]

code, we keep track of which tests pass and fail and return that information to the

calling program.

76 6. Algorithmic Improvements

Algorithm 6.3 BddSDCheckProp(Plants, Sups, testType) Part G

110: if (testType[DoNBandCont]) then

111: result← VerifySub(G, S, testType)

112: if (¬result) then

113: return False

114: else

115: return True

116: end if

117: end if

118: if (testType[DoPTB]) then

119: result← VerifySub(G, S, testType)

120: if (¬result) then

121: return False

122: else

123: return True

124: end if

125: end if

126: if (testType[DoPCOMPL]) then

127: result← VerifySub(G, S, testType)

128: if (¬result) then

129: return False

130: else

131: return True

132: end if

133: end if

6. Algorithmic Improvements 77

Algorithm 6.3 BddSDCheckProp(Plants, Sups, testType) Part H

134: if (testType[DoAll]) then

135: result ← True

136: for all (testIndex ∈ {DoALF, DoSSPB, DoSDCont, DoNB, DoPTB,

DoPCMPL}) do

137: for all (i ∈ {0, .., 16}) do

138: testType[i]← 0

139: end for

140: testType[testIndex] ← 1

141: resTemp ← BddSDCheckProp(Plants, Sups, testType)

142: if (¬ resTemp) then

143: result ← False

144: end if

145: end for

146: return result

147: end if

78 6. Algorithmic Improvements

6.5 Modular Version of VerifySub

We now present a new version of VerifySub, Algorithm 6.4, designed to be called

by Algorithm 6.3.

Algorithm 6.4 VerifySub(G,S, testType) Part A

1: bddConBad ← false

2: bddPLCOMPBad ← false

3: bddNBBad ← false

4: bddALFBad ← false

5: bddPTBBad ← false

6: bddSDBad ← false

7: bddReach ← R(G||S, true)
8: bddCoReach ← CR(G||S,bddReach)

9: if (bddReach≡ false) then

10: return False

11: end if

12: if (testType[DoAll] OR testType[DoNBandCont] OR testType[DoNB]) then

13: if (bddCoReach 6≡ bddReach) then

14: return False

15: end if

16: end if

17: if (testType[DoAll] OR testType[DoNBandCont] OR testType[DoCont] OR test-

Type[DoSDCont]) then

18: VeriConBad(bddConBad,bddReach)

19: if (bddConBad6≡ false) then

20: return False

21: end if

22: end if

Algorithm 6.4 starts by building the same variables as the old version, Algorithm

6.2. It also returns False if the system has no reachable states as per line 9. On

lines 12-16, it checks if the system is blocking. On lines 17-22, the algorithm test for

untimed controllability.

6. Algorithmic Improvements 79

In the final par the Algorithm 6.4 uses the following variable:

• ret: This is a temporary Boolean variable.

Algorithm 6.4 VerifySub(G,S, testType) Part B

23: if (testType[DoAll] OR testType[DoPCOMPL]) then

24: VeriBalemiBad(bddPLCOMPBad, bddReach)

25: if (bddPLCOMPBad6≡ false) then

26: return False

27: end if

28: end if

29: if (testType[DoAll] OR testType[DoALF]) then

30: VeriALF(bddALFBad, bddReach)

31: if (bddALFBad 6≡ false) then

32: return False

33: end if

34: end if

35: if (testType[DoAll] OR testType[DoPTB]) then

36: VeriProperTimedBehavior(bddPTBBad, bddReach)

37: if (bddPTBBad 6≡ false) then

38: return False

39: end if

40: end if

41: if (testType[DoAll] OR testType[DoSDCont]) then

42: ret←CheckSDCont SSPB CSDet(G, S, testType)

43: if (¬ret) then

44: return False

45: end if

46: end if

47: return True

On lines 23-28, the algorithm tests the system for plant completeness. On lines

29-34, the algorithm tests if the system is activity loop free. On lines 35-40, the

80 6. Algorithmic Improvements

algorithm tests if the system has proper time behavior. On lines 41-47, the algorithm

tests if the system is SD controllable.

6.6 System ALF Algorithm

It was proven by Wang in [21] that if all automatons in the system are ALF then

the system’s synchronous product is also ALF. It was also proven that if the system

plant G is ALF and the system supervisor S does not introduce any new events, then

the synchronous product is also ALF.

We implemented the modular ALF check as Algorithm 6.5, CheckSystemIsALF.

First we check if the supervisors introduce any new events. If they do not, then we

check each plant for ALF separately (lines 4-14).

If the supervisors do introduce new events, we then do the same as above but we

iterate over all the plants and supervisors in the project (lines 17-27). If each one is

ALF, then the system is ALF. Otherwise we build the synchronous product of the

entire system and check to see if it is ALF (line 20). If it passes, then the system is

ALF, otherwise it is not ALF.

We use the following variables in Algorithm 6.5 and Algorithm 6.6:

• Σpln: The set of events contained in the event set of the system’s plants.

• Σsup: The set of events contained in the event set of the system’s supervisors.

• PGS : All system components, plants and supervisors, PGS =Plants∪ Sups.

• Σact: The set of activity events in the system.

• result: Temporary Boolean variable.

Algorithm 6.6, CheckALF is taken verbatim from Wang [21] and is given here for

the convenience of the reader. Please see [21] for a discussion of the algorithm.

6. Algorithmic Improvements 81

Algorithm 6.5 CheckSystemIsALF(Plants, Sups)

1: G = G1||....||Gm

2: S = S1||....||Sn
3: if (Σsup ⊆ Σpln) then

4: for all (Gi ∈ Plants) do

5: result ← CheckALF(Gi)

6: if (¬result) then

7: result ← CheckALF(G||S)

8: if (¬result) then

9: return False

10: else

11: return True

12: end if

13: end if

14: end for

15: return True

16: else

17: for all (Ai ∈PGS) do

18: result ← CheckALF(Ai)

19: if (¬result) then

20: result ← CheckALF(G||S)

21: if (¬result) then

22: return False

23: else

24: return True

25: end if

26: end if

27: end for

28: return True

29: end if

82 6. Algorithmic Improvements

Algorithm 6.6 CheckALF(G), From [21]

1: Pchk ← R(G, true)

2: Ptmp ← false

3: for (q |= Pchk) do

4: Pvisit ←
(∨
σ∈Σact

δ̂(pr({q}), σ)

)
∧Pchk

5: overlap← False

6: Pnext ← Pvisit

7: repeat

8: Pnext ←
(∨
σ∈Σact

δ̂(Pnext, σ)

)
∧Pchk

9: Ptmp ← Pvisit

10: if (Pvisit ∧ Pnext 6≡ false) then

11: overlap← True

12: end if

13: Pvisit ← Pvisit ∨ Pnext
14: if (q |= Pvisit) then

15: return false

16: end if

17: until (Pvisit ≡ Ptmp)

18: Pchk ← Pchk − pr({q})
19: if (¬overlap) then

20: Pchk ← Pchk − Pvisit
21: end if

22: end for

23: return true

6. Algorithmic Improvements 83

6.7 Non-selfloop ALF Algorithm

Algorithm 6.7, CheckNSLALF, is essentially the ALF algorithm designed by Wang [21]

with only one line modified, line 4. On line 4 we added this part ”−pr({q})”. This

was a small change, but it was very non-obvious. On line 3, a state q is chosen

from the set of reachable states that have not yet been shown to have no activity

loops leaving the state. Line 4 of Algorithm 6.6 calculated all states reachable from

q by a single activity event transition. The only way q would be included here is if

it has activity event selfloops. In Algorithm 6.7, we thus add to line 4 the ending

”−pr({q})”, which removes state q from the predicate Pvisit. As the rest of algorithm

is unchanged, it should still detect if an activity loop longer than a selfloop returns

us to q.

84 6. Algorithmic Improvements

Algorithm 6.7 CheckNSLALF(G)

1: Pchk ← R(G, true)

2: Ptmp ← false

3: for (q |= Pchk) do

4: Pvisit ←
(∨
σ∈Σact

δ̂(pr({q}), σ)

)
∧Pchk − pr({q})

5: overlap← False

6: Pnext ← Pvisit

7: repeat

8: Pnext ←
(∨
σ∈Σact

δ̂(Pnext, σ)

)
∧Pchk

9: Ptmp ← Pvisit

10: if (Pvisit ∧ Pnext 6≡ false) then

11: overlap← True

12: end if

13: Pvisit ← Pvisit ∨ Pnext
14: if (q |= Pvisit) then

15: return false

16: end if

17: until (Pvisit ≡ Ptmp)

18: Pchk ← Pchk − pr({q})
19: if (¬overlap) then

20: Pchk ← Pchk − Pvisit
21: end if

22: end for

23: return true

6.8 SD Controllability, SSPB and CS Determinis-

tic Algorithms

The Algorithms in this section are used to check the SD controllability, S-singular

Prohibitable Behaviour and CS Deterministic properties. All the algorithms in this

section are based on the versions created by Wang in [21]. We recommend the reader

first familiarize themselves with Wang’s algorithms as we will focus on explaining

6. Algorithmic Improvements 85

only the parts that we modified.

The algorithms in this section make the following assumptions:

• The set of prohibitable events Σhib equals the set of forcible events Σfor.

• The plant has proper time behaviour.

• The System is ALF.

• All TDES are finite and deterministic.

The algorithms use certain variables as they executes. They are as follows:

Gcl: The synchronous product of the system, Gcl = G||S.

Preach: The predicate of the set of reachable states of Gcl.

PSF : The predicate of the set that contains sampling states of Gcl found

by the algorithm.

ZSP : This set contains the predicates of sampling states in Gcl found and

not yet analysed by the algorithm.

δ̂: Transition function for state predicates for Gcl.

δ̂G: Transition function for G only, as defined in Section 6.2.2.

ξ̂: Transition function for S only, as defined in Section 6.2.2.

pNerFail: This set pNerFail ⊆ Pwr(Pred(Q)) is a set of sets of predicates that

stores information where Point iii.2 in definition of SD controllabil-

ity in Chapter 3 may have failed.

result: This flag asserts if S is SD controllable with respect to G.

testType: This is a Boolean array which defines which tests to perform.

In Algorithm 6.8 and 6.9, we also use a C++ data structure FSMCarrier which

is explained in Chapter 7. This data structure is used only when we are checking

supervisors for CS deterministic. Whenever we check a supervisor TDES for the CS

deterministic property, we store the resulting information in this data structure.

86 6. Algorithmic Improvements

• Fsm: This variable is assigned an instance of the FSMCarrier data structure,

initialized for supervisor S, and emptied from all data when initialized.

6.8.1 CheckSDCont SSPB CSDet Algorithm

Algorithm 6.8 is the entry algorithm for checking the SD controllability, S-singular

prohibitable behaviour and CS deterministic properties. We note that if Algorithm

6.8 is called with both G and S set to the plant, it can be used to check the singular

prohibitable behaviour. We also note that if the CS deterministic property is being

checked, then both G and S should be set to the desired supervisor component by

the calling function.

When the testType is set for DoSDCont1 (untimed controllability), we use algo-

rithm CheckUntimedControllability from Wang. For details on this algorithm,

please see Wang [21].

Algorithm 6.8 is based on the CheckSDControllability algorithm from Wang [21].

Our algorithm is essentially the same, but we add the ability to check the CS determin-

istic property and we pass in the testType Boolean array. In the original algorithm, all

SD controllability properties and S-singular prohibitable behaviour property would

always be checked. In the new version, only the properties whose flags are set to True

in the testType are checked. In particular this allows the existing algorithms to be

reused for modular checks of a specific property.

As part of the CS deterministic check, we set variable Fsm to be an instantiation

of the data structure FSMCarrier (line 2), initialized for supervisor S. As part of

the CS deterministic check, Algorithm 6.9, AnalyseSampledState, collects information

that will be used in the TDES supervisor to FSM translation algorithms in Chapter 7.

In this algorithm we also use the following sub algorithms from Wang [21]. As we

did not need to do any changes on them, we are not discussing them here:

• CheckSamplingMarkingStates: See Wang [21], Algorithm 6.15.

6. Algorithmic Improvements 87

Algorithm 6.8 CheckSDCont SSPB CSDet(G,S, testType) Part A

1: if (testType[DoCSDet]) then

2: Fsm ← FSMCarrier(S)

3: end if

4: Preach ← R(G||S, true)
5: if (testType[DoSDCont1] AND CheckUntimedControllability(G,S, Preach) ≡

False) then

6: return False

7: end if

8: if (testType[DoSDCont2] AND CheckSDContii(G,S, Preach) ≡ False) then

9: return False

10: end if

11: result ← True

12: PSF ← pr{z0}
13: ZSP ← {pr{z0}}
14: pNerFail← ∅
15: while (ZSP 6= ∅) do

16: Pss ←Pop(ZSP)

17: result←AnalyseSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail, testType, Fsm)

18: if (¬result AND (testType[DoSSPB] OR testType[DoSDCont31])) then

19: return False

20: end if

21: end while

• CheckUntimedControllability: See Wang [21], Algorithm 6.3.

• CheckSDContii: See Wang [21], Algorithm 6.9.

• RecheckNerodeCells: See Wang [21], algorithm 6.13.

88 6. Algorithmic Improvements

Algorithm 6.8 CheckSDCont SSPB CSDet(G,S, testType) Part B

22: if (pNerFail 6= ∅) then

23: result← RecheckNerodeCells(pNerFail)

24: if (¬result AND (testType[DoSDCont32] OR testType[DoCSDet])) then

25: return False

26: end if

27: else

28: if (testType[DoCSDet]) then

29: Fsm.setCSDet(True)

30: return True

31: end if

32: end if

33: if (testType[DoSDCont4] AND ¬ CheckSamplingMarkingStates(Preach)) then

34: return False

35: end if

36: return True

6.8.2 AnalyseSampledState Algorithm

Algorithm 6.9 is based on the AnalyseSampledState algorithm from Wang [21]. We

modified the algorithm to take the additional parameter testType. This parameter

allows us to specify which SD controllability or S-singular prohibitable behaviour

should be tested. Before, all properties were always tested.

We have also added support for checking the CS deterministic property. As part

of this check, we pass the new parameter Fsm which is an instance of the FSMCar-

rier data type, defined in Chapter 7. This variable gathers information about the

supervisor for use in the TDES to FSM translation algorithms of Chapter 7.

During execution, Algorithm 6.9 uses the following variables:

ΣElig: The set of prohibitable events eligible in both G and S at qss, the sampling

state in Gcl that we are processing.

Pq: The predicate representing the current state q in Gcl.

6. Algorithmic Improvements 89

Σposs: The set of events eligible in both G and S at predicate Pq of current state in

Gcl.

ΣGposs: The set of prohibitable events eligible in G at predicate Pq of current state in

Gcl.

nextLabel: This number represents the next unused node in Bmap. It is used to name newly

discovered nodes of the reachability tree.

Bmap: This partial function Bmap : N → Pred(Q) maps the nodes of the reachability

tree to the predicates of the states of Gcl which the nodes represent. This

function will sometimes be treated like the set Bmap ⊆ N × Pred(Q). Note,

N = {0, 1, 2, . . .} is the set of natural numbers.

Bp: This is the set of nodes pending to be expanded in the reachability tree.

Bconc: The set Bconc ⊆ N ×Pred(Q) contains nodes that represent concurrent strings

and the sampled states the strings lead to. For (b, q) ∈ Bconc, the node b is a

node at which tick is eligible in G and S, and q is the sampling state of Gcl

that the tick leads to.

OccuB: The partial function OccuB : N → Pwr(Σ) maps the nodes of the reachability

tree to the occurrence image of the string that they represent. This function

will sometimes be treated like the set OccuB ⊆ N × Pwr(Σ).

Pss: A predicate that represents the sampled state that is being analysed inside the

algorithm.

As this is mostly the same as Wang’s algorithm, we will only discuss the modi-

fications we have made. Please refer to [21] for a detailed explanation of the algorithm.

Algorithm 6.9 evaluates the concurrent behaviour of sampled state qss (represented

by predicate Pss). Basically, the algorithm builds a reachability tree starting at state

qss, until all nodes of the tree terminates at a tick event, or a check fails. To do this,

it makes use of the algorithms below. Please refer to Wang [21] for details of these

algorithms.

90 6. Algorithmic Improvements

• NextState: See Wang [21], Algorithm 6.11.

• CheckNerodeCells: See Wang [21], Algorithm 6.12.

For lines 1-37 of Algorithm 6.9, we explain the changes that we made to the orig-

inal AnalyseSampledState algorithm from Wang [21]. On line 1, we check if we are

doing DoCSDet and if so, we then add Pss to the string array named sampledstates

of Fsm. On the lines 19 and 21 we add controllable and uncontrollable events to the

appropriate sets of Fsm object.

The if statement on line 29 will be True only once for every call of the algorithm,

and it will be the first pass of the while loop started on line 9. The reason is that

only on the first pass will we have Pq ≡ Pss. As for the following passes, Pq will

be changed by algorithm NextState. Please see [21] for details about this algorithm.

Therefore, on line 30 we add an item to the Fsm object, namely, poss. It represents

a sampled state Pq and all events with transitions defined at this state. Please see

Chapter 7 for more discussion about FSMCarrier members.

The if statement on line 32 will also be True only one time for the above reason.

However, here we are adding data to another member of Fsm, namely, ellig. This

data represents a sampled state and all the prohibitable events with transitions leav-

ing that state.

In the remaining portion of Algorithm 6.9, we are using another data structure,

called Transition. In the algorithm we will use a temporary variable of type Tran-

sition called tr.

Transition is a data structure that has three member variables:

exit: Is the source sampled state.

enter: Is the target sampled state.

occu: Is the occurrence image (the set of the events in the concurrent string that

takes us from the exit sampled state to the enter sampled state).

6. Algorithmic Improvements 91

In the remaining part, we define the following variable:

• ret : This is a temporary Boolean variable.

92 6. Algorithmic Improvements

Algorithm 6.9 AnalyseSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail, testType, Fsm)

Part A
1: if (testType[DoCSDet]) then

2: Fsm.sampledstates ← Fsm.sampledstates ∪{Pss}
3: end if

4: Bmap ← {(0, Pss)}
5: Bconc ← ∅
6: Bp ← {0}
7: nextLabel← 1

8: OccuB ← {(0, ∅)}
9: while Bp 6= ∅ do

10: b←Pop(Bp)

11: Pq ← Bmap(b)

12: Σposs ← ∅
13: ΣGposs ← ∅
14: for all σ ∈ Σ do

15: if (δ̂(Pq, σ) 6≡ false) then

16: Σposs ← Σposs ∪ {σ}
17: if (testType[DoCSDet]) then

18: if (σ ∈ Σhib) then

19: Fsm.c events ← Fsm.c events ∪{σ}
20: else if (σ 6= tick) then

21: Fsm.u events ← Fsm.u events ∪{σ}
22: end if

23: end if

24: end if

25: if (δ̂G(Pq, σ) 6≡ false) then

26: ΣGposs ← ΣGposs ∪ ({σ} ∩ Σhib)

27: end if

28: end for

29: if (testType[DoCSDet] AND Pq ≡ Pss) then

30: Fsm.poss ← Fsm.poss ∪{Pq,Σposs}
31: end if

6. Algorithmic Improvements 93

Algorithm 6.9 AnalyseSampledState(G,S, PSF , ZSP , Preach, Pss, pNerFail, testType, Fsm)

Part B
32: if (Pq ≡ Pss) then

33: ΣElig ← Σposs ∩ Σhib

34: if (testType[DoCSDet]) then

35: Fsm.ellig ← Fsm.ellig ∪{Pq,ΣElig}
36: end if

37: end if

38: if (testType[DoSDCont31] AND (Σposs ∪OccuB(b)) ∩ Σhib 6= ΣElig) then

39: return False

40: end if

41: ret=NextState(b,Σposs,ΣGposs, Pq, nextLabel, Bmap, Bp, Bconc, PSF , ZSP , OccuB(b))

42: if (testType[DoCSDet]) then

43: for all ((b′, Pq′) ∈ Bconc do

44: tr.exit ← Pss

45: tr.occu ← Occu(b′)

46: tr.enter ← Pq′

47: Fsm.alltrans ← Fsm.alltrans ∪ {tr}
48: end for

49: end if

50: if (¬ret AND testType[DoSSPB]) then

51: return False

52: end if

53: end while

54: CheckNerodeCells(Bconc,OccuB, pNerFail)

55: return True

94 6. Algorithmic Improvements

For lines 38-57, we now explain the changes that we made to the original Anal-

yseSampledState algorithm from Wang [21]. On line 38, if we are testing for SD

controllability point iii.1. We return False if the property does not pass. We only

return False if testing this point as it does not affect the other properties.

For lines 42-49, we record transition data to Fsm if we are testing CS deter-

ministic.Lines 43-48 loops through all the tupples (b′, Pq′) of Bconc to construct the

transitions from the sampled state Pss to the sampled states Pq′ . For (b′, Pq′), b
′ is the

index of the node in the reachability tree at which a tick is possible and Pq′ represents

the sampled state that tick takes us to.

Line 44 assigns Pss to be the exit state of the transition data structure. Line 45,

assigns all the events of the concurrent string that leads to Pq′ . Line 46 assigns Pq′

to be the enter state of the transition. And finally, line 47 adds the transition data

structure to the alltrans member of the Fsm object. We would like to point out

that tr does not store a single event transition for a TDES, but stores the occurrence

image of how the FSM will transition from one sampled state to the next.

On line 50, if the previous call to NextState, on line 41, failed and we are testing

S-singular prohibitable behaviour, we then return False.

Chapter 7

VERILOG Translation

7.1 Introduction

In this chapter we will describe how to convert a system’s supervisors to SD con-

trollers. First we will present algorithms to convert TDES supervisors to finite

state machines (FSM). From this format, we could then translate the FSM into a

”C++” software program [4] or into a VERILOG module for implementation in dig-

ital logic [9]. In this thesis, we will focus on generating VERILOG code and leave

other implementation for future works.

7.2 TDES to FSM

We now will explain how we can take a single supervisor from our system and turn

it into a Moore FSM. In Section 7.3, we will show how to convert from an FSM to

a VERILOG module. We will examine a supervisor from the Lock System example

described in detail in Chapter 8. The supervisor we have chosen is called SupOpen,

shown in Figure 7.1. This supervisor is responsible for opening the door when the

correct combination of a four digit code has been entered.

In Figure 7.1, we show the supervisor SupOpen. The initial state is identified by

concentric circles. Marked states are identified by a filled circle. This makes state 0

an initial and marked state. The tick event is the global clock tick and we associate

95

96 7. VERILOG Translation

its occurrence with the sampling instance of the FSM. All events prefixed with the

exclamation mark ”!” in a TDES diagram are uncontrollable events, and those with-

out it are prohibitable events.

Listing 7.2 shows the generated code corresponding to the FSM that represents

SupOpen. The listing is in XML format. Please see [17] for more on XML. The

FSM listing starts with the root element <FSM> that identifies the corresponding

FSM name. The first element is <ResetState> which is always the initial state of the

TDES. The FSM then lists all the possible activity events as <Signals>, where the

type can be IO for input-output signals or I for input only. Prohibitable events are

of type IO and uncontrollable events will be of type I.

The FSM listing then lists the states of the FSM. They correspond to the sampled

states of the TDES supervisor. They are included in the element <States>. Each

state in the FSM has the same name as the state in the TDES. Each state in the

FSM has an outputvector that lists the prohibitable events that are enabled when the

FSM is in this state. This represents the output signals of the FSM. The outputs

corresponding to the events listed will be set to true at this state, while the remaining

outputs will be set to false. It is common to find that the states of the FSM are less

than those of the TDES as TDES typically contain both sampled and non-sampled

states, while the FSM contains only states corresponding to sampled states.

The transition section of the FSM listing contains each state followed by the tran-

sitions that leave that state. The inputvector portion represents the input pattern

that must be met when the FSM is at <StartState>, in order to follow the transition

to the indicated <EndState>.

As this FSM has three defined signals, an inputvector would be a 3-bit Boolean

vector, where the first bit corresponds to event open, the second to event equal and the

third to event enter. If the corresponding bit is true, then that means the event has

occurred since the last tick, otherwise the event has not occurred. (i.e the bit is false).

In Listing 7.2, the inputvector is listed as a Boolean equation. The interpretation

7. VERILOG Translation 97

is that it matches any input vector that makes the equation true. For example, at

state 4 we see the input vector ”open.!equal.enter”. This matches the input vector

with the equal bit set to false and the open and enter bits set to true. Here we use

the exclamation mark ”!” to mean logical negation, the dot ”.” to mean logical AND,

and the plus sign ”+” to mean logical OR. The transition label DEF represents the

default transition. It is used as shorthand to match all remaining unspecified input

combinations.

To determine the input vectors for the transitions leaving a given state, we ex-

amine the corresponding state in the TDES, and identify all the concurrent strings

leaving that state. The occurrence image of a given string determines the required

input vector, and the state the string takes you to determines the <EndState> for

the transition. For example, the first transition in start state 4 was defined by the

concurrent string open enter tick that takes us to state 0 of the TDES.

Figure 7.1: Supervisor SupOpen

Figure 7.2 shows a graphical representation of the FSM described in Listing 7.2.

98 7. VERILOG Translation

Figure 7.2: FSM of Supervisor SupOpen

The initial (Reset) state of the FSM is indicated by the ”Reset” arrow (i.e state 0).

For a given state, only the prohibitable names enabled at a state are listed. The

remaining arrows show the transitions for the FSM, using the notation introduced in

Listing 7.2.

Listing 7.1: The Generated HFSM for Supervisor SupOpen

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSM Name="SupOpen">

3 <ResetState Name="0"> </ResetState>

4 <Signals>

5 <Signal Name="open" order="0" type="IO"/>

6 <Signal Name="equal" order="1" type="I"/>

7 <Signal Name="enter" order="2" type="I"/>

8 </Signals>

9 <States>

10 <State Name="0" outputvector=""/>

11 <State Name="4" outputvector="open"/>

12 </States>

13 <Transitions>

14 <StartState Name="0">

7. VERILOG Translation 99

15 <Transition inputvector="!open.equal.enter" endstate="4"/>

16 <Transition inputvector="DEF" endstate="0"/>

17 </State>

18 <StartState Name="4">

19 <Transition inputvector="open.!equal.enter" endstate="0"/>

20 <Transition inputvector="open.equal.enter" endstate="0"/>

21 <Transition inputvector="DEF" endstate="4"/>

22 </State>

23 </Transitions>

24 </FSM>

Listing 7.2 shows another version of Listing 7.1. The difference is how the in-

putvector is created. Here we simply have a comma separated list of the activity

events that the concurrent string contains.

Listing 7.2: The Generated FSM for Supervisor SupOpen

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSM Name="SupOpen">

3 <ResetState Name="0"> </ResetState>

4 <Signals>

5 <Signal Name="open" order="0" type="IO"/>

6 <Signal Name="equal" order="1" type="I"/>

7 <Signal Name="enter" order="2" type="I"/>

8 </Signals>

9 <States>

10 <State Name="0" outputvector=""/>

11 <State Name="4" outputvector="open"/>

12 </States>

13 <Transitions>

14 <StartState Name="0">

15 <Transition inputvector="equal,enter" endstate="4"/>

16 <Transition inputvector="DEF" endstate="0"/>

17 </State>

18 <StartState Name="4">

19 <Transition inputvector="open,enter" endstate="0"/>

100 7. VERILOG Translation

20 <Transition inputvector="equal,open,enter" endstate="0"/>

21 <Transition inputvector="DEF" endstate="4"/>

22 </State>

23 </Transitions>

24 </FSM>

7.3 FSM to VERILOG

In our approach we translate each FSM into a single VERILOG module. The module

for supervisor SupOpen is shown in Listing 7.3. The module first lists the activity

events as two types of arrays: z[n] where n is the number of prohibitable events in

the supervisor, and i[m] where m is the number of activity events in the supervisor.

Each event in the z array is also in the same place in the i array. For example see

event open in Listing 7.3. This is because we keep the same order as in the FSM

where we list prohibitable events first and then the uncontrollable events.

The module then starts by defining the signals i, clock, resetn, z, z,Next and

Current:

• clock: This input is the clock that causes the FSM to change state. In TDES,

we equate the rising edge of this signal to the occurrence of the tick event.

• i: This input to the controller is a bit vector of size m where each place rep-

resents an activity event. A 1 at location j ∈ {0, ...,m − 1} means that the

corresponding event occurred since the last clock edge, 0 means it did not.

• resetn: This asynchronous signal forces the FSM to immediately go to its reset

state when the signal is equal to 0.

• z: This registered output stores which prohibitable events are enabled at a given

state.

• Current: This is the register that saves the current state of the FSM.

• Next: This is the register that saves the next state that the FSM will switch

to on the next rising edge of the clock as long as input resetn is not equal to 0.

7. VERILOG Translation 101

We also define several bit patterns as constants to represent needed input, output

and state bit vectors:

• IN h: These are Boolean vectors (i.e contain only 0 and 1), where h corresponds

to an inputvector from Listing 7.1. In Listing 7.1, there are three such vectors,

so we have h ∈ {0, 1, 2}. The inputvector DEF is handled by simply leaving the

current state unchanged if the input does not match one of the IN h parameters.

These parameters are the possible input values that cause the SD controller to

change from one state to another. For example, in this module we have IN 0

takes the SD controller from ST 0 to ST 4 while both IN 1 and IN 2 takes ST 4

to ST 0.

• ST j: These are Boolean vectors that represent the states where j is the name

of the state in the TDES. It is kept in order to improve readability and to

determine by eyes only which TDES states became which states in the SD

controller.

• OT j: These are Boolean vectors that represents the prohibitable events that

are enabled (forced) at each state of the FSM. Since we have only one pro-

hibitable event in this SD controller, the length of the vector is only one. Also,

the event is enabled only at state 4 (i.e: ST 4).

The logic of the FSM is implemented in two VERILOG always blocks (lines 16-45

and lines 46-52). To understand the behaviour of the always blocks, it is important

to note that variables of type reg (i.e: z, Current, and Next) retain their current

value until they are assigned a new value.

An always block gives a behavioural representation of a circuit. It does not

describe how the physical circuit would execute as sequential code describes the oper-

ation of a program, but instead it describes how variables will be assigned in response

to changes of other variables.

An always block is evaluated when one of the variables in its sensitivity list

changes value. For the block at line 46, it will be evaluated when either variable

Current or i changes. The statements in the block (lines 17-45) are then evaluated

102 7. VERILOG Translation

sequentially, and if a variable is assigned a new value during the evaluation, it will

take on the value it was last assigned (if assigned more than once) at the end of the

block’s evaluation.

The purpose of the always block at lines 46-52 is to update the current state of

the FSM. If resetn changes to 0 then Current is assigned the reset state irrespective

of the clock signal. When resetn is 1, then a positive edge of the clock signal (goes

from 0 to 1) causes the current state of the FSM (register Current) to be assigned

the value of the Next register.

The purpose of the always block at lines 16-45 is to assign the value of output z

based on the current state (register Current) of the FSM, and to calculate the state

the FSM should switch to on the next clock edge (register Next). If the always block

is activated by variable Current changing, this means the FSM has just changed state.

If variable i has changed, then our input information (i.e: information about which

activity events have occurred) has changed.

This block consists of a case statement (lines 18-44), which switches on the cur-

rent state (register Current) of the FSM. Based on the value of Current, output z

is assigned, and the expected next state, register Next, is assigned based on register

Current and which input pattern matches. If i does not match any of the defined pat-

terns, then Next is not changed. This corresponds to the DEF transition discussed

earlier.

Listing 7.3: The Generated SD VERILOG Module of Supervisor SupOpen

1 /**********************************

2 z[0],i[0]:open

3 i[1]: equal

4 i[2]: enter

5 **********************************/

6 module SupOpen(clock,resetn,i,z);

7 input clock,i,resetn;

8 output [0:0] z;

7. VERILOG Translation 103

9 reg [0:0] z;

10 reg [0:0] Current;

11 reg [0:0] Next;

12 wire [2:0] i;

13 parameter IN_0=3’b110, IN_1=3’b101, IN_2=3’b111;

14 parameter ST_0=1’b0, ST_4=1’b1;

15 parameter OT_0=1’b0, OT_4=1’b1;

16 always @(Current or i)

17 begin

18 case (Current)

19 ST_0:

20 begin

21 z=OT_0;

22 if(i==IN_0)

23 begin

24 Next<=ST_4;

25 end

26 end

27 ST_4:

28 begin

29 z=OT_4;

30 if(i==IN_1)

31 begin

32 Next<=ST_0;

33 end

34 else

35 if(i==IN_2)

36 begin

37 Next<=ST_0;

38 end

39 end

40 default:

41 begin

42 Next<=ST_0;

43 end

104 7. VERILOG Translation

44 endcase

45 end

46 always @(posedge clock or negedge resetn)

47 begin

48 if (resetn==0)

49 Current<=ST_0;

50 else

51 Current<=Next;

52 end

53 endmodule

7.4 Centeral FSM for SD Controllers

In Chapter 4, we presented two ways to convert a TDES supervisor to an SD con-

troller. When we have only a single supervisor, we would use the monolithic trans-

lation method. This would correspond to our discussion in Section 7.3. If we have

multiple TDES supervisor in our system we would use the second approach called

modular translation. In this approach, we would convert each supervisor as we did

in Section 7.3, and then we would add a new item to specify how to combine all if

the individual behaviour together. In this section we will present this as an XML

description. In the next section, we will express this as a new VERILOG module.

The central FSM for a system is an XML description that defines the global in-

put and output signals for the system as well as the individual FSM for all TDES

supervisors in the system. The purpose of this description is to be used in further

translations tasks such as converting to VERILOG modules or software source code.

Listing 7.4 shows the central FSM description for the Lock System example that is

described in Chapter 8. We show it here so we can explain its formal file.

The central FSM file starts by defining the name of the central FSM which is

the name of the project (system) being verified. On lines (4-12), the listing identifies

the signals in the project. It starts by listing the output signals (type=”O”), then

listing the input signals (type=”I”).

7. VERILOG Translation 105

Starting at line 13, the listing starts to identify each individual FSM in the system,

and for each FSM it lists the input/output signals (type=”IO”), and then the input

only signals.

Listing 7.4: The Generated Central FSM Module

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSMMain Name="LockSystem">

3 <Signals>

4 <Signal Name ="alarm" type="O" order="0"/>

5 <Signal Name ="do_change" type="O" order="1"/>

6 <Signal Name ="new" type="O" order="2"/>

7 <Signal Name ="open" type="O" order="3"/>

8 <Signal Name= "change" type="I" order="4" />

9 <Signal Name= "enter" type="I" order="5" />

10 <Signal Name= "equal" type="I" order="6" />

11 <Signal Name= "not_equal" type="I" order="7" />

12 </Signals>

13 <FSMS>

14 <FSM Name="SupAlarm">

15 <Signals>

16 <Signal Name="alarm"" type="IO"/>

17 <Signal Name="not_equal"" type="I"/>

18 <Signal Name="enter"" type="I"/>

19 <Signal Name="equal"" type="I"/>

20 <Signal Name="change"" type="I"/>

21 </Signals>

22 </FSM>

23 <FSM Name="SupChange">

24 <Signals>

25 <Signal Name="new"" type="IO"/>

26 <Signal Name="do_change"" type="IO"/>

27 <Signal Name="equal"" type="I"/>

28 <Signal Name="change"" type="I"/>

106 7. VERILOG Translation

29 <Signal Name="enter"" type="I"/>

30 </Signals>

31 </FSM>

32 <FSM Name="SupOpen">

33 <Signals>

34 <Signal Name="open"" type="IO"/>

35 <Signal Name="equal"" type="I"/>

36 <Signal Name="enter"" type="I"/>

37 </Signals>

38 </FSM>

39 </FSMS>

40 </FSMMain>

7.5 Central Module for SD Controllers

The central module for the SD controller is the orchestrator of the individual FSM

such as the FSM for supervisor SupOpen. See Listing 7.5 for details. The central

SD controller is called the orchestrator purposely as it does not contain any logic

other than connecting the system inputs to the modular SD controller sub modules,

and combine output from them to form the system’s output.

The rules to produce the system output is as follows. The system has one out-

put for every prohibitable event in the system. The SD controller for a given TDES

supervisor has one output for each prohibitable event in the supervisor’s event set.

If no supervisor cares about a given prohibitable event, then it is always enabled.

The system output is created by taking the logical AND of all the outputs for the

corresponding prohibitable event from every SD controller that has an output for that

event.

A very important point here is that there is no overlap between the arrays z and

i of the central controller as was the case in the individual modular SD controller.

The reason is a bit non-obvious and needs to be understood carefully here.

7. VERILOG Translation 107

The system’s activity event set consists of prohibitable events and uncontrollable

events. For SD controllers, prohibitable events are generated by the controllers, and

thus are not inputs to the system. Only uncontrollable events come from outside the

central controller. This is why in Listing 7.5 only uncontrollable events are listed as

part of input vector i. In the VERILOG implementation of SD controllers, a pro-

hibitable event is assumed to occur when its corresponding output is set to 1. In the

central controller, each prohibitable event is assigned to a bit in the output vector

z. This vector is then fed to the individual FSM for each supervisor as input for the

corresponding prohibitable event. When this input is set to 1, it means the event has

been globally enabled, and thus occurred, while the local output for the FSM only

represents whether the event is locally enabled by the FSM.

This is why vector i contains four places, from 0 to 3, to accommodate the four

uncontrollable events enter, change, equal, and not equal. The output vector z con-

tains four places, from 0 to 3, to accommodate the four prohibitable events: alarm,

do change, new, and open.

It is now clear how the role of the main SD controller is simply to connect and

combine the individual FSM for each supervisor so that the result behaves like a

monolithic SD controller as per Section 4.5.

Listing 7.5 is based on the example described in Chapter 8. This example contains

three supervisors: SupAlarms, SupChange and SupOpen. In Listing 7.5, lines

15-21 define input and output vectors for the FSM for each supervisor.

Lines 23 - 30 instantiate an FSM instance for the FSM SupAlarms. Lines 24 - 28

map system inputs and outputs to the local inputs needed for the supervisor. Line 29

instantiates the FSM and defines the inputs and the outputs connection mapping for

the FSM based on the input and output port connections of the VERILOG module

that defines the FSM. Listing 7.3 shows the module definition for supervisor FSM

SupOpen, as an example.

Similarly lines 32-37 instantiate the FSM for SupChange, and lines 40-44 instan-

108 7. VERILOG Translation

tiate the FSM for supervisor SupOpen. For full details of these supervisor FSM, see

Chapter 8.

Lines 47-50 define the main controller’s outputs in terms of the local outputs of

the modular FSM. Normally the output for a given prohibitable event is the logical

AND of the corresponding local inputs from each FSM. However for this example,

each output has only a local output from a single supervisor, so we only have to map

that local output to the corresponding system output.

Listing 7.5: The Generated VERILOG for Central Controller

1 /**********************************

2 z[0]: alarm

3 z[1]: do_change

4 z[2]: new

5 z[3]: open

6 i[0]: change

7 i[1]: enter

8 i[2]: equal

9 i[3]: not_equal

10 **********************************/

11 module LockSystem(clock,resetn,i,z);

12 input clock,i,resetn;

13 output [3:0] z;

14 wire [3:0] i;

15 //Submodules input/output Wires:

16 wire [4:0] i_SupAlarms;

17 wire [0:0] z_SupAlarms;

18 wire [4:0] i_SupChange;

19 wire [1:0] z_SupChange;

20 wire [2:0] i_SupOpen;

21 wire [0:0] z_SupOpen;

22

23 //Constructing submodules:

24 assign i_SupAlarms[0]= z[0];

7. VERILOG Translation 109

25 assign i_SupAlarms[1]= i[3];

26 assign i_SupAlarms[2]= i[1];

27 assign i_SupAlarms[3]= i[2];

28 assign i_SupAlarms[4]= i[0];

29 SupAlarms m_SupAlarms(clock,resetn,i_SupAlarms,z_SupAlarms);

30 //--

31

32 assign i_SupChange[0]= z[2];

33 assign i_SupChange[1]= z[1];

34 assign i_SupChange[2]= i[2];

35 assign i_SupChange[3]= i[0];

36 assign i_SupChange[4]= i[1];

37 SupChange m_SupChange(clock,resetn,i_SupChange,z_SupChange);

38 //--

39

40 assign i_SupOpen[0]= z[3];

41 assign i_SupOpen[1]= i[2];

42 assign i_SupOpen[2]= i[1];

43 SupOpen m_SupOpen(clock,resetn,i_SupOpen,z_SupOpen);

44 //--

45

46 //Converging output from submodules:

47 assign z[0]=z_SupAlarms[0];

48 assign z[1]=z_SupChange[1];

49 assign z[2]=z_SupChange[0];

50 assign z[3]=z_SupOpen[0];

51 endmodule

7.6 Translation Algorithms

In the algorithms in this section, we use the following identifiers:

• write: This is a method that writes to a file on disk. This method is program-

ming language depended. For simplicity, we assume that whenever a program

variable appears in the string we pass to write, it will automatically be replaced

110 7. VERILOG Translation

with a formatted string corresponding to the contents of the variable. Usually

when write is used, it creates a line of the output file with a newline character

at the end. However, sometimes we need to pass the first part of a line to write,

then algorithmically generate the next part, then we pass the remaining of the

line via another call to write, (e.g lines 25-35 of Algorithm 7.2). We tell write

to not generate a new line by passing in parameter that contains an opening

”<” but not a closing ”>”, as we did on line 25 of Algorithm 7.2. When we

provided the closing ”>” on line 35, we told write that it should now end the

line.

• FC: This is a shorthand notation for FSMCarrier object (see below) that is

associated with the corresponding supervisor TDES.

• idx: This is an integer variable.

For each TDES supervisor, we create an SD controller. As was described in Chap-

ter 6, as part of the algorithms to verify the SD controllable properties iii.1 and iii.2,

we can use these algorithms to gather information about the desired supervisor and

store the information in an FSMCarrier object for each supervisor. The FSMCar-

rier object is a C++ class that we have developed specially for this purpose, and you

can view its details as a UML [1] diagram in Figure 7.3.

We save an array of objects for this class, one for each modular TDES supervisor

in our system. We construct each object when we verify that each supervisor is CS

deterministic (see Algorithm 6.8 in Chapter 6). We will use the information in these

object to construct the FSM for each supervisor. We can then use the FSM informa-

tion to implement the FSM as a VERILOG module.

In Figure 7.3, we define the following members:

• name: A string that is the name of the SD controller which matches the name

of the TDES supervisor.

• mCSDet: A boolean variable that indicates if the TDES is CS deterministic

or not.

7. VERILOG Translation 111

Figure 7.3: FSMCarrier Class UML Diagram

112 7. VERILOG Translation

Figure 7.4: Transition Struct UML [1] Diagram

• c events: This is an array of strings that lists all the prohibitable events in the

TDES supervisor.

• u events: This is an array of strings that lists all the uncontrollable events in

the TDES supervisor.

• sampledstates: This is an array of strings that lists all the sampled states in

the TDES supervisor. These are states in the TDES that are reached by a tick

event, plus the initial state. The first state, sampledstates[0], is always the

initial state of the TDES supervisor.

• alltrans: This is an array of transitions for the SD controller. As discussed in

Chapter 4, SD controller state changes are defined by concurrent strings, not

individual events. We thus define our transitions as shown in the Transition

UML diagram shown in Figure 7.4. For our purpose, we define a transition us-

ing the indicated three variables and the one method, equal. The first variable

is called exit. This is the sampled state that the transition starts from. The

next variable is called enter. This is the sampled state that the transition goes

to. The third variable, occu, is an array of strings that contains the occurrence

image of the concurrent string that takes our corresponding TDES supervisor

from our exit state, to our enter state. As defined in Chapter 3, the occur-

rence image of a string is the set of events that the string is composed of. We

do not include the tick event in our occurrence image as it is understood to

be present. The equal method is used to compare the current transition with

another transition. It returns true when exit, enter, and occu is the same in

both transitions. All transitions in alltrans are FSM transitions and each one

7. VERILOG Translation 113

is represented by a concurrent string, not a single event as in the TDES tran-

sitions. All the transitions in alftrans and vertrans are also FSM transitions.

• alftrans: This is an array of transitions that represents activity loops (see Def-

inition 2.2.15 in Chapter 2). These are transitions containing no tick event, and

when the exit state and enter state are the same state. These states are almost

always self loops transitions only, since when creating TDES supervisors, the

designer should make sure the TDES is non-self loop ALF. This is not a neces-

sity but it is recommended. This array has no big impact on our algorithms,

we are using alltrans instead.

• vertrans: This is the set of all transitions in alltrans, that are not in alftrans.

We call them vertrans to indicate that they are the transitions that will be

used when generating the VERILOG modules.

• ellig: This item maps the name of sampled states to an array of strings which

represents the names of the prohibitable events that are enabled at this state.

This means the SD controller must force and enable these events at the indi-

cated state. We use this mapping to determine the enablement of outputs at

each state in the FSM code.

• poss: This item maps the name of sampled states to an array of strings which

represents the names of the activity events that are possible at this state.

• addEvent: This is a method to add an event to either c events or u events,

depending on the event type. The first string is the name of the event and the

second is the event type (uncontrollable or prohibitable).

• addTrans: This is a method to add a transition. It takes a Transition struct as

a parameter. The transition is added to alltrans array, then if it is an activity

114 7. VERILOG Translation

loop, it is added to alftrans, otherwise it is added to vertrans.

• addSampledState: This is a method to add a sampled state to the sampled-

states array. It uses the same name as given in the TDES automaton for clarity

and readability.

• addEllig: This method adds one item to the ellig map. It takes a string rep-

resenting the name of a sampled state and an array of strings representing the

set of prohibitable events eligible at this state.

• addPoss: This method adds one item to the poss map. It takes a string that

represents the name of a sampled state and an array of strings representing the

set of events that can occur at this state in the TDES automaton.

• writeFSM: This method implements the algorithm for creating the FSM de-

scription, and writes it to a file.

• writeHFSM: This method is another version of the above writeFSM method.

The only difference is that this method formats the inputvector as a Boolean

expression. It negates all events that must not happen at a given state. It uses

a notation that is easier for humans to read.

• writeVERILOG: A method that generates the VERILOG module code for

the SD controller.

• isCSDet: This is a boolean method returns the value of member mCSDet.

• setCSDet: A method to set the value of the mCSDet boolean variable.

7. VERILOG Translation 115

In the following sections, we will present algorithm algorithms for members:

writeFSM, writeHFSM, mainVERILOG, writeVERILOG, and mainFSM.

7.6.1 writeFSM() Algorithm

Algorithm 7.1 is responsible for creating FSM files such as Listing 7.2. It uses the

FsmCarrier object associated with each supervisor TDES to translate the TDES

supervisor to an FSM.

Algorithm 7.1 writeFSM() Part A

1: write(<?xml version=1.0 encoding=UTF-8 standalone=yes?>)

2: write(<FSM Name= FC.name >)

3: write(<ResetState Name= FC.sampledstates[0] ></ResetState>)

4: write(<Signals>)

5: idx:=0

6: for all (e ∈ FC.c events) do

7: write(<Signal Name= e order= idx type=IO/>)

8: idx:= idx+1

9: end for

10: for all (e ∈ FC.u events) do

11: write(<Signal Name= e order= idx type=I/>)

12: idx:= idx+1

13: end for

14: write(</Signals>)

Lines 1-4 are for writing the first 4 lines of Listing 7.2. Line 2 uses FC.name to

write the name of the TDES supervisor as the name of the FSM. On line 3, we use

FC.sampledstates[0] to write the reset state of the FSM, which is the initial state

of the TDES. On line 4, we write the beginning tag of the signals element. From lines

6-9, we loop through all the prohibitable events of the TDES, namely FC.c events,

and write them out with type ”IO”. We do the same from lines 10-13, but we write

the uncontrollable events in the TDES, namely FC.u events.

116 7. VERILOG Translation

Lines 15-19 are responsible for writing the states of Listing 7.2. We loop through

each sampled state, use the mapping FC.ellig to get the eligible prohibitable events

at each state, and then write it as on outputvector formatted as a comma separated

list.

Algorithm 7.1 writeFSM() Part B

15: write(<States>)

16: for all (q ∈ FC.sampledstates) do

17: write(<State Name= q outputvector= FC.ellig[q] />)

18: end for

19: write(</States>)

20: write(<Transitions>)

21: for all (q ∈ FC.sampledstates) do

22: write(<StartState Name= q >)

23: for all (t ∈ FC.alltrans) do

24: if (t.exit = q AND t.enter 6= q) then

25: write(<Transition inputvector= t.occu endstate= t.enter />)

26: end if

27: end for

28: write(<Transition inputvector=DEF endstate= q />)

29: end for

30: write(</Transitions>)

31: write(</FSM>)

Lines 20-30 are responsible for creating the Transitions block in the FSM descrip-

tion, as in Listing 7.2. We loop through the sampled states, and for each one we build

a <StartState > block and then fill it with all the transitions from this state to other

states. For each start state, we loop through FC.alltrans and find those transitions

whose exit state is this state, and their enter state is different to avoid self loops.

When we find one, we write it to the file as on line 25 and we use Transition.occu

as the inputvector for this transition, and Transition.enter as the endstate.

This algorithm creates an FSM file such as in Listing 7.2. However, when it writes

7. VERILOG Translation 117

the transition it does not write the transition as it is shown on Listing 7.1, line 19;

namely as Boolean functions like: !equal.open.enter. Instead it writes a comma sepa-

rated list of the events that must happen in the transition, ignoring those that must

not happen; thus would output: open,enter.

When we finish writing all the actual transitions from this state to other possible

states, we go to line 28 and we write the default (DEF) transition as a self loop. This

is a shorthand to match any input vector not already specified.

Line 31 closes the root tag of the FSM description.

7.6.2 writeHFSM() Algorithm

Algorithm 7.2 is responsible for creating FSM files with input vectors formatted as

logical functions, as shown in Listing 7.1. It uses the FsmCarrier object associated

with each supervisor TDES.

In this algorithm we use the following identifiers, as well as the previous ones

mentioned in Section 7.6.

• in vector: This is a string variable.

• trimlast: This is a string processing function that deletes the last letter from

the provided string.

This algorithm is identical to the previous writeFSM, with the exception of how

we write the Transitions block to the file. Therefore, we will only explain how the

algorithm writes this block.

For lines 20-24, it does the same things as in Algorithm 7.1. Lines 25-35 are re-

sponsible for writing only one line in the FSM description, and this is the Transition

line that corresponds to line 19 of Algorithm 7.2. The outputvector in this line is

!equal.open.enter. It means the equal event must not happen, the open event must

118 7. VERILOG Translation

Algorithm 7.2 writeHFSM() Part A

1: write(<?xml version=1.0 encoding=UTF-8 standalone=yes?>)

2: write(<FSM Name= FC.name >)

3: write(<ResetState Name= FC.sampledstates[0] ></ResetState>)

4: write(<Signals>)

5: idx:=0

6: for all (e ∈ FC.c events) do

7: write(<Signal Name= e order= idx type=IO/>)

8: idx:= idx + 1

9: end for

10: for all (e ∈ FC.u events) do

11: write(<Signal Name= e order= idx type=I/>)

12: idx:= idx + 1

13: end for

14: write(</Signals>)

15: write(<States>)

16: for all (q ∈ FC.sampledstates) do

17: write(<State Name= q outputvector= FC.ellig[q] />)

18: end for

19: write(</States>)

7. VERILOG Translation 119

happen and the enter event must happen in order to match this input pattern.

To generate an inputvector so formatted, the algorithm fetches each transition

from alltrans. It makes sure that the exit state is the current one, and the enter

state is not the same. Then on line 26, it creates an empty string named in vector.

From lines 27-33, we loop through all the activity events in the FSM. If the event is

not in t.occu then this event must not happen in this particular transition, so we put

the negation identifier ”!” before it. We then put the event, followed by the AND

identifier, ”.”. If the event is in t.occu, then this event must happen in this par-

ticular transition, therefore, we list the event and follow it by the AND operator, ”.”.

Line 34 trims the last AND operator from the string and then we write the re-

mainder of the string to the file (line 38).

We note that on lines 29 and 31, we specify string concatenation by combining

strings using the ”+” operator.

120 7. VERILOG Translation

Algorithm 7.2 writeHFSM() Part B

20: write(<Transitions>)

21: for all (q ∈ FC.sampledstates) do

22: write(<StartState Name= q >)

23: for all (t ∈ FC.alltrans) do

24: if (t.exit = q AND t.enter 6= q) then

25: write(<Transition inputvector=)

26: in vector:=””

27: for all (e ∈ FC.c events ∪ FC.u events) do

28: if (e ∈ t.occu) then

29: in vector := in vector + e + ”.”

30: else

31: in vector := in vector + ”!” + e + ”.”

32: end if

33: end for

34: trimlast (in vector)

35: write(in vector endstate= t.enter />)

36: end if

37: end for

38: write(<Transition inputvector=DEF endstate= q />)

39: end for

40: write(</Transitions>)

41: write(</FSM>)

7. VERILOG Translation 121

7.6.3 mainVERILOG() Algorithm

Algorithm 7.3 is called mainVERILOG. It is responsible for creating the VERILOG

modules for the FSM for each supervisor, and the main VERILOG module that uses

these submodules. For example, if this algorithm was applied to the Lock System

example in Chapter 8, it would generate a VERILOG module for each supervisor

(SupOpen, SupChange, and SupAlarm) and a central controller module to com-

bine the individual FSM together. Listing 7.3 shows the module for SupOpen while

Listing 7.5 shows the central controller module.

This algorithm uses the following identifiers. These identifiers may also be used

in the algorithms that follow:

• fsmcarriers[]: This is an array of FSMCarrier objects. It is created when test-

ing whether each supervisor in the project is CS deterministic. We will access

is as if it is a set.

• Σhib: This is the set of all prohibitable events in the project.

• Σu: This is the set of all uncontrollable events in the project.

• Σfree: This is the set of all prohibitable events in the project that are not part

of the event set of any TDES supervisor in the project.

• idx, ord and counter: These are miscellaneous integer variables used in the

algorithm.

• projName: This is a string containing the name of the project that is begin

verified.

• indexOf : This is a utility function that takes a set as the first parameter, and

an set item as the second parameter. It then returns the index of the item in

the set. It returns -1 if the item is not in the set.

• |object|: This is a size function that returns the number of items in the list,

array or set.

122 7. VERILOG Translation

• write: This is a method that writes to a file on disk. This method is program-

ming language depended. For simplicity, we assume that whenever a program

variable appears in the string we pass to write it will automatically be replaced

with a formatted string corresponding to the contents of the variable.

In VERILOG any line that starts with ”//” is a comment that is not compiled

by VERILOG. Also, any block of text between ”/*” and ”*/” is also comment text.

We now describe how lines 1-24 of the mainVERILOG() algorithm work. Lines

1-5 check that all the TDES supervisors are CS deterministic. If any are not, then

the algorithm exits. Lines 6-8 loop through all the FSMCarrier objects in array

fsmcarriers[], and call the method writeVERILOG for each one. This writes the

VERILOG module for the corresponding TDES supervisor to a separate file. See

Allgorithm 7.4 for more details on writeVERILOG.

On lines 9-24, the algorithm generates the comments for the beginning of the SD

controller central module shown on lines 1-10 of Listing 7.5. These comments are

not compiled by ALTERA [11] or any other VERILOG compiler. They are only for

clarity and readability. They show the event ordering by listing the prohibitable event

positions in bit vector z, then the uncontrollable event positions in bit vector i.

We now describe the behaviour of lines 25-50 of Algorithm 7.3. Lines 25-30 in

the algorithm generate lines 11-14 in Listing 7.5. For lines 31-36, the algorithm

loops through the objects in fsmcarriers[] array to define the input and output

vectors for each one. See lines 16-21 of the central module from Listing 7.5. It uses

|fc.c events|+ |fc.u events| which returns the number of prohibitable events plus the

number of uncontrollable events for the TDES. We subtract 1 from each size because

in our VERILOG code bit vector indices start at 0.

For lines 37-50, the algorithm writes lines 24-43 of Listing 7.5. In these lines, we

contstruct the input bit vector for each FSM from the z and i bit vectors of the central

module. For each supervisor object in the fsmcarriers[] array, we first loop through

all the prohibitable events in the TDES supervisor. We find the index of the event

in the bit vector z and save it in idx. We then use idx to assign the prohibitable

7. VERILOG Translation 123

Algorithm 7.3 mainVERILOG() Part A

1: for all (fc ∈ fsmcarriers[]) do

2: if (¬fc.isCSDet()) then

3: return

4: end if

5: end for

6: for all (fc ∈ fsmcarriers[]) do

7: fc.writeVERILOG()

8: end for

9: write (/************************)

10: idx:=0

11: for all (e ∈ Σhib) do

12: if (e ∈ Σfree) then

13: write (z[idx]: e /FREE EVENT)

14: else

15: write (z[idx]: e)

16: end if

17: idx:= idx+ 1

18: end for

19: idx:= 0

20: for all (e ∈ Σu) do

21: write (i[idx]: e)

22: idx:= idx+ 1

23: end for

24: write (************************/)

124 7. VERILOG Translation

event in bit vector z to the corresponding one in the TDES. We do the same for the

uncontrollable events, however we use the correct array for the uncontrollable events

in the central module, namely i.

When all the inputs of the TDES supervisor have been assigned, we then define

an instantiation of the individual FSM module as seen on lines 29, 37 and 43 of List-

ing 7.5. We do this by giving the variable the same name as the individual TDES

supervisor, but adding the prefix ”m ”. This occurs on line 49 of our algorithm.

We use the following variable in the next part of the algorithm:

• size: This is an integer variable.

We now discuss the last part of Algorithm 7.3, shown on lines 51-68. This is where

we assign each event in the output bit vector z of the central module a Boolean value.

It is assigned the conjunction of the corresponding local output for each FSM that

cares about the event. If the event is not part of the event set of any supervisor, then

this output is set to 1.

In this part of the algorithm we use the following identifier as well as the previously

mentioned ones:

• tmp assign: This is a temporary string variable to hold the output assignment

before writing it to the file.

On lines 52-67, we loop through the prohibitable events of the system. For each

event, we check if it is in Σfree. If it is, we then assign 1 to that output. If this is not

the case, we then do the following: we create the left hand portion of the assignment

string, namely ”assign z[ord]=”, as shown on line 56 in the algorithm. We then loop

through all the FSMs and get the index of the event in them and save it in idx. If

idx is greater than or equal to 0 (means the FSM contains the event), we add the

event from the SD controller and then add ”&” which is the bitwise logical AND

operator in VERILOG.

7. VERILOG Translation 125

Algorithm 7.3 mainVERILOG() Part B

25: write (module projName(clock,resetn,i,z);)

26: write (input clock,i,resetn;)

27: size := |Σhib| − 1;

28: write (output [size:0] z;)

29: size := |Σu| − 1;

30: write (wire [size:0] i;)

31: for all (fc ∈ fsmcarriers[]) do

32: size := |fc.c events|+ |fc.u events| − 1

33: write (wire [size:0] i fc.name;)

34: size := |fc.c events| − 1

35: write (wire [size:0] z fc.name;)

36: end for

37: for all (fc ∈ fsmcarriers[]) do

38: ord := 0

39: for all (e ∈ fc.c events) do

40: idx := indexOf(Σhib, e)

41: write (assign i fc.name[ord]= z[idx];)

42: ord := ord + 1

43: end for

44: for all (e ∈ fc.u events) do

45: idx := indexOf(Σu, e)

46: write (assign i fc.name[ord]= i[idx];)

47: ord := ord + 1

48: end for

49: write (fc.name m fc.name(clock,resetn,i fc.name,z fc.name);)

50: end for

126 7. VERILOG Translation

Finally, we write the ”end module” keyword on line 68, to close the VERILOG

module.

Algorithm 7.3 mainVERILOG() Part C

51: ord := 0

52: for all (e ∈ Σhib) do

53: if (e ∈ Σfree) then

54: write (assign z[ord]= 1;)

55: else

56: tmp assign := ”assign z[ord]=”

57: for all (FC ∈ fsmcarriers[]) do

58: idx := indexOf(FC.c events, e)

59: if (idx≥ 0) then

60: tmp assign := tmp assign + ”z ” + FC.name + ”[”+ idx +”]” + ”&”

61: end if

62: end for

63: trimlast (tmp assign)

64: write (tmp assign ;)

65: ord := ord + 1

66: end if

67: end for

68: write (endmodule)

7.6.4 writeVERILOG() Algorithm

Algorithm 7.4 generates the VERILOG FSM module from an FsmCarrier for each

TDES supervisor. As an example, Listing 7.3 shows the module generated for the

supervisor SupOpen.

The VERILOG modules that were generated by this algorithm for the supervisors

in Chapter 8 have been tested on ALTERA [11] web edition. All the modules gen-

erated by this algorithm were compiled without any errors and without any manual

7. VERILOG Translation 127

modifications.

In this algorithm we use the following utility functions:

• binaryInputVector():

This is a utility function that takes a set of activity events, and returns a

binary bit vector. Its size is the number of activity events in the event set of

the TDES supervisor. All the bits corresponding to the events that are passed

as a parameter, namely Transition.occu, are given the value ”1”. Each of the

remaining bits are given the value ”0” indicating the event must not occur in

this transition.

• binaryOutputVector():

This is a utility function that takes a set of prohibitable events, and returns

a binary bit vector. Its size is the number of prohibitable events in the event

set of the TDES supervisor. All the bits corresponding to the events that are

passed as a parameter, namely eligible events in FC.ellig[q], are given the value

1,. Each of the remaining bits are given the value zero.

• calcStateSize():

Takes a positive integer as input and calculates the minimum number of bits

needed to represent the inputted number of states.

• binaryStateVector():

This is a utility function that returns a binary bit vector. The bit vector is a

binary representation to a state in the SD controller. It takes the state order in

the TDES and returns its binary equivalent. The number of bits in the created

bit vector is equal to to calcStateSize(|FC.sampledstates|).

• parameterizedTransition():

This utility function takes a Transition structure as input and converts the

transition’s exit, enter, and occu members to strings that match the bit vec-

tor parameters used in the VERILOG FSM module code (i.e see lines 13-15

of Listing 7.3). For example, say we have Transition tr, with tr.exit=”2”,

128 7. VERILOG Translation

tr.enter=”3”, and tr.occu[]={”event1”, ”event3”}. If we applied this func-

tion to tr ∈ FC.alltrans, we would get a new transition tr1, with tr1.exit=”ST 2”,

tr1.enter=”ST 3”, and tr1.occu[0]=”IN x” where x would corresponds to

the value of idx on line 30 of Algorithm 7.4 when the correspondent parameter

for our occurrence image was defined for tr.

• Current:

This is the current state in the SD controller.

• Next:

This is the next state that will be assigned to Current on the next positive edge

of the clock.

• tmpString: A temporary string variable.

• size: An integer number used temporarily.

Algorithm 7.4 writeVERILOG() Part A

1: idx:= 0

2: write(/*********************)

3: for all (e ∈ FC.c events) do

4: write (z[idx],i[idx]: e)

5: idx:= idx + 1

6: end for

7: for all (e ∈ FC.u events) do

8: write (i[idx]: e)

9: idx:= idx + 1

10: end for

11: write(****************/)

The first part of Algorithm 7.4 (lines 1-11), is responsible for creating the first set

of comment lines in Listing 7.3, namely lines 1-5 of the listing. These comments are

ignored by the VERILOG compiler and they are only for readability and clarity.

7. VERILOG Translation 129

Lines 3-6 in the algorithm, loop through the prohibitable events. Each one is

allocated two places, one place in the output vector z, and the other place is in the

input vector i. On lines 7-10, we do the same for the uncontrollable events, however

these events are allocated places in the input vector only, namely i.

Algorithm 7.4 writeVERILOG() Part B

12: write(module FC.name(clock,resetn,i,z);)

13: write(input clock,i,resetn;)

14: size := |FC.c events| − 1

15: write(output [size:0] z;)

16: size := |FC.c events| − 1

17: write(reg [size:0] z;)

18: size := calcStateSize(|FC.sampledstates|)
19: write(reg [size:0] Current;)

20: write(reg [size:0] Next;)

21: size := |FC.c events|+ |FC.u events| − 1

22: write(wire [size:0] i;)

Lines 12-22 of Algorithm 7.4, is responsible for creating lines 6-12 of Listing 7.3.

We use the size function |FC.c events| − 1 to determine the size of the output vector

z. The ”-1” is because the vector base starts at 0. As i is the input bit vector, we de-

termine its size by |FC.c events|+ |FC.u events| − 1, namely the number of activity

events in the event set of the TDES supervisor. On line 18, we pass the number of

states to the function calcStateSize to calculate how many bits we need to represent

a state.

Lines 23-39 of Algorithm 7.3, are responsible for creating line 13 of Listing 7.3.

Namely parameters IN idx, such that idx is a sequence number for each transition in

the FSM.

On lines 26-38, we loop through the array FC.alltrans and give each non-selfloop

transition a sequence number idx. On line 27, we check if we have a self loop transi-

tion, namely tr.exit=tr.enter. If this is the case, we jump to the beginning of the

130 7. VERILOG Translation

Algorithm 7.4 writeVERILOG() Part C

23: tmpString := ”parameter ”

24: idx:= 0

25: counter:= 0

26: for all (tr ∈ FC.alltrans) do

27: if (tr.exit = tr.enter) then

28: continue

29: end if

30: tmpString := tmpString + ”IN ” + idx + ”=” + binaryInputVector(tr.occu)

31: counter:= counter + 1

32: if (counter <|FC.alltrans|) then

33: tmpString := tmpString + ”,”

34: else

35: tmpString := tmpString + ”;”

36: end if

37: idx:= idx + 1

38: end for

39: write (tmpString)

7. VERILOG Translation 131

for loop using continue. For each non-selfloop transition, we call the utility function

binaryInputVector with the tr.occu parameter. See the description of the utility

function binaryInputVector above. We then write ”,” if we have more transitions

or ”;” if this is the last transition. On line 39, we write the constructed string to the

file.

Algorithm 7.4 writeVERILOG() Part D

40: tmpString := ”parameter ”

41: idx:= 0

42: counter:= 0

43: for all (q ∈ FC.sampledstates) do

44: tmpString := tmpString + ”ST ” + q +”=” + binaryStateVector(idx))

45: counter:= counter + 1

46: if (counter <|FC.sampledstates|) then

47: tmpString := tmpString + ”,”

48: else

49: tmpString := tmpString + ”;”

50: end if

51: idx:= idx + 1

52: end for

53: write (tmpString)

Lines 40-53 of Algorithm 7.4, are responsible for creating line 14 of Listing 7.3.

Namely ST q, such that idx is a sequence number for each state in the SD controller.

For lines 43-52, we loop over the array FC.sampledstates, and we give each

state a sequence number idx. For each state, we call the utility function binaryS-

tateVector with the idx parameter. See description of binaryStateVector above.

We then write ”,” if we have more states or ”;” if this is the last state. We use idx

as a parameter and not the state itself (q) because states can be identified by string

names and not numbers. On line 53, we write the constructed string, tmpString,

variable to the file.

132 7. VERILOG Translation

Algorithm 7.4 writeVERILOG() Part E

54: tmpString :=”parameter ”

55: counter := 0

56: for all (q ∈ FC.sampledstates) do

57: tmpString := tmpString + ”OT ” + q + ”=” + binaryOutputVector(ellig[q]))

58: counter := counter + 1

59: if (counter <|FC.sampledstates|) then

60: tmpString := tmpString + ”,”

61: else

62: tmpString := tmpString + ”;”

63: end if

64: end for

65: write (tmpString)

Lines 54-65 of Algorithm 7.4, are responsible for creating line 15 of Listing 7.3.

Namely OT q, which will represent the output bit vector for state q.

For lines 56-64, we loop through the array FC.sampledstates and for each state

we call the utility function binaryOutputVector with FC.ellig[q] as the parame-

ter. See function description above. We then write ”,” if we have more states or ”;” if

this is the last state. On line 65, we write the constructed string, tmpString, to the file.

Lines 66-96 of Algorithm 7.4, are responsible for creating the first always block

of Listing 7.3 (lines 16-45).

Line 66 writes the always block with Current and i as its sensitivity parameters.

Lines 68-95 define a case statement that switches on the Current variable. From lines

69-89, we loop through all the sampled states of the SD controller. For each state,

we write the state’s binary representation as the value of the above case statement,

namely ST q as in line 70. Line 72 changes the output of the SD controller to be the

corresponding state output. For lines 74-86, we loop through all the transitions in

FC.alltrans. We use function parameterizedTransition to first construct transi-

tions to match the parameters we created earlier for the corresponding Binary vectors.

7. VERILOG Translation 133

Algorithm 7.4 writeVERILOG() Part F

66: write(always @(Current or i))

67: write(begin)

68: write(case Current)

69: for all (q ∈ FC.sampledstates) do

70: write(ST q:)

71: write (begin)

72: tmpString := ”z= OT ” + q +”;”

73: write (tmpString)

74: idx:= 0

75: for all (tr ∈ FC.alltrans) do

76: if (tr.exit = q) then

77: tr= parameterizedTransition(tr)

78: idx:= idx + 1

79: if (idx >1) then

80: write (else)

81: end if

82: write (if (i == tr.occu[0]))

83: write (begin)

84: write (Next <= tr.enter;)

85: write (end)

86: end if

87: end for

88: write (end)

89: end for

90: write (default:)

91: write (begin)

92: tmpString := ”Next <= ST ” + FC.sampledstates[0] +”;”

93: write (tmpString)

94: write (end)

95: write (endcase)

96: write(end)

134 7. VERILOG Translation

See the function definition for more information.

Line 77 makes sure that the exit state is equal to the sampled state we are cur-

rently using in this iteration, namely q. If idx is greater than 1, then this means that

this is not the first condition of the if statement, and this means we have to put an

else part.

For lines 81-84, we write the VERILOG if statement that says, if the input i is

equal to the current transition’s concurrent string occu[0], then we have to assign

the variable Next the value of the transition’s enter state, which is the state we

are going to. The reason we are using the first item in occu[0] is because when the

function parameterizedTransition converts the transition, it puts the parameter

string in this location.

Lines 90-94 are very important and this might not be obvious at first glance.

These lines are evaluated by VERILOG compiler when Current has no value similar

to any one in the FC.sampledstates. This condition should never be reached but

we put it here as a fail safe.

Algorithm 7.4 writeVERILOG() Part G

97: write(always @(posedge clock or negedge resetn))

98: write(begin)

99: write (if (resetn==0))

100: write (Current <= ST FC.sampledstates[0])

101: write (else)

102: write (Current <= Next;)

103: write(end)

104: write(endmodule)

The final part of Algorithm 7.4 (lines 97-104) is responsible for writing the second

always block of Listing 7.3. Line 97 shows that the always block is evaluated when

the positive edge of clock occurs, or the negative edge of resetn occurs.

7. VERILOG Translation 135

Line 99 says if ”resetn==0”, we then assign FC.sampledstates[0] to Current,

namely we are resetting the system. If not then, this evaluation of the always block

is evaluated because of a positive edge of the clock has occurred, thus we have to set

Current equal to Next.

7.6.5 mainFSM() Algorithm

Algorithm 7.5 is responsible for creating the central FSM for the system. For an ex-

ample, Listing 7.4 shows the results of running this algorithm on the example system

of Chapter 8.

On lines 1-13 of Algorithm 7.5, it writes to a file the header part of the XML

code. This corresponds to lines 1 of Listing 7.4. On line 2, it uses the project name

as the name of the central FSM. On lines 5-8, it loops through the prohibitable

events in the system and writes them as signals. The name of the signal is the same

as the event, while the type of the signal is O meaning these signals are output signals.

Then the algorithm does the same for the uncontrollable events (lines 9-12), how-

ever it identifies these events as type I, input only events.

The remaining part of the algorithm starts a new XML element, namely FSMS

to define all the individual FSM of the project, one for each supervisor in the project.

It uses array fsmcarriers[] to access data structure, FC, for each supervisor. For each

object (FC) the algorithm starts a new element with ”FSM Name= FC.name”. It

then executes two sequential loops, one to write all the input/output signals of the

FSM from the array FC.c events, and one to to write all the input signals from the

array FC.u events.

136 7. VERILOG Translation

Algorithm 7.5 mainFSM() Part A

1: write(<?xml version=1.0 encoding=UTF-8 standalone=yes?>)

2: write(<FSMMain Name= projName >)

3: write(<Signals>)

4: idx:=0

5: for all (e ∈ Σhib) do

6: write(<Signal Name= e type=O order= idx />)

7: idx:= idx+1

8: end for

9: for all (e ∈ Σu) do

10: write(<Signal Name= e type=I order= idx />)

11: idx:= idx+1

12: end for

13: write(</Signals>)

Algorithm 7.5 mainFSM() Part B

14: write(<FSMS >)

15: for all (FC ∈ fsmcarriers[]) do

16: write(<FSM Name= FC.name>)

17: write(<Signals>)

18: for all (e ∈ FC.c events) do

19: write(<Signal Name=e type=IO />)

20: end for

21: for all (e ∈ FC.u events) do

22: write(<Signal Name=e type=I />)

23: end for

24: write(</Signals>)

25: write(</FSM >)

26: end for

27: write(</FSMS >)

28: write(</FSMMain >)

7. VERILOG Translation 137

7.7 Removing Redundant Transitions

Figure 7.2 shows a shortcoming of our algorithms. We see two transitions from state

4 to state 0 that differ only by equal and !equal. This implies the value of input equal

is not important here and can be removed. We can thus replace both transitions with

a single transition labelled open.enter. There are likely other simplifications that can

be made.

A useful future improvement would be to remove such redundancies in the list of

transitions while keeping equivalent behaviour. This would produce more compact

FSM listings and VERILOG modules. This was left as future work due to time con-

straints and the fact that the VERILOG compiler should make these simplifications

automatically so this should not make a difference in the final results.

138 7. VERILOG Translation

Chapter 8

Lock System Example

In this chapter, we will review and explore an example of designing systems for SD

supervisory control. We will describe the system problem, the components of the

system and then we will show the translation results to SD controllers. We will show

timing results for the verification software comparing modular methods to monolithic

algorithm.

The Lock System example is an automatic door system that is locked by a secret

code, composed of four binary digits. The external agent here is a human that in-

teracts with the lock system. The external agent can unlock the door, or change the

saved code, but only if they enter the correct code first.

The purpose of this example is to design an FSM for this system using TDES. We

will then use our algorithms to generate the VERILOG code for the FSM.

8.1 Problem Description

The purpose of this example is to design an FSM to control the 4-bit combination

lock shown in Figure 8.1. The user of the system can either open the lock, or change

the 4-bit saved password. To do either, the user must first correctly enter the current

password. Entering two incorrect passwords in a row will set off an alarm. Once the

139

140 8. Lock System Example

alarm is activated, it will stay activated until the system is reset.

Figure 8.1: Lock System Black Box Diagram

We will now define the specifications of the problem in detail.

Opening the lock: To open the lock, the user must set the 4-bit combination

(labelled as ”Input value” in Figure 8.1), and then set signal Enter to 1 for one clock

pulse. If the 4 bits match the combination stored in a 4-bit register, the door is

unlocked and opens. The door opening is represented by output signal Open being

set to 1. The door should stay open until user again sets Enter to 1 for one clock

pulse, at which point the door closes (output Open is set to 0) and locks again. If

two incorrect combinations are entered in a row, the alarm goes off (output Alarm is

set to 1). The alarm can only be turned off (output Alarm set to 0) by resetting the

system. When the system is reset, the stored combination is set to ”0000”.

Changing the combination: To change the combination, the user enters the

current combination and then sets input Change to 1 for one clock pulse. If the

entered 4-bits match the saved combination, then output signal New is set to 1 to

indicate to the user to enter a new 4-bit combination. The user then enters a new

8. Lock System Example 141

4-bit combination and sets input Enter or input Change to 1 for one clock period.

The new combination is saved, and output New is set back to 0. Again, entering the

wrong combination twice in a row will set off the alarm.

For inputs Enter and Change, we will assume the user has a button labelled Enter

and one labelled Change that when pressed, will cause the corresponding input to be

set to 1 for one clock cycle.

We note that signals Change and Enter will be external inputs beyond the con-

trol of the FSM, while signals Open, New and Alarm represent outputs that the FSM

must provide.

8.1.1 System Components

Figure 8.2 shows a block diagram of the components needed to implement our combi-

nation lock. The system consists of the FSM that we will design as a TDES supervisor,

as well as a 4-bit register to store the 4-bit combination and a 4-bit comparator. We

assume we are given the register and comparator and will focus on designing the FSM

to make Figure 8.2 work.

The 4-bit register is a standard digital login item from [10]. When its clear input

is set to 0, it will store the 4-bit number ”0000”, which will become the value of the

register’s Q output. As long as the clear input is set to 1, the register will store the

4-bit value at its D input whenever its clock input (labeled as ”>”) changes from 0

to 1. In Figure 8.2, we have set this to the Do Change output of the FSM.

The 4-bit comparator is a standard digital logic item from [10]. It compares the

4-bit input X to the 4-bit input Y, and sets EQ to 1 and NEQ to 0 when X=Y.

Otherwise, EQ is set to 0 and NEQ to 1. EQ and NEQ are input signals to our FSM.

Figure 8.3 shows a break down of our FSM design. Rather than design one FSM,

we will instead design three labelled Open, Alarm and Change, that will work to-

142 8. Lock System Example

Figure 8.2: Lock System Block Diagram

gether to implement the FSM for Figure 8.2. The Open FSM will handle the logic

to generate the Open output, while the Change FSM will handle the Change output.

The Alarm FSM will determine when to sound the alarm, and will control the Alarm

output.

Instead of designing the FSM directly as would normally be done, we will instead

model the system as plant TDES, and then design a TDES supervisor each to im-

8. Lock System Example 143

Figure 8.3: FSM Detailed Sub-Modules

plement the Open, Change and Alarm FSM. We will then verify that our plant has

proper time behaviour, is complete for our supervisor, and has S-singular prohibitable

behaviour. We will also verify that our supervisor is SD controllable for our plant,

and that our closed-loop system is nonbocking and ALF.

8.2 Components Design

In Figure 8.4, we see the seven different plants that comprise the system. These plant

components describe the behaviour of the following events:

144 8. Lock System Example

open: This is a controllable (prohibitable) event, that enables the system to open

the door.

do change: This is a controllable (prohibitable) event, that enables the system to

replace the four digits saved in the memory with the newly entered ones. It will

correspond to the clock signal for the register in Figure 8.2.

new : This is a controllable (prohibitable) event, that enables the system to signal

that it started the process to change the saved 4-bit security code. This signals

the user to enter the new 4-bit code and press either Enter or Change to com-

plete the operation.

enter : This is the uncontrollable event that means that the external agent either

had entered the four digit that matches the saved ones and he/she wants the

door to open, or that the external agent entered the new four bits and he/she

wants them to be saved when the New signal is HIGH (set to 1).

change: This is the uncontrollable event that means that the external agent either

had entered the four digit and he wants the door to open, or that the external

agent entered the four bits and he/she wants them to be saved when the New

signal is HIGH.

is equal : This uncontrollable event means that the recently entered 4-bit code

matches the one saved in the register. This event corresponds to signal EQ

in Figure 8.2. In a given clock cycle, either event is equal or is not equal will

occur, but never both.

is not equal : This uncontrollable event means that the recently entered 4-bit code

does not match the one saved in the register. This event corresponds to signal

8. Lock System Example 145

NEQ in Figure 8.2.

alarm: This event is controllable (prohibitable) and represents that the system is in

the alarm state.

However in the FSM shown in Figures: 8.6, 8.8 and 8.10, we are using shorthand

names for these events because the diagram will not fit in the page if we use the full

names. The shortened versions are given below:

• OP: open.

• EN: enter.

• CH: change.

• DC: do change.

• AL: Alarm.

• NW: new.

• EQ: is equal.

• NQ: is not equal.

We note that the first six plants in Figure 8.4 simply show that their correspond-

ing event have no upper time bound and that each event can occur at most once

per clock cycle. This is because the input events can occur whenever, and the out-

put events are unrestricted and their behaviour will be determined by the supervisors.

The TDES diagrams shown in this chapter used the notations that a filled cir-

cle with a white circle ring (see state 0 of plant Alarm as an example) represents a

marked initial state, a filled circle a marked state, and an unfilled circle an unmarked

state. All uncontrollable events have an ”!” preceding their name.

146 8. Lock System Example

Figure 8.4: Lock System Plants Components

8.2.1 Signal Outputs and Transitions

When designing FSM for VERILOG implementation, there are two common tasks

that the designer might be asked to do. The first is to have a signal output generate

a pulse. By this we mean that the output be set to 1 for one clock period, and then

set back to 0 for at least one clock period. An example is the Do Change output of

the FSM shown in Figure 8.2. When it is time to store a new 4-bit password, the

FSM needs to generate a pulse on this output so that the 4-bit register will store the

new combination.

Supervisor SupChange, shown in Figure 8.7, shows how to specify using TDES

8. Lock System Example 147

that an output should generate a pulse. To specify output Do Change should be

true for one clock cycle, TDES SupChange enables the corresponding TDES event

do change immediately after the tick (state 9) and keep the event enabled (and the

tick even disabled) until the event has occurred once. The event do change is then

kept disabled until the next tick. After the tick event occurs, event do change must

stay disabled until the next tick event occurs in order to complete the pulse.

The second common task is to set an output to 1 when a given condition has been

met, and keep it at 1 until a new condition has been met. An example of this is out-

put signal Open from Figure 8.2. Supervisor SupOpen shows how this is specified

using a TDES supervisor. Reaching state 4 of the supervisor matches the condition

to set output Open to 1. Output Open should stay at 1 until event enter occurs. To

specify that Open should be set to 1 and stay at 1 till event enter occurs (represented

by reaching state 0 again of the TDES), we enable event open at state 4, and keep

it enabled until it has occurred. If the end condition (enter occurring) has not been

met, the next tick should take us to a state where open is still enabled. We repeat the

above logic until the end condition is met. In Figure 8.5, this corresponds to reaching

state 5 and then the tick returning us to state 4.

If the end condition is met, the next tick takes us to a state where event open

is disabled. In Figure 8.5, this corresponds to reaching state 6, and then the tick

event takes us to state 0. Note that if event enter occurs at state 4 before event open

occurs, we still need to keep open enabled until it occurs. That clock period, as signal

open is not suppose to be set to 0 until after the next tick event, so event open must

occur once this clock period. The above behaviour is specifically required to satisfy

point iii.i of the SD controllability definition.

It is worth noting here that the TDES to FSM translation process described in

Chapter 4 specifies that the states of the FSM correspond to the reachable sampled

states of the TDES. Further, it specifies that if a prohibitable event is enabled at a

sampled state, then the corresponding output is set to 1 at that state in the FSM.

This means setting an output to 1 or 0, corresponds to enabling the corresponding

prohibitable event or not at the sampled state in the TDES.

148 8. Lock System Example

8.2.2 Supervisor SupOpen

Supervisor SupOpen, shown in Figure 8.5, is responsible for unlocking the door if a

correct code is entered, and keeps the door open until the next enter event.

Figure 8.5: Supervisor SupOpen

At state 0 of the TDES, we wait for both events enter and equal to occur in the

same clock cycle, representing that the entered combination matched the saved com-

bination when the enter button was pressed. This takes us to state 4 where output

signal Open should be set to 1 and stay there until the enter button is pressed. See

discussion in Section 8.2.1 for more details on how to express this using TDES.

Figure 8.6 shows the FSM that corresponds to TDES SupOpen, and matches the

FSM in Listing 8.1. Please see Chapter 7 for the details of how TDES SupOpen is

converted into Listing 8.1, as well as an explanation of the file format. The notation

used in FSM diagram is as follows. The arrow labelled ”Reset” indicates the reset

(initial) state of the FSM. The rectangles represent states, and labels starting with

8. Lock System Example 149

”ST:” are the state names. For example, label ”ST:0” represents state ”0”. For the

FSM, we use the same state names as the TDES so we can see how the two compare.

Figure 8.6: FSM for supervisor SupOpen

In the FSM diagrams, we specify which outputs should be set to 1 at each state

by only listing the ones that are set to 1 at that state. For Figure 8.6, all outputs are

set to 0 at state 0, and only output OP is set to 1 at state 4. In the FSM diagrams,

we label translations as a Boolean algebra equation that represents all input combi-

nations that would cause the Boolean equation to evaluate to true. For example, if

both inputs EQ and EN are true at state 0, we switch to state 4, otherwise we stay

at state 0. We use the translation label ”DEF” as a shorthand to match any input

condition that doesnt match one of the other transitions leaving that state.

For Boolean equations, we are using ”!” to represent logical negation, ”+” to

represent logical OR, and ”·” to represent logical AND. In the diagrams, we actually

use ”.” instead of ”·” as it is easier to produce.

150 8. Lock System Example

Listing 8.1: The Generated FSM for Supervisor SupOpen

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSM Name="SupOpen">

3 <ResetState Name="0"> </ResetState>

4 <Signals>

5 <Signal Name="open" order="0" type="IO"/>

6 <Signal Name="equal" order="1" type="I"/>

7 <Signal Name="enter" order="2" type="I"/>

8 </Signals>

9 <States>

10 <State Name="0" outputvector=""/>

11 <State Name="4" outputvector="open"/>

12 </States>

13 <Transitions>

14 <StartState Name="0">

15 <Transition inputvector="equal.enter" endstate="4"/>

16 <Transition inputvector="DEF" endstate="0"/>

17 </State>

18 <StartState Name="4">

19 <Transition inputvector="!equal.open.enter" endstate="0"/>

20 <Transition inputvector="equal.open.enter" endstate="0"/>

21 <Transition inputvector="DEF" endstate="4"/>

22 </State>

23 </Transitions>

24 </FSM>

The FSM for SupOpen is then translated to the VERILOG module shown in

listing 8.2. For a description of the VERILOG code and the translation method, see

Chapter 7.

Listing 8.2: The Generated VERILOG Module for Supervisor SupOpen

1 /**********************************

2 z[0],i[0]:open

3 i[1]: equal

4 i[2]: enter

5 **********************************/

8. Lock System Example 151

6 module SupOpen(clock,resetn,i,z);

7 input clock,i,resetn;

8 output [0:0] z;

9 reg [0:0] z;

10 reg [0:0] Current;

11 reg [0:0] Next;

12 wire [2:0] i;

13 parameter IN_0=3’b110, IN_1=3’b101, IN_2=3’b111;

14 parameter ST_0=1’b0, ST_4=1’b1;

15 parameter OT_0=1’b0, OT_4=1’b1;

16 always @(Current or i)

17 begin

18 case (Current)

19 ST_0:

20 begin

21 z=OT_0;

22 if(i==IN_0)

23 begin

24 Next<=ST_4;

25 end

26 end

27 ST_4:

28 begin

29 z=OT_4;

30 if(i==IN_1)

31 begin

32 Next<=ST_0;

33 end

34 else

35 if(i==IN_2)

36 begin

37 Next<=ST_0;

38 end

39 end

40 default:

152 8. Lock System Example

41 begin

42 Next<=ST_0;

43 end

44 endcase

45 end

46 always @(posedge clock or negedge resetn)

47 begin

48 if (resetn==0)

49 Current<=ST_0;

50 else

51 Current<=Next;

52 end

53 endmodule

8.2.3 Supervisor SupChange

Supervisor SupChange, shown in Figure 8.7, allows the user to change the 4-bit

combination lock. If the user enters a 4-bit number that matches the saved combina-

tion and then presses the change button, the supervisor will set output New to 1, and

hold it there until either the change or enter button is pressed. SupChange then

generates a pulse for output Do Change which causes the current 4-bit input value

to be saved to the register shown in Figure 8.2.

In Figure 8.7, the user entering the correct combination is signified by the equal

and change events occurring in the same clock period, taking us from state 0 to state

4. At state 4, SupChange maintains output New at 1 until the enter or change

event occurs. At state 9, SupChange generates a pulse for output Do Change. Both

are performed as described in Section 8.2.1.

Figure 8.8 contains the FSM that corresponds to TDES SupChange and matches

the FSM in Listing 8.3. The corresponding VERILOG module for the FSM is shown

in Listing 8.4. Please see Chapter 7 for a description of the FSM listing and VER-

ILOG code, as well as for the translation algorithms.

8. Lock System Example 153

Figure 8.7: Supervisor SupChange

Listing 8.3: The Generated FSM for Supervisor SupChange

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSM Name="SupChange">

3 <ResetState Name="0"> </ResetState>

4 <Signals>

5 <Signal Name="new" order="0" type="IO"/>

6 <Signal Name="do_change" order="1" type="IO"/>

7 <Signal Name="equal" order="2" type="I"/>

8 <Signal Name="change" order="3" type="I"/>

9 <Signal Name="enter" order="4" type="I"/>

10 </Signals>

11 <States>

154 8. Lock System Example

Figure 8.8: FSM for supervisor SupChange

12 <State Name="0" outputvector=""/>

13 <State Name="4" outputvector="new"/>

14 <State Name="9" outputvector="do_change"/>

15 </States>

16 <Transitions>

17 <StartState Name="0">

18 <Transition inputvector="equal.change.enter" endstate="4"/>

19 <Transition inputvector="equal.change.!enter" endstate="4"/>

20 <Transition inputvector="DEF" endstate="0"/>

21 </State>

22 <StartState Name="4">

8. Lock System Example 155

23 <Transition inputvector="!equal.new.change.enter"

24 endstate="9"/>

25 <Transition inputvector="equal.new.change.enter"

26 endstate="9"/>

27 <Transition inputvector="!equal.new.!change.enter"

28 endstate="9"/>

29 <Transition inputvector="equal.new.!change.enter"

30 endstate="9"/>

31 <Transition inputvector="!equal.new.change.!enter"

32 endstate="9"/>

33 <Transition inputvector="equal.new.change.!enter"

34 endstate="9"/>

35 <Transition inputvector="DEF" endstate="4"/>

36 </State>

37 <StartState Name="9">

38 <Transition inputvector="!equal.!change.do_change.enter"

39 endstate="0"/>

40 <Transition inputvector="!equal.change.do_change.enter"

41 endstate="0"/>

42 <Transition inputvector="equal.change.do_change.enter"

43 endstate="0"/>

44 <Transition inputvector="equal.!change.do_change.enter"

45 endstate="0"/>

46 <Transition inputvector="!equal.!change.do_change.!enter"

47 endstate="0"/>

48 <Transition inputvector="!equal.change.do_change.!enter"

49 endstate="0"/>

50 <Transition inputvector="equal.change.do_change.!enter"

51 endstate="0"/>

52 <Transition inputvector="equal.!change.do_change.!enter"

53 endstate="0"/>

54 <Transition inputvector="DEF" endstate="9"/>

55 </State>

56 </Transitions>

57 </FSM>

156 8. Lock System Example

Listing 8.4: The Generated VERILOG Module for Supervisor SupChange

1 /**********************************

2 z[0],i[0]:new

3 z[1],i[1]:do_change

4 i[2]: equal

5 i[3]: change

6 i[4]: enter

7 **********************************/

8 module SupChange(clock,resetn,i,z);

9 input clock,i,resetn;

10 output [1:0] z;

11 reg [1:0] z;

12 reg [1:0] Current;

13 reg [1:0] Next;

14 wire [4:0] i;

15 parameter IN_0=5’b11100, IN_1=5’b01100, IN_2=5’b11001,

16 IN_3=5’b11101, IN_4=5’b10001, IN_5=5’b10101, IN_6=5’b01001,

17 IN_7=5’b01101, IN_8=5’b10010, IN_9=5’b11010, IN_10=5’b11110,

18 IN_11=5’b10110, IN_12=5’b00010, IN_13=5’b01010, IN_14=5’b01110,

19 IN_15=5’b00110;

20 parameter ST_0=2’b00, ST_4=2’b01, ST_9=2’b10;

21 parameter OT_0=2’b00, OT_4=2’b01, OT_9=2’b10;

22 always @(Current or i)

23 begin

24 case (Current)

25 ST_0:

26 begin

27 z=OT_0;

28 if(i==IN_0)

29 begin

30 Next<=ST_4;

31 end

32 else

33 if(i==IN_1)

34 begin

8. Lock System Example 157

35 Next<=ST_4;

36 end

37 end

38 ST_4:

39 begin

40 z=OT_4;

41 if(i==IN_2)

42 begin

43 Next<=ST_9;

44 end

45 else

46 if(i==IN_3)

47 begin

48 Next<=ST_9;

49 end

50 else

51 if(i==IN_4)

52 begin

53 Next<=ST_9;

54 end

55 else

56 if(i==IN_5)

57 begin

58 Next<=ST_9;

59 end

60 else

61 if(i==IN_6)

62 begin

63 Next<=ST_9;

64 end

65 else

66 if(i==IN_7)

67 begin

68 Next<=ST_9;

69 end

158 8. Lock System Example

70 end

71 ST_9:

72 begin

73 z=OT_9;

74 if(i==IN_8)

75 begin

76 Next<=ST_0;

77 end

78 else

79 if(i==IN_9)

80 begin

81 Next<=ST_0;

82 end

83 else

84 if(i==IN_10)

85 begin

86 Next<=ST_0;

87 end

88 else

89 if(i==IN_11)

90 begin

91 Next<=ST_0;

92 end

93 else

94 if(i==IN_12)

95 begin

96 Next<=ST_0;

97 end

98 else

99 if(i==IN_13)

100 begin

101 Next<=ST_0;

102 end

103 else

104 if(i==IN_14)

8. Lock System Example 159

105 begin

106 Next<=ST_0;

107 end

108 else

109 if(i==IN_15)

110 begin

111 Next<=ST_0;

112 end

113 end

114 default:

115 begin

116 Next<=ST_0;

117 end

118 endcase

119 end

120 always @(posedge clock or negedge resetn)

121 begin

122 if (resetn==0)

123 Current<=ST_0;

124 else

125 Current<=Next;

126 end

127 endmodule

8.2.4 Supervisor SupAlarm

Supervisor SupAlarm, shown in Figure 8.9, is the last of the three supervisors, as

well as the most complex. Its job is to detect when two wrong lock combinations

have been entered in a row. When this happens, the supervisor sets output alarm

to 1 and holds it there. The only way to turn the alarm off is to reset the FSM.

This is not apparent in the TDES as resetting is built into an FSM implemented with

VERILOG, so it is not modelled at the TDES level.

In Figure 8.9, the user entering the wrong combination is signified by events

160 8. Lock System Example

not equal and enter or change occurring at the same time (ie. see state sequence

0-2-3-4). However, this is complicated by the fact that whenever the correct combi-

nation and change or enter occur, supervisors SupOpen and SupChange require

an additional change or enter event to close their operation. As these enter/change

events are not related to the correctness of the lock combination, they should not

count toward triggering the alarm. This is captured by the state sequence 12-13-14-0.

When Supervisor SupAlarm has reached state 8, two wrong combinations in a row

have occurred and the system is in the alarm state. Output Alarm is set to 1, and

maintained at 1.

Figure 8.9: Supervisor SupAlarm.

Figure 8.10 contains the FSM that corresponds to TDES SupAlarm and matches

the FSM in Listing 8.5. The corresponding VERILOG module for the FSM is shown

in Listing 8.6. Please see Chapter 7 for a description of the FSM listing and VER-

ILOG code, as well as the translation algorithms.

8. Lock System Example 161

Figure 8.10: FSM for Supervisor SupAlarm

Listing 8.5: The Generated FSM for Supervisor SupAlarm

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSM Name="SupAlarm">

3 <ResetState Name="0"> </ResetState>

4 <Signals>

5 <Signal Name="alarm" order="0" type="IO"/>

6 <Signal Name="not_equal" order="1" type="I"/>

7 <Signal Name="enter" order="2" type="I"/>

8 <Signal Name="equal" order="3" type="I"/>

9 <Signal Name="change" order="4" type="I"/>

10 </Signals>

11 <States>

12 <State Name="0" outputvector=""/>

162 8. Lock System Example

13 <State Name="4" outputvector=""/>

14 <State Name="8" outputvector="alarm"/>

15 <State Name="13" outputvector=""/>

16 </States>

17 <Transitions>

18 <StartState Name="0">

19 <Transition inputvector="!not_equal.!enter.equal.change"

20 endstate="13"/>

21 <Transition inputvector="!not_equal.enter.equal.change"

22 endstate="13"/>

23 <Transition inputvector="not_equal.enter.!equal.change"

24 endstate="4"/>

25 <Transition inputvector="not_equal.!enter.!equal.change"

26 endstate="4"/>

27 <Transition inputvector="!not_equal.enter.equal.!change"

28 endstate="13"/>

29 <Transition inputvector="not_equal.enter.!equal.!change"

30 endstate="4"/>

31 <Transition inputvector="DEF" endstate="0"/>

32 </State>

33 <StartState Name="4">

34 <Transition inputvector="!not_equal.!enter.equal.change"

35 endstate="13"/>

36 <Transition inputvector="!not_equal.enter.equal.change"

37 endstate="13"/>

38 <Transition inputvector="not_equal.enter.!equal.change"

39 endstate="8"/>

40 <Transition inputvector="not_equal.!enter.!equal.change"

41 endstate="8"/>

42 <Transition inputvector="!not_equal.enter.equal.!change"

43 endstate="13"/>

44 <Transition inputvector="not_equal.enter.!equal.!change"

45 endstate="8"/>

46 <Transition inputvector="DEF" endstate="4"/>

47 </State>

8. Lock System Example 163

48 <StartState Name="8">

49 <Transition inputvector="DEF" endstate="8"/>

50 </State>

51 <StartState Name="13">

52 <Transition inputvector="!not_equal.!enter.!equal.change"

53 endstate="0"/>

54 <Transition inputvector="!not_equal.!enter.equal.change"

55 endstate="0"/>

56 <Transition inputvector="!not_equal.enter.equal.change"

57 endstate="0"/>

58 <Transition inputvector="not_equal.enter.equal.change"

59 endstate="0"/>

60 <Transition inputvector="not_equal.!enter.equal.change"

61 endstate="0"/>

62 <Transition inputvector="!not_equal.enter.!equal.change"

63 endstate="0"/>

64 <Transition inputvector="not_equal.enter.!equal.change"

65 endstate="0"/>

66 <Transition inputvector="not_equal.!enter.!equal.change"

67 endstate="0"/>

68 <Transition inputvector="!not_equal.enter.equal.!change"

69 endstate="0"/>

70 <Transition inputvector="not_equal.enter.equal.!change"

71 endstate="0"/>

72 <Transition inputvector="!not_equal.enter.!equal.!change"

73 endstate="0"/>

74 <Transition inputvector="not_equal.enter.!equal.!change"

75 endstate="0"/>

76 <Transition inputvector="DEF" endstate="13"/>

77 </State>

78 </Transitions>

79 </FSM>

Listing 8.6: The Generated VERILOG Module for Supervisor SupAlarm

1 /**********************************

164 8. Lock System Example

2 z[0],i[0]:alarm

3 i[1]: not_equal

4 i[2]: enter

5 i[3]: equal

6 i[4]: change

7 **********************************/

8 module SupAlarm(clock,resetn,i,z);

9 input clock,i,resetn;

10 output [0:0] z;

11 reg [0:0] z;

12 reg [1:0] Current;

13 reg [1:0] Next;

14 wire [4:0] i;

15 parameter IN_0=5’b11000, IN_1=5’b11100, IN_2=5’b10110,

16 IN_3=5’b10010, IN_4=5’b01100, IN_5=5’b00110, IN_6=5’b11000,

17 IN_7=5’b11100, IN_8=5’b10110, IN_9=5’b10010, IN_10=5’b01100,

18 IN_11=5’b00110, IN_12=5’b10000, IN_13=5’b11000, IN_14=5’b11100,

19 IN_15=5’b11110, IN_16=5’b11010, IN_17=5’b10100, IN_18=5’b10110,

20 IN_19=5’b10010, IN_20=5’b01100, IN_21=5’b01110, IN_22=5’b00100,

21 IN_23=5’b00110;

22 parameter ST_0=2’b00, ST_4=2’b01, ST_8=2’b10, ST_13=2’b11;

23 parameter OT_0=1’b0, OT_4=1’b0, OT_8=1’b1, OT_13=1’b0;

24 always @(Current or i)

25 begin

26 case (Current)

27 ST_0:

28 begin

29 z=OT_0;

30 if(i==IN_0)

31 begin

32 Next<=ST_13;

33 end

34 else

35 if(i==IN_1)

36 begin

8. Lock System Example 165

37 Next<=ST_13;

38 end

39 else

40 if(i==IN_2)

41 begin

42 Next<=ST_4;

43 end

44 else

45 if(i==IN_3)

46 begin

47 Next<=ST_4;

48 end

49 else

50 if(i==IN_4)

51 begin

52 Next<=ST_13;

53 end

54 else

55 if(i==IN_5)

56 begin

57 Next<=ST_4;

58 end

59 end

60 ST_4:

61 begin

62 z=OT_4;

63 if(i==IN_6)

64 begin

65 Next<=ST_13;

66 end

67 else

68 if(i==IN_7)

69 begin

70 Next<=ST_13;

71 end

166 8. Lock System Example

72 else

73 if(i==IN_8)

74 begin

75 Next<=ST_8;

76 end

77 else

78 if(i==IN_9)

79 begin

80 Next<=ST_8;

81 end

82 else

83 if(i==IN_10)

84 begin

85 Next<=ST_13;

86 end

87 else

88 if(i==IN_11)

89 begin

90 Next<=ST_8;

91 end

92 end

93 ST_8:

94 begin

95 z=OT_8;

96 end

97 ST_13:

98 begin

99 z=OT_13;

100 if(i==IN_12)

101 begin

102 Next<=ST_0;

103 end

104 else

105 if(i==IN_13)

106 begin

8. Lock System Example 167

107 Next<=ST_0;

108 end

109 else

110 if(i==IN_14)

111 begin

112 Next<=ST_0;

113 end

114 else

115 if(i==IN_15)

116 begin

117 Next<=ST_0;

118 end

119 else

120 if(i==IN_16)

121 begin

122 Next<=ST_0;

123 end

124 else

125 if(i==IN_17)

126 begin

127 Next<=ST_0;

128 end

129 else

130 if(i==IN_18)

131 begin

132 Next<=ST_0;

133 end

134 else

135 if(i==IN_19)

136 begin

137 Next<=ST_0;

138 end

139 else

140 if(i==IN_20)

141 begin

168 8. Lock System Example

142 Next<=ST_0;

143 end

144 else

145 if(i==IN_21)

146 begin

147 Next<=ST_0;

148 end

149 else

150 if(i==IN_22)

151 begin

152 Next<=ST_0;

153 end

154 else

155 if(i==IN_23)

156 begin

157 Next<=ST_0;

158 end

159 end

160 default:

161 begin

162 Next<=ST_0;

163 end

164 endcase

165 end

166 always @(posedge clock or negedge resetn)

167 begin

168 if (resetn==0)

169 Current<=ST_0;

170 else

171 Current<=Next;

172 end

173 endmodule

8. Lock System Example 169

8.2.5 The Main Controller FSM

As described in Chapter 7, a system is converted to FSM in a modular fashion. We

first create an FSM for each TDES supervisor in the system and then a main VER-

ILOG module that ties them together into the equivalence of a single monolithic

FSM. So far, we have specified the FSM for supervisors SupOpen, SupChange,

and SupAlarm. We will now show how we tie them together to create the FSM

specified in Figure 8.2. We first present the XML based version in Listing 8.7 and

then the VERILOG module in Listing 8.8. Please refer to Chapter 7 for a description

of the various elements as well as the translation algorithms.

Listing 8.7, which is the XML code for the central FSM, lists all the signals in the

system. While listing the signals, we specify the type of the signal. Type O means the

signal represents a prohibitable event, meaning it is used in the output. Type I means

the signal represents an uncontrollable event, meaning it is used only in input vectors.

We then list all the individual FSM that make up the system. For each FSM we

specify the name of the FSM (i.e. Name=”SupAlarm”). We then specify which

system signals each FSM uses, and for each signal, what type of signal it is. As an

example, the first signal for the FSM SupAlarm is: Name=”alarm” type=”IO”.

The fact that its type is ”IO”, means this signal is both an input and output for the

FSM.

Listing 8.7: The Generated Main FSM Module

1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2 <FSMMain Name="LockSystem">

3 <Signals>

4 <Signal Name ="alarm" type="O" order="0"/>

5 <Signal Name ="do_change" type="O" order="1"/>

6 <Signal Name ="new" type="O" order="2"/>

7 <Signal Name ="open" type="O" order="3"/>

8 <Signal Name= "change" type="I" order="4" />

9 <Signal Name= "enter" type="I" order="5" />

10 <Signal Name= "equal" type="I" order="6" />

170 8. Lock System Example

11 <Signal Name= "not_equal" type="I" order="7" />

12 </Signals>

13 <FSMS>

14 <FSM Name="SupAlarm">

15 <Signals>

16 <Signal Name="alarm" type="IO"/>

17 <Signal Name="not_equal" type="I"/>

18 <Signal Name="enter" type="I"/>

19 <Signal Name="equal" type="I"/>

20 <Signal Name="change" type="I"/>

21 </Signals>

22 </FSM>

23 <FSM Name="SupChange">

24 <Signals>

25 <Signal Name="new" type="IO"/>

26 <Signal Name="do_change" type="IO"/>

27 <Signal Name="equal" type="I"/>

28 <Signal Name="change" type="I"/>

29 <Signal Name="enter" type="I"/>

30 </Signals>

31 </FSM>

32 <FSM Name="SupOpen">

33 <Signals>

34 <Signal Name="open" type="IO"/>

35 <Signal Name="equal" type="I"/>

36 <Signal Name="enter" type="I"/>

37 </Signals>

38 </FSM>

39 </FSMS>

40 </FSMMain>

Listing 8.8: The Generated VERILOG Module for Main FSM

1

2 /**********************************

3 z[0]: alarm

8. Lock System Example 171

4 z[1]: do_change

5 z[2]: new

6 z[3]: open

7 i[0]: change

8 i[1]: enter

9 i[2]: equal

10 i[3]: not_equal

11 **********************************/

12 module LockSystem(clock,resetn,i,z);

13 input clock,i,resetn;

14 output [3:0] z;

15 wire [3:0] i;

16 //Submodules input/output Wires:

17 wire [4:0] i_SupAlarm;

18 wire [0:0] z_SupAlarm;

19 wire [4:0] i_SupChange;

20 wire [1:0] z_SupChange;

21 wire [2:0] i_SupOpen;

22 wire [0:0] z_SupOpen;

23

24 //Constructing submodules:

25 assign i_SupAlarm[0]= z[0];

26 assign i_SupAlarm[1]= i[3];

27 assign i_SupAlarm[2]= i[1];

28 assign i_SupAlarm[3]= i[2];

29 assign i_SupAlarm[4]= i[0];

30 SupAlarm m_SupAlarm(clock,resetn,i_SupAlarm,z_SupAlarm);

31 //--

32

33 assign i_SupChange[0]= z[2];

34 assign i_SupChange[1]= z[1];

35 assign i_SupChange[2]= i[2];

36 assign i_SupChange[3]= i[0];

37 assign i_SupChange[4]= i[1];

38 SupChange m_SupChange(clock,resetn,i_SupChange,z_SupChange);

172 8. Lock System Example

39 //--

40

41 assign i_SupOpen[0]= z[3];

42 assign i_SupOpen[1]= i[2];

43 assign i_SupOpen[2]= i[1];

44 SupOpen m_SupOpen(clock,resetn,i_SupOpen,z_SupOpen);

45 //--

46

47 //Converging output from submodules:

48 assign z[0]=z_SupAlarm[0];

49 assign z[1]=z_SupChange[1];

50 assign z[2]=z_SupChange[0];

51 assign z[3]=z_SupOpen[0];

52 endmodule

8.3 Performance Results

Table 8.1 shows the performance results of the Lock System verification. The table,

and the following performance tables too, have 7 columns. The first column lists the

BDD properties that we are checking. The next three columns are for the modu-

lar testing, while the last three columns are for the monolithic testing. The second

column gives the number of seconds needed to finish each BDD property check. Its

header is therefore Modular. The first Result column shows the modular test result,

while the second Result column shows the monolithic test result. Results are given

as PASS, FAIL or N/A. This means either the algorithm passed the test, failed the

test, or the test was not run for this category. The AVG Size column shows the aver-

age number of BDD states of the tested TDES components. The column Monolithic

gives the number of seconds needed to finish the monolithic test of the BDD property.

The last column, Max Size, shows the state size of the system in the monolithic test.

In each table cell where we say N/A, this means ”not applicable”. This is when

there does not exist a monolithic or modular test for the given property. For example,

the SD1 + SD2 do not have modular tests so we see N/A in the modular check

8. Lock System Example 173

column for these properties.

To test the performance of the algorithms on the following projects, the following

machine configuration was used:

• Intel Core 2 Duo CPU T6600 (Computer specification)

• 4GB of Dual channel DDR2 RAM

• Windows 7 Ultimate

Table 8.1: Lock System Checking Performance Results

Property Modular Result AVG Size Monolithic Result Max Size

ALF 1 PASS 15 34 PASS 801
SSPB 0 PASS 15 5 PASS 801

SD 1 + SD 2 N/A N/A N/A 1 PASS 801
SD 3.1 1 PASS 48 7 PASS 801
SD 3.2 1 PASS 48 1 PASS 801
SD 4 0 PASS 15 1 PASS 801

We now discuss the performance results in Table 8.1. The ALF test passes mod-

ularly in 1 second. ALF also passes the monolithic test in 34 seconds. The SSPB

property passes the modular test in less than a second (0), while it passes the mono-

lithic test in 5 seconds. Properties SD 1 and SD 2 are not applicable for the modular

test. However, both properties pass the monolithic test in 1 second. Property SD

3.1 passes the modular test in about 1 second. Property SD 3.2 passes the modular

test also in 1 second. Property SD 4 passes the modular test in less than a second (0).

In Table 8.1, we see that when testing SD controllability points 3.1, 3.2 and 4 on

the entire system the time spent was not very different from the modular tests. The

time spent was 7 seconds for 3.1, 1 second for 3.2, and 1 second for 4. The reason is

that the system is small. However, the state space was 801 and this consumes mem-

ory more than the modular tests for these properties. We note an order of magnitude

reduction in some cases between modular and monolithic methods for state size and

run time.

174 8. Lock System Example

8.4 Other Projects Performance Results

We now show performance results for other projects that we tested our verification

algorithms on.

8.4.1 Flexible Manufacturing System

We also applied an algorithm to the manufacturing example in Wang [22]. Table 8.2

shows the results of the various tests we performed on the project.

Table 8.2: Flexible Manufacturing System Checking Performance Results

Property Modular Result AVG Size Monolithic Result Max Size

ALF 1 PASS 49 9 PASS 82608
SSPB 1 PASS 46 143 PASS 82608

SD 1 + SD 2 N/A N/A N/A 32 PASS 82608
SD 3.1 1 FAIL 149 31 PASS 82608
SD 3.2 1 PASS 149 32 PASS 82608
SD 4 0 PASS 46 32 PASS 82608

We now discuss the performance results in Table 8.2. The ALF test passes mod-

ularly in 1 second. ALF also passes the monolithic test in 9 seconds. The SSPB

property passes the modular test in 1 second, while it passes the monolithic test in

143 second. Property SD 3.1 passes the modular test in about 1 second. Property

SD 3.2 passes the modular test also in 1 second. Property SD 4 passes the modular

test in less than a second (0). Finally the monolithic test for SD controllability 1 and

2 took around 32 seconds.

In Table 8.2, we see that when testing SD controllability points 3.1, 3.2 and 4 on

the entire system the time spent was very different from the modular tests. The time

spent was 31 seconds for 3.1, 32 seconds for 3.2, and 32 seconds for 4. The reason

is that the system’s synchronous product is bigger than the average TDES in the

system. Furthermore, the state space was 82608 and this consumes memory more

than the modular tests for these properties.

8. Lock System Example 175

8.4.2 Test Station of Manufacturing System

We also applied our algorithm to the test station (TSMS) modelled by Vleuten [19].

It is a model for a manufacturing system that was originally untimed DES and then

modified to TDES to implement SD supervisory control for it. When the system was

completed it passes only SSPB modularly and SD-Cont-iii.2 modularly. However it

does not pass the other modular properties.

In this project some tests failed to complete after sixteen hours, so we put the

word ”LONG” to express this, as we then stopped the test. As we can see, when

the modular test succeeded, we saw significant speed up.

Table 8.3: TSMS Checking Performance Results

Property Modular Result AVG Size Monolithic Result MAX Size

ALF 1 FAIL 88 1223 PASS 7.4× 107

SSPB 1 PASS 88 LONG LONG 7.4× 107

SD 1 + SD 2 N/A N/A N/A LONG LONG 7.4× 107

SD 3.1 1 FAIL 196 LONG LONG 7.4× 107

SD 3.2 9 PASS 196 LONG LONG 7.4× 107

SD 4 1 FAIL 88 LONG LONG 7.4× 107

We now discuss the performance results in Table 8.3. The ALF test fails modu-

larly in 1 second. However, it passes the monolithic test in 1223 seconds (20 min).

The SSPB property passes the modular test in 1 second, while it took long time for

the monolithic test (”LONG”), so we stopped the program. We see that SD 1 and SD

2 properties are not applicable for modular tests. However, both properties test took

long time for the monolithic test, so we stopped the program (”LONG”). Property

SD 3.1 fails the modular test in about 1 second. Property SD 3.2 passes the modular

test in 9 seconds. Property SD 4 fails the modular test in 1 second.

176 8. Lock System Example

Chapter 9

Conclusion

9.1 Conclusion

The core work in this thesis is setting up the tools to verify systems modularly. We

created algorithms of all properties that we were able to prove to be modular, namely

ALF, SSPB, SD controllability point iii.1, SD controllability point iii.2 and SD con-

trollability point iv. We implemented in software simple algorithms that verify these

properties modularly. We have also created algorithms to test that all supervisors in

the system are CS deterministic, and that all of them are non-self loop ALF.

We proved that several properties are modular. The modular verification that we

introduced in this thesis is important in terms of computation time. It is often faster

to test a project modularly than to do a monolithic verification. It is also important

in terms of memory, as monolithic systems normally have very large state space. It

is also useful as now designers can verify systems by eye only, since they can see that

once this single TDES does not pass the property, then the modular check for this

property will fail. Unlike the monolithic system verification, the only way to know is

to run the test, and this will cost a lot of time and memory.

Another major aspect of this thesis was creating algorithms to generate finite

state machines (FSM) descriptions of supervisors in the verified system. We also

have created algorithms to translate these FSM into VERILOG modules as hardware

177

178 9. Conclusion

implementation of sampled-data controllers. We also tested these VERILOG mdoules

using the ALTERA [11] simulation system.

We also designed a lock system consisting of three FSM as timed DES (TDES)

supervisors. We then verified the sampled-data properties, and used our new transla-

tion software to translate the TDES supervisors first to FSM and then to VERILOG

modules.

Finally, we gathered test models for our new example as well as two others, showing

that when the modular approach succeeds, it can offer significant savings.

9. Conclusion 179

9.2 Future Work

As we focused on the VERLOG translation for these FSM as SD controllers, we rec-

ommend trying other implementation targets such as VHDL [10], or Programmable

Logic Controllers (PLC) [23]. This will make our results more widely applicable.

Just as we targeted VERILOG, it looks useful to implement FSM as a C++ [4]

program to give more flexibility. This would allow SD controllers to be implemented

in software on regular computers.

We recommend future work in generating code for GUI (graphical user interface).

One could program a GUI as finite state machines, and all the GUI component oper-

ations as events in the FSM. This is a good approach as most of the GUI programs

are either procedural or event driven OOP (object-oriented programming) programs,

and (GUI)s are now very common.

In this manner we can design our supervisors as specifications that changes the

state of the screens from one state to another, then model these supervisors and verify

them using the algorithms developed so far and generating the code that controls the

GUI enablements and disablements accordingly.

We recommend expanding the simple modular approach we developed to a full

incremental approach, such as Malik et al in [5]. Namely, choose a modular property

to be verified and if individual components do not satisfy the property then we com-

bine the individual components into groups and perform verification process on these

groups. This can be done in such a way so that the modular test will fail if and only

if the monolithic test would fail.

180 9. Conclusion

Bibliography

[1] Sinan Si Alhir. ”Learning UML”. O’Reilly Media, Inc.”, 2003.

[2] S. Balemi. Input/output discrete event processes and communication delays.

Discrete Event Dynamic Systems, 4(1):41–85, 1994.

[3] Mahvash Baloch. ”A Compositional Approach for Verifying Sampled-Data Su-

pervisory Control.”. M.Sc. Thesis, Dept. of Computing and Software, McMaster

University, March 2012.

[4] Stanley B. Lippman Barbara E. Moo, Jose Lajoie. C++ Primer, Fifth Edition.

Pearson Education, 2012.

[5] Bertil A. Brandin, Robi Malik, and Petra Malik. ”Incremental Verification and

Synthesis of Discrete-Event Systems Guided by Counter-Examples”. IEEE J

CST, volume 12, may 2004, doi = 10.1109/TCST.2004.824795.

[6] W. Bolton. ”Programmable Logic Controllers, 4th edn.”. Elsevier (2006).

[7] B. A. Brandin. Real-time supervisory control of automated manufacturing sys-

tems,. PhD thesis, University of Toronto. Graduate Department of Electrical and

Computer Engineering, 1992.

[8] Bertil Brandin and W. Murray Wonham. Supervisory control of timed discrete-

event systems. IEEE Trans. on Automatic Control, 39(2):329–342, Feb 1994.

[9] Stephen Brown and Zvonko Vranesic. ”Fundamentals of Digital Logic with

Verlilog Design”. McGraw-Hill Higher Education, Second Education, May 14

2007.

181

182 BIBLIOGRAPHY

[10] Vranesic Z. Brown, S. ”Fundamentals of Digital Logic with VHDL Design, 3rd

edn.”. Mc-Graw Hill Higher Education (2008).

[11] Altera Corporation. ”Quartus ii Software”. http://www.altera.com/.

[12] DESpot. www.cas.mcmaster.ca/~ leduc/DESpot.html. The official website for

the DESpot project, 2013.

[13] Julien Provost, Jean-Marc Roussel, and Jean-Marc Faure. ”Testing Pro-

grammable Logic Controllers from Finite State Machines specification”. In-

ternational Workshop on Dependable Control of Discrete Systems, Saarbrcken:

Germany, DCDS(3rd):Pages 1 – 6, 2011.

[14] R.J. Leduc and W.M. Wonham. ”PLC implementation of a des supervisor for

a manufacturing testbed”. In Proc. of Thirty-third Annual Allerton Conference

on Communication, Control, and Computing, pp. 519-528, Oct 4-6, 1995.

[15] Ryan Leduc. PLC implementation of a DES supervisor for a manufacturing

testbed: An implementation perspective. Master’s thesis, Dept. of Elec and

Comp Eng, University of Toronto, Toronto, Ont, 1996.

[16] P. Ramadge and W. Murray Wonham. Supervisory control of a class of discrete-

event processes. SIAM J. Control Optim, 25(1):206–230, 1987.

[17] Erik T. Ray. ”Learning XML”. O’Reilly Media, Inc.”, Sep 22, 2003.

[18] Ryan J. Leduc, Yu Wang, and Fahim Ahmed. ”Sampled-data supervisory con-

trol”. Discrete Event Dynamic Systems, November, 2013, DOI: 10.1007/s10626-

013-0172-4.

[19] J.W.C.M. van der Vleuten. ”Application of Sampled-Data Supervisory Con-

trol to Physical Systems”. Eindhoven University of Technology, Department of

Mechanical Engineering (2013).

[20] Andrs Varga and Rudolf Hornig. ”An Overview of the OMNet++ Simulation

Environment”. Budapest University of Technology and Economics, Department

of Telecommunications (1993).

BIBLIOGRAPHY 183

[21] Yu Wang. ”Sampled-Data supervisory Control”. M.A.Sc. Thesis, Dept. of Com-

puting and Software, McMaster University, January 2009.

[22] Yu Wang and R.J. Leduc. ”Sampled-data controller implementation”. Interna-

tional Journal of Control, vol. 85, no. 9, pp. 1343 - 1360, Sept, 2012.

[23] John W. Webb and Ronald A. Reis. ”Programmable Logic Controllers: Prin-

ciples and Applications”. Prentice Hall PTR, Upper Saddle River, NJ, USA

1998.

[24] K. C. Wong and W. M. Wonham. Hierarchical control of timed discrete-event

systems. Discrete Event Dynamic Systems, 6(3):Pages 275 – 306, July 1996.

[25] W. M. Wonham. Supervisory Control of Discrete-Event Systems. De-

partment of Electrical and Computer Engineering, University of Toronto,

July 2008. Monograph and TCT software can be downloaded at

http://www.control.toronto.edu/DES/.

[26] W. M. Wonham and P. Ramadge. On the supremal controllable sublanguage of

a given language. SIAM J. Control Optim, 25(3):637–659, May 1987.

	Dedication
	Abstract
	Acknowledgements
	Notation and Abbreviations
	Contents
	List of Figures
	1 Introduction
	1.1 Previous Work
	1.2 Objectives

	2 Introduction to Discrete-Event Systems
	2.1 Linguistic and Algebraic Preliminaries
	2.1.1 Alphabets and Strings
	2.1.2 Languages
	2.1.3 -equivalence Relation

	2.2 Timed Discrete Event Systems
	2.2.1 TDES
	2.2.2 Synchronization and Product TDES
	2.2.3 TDES Properties

	3 Sampled-Data Controllers
	3.1 Introduction to SD Controllers
	3.2 SD Controller's Input
	3.3 SD Controllable Languages

	4 Moore Finite State Machines (FSM) and VERILOG
	4.1 Moore FSM
	4.2 Formal Model
	4.3 Translation Method Introduction
	4.4 Event Mapping Functions
	4.5 Centralized Translation Method
	4.6 Output Equivalence
	4.7 Modular Translation Method
	4.8 FSM as VERILOG Module
	4.9 Field-Programmable Gate Array

	5 Modular Verification of Sampled-Data Properties
	5.1 Introduction to Previous Work
	5.2 ALF Modularity
	5.3 SPB and SSPB Modularity
	5.3.1 SPB implies SSPB
	5.3.2 SPB Modularity

	5.4 SD Controllability Modularity
	5.4.1 SD-Cont-iii.1 Modularity
	5.4.2 SD-Cont-iii.2 Modularity
	5.4.3 SD-Cont-iv Modularity

	6 Algorithmic Improvements
	6.1 Introduction
	6.2 Predicate Verification Preliminaries
	6.2.1 State Predicates
	6.2.2 Predicate Transformers

	6.3 Previous Approach
	6.4 Modular Verification Algorithm
	6.5 Modular Version of VerifySub
	6.6 System ALF Algorithm
	6.7 Non-selfloop ALF Algorithm
	6.8 SD Controllability, SSPB and CS Deterministic Algorithms
	6.8.1 CheckSDCont_SSPB_CSDet Algorithm
	6.8.2 AnalyseSampledState Algorithm

	7 VERILOG Translation
	7.1 Introduction
	7.2 TDES to FSM
	7.3 FSM to VERILOG
	7.4 Centeral FSM for SD Controllers
	7.5 Central Module for SD Controllers
	7.6 Translation Algorithms
	7.6.1 writeFSM() Algorithm
	7.6.2 writeHFSM() Algorithm
	7.6.3 mainVERILOG() Algorithm
	7.6.4 writeVERILOG() Algorithm
	7.6.5 mainFSM() Algorithm

	7.7 Removing Redundant Transitions

	8 Lock System Example
	8.1 Problem Description
	8.1.1 System Components

	8.2 Components Design
	8.2.1 Signal Outputs and Transitions
	8.2.2 Supervisor SupOpen
	8.2.3 Supervisor SupChange
	8.2.4 Supervisor SupAlarm
	8.2.5 The Main Controller FSM

	8.3 Performance Results
	8.4 Other Projects Performance Results
	8.4.1 Flexible Manufacturing System
	8.4.2 Test Station of Manufacturing System

	9 Conclusion
	9.1 Conclusion
	9.2 Future Work

	Bibliography

