
RPEN

A NEW 3D POINTING DEVICE

RPEN

A NEW 3D POINTING DEVICE

by

MOHAMMAD BADRUL ALAM, B.Sc.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements
for the degree

Master of Science in Computer Science

McMaster University© Copyright by Mohammad Badrul Alam, October 2009

Master of Science (2009) McMaster University
(Computer Science) Hamilton, Ontario

Title: Rpen: A New 3D Pointing Device
Author: Mohammad Badrul Alam, B.Sc. (North South University)
Supervisors: Dr. Ryan Leduc

Dr. Skip Poehlman
Number of Pages: x, 171

ii

Rpen: A New 3D Pointing Device

Mohammad Badrul Alam
Master of Science in Computer Science
McMaster University, Hamilton, 2009

Abstract

Most often the development of human-computer interfaces has been driven by the
technology available at the time, and not by human factor issues. The popular
2D mouse is such a device. Through this effort we have developed an input point-
ing device which builds on tools and skills that humans have acquired through
evolution and experience.

Major trends of graphical input apparatus have gone from indirect computer
input (mouse or trackball) to direct input (tablet and touch screen). The current
and future trends are more towards 3D interaction and ubiquitous input concepts.
Our current effort with the rpen falls somewhere in between. While it is desirable
to take advantage of a mouse’s device acquisition technique, we need the rpen to
be a direct and more natural interactive input device. At the same time, the rpen
is a 3D spatial input device, seeking to take advantage of the human knowledge
and skills, naturally.

The rpen is implemented on a Linux platform with the help of a kernel level
device driver. The device uses an alternating current, electromagnetic motion
tracker to provide six degrees-of-freedom absolute data. It also uses filtering and
smoothing techniques to reduce the effects of electromagnetic distortions in the
sensed data.

With the rpen, a user can define a touch screen anywhere. The touch screen
can be of any size and of any orientation, horizontal, vertical or tilted. A drafting
board, drawing board or sketch board can be a touch sensitive surface. The basic
concept of the rpen is implemented in software and is not dependent on the
physical sensor used. So, multiple input modes can be implemented through the
software interface and the rpen can switch between these modes seamlessly.

This thesis presents a new 3D pointing device, the rpen, capable of doing
both 2D and 3D interaction. As a byproduct of the current study it has been
determined that the electromagnetic tracker is not suited to function as a motion
tracker for any rpen-like generic pointing device.

iii

Acknowledgments

No intellectual effort can be accomplished in isolation. The current study is only
possible because of the help, time and guidance extended towards me by many
generous and intelligent individuals. I want to acknowledge the contributions
made by these individuals and extend my gratitude to them.

First, I would like to start by thanking my academic supervisor, Dr. Ryan
Leduc, who is the originator of the rpen concept, for giving me the opportunity
to work on this concept. He not only generated the ideas but also guided me to
make it a reality. He encouraged me to develop new thoughts and new ways to
look at things. He also helped in solving the minute details of the project. His
ability to think out of the ordinary and the spirit to try out new ideas will always
inspire me in all my future endeavors.

I feel very fortunate to have not one but two mentors. My co-supervisor, Dr.
Skip Poehlman, is not only an excellent advisor but also a constant motivator.
His ways of appreciating any effort, kept me going during the most trying times.
His guidance and advice helped me to limit the scope of the study and focus on
achieving the ultimate goal, which for me was to finish the thesis. His realistic
and measured approach to research gave me a perfect balance to my research
and learning. I am also grateful to my Master’s defense committee members,
Dr. Wolfram Kahl and Dr. Kamran Sartipi, for their interest and patience in
reviewing my thesis.

During the course of the current effort, I have come across many difficult
problems. Receiving unstable data from the hardware was one of them. Being a
student of Computer Science, my knowledge was very limited in signal processing
and noise filtering. I an extremely grateful to Mohammad Tauhiduzzaman for
helping me handle these issues, with his time, efforts and knowledge, even though,
being very busy himself. I would also like to thank my colleagues and friends
in the Department of Computing and Software, who have helped me with their
advice and contribution.

Lastly, I wish to thank my family (especially, my wife and little daughter)
for their patience, love and unconditional support.

iv

Table of Contents

1 Introduction . 1

1.1 Motivation . 1

1.2 Research Goals . 3

1.3 Scope and Limitations . 4

1.4 Thesis Organization . 5

2 Background and Literature Review 7

2.1 Motion Tracking Technology . 7

2.1.1 Measuring Tracker Performance 7

2.1.2 Types of Motion Trackers 8

2.1.2.1 Mechanical . 8

2.1.2.2 Inertial . 9

2.1.2.3 Acoustic . 10

2.1.2.4 Optical . 10

2.1.2.5 Electromagnetic 12

2.1.2.6 Radio Frequency (RF) 13

2.1.2.7 Hybrid . 13

2.1.3 Comparison and Summary 13

2.2 Input Device . 14

2.2.1 Input Device Attributes 14

2.2.2 Types of Input Device . 17

2.2.2.1 Traditional Pointing Devices 17

2.2.2.2 New Trends of Input Devices 19

2.2.2.3 Summary . 20

2.3 Design Issues . 21

2.3.1 Design Issues for Spatial Device 22

2.4 Related Works . 24

3 Methodology . 31

3.1 Research Methodology . 31

3.2 Linux . 32

v

3.2.1 Linux Device Drivers . 34

3.2.1.1 Interrupts . 35

3.2.1.2 Linux Device Model 37

3.2.1.3 User Space vs Kernel Space Device Driver 39

3.2.1.4 USB Device Drivers 39

3.2.1.5 Input Device Drivers 42

3.3 Wintracker . 45

3.3.1 Specifications . 46

3.3.2 Interface . 48

3.4 Filtering and Calibration Techniques 49

3.5 Implementation Design of Rpen 52

3.5.1 High Level Design . 53

3.5.2 Rframe . 55

3.5.3 Low Level Design . 58

3.5.3.1 Rpen Device Driver 58

3.5.3.2 Rframe Definition Application 65

3.5.3.3 Rpen Daemons 69

3.6 Usability Testing . 73

3.6.1 Usability Measuring Techniques 74

3.6.2 Usability Testing Methodology 76

4 Results . 78

4.1 Introduction . 78

4.2 Filtering and Smoothing . 78

4.2.1 Test Setup . 78

4.2.2 Results . 80

4.2.2.1 Power spectral density 80

4.2.2.2 Lowpass Filter 81

4.2.2.3 Averaging Filter 83

4.2.3 Summary . 87

4.3 Computation Time and Roundoff Errors 87

4.3.1 Test Setup . 87

4.3.2 Computation Time and Roundoff Error Results 88

4.3.2.1 Computation Time 88

vi

4.3.2.2 Roundoff Errors 89

4.4 Observations on Rpen Use . 92

4.5 Usability Test . 94

4.5.1 Test Setup . 94

4.5.2 Results . 96

5 Conclusions . 100

5.1 Conclusions and Analysis . 100

5.2 Discussions . 102

5.2.1 Contributions . 102

5.2.2 Implications and Applications of Rpen 103

5.3 Future Research and Extensions 104

A . 108

A.1 Usability Questionnaire . 108

A.2 User Instructions to Perform the Usability Test of ‘Rpen’ 109

A.2.1 General Instructions . 109

A.2.2 Task Specific Instructions 113

B . 118

B.1 Rpen Device Driver Source Code 118

B.2 Initialization Daemon Source Code 156

B.3 Feedback Daemon Source Code 159

B.4 Rframe Definition Application Source Code 163

B.5 XML Data Format to Store Rframe Data 164

References . 165

vii

List of Figures

2.1 The inside-out and outside-in configuration. 11

2.2 PlayStation3 3D motion controller. 24

2.3 Apple’s 3D remote. 26

2.4 Wii remote and sensor bar. 27

2.5 Project Natal’s sensor device. 27

2.6 Sixense’s 3D wireless controller. 28

3.1 Relationship between device driver, kernel and other user space
applications. 33

3.2 Interrupt handling process. 36

3.3 Top level sysfs directories. 37

3.4 USB device structure. 41

3.5 Input subsystem. 43

3.6 WintrackerII and range extender. 45

3.7 Wintracker sensor and transmitter. 47

3.8 Wintracker data format. 48

3.9 Rectilinear grid. 50

3.10 High level rpen design. 54

3.11 An example of a rframe on XY-plane. 56

3.12 An example of generic rframe. 57

3.13 Calculating a point on generic rframe. 57

3.14 Rpen device driver structure. 59

3.15 Coordinate system for display. 62

3.16 Dataflow diagram of the rpen driver. 64

3.17 Rframe definition application UI - page 1. 66

3.18 Rframe definition application structure. 66

3.19 Rframe definition application UI - page 2. 67

3.20 Adjustment process of a new rframe. 68

3.21 Rframe definition application UI - page 3. 70

3.22 Rframe definition application UI - page 4. 70

3.23 Initialization daemon structure. 71

3.24 Rframe surface layers. 72

viii

3.25 Feedback daemon structure. 72

4.1 Expected raw sensor data pattern in ideal scenario. 80

4.2 Power spectral density of raw sensor data. 81

4.3 2Hz lowpass filter. 82

4.4 3Hz lowpass filter. 83

4.5 4Hz lowpass filter. 84

4.6 The effects of averaging. 85

4.7 The effects of filtering and averaging on raw data. 86

4.8 Roundoff effect on filter data. 90

4.9 Roundoff effect on cursor position data. 91

4.10 Usability test environment. 94

4.11 Usability test setup. 95

A.1 3D representation of the sensor, held in hand with desired orien-
tation. 111

A.2 Rframe definition screen. 115

A.3 Rframe activation and updating screen. 115

A.4 Switching to auto adjust mode. 116

ix

List of Tables

2.1 Comparison of tracking technologies. 14

3.1 Sysfs functions used. 38

3.2 Input device structure . 44

3.3 Wintracker command list. 49

4.1 Constant values for lowpass filter. 82

x

CHAPTER 1

Introduction

1.1 Motivation

The writing pen is a natural interaction tool for the human being. From the time
humans learned to write, the pen has been used to accomplish that need. The
pen is also naturally suited for pointing at something, as natural as pointing a
finger. We seek naturalness in Human Computer Interaction (HCI) devices for
two reasons. One, to reduce the gap between the user’s intentions and the actions
necessary to carry out those intentions, while interacting with the computer.
This situation is well described as the “Gulf of Execution” in [HHN85]. The
other reason is to increase the user’s performance (speed of input) by providing
naturalness. The main idea in such interaction techniques or devices, is to build
on tools and skills, the humans have acquired through evolution and experience.
As pointed out in [Shn83], direct manipulation interfaces are successful, especially,
with new users, because they show resemblance to the existing human skills rather
than trained knowledge.

Thus, working with pen-like devices as input apparatus for the computer
should be a logical conclusion in the dominant HCI research field. This results
in a mature and widely used natural interaction device. Actually, this is not the
case. Nowadays, the stylus is the only pen shaped interaction device. Also in
most cases, this is not used as the active pointing device but rather as a subsidiary
to touch sensitive pointing devices, like the touchpad, touch screen, etc. Some of
the 3D interaction devices come with a stylus option, but their primary goal is
to track the motion of the device, not aid in HCI design principles.

In the two dimensional world of graphical user interface (GUI), the light
pen, a pen based model, was the first interaction device. When it was developed
the main focus of the HCI research studies were technology not the interaction
techniques. So, afterwards, when the mouse came out, the light pen lost its
popularity and the mouse has quickly become the de facto standard 2D input
device [PV89]. Even though, the light pen was intuitive and provided the user
with a familiar experience. However, when it comes to the interaction with a
2D interface, it falls short, not in terms of technology rather in terms of human
factor issues related to fatigue, ergonomics, etc. A major concern with the light
pen interface was that it had been using a virtically mounted touch sensitive

1

screen, providing little support for the user’s hand. In contrast, the mouse used
the horizontal desktop to allow the user to rest his/her hand on it, while in
operation.

The huge popularity of the 2D mouse and its acceptance has led the re-
searcher to stay with a similar kind of apparatus and even try for a 3D mouse,
which are sometimes refereed to as a flying mouse or wand. As described in
[Zha98], these devices have their own limitations. The standardization of the
mouse has meant that often the researchers have tried to define the interaction
design principles, for similar devices as well as three dimensional input devices,
on the basis of its characteristics. In fact, many of the attributes of an input
device are expressed in relation to the mouse. Given the status of the mouse in a
2D world, not much has been investigated by researchers that could be counted
as a competitor, but rather worked on providing an ergonomic design to it. Given
the current state of advancements in HCI, especially in the areas of human factor
issues, pen-like devices have yet to receive a serious consideration as a viable
alternative to the mouse. Not only that, there has not been a constructive study
to identify the limitations of such a device.

Recent studies in HCI, more specifically 3D interaction, have emphasized
a different kind of approach to computer interaction. This approach is more
direct, as if manipulating the real object. The researchers argue that the user
needs to be able to perceive the interaction, naturally, which not only increase
one’s satisfaction of interaction but also will increase the “bandwidth” of input
from the user end. This interaction style is at odds with the mouse since it uses
indirect interaction and is more in line with pen, which uses direct interaction.
This means employing the current HCI design standards, and considering the
human factor issues associated with such input device, it is possible to come up
with a more intuitive and ergonomic pen input device which can position itself as
a replacement for today’s standard mouse and make a feasible 3D input device.

There is another piece to this puzzle. Touch screens have been the most
intuitive interaction device in the 2D world. There also have been quite a few
new inventions which forward the idea of touch based input devices, like Jeff Han’s
Multi-touch and Microsoft Surface from Microsoft. Using the human finger as a
touch tool has raised quite a few ergonomic concerns. Due to this fact as well as
the finger not being a precise pointing tool, various forms of the stylus are used
with touch sensitive pointing apparatus. But in all these touch sensitive systems
the stylus is basically a passive pointer, the screen being the main pointing device.
Although being very intuitive, touch screens are not as accessible as a mouse. The
mouse is a pure pointing device, independent of the screen, whereas, touch screens
are both a pointing device and a display system. If a stylus, rather than being
a passive device could become the active device and work similarly as it does
with a touch sensitive device, then, there is a potential to obtain the best of both

2

worlds.

There is a considerable amount of challenges to make the pen input device
a successful interaction device. A pen based active device will basically work as
a 3D spatial device. Thus, the difficulties that a multi-dimensional input device
would face are more or less applicable to such an input device. It has to meet
ergonomic issues of grip, weight and balance. It has to meet usability issues like
fatigue. There has to be ample feedback. The device has to have buttons to
improve the quality of system control, which the current stylus devices lack. If
these challenges are met successfully there is potential to produce an intuitive
input device which is able to work in both 2D and 3D environments.

1.2 Research Goals

Most often the development of human-computer interfaces has been driven by
the technology and not by human factor issues. Researchers and developers have
been making what is technologically possible and then check what needs to be
done to accommodate the human factor issues [JLM93]. The mouse is a prime
example of this kind of development. [JLM93] argues it should be the opposite.
Our current effort to develop a new pen like device, which we call ‘rpen’,1 follows
this theme. We thought of the things that are natural and intuitive to a human
and could be utilized to produce a human-computer input device. Gesture and
handwriting is natural to a human. Working with pen in a 3D environment is also
natural to the human. A pen not only provides the affordance for handwriting
but also naturally serves as a pointing tool. So, now that we knew that the pen
can be a method for pointing, we want to prove that it can be a feasible pointing
device for the computer as well.

The start of human-computer interaction on graphical user interface (GUI)
was with the Light Pen on a Sketchpad. This device developed by Ivan E. Suther-
land of MIT, was simple to use. The device quickly became very popular [PV89].
But, after the introduction of the mouse, the light pen lost its edge and eventually
lost almost all of the market share. There are two important points to it. Why a
pen like interface was the first mode of human-computer interaction in the graph-
ical era and the other is why it has failed. The Light Pen resembled the real life,
real object manipulation experience. Its direct and intuitive nature of interaction
technique was what motivated the developer as well as the general public. But,
the lack of understanding of human factor issues has failed the device. The field
of HCI, especially the human factors issues related to human-computer interac-
tion device, is more mature now than it was during the time of light pen. Thus,

1The “r” stands for “radio” as we originally envisioned the rpen using radio triangulation
to determine its position in 3D space.

3

it is important to investigate the usability issues related to a pen like device, in
light of today’s knowledge of HCI.

Studies have shown users prefer direct interaction rather than indirect in-
teraction, for which touch screen like devices always have been popular. Also,
usability studies have shown relative position movements are an acquired skill,
whereas absolute position is what we are more accustomed to in real life. Thus,
we want to develop an absolute positioning device which can work in both direct
and indirect interaction mode, i.e., like a mouse as well as a touch screen.

Presently, there is a spectrum of pointing devices in use. The mouse is the
most prominent of them all. Others include trackball, isometric (force-based) joy-
stick, isotonic (displacement-based) joystick, indirect tablet (using stylus only),
touchpad, and touch screen. All of these pointing devices have different function-
alities and have distinct fields of applicability. Our goal is to develop a pointing
device which is able to provide versatile functionalities. It can work like a mouse
in a confined space, provides the intuitiveness of touch screen and can also work
as an indirect tablet. With orientation information, the proposed device could
also imitate the functionality of a joystick.

The rpen works as a 2D input device mimicking the mouse. But, actually it
is a 3D spatial device. As such, it is able to work both in two dimensions and three
dimensions. In this sense the rpen is a hybrid interface [HPG94]. Research study
on such interfaces is rare. It has been observed that mapping a more than 2 DOF
(degree of freedom) gaming application to a 2 DOF mouse creates dissatisfaction
among users and, as such, they usually prefer a keyboard to a mouse in such
cases [SWK04]. It would be interesting to observe the opposite, using a higher
DOF interactive device to do interaction, usually efficiently done by the 2 DOF
mouse.

Designing a 3D interaction device is difficult. There are various design issues
that needs to be successfully addressed to develop such a device. Even though,
a considerable amount of work has already been done on 3D interaction devices,
so far, these efforts have yet to produce a 3D device which has a wide range of
applicability. Most of the 3D devices are application orientated. Through the
current effort, we hope to produce a spatial pen based input device which could
have wide range of applicability both in 3D and 2D.

1.3 Scope and Limitations

The primary goal of the current study is to provide proof of the rpen concept.
We are to produce a working prototype of the rpen. To achieve this goal we
require both hardware, to track the absolute position, and software to interface
the hardware with a host system. The software interface will not only carry the

4

hardware data to the host system but also will interpret it through the concept
and design of rpen. So, the software contains the basic architecture of the rpen
and the hardware is there only to provide accurate and reasonably precise 3D
absolute position information.

As the hardware could be any 3D absolute position tracking system, com-
mercially available or a new product developed for rpen, in this study we have
only focused on the software, making the choice to go for commercially available
hardware. This choice inherently comes with the limitation that the hardware
design, related to various human factor issues, can not be resolved, if needed. It
also means that we have to rely on the hardware vendor on reliable delivery of
accurate and precise 3D absolute position data. Small tuning could be done on
the hardware data but an extensive exploration on hardware device data, having
to do with its accuracy and delivery, is bound to put enormous burden on the
time constraint and available human resources.

Hardware experts, specifically with expertise on motion tracking technolo-
gies, are not part of the research group. Even though, the rpen is independent
of the hardware device in the sense that the main concept is implemented in
software, nevertheless, hardware is an essential part of the total device. Rpen’s
success in many parts dependent on the accuracy, precision and fast data com-
munication abilities of the hardware. An expert in this field not only could help
in choosing the best suited for the rpen device, but also could have helped in case
of unforeseen problems arising due to the hardware.

Issues related to designing the rpen as a 3D spatial device is part of the
thesis. In this sense, identifying the hardware design principles is part of the
thesis. Ergonomics and other human factor issues influencing rpen is raised here
as well. But, due to the time constraint many of these issues could not be explored
fully. Also, some issues arising due to the design principle of rpen, could only be
explored, identified and addressed, partially, by the current study. Money was
also an important constraint, which forced us to make a cost conscious hardware
choice, lacking accuracy, precision and speed.

1.4 Thesis Organization

This thesis is organized in five chapters. At the end of the fifth chapter there is
an appendix and the document ends with references.

• Chapter 1: This is the introductory chapter of the thesis containing the
motivation to pursue the current study. This also provides the goal of the
research and defines the scope and limitations of the study.

• Chapter 2: This chapter provides the background of the research work. It

5

contains a survey of motion tracking technologies along with commentary
on their strengths and weaknesses. The chapter also contains information
about the input device; their attributes and types of input device. It de-
scribes design issues related to 3D and spatial input devices. Lastly, the
chapter provides a summary and critique of related research and products.

• Chapter 3: This chapter presents the design basis of rpen. The chapter
starts off with the methodology used for the current research. Then it gives
a background on Linux device drivers, more specifically, USB device drivers
and input device drivers and how the rpen is implemented as a device driver
in Linux. It also provides a brief description on rpen hardware. Before going
on to detailing the implementation details of the rpen, the chapter provides
a summary on the filtering and calibration techniques, usually used by
the electromagnetic devices and what the rpen has implemented and why.
Chapter 3 ends with details on the approach taken for rpen in regards to
usability testing.

• Chapter 4: Chapter 4 presents the experimental results of current study.
The chapter also summarizes the user feedback from the usability test.

• Chapter 5: This chapter presents the concluding remarks. A brief analysis
of the results is also presented in this chapter. Contributions to knowledge
from the current study is highlighted towards the end of the chapter. At
the end, a discussion of future works is given.

• Appendix: Appendix A contains the questionnaire used in the usability
test as well as the user instruction manual provided to the participant users
as part of the test. Appendix B contains the source code for the rpen device
driver, rpen related applications and daemon processes.

6

CHAPTER 2

Background and Literature Review

2.1 Motion Tracking Technology

In this section we examine different tracking technologies, which could be used
with the new pointing device, the rpen. First, we establish a set of criteria
for evaluating the tracking technologies. Then, we present the most widely used
motion tracking technologies. This survey by no means is exhaustive or complete.

2.1.1 Measuring Tracker Performance

To choose a motion tracking technology, a performance measuring framework
is required. This framework helps the user to compare different tracking tech-
nologies as well as trackers and can decide upon a specific tracker, which meets
the user’s needs. [MAB92] provided a general purpose performance measuring
framework, which was also adopted in [Bac00][Sko96]. The following are the five
components of this framework:

1. Resolution: This measures how well the tracker or a tracking technology
is in detecting small changes in motion. The more resolution a tracker has,
the better it is in detecting minute changes in the tracking system.

2. Registration: This is mainly the accuracy of the system. It measures the
correlation between the reported position and orientation of a system and
the true position and orientation.

3. Robustness: This measures the tracker’s performance in the presence of
noise and other interference in the working environment. A system needs
to provide a consistent and predictable output in such conditions, so that,
a correction measure can be taken to compensate for the errors.

4. Responsiveness: This property is the measurement of the sample rate of
a tracker, which is also linked to latency or time lag. A user’s satisfaction
in using such a tracking system, which employ a tracking device, is very
much dependent on this criterion. This gives the feel of controllability to
the user.

7

5. Sociability: This measures how good a system is in tracking multiple
objects or users, i.e., working with multiple sensors.

This framework is more suited in the context of virtual reality, but, most of
it, is also true for all systems. For a motion tracker to be used with the rpen,
the criterion of sociability is not needed in this thesis as it only tracks a single
object or sensor. For rpen like devices, the working volume is an important
factor. It is the volume within which the tracker can successfully track an object
or sensor. There are other criteria as well, to compare the tracking systems. For
example, a tracking system should not require a special environment to operate.
The wearable part of the system or the part of the system to hold in hand should
be light in weight and comfortable to use.

Other then these performance factors, there are some other aspects to take
into consideration before opting for a motion tracking system. Most important
of these are: cost, availability and ease of use. Certainly, in the context of the
current study, cost and availability are very important factors.

A motion tracking system for the rpen needs to meet some minimum require-
ments. It must have a reasonably fast sample rate so that any changes in the
position could be translated to the display immediately. There is no acceptable
amount of room for latency for an interactive device like the rpen. The tracker
system should have high resolution, so that any tiny changes of the tracker could
be reflected in the display. Position accuracy is vital for the rpen, as the basic
functionality of the device is dependent on it. The tracking system also needs
to work in a regular office or home environment, as we envision it as a general
purpose pointing device. All in all, as the rpen is set to do the tasks of a mouse,
a touch screen and other related pointing operations, it should provide at least
a set of performance measurements comparable to the mouse. The users of the
device will be expecting it.

2.1.2 Types of Motion Trackers

Here we present some of the major motion tracking technologies presently in use.

2.1.2.1 Mechanical

Mechanical trackers are the oldest motion tracking technology. They are com-
paratively also the cheapest motion trackers. Mechanical trackers can measure
the position and orientation of an object by attaching it to a movable mechanical
arm. The arm has a reference point and some other moveable joints, which can
move and rotate. These movements and rotations relative to the reference point
are measured to produce the position and orientation data. Potentiometers or

8

optical encoders are usually used for the measurements. Mechanical trackers are
mainly ground based systems. Phantom from Sensable Technologies [Inc09d] is
an example of this kind of motion tracker. [MPC04] also proposes a mechanical
motion tracker named “DigiTracker.” The article claims the device could work
both in absolute and relative mode. In fact, absolute position and orientation
data can be inferred from the original reference point, while, to produce relative
movements a clutch mechanism has to be used.

There is another version of a mechanical tracker which basically tracks hu-
man body movements, thus, an exoskeleton based system. Gypsy-6 from Anima-
zoo UK Ltd. [Ltd09] is such a system. There is yet another type of mechanical
tracker which measures the force extended on a device.

Mechanical trackers usually provide accurate position and orientation data,
but are limited by the range of the mechanical arm. In case of exoskeleton based
systems, they require an external position tracker to ascertain the user’s body
position within the work area. Mechanical trackers are good as haptic (force
feedback) systems. In fact, the Phantom motion trackers are force feedback
systems.

2.1.2.2 Inertial

Inertial tracking systems are usually used to measure the orientation of a tracked
object. Mechanical gyroscopes are used to measure the orientation of an object
in space. At least two gyroscopes are required to find the 3 DOF orientation
information. These sensors suffer problems associated with drift. This problem
can be minimized if only the relative orientation is considered rather than the
absolute orientation [RBG00]. InertiaCube from InterSense Inc. [Inc09a] is an
inertial tracking system which provides 3 DOF orientation data.

The use of accelerometers provide relative position data for these kinds of
tracker. The accelerometer produce rate of acceleration, and the position is
derived from this data, assuming the starting condition (position and speed)
of the target is known.

An advantage of this tracking system is that it does not need any external
reference to measure the movements of an object. This means these trackers are
not influenced by occlusion or noise. Also as they do not have much inherent
latency, these trackers can be sampled at a high frequency. These trackers are
usually light weight, small and cheap, particularly, the accelerometer. But, these
devices tend to accumulate error over time and need to be calibrated from time
to time.

9

2.1.2.3 Acoustic

Acoustic trackers use ultrasonic waves to determine the position and orientation
of the target. There are two methods to track an object with ultrasonic waves, one
is Time of Flight (TOF) method and the other is phase coherent (PC) method.
In the TOF method, the position and orientation of an object is calculated by
measuring the time taken by the ultrasonic waves to travel from a set of transmit-
ters to a set of receivers. Usually one transmitter and three receivers are required
to produce 3 DOF data and three transmitters and three receivers are needed
for 6 DOF information. The transmitters are mounted on the object and the
receivers are set at known fixed positions in the tracked environment.

On other hand the PC method tracks position and orientation by calculating
phase differences of the emitted acoustic waves and the phase of a reference wave.
This technique uses an incremental method; thus, it requires knowing the starting
location of the tracked object. This also means there will be error accumulated
over time and thus the device needs to be recalibrated from time to time [Bac00].

Both of these methods suffer from the effects of occlusion or shadowing
[Sko96]. Also, echoes and reflections of sound waves are major concerns for both
of these methods [Eric 2000]. The position is determined by the velocity of
sound in air, which is greatly influenced by air temperature, pressure, turbulence
and humidity [RBG00]. IS-900 MiniTrax Wireless Wand from InterSense Inc.
[Inc09a] is an example of an acoustic motion tracker. Acoustic motion trackers
are usually inexpensive, such as the IS-900 MiniTrax Wireless Wand which costs
around $3, 000 USD.

2.1.2.4 Optical

Optical motion tracking is the most active research area amongst all other mo-
tion tracking systems. Optical trackers with their high resolution, good level of
accuracy, and huge working volume tend to provide this high interest by the re-
searchers. Diverse research activities have led to wide range of technologies being
used for optical tracking systems. These technologies broadly, can be categorized
as using outside-in or inside-out configuration [RBG00].

As can be seen in figure 2.1, the outside-in configuration works by plac-
ing the sensors (in the case of optical trackers this is the camera) at reference
points around the working volume. These cameras track the target objects having
some sort of markers. This is the most widely used technique for optical track-
ers [RBG00]. There are two methods used to track the objects with outside-in
configuration, one is pattern recognition and the other is image based [Bac00].

In image based methods, the visual information captured by the sensors is
processed through the image processor and triangulation is used to determine the

10

Figure 2.1: The inside-out and outside-in configuration [RBG00].

position of individual markers. The markers used in this method can be either
active, emitting light sources, in most cases infrared LEDs, or the markers could
be passive (retro-reflective) markers [Sko96][Won07]. The active marker option
is better as it gives higher sampling rate and individual markers can be uniquely
identified [Won07]. Vicon Motus from Vicon [Sys09] uses retro-reflective markers,
whereas, Impulse System from PhaseSpace [Inc09c] can track up to 128 active
LED markers.

Pattern recognition systems determine position and orientation by compar-
ing the known patterns with sensed patterns. Infrared LEDs are usually used
as markers [Bac00]. Pattern recognition systems require complex algorithms to
decipher image content [Sko96]. The helmet tracker from Honeywell uses this
technique to calculate helmet orientation [Fer91]. Pattern recognition techniques
are also used for inside-out configurations. In an inside-out configuration, the sen-
sor is on the target and the emitters are on fixed positions around the working
volume. The HiBall developed by UNC Chapel Hill uses this technique [WBV99].
The major limitation of this system is that it cannot determine full orientation
data and it requires a specially configured ceiling where the LEDs are set in
specific places [Bac00].

There is yet another optical tracker technology which uses structured light,
a laser, to scan the target object. It can scan specific points, the entire scene or
random positions to determine the position information [MAB92]. OPTOTRAK
optical tracker developed by NDI [Inc09b] uses laser scan technology.

Even though, there is a wide veriety of optical tracker systems, they all
share several common limitations, the most important of which is occlusion. It
is required to maintain a clear line of sight, to track the target successfully. De-
pending on the light source being used, other noise sources could be optical noise,
spurious light and ambiguity of sensed surface [RBG00]. These tracker systems
are unable to determine orientation data directly. They have to be determined
from the neighboring markers. In comparison to other tracking technologies, op-

11

tical trackers require greater amounts of processing time [Won07]. Lastly, the
cost and availability of these systems precludes them from being considered as a
viable option.

2.1.2.5 Electromagnetic

The electromagnetic trackers operate by measuring electromagnetic signals. Such
magnetic fields can be generated by circulating electricity in a coil. Every electro-
magnetic tracker has a transmitter, which generate these electromagnetic signals.
Each transmitter containes within itself three orthogonal coils. These three coils
are energized sequentially in each measurement cycle, to produce the magnetic
fields. When a receiver/sensor is placed in this field, a magnetic coupling or in-
duced flux is formed between the receiver and the emitting coils. The flux is a
function of the distance and orientation of the receiver in relation to the emitting
coils [RBG00]. For each measurement cycle, nine signal measurements are needed
to derive the 6DOF data of the receiver [NMF98].

Electromagnetic trackers are relatively inexpensive, light-weight, and com-
pact. Electromagnetic trackers are the most widely used tracking system. They
do not have the problem of occlusion, like the acoustic and optical trackers. They
have a reasonable update rate, good resolution and in favorable conditions, have
reasonable accuracy.

There are two types of electromagnetic trackers. One is the Alternate Cur-
rent (AC) and the other is Direct Current (DC) electromagnetic tracker. The
AC magnetic tracker continuously creates changing magnetic fields. The three or-
thogonal passive coils contained in the receiver is induced by these fields [NMF98].
Invented by Polhemus [Inc09e], AC magnetic trackers have been in the market
for nearly 40 years. The AC tracker generates Eddy currents in the surrounding
metallic and other electromagnetic objects. This Eddy current is the main reason
for the distortion of measurements in AC tracker systems.

On the other hand, DC trackers invented by Ascension Inc. [Cor09] uses
rectangular pulse magnetic fields and take measurements of the magnetic fields
after a steady state has been reached. At each measurement cycle, Eddy currents
are also generated in DC systems but they wait for the currents to die out before
taking measurements [RBG00]. The DC trackers also compensate for the Earth’s
magnetic fields [NMF98]. The problem with DC tracker is when operating near
ferrous metals, such as carbon steel and iron alloys, where interference effects
occur.

The electromagnetic (EM) trackers have a limited working volume. Increas-
ing power of the magnetic field to increase the working volume will result in noise
from the power source [Sko96]. Also, [NMF98] describes the error in the posi-
tion and orientation information will increase at a rate of the fourth power of

12

transmitter and receiver separation.

2.1.2.6 Radio Frequency (RF)

Radio frequency (RF) systems are yet to be used as small scale motion tracking
systems, for virtual reality or similar applications. This technology is already
in use for tracking ships, planes, missiles and other applications such as Long
Range Navigation (Loran) and Global Positioning System (GPS). So far, they
cannot be used for small-scale object tracking due to the system’s errors in signal
processing. However, recent advancement in RF technologies could make them a
viable alternative for small scale motion tracking [Bac00].

2.1.2.7 Hybrid

This category of motion trackers basically uses a combination of the above men-
tioned technologies. All of the motion tracking technologies developed so far
have their limitations. Some are good with global absolute position tracking, like
the optical trackers, whereas, some others like the inertial tracker are good with
orientations. So, a clever fusion of any of these technologies has the potential of
making a hybrid tracking system, which could eliminate the limitations of the
individual tracking technologies. In fact, most of the recent motion tracking sys-
tems involves such hybrid devices [Won07]. IS-900 motion tracking system from
InterSense [Inc09a] is an inertial-acoustic hybrid tracker. [Won07] also uses a
hybrid tracker combining inertial and optical tracker. [SHC96] used a magnetic-
optical hybrid tracker. Also, in [Bac00] an inertial-magnetic hybrid tracker was
used. A version of hybrid tracking technology, a combination of inertial (both gy-
roscope and accelerometer) and optical trackers, is very popular nowadays. WII
remote as well as the proposed Apple’s new gaming apparatus is such a tracker.

2.1.3 Comparison and Summary

Even though, mechanical trackers are usually very good with their accuracy, res-
olution and robustness, they are confined to a very small working area. Also,
they are mostly used to produce relative position and orientation information.
Similar to a mouse, the use of these devices has to be learned as they are not
intuitive. Although, mechanical trackers are good for haptic feedback, an impor-
tant component for 3D interaction, we have not considered these trackers due to
their very small work area, ease of use and failure to directly produce absolute
placement information. Similarly, inertial trackers are good with orientation in-
formation but cannot produce absolute position data. Even though, initially we
were interested in motion tracking via radio frequency (RF) technology, this is

13

Table 2.1: Comparative data of three major motion tracking systems.

Property Electromagnetic Optical Acoustic

Accuracy Moderate High High
Resolution Moderate High High
Time Complex-
ity

Low - Moderate Moderate -
High

Moderate

Working Range Low High High
Cost Moderate - High High Moderate - High
Major Limita-
tions

Electromagnetic
field distortions

Occlusion Occlusion, air tempera-
ture, humidity, pressure
and ultrasonic noise

not a viable option with the current state of development. So, we were left choos-
ing among optical, acoustic and electromagnetic trackers. All of these trackers
produced absolute position and orientation data directly.

As table 2.1 specifies, the acoustic tracker is susceptible to various noise el-
ements which is not a good option for a general purpose device like the rpen.
Similar to optical trackers, acoustic trackers are also affected by occlusion. This
is a major concern for motion tracking devices. Optical trackers usually try to
solve this problem by using multiple sensors and other techniques which results
in increased computation time as well as cost/price of the product. Taking into
account of these limitations and cost considerations, we opted for the electro-
magnetic motion tracking system. Also, the use of these devices in many virtual
reality systems and research, has influenced us to make this choice. Lastly, there
is no hybrid tracker available in the market that could be used with the rpen. It
could have been a good option, if we were to develop our own hardware. How-
ever, initial negotiations with appropriate Electrical and Computer Engineering
faculty to this end did not come to fruition so this was not possible.

2.2 Input Device

2.2.1 Input Device Attributes

An input device has several attributes. Depending upon these attributes, they
usually differ in functionality or applicability. An input device’s movements are
generally either absolute or relative (defined below). An input device might
employ both modes, but only one can be used at a time for a specific functionality.
An input device might provide only visual feedback, which is usually the de facto
standard for any input device, while some others provide tactile, haptic (force
feedback), auditory or special visual feedback. The sensors of the device might

14

measure displacement or strain. Then again the displacement might translate
to relative movement or absolute movement. Input devices also differ by their
footprint. Devices that measure displacement (e.g. a mouse) have a variable
footprint, whereas, the Spaceball (trackball) or the EGG (elastic) developed by
Zhai [Zha95] have small footprints and measure strain on the device.

Important attributes an input device may possess are listed below with brief
explanations.

• Property sensed: Most of the traditional devices sense position, motion
or force. Some others, like the rotary devices, can sense angle and torque
[Hin08].

• Transfer Function: A device can modify the signals it senses using a
mathematical transformation to provide appropriate, smooth and effec-
tive operations. A transfer function can be used to map force-to-velocity,
position-to-position or velocity-to-velocity. In the case of the rpen, we are
required to use position-to-position mapping inside the transfer function.

• Sampling rate: The sampling rate determines how often measurements
from the physical sensors embedded in the input device are taken and sent to
the computer system. Increased sampling rates produce finer control over
the input [Hin08]. Higher sampling rates are important for touch screen
otherwise there might be selection errors.

• Resolution: Resolution is a metric involving the number of unique mea-
surements that the input device can send to the computer (pixel array).

• Latency: Latency, or lag, is the time that elapses between the physical ac-
tuation of the input device and the resulting on-screen feedback. Latencies
above 100ms interfere with cognitive performance [MKS01].

• Noise: Noise is the result of sensing errors due to hardware malfunctions
or design inadequacies. Increased noise leads to sampling problems and loss
of accuracy.

• Position mode: The position mode can be either absolute or relative. For
an absolute input device, each position on the sensing surface corresponds
to a specific location on the screen. In a relative positioning mode, each
input is a functional translation from the current point. A touch screen is
an absolute input device, whereas a mouse is a relative input device. In
terms of position, the rpen works as an absolute positioning device, but
is not limited to the screen as the working volume. The rpen position
is determined in arbitrary 3D space units, and then a defined frame of
reference is used to interpret it’s movements. This allows the device to be

15

used at locations comfortable to the user, or to suit specific purposes such
as mimicking a mouse or touchscreen, or to define different usage contexts.

• Gain: Gain is also referred to as the Control-Display (C-D) ratio. C-D
is the ratio of the physical movement of the input device in relation to
the distance that the on-screen cursor moves. An decreased gain allows
for a smaller footprint, i.e., less space is necessary for the input device.
The function that controls the gain (C-D ratio) is frequently configurable
through software. A high C-D ratio affords greater precision, while a low one
allows more rapid operation and takes less desk space [Jac96]. Acceleration
and deceleration mechanisms, depending on the movement of the device by
the human operator, can increase a user’s satisfaction level with the input
device.

• Degrees of freedom (DOF): Degrees-of-freedom is a measure of the num-
ber of dimensions that the input device senses. For navigation through 3D
space or only for 3D space position information, a 3D device must have
3 DOF. To manipulate 3D objects in a volume, the input device usually
needs 6 DOF [Zha98].

• Direct versus indirect: If the input surface is also the display surface,
then the input device is direct. An example of such a device is a touch-
screen. Most other input devices are indirect in that the on-screen cursor
is controlled through an intermediary device such as a mouse, joystick, or
touchpad. In the case of our device, it can operate with both a direct or
indirect input device as we can define the work/input surface for our device
to be the display surface or any arbitrary surface located anywhere on the
3D space having any orientation (horizontal or vertical or angles thereof).

• Footprint: Footprint refers to the amount of space that is required for
the operation of the device. For example, a mouse has a large and variable
footprint, whereas a trackball has a smaller but fixed footprint.

• Device acquisition: Device acquisition defines how easy it is to acquire
(locate and hold) a device. Device acquisition and persistence is an impor-
tant factor for 3D spatial input devices. Such a device needs to be easy to
acquire and when released must hold its position. This criterion is most
often overlooked and is a major reason why the mouse has dominated the 2
DOF input device paradigm rather than pen-like input device [Zha98]. As
the rpen is a 3D spatial device, we are required to give special attention to
this aspect.

• Feedback: An input device usually provides visual feedback only. But,
most studies have suggested that it is better for the usability of the device
to provide auditory or some combination of tactile and haptic feedback.

16

The above categorization is based on manually-operated (devices operated
using the human hand) continuous pointing device. The non-manually-operated
devices include the human hand or body tracking devices, eye trackers, speech
recognizers and other hybrids. These devices are mostly computer vision based
devices, i.e., using cameras. As our device is basically a manually-operated con-
tinuous pointing device, we need not be concerned with non-manually-operated
devices. As well, there are some approaches which attempt to classify the input
devices according to their ergonomic differences, to help guide the selection of
the appropriate device for a task [MCR90][BS90].

The rpen is an absolute position device, which we expect will be more nat-
ural, intuitive, and ergonomic, to use. We initially intend to make it work as a
replacement for indirect 2D and 3D mice, as well as function as a touch screen.
As we have seen above, a 2D or a 3D mouse is usually a relative device. Thus, it
has a smaller footprint and lower C-D gain ratio. It is also an indirect pointing
device. On the other hand, a touch screen is an absolute position device with a
C-D gain ratio of 1. Its footprint depends on the size of the screen. It employs
direct interaction techniques. So, the rpen is a free moving (in 3D space) input
device using absolute positioning and both direct and indirect interaction tech-
niques. The C-D gain ratio is 1 if the work surface is the same as the display
surface but will be different for other resolutions of the work surface.

2.2.2 Types of Input Device

Here in this section we present some of the traditional input pointing devices as
well as some of the new trends.

2.2.2.1 Traditional Pointing Devices

Mouse: The mouse is the prime choice as a pointing input device for desktop
graphical interfaces. The regular mouse is a 2D input pointing device. The
relative position movement of the device is reflected on the screen with cursor
movements. A mouse has a good device acquisition mechanism, i.e., the cursor
holds its position on the screen as the device is released. The buttons on a mouse
are easier to operate as the force given by the user to activate the button is
perpendicular to the mouse’s plane of motion [Hin08]. The arm, finger, wrist,
and shoulder muscles are utilized to operate the mouse, which allows fast and
crude movements as well as smooth and precise movements [ZMB96]. However,
the indirect motions must be learned and are awkward for such natural operations
as drawing and handwriting, as anyone who has tried this with a mouse can attest
to.

Trackball: The trackball is a mechanical ball that can roll in one place.

17

It senses the relative motion of the ball in 2D and translates it to 2D cursor
movements. As the ball only moves in one place the trackball has a very small
footprint. It uses different muscle groups and many users find it comfortable.
The trackball cannot accommodate buttons on to itself. Thus, it is seen that
the buttons are sometimes housed on a platform, similar to the mouse. However,
performing a button click while operating the ball is difficult and awkward.

Joysticks: There are various forms of joystick. They can be categorized
mainly as isometric or isotonic. Isometric devices sense the force or pressure on
the device [Zha95]. These devices usually do not move but if they move, they
usually come back to the initial position when released. Example of an isometric
joystick is IBM’s Trackpoint. “The rate of cursor movement is proportional to
the force extended on the stick” [Hin08]. Isometric joysticks have a tiny footprint,
thus can be integrated with the keyboard as can be seen on IBM’s notebooks.
On the other hand, isotonic devices are those which are free moving displacement
devices [Zha95]. Isotonic joysticks sense angle of deflection. Thus, they move
more than that of the isometric once. They may or may not have the mechanism
to return to the initial position. If the rpen sensor can detect 6DOF, then the
rpen can be used as an isotonic joystick by holding the tip stationary, and using
the orientation information.

Tablet: A tablet can sense touch on the screen and provide a 2D absolute
position. Touch tablets sense the bare finger. On the other hand, graphics tablets
and digitizing tablets usually use stylus based pen-like devices to sense the input.
In most cases tablets work in absolute mode, having 1 to 1 correspondence of
touch to control movements. In relative mode, the tablet responds to stylus
movements, i.e., there is a continuous motion of the cursor. Thus, the tablet
supports many forms of interaction in respect to other forms of input devices like
the mouse [Hin08].

Touchpad: The touchpad is a touch sensitive input device similar to the
tablet but it does not support a display. Touchpad is relatively much smaller
than the display, and thus, is required to work in the relative mode. But, some
of the touchpads also support an absolute mode for scrolling. It senses clicks by
figure tapping. Touchpads require frequent clutching and could be difficult to use
while holding a key on the keyboard [Hin08].

Touch screen: A touch screen is a touch sensitive transparent display. It
is also a two dimensional device. Most often touch screens are made to sense a
bare finger but some are also developed only to sense special types of stylus. The
touch screen is an absolute device, and thus, has a C-D gain of 1. It is also a
direct interactive tool, and hence, very intuitive. But, there are a few design and
ergonomic issues with this device. Depending on how the screen is set, specially if
it set vertically or near vertical, then operation on the device might result in arm
and neck fatigue [SPS92]. One solution is to set the touch screen horizontally.

18

But, this solution has its own problems. Another problem is that there is no
“hover” state for a tool tip [Hin08], or a right button for context menus.

2.2.2.2 New Trends of Input Devices

Haptic input devices: One of the findings of [Zha95] was that a rich set of feed-
back is important for the user to feel the interface and quickly learn the controls.
In is not enough for some of the input devices just to provide visual feedback.
In some cases, tactile and haptic feedback may increase user performance, par-
ticularly, when 3D input devices are involved. But because of the nature of
haptic feedback, unfortunately only mechanical input devices can implement this
form of feedback. These are tethered multi-DOF devices and usually have huge
processing requirements, and thus are usually very expensive.

Multi-touch input: Multi-touch is a version of the touch screen or touch-
pad, which can recognize multiple touches on the work surface. Many different
techniques are used to detect multiple contacts. Recently, this interactive style is
used in products like, iPhone and iPod Touch from Apple, Multi-Touch Collabo-
ration Wall from Perceptive Pixel, Microsoft Surface from Microsoft and several
others.

Pen based gesture input: Before the use of pen like stylus devices in
Palm Pilot and Tablet PCs, researchers have been studying pen based sketching
interfaces [Her76]. Pen based gesture input techniques are also used in digital
handwriting and digitizers. With pen based interfaces like these, one problem is
when and how to differentiate between the gesture of command, and regular ink
or editing tasks [Hin08].

Voice input: Human to computer interaction is very slow in comparison
with the computer to the human. This gap can be minimized if human speech
can be interpreted by the computer. But, until now speech recognition has had
limited success. A small amount of commands or words can be understood by
the computer. Also, the amount of error grows with the vocabulary and the
complexity of structure of the command. As well, it is difficult to use speech
to specify a location in space, and thus, it cannot eliminate the use of a pointer
[Hin08].

Eye movement: Eye movement-based input is another way to increase the
input rate from human to computer. It is a very natural way of communication.
Eye tracking mechanisms usually track the eye gaze, that is, as the human eye
fixates the object it is looking at, within the fovea. Eye gaze tracking has a
limitation of accuracy of about one degree [ZMI99]. Eye movements are subcon-
scious. So, the movements have to be tracked carefully, otherwise, the user will
be annoyed with incorrect system response. Thus current eye tracking systems
are expensive and have limitations.

19

Head movement: Applications in virtual reality and augmented reality
have been using head movement tracking for quite a while now. Depending on
the orientation of the user’s head, a head-mounted display can change its display
content. Some of the head tracker and head-mounted displays could be awkward
for the user. In these kinds of applications tracker accuracy and low latency are
critical as they might create “simulator sickness”.

Hand gesture input: It is natural for the human to do gestures using the
hand. Human hand gesture can be categorized as semiotic, ergotic, or epistemic.
Empty handed semiotic gestures, which carry meaningful information, are usually
the focus of the interaction research [Hin08]. Many virtual reality applications
and research studies have been using data glove, marker-based as well as marker-
less hand tracking technologies to capture hand gesture input. This technology
also has been used to interpret sign language. In [FH93], the researchers used
a data glove and an electromagnetic 6 DOF motion tracker to interpret a pre-
defined set of hand gestures. One of the major challenges of hand gesture input is
the gap between the user’s objectives and the computer’s interpretation. There
could be false hand movements from the user as well [Hin08].

Binomial input: In the real 3D world, humans perform their tasks using
both of their hands. While writing a person would write with their dominant hand
and use their other hand to keep balance or adjust the paper. This assignment
follows Guiard’s kinematic chain theory, which is the non-preferred hand precedes
the preferred hand in a task and the non-preferred hand, sets a frame of reference
for the preferred hand to work upon [Hin08]. Two handed input, even for single-
object manipulation, can offer the user the greater ease in use, natural object
manipulation and less strain on both hands [HPG94]. Researchers have been
using this technique to arrive at a good HCI interface, especially with 3D object
manipulation.

2.2.2.3 Summary

It can be seen from the trends of input apparatus, the traditional ones used for
2D interaction have gone from indirect computer input (mouse or trackball) to
direct input (tablet and touch screen). The current and future trends as can be
seen above, are more towards 3D interaction and ubiquitous input concepts. Our
current effort with the rpen falls, in between. While we want to take advantage
of a mouse’s device acquisition technique, we want the rpen to be a direct and
natural interactive input device. At the same time, the rpen is a 3D spatial input
device, trying to take advantage of human knowledge and skills, naturally.

20

2.3 Design Issues

Although the rpen is mainly modeled to manipulate a cursor in a 2D monitor
display, the generated events can be interpreted in a 3D environment as well.
Moreover, the rpen in essence is a free moving 3D interactive device, which
according to some literature [HPG94] should be distinguished as a spatial de-
vice. The reason for this distinction is that the 3D interaction/input devices not
only include free moving 3D devices but also those devices that are manipulated
from a fixed reference position, which are usually rate controlled, force-based or
displacement-based (mechanical tracker). So, the design challenges that affect a
3D spatial device will also apply to the rpen.

Before we move into the design issues pertaining to 3D spatial input devices,
we need to address a couple of vital design decisions taken for the rpen. First, the
choice made in favor of 3D input device to accomplish mostly 2D activities, needs
to be addressed. In the last section, we mentioned a few of the limitations of the
various 2D interfaces, especially the mouse and touch screen. It can also be noted
in the current and future trends that researchers and interface developers are
going towards 3D interactive devices, as they are more natural and intuitive for
the users. As it is noted in [Han97], some of the tasks that we do in a 2D graphical
interface: selection, rotation, translation, etc. do have direct correspondence to
real world actions. And the real world object manipulation is done in 3D.

Also it is to be noted that even though our display metaphor is most often not
three dimensional, more and more applications and games nowadays are made
for multidimensional interactions. The standard 2D devices are falling short
to deliver satisfactory interaction with these applications and games. [DTR07]
investigated different input devices for a 3D data visualization environment. The
study found that a 3D wand device, in comparison to a PC-tablet and voice
interface, was much better in terms of performance and ease of use. In fact as
a displacement device, a free flowing 3D device is much faster and precise than
any of its 2D counterparts for moving the cursor from one place to another and
pointing at the target without losing the hovering motion. All in all, as [Han97]
pointed out, a 3D input device is “very direct, expressive and natural”.

The second decision we made was to use the touch screen metaphor. This
was because touch screens are the most direct representation of the display screen.
[VB05] describes direct manipulation with pointing and clicking to be the most
widely used form of the interaction interface. The paper also went on to describe
that a touchable display mimics the real world interaction as it enables the user
to feel the touch through finger or a pen tapping. To use this advantage of direct
manipulation, rpen utilizes the touch screen metaphor to define its work surface,
which is called an ‘rframe’. The benefit of rpen’s work surface is that it is virtual,
and thus can be anywhere and of any size. Also, the rpen being three dimensional

21

means that the work surface is basically a rectangular cube, where the virtual
touch surface has a thickness and is inside this cube.

The reason to opt for pen shaped input device has already been mentioned.
The pen being natural at pointing makes it good as a tool to be used for precision
pointing as well as gestures. Now, the important thing is to look at the design
aspect of this pen like device which needs to be ergonomic, effective at pointing
and balanced for use. The pen has been used by humans long enough to come
up with various ergonomic designs such as an improved grip for longer and com-
fortable usage, it easily rests in the hand (between the fingers), has good balance
while held in the hand and excellent at precision work as it has a distinctive
pointing direction. Even though the pen used in hand writing, it is not totally
comparable to a pen-like pointing device. However they do share these common
properties.

The main difference between the two is that while using a conventional pen
most parts of the hand can be rested on the desktop. However, while using a
pen based spatial device, that may not be possible much of the time. This raises
an important human factor of fatigue that needs to be addressed in the rpen
design. According to [KWR06], fatigue is not an issue for high speed placements
and gestures, but rather it becomes distracting when fine and precise object
manipulation is required. The rpen addresses this issue by offering both direct
and indirect methods. Its direct method allows one to use the rpen like an
intuitive touchscreen, and its indirect method allows one to use it more like an
absolute positioning trackpad, allowing the user to rest their hand on the table
surface. The clutch mechanism the rpen has, also provides the user with an
opportunity to rest their hand, while the cursor holds its position.

Both [KWR06] and [SK04] have presented the case for designing a pen-based
device. Both the papers have emphasized an ergonomic grip. [KWR06] described
the grip to be good for both power and precision tasks. The paper also prescribed
an ambidextrous form of grip, which makes the pen-based device neutral in terms
of handedness. The grip should also account for the weight of the device. On
the other hand, [SK04] suggested the pen-based device should have “aesthetic
and coherent” form beside being workable and ergonomic. The paper stated
a pen-like device requires a distinctive pointing nose, as one of the important
findings. Both papers suggest a sufficient number of buttons for the device to
have improved controllability.

2.3.1 Design Issues for Spatial Device

There are many design issues related to any spatial input device and many of
which have been listed in [HPG94]. Here in this section we discuss a subset of
these issues, which are more relevant and may have major impact on the rpen.

22

Firstly, there is an important notion in 3D interaction that a a single type of 3D
interface/input device cannot be used to accomplish a wide range of 3D tasks. In
fact, as described by Jacob and Sibert in [JS92], if two tasks in three dimensions
are perceived to be different then they require two different input devices. So, it
is important for us to identify the area where the rpen is applicable and design
the device to accomplish that task. As the rpen is not (at present) to be used for
virtual reality system or as a gesture based system, the design issues related to
these applications, is not part of the rpen design considerations.

Input device state: It is important for an input device to produce all
relevant events or states to support the full set of basic graphical user interactions.
According to practitioners, an input device should support three possible states:
out-of-range, tracking and dragging. It can be noted here that some of the popular
interfaces like the touch screen and mouse do not support all of these three states
[Hin08].

Fatigue: Fatigue is a major concern for spatial input devices. It is very
difficult for such a device to avoid it completely, but enough care should be
taken to reduce fatigue whenever possible. Fatigue affects user performance, user
satisfaction and eventually may result in injury to the user [HPG94].

Weight: Weight is also an important design factor for spatial devices. Since
these devices are operated in the air, weight will affect the usability of the device.

Clutching mechanism: Clutching mechanism is a software mode which
allows the movement of the 3D device without effecting the cursor movement
[HPG94]. As spatial devices can be tiring, it is important that they have some
sort of clutching mechanism, so that when the device is in that mode, it is not
tracked and the user can rest their arm. This mechanism is also important for
the “out of range” [Hin08] input device state. It is also important to design the
clutch mechanism properly. Poorly designed clutch mechanisms give rise to some
of the most confusing and difficult problems of an input device [HPG94].

Multi-sensory feedback: Operating a spatial device the user can easily
become confused and might loose control of the device. If there is no physical
object to manipulate, it is important to provide the look and feel of virtual object
manipulation. For a device like the rpen, visual feedback is imperative but not
exclusive. Some combination of auditory feedback, tactile and force feedback will
increase the user’s level of feel for the control of the input device.

In [Zha98], Zhai proposed a general set of usability criteria for 6 DOF input
devices which can impact the user’s performance. These criteria should be ad-
dressed while designing the device. The six aspects of usability proposed by Zhai
are as follows:

• Speed

23

• Accuracy

• Ease of learning

• Fatigue

• Coordination

• Device acquisition

Some of these aspects have already been mentioned. The concept of device
acquisition is also discussed as it is similar to the clutch mechanism. According
to Zhai, 6 DOF position control devices lack coordination as they are limited by
the rotation and reach of the human hand.

2.4 Related Works

The kinds of input parameters and the types of motion tracking technologies we
have considered for the rpen, are very unique for such a 3D input device. These
motion trackers and the use of absolute position and orientation data are mostly
utilized in virtual reality or augmented reality applications. Also, recent gaming
systems are using such devices as their game control, mostly to interpret user
gestures. In the following we present some of the recent endeavors and research
studies related to 3D interaction.

Figure 2.2: PlayStation3 3D motion controller.

Sony’s PS3 motion controller: Sony Computer Entertainment is cur-
rently working on a new 3D motion tracking controller for its PlayStation3 game
console. They have recently unveiled the first working model. The controller

24

is basically a pair of ice cream cone shaped devices. These two pieces can be
used separately and also in a combined configuration. Figure 2.2 shows the
PS3 controller, as presented in the submitted patent document (Patent: US
2008/0261693 A1).

The new PS3 controller is a hybrid motion tracker, as is the case with most
of the current endeavors in this area. It uses inertial motion tracker for the three
degree of rotation information. Even though, they have listed both gyroscope and
accelerometer as possible options in the inertial tracker, they most likely are using
the accelerometers due to cost considerations. The controller also uses LED-based
optical tracker for the X and Y coordinate movements, where the x-axis positions
represent the vertical movements and the y-axis positions are represented as the
horizontal movements. An acoustic tracker is used to track the z-movements, i.e.,
back and forth movements from the display/screen. Ultrasound is also used to
determine the distance between any two controllers. This overall combination of
trackers, produces 6 DOF absolute motion data.

There are a few important points to be noted here:

• The main purpose of the new PS3 controller is to capture the user’s gestures,
which can be approximated. They thus have a higher tolerance level for
noise which allows the resolution of the device be lowered.

• The controller is developed for games. The precision and accuracy require-
ments are not as high as it is for the rpen.

• The new controller is using a hybrid of three motion trackers to produce
the 6 DOF motion data at each instance. The process involved to combine
this data would be time consuming. So, to reduce time lag they likely are
using some sort of stochastic process, such as a Kalman filter. This process
is used to combine the multisensor data, filtering and motion prediction.
The system uses the predicted data, and then the measured data (which is
slower and comes at a later time) is used to refine the prediction. Stochastic
processes (usually the Kalman filter) are mostly employed in virtual reality
systems, to avoid “simulator sickness” [Wel09].

Apple’s 3D remote control: Apple is also pursuing a new 3D remote
motion sensing device, which is similar to the Nintendo’s Wii Remote (discussed
next). The device is still under development. Figure 2.3 shows a working sketch
of the Apple Remote, as presented in the submitted patent document (Patent:
US 2008/0106517 A1).

Similar to the Wii Remote, the Apple Remote Controller contains a photo
sensor and accelerometer or gyroscope. Thus, the proposed controller is a hy-
brid of an optical motion tracker (used to detect the 3 DOF absolute position

25

Figure 2.3: Apple’s 3D remote.

information) and inertial tracker (to detect relative position on the z-axis). The
patent document also suggests that gyroscopes or accelerometers could be used
for multiple orthogonal axes for 3 DOF orientation data.

The uniqueness of the device, in comparison to the Wii Remote, is that
it combines absolute position data with relative position information to get the
average position information and as well as the current change in position (relative
to last position) information. It is done only for the z-axis. This method will
help the controller to provide a more precise zoom-in and zoom-out functionality.

Even though, the applicability of the device is yet to be fully known, it can be
inferred to be used as a controller for a game or in the context of a virtual world.
But whatever the application may be, Apple Remote may not have the precision,
resolution and accuracy to function as an absolute pointing device like the rpen.
It also is to be noted here that, Apple Remote, like its counterparts, Wii Remote
and a PS3 controller, works as a distant pointing device. This means, unlike the
rpen, the position that these controllers point to, is to be derived geometrically
rather than taking the controller position as it is, such as is done in the rpen.

Wii Remote: Unlike the PS3 controller and the Apple Remote, the Wii
Remote has been in the market since late 2005. Being the first of its kind, the
Wii Remote has captivated game lovers with its free flowing motion capture and
gesture recognition capabilities. The remote uses an infrared light source for its
optical sensor, which tracks the 3D position information. The device also utilizes

26

(a) Wii remote (b) Sensor bar

Figure 2.4: Wii remote and its sensor bar [Wii09].

accelerometers to sense acceleration information. The orientation information is
derived by the optical sensor, from the sensed relative angle of two dots of light
with respect to the ground.

As a game controller it can be operated from as far away as ten metres.
But as a pointer it can be as far as five metres. The location of the Sensor Bar
is important for the remote to sense the position and orientation information
properly. The bar must be centered in respect to the television and either it has
to be in line with the front of the TV if placed above the TV, or it must be in
line with the front of the surface that the TV is placed up on, if placed below the
tv. Figure 2.4 shows the Wii Remote and the Sensor Bar.

The comments made for the Apple Remote apply similarly for the Wii Re-
mote. A patent assigned to Hillcrest Laboratories Inc. for a similar 3D remote
control device also exists. The only difference it seems is that the patented device
from Hillcrest Laboratories is using accelerometers to provide orientation infor-
mation as well as the acceleration on all orthogonal axes (Patent: US 7158118
B2).

Figure 2.5: Project Natal’s sensor device [Sen09].

Project Natal from Microsoft: Project Natal [Pro09b] is a new gaming
interface from Microsoft. It is used with Microsoft’s gaming console, the Xbox
360. Microsoft is pursuing a completely different 3D interaction mode than its
competitors. While its competitors are pursuing 3D control based gaming inter-
faces, Microsoft is moving towards a “control-free gaming experience” [Pro09a].

27

Project Natal basically detects a user’s whole body movements. It also has voice
recognition capabilities, which can recognize a specific set of voice commands
from multiple users. Figure 2.5 shows the Project Natal’s sensor device.

A Project Natal system uses optical motion trackers to sense user’s 3D mo-
tion. The optical motion tracker used for the system is not a single device/sensor,
but rather, a combination of an ‘RGB camera’ and ‘depth sensor’. It not only
provides motion capture capabilities but also facial recognition features. The
system also contains a multi-array microphone, which is used for voice recogni-
tion capabilities. The system has ambient noise suppression capabilities, and it
can also be operated under ambient light conditions [Pro09a]. Project Natal is
a gesture recognition system, which can extract 48 interest points on a human
body at a frame rate of 30Hz.

While the technology is very impressive, it is not comparable to rpen technol-
ogy, because they are applicable to two different application areas. The Project
Natal is an interface for virtual reality and the rpen is a 3D pointing device. As
the Project Natal system has to process data from various points of a human
body at a rate of 30Hz, the processing time will be much longer than ideal. Also
it uses two different optical systems for tracking purposes. So, as most virtual
reality systems do, the Project Natal system must be using some sort of stochas-
tic process to predict user’s movements, to reduce the visual time lag. Also, as
said for the PS3 controller, the requirements for a gesture-based system are very
different from that of a pointing system.

Figure 2.6: Sixense’s 3D wireless controller [Con09].

3D wireless controller from Sixense: Sixense Entertainment, a com-
pany from California, USA, developed a 6 DOF motion tracking controller (see
figure 2.6) using an ultra low power electromagnetic (EM) sensor. As the EM
sensor used is very low powered, it creates a very weak magnetic field. This might
eliminate some of the metal related noise, but, it also means that the working
volume could be very limited. There is not much information available about
the device, particularly in relation to its technical specifications. The company’s
official website [Six09] also only contains information about some of the demon-
strations involving the device. In any case, it is evident from the demonstrations

28

that the device is created as a game controller and not as a pointing device.

g-speak: Oblong Industries developed ‘g-speak’, a spatial operating environ-
ment. Multiple users can use the system at the same time. The system is capable
of tracking two-handed gestures. The users interact with the system through free
hand (without any object in hand) gestures. The system uses marker based data
gloves with its optical tracker, capable of 6 DOF input data.

The system does distant freehand pointing, similar to the technique used in
[VB05]. In [VB05], a ray casting technique is used to point at distant objects.
The g-speak works with wall sized projection screens, desktop monitors, table-top
screens and handheld devices [Obl09].

g-speak is a total 3D operating environment having powerful motion tracking
capabilities. The system can work with multiple display systems, where display
and work surface are the same. In contrast, the rpen is dependent on the primary
screen for its resolution information but the work surface can be anywhere in the
space with any orientation.

SixthSense: SixthSense is an augmented reality application, developed by
Pranav Mistry, a PhD student in MIT Media Lab [MIT09]. The interface can
interpret hand gestures. It uses a camera, which is an optical tracker, to track
color coded fingers and the gestures the fingers make. It uses a tiny projector to
project information on various surfaces, which can be then manipulated through
hand gestures. The whole interface is small enough to be able to wear around
one’s neck.

Miscellaneous Devices: BurstGlove�[Mot09] is an optical tracker based
absolute 6 DOF motion capturing device from Motion4u. It uses a marker based
optical tracker. The tracker has a plugin for 3D animation software Maya®.
Using the plugin, the tracker can be used to produce animation in 3D space very
easily. It is said, the device can be used as a 3D mouse, i.e., the marker will be
tracked to be translated to a 3D cursor position only on 1 to 1 basis.

[FS06] also presented an optical tracker based input device. The device uses
a camera to sense the position of the emitter, which can be a light emitting point
or a finger. 3D relative movements are derived from direct and reflective images
of the pointer, i.e., the pointer is operated on a reflective mirror.

Summary: As can be seen from the above discussions, most of the motion
tracking devices are either using hybrid tracker or optical tracker technologies.
Even the hybrid trackers are using optical systems as one of the motion tracking
devices; thus, these devices will have the same limitations that an optical tracker
has, the most important of which is occlusion.

Also, almost all these devices are interpreting human gestures as input. Even
though some of them could be used as an absolute position pointing device, none
of these systems use work surface like the rpen. Most of the devices are confined

29

to either the display screen or the display system (with multiple displays) as their
pointing surface as well as their work surface. In contrast, the rpen translates the
cursor movements to the display screen and the work surface could be the same
as the screen or different. Also, the work space can be placed anywhere, and at
any angle.

30

CHAPTER 3

Methodology

3.1 Research Methodology

The aim of this research is to develop a working prototype of a new pointing
device, ‘rpen’, using an absolute position tracking device. The focus of the cur-
rent study is not centered about any position tracking hardware or comparative
study into different types of position tracking technologies; rather, to explore the
possibilities of a new kind of pointing device and its usefulness.

The concept of rpen is independent of any position tracking hardware. How-
ever, the effectiveness and efficiency of rpen as a device will depend on the hard-
ware being chosen for the prototype. An initial assumption is that a commercially
available hardware device providing absolute position data should work with rpen
without having to put too much focus on the hardware.

To demonstrate the usefulness of the new pointing device, physical experi-
mentations have been carried out. The experiment involved the tracking of sensor
movements to actual cursor movements and appropriate events. They have been
done on different work surface resolutions. We will refer to an rpen work surface
as an ‘rframe’. Through these experimentations and usability testing, effects of
rframe resolution on rpen usage have also been analyzed in this thesis.

Through analysis of previous research and studies of related issues, decisions
have been made related to the design and characteristics of rpen. Though hard-
ware design and related experimentation are not part of the current study, design
suggestions are made based on the literature reviews as well. Human factor issues
are addressed using a combination of analysis and experimentations. Usability
testing has been carried out with a limited number of users.

The choice of hardware and tracking technology has been made through
analysis. Even though initially it was not intended to put effort in tracking
technologies and related issues like noise filtering techniques and smoothing, due
to the choice of hardware, a considerable amount of experimentation and data
analysis had to be made on these issues.

The current research is a proof-of-concept; this had to involve technical de-
velopment. No human computer interaction research is complete without exper-
iments showing how the interface works with its human operator. Elaboration

31

of ideas and logical support for the research, are developed through analysis of
theories and results already present in the current literature. The current study
is a fusion of these methods.

3.2 Linux

The design decision to implement rpen on Linux comes with its advantages. Linux
is a UNIX like open source operating system (OS). Like UNIX, Linux’s simplistic
design principles make it easy for the developers to understand how it works
as well as use its relatively smaller number of APIs and system calls effectively.
Linux is open source, meaning that the source code is free and available for
developers and academics to learn from the code; test and play with modifications
as desired.

Recent improvements and modifications made to the device model in Linux
meant that implementing device drivers and interfacing with other kernel core
components is easier, and simpler. In [Lov05] Robert Love said, In UNIX every-
thing is a file. In fact, most of the data and device operations can be done using
simple interfaces like, open(), close(), read(), write(), etc.

Another advantage with Linux is that it has an ample amount of documen-
tation in writing (books) as well as on the web. The Linux source tree with its
documentation works as a training guide with examples. One could view existing
drivers and use them as the basis of his/her code. One could also modify the
windowing system if needed, as well as exisiting application to add extra support,
say for gestures, if one wished.

Rpen is conceived to be a general purpose device. It means it has to work
with the OS, which in this case is Linux, and also with any applications installed
on it. As it is not a special purpose device to meet specific requirements, like
the tracking systems used for virtual reality systems, the choice for developing a
device driver for rpen was obvious. The developed device driver works as a go
between the hardware and Kernel, which in turn will communicate with other
applications and user interfaces (see figure 3.1).

Even though, many of the devices can be operated utilizing the I/O scheme,
hardware like the rpen, where timely service by the processor is important, utilizes
the interrupt concept. It is an asynchronous communication between the kernel
and the hardware. Here, whenever the hardware requires a communication with
the system it issues an interrupt and the kernel, using the interrupt identification
number, executes the specific interrupt handler. Interrupt handler runs in a
privileged mode, called the interrupt mode. In this mode/context, the handler is
solely allowed to run on the processor and quickly responds to the interrupt.

Linux is a monolithic kernel. It means it runs as a single large process in

32

Figure 3.1: Relationship between device driver, kernel and other user space ap-
plications [Lov05].

33

a single address space, in Kernel mode. But it is also modular, i.e., it allows
individual code segment to be inserted and removed from the kernel at run-time.
Many of the Kernel components are developed as modules, including the device
drivers. This means a device driver can be developed out of the source tree of
the Linux kernel, totally independently, and also can be loaded whenever needed
without having to shutdown the kernel. This gives the developer of a device driver
the advantages to run a device in kernel mode as well as develop it without having
to worry about the rest of the kernel.

Taking into account the above discussion, it was decided to opt for a device
driver in the Linux kernel to operate rpen.

3.2.1 Linux Device Drivers

A major role of an operating system (OS) or kernel is to manage the hardware
devices attached to the host system. The kernel uses device drivers to handle this
task. These device drivers implement the intricacies of how a device operates as
well as communicate and provide a common and simplified interface to appli-
cations. The interfaces provided by the device drivers are standardized system
calls, similar to file operations. The architecture of how user space applications
operate on devices can be understood from the Linux device model, which is
discussed in the next section.

As mentioned earlier, device drivers are implemented as modules. In fact, the
standardized interface structure specified above, enables them to be modularized.
Each device driver, as such, is a compact piece of code having its functions, data,
entry, and exit points grouped together. This modularity helps the Linux Kernel
to have a minimal loadable image as well as enable devices to be hot pluggable.
A module can be dynamically linked to a running kernel by calling ‘insmod ’
program, which initialize the module by calling the function identified by the
module init() macro, inside the module. Similarly, a module can be unlinked
from a system dynamically by calling ‘rmmod ’ program which calls the function
identified by the module exit() macro.

Linux devices broadly can be classified into three fundamental device types:

• Character Device

• Block Device

• Network Device

It is possible to develop a module implementing different drivers for more than
one of these device types, but this is not good for scalability and extendability.

34

Character Device: Character (char) devices are accessed as a stream of
bytes and a character device driver implements this characteristic of the device.
The console and serial ports are char devices. The char devices are assessed
through ‘/dev ’ file system nodes. Character device drivers must at least imple-
ment the open(), read(), write(), and close() system calls. Most of the commonly
known input devices are char devices.

Block Device: A Block Device can host a file system. In Linux, a block
device is implemented similar to a char device, in terms of data access. It is
also accessible via the ‘/dev ’ node directly. Other than being able to hold a file
system, a block device differs with a char device in the way data is managed
internally by the kernel. Hard disks and CDROM players are examples of block
devices.

Network Devices: Any device that is able to exchange data with another
host is a network device, more appropriately a network interface. These interfaces
are not at all similar to char or block devices. They are not handled through
‘/dev ’ but rather given unique names like eth0. The network drivers handle data
packets only.

There are other ways to classify the device drivers. One is the kind of bus
they use. Thus, a driver could be a USB or serial or SCSI or PCI module. An-
other major classification is made on the type of interaction the device does, like
an input device. A device will fall under more than one of these classifications.
For example, rpen is conceived to be an interrupt based, USB, input device,
which falls under the broad category of char device. But, because of the hard-
ware choice for our prototype (the Wintracker II discussed in section 3.3), we
decided to implement it as a poll based, USB, input device, utilizing bulk data
communication usually used for block devices.

3.2.1.1 Interrupts

As mentioned earlier, most of the hardware peripherals attached to a computer
use the interrupt concept for its I/O. The reason is that a processor usually can
process its tasks much faster than a hardware peripheral with which it works.
Thus, rather than waste processor time by waiting for a hardware to respond, it
is better that the hardware let the processor know when it needs the service of
the processor. It not only saves the processor’s time from being wasted but it is
also the fastest way to service the hardware.

An interrupt is an electronic signal produced by the hardware attached to
the computer. It means the hardware has to be configured to work in interrupt
mode. The interrupt signal is received by the interrupt controller. The signal is
then passed on to the processor by the controller. After the processor detects the
signal, it interrupts the currently executing process to handle the interrupt. The

35

processor notifies the kernel of the interrupt and the kernel finds the appropriate
handler with which to handle the interrupt. A interrupt handling process is
depicted in figure 3.2.

Figure 3.2: Interrupt handling process [Lov05].

Each interrupt is given a unique number, either hard coded or dynamically
allocated. This number is called the Interrupt Request (IRQ) number or line.
Through IRQ number, the kernel can differentiate between different interrupts.
An interrupt handler is associated with an interrupt using this IRQ number.

Another important aspect of the interrupt is that it runs in an interrupt
context. A Linux kernel executes its tasks either in process context or interrupt
context. In process context, a process can go to sleep or invoke the scheduler. In
interrupt context it is not allowed to sleep and it cannot be preempted by the
scheduler. As such, an interrupt handler is able to execute its tasks without any
pause, stopping other processes running on the processor. So, it is important
that the interrupt handler does not use too much time or memory.

The interrupt handler is a part of the device driver. The request for an IRQ
number as well as associating it with a handler is done as part of the initialization
of a device driver.

As mentioned, rpen is conceived to be an interrupt based input device. Thus,

36

/sys/

|-- block

|-- bus

|-- class

|-- dev

|-- devices

|-- firmware

|-- fs

|-- kernel

|-- module

\-- power

Figure 3.3: Top level sysfs directories.

the device driver is designed with an interrupt handler function in mind. However,
the chosen hardware for our prototype does not have interrupt capacity. The
current device driver rather employs a mechanism to poll/request the hardware
device for data at defined regular intervals which is a process based solution
rather than an interrupt based one. The initial interrupt handler function design
was modified to account for the change. So, in future, if rpen is implemented
with interrupt based hardware, small modifications in the device driver should
be sufficient.

It also should be mentioned here that an input device such as rpen should
always be interrupt based for the effective interactive experience with the sys-
tem. The faster hardware manipulation (movement) is accurately reflected by
the system, the better satisfied the user will be.

3.2.1.2 Linux Device Model

It is important here to discuss the ‘Linux Device Model’ to gain insight into the
relationship between the device, the device driver, kernel, and the user space. It
is also very important for rpen, as the basic concept of the device is implemented
by taking advantage of the model. The rframe and other basic parameters for
rpen are defined through an application in user space. Using the nodes presented
through the device model, these parameters are communicated to the device
driver. The device driver, through the device model nodes, not only communi-
cates with the user space applications about the devices generated events, but
also provides device driver specific data to other rpen applications in the user
space; thus, Linux device model is an important part of the rpen design.

The new Linux device model, implemented in kernel version 2.6, is a compli-
cated data structure. It is designed to implement many important tasks/features

37

Table 3.1: Sysfs functions/macros used in rpen device driver.

Function/Macro Purpose

int sysfs create group() This function creates an attribute group under
the given kobject.

void sysfs remove group() This function removes the group all together.
DEVICE ATTR() This macro helps define a device attribute.
ssize t rpenParam show() This function writes to sysfs node.
ssize t rpenParam store() This function reads from sysfs node.

including communication with user space, hotpluggable devices, device classes,
device lifecycle etc. Even though it is very important to the devices, in most
cases, a device driver does not need to explicitly deal with the device model.
Similarly for the hotpluggable device mechanism for rpen, the USB and input
subsystems assign the major and minor numbers for the device to be uniquely
identifiable to the system and export this information to the user space through
the sysfs node. This information is then used by the user space daemon called
‘udev ’ to dynamically create a ‘/dev ’ node for rpen. Through this node, rpen
reports the events generated by the device for user space applications to respond
to, accordingly. In the case of rpen the sysfs nodes are manipulated since it was
necessary to feed in and out some basic parameters to the device driver, to allow
appropriate behavior of the device.

‘Sysfs ’ is the method through which the device model framework is imple-
mented. Sysfs is basically a file system. The top level sysfs directories are shown
in figure 3.3. Each active device in the system has sysfs entries, which represent
the device model, i.e., information regarding its bus, device, device driver, and
class. The files created here are typically ASCII files with usually a single value
per file. These files are also known as attributes. Most of these attributes are
default values and contain information on the four layers of the device model, as
mentioned previously.

At each of the four layers of the device model, sysfs provides an interface
for the addition of attributes. However, most of the device drivers define either
device or driver level attributes. In the case of rpen, we have implemented device
level attributes. The attributes thus appear under the ‘/device’ directory. As we
had to define multiple attributes, we implemented them as a group, and as such,
they can easily be added or removed with a single function call. Table 3.1 lists
the functions/macros used by the rpen device driver.

38

3.2.1.3 User Space vs Kernel Space Device Driver

Rpen is implemented as a kernel space device driver. In fact, most of the device
drivers in Linux are in kernel space, although Linux does provide the option to
implement a user space device driver. A driver developer needs to consider the
characteristics of the device, s/he wants to operate as well as advantages and
disadvantages of developing the driver in user space.

In Linux, not all devices are supported for a user space device driver. USB
devices are supported through a component like ‘libusb’. The device driver for
rpen using a USB hardware device (Wintracker II) could have been developed
for user space, but, the characteristics of rpen make a kernel space driver more
desirable.

Rpen, being an input pointing device, is conceived to be an interrupt based
device. Also it needs fast responses from the kernel. If it employed a user space
device driver, this can not be guaranteed. Contexts switches, process privilege
issues, risk of then being put to sleep and not getting locks in time, make user
space device drivers slow to respond and thus unsuitable.

On the other hand, there are advantages of a user space device driver. A
user space device driver can use the full C library. Code debugging is also easier.
Most importantly in the context of rpen, a device driver in user space can readily
use floating point operations which is not possible with the C library in kernel
space. In the current implementation of rpen, the device driver needs floating
point calculations in several places. The most critical places are the filter and
position transformation for a generic rframe. We examined the roundup error
effects of the current device driver, in this study. Also, the implemented filter is
specific to our current choice of hardware. As the filters are usually implemented
in hardware (if required), it will most likely not be an issue for future versions of
rpen.

3.2.1.4 USB Device Drivers

The universal serial bus (USB) is a channel between a host system and its pe-
ripherals. Structurally, the USB is not a bus but rather a tree topology, and thus
has hubs. Devices and other hubs can be connected to a hub. A hardware known
as a USB host controller implements such a hub inside any host system and this
is the first root hub. In Linux all the USB devices are controlled by the kernels
USB subsystem. The USB subsystem comprises of [Ven08]:

1. The USB core

2. USB host controller drivers

3. Hub driver

39

4. Khubd - a helper Kernel thread

5. USB device drivers

6. USB file system (usbfs)

A USB device is made up of configurations, interfaces and endpoints (see
figure 3.4). A USB device may have one or more configurations but only one
can be enabled at any particular time. Each configuration often has one or more
interfaces. A USB device driver can control one interface. Thus any device
having multiple interfaces will require multiple drivers to operate that device.
USB interfaces may also have alternate settings, which are basically different
choices for parameters for the interface.

Endpoints are the most basic form of communication in USB devices. There
could be zero or more endpoints in an interface, with a maximum of 128 endpoints.
Endpoints can carry data in one direction only; from the host to device or from
device to host. An endpoint (for a specific implementation) can handle either of
the following four data transfer types:

1. Control transfers - used for configuration and control information

2. Bulk transfers - transfer large quantities of data

3. Interrupt transfers - exchange small quantities of time sensitive data

4. Isochronous transfers - for data at predictable rates

Each channel attached to an endpoint is called a pipe and has an integer
encoding. It is a combination of endpoint address, direction of data transfer
and type of data transfer. To create this pipe, the USB core has provided the
following macro:

usb_[rcv/snd][ctrl/int/bulk/isoc]pipe(struct usb_device *udev,

__u8 endpointaddress);

The rpen device driver has two pipes. One for outgoing commands and other
is for incoming sensor data. To create these two pipes, we used the above macro
as following:

in_pipe = usb_rcvbulkpipe(usbdev, in_endpointAddress);

out_pipe = usb_subbulkpipe(usbdev, out_endpointAddress);

40

Figure 3.4: Structure of a generic USB device along with the structure of Win-
tracker, that is used for rpen.

URB (USB request block) is the usual means of communication between the
USB core and a USB device driver like the rpen driver. URB has a life cycle.
Data communication using URB require some preparation. But, there is a way
around this for simple data transfers without explicitly implementing the URB.
The USB core provides two functions for this purpose. One is for bulk data
transfer and the other is for control data transfer.

The hardware device, Wintracker II, used with the current version of rpen
only supports bulk data transfer both for the position data it sends to the host
system and for receiving the control commands it gets from the host system.
Also, the data length for both the incoming data and outgoing data is 32 bytes.
As the Wintracker system is not interrupt based, it uses bulk data transfers, and
the data it communicates is simple and concise, we decided to use the bulk data
transfer functions below without using the URB concept.

int usb_bulk_msg (struct usb_device *usbdev, unsigned int pipe,

void *data, int len, int *actual_length, int timeout);

USB Device Driver Structure :

The USB device driver needs to specify one or more USB devices it will
support. This can be done using the macro:

USB_DVICE (vendorID, productID)

There are other versions of this macro, but this version is the most widely
used. This information is later used by the hotplug scripts, in user space, to

41

automatically load the device driver when a device it supports is plugged in to
the system.

After specifying the device, the driver has to create the driver structure with
at least its name, probe() function, disconnect() function and the device id table.
The driver name has to be unique. The device id table has references to all the
USB devices that the driver supports. This table is created with the help of the
above USB DEVICE macro. This table is very important as without it the driver
is meaningless. The probe() function is called by the USB core when it gets a new
USB interface which this driver is supposed to handle. The probe() function, if
successful, claims the device or the interface and initializes the driver to handle
the device or interface. It also initializes the driver for use of the device by other
applications or kernel components. The disconnect() function is called when the
interface goes out of the system or the driver is being uninstalled/removed from
the system. Thus, the disconnect() function needs to dereference/unregister the
objects that the probe() function has referenced/registered.

Lastly, the USB driver has to register the USB driver structure it created.
This is done in the module initialization function called by the module init()
function mentioned earlier in section 3.2.1. To register a USB driver, a call to
usb register() is made with a pointer to the USB driver structure. Similarly, to
unload the driver from the system the USB driver structure has to be unregis-
tered using the usb deregister() function. This function is called from within the
function identified by the module exit() macro.

3.2.1.5 Input Device Drivers

Rpen is an input device. It thus needs to register itself as an input device as
well as produce input events so that applications in user space can interpret the
events correctly and take appropriate actions. Input devices in Linux, starting
with version 2.4, are integrated to provide a common interface to user space
applications. The Linux input subsystem, primarily the work of Vojtech Pavlik,
includes the input device drivers, input event drivers and input core. It sits
between the various hardware interfaces (PS/2, serial, USB, etc.) and user space.
Due to the input subsystem, any user input from the hardware can be presented
to user space in a consistent and device independent way through a range of
pre-defined APIs.

As shown in figure 3.5, input events are not part of the input device driver.
The input core provides a common set of APIs to the input device drivers to
report the events. The device driver must know what kind of events it is getting
from the hardware device and how. The device driver then just records these
events using the input core APIs (‘/linux/input.h’). The input event drivers,
through ‘/dev ’ nodes, report these events to the user space applications. In the

42

Figure 3.5: Linux input subsystem; adapted from [Ven08].

43

Table 3.2: Input driver structure used inside the rpen device driver.

Stage Function/Attribute Purpose

Initialization input allocate polled device() This function allocates an in-
put poll device.

set bit() This function sets the events
to be reported. Rpen re-
ports two types of events:
EV KEY and EV ABS.

input set abs params() This function is to set min
and max values for the re-
ported postion and orienta-
tion.

poll interval, poll At this stage, the poll in-
tervel is set and also the
poll function is linked to the
poll device.

Register input register polled device() This registers the poll input
device.

Report
Events

input report key() This function is used to
report button click events.
Both this and the follow-
ing function are called from
within the poll function.

input report abs() Through this function abso-
lute position and orientation
information is reported.

Unregister input unregister polled device() This unregisters the poll in-
put device.

44

case of rpen, it is using ‘evdev ’ as its input event driver.

As mentioned earlier, rpen is built on a hardware device which does not
support interrupts and for that reason we need to poll the device for sensor infor-
mation at predefined regular intervals. This mechanism is implemented through
a wrapper class of the regular input class defined inside the Linux kernel. This
class is called input polldev. It helps to define a simple polled input device. The
developer has the facility to provide poll interval, in milliseconds. The regular
input dev structure is a member of the input polled dev structure. Also, for in-
put device allocation, registering the input device and unregistering the device,
the poll dev class has its own wrapper functions. Other than this, the structure
of a regular input device driver is similar to the rpen input device driver. The
structure of rpen as an input device driver is given in table 3.2.

3.3 Wintracker

The Wintracker II developed by VR-Space Inc. [Win09], Taiwan, is the chosen
tracking system to work with the current version of rpen. Wintracker is an
alternating current (AC) electromagnetic tracking system. The device comes with
three sensors/receivers, but for the purpose of rpen we require only one sensor.
The sensors provide 6DOF (degrees of freedom) absolute tracking information,
containing position information with regards to 3D coordinates (XYZ) as well as
the rotation information about these three perpendicular axes (pitch, roll, and
yaw). Wintracker comes with a USB interface for high speed data transfer with
the host system. With the regular transmitter that comes with Wintracker, the
system covers an area up to 75cm. With the Range Extender, not included in
the regular version, area coverage can be extended up to 2.75 meters [VR 07].
Figure 3.6 shows the Wintracker system with its Range Extender.

(a) Wintracker II (b) Range extender

Figure 3.6: WintrackerII and range extender [Win09].

Analysis given on position tracking technologies in chapter 2 is the basis
of our decision to select an electromagnetic tracking system. Our assumption

45

was, an off-the-shelf commercial electromagnetic tracking system will provide
sufficiently accurate position information for it to be implemented as a point-
ing device. The assumption also included that much of the metals and electro-
magnetic distortion effect could be avoided by removing unnecessary metal and
electric equipments from any surrounding working areas. Also, we assumed that
‘Smoothing’ would help to reduce the effects of any other noise and inaccuracy,
if required.

VR-Space Inc. is a relatively new company to provide AC electromagnetic
tracking systems. There are two major companies that sell electromagnetic track-
ing systems. For AC electromagnetic tracking systems, Polhemus [Inc09e] is the
leading manufacturer and Ascension Technology Corporation [Cor09] is the leader
for DC electromagnetic tracking systems. ‘Fastrak ’ from Polhemus and ‘Flock of
Birds ’ from Ascension are more widely used electromagnetic tracking systems
than Wintracker. But, as our current study is a proof-of-concept we opted for
a cost-conscious choice. According to Inition [Ini09], a company that provides
cutting-edge 3D expertise and technology, Wintracker is comparable to the per-
formance of Fastrak by Polhemus.

3.3.1 Specifications

Position coverage: According to the manual of Wintracker II [VR 07], the
distance between the transmitter (the base) and the receiver (the sensor) can be
at most 75cm. It is also mentioned that at the range 75cm to 1.5m the sensor
can be tracked with reduced accuracy. However, in our tests of the system, we
have observed that the measurement of the position information beyond 75cm is
unreliable. We thus consider invalid, in the rpen device driver, any position value
over 74cm. Also, the sign of the position information is often observed showing
inaccurate magnitudes and at times fluctuates between ‘+’ and ‘−’. To get rid of
this unwanted complexity, we are only considering the positive position values for
rpen. This means rpen can not differentiate between different coordinate sectors
of the XYZ space, i.e., sensor position is only measurable in the coordinate sector
where x, y, z values are positive.

Angular coverage: Wintracker provides all angular attitudes. The value
range for roll, pitch and yaw is +179°to −180°.

46

Other specifications:

Static Accuracy (RMS) Position (cm) 0.1524
Static Accuracy (RMS) Orientaion ° 0.3
Resolution (RMS) Position (cm) 0.01
Resolution (RMS) Orientaion ° 0.01
Latency (ms) 11
Update Rate (per sec) 90 (1)
Interface USB
Operating Temparature (°C) 10-40
Operating Platforms Windows and Linux
Sensor Dimensions (cm) 3.75x2.54x2.54
Sensor Cable Length (m) 4.5
Transmitter Dimensions (cm) 5.5x5.5x5.8
Transmitter Cable Length (m) 3.5
Carrier Frequency (Khz) 10.0174
Power Requirements (V) 85 - 264

Figure 3.7 shows the sensor and transmitter of Wintracker II.

(a) Wintracker sensor (b) Wintracker trans-
mitter

Figure 3.7: Wintracker sensor and transmitter [Ini09].

Operating environment: According to the Wintracker manual [VR 07]
the presence of large metallic objects will degrade the performance, in other
words the accuracy, of the tracking system. In fact, all sizes of metallic objects
can degrade the accuracy of the sensor position. [NMF98] has shown that for
AC electromagnetic tracking system like Wintracker, the error in the sensor po-
sition is proportional to the size of the metal. It is also suggested in the manual
that significant presence of metal in walls, floors or ceilings surrounding the Win-
tracker will degrade its performance as well. As suggested in [NMF98] as well as
the manual [VR 07] the only remedial action is to keep metals and other electro-
magnetic field modifying objects three times further than the distance between
the transmitter and the receiver.

47

3.3.2 Interface

Wintracker sends and receives 32 bytes of data through its USB interface. The
format of the data that it sends to the host system is as follows (figure 3.8):

Figure 3.8: Format of Wintracker data sent to host system.

All the position information and the angle information are sent in two bytes,
i.e., as short integers. The order of the bytes is first the low order byte and then
the higher order byte, following the little endian format. To obtain the actual
value of any position or orientation data, it is necessary to perform the following
operation in the device driver:

__s16 value = data[i+1]*256 + data[i];

here, i is the byte position of low order byte.

To send a command to operate the Wintracker system, the host system will
have to provide the same length of 32 byte data containing the command. Each
byte will contain a character of the command starting with byte 0. ‘\0 ’ character
signifies the end of command and this will be placed in the byte after the last
character of the command. Table 3.3 shows the list of commands used by the
rpen. Following is a code snippet from the rpen device driver, where we are
sending a command to the Wintracker hardware to enable the first sensor and
disable the other two sensors:

send_buf_com = kmalloc(myMouse->dataLength, GFP_KERNEL);

send_buf_com[0] = ’S’;

send_buf_com[1] = ’A’;

send_buf_com[2] = ’1’;

send_buf_com[3] = ’0’;

send_buf_com[4] = ’0’;

send_buf_com[5] = ’\0’;

retVal = usb_bulk_msg(usbdev, myMouse->out_pipe, send_buf_com,

myMouse->dataLength, &bytes_written, 10000);

48

Table 3.3: List of Wintracker commands used in the rpen device driver.

Command Purpose

SP\0 This command requests one data record from the sensor.
SA100\0 This commad enables only the first sensor and disables the

other two.
ST0,90,0,0\0 This command modifies the coordinate frame of the transmit-

ter to 0°relative to the sensor’s 90°on the Z-axis.

3.4 Filtering and Calibration Techniques

As electromagnetic tracking devices are dependent on electromagnetic fields, they
are influenced by metals and objects that are capable of generating or modifying
electromagnetic fields. The amount of influence/distortion/noise will depend on
the following factors:

• The type of electromagnetic device - altering current (AC) or direct current
(DC). As discussed in the chapter 2, AC and DC electromagnetic devices
react to the ambient electromagnetic fields and metals differently.

• Distance between these objects and both the transmitter and receiver.

• Size of metal. Here size refers to the area of the metal not the volume, i.e.,
“What the transmitter ‘sees’ and what the receiver ‘sees’ ” [NMF98].

• Distance between the transmitter and receiver.

In an office environment the source of noise for the electromagnetic track-
ing device could be many things, from computer monitors, fluorescent lighting,
powered-on electric devices and wiring, metal in tables and chairs, metal in the
nearby cubical or walls as well as the metal and hot wires in the floor and ceiling.
It should be mentioned that the wires connecting the receiver and the transmitter
also create noise. These noises are classified as static noise or dynamic noise. The
noise that changes over time is called dynamic noise, whereas, the noise which
is constant is termed static noise. Dynamic noise is caused by external electro-
magnetic fields and static noise is the result of metal interference. Manipulating
sampling rate and filtering, dynamic noise can be reduced and this is usually done
by the tracking system itself. But the static noise is dependent on the location
where the system is being used [Kin00].

Outside the tracking system, calibration techniques are mainly used to com-
pensate for the measurement errors for both the position and orientation. These
calibration techniques can broadly be divided into two categories.

49

1. Function Fit: The idea here is to derive a function which can estimate
the distortion. This function then can be used to find errors at any given
position within the permissible range. The output of this function is then
used to obtain the correct position and orientation.

2. Lookup Table (LUT): A metric of equally spaced error correction factors of
the working location is created. Then the position correction is performed
by trilinear interpolation of the error correction vectors. Orientation correc-
tion can be performed by the interpolation of the quaternion (quaternions
are complex numbers on four-dimensional vector space, usually used to
represent three-dimensional rotations) errors.

All the calibration methods are required to produce some sort of calibration
table or metric. The table is formed from measured positions and true positions.
Most of the known techniques use a ‘rectilinear grid’ (see figure 3.9) to measure
these positions and orientations [Kin00]. In some cases the ‘true values’ are
taken with the help of a second tracker system, mainly mechanical. [LS97] used
a mechanical tracker named Faro Metrecom IND-1.

Figure 3.9: Rectilinear grid
(Source: Wikipedia, http://en.wikipedia.org/wiki/File:Rectilinear grid.svg).

Both of the discussed calibration techniques have achieved relatively high
level of error correction quality. [IBH01] claims that with a high order polynomial
fit function (eg. 4th order) they have achieved error correction of more than 80%
for both position and orientation data. Livingston in his paper [LS97] claims to
have reduced the positional errors by 80% using LUT technique.

On the other hand, a function fit technique may not be able to find a good
approximation to the functional representation of all the available distortions
[LS97][Bac00]. “One might have to sacrifice local accuracy in a part of the working
volume in order to obtain better global accuracy”[LS97]. For the LUT technique,
the success is very much dependent on the ‘granularity ’ of the error correction

50

table [Kin99][IBH01]. A survey of a wide range of calibration techniques used
with electromagnetic tracking systems is presented in [Kin00].

There are a few important points that should be noted in these calibration
techniques, in the context of rpen. First, it is assumed that the electromagnetic
characteristics within the working area will remain unchanged. Second, the im-
portance of forming the truth table with the help of actual values, that eventually
forms the function fit or LUT. Lastly, and most importantly, it means the rpen
can not be used outside the calibrated work area. Also, this calibration process is
not simple and can only be carried out by the person who is knowledgeable in this
area. We perceive rpen to be used by regular users not necessarily knowledgeable
in such calibration techniques.

Looking at this limitation of the calibration techniques, we opted to use
classic noise filtering techniques along with a few other smoothing mechanisms,
such as averaging. We also examined the sensor jitter, i.e., when stationary
what is the average deviation. Using the Labview measurement tool [Nat09],
we examined the power spectral density of the unfiltered data from the tracking
device, Wintracker II. We have also employed various filtering techniques on the
same dataset to arrive at a specific filter and specific filtering frequency. The test
setup and some relevant results are presented in chapter 4.

A classic lowpass filter is used in the current version of rpen. From the
unfiltered data coming from Wintracker, it is evident that most of the unex-
pected data is high frequency noise. This noise is causing erratic jumpy cursor
movements on the screen. To reduce the noise level, we employed a Butterworth
lowpass filter. What the filter does is, filter out the high frequencies from the
input signal and let the low frequency signal pass unaltered. The critical factor
is to determine the cut off frequency. This is the frequency beyond which all the
frequencies needs to be filtered out. The power spectral density of the unfiltered
data helped us to find this cutoff frequency.

After initial experimentation with the Labview measurement tool, we em-
ployed the following calculations derived from [SK88] to determine the desired
lowpass filter equation to be implemented in the device driver. We supplied the
sampling rate of the system and the required cutoff frequency to find out the
desired lowpass filter. The only design constant for the lowpass filter is α, where

α =
sin(θc/2 − θ′

c
/2)

sin(θc/2 + θ′
c
/2)

(3.1)

For the Butterworth lowpass digital prototype, θc represents the prototype’s crit-
ical or cutoff frequency (ideal cutoff frequency), which is π/2 [SK88]. θ′

c
is the

corresponding critical or cutoff frequency for the desired lowpass filter. We can

51

get θ′
c

as follows:

θ′
c
=

ωc

fs

where, ωc = 2πfc (3.2)

Here, fs = sample rate or sampling frequency, and fc = cutoff frequency.

To find out desired lowpass filter, we used a second order lowpass prototype
as follows:

H(z) =
0.293(z + 1)2

z2 + 0.173
where, z =

z − α

1 − αz
(3.3)

The general representation of the solution of equation (3.3) is as follows:

X(z)

U(z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
(3.4)

where, X(z) is the z-transformation of output sequence and U(z) is the z-
transformation of the input sequence. Details on z-transform can be found in
[Apl00] and [SK88].

Now, by performing the inverse z-transformation on equation (3.4) we will
obtain an equation in terms of the regular input sequence and output sequence.
The resultant solution gives us

x(k) = b0u(k) + b1u(k − 1) + b2u(k − 2) − a1x(k − 1) − a2x(k − 2) (3.5)

where, a1, a2, b0, b1 and b2 are all constants and k = current time. Thus, in terms
of rpen:

u(k) = current sensor input
u(k − 1) = last sensor input
u(k − 2) = prior to last sensor input
x(k) = current filter output
x(k − 1) = last filter output
x(k − 2) = prior to last filter output

Equation (3.5) is implemented as a filter inside the rpen device driver. As
mentioned earlier, specific cutoff frequency, its effect on the filter constants and
lastly on the sensor data is explained in chapter 4.

3.5 Implementation Design of Rpen

The design issues regarding the Human Computer Interaction (HCI) of rpen was
already addressed in chapter 2. There we have addressed why rpen employs
the rframe concept, which resembles the touch screen like interaction concept.
We have also suggested a stylus based hardware for rpen. Other human factor
issues are also raised and addressed in the context of rpen. Here in this section,

52

we will be presenting the implementation design of rpen, i.e., how the device is
implemented, what are the different components of which it is composed and
their interactions.

Before going into the details of how rpen is implemented, the design features
of rpen as a 3D absolute pointing device are presented below:

1. Sensor movement in 3D space is transformed into screen cursor movements.

2. User interacts with the system through a defined work surface which is
referred to as the rframe. The rframe is a representation of the display
screen, at an arbitrary position on 3D space.

3. The rframe can be of any size and orientation. Also, it can be configured
anywhere on 3D space.

4. The user can define the rframe.

5. The user is able to produce left click and right click events.

6. For ease of operation, rpen has an auto adjust mode. In this mode, if
the rpen is not active for certain period of time, it will automatically auto
adjust its rframe to a new location defined by the user, the next time that
the user wants to start using the rpen.

3.5.1 High Level Design

High level design of the rpen is given in figure 3.10. Wintracker II communicates
with the host system through the USB interface. As discussed in section 3.2.1.4,
the rpen device driver controls the device through the interface provided by the
USB core. The rpen device driver also communicates with the user space ap-
plications through sysfs nodes maintained through the USB subsystem. As the
rpen is an input device, it reports the input events through the input event driver
provided by the input subsystem of Linux. The input events are propagated to
the user space applications (X Windows and others) through the ‘/dev’ nodes,
as specified in section 3.2.1.5.

The user can define the rpen work surface, rframe, with the help of ‘rframeDe-
fApp’ application, discussed below. Rframe and other related information is fed
to the rpen device driver through the sysfs nodes. This information is required
by the device driver to transform the input data of Wintracker to a cursor posi-
tion on the display. To define the rframe, display information is required. The
rframeDefApp gets this information from X Windows.

There are two other daemon processes that work with rpen. Both these
processes communicate with rpen through sysfs, and also communicate with X

53

Figure 3.10: High level rpen design.

54

Windows. An initialization daemon is defined to perform two tasks. One is to
update the sysfs nodes with the rframe data being used. The other is to update
the rframe automatically when the screen resolution, more specifically, the aspect
ratio of the display is changed. Similarly, a feedback daemon is defined to perform
two tasks. One is to use the cursor appearance to provide visual feedback of
the current sensor position with respect to the rframe. It does this through X
Windows. It also produces audio feedback. Another job of the feedback daemon
is to facilitate the auto adjust mode.

3.5.2 Rframe

An rframe is a conceptual work surface for the rpen. It can be defined any where
in 3D space. It basically represents the display of the monitor. It is rectangular in
shape but as it is defined in 3D space, unlike the monitor display, it most closely
represents a cube. The rframe can be of any size, only limited by the sensor’s
capability and effective interaction with the system. If within the sensor’s reach,
a relatively large rframe (in comparison to the display) could make interaction
with the system easier. Whereas, a much smaller rframe, in comparison to the
display, will likely make interaction difficult.

The rframe is conceived to be definable any where in 3D space. However,
for the ease of operation and implementation in the current version of rpen, we
begin with a rframe definable perfectly horizontal to three specific planes, which
are the XY-plane, the XZ-plane and the YZ-plane. We refer to these as rframe
types. The rframe that is definable anywhere on the space is called the ‘generic
type’. The generic rframe is not fully functional in the current version of rpen.
However, we will present its concepts, and how it will work in the future.

The rectangular rframe truly represents the display of the host system. Not
only do they have the same shape but they also must have the same aspect ratio.
This is the reason why in the initialization daemon, the rframe is updated if the
display’s set aspect ratio does not match that of the active rframe.

All the rframes other than the generic type, work in similar way. The rframe
height and width are parallel to the axis of a plane, i.e., a rframe defined on
XY-plane has its width along the X-axis and height along the Y-axis. Similarly,
for the rframe defined on the XZ-plane, the width is parallel to the X-axis and
the height of the rframe is along the Z-axis. For a rframe defined on the YZ-plane
the width of the rframe is parallel to the Y-axis and the height parallel to the
Z-axis. These restrictions on the rframe have made the calculations inside the
transfer function less complex both in terms of logic and time. Simple plus or
minus is good enough to determine the 3D position of the sensor with respect to
the rframe.

The third dimension of a non-generic rframe represents distance from the

55

rframe surface. A point can be above the rframe surface or below the surface.
A simple minus operation from the rframe’s third dimension is good enough to
give us this information. This is done this way because of the limitation of
the current version of rpen hardware, which can only operate in the positive
quadrants. Figure 3.11 provides an example of these types of rframes (other than
generic). Here, minX, minY and minZ are the minimum distances from X, Y
and Z axes, respectively. These values are derived from the three points defining
the rframe. The figure is showing how a position data point (P (x, y, z)) from
the sensor is transformed into a point (P (x1, y1, z1)) with respect to the defined
rframe.

Figure 3.11: An example of a rframe on XY-plane. Rframes on the XZ-plane and
on the YZ-plane will be similar.

A generic rframe could be anywhere in 3D space, and have an arbitrary
orientation. Determining a point or sensor position with respect to this type of
rframe is completely different than for the other types of rframe. As with any
other rframe type, the process starts with defining the rframe with three points.
The three points should be defined in such a way that they create a right turn
or clockwise movement as shown in figure 3.12.

In figure 3.12, the three points P1, P2 and P3 form the vectors
−−→
P2P1 and

−−→
P2P3.−−→

P2P3 is clockwise from
−−→
P2P1 and thus making a right turn at point P2. This means

the cross product of vector
−−→
P2P1 and

−−→
P2P3 will be positive [CLR01]. Basically

the cross product produces a vector which is perpendicular to both vectors used
to produce the cross product. This new perpendicular vector is referred to as the
normal vector. The normal vector of a plane is used to indicate the front and back
side of the plane [WLH07]. The dot product of the normal vector (normalized)
with any position vector (vector from the origin to the point) or point on the
plane produces a constant value kn [Fel09][Len04][Dav61]. From this we can
determine which side of a plane any given point P0 (used in the calculation as

56

Figure 3.12: An example of a generic rframe, showing the normal vector.

position vector) lies, using the following calculations [Fel09][Len04][VB04]:

P0(x, y.z) • normal vector<x, y, z> = constant value kP0 (3.6)

if, kP0 = kn then the point P0 is in the plane
if, kP0 >kn then the point P0 is on the front side
if, kP0 <kn then the point P0 is on the back side

Given a point P0, we need to interpret its position in term of the generic
rfame. We do this by dtermining a point P ′

0
on the plane such that if we place

a normal vector (with suitably length) at P ′

0
, it would intersect P0. The x and

y coordinate of P ′

0
would be used to determine P0 corresponding screen position,

and the length of
−−→
P ′

0
P0 would determine the z coordinate. We have used 3D

geometric calculations found in [Fel09][Len04][VB04][Ste03] to determine this.

Figure 3.13: Calculating a point on the generic rframe.

The distance between a point and a plane is the length of a perpendicular

57

line from the plane to the point. The point where this line intersects the plane
is the reflected point on the plane, of the given point. As shown in figure 3.13,

let it be P ′

0
. Now the vector

−−→
P ′

0
P0 is a parallel vector to the normal vector of the

plane. So to calculate the line equation for P ′

0
P0, we can use the normal vector

and P0. By calculating the intersection point of this line and the plane we can

determine the value of P ′

0
. Once we know P ′

0
, we can determine the

−−→
P ′

0
P0. Now,

from the perspective of the monitor display, the x, y and z values of point P0 will
be

zP0 = length of
−−→
P0P

′

0

xP0 = distance between the line which defines the height of the rframe and
P ′

0
. In our example from figure 3.13, this would be P1P2.

yP0 = distance between the line which defines the width of the rframe and
P ′

0
. In our example from figure 3.13, this would be P1P3.

The last step in this process is to determine whether the point P ′

0
is within

the polygon, defined by the rframe, or outside.

As described, the calculation process to find out a sensor position in respect
of a generic rframe is complicated and would require more computation time
than the other rframe types. The generic rframe is partially implemented in
the current version of rpen. However, in some tests we have found out that a
32-bit long integer is not big enough to hold some of the computation results,
namely, the constant values (k) described in equation (3.6). A 64-bit long integer
is needed for these values. This means that, a fully functional generic rframe
implementation has to run on a 64-bit machine with a 64-bit Linux Kernel.

3.5.3 Low Level Design

Here in this section we will describe each individual components of rpen in detail
and how they fulfill the design features as specified in section 3.5.1.

3.5.3.1 Rpen Device Driver

Figure 3.14 shows the structure of the rpen device driver. We have already
discussed the USB device driver specific operations in section 3.2.1.4 and the
input device driver specific operations in section 3.2.1.5. Most of the Wintracker
specific operations, like the data processing in 3.3.2 and filtering in 3.4, have also
been discussed. Here we will mostly discuss the rpen specific operations and some
part of the Wintracker specific operations. We will elaborate on the data and
control flow read from the Wintracker, and how this information is translated to
input events.

58

Figure 3.14: Rpen device driver structure.

Data Communication :

Data communication between the rpen device driver and the user space pro-
cesses are bidirectional. There is some data that the device driver needs from
the user space processes to work appropriately, whereas, some data is also re-
quired by the user space processes to carry out their functionality and provide
user feedback. The set of data that is communicated is as follows:

1. Rframe related information:

(a) The three points that define the rframe. These values are only read by
the device driver and written by all the three user space processes (the
device driver reads these values from the sysfs node and the user-space
processes write these values as they change the rframe); thus, could
be identified as IN only. These values are used by the device driver to
calculate the normal vector of the rframe plane. Currently, the normal
vector is calculated for all rframe types, but, only used for the generic
type rframe.

(b) Minimum and maximum values of X, Y and Z coordinates inside the
rframe. These values are used by the device driver to transform the
sensor data to cursor position and for smoothing the sensor data.

59

These values are also IN only parameters. Rather than being deter-
mined from the three points of rframe, these values are fed from the
user space processes to save calculation time inside the device driver.

(c) Rframe resolution information is used in the transformation process of
the sensor position to the cursor position. As the initialization daemon
checks these values to see if the rframe data used by the device driver
is up to date, rframe resolution data is not an IN only parameter.

(d) Threshold data (described in section 3.5.3.3) is an IN only parame-
ter. These values are used by the transfer function to generate events
appropriately.

2. Display resolution: This is the display resolution set on the host system.
This value is used to set maximum acceptable position values of the input
device. As the sensor data is mostly fed to the input core as cursor position,
the maximum values it can reach are the display width and height. Also
the display is only two dimensional and the display width is viewed as the
X-axis and the display height is viewed as Y-axis. As such we have set
display width as the maximum X value of the rpen input device and height
as the maximum Y value.

As rpen is a 3D input device, we defined the maximum Z value of the
device to be the maximum range of the sensor. This value is also passed
to the device driver from the user space as part of the display resolution.
Like the rframe resolution data, display resolution is also accessed by the
initialization daemon for the same reason. This is thus an IN parameter.

3. Multiplication factor: These values are used to transform sensor data to
display the cursor position and they are IN only parameters.

4. Number of samples to average: This value is fed by the rframeDefApp ap-
plication and thus is an IN only parameter. This value is used in the sensor
data smoothing process.

5. Flags: There are three flag parameters that are being communicated back
and forth between user space and the device driver and are thus IN and
OUT parameters. These flags are:

(a) Transfer flag: This flag indicates to the device driver whether to use
or not to use the transfer function. This function transforms sensor
data on a rframe to cursor position on the display.

(b) Update flag: This flag notifies the device driver whether or not the
user space processes have updated any of the parameters that it is
using.

60

(c) Rframe orientation flag: This contains the rframe type data (rframe
type is explained in section 3.5.2). Rframe orientation flag is a very
important flag for the transfer function.

6. Cursor position: This is the reported 3D cursor position to the input event
driver. This parameter is OUT only as it is an output of the device driver
and used by the user space processes.

7. Click event: This is also an OUT only parameter. This is used to com-
municate the occurrence of a left button click event. This is used by the
feedback daemon to simulate a mouse button click sound.

Transfer Function: The transfer function gets the sensor’s 6DOF data and
reports to the input event driver the transformed cursor position as well as the
button click events. The current version of rpen does not have any button. So
the click events are generated from the transfer function through interpretation
of the sensor position and orientation, which we refer to as “user gestures.”

The transfer function does not always report the transformed cursor position
to the input core and the user space processes. When there is no ‘active’ rframe
or the user wants to define a new rframe, the transfer flag is set to signal to
the device driver to stop transforming the sensor data, although the data is still
filtered. Instead it just reports the filtered sensor data. Also, no click events are
reported.

When the transfer function is set to transform the sensor data, it first (step
1) interpret, if the right click is initiated or not. Right click can be initiated if
the sensor is twisted or rolled to the right on the X-axis more than or equal to
25°. The next step (step 2) is to determine the sensor data in respect to the
active rframe. As described in section 3.5.2, all the rframe types other than the
generic type interpret the sensor data similarly. Section 3.5.2, also describe how
it is done for the generic rframe.

The next step (step 3) is to interpret the processed point in terms of the
display screen. As we have mentioned earlier, the monitor display is two dimen-
sional. The monitor display coordinates are represented as shown in figure 3.15.
In this step, we represent the coordinates of the sensor data transformed in terms
of the rframe’s width and height to the display’s x and y coordinates respectively.
For example, for the rframe on the XY-plane, the sensor’s data coordinates (x,
y) from step 2 are transformed in terms of (x, y) coordinates of the monitor. For
a rframe on the XZ-plane, the (x, z) coordinates are interpreted as (x, y) coordi-
nates of the display. For a rframe on the YZ-plane, the (y, z) coordinates of the
sensor position are transformed in terms of (x, y) of the display. Lastly, for the
generic rframe the distance from the line signifying the height of the rframe (the
one nearest to the origin, as there will be two such lines) and the line defining

61

Figure 3.15: Coordinate system for the monitor display.

the width of the rframe (similarly, nearest to the origin), as described in section
3.5.2, is transformed to (x, y) coordinates of the display. The third coordinate is
left as it is and reported to the input core and sysfs node.

The fourth step (step 4) is to compensate for the difference of the rframe
to the display resolution. This transformation is done only on the two position
coordinates, in terms of the monitor display, x and y. The calculation is as
following:

Transformed position value = (Position value*Display height)/Rframe
height

After this transformation, the (x, y) coordinates are reported to the input core
and sysfs node.

The three filtered orientation values (roll, pitch and yaw) do not go through
any transformation and are reported directly to the input core. The position data
transformation can be explained through the following example. Let an rframe
(R) on XY plane be defined with three points P1(828, 502, 2350), P2(828, 3649, 2350)
and P3(4762, 502, 2350) and the screen resolution be 1280x1024. Now, a sensor
position Pk(2400, 2600, 2400) will be translated (see figure 3.11) to P ′

k
(1572, 2098,−50)

in respect to the rframe (R). Here, −50 signifies that the point is above the rframe
(R) surface. Now, transforming (x,y) coordinates of the point P ′

k
in respect to the

display resolution will be ((1572 ∗ 1024)/3147, (2098 ∗ 1024)/3147) = (511, 682).
So, the input core will get (511, 682,−50) for the sensor data Pk.

To generate the left click and left double click, further processing is done with
the z-coordinate of the display and the sensor’s roll angle value, i.e., orientation
around the X-axis. There are two thresholds on the z-direction that can influence
the generated input events. One is below the surface of the rframe, called the
surface threshold, and the other is the clutch threshold above the surface of the

62

rframe. Above the clutch threshold, the sensor position is not reported to the
input core; only the z-position is updated in the sysfs for proper visual feedback
by the feedback daemon. On the other hand when the sensor position is below the
surface threshold, it is interpreted to have initiated a left click. One important
aspect of the left button click to remember is that a complete left click is a
combination of pressing the button and then releasing it. Similarly in our case, it
is going below the surface threshold and then coming back above the threshold.

Due to the sensor’s limitation as well as difficulty associated with operating
a spatial device, clicking on the same spot twice simultaneously is a difficult
operation to achieve. For ease of use, we implemented left double clicking so that
it depends on the orientation of the sensor about the X-axis, when it is below the
surface threshold. When the sensor is below the surface threshold and is twisted
on to the left more than 35°, a left double click is generated.

Due to our choice of sensor (electromagnetic), its accuracy, and its sampling
frequency, we found that typically the rpen’s screen location at the beginning of a
left click did not match its position when it reached the threshold or the bottom
of the left click motion. This resulted in clicking in the wrong spot and sometimes
initiating a drag operation. This is due to the fact that the path of the rpen was
an arc due to rotation around the fingers that held it, or the user’s wrist. This
prompted us to implement some features which we think will increase ease of
use. One such feature is, if the user makes a pronounced downward movement
from above the surface threshold of the rframe down below the threshold, then
it is interpreted as an intention to left click and the point where this downward
movement started is recorded as the click point. But, if the sensor moves more
than 20mm in any of the other two directions then this intention is invalidated.
While the rpen is in the “intention to left click” state, if the displacement of the
sensor is less then 20mm, none of the 6DOF events are reported to the input
core. This means for a drag or select motion to start, the sensor has to move
more than 20mm.

Another feature is to stop tracking sensor movements if it is tilted more than
8.5°on the right side of the X-axis. This is interpreted as intention of making a
right click. Similarly, when below the surface threshold if the sensor is tilted
more than 8.0°to the left of the X-axis, the sensor movements are not tracked
until it comes back up from the tilt or goes above the threshold. This gesture is
interpreted as an intention for a left double click.

Dataflow at Each Data Reading :

The flow of data and control information within the device driver, is shown
in figure 3.16.

We have already discussed the steps up to filtering and transforming the

63

Figure 3.16: Dataflow diagram of the rpen device driver, showing dataflow on
each sensor data read.

64

data. We now discuss the jitter filter. All it does is check if the filtered value
of the lowpass filter is within 0.3mm range for position data and 0.99°for the
orientation data, in comparison to previous sensor values. If so, it filters this
data out; otherwise it lets the lowpass filter value pass through. This jitter filter
does not filter out sensor data if it is the same as the previous sensor input. The
jitter filter helps to filter out small, jumpy sensor values.

Even after the lowpass and jitter filter, the sensor data was found to be jumpy
and noisy. To smooth out the data, we implemented averaging of the previous
filter values plus the last output value of the averaging (smoothing) operation.
To do an effective averaging, we introduced a boundary check function. The
function does not allow the position values to go too far beyond the boundaries
set by the rframe and clutch threshold. The sensor position can get at most 2mm
outside the set boundary.

The employed smoothing technique is basically a sliding average. It means,
it averages a certain number of recent filter values. The number of samples to
average is definable by the user, and can be at most 125. This is done for the
ease of use of the user. Startup users may like an increased number of averaging
points. As users gets used to the system, they typically like as little averaging as
possible. It is observed that 25-30 data points to average is good for both smooth
but responsive cursor movements.

3.5.3.2 Rframe Definition Application

The rframe definition application ‘rframeDefApp’, is developed to facilitate fea-
tures related to defining an rframe. Defined rframes are primarily used by the
rpen device driver to interpret the sensor movements in accordance with the char-
acteristics of rpen. The user can define multiple rframes using the application,
each having a different rframe type, as shown in figure 3.17. But, only one rframe
can be active at a time and this active rframe is used by the device driver and
the other daemon processes. If there is no active rframe defined, then the sensor
data is reported after filtering; averaging and the transfer function are not used.
Also, the two daemon processes can not perform any of their assigned tasks.

The rframe definition application uses an XML data structure to store de-
fined rframes, current display information and other data items that are defined
using the application. The GUI of the application is also stored in XML format,
but in a different file and is rendered through the GnomeUI libraries. The design
structure of Rframe Definition Application is given in figure 3.18.

Other than defining new rframes, the user can update, delete and activate
rframes, as can be seen in figure 3.17. The user cannot delete an active rframe.
A new rframe can be defined through the interface, as shown in figure 3.19.
When the user wants to update an existing rframe or define a new rframe, the

65

Figure 3.17: Rframe definition application UI - page 1.

Figure 3.18: Rframe definition application structure.

66

application sends a signal to the device driver through sysfs node, to send filtered
sensor data only, i.e., when using the interface, shown in figure 3.19, the rpen
is not using any rframe. When the user is done using this interface, the device
driver is commanded again to go back to using the transfer function and the
active rframe.

Figure 3.19: Rframe definition application UI - page 2.

When defining a rframe, an user has to provide the rframe type, a unique
rframe name, three points that define the rframe, the threshold values and an
indication whether or not this rframe should be defined as the active rframe.
Here, the rframe name works as the primary key, so, the user must provide a
unique name for each rframe. If an rframe is given a duplicate rframe name,
then it is not saved by the application. During the rframe defining process, the
user may not be able to use the rpen in a meaningful way, other than to define
three points. During this process, the user is most likely to use the keyboard to
enter commands. To set each of the three points that defines the rframe, the user
must use the ‘ctrl+l’ key. The points have to be defined in the ways described
in section 3.5.2, making a right turn.

It is not easy to define all three points of the rframe without a physical
reference. The aspect ratio of the rframe has to match that of the monitor
display. The process is easier for the rframes on XY-plane, XZ-plane and YZ-
plane, but much harder for the generic rframe. For rframes on specific planes

67

such as the XY plane, the axis of the width and height is already known. So
for these rframes when the user has defined the first two points, it is known on
which axis the third point will be and the length of that side can be derived by
using the display aspect ratio. The third point is then adjusted following this
rule, after the user has given an approximate third point.

The process is more complicated for the generic rframe. It is not known from
the first two points whether they define the height or the width of the rframe. So,
the approximate third point has to be given by the user to compare the lengths
of the two lines (P1P2 and P1P3 - see figure 3.20) according to the display aspect
ratio to find out which one is the width and which one is the height.

All the rframe types use the same technique (as described below) to adjust
the third point P3 (see figure 3.20). As shown in figure 3.20, we know that line
P1P2 and P1P3 are supposed to be perpendicular to each other. We can also
predict which line is the width of the rframe and which one is the height. So the
lengths of both lines are known. Now, we can adjust the third point following
the calculations given below.

Figure 3.20: Adjustment process of a new rframe.

P1, P2 and P3 are the three points given by the user. Let, P ′′

3
be the new

adjusted point of P3. In the following calculations we use these points as position

68

vectors and visa versa. From the figure 3.20 we can see:

−−→
P ′

3
P3 = Proj−−−→

P2P1

−−→
P1P3 (3.7)

Proj−−−→
P2P1

−−→
P1P3 = (

−−→
P2P1 •

−−→
P1P3

||
−−→
P2P1||

2
)
−−→
P2P1 (3.8)

−−→
P1P

′

3
=

−−→
P1P3 − Proj−−−→

P2P1

−−→
P1P3 (3.9)

P ′′

3
= P1 + d

−−→
P1P

′

3

||
−−→
P1P

′

3
||

(3.10)

as,
−−−→
P1P

′′

3
= d

−−→
P1P

′

3

||
−−→
P1P

′

3
||

(3.11)

Here, Proj−−−→
P2P1

−−→
P1P3 means vector projection of

−−→
P1P3 onto

−−→
P2P1 and d = the

required length of P1P3, satisfying the aspect ratio of the set display, which will
be adjusted by the above calculation to P1P

′′

3
having the same length d. More

information about how to deal with similar vector calculations and projections
can be found in [Len04][VB04][Ste03].

Other than rframe specific operations, ‘rframeDefApp’ is used to set the
sensor’s maximum limit and to set the number of sensor values to be used in
the smoothing operation, as shown in figure 3.21. This interface also shows the
display resolution and other related information.

The last task the rframe definition application does is to set the auto adjust
parameters to be used by the feedback daemon, as shown in figure 3.22. User
can switch on/off the auto adjust mode as well as set the time limit for the
sensor to be idle to initiate the process of adjusting the rframe automatically.
For simplicity, we only allow a generic rframe to be adjusted automatically as
one of the three other rframe types, i.e., as a rframe on XY-plane or XZ-plane or
YZ-plane.

3.5.3.3 Rpen Daemons

As mentioned in section 3.5.1, there are two daemon processes that works with
rpen. One is the ‘Initialization Daemon’ and the other is the ‘Feedback Daemon’.
The main idea behind the initialization daemon is to communicate the active
rframe information to the rpen device driver on system startup. Active rframe
information during modification and new active rframe creation is communicated
to the rpen device driver by the rframe definition application. Rpen gets the
rframe and other related data through sysfs nodes. Sysfs is a RAM based file
system. During a system shutdown or reboot sysfs loses the data it contains. So,

69

Figure 3.21: Rframe definition application UI - page 3.

Figure 3.22: Rframe definition application UI - page 4.

70

after the system startup, these sysfs nodes need to be repopulated in order for
the processes dependent on them to work properly. The initialization daemon
does this for the rpen device.

Figure 3.23: Initialization daemon structure.

The other responsibility of this process is to update the rframe according to
the set display resolution. As discussed earlier, the display aspect ratio is very
important for the rframe to follow. So if the user changes the display aspect ratio
while using the rpen, the initialization daemon will adjust the rframe according
to the display aspect ratio within at most two and half minutes. The structure
of the initialization daemon is given in figure 3.23.

It is difficult for the user to use an rpen with an rframe without a physical
reference. The user might unintentionally come down the surface threshold and
produce a click. The user might also go too high above the rframe surface to
accidentally trigger the clutch mode and wonder why the cursor is not moving.
It might also happen that during a drag event the sensor rises above the surface
threshold, as hand movements in the air are not always reliable. So, the feedback
daemon helps the user to obtain a visual feedback through the cursor appearance.
It is done on the basis of z-movement, in terms of the monitor display, of the
sensor.

The cursor can take seven shapes, as shown in figure 3.24. Above the clutch
threshold it takes a diamond shape. Within the clutch threshold and surface

71

Figure 3.24: Rframe surface layers and corresponding cursor appearance.

Figure 3.25: Feedback daemon structure.

72

proximity threshold it is the default left arrow cursor. In between the proximity
threshold and surface of the rframe, the cursor appears as a double sided arrow.
This layer helps the user to keep the sensor within a good distance from the
surface threshold (not too far) so that user can go for a click whenever required
without being bothered about accidental clicks. Below the surface and within
the surface threshold the cursor appears as a down arrow. It lets the user know
that they are about to click. Below the surface threshold it appears as a dotted
box, showing it is in click mode. To help the user not to exit the drag motion
accidentally, the cursor appears as an upward arrow when the user is coming
up from below the surface threshold towards it. The upward arrow will appear
within the surface threshold and selection threshold. To signify the sensor is out
of the rframe boundary, the cursor appears like a cross.

The feedback daemon also takes care of the auto adjust mode, as discussed
earlier. If the auto adjust mode is ‘on’, the daemon checks if the sensor is idle for
more than the set time limit. If so, then the auto adjust flag is switched on and
the next time the user picks up the sensor and holds it for at least five seconds at
a position, that position is taken as the first point (P1 as shown in figure 3.20).
The other two points are calculated on the basis of this point and the saved
width and height of the active rframe. As the other two points are generated
from the first point, it is recommended to be defined nearer to the base station
(transmitter), which is the origin (0, 0, 0). The structure of the feedback daemon
is shown in figure 3.25.

3.6 Usability Testing

Usability of a Human Computer Interaction (HCI) interface can not be defined
as plainly as ‘user friendly’. The problem of this interpretation is not that it does
not convey the meaning, rather in terms of HCI it is not measurable, thus, too
‘vague’ [SP05]. Usability in HCI is sometimes defined by the level of frustration
of the user using an interface. A user must be able to accomplish his or her
tasks through the interface without any abstraction, difficulty or hardship. The
interface must seem to “disappear” to the user, enabling seamless interaction
with the system [SP05].

Usability for the interface must be measurable. A measurable set of criteria
helps guide the designer to create better, effective and usable interfaces. [RC08]
described usability in terms of usefulness, efficiency, effectiveness, learnability,
satisfaction, and accessibility.

1. Usefulness: This criterion measures the level of accomplishment of the tasks
the user want to do through the interface. This is the most important
criterion within the set of criteria of usability. Because, if an interface is

73

deemed not useful then there is no point in pursuing it.

2. Efficiency: It involves the amount of time required to accomplish the given
tasks.

3. Effectiveness: This criterion measures the error rate as well as whether the
interface does what it suppose to do.

4. Learnability: It has to do with the amount of training time required by the
user to learn the interface and the amount of time to relearn the interface
after a while.

5. Satisfaction: It is user’s opinion on the interface.

6. Accessibility: This criterion answers the question about whether the inter-
face provides adequate access to complete the tasks that the user needs to
perform.

Ben Shneiderman and Catherine Plaisant termed these as admirable goals
but they lack practical evaluation [SP05]. They suggested a different set of cri-
teria focusing on efficiency and satisfaction. In their opinion these are easily
measurable. Their set of criteria is as follows:

1. Time to learn - the interface

2. Speed of performance - how long it takes to complete a task

3. Rate of errors - by user

4. Retention over time - how well the user remembers how to operate the
interface

5. Subjective satisfaction - how much the user liked the interface

3.6.1 Usability Measuring Techniques

To measure usability of an interface, the practitioners and academics have been
using many tools and techniques. Depending on the set of circumstances and the
interface to be tested, usually a combination of these methods might be used. The
goal of doing the test also influences the choice of usability measuring techniques.
The product development life cycle also has considerable influence on the choice
of method. Some of the techniques have similar characteristics, thus they can
be grouped together. Here we present some of the major techniques used for
measuring usability.

74

Ethnographic Research: In this method the test moderator or the analyst
observes the users performing their tasks in the actual work environment. As
described in [Car03], the observer “shadows” a particular user, and witnesses the
situations the participant user goes through during the day. This technique is
usually utilized early in the design phase of an interface. The participants of this
test are the actual users of the interface.

Participatory Design: It is basically a part of the design process. Partic-
ipant users become part of the design team. This technique promotes collabora-
tion between the users and the designers in identifying usability issues and their
solutions.

Expert Reviews: There are several methods that fall under this broad
category. The common thing about these methods is that the participant user is
an expert, whose expertise could be in the area of the application or user interface
design [SP05]. Expert reviews can be done at any time in the design phase. These
reviews can be arranged at short notice and finished within a short time frame.
The methods that fall under this category are:

• Heuristic Evaluation

• Guidelines Review

• Consistency Inspection

• Cognitive Walkthrough

• Formal Usability Inspection

Survey: A survey can reach a broad range of users of the product. The
results of a large enough survey can be generalized to an entire population. The
survey is good in providing statistical data and good for finished products. A
well designed questionnaire is crucial for the success of a survey.

Pluralistic Walkthrough: This method systematically examines the us-
ability of an interface from a task-based point of view. Multiple groups made
up of users, developers, and designers, independently perform tasks in their own
way. Then the groups present their findings to the other groups.

Empirical Method: This method works by determining a hypothesis and
a set of objective measures. The user then tests the interface in a controlled
environment to prove or disprove the hypothesis. This method can establish
cause and effect of a specific problem but can be time consuming.

Formal Design Analysis: This is a model based usability measuring tool.
Models like ”Goals, Operators, Methods, and Selection Rules” (GOMS) require
expert users. This method is difficult to implement and misses some important
usability measures.

75

Interviews and Focus Group Discussions: An interview of individual
users can be done just after the usability test. This can be done in the form of
questionnaire as well. This technique can reveal the specific concerns about the
interface. A focus group can be used to verify these comments. This technique
has the potential to go for in-depth user response and assessment of the interface.

Logging Actual Use: This technique uses automated systems and soft-
ware to record each participants’ move and interaction. It produces a huge
amount of data to be analyzed.

Usability Testing in Lab Environment: This technique is used to col-
lect experimental data from representative users of the interface, usually in a
lab environment. There are two main approaches used for the testing. One is
the empirical method discussed earlier and the other is relatively less formal and
employs an interactive process to gradually shape the interface. There are many
forms of usability testing [SP05], some of which are:

• Paper Mockups uses paper mockup interface or layout of the interface

• Discount Usability Test it uses a quick-and-dirty approach to task analysis,
prototype development and interface testing.

• Competitive Usability Test - It tests the new interface with existing similar
products from competitors.

3.6.2 Usability Testing Methodology

Testing technique: We have employed a combination of the usability testing
techniques described in the last section. We used usability testing in a lab environ-
ment which utilizes some part of the empirical method. There was a pre-defined
set of tasks prepared for the participant users to perform. It was controlled in
the sense that the tasks were designed by the testers and we also supplied the
participant users with user instructions on how to perform the tasks. We did not
have a hypothesis to prove or disprove for the usability test, but we had some
goals and objectives. We knew that the device is still under development and
has hardware limitations. So, we tried to make the users aware of these facts and
asked them to keep these in mind while evaluating the interface; thus, provide
feedback looking beyond those limitations.

To record test results, we used mainly the questionnaire technique and also
observation in some respect. After the users had finished the given set of tasks,
they were given a set of questions to answer. The users provided the answers
themselves, i.e., without any interaction with the test moderator. During the
test, users were also observed to check if they were trying to do something that
was not instructed, and why they were doing that. The questionnaire and the

76

instruction manual are included in Appendix A.

Testing goals and objectives: Our goal for the usability test was to find
out if rpen does have potential as a pointing device. We also wanted to find out
if the participants think rpen could be a viable alternative to any of the currently
used pointing devices.

Error or lack of precision is an important factor for this kind of usability
testing. Any flaws big or small, influence the user’s attitude towards the interface
[SP05]. Knowing about the limitations of rpen, we tried to get feedback only on
the concept of the rpen, decoupling it from the hardware. We encouraged users
to think beyond the demonstrated set of usage, on the scope of rpen’s use and
applicability.

Participants: For the usability test we chose to have five participants.
Rpen was developed as a proof-of-concept, thus, we were not trying to get a
diverse and large set of users. It is advocated in [Nie93] that a size of three to six
participants provide the best outcome of a usability test. Also, we were looking
for specialized opinion within a limited timeframe. We chose participants who
had prior knowledge of HCI or had considerable knowledge of similar kinds of
devices or technologies. We did not give particular attention to the age factor as
well as handedness of the participants. Even then, we obtained a fair distribution
of ages among the users although all of our users were right handed. It should be
mentioned here that two of the participants used the device at least once before
the usability test. The other three participants were seeing and working with the
device for the first time.

77

CHAPTER 4

Results

4.1 Introduction

This chapter presents the significant outcomes of the current study. The first
section shows the effects of filtering and smoothing techniques applied on the
raw data originating from the Wintracker. The data processing function inside
an input device driver is very time sensitive. Enough emphasis has been given
by the device driver experts that a device driver, specially an interrupt based
one, should only do the bare minimum when called on by the kernel to service
the device. As we envision rpen as interrupt based input device it is critical to
know how much time is taken by the ‘callback function’ (function that is called
to service the device) at each stage of computation. The second section presents
these results along with the effects of roundoff errors, as we could not use floating
point operations inside the kernel. Lastly, the observations and user feedback on
usability related issues are presented.

4.2 Filtering and Smoothing

This section describes the effects of filtering and smoothing on the raw sensor
data. It also presents the data aquisition process.

4.2.1 Test Setup

To understand the nature of noise mixed with the 6DOF sensor data that comes
from the Wintracker, we need to analyze the raw sensor data. A user-space pro-
gram was developed to obtain the raw data. We utilized ‘libusb’ in the program
to link with the hardware device. Libusb provides user-space mechanisms to com-
municate with USB hardware. As explained in chapter 3, Wintracker supports
only bulk data transfer both for receiving commands as well as sending sensor
data. Also, state changes of a sensor only can be known by requesting sensor
data from the Wintracker by the host system. We implemented both IN and
OUT bulk data transfer for the program using the API/Interface provided by
the libusb module. To get sensor data, the program implements an infinite loop

78

which requests sensor data every millisecond. The same program is also utilized
to run the raw data through the tested filters and smoothing techniques.

As the program is used for multiple tasks, it was implemented in stages.
These stages are defined with the target to identify the noise and to monitor the
changes to the data after applying a technique to filter out the identified noise.
The first stage is to obtain the raw sensor data as it comes from the hardware
system. The second stage is the lowpass filter. The third stage is the averaging.
These stages were not built at once. As we experimented with raw data and
different alternate solutions, the other two stages were built on the first stage.
These two stages were tuned as we monitored the effects these changes were
having on the input data. The test results will be presented in the same way, in
the next section.

As the current version of rpen mostly uses the sensor’s position data, we
have only analyzed the positional data through this program. We generalized the
outcome of the noise analysis as, noise influences the orientation data the same
way as it does the position data. So, the resultant filter and smoothing technique
are implemented for both the positional data as well as orientation data, in the
same manner.

Data produced at each stage is stored in an individual ASCII text file. All the
files have the same data format. The values are integer type, paired as time and
value, for each of the three coordinate data. All the columns are tab separated
and each line represents a row.

To better understand the noise and filtering effects we collected data by
moving the sensor in a predictable manner. We printed a rectangular shape
with the resolution of 20x27cm on a regular letter size paper. The size of the
rectangle is not important here, it just helped us to make the data predictable.
The rectangle was placed on the XY-plane and we moved the sensor on an average
8 complete rotations of the rectangle boundary per minute for one minute or so,
each session. This regular and predictable motion of the sensor gave us a signal,
roughly forming a sinusoidal wave for the x and y sensor position data. Figure 4.1
shows the ideal pattern for the acquired sensor data for x position information.
The pattern for y position will be similar. We expected that the acquired data
would not follow the shown ideal pattern due to several reasons. Firstly, the noise
in the working volume will create rough edges. Secondly, it is difficult to maintain
a constant paced smooth motion for human operaters. But, as the filtering and
smoothing techniques were applied on the acquired data, the rough edges on the
sine wave started to become smoother.

The raw data are used to produce the power spectral density. A power
spectral density has dimensions of power per Hz. This helps to identify the
periodicity of the signal. Using this spectrum we tried to identify the filter to
be used as well as critical frequencies for those filters. We tested both lowpass

79

Figure 4.1: Expected raw sensor data pattern for the x position information in
ideal scenario.

and bandpass filters in the Labview measurement tools [Nat09] with the critical
frequencies identified through the power spectral density. We observed that the
lowpass filter was producing the best outcome in reducing noise from the raw
sensor data.

The test environment was similar to the one used for the usability test.
Attention was given to reduce the presence of metals and other electromagnetic
devices from the test work area. But similar to the case in usability testing,
there were a considerable amount of metals and electromagnetic devices within
the ‘undesirable’ distance range.

4.2.2 Results

Here we present the results related to filtering and smoothing techniques applied
on the raw sensor data.

4.2.2.1 Power spectral density

The power spectral density (PSD), shown in figure 4.2, is formed using x position
data of the sensor. As described in the last section, we were running the data
acquisition program on the XY-plane. Thus, most of our activities were either on
the X-axis or Y-axis. We have observed that both of the x and y position data
produced a similar PSD graph.

As can be seen in the PSD graph (fig: 4.2), 3Hz seems to be a good cutoff
frequency. But to make sure that this frequency is good for the working device,
we tested the equation it produced in the second layer of the data acquisition
program. The process to derive the lowpass filter is already given in section 3.4.
To determine the values for the constants we needed to provide the sampling

80

Figure 4.2: Power spectral density of raw sensor data.

rate and cutoff frequency. Even though, the sampling rate or sampling frequency
for Wintracker is 90Hz for one sensor, in data acquisition program we polled the
device at 1Khz. So, the sampling frequency used to derive the equation is 1000Hz
and cutoff frequency 3Hz.

We also tested other cutoff frequencies. Starting from 1Hz to 7Hz including
the half points (like-2.5Hz), we have tested them using the above mentioned
program. We have seen that as the cutoff frequency increases from 3Hz, the
filter output starts to include more of the rough edges seen on the sinusoidal
wave, meaning the high frequency noises, making the cursor jump around. On
the other hand, as the cutoff frequency goes lower than 3Hz the sine wave gets
smoother and flatter; that is, starts to loose some of the actual values. Table 4.1
shows the constant values needed to define the filter for 2Hz, 3Hz and 4Hz cutoff
frequencies. In the next section the filter output for these cutoff frequencies are
given.

4.2.2.2 Lowpass Filter

In this section we present the output of the lowpass filter using 2Hz, 3Hz and
4Hz cutoff frequency. For test purposes the filter is applied on the x position
data only. Y positional data will produce similar results. Figure 4.3 shows that
2Hz cutoff frequency smoothed out the input signal data too much and in some
cases reduced the actual input values. With a cutoff frequency of 4Hz the input

81

Table 4.1: Constant values for the Butterworth lowpass filter at given cutoff
frequencies.

Cons./Cuttoff freq. 2Hz 3Hz 4Hz
b0 35 80 134
b1 71 161 268
b2 35 80 134
a1 18230 17352 16482
a2 8376 7666 7016

Figure 4.3: Raw sensor data and effect of 2Hz lowpass filter on the data.

82

Figure 4.4: Raw sensor data and effect of 3Hz lowpass filter on the data.

signal still contains some noise elements, as shown in figure 4.5, which could be
eliminated by lowering the cutoff frequency. Figure 4.4 shows the effects of a 3Hz
cutoff frequency lowpass filter, which we found to be the best choice for the input
signal.

4.2.2.3 Averaging Filter

Even after performing the filtering, as above, we found that there were sudden and
unexpected cursor movements. The jitter filter, as described in section 3.5.3.1,
helped to reduce the small jumpy movements. Still, there were some infrequent
movements with considerable amount of displacement from the intended position,
most often in the opposite direction. We tried to solve the problem with a
mechanism, which tracked the direction of the cursor for the last two positions
and checked the current movement direction. If the current movement direction
is not the same as the last movement then it waits to see the next movement
direction. This mechanism does not allow the cursor to move if two consecutive
movement directions do not match. But, this mechanism did not work. We
found that the unacceptable movement is not a single movement, rather, several
movements in that direction.

We also tried many other alternate solutions as well as different versions of
averaging before coming to try the currently implemented version of averaging.

83

Figure 4.5: Raw sensor data and effect of 4Hz lowpass filter on the data.

As mentioned in section 3.5.3.1, this is a sliding window averaging, meaning the
number of samples to average stays constant but the set of values to average
changes with each new lowpass filter output value. Say, if the sample to average
is 25 then each time it calculates the average on last 24 filter output values and the
current filter output, i.e., 25 filter output values, plus the last averaged output.
Each time the oldest value from the set of last 24 filter output is dropped and
current filter output is add into the set for the next calculation.

We tried with many different values for the number of samples to average.
We started off with this value being as low as 3. But, found out that values below
10 do not have any impact on the cursor movement. In fact, this value has to be
above 15 to see any kind of changes to the cursor movement. Figure 4.6 shows the
effects of the number of samples to average, the value starting at 15 is increased,
in steps, to 40. As the number to average increases, the signal or position data
starts to become smoother. But, it is observed that as this number is increased,
the cursor movement starts to show a time lag, i.e., the display cursor moves for
a noticeable time after the sensor movement.

This value will also depend on the environment, i.e., on the amount of elec-
tromagnetic distortion in the work space. If the distortion level is low, than the
number involved in that average can be small and if the distortion level is high
then a higher number will produce a satisfactory result. As mentioned earlier, in
our environment we found 25-30 to provide satisfactory results.

84

Figure 4.6: The effects of averaging of 15, 25, 30, and 40, 3Hz lowpass filter data
points.

85

Figure 4.7: The effects of the lowpass filter, jitter filter and averaging on raw
sensor data. Rpen implements this scheme to filter out noise and smooth filtered
data.

86

4.2.3 Summary

Figure 4.7 shows the effects of the currently implemented filtering and smoothing
techniques on senor’s raw 3D positional data. As mentioned in the last section,
before arriving at the current scheme we tried many other variations. The ma-
jority of the variations included averaging and jitter filters. Currently, we only
consider small movements of less than or equal to 0.3mm as jitter. But we also
implemented a filtering scheme where we also rejected sensor movements over a
certain displacement value. But, as the sampling rate of the hardware is slow,
most often the hardware produces big movements. Because of this, the jitter
filter having an upper limit, failed to produce satisfactory results.

4.3 Computation Time and Roundoff Errors

This section describes the computation time required by the rpen device driver at
each sensor data cycle. It also describes the roundoff errors made in calculation,
for not being able to use the floating point data structure. It also provides the
data aquisition process.

4.3.1 Test Setup

This test was conducted to learn about the computation time and roundoff errors
inside the rpen device driver. It is mentioned earlier that it is important for an
input device driver to complete its operations, on a single data feed from the
hardware, within a very short period of time. It is observed that most of the
regular input devices, like - mouse, joystick, touchpad, touch screen, etc, do very
little inside the device driver, which only interprets the input data format from
the hardware and reports it to the input event drivers. But, in our case, we must
do the filtering and smoothing on the input data and then using the rframe,
interpret the input data to produce input events. Thus, it is important for us to
analyze the computation time taken by the rpen device driver on each data read.

As already mentioned in chapter 3, we are required to roundoff some cal-
culations inside the rpen device driver. As the Linux Kernel does not support
floating point computations at the kernel level, all the variables used inside the
device driver are integer data type. Here we tested the impact of roundoffs inside
the device driver.

The data acquisition program used for filtering and smoothing (section 4.2),
was also used to test the computation time and examine the roundoff errors. The
test environment was similar to the earlier test. The data acquisition program
was updated to include the transfer function (described in section 3.5.3.1). This
function is same as used inside the rpen device driver. The only difference in

87

the transfer function is that it does not report input events to the input event
drivers; rather, outputs the events in an ASCII text file, simulating the calls to
input event APIs.

As we have used the transfer function to test the computation time as well as
roundoff errors, we needed to use rframes. We used reference rframes inside the
data acquisition program. Calculations involved in all types of rframe other than
the generic type, regardless of the size of the rframe, is similar; thus, they will
take the same computation time. But, roundoff errors might increase or decrease
depending on the size of the rframe. Thus, to evaluate the roundoff errors affected
by the size of the rframe, we used three different rframe sizes, with respect to
the set display; one rframe smaller than the display resolution, one equal and the
other rframe is bigger.

We wanted to investigate the computation time in three stages. As the filter-
ing and smoothing part of the device driver will change with the use of hardware,
we separately calculated the time that this segment of the code required. Then
we investigated the time taken by the transfer function and lastly, the total time
taken with each execution of the input data.

Roundoff is done at two stages of the device driver. One in inside the lowpass
filter and the other is during the transformation of the position, in terms of
rframe, to display the cursor position. So, we investigated the roundoff errors at
two stages: the lowpass filter, and the transfer function. As mentioned above, to
check roundoff effects with change of rframe resolution, we examined this using
three different scenarios.

The computation time and roundoff error analysis for the rframe types except
generic rframe type, will be same. As the generic rframe is partially implemented
we will not present its computation time or roundoff error analysis; however, time
complexity analysis will be given for the generic rframe. In terms of roundoff
error occurrence, the generic rframe type will have the same problems as the
other rframe types have plus few extra. We will identify these places where the
extra roundoff errors will occur for the generic rframe.

4.3.2 Computation Time and Roundoff Error Results

Here in this section, we present the results of time taken by the device driver on
each data read cycle as well as the results of the roundoff effect at each stage.

4.3.2.1 Computation Time

The time complexity of all the functions on each generation of the sensor data is
linear, i.e., Θ(n). This includes the filters, averaging and transfer function. From
the equation given in section 3.4, for filtering and the calcualtions done inside

88

the transfer function, as descibed in section 3.5.2 and 3.5.3.1, we can see that
they run in linear time. Even though the averaging involves a for loop, it has a
constant number of iterations which can be at most 125. Linear time complexity
is true for all types of rframe including generic. The generic rframe does involve
many more calculations and decision making (as described in section 3.5.2) than
the other types but still takes linear time to compute the events.

We tried to find out the computation time for the filters and smoothing,
transfer function and over all, from getting data from the hardware to reporting
of the events. A Intel®Core�2 Duo machine with 4GB RAM was used. ‘Clock()’
function provided by the C library was used to record the execution time. Events
generated through the use of rframe on the XY-plane failed to register any signif-
icant time on the machine clock. Thus, it can be generalized that, even though,
generic rframe involves more calculations then the other rframe types, total com-
putation time to produce events on the generic rframe will not be significant.

4.3.2.2 Roundoff Errors

There is a significant roundoff effect on filtered data. The reason for this effect
is that the roundoff error in many cases propagate to future filter values. Figure
4.8 shows this effect. The graphs are produced using the x position value only.
The same raw data is filtered with two version of the 3Hz lowpass filter. One
does the roundoff, as done inside the rpen device driver. The other utilizes the
double (float) data type to compute filtered values. This version also stores past
values in double data type. It should be mentioned here that, roundoff in this
case means getting the integer value, i.e., ignoring the decimal value, even if it
might be 0.99.

Though, in many cases these two versions of lowpass filter produce similar
data points, in some cases they are very different. It is seen that the roundoff
version of lowpass filter very closely resembles the raw data, filtering out the
noise. Whereas, the filter using floating point, in some cases distorted the input
data itself. It can be concluded from this experimentation that doing roundoff is
producing better filtering results than the floating point version.

Roundoff effects on transformed data are shown in figure 4.9. The transfor-
mation process involves a single division operation and the produced value is not
propagated to produce future values. Thus, it is found that the roundoff errors
produced in this stage, are not that significant. It is also observed that the size
of the rframe does not greatly influence the roundoff errors. Figure 4.9 shows
that the x cursor position produced by the floating point version closely follows
the cursor position produced by a roundoff version. It is also very similar for all
three rframe resolutions.

The generic rframe calculation differs from other rframe types in the transfer

89

Figure 4.8: The effects of rounding on filtered data.

90

Figure 4.9: Graphs showing roundoff effect on final 3D cursor position data.
Also showing roundoff effect depending on rframe resolution. The first one uses
a smaller rframe in relative to display resolution. In the second one, a equal sized
rframe is used. In the third scenario, a bigger rframe is utilized.

91

function. The generic rframe utilizes more divisions on top of the one utilized
by the other regular rframe types. But, these divisions are not used to produce
future cursor positions. The generic rframe also uses a square root function to
produce distance. So, if all the divisions used by the generic rframe are added
up, it might prove to be significant. As the generic rframe is not fully functional
in the current version of rpen we could not test this theory in this study. But, a
future study can test the significance of roundoff errors in calculating the cursor
position information for the generic rframe.

4.4 Observations on Rpen Use

Before we discuss user feedback from the usability test, we present some of our
note-worthy observations here in this section, from the perspective of a designer
and developer of rpen. These observations are on the usage of rpen, noted during
the development and testing period. Some of these observations are confirmed
by the usability test, whereas, some others are disputed, and some observations
are not noted by the users. The following are the observations:

1. Rpen is a pointing device; so, it has to stay close to the host system, partic-
ularly the monitor. Also, the transmitter and receiver themselves generate
some noise. An ergonomic computer environment will also have a revolv-
ing chair and height adjustable keyboard tray. Some, if not most, parts of
these objects are metal. So, it is very difficult to avoid metal and other
electromagnetic distortions surrounding the rpen. As such, it’s unlikely a
device sensitive to metal like the Wintracker would be practical for use in a
general office environment. Likely a device using radio triangulation would
fare much better.

2. The wire attached to the sensor is not only a source of distortion but also
an obstacle to comfortable and smooth use. For better usage experience,
the wire had to be wrapped around the hand.

3. The shape of the sensor is not comfortable to hold in one’s hand, especially
for an extended period of time. Because of the way rpen works, it is better
to hold the sensor attached to a finger or to hold it with two fingers. The
shape and size does not permit us to attach it to a finger and holding it
with two fingers might be a concern for some users. It is important to keep
the sensor up-right, not tilted, while hovering and not going for generating
click events.

4. It may be harder for some users, particularly initially, to work with the
rframe’s threshold concept. A visual feedback is very important is this case.

92

The current visual feedback via cursor appearance may not be helpful to
all users, because of the size of the cursor.

5. Due to electromagnetic distortions, rframe boundaries, most noticeably the
thresholds, are not linear or not on a flat plane. At places where the
distortion is high the threshold height will not be same as elsewhere.

6. Electromagnetic field distortion makes the cursor movements bumpy at
places, i.e., might create unexpected jumps. To reduce this effect new
users will want to increase the averaging or smoothing effect. This smooths
out the cursor movements but creates time lag, and small adjustments in
movement making tougher. But, as the user gains experience with the
device, s/he prefers less averaging. The observed range for the number of
samples to average was within 20-50 sample points.

7. The time taken to learn to operate the device is relatively short. The
above observation can be taken as an evidence of this. In a relatively
short session of operation, a new user gains enough confidence to cope with
the unexpected jumps. It is also observed that users, in most cases, can
successfully retain device operation instructions.

8. The C-D gain (discussed in section 2.2.1) for a relatively smaller rframe, in
respect to the display resolution, is noticeable and sometimes gets difficult
to operate.

9. Handedness does not seem to be an issue with the rpen. While being right
handed, operating the device with the left hand was not much of a challenge
and rather preferred at times.

10. Instant transition of operation between one type of rframe to another, is
not always smooth. It takes some time for the user to become accustomed
to the new working plane.

11. At times, a physical reference of a rframe seems necessary for rpen.

12. Where to place an idle sensor is an issue with some types of rframe. For
example, for a rframe on the XY-plane, when the XY-plane is the desktop,
the user might choose to place the sensor on the desktop inside the working
range, which could be a left click state, or outside the working range.

13. Operating on a large enough rframe while the user is sitting or operating
within a confined place, may result in an inability to reach the whole work-
ing surface with one hand. These are the places where we confronted the
issues discussed in observation ‘number 9’ earlier. This scenario also vali-
dates the point to extend Fitt’s law for 3D, discussed in [MI01]. It is argued

93

that pointing to an object does not only depend on the distance and size
of the object but also on the direction of movement.

4.5 Usability Test

This section presents the usability test results. The usability test environment is
also described here.

4.5.1 Test Setup

In chapter 3, section 3.6, we have already discussed the goals and objectives of
the test. We also discussed the participants and what information they were
provided concerning the device as well as the test. Here we will be discussing the
test setup and test environment.

The full test was conducted in a single day; participants completing their
tasks and answering the questionnaire. Each participant was given roughly half
an hour to complete all the tasks. Even though, each participants were allo-
cated an hour for both doing the tasks and providing feedback, users’ feedback
was not that strongly controlled and they took their time to write the feedback
without any interaction or influence of the test moderator. Users were given the
questionnaire after they had completed the given tasks.

Figure 4.10: Usability test environment.

The test was conducted in a normal office room environment. Attention
was given to remove any unnecessary metal or any other electromagnetic devices.
Participants were also advised not to have such objects with them. Even then,
there were considerable amount of metals around, which is normal for any office

94

environment. The chair that the participants used was metal based and most
often close to both the transmitter and receiver. The distance between the chair
and transmitter was on average 0.5 metre. The sensor/receiver distance varied
from more than a meter to around 0.3 metre. There were a few metal frames
and screws under the table, which were at times close to the transmitter than
the receiver.

Other than these, the computer monitor and keyboard was placed close to
the user, meaning close to the transmitter and receiver. The distance between
monitor and transmitter was around one metre and the distance between the re-
ceiver and the monitor ranged between 1.75 metre to 0.5 metre. There were also a
few other metal based accessories and electronic devices that several participants
possessed. The room was lit with florescent lighting as well. All in all, there
were a considerable amount of metal and other electromagnetic devices around,
that did not follow the rules given in [NMF98] [VR 07], to reduce magnetic field
distortions.

Figure 4.11: Figure showing placement of different equipment and devices used
in the usability test.

The transmitter was placed under a table and the sensor operated over the
table, as seen in figure 4.11. There were five pre-defined rframes used for the
usability test. All but one, had physical reference. Most of the basic tasks were
carried out on a 500x400mm rframe defined on the XY-plane. The default display
resolution was 342x271mm. There was one rframe defined on the YZ-plane, which
had bigger resolution then the default display screen. One rframe, on the XZ-
plane, had the same size as the display screen. Another rframe, defined on the

95

XY-plane, had a smaller resolution then the default display resolution. The task
list and related instructions are given in appendix A.

4.5.2 Results

Accuracy or correctness is an important aspect for any human computer interface.
It not only influences the user’s anticipation towards the interface [SP05] but
also in case of interaction device, like the rpen, might be a source of frustration.
Absence of frustration is an important element of usability of an interface [RC08].
A frustrated user is never satisfied with an interface, even if, it might be able to
do important and relevant tasks for the user. The feedback for such an interface
will always be a little biased, and understandably so.

This was the issue we ran into when we conducted the usability test on rpen.
Even though, we prepared the users to anticipate a device which is not precise
at times, the feedback is evidence that users cannot fully appreciate the concept
we tried to present with imprecise hardware. Coupled with this, there were few
legitimate human factor and design issues raised, which we wanted to identify, but
was also part of the problem which created dissatisfaction among the participant
users. The obvious outcome of this scenario was a unanimous recommendation
to change the hardware device. It is understood that in a normal setting it is not
possible to eliminate all metals and electromagnetic devices from the surrounding
work area. Also the calibration techniques used with electromagnetic devices
have its limitations, as discussed earlier. So, an important outcome of the current
exercise is that an electromagnetic device is not a good choice for rpen-like general
purpose pointing devices, where precision and registration is a big issue.

Even with the limitations, the usability test was able to provide us with some
other findings which confirmed some of our observations. All the users found the
device very intuitive. It was interesting to see that all the users including the
three first time users were able to operate the device almost immediately and
completed most of the tasks successfully. As mentioned in section 3.6, most
of the tasks in the test were performed on a rframe defined on the XY-plane
(representing desktop). It was done so to give the users a frame of reference and
to rest the arms on the desktop, if required. But, it was observed that most of the
users found the rframes defined on the XZ-plane, parallel to the monitor display
and the YZ-plane, wall projection, more intuitive and opinionated to have better
potential. Some user also suggested that the rframe on the XZ-plane could be
defined close to the monitor, if not for the hardware limitation, and could work
as a touch screen.

From the usability test it was evident that time to learn how to operate rpen
is very short, which also says it is intuitive. The users could also remember most
of the operations after a considerable amount of gap between the usages, which

96

is known as the retention time. Both of these are important for an interface
to be usable. But, there was one feature that the users find a little difficult to
remember, and it was not intuitive as well. The feature to tilt the device more
than 8.0°on left or right to show intention of left double click and right click,
was making users experience of the device uncomfortable at times. Spending
time with the device does reduce this occurrence but it was also found that this
feature forces the user to hold the sensor in a rigid position, which may not be a
natural or comfortable posture to maintain. This does have a potential to create
strain injuries for the users. This is a limitation of the current hardware, not the
rpen concept. A production version would have a button for right-clicking, and
a more accurate and faster sensor would allow the user to perform double-clicks
by two dips below the threshold. This would eliminate the need to rotate the
device.

We used a physical representation of the predefined rframes used for the
usability test. Based on our observations we thought a physical rframe would
increase users’ satisfaction level. But most of the users commented that they did
not even look at the physical rframe while operating the rpen. They were getting
their feedback from the display and cursor movements. So, to the users’, physical
presence of an rframe is not important. This feedback might have to do with the
tasks that were assigned to them. Indeed for simple navigation, select, drag and
drop and even for text cut and paste, a mouse user never looks at the device or
the location of the device, they just operate it looking at the display. But for
some other minute operations and 3D object manipulation a physical presence
of a surface is important. It is argued in [HPG94] that a user needs a spatial
reference while working with a spatial device.

Rframe’s placement on the space does not impact the operations of the
device. It is found in the test that as long as the user can view the display
comfortably, the rframe’s position did not bother them. But the size of the
rframe is an important factor. Users’ confirmed our observation that a rframe
smaller than the display is harder to operate on. Especially with an imprecise
device, it sometimes gets impossible to do some of the tasks. The movement gain
increases as the rframe size gets smaller in respect to display. There needs to be
a mechanism to reduce this gain when working with a small rframe. Similarly,
the user also expressed that the footprint of the device is too big, comparing it
with mouse, a relative pointing device. This also could be solved if the gain for
the smaller rframe can be controlled. This might also be solved by using a sensor
that is sampled at a much higher rate, allowing the visual feedback on the screen
to match the actual movement of the device.

Adequate visual feedback is very important for successful manipulation of
the rframe’s surface layers. Usability test also came to this same conclusion. The
users seemed to have accepted the surface layers but expressed current visual cues

97

are not noticeable enough; a better visual feedback mechanism is needed. One of
the options expressed is to give height level indicator as part of the cursor.

The wire attached to the sensor, was creating discomfort for the users. As
well, the wires themselves are also a source of noise. A wireless sensor was
preferred by most of the users. They also recommended a shape change for the
sensor. Rather then a cube, which is the current shape of the sensor, a stylus
shape would be preferred. It also should be mentioned here that, a stylus is
better at pointing a smaller object, whereas, it is difficult to point to a miniature
object with a cubed shape pointer. A stylus gives a better affordance then a
cube at pointing. Also, a pen like stylus is more comfortable to hold for longer
period of time then a cube. Of course, we always intended to use a stylus, but
unfortunately the Wintracker only provided cube shaped sensors.

As Zhai in [Zha98] found out that fatigue is a huge problem for a free moving
spatial device, the rpen users also expressed the same concerns. Prolonged use
was difficult for the users, and they needed to rest their hands often. As the sensor
has to be held in the air, its use was strenuous. This would be a huge factor for
the older users, where their usage time could be very limited. Even if with the
rframe on the desktop, users felt stress on the arm muscles and shoulder muscles.
So, unlike the mouse, which mostly uses wrist and finger movements, rpen may
not have Carpal Tunnel Syndrome, but might create other types of repetitive
strain injures. To counter this effect, the rpen has been implemented with a
clutch mechanism, as suggested in [HPG94]. This helps the user to put down the
sensor, without affecting the cursor movement on the display, to rest his/her arm.
It was also observed that operating smaller rframes were less strenuous than the
bigger ones.

It should be mentioned here that an accurate, stable, sensor would have
allowed us to define an rframe parallel and just above the desktop table, allowing
the user to rest their hand. The Wintracker (hardware chosen for current version
of the rpen) did not allow us to define such an rframe, hence the user had to hold
their arm above the table to access the threshold.

Due to the hardware limitations, the current version of rpen was found not to
be sensitive to small movements. This is not solely due to the effect of noise in the
hardware; rather it is also due to the mechanisms we adopted to counter the noise.
The jitter filter eliminates the very small movements, whereas, the averaging,
smooth out all the movements, whether it be noise or cursor movement, over a
period of time. Along with the lowpass filter these mechanisms do not allow a
specific and precise small movement of the sensor to be reflected as a small cursor
movement. Also the slow update rate does play a part in it.

Object manipulation with rpen was found to follow Fitt’s law (time required
to move the cursor to a target postion is a function of the distance to and size
of the target), in terms of the object size. But the distance aspect seemed not

98

to be so clearly following the law. We observed some users operate sitting beside
a rframe on the desktop, having approximately similar sized rframe work surface
on the right side and the left side. The users operated on objects on the right
side, whether it is far or near, with their right hand and time to reach the object
seemed to follow Fitt’s law. But, as for the objects on the left side even though
it is near to the user, time taken to manipulate the object with right hand is not
the same as with objects on the right side. In these cases, where the object was
small or far on the left side, users sometimes used their left hand to manipulate
these objects. This also led us to conclude that handedness is not a big concern
for rpen operation.

Lastly, in the usability test the users expressed a desire to have buttons to
generate the click events. There were several causes for this opinion. Firstly, it is
difficult for the user, with a spatial device and with its sensor lacking precision,
to produce a straight downward movement on the surface of rframe to produce
left clicks on the right spot. Not only that, the click is complete when the user
comes up over the surface threshold on the same spot. This was a challenge for
most of the users. Also, for producing right click and left double click twisting
the sensor is not natural and has to be learned and remembered. This twisting
was also associated with the tilt problem discussed above. It also means that
the users had to remove their attention from the screen to verify that the sensor
was tilted from the normal as is required by the click. Having buttons mounted
on the device to produce click events will help resolve these issues. Also, it will
free up the Z-axis, in terms of display, to do purely 3D interaction and object
manipulation.

99

CHAPTER 5

Conclusions

5.1 Conclusions and Analysis

A new 3D pointing device, capable of performing both 2D and 3D interaction, is
presented in this thesis. Developing a 3D interface/device in itself is a difficult
riddle to solve. The design task is made more complicated by attempting to
make a 3D device operate as a hybrid interface, interacting with both 2D and 3D
applications. With an intuitive and natural 3D interaction device, the rpen, our
primary goal is to enable 3D tasks to translate to 2D interactions. As this design
challenge has been studied rarely before, we adopted the design framework of a
3D spatial input device to analyze the design aspects of the rpen.

The rpen possesses a unique set of interaction techniques. It is a pen-based
pointing device, combining the interaction techniques of the 2D mouse and the
touch screen. As the rpen is an absolute position device, it resembles a touch
screen more closely than the mouse. But unlike the touch screen, the work surface
of the rpen can be any arbitrary 3D flat space with any size and orientation. This
means the work surface of rpen can be as small as the mouse uses, and also, the
rpen can work as both direct and indirect input device. This allows the rpen to
harness the advantages of absolute positioning (precision and naturalness).

The rpen concept is independent of any motion tracking system. The only
requirement rpen imposes on the hardware is that it should be able to produce
absolute position information within a relatively big working volume. High accu-
racy, high resolution, low latency and robustness are the performance measure-
ments for the motion tracker. The rpen requires a reasonably, moderately high
performing hardware within a practical price range. Within these set bound-
aries, our analysis led us to conclude that an off-the-shelf AC electromagnetic
(EM) motion tracker is the most workable choice for the rpen pointing device.
Unfortunately the EM motion tracker we tested proved to be noisy and very sen-
sitive to metal objects commonly found in office settings. It thus was found to
be a poor choice for the rpen in such a setting.

The trend of input pointing device has been shifting from technology centric
design principles to more human centric, ergonomic design systems. The rpen
builds on the natural skills of humans to operate a pen as a writing tool, as
well as a pointer. Similar to a regular pen, the rpen also operates in 3D space.

100

Being a 3D spatial device, the rpen needs to address the design challenges of a
spatial device. Through hardware design (ergonomic and comfortable pen grip,
balanced and light weight pen shaped hardware) and software interface (clutch
mechanism, support for all input states and multi-sensory feedback) we seek to
solve these challenges. Lastly, through comparative analysis we showed that the
rpen’s interactive techniques are unique and none of the contemporary input
devices, with similar 3D tracking system, use the work surface the way that the
rpen does.

We chose to use the Linux platform to implement the software interface of
the rpen. Linux as open source software provides ample support for an efficient
implementation of the rpen. Due to the choice of hardware, Wintracker II from
VR-Space Inc. (an AC electromagnetic device) it was necessary to implement a
poll-based USB input device rather than an interrupt-based one, which is usu-
ally the norm for rpen-like input pointing devices. To utilize the efficiency of
a kernel module as opposed to a user-space process, the rpen device driver was
implemented as a kernel module. But in doing so, the opportunity was lost to
use floating point operations inside the device driver.

Initially, we were not expecting to spend a substantial amount of time on
noise filtering and smoothing. Due to the characteristics of EM devices, a sig-
nificant amount of time was needed to find an acceptable filter with the correct
cutoff frequency. Upon consideration of the environment in which we envisioned
the rpen would be operated as a general purpose device by regular users, we ex-
cluded the option to employ calibration techniques which are normally used for
EM motion trackers. As such, we went for the classical lowpass filter and slid-
ing averaging to smooth-out the jittery sensor data. Through experimentation
we came to the conclusion that a combination of lowpass filter with 3Hz cutoff
frequency, sliding average using 25-30 filtered data points and a jitter filter of
0.3mm yields the best smoothed output for the sensor data in a normal office
environment.

We used a transfer function to translate the sensor’s absolute position data
in reference to a defined rframe, to a cursor position on the screen. We found
that this does not take significant amount of time to produce the output, how-
ever, it does incur significant roundoff/truncated error. The filter equations also
accumulated considerable amount of roundoff error. Through experiments, we
concluded that the roundoff data produce better results than the data produced
using floating point. It is also observed that the size of the rframe does not
greatly influence the roundoff errors.

Through a user space application, the user is given the opportunity to define
any number of rframes although only one rframe is active at a time. Audio-
visual feedback about different thresholds and left button click is given through
a daemon process. The process also manages the auto adjust mode (adjusting

101

the rframe location automatically, if the rpen is idle).

A usability test, in a lab setting with five participants, was carried out within
a short period of time. Given the limitations of the current version of the rpen,
we wanted to find out the positives and negatives of the rpen concept rather than
the device as a whole. We also wanted to determine the potential of the rpen
concept, in the user’s opinion.

The usability test was greatly influenced by the lack of accuracy of the device,
due to EM distortions. The users were unsatisfied with the hardware’s inaccuracy
and lack of robustness. Even then they commented that the rpen was intuitive.
Especially, the rframes on the XY-plane (representing a touch screen) and the
rframes on the YZ-plane (representing a wall projection) were more intuitive and
have better potential than the rframes on XY-plane.

The usability test also confirmed the problem of fatigue when using the
device for precision work. It was also felt by the users that adequate feedback
about the position in 3D space of the thresholds was needed. It was opinionated
that a wireless sensor is necessary as the wires were causing discomfort for the
user. Lastly, the users felt the need to have buttons on the sensor to perform a
left or right click would be an improvement. However, it is likely that they would
not wish this for the left click if the hardware had been faster and more accurate.

The current effort is a proof-of-concept. Even with its short comings due
to the motion tracking hardware choice, the rpen is able to create interest and
excitement amongst its users. With a more precise and accurate motion tracker
and appropriate pen-based hardware design, the rpen is expected to become a
viable alternative pointing device, a bridge between the traditional input devices
and their futuristic counterparts. Also if the extensions proposed in section 5.3
are to be included in the rpen interface, it will become a very powerful input
device. It has the potential to address most of the usability and ergonomic
concerns with such spatial devices. For example, Zhai’s concern (mentioned in
section 2.3) of lack of coordination can be addressed by the distant pointing and
C-D gain mechanism. The C-D gain mechanism and the moving rframe relative
to the user can also help in reducing user fatigue related issues. All in all, the
rpen has great potential to be a highly appreciated 2D and 3D hybrid interface,
using the human’s natural skills and knowledge to interact with 3D objects.

5.2 Discussions

5.2.1 Contributions

The thesis presents a new concept for a pointing device. Through implementation
we have proved that such a device is possible and through usability testing and

102

literature analysis we have showed such a device does have great potential. Future
studies can be undertaken to reveal the full scope and limitations of the device and
produce a mature product in the process. Here we list the major contributions
of the current research:

1. A new pointing concept is presented. A proof-of-concept device is also
developed to show that the concept is realistic.

2. The new device utilizes both 2D and 3D interaction concepts, working in
the 3D world, i.e., provides 3D input data. The device is intentionally
designed to work as a 2D point device using 3D interactions. It also is
capable of working with 3D applications.

3. A new pen-based hardware design is proposed as a 3D pointer. It basically
presents the pen-based pointing device in a new way, trying to create a
more ergonomic device.

4. A byproduct of the current study is that electromagnetic trackers are not
suited to work as a motion tracker for rpen-like generic pointing devices.

5.2.2 Implications and Applications of Rpen

The obvious use of the rpen as is a pointing device. But, the implication of the
device is more far reaching when we consider how it can be used. If a link is
made with some of the straight forward extensions, listed in section 5.3, to the
current version of rpen, then the possibilities are numerous. In the following are
listed some of the note-worthy applications of the rpen:

• With the rpen, the user can define a touch screen anywhere, and only be
limited by the hardware. The touch screen can be of any size. Also, the
touch screen can be in any orientation, horizontal, vertical or titled. A
drafting board, drawing board or sketch board can be a touch sensitive
surface. The user can paint, draw or write on the virtual touch surface.
When a multi-user extension is added to the device, these activities become
multi-user enabled. Also, as the rpen’s touch screens are not literally a
touch screen but just function like one, they do not have the same problem
as the regular ones have such as the requirement that the user can physically
touch the screen. For instance, the screen could be behind protective glass,
or across the room.

• The basic idea of the rpen is software controlled. The two modes (normal
and auto adjust) that the current version of rpen has, is configurable with
the software tool developed for rpen. So, multiple input modes can be im-
plemented through the software interface and the rpen can switch between
these modes seamlessly.

103

• The work surface that is defined by the rpen is basically a 3D rectangle.
So, with appropriate applications, 3D object manipulation is possible.

• Gestures can be interpreted through software applications. So, with the use
of appropriate software, the rpen could be used to generate user gestures.
Not just the 2D gestures that mice and touch screens are capable of, but
more powerful and intuitive 3D gestures.

• The rpen can also work with multiple screens forming a single display. This
feature is basically implemented through the operating system not the input
deivce itself. But, for the rpen, it can utilize all the screens as a single large
touch sensitive display.

• With a C-D gain control mechanism as well as acceleration information
derived from the sensor’s movement, the device can be used to demonstrate
object manipulation following the laws of physics.

• If the distant pointing feature (the term is explained in chapter 2) is added
to the rpen, the input device can be used to work with large scale display-
systems, even from across a room.

• It can be used as a direct input device like a touch screen or indirect device
like a mouse or joystick and the user can easily switch back and forth
between the two approaches.

• The rpen can have a continuous pointing traversal path like in the case of
mouse as well as discrete pointing capability (sensor motion is not tracked
all the time) as implemented for a touch screen.

• The rpen is a very versatile input device, and can be used in multiple input
device modes. It can work as direct or indirect input device, it can also
accommodate large screen or distance pointing and it can work in a small
area like a mouse or a larger area like a touch screen.

5.3 Future Research and Extensions

This research involves a new kind of generic pointing device. Such an effort
usually takes a bigger team, looking at all aspects of the device, and requires
more time to investigate the full potential, producing a mature device. The
current study is a proof-of-concept. We have just laid out the basic underlining
design of the device and shown that it works. There is more work to be done.
Here we list some future extensions that could be undertaken:

104

• Fully implemented generic rframe: One of the strengths of the rpen
is that, the work surface (touch surface) can be defined anywhere in 3D
space with any orientation. The current version of the rpen implemented
the rframe on the standard three orthogonal planes. The generic rframe,
which allows rframes with any orientation or location, is partially imple-
mented here. An extension would be to complete this implementation and
determine its advantages and weaknesses (if any).

• Implementation with a better suited tracking system: We have
determined that the electromagnetic tracker, at its current state of devel-
opment, is not a suitable motion tracking system for the rpen. Chapter 2
has presented that most of the current research and product development
are moving towards hybrid trackers. Initially, we also attempted to develop
a custom tracking system for the rpen using RF technology. So, a future
study can involve such a tracking system which will enable a much improved
usability test of the rpen concept. Also, many other aspects of the input
device, including the effects of rframe size as well as the limit of the size
of rframe, could be tested thoroughly without the overwhelming adverse
influence of the current hardware system.

• Hardware design: In the current study we have only alluded to what
could be optional hardware designs for the rpen. In fact, in HCI hard-
ware design is a long process which includes prototype design and usability
test encompassing all aspects of human factor issues. The issues with but-
tons, what buttons to add, how and where to add them, etc., also can be
addressed through the hardware design process. To make the rpen input
device complete, this exercise needs to be done.

• C-D gain control mechanism: Unlike traditional input devices, the rpen
device uses variable control gain. When the rframe is equal to the display
then it has a C-D gain of 1. In the case of small rframes (relative to
the display size) the gain increases and in case of bigger rframes (relative
to display size) this ratio becomes smaller. We have mentioned what C-
D gain means to an input device in chapter 2. By controlling the C-D
gain dynamically depending on the acceleration and deceleration of senor
movement on the three orthogonal axes, we can make the user feel as if
he/she is in full control of the interaction and thereby become more satisfied.
This will also work as a solution for smaller rframes. With the combination
of C-D gain mechanism, distant pointing and a custom application depicting
the physics of motion, we can generate a real world experience for the user.

• Solution for threshold detection: Through the usability test, we have
seen that users have difficulty in remembering as well as locating the rframe
thresholds. The given visual feedback was inadequate. We think it is an

105

excellent place where we can provide a combination of haptic and other
feedback. As a force feedback mechanism might make the rpen device
heavy, we believe a combination of audio-tactile and better visual feedback
will increase the user’s satisfaction level with the interface.

• User-space device driver: The current version of rpen utilizes a kernel
side device driver. In chapter 3, we have presented the case for a kernel-
space vs. user-space device driver. By implementing a full featured user-
space rpen device, a comparative study can be done to make the case with
practical and tangible data. This may be a better option for the rpen device
driver.

• EM tracker with calibration technique: In the current version of rpen
we have not used any calibration techniques usually associated with EM
trackers. A study can be done to observe the impact of calibration on
the use of rpen and also if a calibration process be developed to be easily
employed by regular users. A calibrated rpen device with the help of a
range extender might be able to produce a stable input device with a large
work volume (working space).

• Developing custom application for the device: The potential of any
input device can only fully be appreciated by a user, after they are shown
how the device reacts to applications in many different scenarios. The best
way to do that is to build a custom made software application or game,
which will showcase the strengths of the device.

• Multi-user and multi-display: The current motion tracker used with
rpen can support three sensors. In fact, most of the 3D motion trackers
support multiple sensor input. So, the rpen input device can easily be
extended to be a multi-user input device. The rpen pointing device can
also work with a multi-screen display as well as multi-display scenarios.

• Gesture based input: Gesture-based input is natural and nowadays most
of the 3D input devices are using this technique to obtain user input. Ges-
tures are interpreted by applications. Customized applications can be de-
veloped to show the range of gestures that can be conveyed using the rpen
device. This will also utilize the full range of 6DOF information, given by
the 3D motion tracker. Gestures may also be better utilized if multi-sensors
are employed for a single user involving multiple finger motion or multiple
hand simultaneous movements.

• Distant pointing: We have presented many of the input devices utilizing
the distant pointing techniques in chapter 2. This technique can also resolve
some of the human factor related issues (like fatigue, restriction of hand

106

reach). The rpen can incorporate this technique to its existing touch-based
pointing mechanism.

• Making rframe relative to user movement: In the current version
of rpen, the rframe is fixed to a given location, once it has been defined.
There is a auto adjust mode, but that is also fixed to a location for the
duration while the rpen is active. Many 3D interaction researchers have
argued, where a pointing device (the rpen) is interacting in reference to an
object (in our case the rframe), both of them should be mobile in reference
to each other. Thus, a future study can experiment with this feature by
recalibrating the rframe to new location (with same size and other param-
eters, only the points defining the rframe will change) depending on the
user’s movement. That is, the pointing sensor and the rframe will be in
absolute position in relation to each other but will move in respect to user’s
movement. The feature can dispose of the need for defining new rframes
for each orientation and position, only the size needs to be changed.

• Working on multiple rframes: Future versions of rpen can be made to
allow multiple rframes to be active at the same time, and rpen will switch
between them based on proximity. This would allow the user to smoothly
switch between using the rpen like a mouse to using it like a touch screen. It
would also allow the user to change to a different context (i.e., 3D gestures
only, interface for a specific application etc.) by moving to a new rframe.

107

APPENDIX A

A.1 Usability Questionnaire

1. How easy/hard was it to perform the given tasks using the device? Why?

2. How easy/difficult it is to point to an object (small/medium/big)?

3. How precise and efficient (time taken) is the device in performing the given
tasks?

4. How good is the device in retaining a position [clutch]?

5. Are the operations of the device easy to learn and easily remembered?

6. How intuitive do you think the rpen concept is or could be?

7. How would you like the sensors/transmitters to be shaped? Would you
prefer a stylus/pen-like sensor?

8. How important is a visual reference, while defining a rframe? What kind
of visual reference and feedback do you think would help a user?

9. Is it necessary to have a physical presence of a rframe?

10. What difficulties do you face operating the device (rpen) in the air?

11. What sort of impact does the rframe’s placement have on the operation of
the device?
Note: if the rframe is defined where it is difficult to see the screen/display
(not getting instant visual feedback), the device will be unsatisfying for the
user.

12. How do you find the experience with rpen by itself as well as in comparison
to a mouse?

13. What are the merits and weaknesses of the device and its features.
Note: needs to find out both for the device as a whole and for the concept
(without Wintracker) only.

14. What sort of work do you think could be better performed with rpen and
what others would be less preferable/suitable?

108

15. Is the device operation strenuous?

16. Which devices do you think are similar in operations to the rpen? Are the
device operations consistent with other similar devices?

17. What ergonomic issues would arise from operating the device?

18. Can you imagine it as a replacement for other types of pointing devices?
Which ones and why?

19. What kind of feedback do you think necessary for these kind of devices?
Do you think current feedback is adequate?

20. Difference in experience with small to large rframes as well as different
screen resolution.

21. What kind of changes do you recommend and why?

22. Does the experience differ for left handedness and right handedness?

23. Any other suggestions or improvement for rpen.

A.2 User Instructions to Perform the Usability Test of
‘Rpen’

A.2.1 General Instructions

Rpen works by translating the single sensor movements of the electromagnetic
device, Wintracker II, on the rframe to the screen’s cursor movement. A display
is actually two dimensional. A rframe surface, which can be smaller, bigger or
equal to the display size, is a representation of the monitor display. The third
dimension of the rframe is used as the height from the surface. If the sensor is
above the surface then it is simulated as regular cursor movements, while if the
sensor goes below the surface then it is simulated as a left click (left click of a
mouse).

In the current implementation of rpen, a rframe can be defined on either the
XY, XZ or YZ plane. The XY-plane corresponds to a work surface on a desktop
table. For a rframe defined on the XY-plane, x coordinates are translated to
screen width and the y coordinates as screen height. The z coordinates are
the height measurements from the surface. Similarly, rframe on the XZ plane,
representation of a touch screen, have screen width on the x axis and screen
height on the z axis; the y axis is the height measurement from the surface. For
a rframe on the YZ plane, simulating a wall projection, the y axis is the screen

109

width, the z axis is the screen height and the x axis is for measuring height from
the rframe surface.

Most of the usability test will be done with the rframe defined on the XY-
plane. For users’ ease of use a physical rframe reference will be given on the
desktop to perform most of the usability tasks. As the users in the usability test
will not be familiar with rpen and the concept of a rframe, the physical reference
will help the users to remember the location of the work surface, i.e., the physical
location of the rframe.

The electromagnetic device, Wintracker II, used for the current implemen-
tation of rpen has a base station, which is the transmitter and has one sensor or
receiver. The base station always remains stationary, set in a specific direction,
and the sensor is moved to produce the absolute six (6) degree position informa-
tion of the sensor relative to the base. Due to some limitations of the hardware
device, it is assumed for our implementation that the base will always be placed
behind and under the defined rframe. This means the rframe can only be defined
within the coordinate sector where the values of x, y, and z is positive.

The sensor has an operational range, which is 0 to 75cm. But the sensor’s
data become distorted if it is too close to the transmitter as well as too close
to the edges. Thus, the rframe has to be defined at least 15cm away from the
transmitter and the maximum input position for the rpen is set to 74cm.

The sensor’s position data can be distorted by any presence of metal or
anything that can create an electromagnetic field. Thus, the usability test will
be conducted in a place with a minimum amount of metal and electronic device
presence. But, the wires attached to the transmitter and receiver creates some
distortions which can not be avoided. Also the update rate of the hardware is
very slow. Users will have to keep in mind these limitations of the rpen due
to the present choice of hardware. With a better sensor or tracking device the
response will be more accurate, fast and smooth. So, the user should not judge
the method by the sensor limitation, but instead, focus on the concept, as the
sensor is not integral to the method.

A rframe is a cube rather than a surface. The three points that defines
the boundary of the rframe work surface is the representation of the display
screen. The user can also define a surface threshold which gives the rframe a
three dimensional surface representation having a depth. Below this threshold
the left click is initiated. There is no limit, rather than the maximum range
limitation of the sensor, of the depth below the surface threshold. Above the
surface there is a layer signifying the safe traversal region, i.e., here the user is
not too close to clicking by accident and also not too far from clicking if required.
Above this there is a layer which extends to 60 mm above the surface. Beyond
this threshold the sensor is not tracked. This works as a clutch. Other than
the clutch threshold, all the parameters are defined by the user from the rframe

110

Definition Application.

The cursor appearance on the screen provides feedback of the location of
the sensor in terms of depth from the surface of the rframe. A left tilted cursor
appears when the sensor is above the surface proximity threshold and under the
clutch threshold. Above the clutch threshold it takes a diamond shape. Above the
surface and within the surface proximity threshold, the cursor has the appearance
of a double sided arrow. The cursor appears like a downward arrow when it is
under the surface and above surface threshold. The cursor appears like a dotted
box, when it is under the surface threshold, i.e., when the left click is initiated.
When the sensor is coming back from under the surface threshold the cursor
appears like an upward arrow. When the sensor is outside the boundaries of
rframe the cursor appears as an iron cross.

Figure A.1: 3D representation of the sensor, held in hand with desired orientation.
Z-axis is for up and down movements. X-axis is for towards and away from the
body movements and twist to right or left to produce clicks. Y-axis is for left
and right movements

The following are some of the general guideline on how to operate the sensor:

1. The sensor needs to be held in the orientation as show in figure A.1. What-
ever the rframe orientation is, the sensor should be held the same way as
shown below. The sensor movements are also as described in figure A.1.

2. If the user only wants to traverse i.e., move the cursor, then the sensor has
to be held upright as show in figure A.1. A tilt of more than 8°on the x-axis
(roll) may result in stall of the cursor movement.

3. Left click will be initiated at the point where the sensor has hit the surface
threshold. The user needs to remember that going below the threshold is
not the completion of the left click. To complete the left click the user needs

111

to rise back above the threshold. So, going below the threshold is good for
selection but not for a left click. To complete a left click on a button the
user needs to go below the surface threshold on that button and then rise
back above beyond the threshold on that button.

4. The rpen is a spatial device, i.e., it works in the air without any support
for the user’s arm. Thus, it will have hand jitter along with other kinds of
noise described above. For this reason, a feature has been implemented in
the rpen to detect an intention of the user for a left click event. To show
the intention of doing a left click the user needs to make a pronounced
downward (from the perspective of the rframe surface) movement and go
below the threshold. Then, rpen will only consider the downward movement
of the sensor and freeze the (x,y) movements, in terms of screen cursor
movements. The cursor will stay in the place from where the downward
motion was detected. If the user does not reach the surface threshold and
makes an upward movement or levels out at a position above the surface
threshold then this will not be counted as the intention for a left click. Also
if the movement in the (length, width) direction, in terms of work surface,
is more than 20mm then the click intention is not considered.

5. Right click is simulated as a right twist of the sensor on the x-axis that is,
a roll of more than +25°. Similarly to left click, the right click is completed
when it returns from the +25°twist. It should be mentioned here that
the production version of rpen most likely will come with a button for
generating a right click.

6. The user can do a left double click on a selected item by doing a roll on
the left side, i.e., opposite to the right click action, of −35°. Unlike the
left and right click, the user does not need to come back from the twist to
complete the action. It is important to remember that a left double click
is only possible when the sensor is below the surface threshold. It is also
possible to do a double click by doing two quick left clicks at the same spot.
But with the current sensor it is very difficult as the update rate is very
slow. With a better hardware it should be possible.

7. For the ease of use for the user while doing a right click and left double click,
cursor movements are ignored. Also where the right click is permissible, if
the user rotates the sensor more than +8.5°, it is treated as intention for
doing a right click and the cursor remains in that place. Similarly, where
the left double click is permissible if the user goes less than −8.0°, it is
treated as the intention for doing a left double click and the cursor remains
in that place.

8. For drag and drop, the rpen initiates a drag motion after the sensor has

112

moved in the length or width direction of the rframe 20 mm, after the
initialization of the left click (going down to the surface threshold). To
end the drag, basically to drop, the user needs to come above the surface
threshold.

9. The user has the option to smooth out the cursor movements through the
rframe Definition Application. The user can increase or decrease the “num-
ber of samples to average” option. The greater the number of samples to
average, the smoother the cursor trajectory will be. But there will be a time
lag between the actual sensor movement and the cursor movement. On the
other hand, the lesser the number of samples to average, the jumpier the
cursor becomes but with less time lag. Through experimentations it is
found that the preferred value for this parameter is around 20 to 30.

A.2.2 Task Specific Instructions

Task 1 through to task 7 will be performed on a XY-plane with a predefined and
a preset rframe and with a physical reference to that rframe.

Task 1: Cursor movement and positioning
This can be done by keeping the sensor above the surface threshold and without
tilting it on the x-axis for more than +8.5°to −8.0°. The main idea of this task is
to see the response of the cursor in response to sensor movements and positioning.

Task 2: Clicks - left click, right click and double click
To do a left click, the user needs to follow the general guideline items number
3 and 4. To do the right click, the user has to follow general guideline items
number 5, keeping in mind number 7. Similarly, for the left double click the
general guideline items number 6 and 7 should be followed.

Task 3: Selecting an object (small/medium/big) on the screen as
well as a menu item selection
To select an object or a menu item the user needs to go below the surface threshold
at that point as described in general guideline items number 3 and 4. But to click
a menu item the user needs to come above the surface threshold at that spot.

There is an alternate way of clicking an object or menu item other than
coming up to the threshold and that is to do a left double click. Due to hand
jitter and other distortion problems, some users might find this option more
suitable.

Task 4: Drag and Drop
To do Drag and Drop the user needs to follow the general guideline item number
8.

Task 5: Navigation through folders and documents
The user is required to open a folder and its sub-folders utilizing the tasks done

113

above and also open a document within that folder or sub-folder. Then the user
needs to close the opened folders and document.

Due to metal distortions and other hardware limitations it may be difficult
to operate on small controls such as the close (X) button on the title bar of a
folder or document. Manipulating the menu might be a better option in that
case, if available. For folders, initiating the context menu and clicking the close
option may be easier then closing the (X)-button on the title bar.

Task 6: Navigation through an application and web browser
The user needs to open a web browser and try to left click on the links. It is
similar to Task 5.

Task 7: Inserting, deletion or change of text in a document
The task here is to open a text document and do a cut, copy and paste. Also,
the user needs to perform text selection for the copy or cut. Text selection can
be done by first placing the cursor at the right place, then initiating a left click
at the same place and then moving the sensor towards the place up to which the
user wants to select. The user has to remember that a slight movement of the
sensor upward or downward, in respect to screen, might result in vast area being
selected.

For cut, copy and paste, the user must use a combination of left click, double
click and right click and selection action.

Task 8: Defining the rframe
An rframe can be defined using the rframe Definition Application as shown in
figure A.2.

The user first has to choose the type of rframe. In the current version of
rpen the generic rframe, which is the rframe that can be in any orientation and
can be on any plane, is partially implemented; thus, it is left out of this usability
testing. The user is required to give a unique name to the rframe. The user needs
to define the three points which will define the rframe. The user must use ctrl+l
to set each point. The user can then make this new rframe the active rframe. As
stated above, the user can set the threshold values.

While defining the rframe the actual sensor data is shown in the rframe
definition screen, i.e., no rframe is active and no transformation for the sensor data
to the screen cursor movement is done. When the rframe definition is done, the
device driver returns to using the active rframe and sensor data transformation
is done using the active rframe.

Task 9: Working on different orientations of rframe (XZ-touchscreen;
YZ-Projection)
The user is to do simple tasks like cursor movements, positioning and clicks on
rframe defined on the XZ and the YZ plane. This is basically to show how the
rpen can operate on different rframes defined on different planes.

114

Figure A.2: Rframe definition screen.

Figure A.3: Rframe activation and updating screen.

115

As shown in figure A.3, a user can activate a rframe by choosing it from the
given list and clicking the ‘Active’ button. The user can also choose to update
and delete a rframe from here. The user can not delete an active rframe.

Task 10: Working in auto adjust mode
Before this task the rpen will be using only the normal mode, which is, that the
rframe will never change its defined location or points. In auto adjust mode, if the
rpen or sensor is idle, i.e., if the cursor is not moving, for a specified set of seconds
then after that time whenever the user picks it up and places the sensor at a place
for more than five seconds that will become the initial point of the new rframe and
the other points will be calculated from this point using the saved active rframe
width and height. The rframe type will remain the same. The user should record
the initial point some where near the origin, i.e., (0,0,0), near the base station.
The user can switch to auto adjust mode using the rframe Definition Application
as shown in figure A.4. After the active rframe is automatically adjusted, the
user simply needs to checkout the new rframe by doing some simple tasks like -
task 1 and 2. When this task is complete, return back to the normal mode by
switching off the auto adjust mode.

Figure A.4: Switching to auto adjust mode.

Task 11: Changing screen resolution while using the rpen
For this task, the screen resolution is required to be changed. For the usability
test, the screen resolution will be changed to a virtual screen with a different

116

aspect ratio than the currently set one. When the screen resolution is successfully
changed, the active rframe will adjust its size accordingly within two and half
minutes. The changed rframe resolution can be seen using the rframe Definition
Application. The rpen operation will also reflect the change. The user needs to
do tasks similar to task 1 and 2 to check out this new rframe. After completing
this task, return to the normal screen resolution.

Task 12: Working with the rpen in different combination of screen
resolution and rframe size
Tasks 1 to 7 will be done on a XY-plane rframe which will be bigger than the
display size. In task 9 the user will be using a XZ-plane rframe which will have
the same size as the display screen. For this task the user will be given a rframe
to work on XY-plane which is smaller than the display size. The basic idea here
is to give the user a feel of how the rpen works, if the rframe size is bigger or
smaller or equal to the display size.

117

APPENDIX B

Here we list all relevant source code developed for the rpen interface. The full rpen
device driver source is given. Some of the significant or essential code segment
of the user-space processes are given, as well. At the end, the Document Type
Definition (DTD) shows the XML data format of rframe related information.

B.1 Rpen Device Driver Source Code

Listing B.1: Rpen Device Driver Source Code (Full)

1 /* This d r i v e r i s f o r RPEN, a USB inpu t d e i v c e . */

#include <l i nux /usb . h>

/* r e q u i r e d f o r USB de v i c e r e l a t e d f u n c t i o n a l i t y */
#include <l i nux / input−po l l d ev . h>

/* r e q u i r e d f o r in pu t de v i c e and p o l l i n g f o r i nput data */
#include <l i nux / i n i t . h>

/* r e q u i r e d f o r module ’ i n i t ’ and ’ e x i t ’ */
#include <l i nux /module . h>

/* r e q u i r e d f o r module f u n c t i o n a l i t y */
11 #include <l i nux /moduleparam . h>

/* r e q u i r e d f o r module parameter f u n c t i o n a l i t y */
#include <l i nux / kerne l . h>

/* r e q u i r e d f o r f un c t i o n s l i k e ’ s p r i n t f ’ or ’ p r i n t k ’ */
#include <l i nux / s l ab . h>

/* r e q u i r e d f o r memory a l l o c a t i o n f u n c t i o n a l i t i e s l i k e ’ kma l l o c ’ */
#include <l i nux / errno . h>

/* r e q u i r e d f o r r e p o r t i n g e r r o r s w i t h s p e c i f i c e r r o r no and d e t a i l s */
#include <l i nux / s y s f s . h>

/* r e q u i r e d f o r s y s f s r e l a t e d f u n c t i o n a l i t y */
21 #include <asm/ uacces s . h>

/* need in order t o work w i t h s y s f s read / w r i t e s */
#include <l i nux / s t r i n g . h>

/* as used t he s t r l e n method */
#include <l i nux /mutex . h>

/* needed f o r mutex f i n c t i o n a l i t y i n s i d e t he probe f u n c t i o n */
#include <l i nux / types . h>

/* needed f o r data t y p e s */

/* ###### Device Dr ive r r e l a t e d Constants and g l o b a l v a r i a b l e s ############## */
31 #define DRIVER VERSION ” 0. 1 ”

#define DRIVER AUTHOR ”Mohammad Alam”
#define DRIVER DESC ”Customized Wintracker”
#define DRIVER LICENSE ”GPL”

#define DEVICE VENDOR ID 0x04b4
#define DEVICE PRODUCT ID 0x64df

#define MAX SCREEN X 1280
#define MAX SCREEN Y 1024

41
#define ARRAY SIZE AVG 125 /* s i z e o f t h e f i l t e rOu tAg v array */
#define BOUNDARYTHRESHOLD 20 /* 2mm */
#define POSI CLUTCH THRESHOLD 600 /* 60mm − above t he s u r f a c e */

#define MIN SENSOR DIS VAL 1500 /* 15 cm w i t hou t ex t e nde r */
#define MAX SENSOR DIS VAL 7400 /* 74 cm w i t hou t ex t e nde r */
#define MIN SENSOR ANG VAL −18000 /* −180 degr ee */
#define MAX SENSOR ANG VAL 18000 /* 180 degr ee */

51 #define DIS JITTER VALUE POSI 3 /* 0 .3mm */
#define DIS JITTER VALUE NEGI 65532 /* 65535−3=−0.3mm */
#define DIS PIXEL JITTER POSI 0 /* 0 .0mm */
#define DIS PIXEL JITTER NEGI 65535 /* 65535−0=0.0mm */

118

#define ANG JITTER VALUE POSI 99 /* 0 .99 degr ee */
#define ANG JITTER VALUE NEGI 65436 /* 65535−99=−0.99 degr ee */

#define UNCLICK THRESHOLD 200 /* 20 mm −− t h i s d i s t a n c e and beyond (on the s u r f a c e) w i l l
n ega t e t he i n t e n t e d c l i c k */

#define RIGHT CLICK ANG 2500 /* +25 deg */
61 #define LEFT CLICK ANG −2000 /* −15 deg */

#define LEFT DBLCLICK ANG −3500 /* −35 deg */

#define POSI ROLL THRESHOLD 850 /* +8.5 deg */
#define NEGI ROLL THRESHOLD −800 /* −8 deg */

stat i c signed long int normalVectorX , normalVectorY , normalVectorZ , kValue , normalVDot ;
stat i c int r ightBtnCl i cked , l e f tBtnDblCl i cked , c l i ck In tended , l e f tC l i c kOn ly ;

/* p o s s i b l e v a l u e s −1/0/1/2 −− i f −1 then f i r s t t ime ; i f 0 then k−1=2 and k−2=1; i f 1 then k
−1=0 and k−2=2; i f 2 then k−1=1 and k−2=0 */

71 stat i c int k index , l a s t k i nd ex , s e c l a s t k i n d ex ;
stat i c int avg t rack index , f i l t e rOutNo ; /* average r e l a t e d v a r i a b l e s */

typedef struct mov {
int X;
int Y;
int Z ;
int A;
int E;
int R;

81 } typeMovement ;

typeMovement c l i c k p o i n t ;

/* ########### Device a t t r i b u t e : g l o b a l v a r i a b l e manipu la ted t h rough s y s f s */
stat i c int useTransferFlag , updateFlag , r f rameOriFlag ;
stat i c int minXpos , maxXpos ;
stat i c int minYpos , maxYpos ;
stat i c int minZpos , maxZpos ;
stat i c int su r th re sho ld , s e l t h r e sh o l d ;

91 stat i c int rframeWidth , r f rameHeight ;
stat i c int srcMulFactor , rframeMulFactor ;
stat i c int srcFactor , inputFactor , avgSampleNo ;
stat i c int pDefPoint1X , pDefPoint1Y , pDefPoint1Z ;
stat i c int pDefPoint2X , pDefPoint2Y , pDefPoint2Z ;
stat i c int pDefPoint3X , pDefPoint3Y , pDefPoint3Z ;
stat i c int x s r c r e s o l u t i o n , y s r c r e s o l u t i o n , z r e s o l u t i o n ;
stat i c int X sensorPos , Y sensorPos , Z sensorPos ;
stat i c int l e f tB tnC l i ck ed ;

101 /* ####### Device a t t r i b u t e : f u n c t i o n s and group f o r s y s f s data communication ########### */

/* method to w r i t e t o parameter f i l e s */
stat i c s s i z e t rpenParam show (struct dev i ce *dev , struct d ev i c e a t t r i b u t e * attr ,

char * bu f f e r)
{

i f (strcmp (attr−>a t t r . name , ” f l a g s ”) == 0)
return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , useTransferFlag , updateFlag ,

r f rameOriFlag) ;
i f (strcmp (attr−>a t t r . name , ”xValRange”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , minXpos , maxXpos) ;
111 i f (strcmp (attr−>a t t r . name , ”yValRange”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , minYpos , maxYpos) ;
i f (strcmp (attr−>a t t r . name , ”zValRange ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , minZpos , maxZpos) ;
i f (strcmp (attr−>a t t r . name , ” th re sho ld ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , su r th re sho ld , s e l t h r e s h o l d) ;
i f (strcmp (attr−>a t t r . name , ” r f rameS i ze ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , rframeWidth , r f rameHeight) ;
i f (strcmp (attr−>a t t r . name , ”mult iFactor ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d\n” , srcMulFactor , rframeMulFactor) ;
121 i f (strcmp (attr−>a t t r . name , ” r e sFactor ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , srcFactor , inputFactor , avgSampleNo) ;
i f (strcmp (attr−>a t t r . name , ”pDefPoint1”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , pDefPoint1X , pDefPoint1Y , pDefPoint1Z) ;
i f (strcmp (attr−>a t t r . name , ”pDefPoint2”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , pDefPoint2X , pDefPoint2Y , pDefPoint2Z) ;
i f (strcmp (attr−>a t t r . name , ”pDefPoint3”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , pDefPoint3X , pDefPoint3Y , pDefPoint3Z) ;
i f (strcmp (attr−>a t t r . name , ” screenRes ”) == 0)

return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , x s r c r e s o l u t i o n , y s r c r e s o l u t i on ,
z r e s o l u t i o n) ;

131 i f (strcmp (attr−>a t t r . name , ” s en s o rPo s i t i on ”) == 0)
return snp r i n t f (bu f f e r , PAGE SIZE , ”%d %d %d\n” , X sensorPos , Y sensorPos , Z sensorPos) ;

i f (strcmp (attr−>a t t r . name , ” c l i ckEvent ”) == 0)
return snp r i n t f (bu f f e r , PAGE SIZE , ”%d\n” , l e f tB tnC l i ck ed) ;

}

/* method to read from parameter f i l e s wherever updated by t he u se r */

119

stat i c s s i z e t rpenParam store (struct dev i ce *dev , struct d e v i c e a t t r i b u t e * attr ,
const char * bu f f e r , s i z e t s i z e)

{
141 i f (strcmp (attr−>a t t r . name , ” f l a g s ”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &useTransferFlag , &updateFlag , &rframeOriFlag) ;
p r i n tk (KERN ALERT ”rpen Module : f l ag params TransferFlag : %d : : updateFlag : %d : :

r f rameOriFlag : %d .\n” , useTransferFlag , updateFlag , r f rameOriFlag) ;
}
i f (strcmp (attr−>a t t r . name , ”xValRange”) == 0) {

s sc an f (bu f f e r , ”%d%d” , &minXpos , &maxXpos) ;
p r i n tk (KERN ALERT ”rpen Module : xValRange params minXpos : %d : : maxXpos : %d .\n” , minXpos ,

maxXpos) ;
}
i f (strcmp (attr−>a t t r . name , ”yValRange”) == 0) {

s sc an f (bu f f e r , ”%d%d” , &minYpos , &maxYpos) ;
151 p r i n tk (KERN ALERT ”rpen Module : yValRange params minYpos : %d : : maxYpos : %d .\n” , minYpos ,

maxYpos) ;
}
i f (strcmp (attr−>a t t r . name , ”zValRange ”) == 0) {

s sc an f (bu f f e r , ”%d%d” , &minZpos , &maxZpos) ;
p r i n tk (KERN ALERT ”rpen Module : zValRange params minZpos : %d : : maxZpos : %d .\n” , minZpos ,

maxZpos) ;
}
i f (strcmp (attr−>a t t r . name , ” th re sho ld ”) == 0) {

s sc an f (bu f f e r , ”%d%d” , &sur th re sho ld , &s e l t h r e s h o l d) ;
p r i n tk (KERN ALERT ”rpen Module : threshold params su r t hr e sho ld : %d : : s e l t h r e s ho l d : %d .\n”

, su r th re sho ld , s e l t h r e sh o l d) ;
}

161 i f (strcmp (attr−>a t t r . name , ” r f rameS i ze ”) == 0) {
s sc an f (bu f f e r , ”%d%d” , &rframeWidth , &rframeHeight) ;
p r i n tk (KERN ALERT ”rpen Module : threshold params rframeWidth : %d : : r f rameHeight : %d .\n” ,

rframeWidth , r f rameHeight) ;
}
i f (strcmp (attr−>a t t r . name , ”mult iFactor ”) == 0) {

s sc an f (bu f f e r , ”%d%d” , &srcMulFactor , &rframeMulFactor) ;
p r i n tk (KERN ALERT ”rpen Module : mult iFactor params srcMulFactor : %d : : rframeMulFactor : %

d .\n” , srcMulFactor , rframeMulFactor) ;
}
i f (strcmp (attr−>a t t r . name , ” r e sFactor ”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &srcFactor , &inputFactor , &avgSampleNo) ;
171 pr i n tk (KERN ALERT ”rpen Module : resFactor params sr cFactor : %d : : inputFactor : %d : :

avgSampleNo : %d .\n” , srcFactor , inputFactor , avgSampleNo) ;
}
i f (strcmp (attr−>a t t r . name , ”pDefPoint1”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &pDefPoint1X , &pDefPoint1Y , &pDefPoint1Z) ;
p r i n tk (KERN ALERT ”rpen Module : pDefPoint1 params pDefPoint1X : %d : : pDefPoint1Y : %d : :

pDefPoint1Z : %d .\n” , pDefPoint1X , pDefPoint1Y , pDefPoint1Z) ;
}
i f (strcmp (attr−>a t t r . name , ”pDefPoint2”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &pDefPoint2X , &pDefPoint2Y , &pDefPoint2Z) ;
p r i n tk (KERN ALERT ”rpen Module : pDefPoint2 params pDefPoint2X : %d : : pDefPoint2Y : %d : :

pDefPoint2Z : %d .\n” , pDefPoint2X , pDefPoint2Y , pDefPoint2Z) ;
}

181 i f (strcmp (attr−>a t t r . name , ”pDefPoint3”) == 0) {
s sc an f (bu f f e r , ”%d%d%d” , &pDefPoint3X , &pDefPoint3Y , &pDefPoint3Z) ;
p r i n tk (KERN ALERT ”rpen Module : pDefPoint3 params pDefPoint3X : %d : : pDefPoint3Y : %d : :

pDefPoint3Z : %d .\n” , pDefPoint3X , pDefPoint3Y , pDefPoint3Z) ;
}
i f (strcmp (attr−>a t t r . name , ” screenRes ”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &x s r c r e s o l u t i o n , &y s r c r e s o l u t i o n , &z r e s o l u t i o n) ;
p r i n tk (KERN ALERT ”rpen Module : screenRes params x s r c r e s o l u t i o n : %d : : y s r c r e s o l u t i o n

: %d : : z r e s o l u t i o n : %d .\n” , x s r c r e s o l u t i o n , y s r c r e s o l u t i on , z r e s o l u t i o n) ;
}
i f (strcmp (attr−>a t t r . name , ” s en s o rPo s i t i on ”) == 0) {

s sc an f (bu f f e r , ”%d%d%d” , &X sensorPos , &Y sensorPos , &Z sensorPos) ;
191 p r i n tk (KERN ALERT ”rpen Module : s en sorPos i t i on params X sensorPos : %d : : Y sensorPos : %d

: : Z sensorPos : %d .\n” , X sensorPos , Y sensorPos , Z sensorPos) ;
}
i f (strcmp (attr−>a t t r . name , ” c l i ckEvent ”) == 0) {

s sc an f (bu f f e r , ”%d” , &l e f tB tnC l i ck ed) ;
p r i n tk (KERN ALERT ”rpen Module : c l i ckEvent params l e f tB tnC l i cked : %d .\n” , l e f tB tnC l i c ked)

;
}

return s t r n l en (bu f f e r , s i z e) ;
}

201 /* s e t o f a t t r i b u t e s r e q u i r e d t o be communicated : each w i l l have i t s own node i s s y s f s under
t he d e v i c e f o l d e r */

stat i c DEVICE ATTR(f l a g s , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(xValRange , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(yValRange , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(zValRange , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(threshold , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(rframeSize , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(multiFactor , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(resFactor , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;

120

stat i c DEVICE ATTR(pDefPoint1 , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
211 stat i c DEVICE ATTR(pDefPoint2 , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;

stat i c DEVICE ATTR(pDefPoint3 , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(screenRes , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(sen sorPos i t i on , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;
stat i c DEVICE ATTR(cl i ckEvent , S IWUSR | S IRUGO, rpenParam show , rpenParam store) ;

/* Create a group o f a t t r i b u t e s so t h a t we can c r e a t e and d e s t o r y them a l l a t once . */
stat i c struct d ev i c e a t t r i b u t e * r pe n a t t r s [] = {

&de v a t t r f l a g s . attr ,
&dev attr xValRange . attr ,

221 &dev attr yValRange . attr ,
&dev attr zValRange . attr ,
&dev a t t r t h r e sh o l d . attr ,
&d ev a t t r r f r ameS i z e . attr ,
&dev at t r mu l t iFactor . attr ,
&d ev a t t r r e sFac t o r . attr ,
&dev at t r pDe fPo in t1 . attr ,
&dev at t r pDe fPo in t2 . attr ,
&dev at t r pDe fPo in t3 . attr ,
&dev a t t r sc r e enRes . attr ,

231 &de v a t t r s en s o rPo s i t i o n . attr ,
&d ev a t t r c l i c kEven t . attr ,

NULL /* need t o NULL term ina t e t he l i s t o f a t t r i b u t e s */
} ;

stat i c struct a t t r i bu t e g roup at t r group = {
. name = ”rpenParam ” ,
. a t t r s = rpen at t r s ,

} ;

241 /* ######## Device r e l a t e d s t r u c t u r e and i n i t i a l i z a t i o n ########## */
typedef struct usb myMouse { /* u s ing t y p e d e f so t h a t do not has t o use ’ s t r u c t ’ e ve ry

t ime an in s t a n c e i s needed */
char name [1 2 8] ; /* name o f t he d e v i c e */
char phys [6 4] ; /* p h y s i c a l path o f t h e d e v i c e */
signed char *data ; /* URB data */
signed char * s end bu f f e r ;
int dataLength ; /* URB data l e n g t h */

struct usb dev i ce *usbdev ; /* USB de v i c e */
struct u s b i n t e r f a c e * i n t e r f a c e ; /* usb i n t e r f a c e */

251 struct i n put po l l e d dev * inputPol lDev ; /* t h e i nput d e v i c e w i l l be a par t o f t h i s */
int p o l l I n t e r v a l ;
unsigned int i n p ip e ; /* in pu t data p ipe */
unsigned int out p ipe ; /* ou tpu t data p ipe */
struct mutex bulk io mutex ; /* used on ly f o r b u l k ou t s i t u a t i o n in probe */

typeMovement f i l t e rOutpu t [3] ; /* l a s t t h r e e f i l t e r ou t pu t w i l l be s t o r e d here */
typeMovement sen sor In tput [3] ; /* l a s t t h r e e sensor i npu t w i l l be s t o r e d here */

typeMovement f i l t e rOutAgv [ARRAY SIZE AVG] ;
261 typeMovement lastAvgOutput ;

typeMovement currentAvgOutput ;
} myMouseType ;

/* I n i t i a l i z a t i o n o f myMouseType data s t r u c t u r e */
void init myMouseDevice (myMouseType *myMouse)
{

int i ;

memset (myMouse , 0 , s i zeo f (myMouseType)) ;
271 myMouse−>inputPol lDev = NULL;

myMouse−>i n t e r f a c e = NULL;
myMouse−>data = NULL;
myMouse−>s end bu f f e r = NULL;

for (i =0; i <3; i++) {
myMouse−>f i l t e rOutpu t [i] .X = 0 ;
myMouse−>f i l t e rOutpu t [i] .Y = 0 ;
myMouse−>f i l t e rOutpu t [i] . Z = 0 ;
myMouse−>f i l t e rOutpu t [i] .A = 0 ;

281 myMouse−>f i l t e rOutpu t [i] . E = 0 ;
myMouse−>f i l t e rOutpu t [i] . R = 0 ;

myMouse−>sen sor In tput [i] .X = 0 ;
myMouse−>sen sor In tput [i] .Y = 0 ;
myMouse−>sen sor In tput [i] . Z = 0 ;
myMouse−>sen sor In tput [i] .A = 0 ;
myMouse−>sen sor In tput [i] . E = 0 ;
myMouse−>sen sor In tput [i] . R = 0 ;

}
291

for (i =0; i<ARRAY SIZE AVG; i++) {
myMouse−>f i l t e rOutAgv [i] .X = 0 ;
myMouse−>f i l t e rOutAgv [i] .Y = 0 ;
myMouse−>f i l t e rOutAgv [i] . Z = 0 ;

121

myMouse−>f i l t e rOutAgv [i] .A = 0 ;
myMouse−>f i l t e rOutAgv [i] . E = 0 ;
myMouse−>f i l t e rOutAgv [i] . R = 0 ;

}
myMouse−>lastAvgOutput .X = 0 ;

301 myMouse−>lastAvgOutput .Y = 0 ;
myMouse−>lastAvgOutput . Z = 0 ;
myMouse−>lastAvgOutput .A = 0 ;
myMouse−>lastAvgOutput .E = 0 ;
myMouse−>lastAvgOutput .R = 0 ;

myMouse−>currentAvgOutput .X = 0 ;
myMouse−>currentAvgOutput .Y = 0 ;
myMouse−>currentAvgOutput . Z = 0 ;
myMouse−>currentAvgOutput .A = 0 ;

311 myMouse−>currentAvgOutput .E = 0 ;
myMouse−>currentAvgOutput .R = 0 ;

}

/* f r e e i n g up the myMouseType s t r u c t u r e */
void free myMouseData (myMouseType *myMouse)
{

i f (myMouse−>data)
k f r e e (myMouse−>data) ;

i f (myMouse−>s end bu f f e r)
321 k f r e e (myMouse−>s end bu f f e r) ;

i f (myMouse−>i n t e r f a c e)
myMouse−>i n t e r f a c e = NULL;

i f (myMouse−>inputPol lDev)
i n pu t f r e e p o l l e d d e v i c e (myMouse−>inputPol lDev) ;

k f r e e (myMouse) ;
}

/* f un c t i o n t o c r e a t e a new usb myMouse d e v i c e */
myMouseType * create myMouse (struct usb dev i ce *udev , struct u s b i n t e r f a c e * i n t f)

331 {
myMouseType *myMouse ;

/* a l l o c a t e memory f o r myMouseType d e v i c e and i n i t i a l i z e */
i f (! (myMouse = kmalloc (s i zeo f (myMouseType) , GFP KERNEL)))

return NULL;
init myMouseDevice (myMouse) ;

/* a l l o c a t i n g in pu t de v i c e */
i f ((myMouse−>inputPol lDev = i np u t a l l o c a t e p o l l e d d e v i c e ()) == NULL) {

341 pr i n tk (KERN INFO ”myMouse : i n p u t a l l o c a t e p o l l e d d e v i c e f a i l e d .\n”) ;
free myMouseData (myMouse) ;
return NULL;

}

/* a l l o c a t i n g data r e q u i r e d f o r data i npu t */
myMouse−>dataLength = 32 ;
i f (! (myMouse−>data = kmalloc (myMouse−>dataLength , GFP KERNEL))) {

free myMouseData (myMouse) ;
p r i n tk (KERN INFO ”myMouse : create myMouse : f a i l e d to a l l o c a t e bu f f e r .\n”) ;

351 return NULL;
}
i f (! (myMouse−>s end bu f f e r = kmalloc (myMouse−>dataLength , GFP KERNEL))) {

free myMouseData (myMouse) ;
p r i n tk (KERN INFO ”myMouse : create myMouse : f a i l e d to a l l o c a t e bu f f e r .\n”) ;
return NULL;

}
myMouse−>s end bu f f e r [0] = ’S ’ ;
myMouse−>s end bu f f e r [1] = ’P ’ ;
myMouse−>s end bu f f e r [2] = ’ \0 ’ ;

361
/* s e t t i n g p o l l i n g i n t e r v a l in msec */
myMouse−>po l l I n t e r v a l = 2 ; /* 2 msec */

/* i n i t i a l i z i n g mutex l o c k */
mutex in i t(&myMouse−>bulk io mutex) ;

/* s e t t i n g myMouse usb d e v i c e and i n t e r f a c e */
myMouse−>usbdev = udev ;
myMouse−>i n t e r f a c e = i n t f ;

371
return myMouse ;

}

/* ######## Def in ing probe , d i s connec t , i r q h a n d l i n g and o th e r r e l a t e d c a l l b a c k f u n c t i o n s
########## */

stat i c int t ran s formPos i t i on (int posValue)
{

int newPosVal ;

/* as f l o a t i n g po i n t not cons i de r e d ou tpu t v a l u e may not be accu ra t e */
381 i f (rframeMulFactor != 0) {

122

newPosVal = (posValue * srcMulFactor) / rframeMulFactor ; /* t r ans fo rm ing t o sc r een
r e s o l u t i o n */

}
return newPosVal ;

}

/* t h i s f un c t i o n a lways p ro v i d e s t he c e i l o f a d i v i s i o n */
int sq root (int m)
{

int i =0;
391 int x1 , x2 , j ;

while ((i * i) <= m*10) {
i +=1;

}
x1=i ;

for (j =0; j <10; j++) {
x2=m;
x2/=x1 ;

401 x2+=x1 ;
x2/=2;
x1=x2 ;

}
return x2 ;

}

stat i c int Magnitude (int X1 , int X2 , int Y1 , int Y2 , int Z1 , int Z2)
{

int VectorX , VectorY , VectorZ ;
411

VectorX = X2 − X1 ;
VectorY = Y2 − Y1 ;
VectorZ = Z2 − Z1 ;

return (int) sq root (VectorX * VectorX + VectorY * VectorY + VectorZ * VectorZ) ;
}

stat i c void DistancePointL ine (int pX, int pY, int pZ , int *xDistance , int * yDistance)
{

421 int U;
int IntersecX , IntersecY , In te r secZ ;

U = (((pX − pDefPoint1X) * (pDefPoint2X − pDefPoint1X)) +
((pY − pDefPoint1Y) * (pDefPoint2Y − pDefPoint1Y)) +
((pZ − pDefPoint1Z) * (pDefPoint2Z − pDefPoint1Z))) ;

IntersecX = pDefPoint1X + U*(pDefPoint2X − pDefPoint1X) /(rframeWidth * rframeWidth) ;
IntersecY = pDefPoint1Y + U*(pDefPoint2Y − pDefPoint1Y) /(rframeWidth * rframeWidth) ;
In t e r secZ = pDefPoint1Z + U*(pDefPoint2Z − pDefPoint1Z) /(rframeWidth * rframeWidth) ;

431 * yDistance = Magnitude (pX, IntersecX , pY, IntersecY , pZ , In te r secZ) ;

U = (((pX − pDefPoint2X) * (pDefPoint3X − pDefPoint2X)) +
((pY − pDefPoint2Y) * (pDefPoint3Y − pDefPoint2Y)) +
((pZ − pDefPoint2Z) * (pDefPoint3Z − pDefPoint2Z))) ;

IntersecX = pDefPoint2X + U*(pDefPoint3X − pDefPoint2X) /(r frameHeight * r f rameHeight) ;
IntersecY = pDefPoint2Y + U*(pDefPoint3Y − pDefPoint2Y) /(r frameHeight * r f rameHeight) ;
In t e r secZ = pDefPoint2Z + U*(pDefPoint3Z − pDefPoint2Z) /(r frameHeight * r f rameHeight) ;

441 * xDistance = rframeHeight − Magnitude (pX, IntersecX , pY, IntersecY , pZ , In te r secZ) ;
}

stat i c int t ran s f e rFunct i on (myMouseType *myMouse , struct input dev * inputdev , int xPosi t ion ,
int yPosi t ion , int zPos i t i on , int rPos , int ePos , int aPos)

{
int tmpP3PX, tmpP3PY, tmpP3PZ;
int dotValue , dotVnpos ;
int xDistance , yDistance , d i stanceZ , normalVlen ;
int newXPos , newYPos , newZPos ;

451 int transformX , transformY ;
int tmpPXP1, tmpPYP1, tmpPZP1;

u16 di f fX , d i f fY ;
int Dvalx , Dvaly , Dvalz , Dvalr ;

i f (useTransferFlag == 0) { /* r e p o r t t h e sensor p o s i t i o n as i t i s */
X sensorPos = xPos i t i on ;
Y sensorPos = yPos i t i on ;
Z sensorPos = zPos i t i on ;
i npu t r ep o r t ab s (inputdev , ABS X, xPos i t i on) ;

461 inpu t r ep o r t ab s (inputdev , ABS Y, yPos i t i on) ;
i npu t r ep o r t ab s (inputdev , ABS Z , zPos i t i on) ;
i npu t r ep o r t ab s (inputdev , ABS RX, rPos) ;
i npu t r ep o r t ab s (inputdev , ABS RY, ePos) ;
i npu t r ep o r t ab s (inputdev , ABS RZ , aPos) ;
i nput sync (inputdev) ;

123

} else {
i f (rPos >= RIGHT CLICK ANG) {

i f (r ightBtnCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN RIGHT, 1) ; /* r e p o r t i n g t he c l i c k */

471 input sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN RIGHT, 0) ; /* un c l i c k i n g t he r i g h t bu t t on */
i nput sync (inputdev) ;
r ightBtnCl i cked = 1 ;

}
} else {

i f (r ightBtnCl i cked == 1) { /* i f r i g h t bu t t on was c l i c k e d then update t he f l a g as
u n c l i c k e d */

r ightBtnCl i cked = 0 ;
}

}
481

/* dot p roduc t o f normal o f t h e p lane (r frame) and the po i n t */
/* dotValue = (normalVectorX* xPo s i t i on) + (normalVectorY* yPo s i t i on) + (normalVectorZ*

z Po s i t i o n) ; */
dotValue = (normalVectorX* xPos i t i on) + (normalVectorY* yPos i t i on) + (normalVectorZ *

zPos i t i on) ;

switch (r f rameOriFlag) {
case 0 : /* g en e r i c o r i e n t a t i o n */

/* t o g e t t h e p o s i t i o n on the s u r f a c e */
tmpP3PX = pDefPoint3X − xPos i t i on ;
tmpP3PY = pDefPoint3Y − yPos i t i on ;

491 tmpP3PZ = pDefPoint3Z − zPos i t i on ;
dotVnpos = (normalVectorX*tmpP3PX) + (normalVectorY*tmpP3PY) + (normalVectorZ *tmpP3PZ) ;
newXPos = xPos i t i on + (dotVnpos*normalVectorX/normalVDot) ;
newYPos = yPos i t i on + (dotVnpos*normalVectorY/normalVDot) ;
newZPos = zPos i t i on + (dotVnpos*normalVectorZ /normalVDot) ;

normalVlen = sqroot (normalVDot) ;
tmpPXP1 = xPos i t i on − pDefPoint1X ;
tmpPYP1 = yPos i t i on − pDefPoint1Y ;
tmpPZP1 = zPos i t i on − pDefPoint1Z ;

501 di stanceZ = (normalVectorX/normalVlen) *tmpPXP1 + (normalVectorY/normalVlen) *tmpPYP1 + (
normalVectorZ /normalVlen) *tmpPZP1;

i f (dotValue == kValue) { /* then the p o i n t i s on the p lane */
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0;

}

/* g e t t i n g t he d i s t a n c e va l u e f o r x and y c o o r d i na t e s */
DistancePointL ine (xPosi t ion , yPosi t ion , zPos i t i on , &xDistance , &yDistance) ;

511
transformX = trans formPos i t i on (xDistance) ;
transformY = trans formPos i t i on (yDistance) ;

/* c he ck in g f o r p i x e l j i t t e r */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

521
pr i n tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f

sen sor i s t r eat ed as j i t t e r .\n”) ;
/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = 0 ;

531 input r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , 0) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = 0 ;
i nput r ep o r t ab s (inputdev , ABS X, transformX) ;
i nput r ep o r t ab s (inputdev , ABS Y, transformY) ;

541 input r ep o r t ab s (inputdev , ABS Z , 0) ;
}

i nput r ep o r t a b s (inputdev , ABS RX, rPos) ;
i nput r ep o r t a b s (inputdev , ABS RY, ePos) ;
i nput r ep o r t a b s (inputdev , ABS RZ , aPos) ;

124

i nput sync (inputdev) ;

} else i f (dotValue < kValue) {

551 i f (d i stanceZ <= se l t h r e sh o l d){
i f (d i stanceZ <= sur th re sho ld) { /* i f dotValue i s w i t h s u r t h r e s h o l d then r e p o r t

t r ans fo rmed p o s i t i o n */
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now*/

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;

}

/* g e t t i n g t he d i s t a n c e va l u e f o r x and y c o o rd i n a t e s */
DistancePointL ine (newXPos , newYPos , newZPos , &xDistance , &yDistance) ;

561 transformX = trans formPos i t i on (xDistance) ;
transformY = trans formPos i t i on (yDistance) ;

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

571 pr i n tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;

581 input r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

591 }

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > su r th re sho ld) { /* i t s a s imu l a t ed l e f t bu t t on c l i c k */
i f (rPos <= LEFT CLICK ANG) {

i f (l e f tB tnC l i c ked != 1) {
601 input r epo r t k ey (inputdev , BTN LEFT, 1) ;

l e f tB tnC l i c ked = 1 ;
}

} else {
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now*/

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;

}
}

611 /* g e t t i n g t he d i s t a n c e va l u e f o r x and y c o o rd i n a t e s */
DistancePointL ine (newXPos , newYPos , newZPos , &xDistance , &yDistance) ;

transformX = trans formPos i t i on (xDistance) ;
transformY = trans formPos i t i on (yDistance) ;

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

621
i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((

d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

125

/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;

631 Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;

641 input r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}
651 } else { /* t h i s i s one o f t h e c l u t c h e s (−) −− d i s t anc eZ > s e l t h r e s h o l d −− same

as l e f t c l i c k */
i f (rPos <= LEFT CLICK ANG) {

i f (l e f tB tnC l i c ked != 1) {
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;

}
} else {

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;

661 }
}

/* g e t t i n g t he d i s t a n c e va l u e f o r x and y c oo r d i na t e s */
DistancePointL ine (newXPos , newYPos , newZPos , &xDistance , &yDistance) ;

transformX = trans formPos i t i on (xDistance) ;
transformY = trans formPos i t i on (yDistance) ;

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
671 i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;

681 input r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

691 X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;

701 input r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}
} else { /* then dotValue i s g r ea t e r , i . e . , t h e po i n t i s above t he s u r f a c e */

i f (d i stanceZ <= POSI CLUTCH THRESHOLD) {
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;

126

l e f tB tnC l i c ked = 0 ;
}

711 /* g e t t i n g t he d i s t a n c e va l u e f o r x and y c oo r d i na t e s */
DistancePointL ine (newXPos , newYPos , newZPos , &xDistance , &yDistance) ;

transformX = trans formPos i t i on (xDistance) ;
transformY = trans formPos i t i on (yDistance) ;

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

721
i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((

d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;

731 Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;

741 input r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

} else { /* t h i s i s one o f t h e c l u t c h e s (+) */
751 /* r e p o r t i n g no th ing t o t he i npu t even t subsystem */

Z sensorPos = distanceZ ;
return 0 ;

}
}

break ;
case 1 : /* r frame on xy p lane [d e s k t o p mode , may be] (here assuming t he ba se and

the sc r een have same x−ax i s , in r eg ar d s t o c o o r d i n a t e s) */
distanceZ = (minZpos − zPos i t i on) ;

761 i f (d i stanceZ == 0) { /* then the po i n t i s on the p lane */
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput .Z ;
i f (Dvalz < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
771 Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;

i f (Dvalx < 0) {
Dvalx = (−1)*Dvalx ;

}
i f (Dvaly < 0) {

Dvaly = (−1)*Dvaly ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvaly < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;

781 c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;
c l i ck In t end ed = 1 ;

}
myMouse−>lastAvgOutput .Z = zPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t .Y = 0 ;
c l i c k In t end ed = 0 ;

}

127

791 } else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t .Y = 0 ;
c l i c k In t ended = 0 ;

}
}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
801

i f (rPos > POSI ROLL THRESHOLD) { /* go ing f o r r i g h t c l i c k */
return 0 ;

}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he c oo r d i n a t e
t o 0 */

transformY = trans formPos i t i on (yPos i t i on − minYpos) ; /* t r a n s f e r r i n g t he c oo r d i n a t e
t o 0 */

/* c he ck in g f o r p i x e l j i t t e r */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

811 d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

821
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

831 X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r ep o r t ab s (inputdev , ABS X, transformX) ;
i nput r ep o r t ab s (inputdev , ABS Y, transformY) ;
i nput r ep o r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t a b s (inputdev , ABS RX, rPos) ;
i nput r ep o r t a b s (inputdev , ABS RY, ePos) ;

841 input r ep o r t a b s (inputdev , ABS RZ , aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > 0) {

i f (d i stanceZ <= se l t h r e sh o l d){
i f (d i stanceZ <= sur th re sho ld) { /* i f dotValue i s w i t h s u r t h r e s h o l d then r e p o r t

t r ans fo rmed p o s i t i o n */
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;

851 l e f tC l i c kOn ly = 0 ;
}
else {

Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvalz < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvalx < 0) {

Dvalx = (−1)*Dvalx ;
}

861 i f (Dvaly < 0) {
Dvaly = (−1)*Dvaly ;

}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvaly < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;
c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;
c l i ck In t ended = 1 ;

}
myMouse−>lastAvgOutput . Z = zPos i t i on ;

871 return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

128

} else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t .Y = 0 ;
c l i ck In t ended = 0 ;

}
} else {

c l i c k p o i n t .X = 0 ;
c l i c k p o i n t .Y = 0 ;
c l i ck In t end ed = 0 ;

881 }
}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

i f (rPos > POSI ROLL THRESHOLD) { /* go ing f o r r i g h t c l i c k */
return 0 ;

}
891

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (yPos i t i on − minYpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

901
pr i n tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f

sen sor i s t r eat ed as j i t t e r .\n”) ;
/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;

911 Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;

921 input r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > su r th re sho ld) { /* i t s a s imu l a t ed l e f t bu t t on c l i c k */
931 i f (l e f tB tnC l i c ked != 1) {

i f (c l i ck In t ended == 1) {
pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k

intended .\n”) ;
xPos i t i on = c l i c k p o i n t .X;
yPos i t i on = c l i c k p o i n t .Y;
c l i ck In t end ed = 0 ;

}
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;
l e f tC l i c kOn ly = 1 ;

941 } else {
/* t a k i n g care o f doub l e c l i c k */
i f (rPos <= LEFT DBLCLICK ANG) {

i f (l e f tBtnDb lCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;

951 input r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;

129

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;
l e f tB tnC l i c ked = 0 ;

}
} else {

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

961 }
}

i f (l e f tC l i c kOn ly == 1) {
Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvalx < 0) {

Dvalx = (−1)*Dvalx ;
}
i f (Dvaly < 0) {

971 Dvaly = (−1)*Dvaly ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvaly < UNCLICK THRESHOLD)) {

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

l e f tC l i c kOn ly = 0 ;
}

}
}

981 i f ((rPos < NEGI ROLL THRESHOLD) | | (rPos > POSI ROLL THRESHOLD)) { /* go ing f o r
l e f t doub l e or r i g h t c l i c k */

return 0 ;
}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (yPos i t i on − minYpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
991 d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

1001 } else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
1011 Y sensorPos = transformY ;

Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;

1021 input sync (inputdev) ;

}
} else { /* t h i s i s one o f t h e c l u t c h e s (−) −− d i s t anc eZ > s e l t h r e s h o l d −− same

as l e f t c l i c k */
i f (l e f tB tnC l i c ked != 1) {

i f (c l i ck In t end ed == 1) {
pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k intended

.\n”) ;
xPos i t i on = c l i c k p o i n t .X;
yPos i t i on = c l i c k p o i n t .Y;
c l i c k In t end ed = 0 ;

1031 }

130

i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;
l e f tC l i c kOn ly = 1 ;

} else {
/* t a k i n g care o f doub l e c l i c k */
i f (rPos <= LEFT DBLCLICK ANG) {

i f (l e f tBtnDb lCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;

1041 input r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;
l e f tB tnC l i c ked = 0 ;

1051 }
} else {

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
}

i f (l e f tC l i c kOn ly == 1) {
Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;

1061 i f (Dvalx < 0) {
Dvalx = (−1)*Dvalx ;

}
i f (Dvaly < 0) {

Dvaly = (−1)*Dvaly ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvaly < UNCLICK THRESHOLD)) {

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

l e f tC l i c kOn ly = 0 ;
1071 }

}
}

i f ((rPos < NEGI ROLL THRESHOLD) | | (rPos > POSI ROLL THRESHOLD)) { /* go ing f o r
l e f t doub l e or r i g h t c l i c k */

return 0 ;
}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (yPos i t i on − minYpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

1081
/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
1091 input r epo r t ab s (inputdev , ABS X, X sensorPos) ;

i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;

1101 input r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;
}

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
1111

input r ep o r t ab s (inputdev , ABS RX, rPos) ;

131

i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}
} else { /* then dotValue i s g r ea t e r , i . e . , t h e po i n t i s above t he s u r f a c e */

i f (((−1)* distanceZ) <= POSI CLUTCH THRESHOLD) {
i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */

1121 input r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput .Z ;
i f (Dvalz < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvalx < 0) {

1131 Dvalx = (−1)*Dvalx ;
}
i f (Dvaly < 0) {

Dvaly = (−1)*Dvaly ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvaly < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;
c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;
c l i ck In t ended = 1 ;

1141 }
myMouse−>lastAvgOutput .Z = zPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t .Y = 0 ;
c l i ck In t end ed = 0 ;

}
} else {

c l i c k p o i n t .X = 0 ;
1151 c l i c k p o i n t .Y = 0 ;

c l i c k In t end ed = 0 ;
}

}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

i f (rPos > POSI ROLL THRESHOLD) { /* go ing f o r r i g h t c l i c k */
1161 return 0 ;

}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (yPos i t i on − minYpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

1171
i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((

d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
1181 X sensorPos = transformX ;

Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;

1191 Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

132

}

i nput r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

1201
} else { /* t h i s i s one o f t h e c l u t c h e s (+) */

/* r e p o r t i n g no th ing t o t he i npu t even t subsystem */
Z sensorPos = distanceZ ;
return 0 ;

}
}

myMouse−>lastAvgOutput .X = xPos i t i on ;
myMouse−>lastAvgOutput .Y = yPos i t i on ;

1211 myMouse−>lastAvgOutput . Z = zPos i t i on ;
myMouse−>lastAvgOutput .A = aPos ;
myMouse−>lastAvgOutput .E = ePos ;
myMouse−>lastAvgOutput .R = rPos ;

break ;
case 2 : /* r frame on xz p lane [t o uc hs c r e en mode , us ua l] (here assuming t he ba se and

the sc r een have same x−ax i s , in r e ga rd s t o c o o r d i na t e s) */
distanceZ = (minYpos − yPos i t i on) ;

i f (d i stanceZ == 0) { /* then the po i n t i s on the p lane */
1221

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvaly < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
1231 Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput .Z ;

i f (Dvalx < 0) {
Dvalx = (−1)*Dvalx ;

}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;

1241 c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;
c l i ck In t end ed = 1 ;

}
myMouse−>lastAvgOutput .Y = yPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t end ed = 0 ;

}
1251 } else {

c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t ended = 0 ;

}
}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
1261

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he c oo r d i n a t e
t o 0 */

transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e
i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g swap
i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r r frame
(w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
1271 i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

133

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;

1281 input r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

1291 X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r ep o r t ab s (inputdev , ABS X, transformX) ;
i nput r ep o r t ab s (inputdev , ABS Y, transformY) ;
i nput r ep o r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t a b s (inputdev , ABS RX, rPos) ;
i nput r ep o r t a b s (inputdev , ABS RY, ePos) ;

1301 input r ep o r t a b s (inputdev , ABS RZ , aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > 0) {

i f (d i stanceZ <= se l t h r e sh o l d){
i f (d i stanceZ <= sur th re sho ld) { /* i f dotValue i s w i t h s u r t h r e s h o l d then r e p o r t

t r ans fo rmed p o s i t i o n */

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;

1311 l e f tB tnC l i c ked = 0 ;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvaly < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvalx < 0) {

Dvalx = (−1)*Dvalx ;
1321 }

i f (Dvalz < 0) {
Dvalz = (−1)*Dvalz ;

}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;
c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;
c l i ck In t ended = 1 ;

}
1331 myMouse−>lastAvgOutput .Y = yPos i t i on ;

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i ck In t ended = 0 ;

}
} else {

c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;

1341 c l i ck In t end ed = 0 ;
}

}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z
v a l u e i s t h e h e i g h t */

1351
/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g

swap i s nece s sa ry */
/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r

r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

134

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

1361 i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;

1371 Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;

1381 input r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > su r th re sho ld) { /* i t s a s imu l a t ed l e f t bu t t on c l i c k */
1391

i f (l e f tB tnC l i c ked != 1) {
i f (c l i ck In t ended == 1) {

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k
intended .\n”) ;

xPos i t i on = c l i c k p o i n t .X;
zPos i t i on = c l i c k p o i n t . Z ;
c l i ck In t end ed = 0 ;

}
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;

1401 l e f tC l i c kOn ly = 1 ;
} else {

/* t a k i n g care o f doub l e c l i c k */
i f (rPos <= LEFT DBLCLICK ANG) {

i f (l e f tBtnDb lCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;

1411 input sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;
l e f tB tnC l i c ked = 0 ;

}
} else {

i f (l e f tBtnDb lCl i cked == 1) {
1421 l e f tBtnDb lCl i cked = 0 ;

}
}

i f (l e f tC l i c kOn ly == 1) {
Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvalx < 0) {

Dvalx = (−1)*Dvalx ;
}

1431 i f (Dvalz < 0) {
Dvalz = (−1)*Dvalz ;

}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

135

} else {
l e f tC l i c kOn ly = 0 ;

}
}

}
1441

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z
v a l u e i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

1451 d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

1461 } else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
1471 Y sensorPos = transformY ;

Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;

1481 input sync (inputdev) ;

}
} else { /* t h i s i s one o f t h e c l u t c h e s (−) −− d i s t anc eZ > s e l t h r e s h o l d −− same

as l e f t c l i c k */

i f (l e f tB tnC l i c ked != 1) {
i f (c l i ck In t end ed == 1) {

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k intended
.\n”) ;

xPos i t i on = c l i c k p o i n t .X;
zPos i t i on = c l i c k p o i n t . Z ;

1491 c l i c k In t end ed = 0 ;
}
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;
l e f tC l i c kOn ly = 1 ;

} else {
/* t a k i n g care o f doub l e c l i c k */
i f (rPos <= LEFT DBLCLICK ANG) {

i f (l e f tBtnDb lCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;

1501 input sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;

1511 l e f tB tnC l i c ked = 0 ;
}

136

} else {
i f (l e f tBtnDb lCl i cked == 1) {

l e f tBtnDb lCl i cked = 0 ;
}

}

i f (l e f tC l i c kOn ly == 1) {
Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;

1521 Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvalx < 0) {

Dvalx = (−1)*Dvalx ;
}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

1531 l e f tC l i c kOn ly = 0 ;
}

}
}

transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e
i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

1541 transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

1551 /* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;

1561 input r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;
}

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
1571

input r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}

} else { /* then dotValue i s g r ea t e r , i . e . , t h e po i n t i s above t he s u r f a c e */
i f (((−1)* distanceZ) <= POSI CLUTCH THRESHOLD) {

1581 i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
i f (Dvaly < 0) {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;

1591 i f (Dvalx < 0) {

137

Dvalx = (−1)*Dvalx ;
}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvalx < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .X = myMouse−>lastAvgOutput .X;
c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;

1601 c l i ck In t ended = 1 ;
}
myMouse−>lastAvgOutput .Y = yPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i ck In t end ed = 0 ;

}
} else {

1611 c l i c k p o i n t .X = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t end ed = 0 ;

}
}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

1621 transformX = trans formPos i t i on (xPos i t i on − minXpos) ; /* t r a n s f e r r i n g t he
c oo r d i n a t e t o 0 */

transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e
i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
1631 d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
1641 X sensorPos = transformX ;

Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;

1651 Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

1661
} else { /* t h i s i s one o f t h e c l u t c h e s (+) */

/* r e p o r t i n g no th ing t o t he i npu t even t subsystem */
Z sensorPos = distanceZ ;
return 0 ;

}
}

myMouse−>lastAvgOutput .X = xPos i t i on ;
myMouse−>lastAvgOutput .Y = yPos i t i on ;

138

1671 myMouse−>lastAvgOutput . Z = zPos i t i on ;
myMouse−>lastAvgOutput .A = aPos ;
myMouse−>lastAvgOutput .E = ePos ;
myMouse−>lastAvgOutput .R = rPos ;

break ;
case 3 : /* r frame on yz p lane [p r o j e c t i o n mode , may be] (here assuming t he ba se and

the sc r een have same x−ax i s , in r e ga rd s t o c o o r d i na t e s) */
distanceZ = (minXpos − xPos i t i on) ;

i f (d i stanceZ == 0) { /* then the po i n t i s on the p lane */
1681

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
i f (Dvalx < 0) {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
1691 Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput .Z ;

i f (Dvaly < 0) {
Dvaly = (−1)*Dvaly ;

}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvaly < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;

1701 c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;
c l i ck In t end ed = 1 ;

}
myMouse−>lastAvgOutput .X = xPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .Y = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t end ed = 0 ;

}
1711 } else {

c l i c k p o i n t .Y = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t ended = 0 ;

}
}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
1721

transformX = trans formPos i t i on (yPos i t i on − minYpos) ;
transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e

i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g swap
i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r r frame
(w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformX = (x s r c r e s o l u t i o n − transformX) ; /* t h i s i s making x=0 to y=screen
w id t h v i s a ve r sa and in between */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

1731 /* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;

1741 input r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;

139

i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;
}

1751 } else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r ep o r t ab s (inputdev , ABS X, transformX) ;
i nput r ep o r t ab s (inputdev , ABS Y, transformY) ;
i nput r ep o r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t a b s (inputdev , ABS RX, rPos) ;
1761 input r ep o r t a b s (inputdev , ABS RY, ePos) ;

i nput r ep o r t a b s (inputdev , ABS RZ , aPos) ;
i nput sync (inputdev) ;

} else i f (d i stanceZ > 0) {

i f (d i stanceZ <= se l t h r e sh o l d){
i f (d i stanceZ <= sur th re sho ld) { /* i f dotValue i s w i t h s u r t h r e s h o l d then r e p o r t

t r ans fo rmed p o s i t i o n */

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
1771 input r epo r t k ey (inputdev , BTN LEFT, 0) ;

l e f tB tnC l i c ked = 0 ;
l e f tC l i c kOn ly = 0 ;

}
else {

Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
i f (Dvalx < 0) {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvaly < 0) {

1781 Dvaly = (−1)*Dvaly ;
}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvaly < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

i f (c l i ck In t ended != 1) {
c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;
c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;
c l i ck In t ended = 1 ;

1791 }
myMouse−>lastAvgOutput .X = xPos i t i on ;
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
c l i c k p o i n t .Y = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i ck In t ended = 0 ;

}
} else {

c l i c k p o i n t .Y = 0 ;
1801 c l i c k p o i n t . Z = 0 ;

c l i ck In t end ed = 0 ;
}

}

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

transformX = trans formPos i t i on (yPos i t i on − minYpos) ;
1811 transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z

v a l u e i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformX = (x s r c r e s o l u t i o n − transformX) ; /* t h i s i s making x=0 to y=screen
w id t h v i s a ve r sa and in between */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
1821 d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */

140

i n put r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
1831 X sensorPos = transformX ;

Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;

1841 Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

1851
} else i f (d i stanceZ > su r th re sho ld) { /* i t s a s imu l a t ed l e f t bu t t on c l i c k */

i f (l e f tB tnC l i c ked != 1) {
i f (c l i ck In t ended == 1) {

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k
intended .\n”) ;

yPos i t i on = c l i c k p o i n t .Y;
zPos i t i on = c l i c k p o i n t . Z ;
c l i ck In t end ed = 0 ;

}
1861 input r epo r t k ey (inputdev , BTN LEFT, 1) ;

l e f tB tnC l i c ked = 1 ;
l e f tC l i c kOn ly = 1 ;

} else {
/* t a k i n g care o f doub l e c l i c k */
i f (rPos <= LEFT DBLCLICK ANG) {

i f (l e f tBtnDb lCl i cked == 0) {
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;

1871 input sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;
l e f tB tnC l i c ked = 0 ;

}
1881 } else {

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
}

i f (l e f tC l i c kOn ly == 1) {
Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvaly < 0) {

1891 Dvaly = (−1)*Dvaly ;
}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}
i f ((Dvaly < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

l e f tC l i c kOn ly = 0 ;
}

1901 }
}

transformX = trans formPos i t i on (yPos i t i on − minYpos) ;
transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z

v a l u e i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

141

transformX = (x s r c r e s o l u t i o n − transformX) ; /* t h i s i s making x=0 to y=screen
w id t h v i s a ve r sa and in between */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

1911
/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
1921 input r epo r t ab s (inputdev , ABS X, X sensorPos) ;

i n put r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i n put r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i n put r epo r t ab s (inputdev , ABS X, transformX) ;
i n put r epo r t ab s (inputdev , ABS Y, transformY) ;
i n put r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

1931 }
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

1941 input r epo r t ab s (inputdev , ABS RX, rPos) ;
i nput r epo r t ab s (inputdev , ABS RY, ePos) ;
i nput r epo r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}

} else { /* t h i s i s one o f t h e c l u t c h e s (−) −− d i s t anc eZ > s e l t h r e s h o l d −− same
as l e f t c l i c k */

i f (l e f tB tnC l i c ked != 1) {
i f (c l i ck In t end ed == 1) {

1951 pr i n tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : c a l l e d from c l i c k intended
.\n”) ;

yPos i t i on = c l i c k p o i n t .Y;
zPos i t i on = c l i c k p o i n t . Z ;
c l i c k In t end ed = 0 ;

}
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
l e f tB tnC l i c ked = 1 ;
l e f tC l i c kOn ly = 1 ;

} else {
/* t a k i n g care o f doub l e c l i c k */

1961 i f (rPos <= LEFT DBLCLICK ANG) {
i f (l e f tBtnDb lCl i cked == 0) {

i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
i nput r epo r t k ey (inputdev , BTN LEFT, 1) ;
i nput sync (inputdev) ;

1971 input r epo r t k ey (inputdev , BTN LEFT, 0) ;
i nput sync (inputdev) ;
l e f tBtnDb lCl i cked = 1 ;
l e f tB tnC l i c ked = 0 ;

}
} else {

i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}
}

1981
i f (l e f tC l i c kOn ly == 1) {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvaly < 0) {

Dvaly = (−1)*Dvaly ;
}
i f (Dvalz < 0) {

142

Dvalz = (−1)*Dvalz ;
}

1991 i f ((Dvaly < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {
return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */

} else {
l e f tC l i c kOn ly = 0 ;

}
}

}

transformX = trans formPos i t i on (yPos i t i on − minYpos) ;
transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e

i s t h e h e i g h t */
2001

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformX = (x s r c r e s o l u t i o n − transformX) ; /* t h i s i s making x=0 to y=screen
w id t h v i s a ve r sa and in between */

transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

2011
i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((

d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

/* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;

2021 Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
} else {

X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;

2031 input r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}

i nput r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

}
2041

} else { /* then dotValue i s g r ea t e r , i . e . , t h e po i n t i s above t he s u r f a c e */
i f (((−1)* distanceZ) <= POSI CLUTCH THRESHOLD) {

i f (l e f tB tnC l i c ked == 1) { /* i f l e f t bu t t on was c l i c k e d then un c l i c k i t now */
i nput r epo r t k ey (inputdev , BTN LEFT, 0) ;
l e f tB tnC l i c ked = 0 ;
l e f tC l i c kOn ly = 0 ;

}
else {

2051 Dvalx = myMouse−>currentAvgOutput .X − myMouse−>lastAvgOutput .X;
i f (Dvalx < 0) {

Dvaly = myMouse−>currentAvgOutput .Y − myMouse−>lastAvgOutput .Y;
Dvalz = myMouse−>currentAvgOutput . Z − myMouse−>lastAvgOutput . Z ;
i f (Dvaly < 0) {

Dvaly = (−1)*Dvaly ;
}
i f (Dvalz < 0) {

Dvalz = (−1)*Dvalz ;
}

2061 i f ((Dvaly < UNCLICK THRESHOLD) && (Dvalz < UNCLICK THRESHOLD)) {
i f (c l i ck In t ended != 1) {

c l i c k p o i n t .Y = myMouse−>lastAvgOutput .Y;
c l i c k p o i n t . Z = myMouse−>lastAvgOutput . Z ;
c l i ck In t ended = 1 ;

}
myMouse−>lastAvgOutput .X = xPos i t i on ;

143

return 0 ; /* not upda t ing t he cu r so r p o s i t i o n */
} else {

c l i c k p o i n t .Y = 0 ;
2071 c l i c k p o i n t . Z = 0 ;

c l i ck In t end ed = 0 ;
}

} else {
c l i c k p o i n t .Y = 0 ;
c l i c k p o i n t . Z = 0 ;
c l i c k In t end ed = 0 ;

}
}

2081 i f (l e f tBtnDb lCl i cked == 1) {
l e f tBtnDb lCl i cked = 0 ;

}

transformX = trans formPos i t i on (yPos i t i on − minYpos) ;
transformY = trans formPos i t i on (zPos i t i on − minZpos) ; /* doing t he swap : as z v a l u e

i s t h e h e i g h t */

/* as t he ba se i s assumed to be a lways beh ind and under t he r frame −− f o l l o w i n g
swap i s nece s sa ry */

/* t h i s has t o be done as sc r e ens 0 ,0 s t a r t s a t t h e upper l e f t corner and f o r
r frame (w i t h t he above assumt ion) i t i s l ower l e f t corner */

transformX = (x s r c r e s o l u t i o n − transformX) ; /* t h i s i s making x=0 to y=screen
w id t h v i s a ve r sa and in between */

2091 transformY = (y s r c r e s o l u t i o n − transformY) ; /* t h i s i s making y=0 to y=screen
h e i g h t v i s a ve r sa and in between */

/* c he ck in g f o r p i x e l j i t t e r −− check i f t h e va l u e i s a lways p o s i t i v e */
i f (! ((X sensorPos == 0) && (Y sensorPos == 0))) { /* not (t he f i r s t t ime) */

d i f fX = transformX − X sensorPos ;
d i f fY = transformY − Y sensorPos ;

i f (((d i f fX <= DIS PIXEL JITTER POSI) | | (d i f fX > DIS PIXEL JITTER NEGI)) && ((
d i f fY <= DIS PIXEL JITTER POSI) | | (d i f fY > DIS PIXEL JITTER NEGI))) { /*
j i t t e r d e t e c t e d */

pr in tk (KERN INFO ”myMouse driver : t ran s f e rFunct i on : transformed movement o f
sen sor i s t r eat ed as j i t t e r .\n”) ;

2101 /* r e p o r t i n g t he l a s t movement */
i nput r epo r t ab s (inputdev , ABS X, X sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Y, Y sensorPos) ;
i nput r epo r t ab s (inputdev , ABS Z , Z sensorPos) ;

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;

2111 input r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;
}

} else {
X sensorPos = transformX ;
Y sensorPos = transformY ;
Z sensorPos = distanceZ ;
i nput r epo r t ab s (inputdev , ABS X, transformX) ;
i nput r epo r t ab s (inputdev , ABS Y, transformY) ;
i nput r epo r t ab s (inputdev , ABS Z , d i stanceZ) ;

}
2121

input r ep o r t ab s (inputdev , ABS RX, rPos) ;
i nput r ep o r t ab s (inputdev , ABS RY, ePos) ;
i nput r ep o r t ab s (inputdev , ABS RZ, aPos) ;
i nput sync (inputdev) ;

} else { /* t h i s i s one o f t h e c l u t c h e s (+) */
/* r e p o r t i n g no th ing t o t he i npu t even t subsystem */
Z sensorPos = distanceZ ;
return 0 ;

2131 }
}

myMouse−>lastAvgOutput .X = xPos i t i on ;
myMouse−>lastAvgOutput .Y = yPos i t i on ;
myMouse−>lastAvgOutput . Z = zPos i t i on ;
myMouse−>lastAvgOutput .A = aPos ;
myMouse−>lastAvgOutput .E = ePos ;
myMouse−>lastAvgOutput .R = rPos ;

2141 break ;
}

}

return 0 ;
}

144

stat i c int boundary check (myMouseType *myMouse)
{

int valX , valY , valZ ;
2151 int f l a g ;

valX = myMouse−>f i l t e rOu tput [k index] .X;
valY = myMouse−>f i l t e rOu tput [k index] .Y;
valZ = myMouse−>f i l t e rOu tput [k index] . Z ;

f l a g = 0 ;

switch (r f rameOriFlag) {
case 0 : /* g en e r i c */

2161 /* update t h i s l a t e r w i t h proper code */
break ;

case 1 : /* xy */
i f ((valX >= (minXpos − BOUNDARYTHRESHOLD)) && (valX <= (maxXpos + BOUNDARYTHRESHOLD))

&& (valY >= (minYpos − BOUNDARYTHRESHOLD)) && (valY <= (maxYpos + BOUNDARYTHRESHOLD
)) && (valZ <= minZpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD)) {

f l a g = 1 ; /* i n s i d e r frame */
} else {

/* need t o change t he X or Y va l u e t o border va l u e and r e i n i t i a l i z e t he sensor and
f i l t e r a r ray s t o t h i s v a l u e */

i f (valX < (minXpos − BOUNDARYTHRESHOLD)) {
2171 valX = minXpos − BOUNDARYTHRESHOLD;

} else i f (valX > (maxXpos + BOUNDARYTHRESHOLD)) {
valX = maxXpos + BOUNDARYTHRESHOLD;

}

i f (valY < (minYpos − BOUNDARYTHRESHOLD)) {
valY = minYpos − BOUNDARYTHRESHOLD;

} else i f (valY > (maxYpos + BOUNDARYTHRESHOLD)) {
valY = maxYpos + BOUNDARYTHRESHOLD;

}
2181

i f (valZ > minZpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD) {
valZ = minZpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD;

}

f l a g = 0 ; /* o u t s i d e r frame */
}
break ;

case 2 : /* xz */
i f ((valX >= (minXpos − BOUNDARYTHRESHOLD)) && (valX <= (maxXpos + BOUNDARYTHRESHOLD))

&& (valZ >= (minZpos − BOUNDARYTHRESHOLD)) && (valZ <= (maxZpos + BOUNDARYTHRESHOLD
)) && (valY <= minYpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD)) {

2191
f l a g = 1 ; /* i n s i d e r frame */

} else {
/* need t o change t he X or Z va l u e t o border va l u e and r e i n i t i a l i z e t he sensor and

f i l t e r a r ray s t o t h i s v a l u e */

i f (valX < (minXpos − BOUNDARYTHRESHOLD)) {
valX = minXpos − BOUNDARYTHRESHOLD;

} else i f (valX > (maxXpos + BOUNDARYTHRESHOLD)) {
valX = maxXpos + BOUNDARYTHRESHOLD;

}
2201

i f (valZ < (minZpos − BOUNDARYTHRESHOLD)) {
valZ = minZpos − BOUNDARYTHRESHOLD;

} else i f (valZ > (maxZpos + BOUNDARYTHRESHOLD)) {
valZ = maxZpos + BOUNDARYTHRESHOLD;

}

i f (valY > minYpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD) {
valY = minYpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD;

}
2211

f l a g = 0 ; /* o u t s i d e r frame */
}
break ;

case 3 : /* yz */
i f ((valY >= (minYpos − BOUNDARYTHRESHOLD)) && (valY <= (maxYpos + BOUNDARYTHRESHOLD))

&& (valZ >= (minZpos − BOUNDARYTHRESHOLD)) && (valZ <= (maxZpos + BOUNDARYTHRESHOLD
)) && (valX <= minXpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD)) {

f l a g = 1 ; /* i n s i d e r frame */
} else {

/* need t o change t he Y or Z va l u e t o border va l u e and r e i n i t i a l i z e t he sensor and
f i l t e r a r ray s t o t h i s v a l u e */

2221
i f (valY < (minYpos − BOUNDARYTHRESHOLD)) {

valY = minYpos − BOUNDARYTHRESHOLD;
} else i f (valY > (maxYpos + BOUNDARYTHRESHOLD)) {

145

valY = maxYpos + BOUNDARYTHRESHOLD;
}

i f (valZ < (minZpos − BOUNDARYTHRESHOLD)) {
valZ = minZpos − BOUNDARYTHRESHOLD;

} else i f (valZ > (maxZpos + BOUNDARYTHRESHOLD)) {
2231 valZ = maxZpos + BOUNDARYTHRESHOLD;

}

i f (valX > minXpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD) {
valX = minXpos + POSI CLUTCH THRESHOLD + BOUNDARYTHRESHOLD;

}

f l a g = 0 ; /* o u t s i d e r frame */
}
break ;

2241 }

myMouse−>f i l t e rOutput [k index] .X = valX ;
myMouse−>f i l t e rOutput [k index] .Y = valY ;
myMouse−>f i l t e rOutput [k index] . Z = valZ ;

return f l a g ;
}

stat i c int submi t i nput even t s (myMouseType *myMouse , struct input dev * inputdev , char *data)
2251 {

int V1X, V1Y, V1Z , i ;
int V2X, V2Y, V2Z ;
/* u16 curX , curY , curZ ; */

s 16 curX , curY , curZ ;
s 16 curA , curE , curR , retVal ;
u16 di f fX , d i f fY , d i f fZ , d i f fA , d i f fE , d i f fR ;

typeMovement sum avg ;

i f (updateFlag == 1) { /* i f t h e r e has been a change in t he r frame se t up */
2261 input se t ab s params (inputdev , ABS X, 0 , x s r c r e s o l u t i o n , 0 , 0) ;

i nput se t ab s params (inputdev , ABS Y, 0 , y s r c r e s o l u t i o n , 0 , 0) ;
i nput se t ab s params (inputdev , ABS Z , (−1)* z r e s o l u t i o n , z r e s o l u t i o n , 0 , 0) ; /* t h e z−

va l u e w i l l be r e po r t e d as i t i s */

/* re− i n i t i a t i n g t he av e ra g i ng sequ ence */
avg t rack index = −1;
f i l t e rOutNo = −1;

/* t h e f o l l o w i n g p or t i o n cou ld be done on the a p p l i c a t i o n s i d e */
/* g e t t i n g t he normal o f t h e p lane p l u s t he k v a l u e */

2271 /* normal (v e c t o r) = V1 x V2 : V1 = (p1 − p2) and V2 = (p3 − p2) assuming a l l t h e p o i n t s
are g i v e n c l o c kw i s e */

V1X = pDefPoint1X − pDefPoint2X ;
V1Y = pDefPoint1Y − pDefPoint2Y ;
V1Z = pDefPoint1Z − pDefPoint2Z ;

V2X = pDefPoint3X − pDefPoint2X ;
V2Y = pDefPoint3Y − pDefPoint2Y ;
V2Z = pDefPoint3Z − pDefPoint2Z ;

/* t h e way the p o i n t s are */
2281 normalVectorX = (V1Y*V2Z) − (V1Z*V2Y) ;

normalVectorY = (V1Z*V2X) − (V1X*V2Z) ;
normalVectorZ = (V1X*V2Y) − (V1Y*V2X) ;

/* k = normal * p1 */
kValue = (normalVectorX*pDefPoint1X) + (normalVectorY*pDefPoint1Y) + (normalVectorZ *

pDefPoint1Z) ;
normalVDot = (normalVectorX*normalVectorX) + (normalVectorY*normalVectorY) + (

normalVectorZ *normalVectorZ) ;

updateFlag = 0 ;
}

2291
i f (data [0] == 68) {

/* p r i n t k (KERN INFO ”myMouse driver : s u bm i t i n pu t e v e n t s : r e c e i v e d data from sensor
number = %d .\n” , data [1]) ; */

curX = data [3] ;
curX = curX * 256 + data [2] ;
curY = data [5] ;
curY = curY * 256 + data [4] ;
curZ = data [7] ;
curZ = curZ * 256 + data [6] ;
curA = data [9] ;

2301 curA = curA * 256 + data [8] ;
curE = data [1 1] ;
curE = curE * 256 + data [1 0] ;
curR = data [1 3] ;
curR = curR * 256 + data [1 2] ;

146

/* make the curX , curY , curZ va l u e s p o s i t i v e i f t h ey are n e g e t i v e */
i f (curX < 0) {

curX = (−1)*curX ;
}

2311 i f (curY < 0) {
curY = (−1)*curY ;

}
i f (curZ < 0) {

curZ = (−1)*curZ ;
}

} else {
pr in tk (KERN INFO ”myMouse driver : submi t i nput even t s : r e ce i v ed data with data [0] = %d .\n

” , data [0]) ;
return −1;

}
2321

i f ((curX < MIN SENSOR DIS VAL) && (curY < MIN SENSOR DIS VAL) && (curZ <

MIN SENSOR DIS VAL)) {
pr in tk (KERN INFO ”myMouse driver : submi t i nput even t s : recorded movement o f sen sor i s

l e s s than min accep tab l e range .\n”) ;
return 0 ; /* not r e p o r t i n g */

} else i f ((curX > MAX SENSOR DIS VAL) | | (curY > MAX SENSOR DIS VAL) | | (curZ >

MAX SENSOR DIS VAL)) {
pr in tk (KERN INFO ”myMouse driver : submi t i nput even t s : recorded movement o f sen sor i s

more than max accep tab l e range .\n”) ;
return 0 ; /* not r e p o r t i n g */

}

i f (k index == −1) {
2331 for (i =0; i <3; i++) {

myMouse−>f i l t e rOutpu t [i] .X = curX ;
myMouse−>f i l t e rOutpu t [i] .Y = curY ;
myMouse−>f i l t e rOutpu t [i] . Z = curZ ;
myMouse−>f i l t e rOutpu t [i] .A = curA ;
myMouse−>f i l t e rOutpu t [i] . E = curE ;
myMouse−>f i l t e rOutpu t [i] . R = curR ;

myMouse−>sen sor In tput [i] .X = curX ;
myMouse−>sen sor In tput [i] .Y = curY ;

2341 myMouse−>sen sor In tput [i] . Z = curZ ;
myMouse−>sen sor In tput [i] .A = curA ;
myMouse−>sen sor In tput [i] . E = curE ;
myMouse−>sen sor In tput [i] . R = curR ;

}
}

/* p o s s i b l e v a l u e s −1/0/1/2 −− i f −1 then f i r s t t ime ; i f 0 then k−1=2 and k−2=1; i f 1 then
k−1=0 and k−2=2; i f 2 then k−1=1 and k−2=0 */

i f (k index == −1) { /* i f f o r t he f i r s t t ime − k−1 and k−2 v a l u e s w i l l be z e ro */
l a s t k i n d e x = −1;

2351 s e c l a s t k i n d ex = −1;
k index = 0 ;
myMouse−>sen sor In tput [k index] .X = curX ;
myMouse−>sen sor In tput [k index] .Y = curY ;
myMouse−>sen sor In tput [k index] . Z = curZ ;
myMouse−>sen sor In tput [k index] .A = curA ;
myMouse−>sen sor In tput [k index] . E = curE ;
myMouse−>sen sor In tput [k index] .R = curR ;

myMouse−>f i l t e rOutpu t [k index] .X = (80*myMouse−>sen sor In tput [k index] .X + 161*myMouse−>

sen sor In tput [2] .X + 80*myMouse−>sen sor In tput [1] .X + 17352*myMouse−>f i l t e rOu tput [2] .X
− 7666*myMouse−>f i l t e rOu tput [1] .X) /10000;

2361 myMouse−>f i l t e rOutpu t [k index] .Y = (80*myMouse−>sen sor In tput [k index] .Y + 161*myMouse−>

sen sor In tput [2] .Y + 80*myMouse−>sen sor In tput [1] .Y + 17352*myMouse−>f i l t e rOu tput [2] .Y
− 7666*myMouse−>f i l t e rOu tput [1] .Y) /10000;

myMouse−>f i l t e rOutpu t [k index] . Z = (80*myMouse−>sen sor In tput [k index] . Z + 161*myMouse−>

sen sor In tput [2] . Z + 80*myMouse−>sen sor In tput [1] . Z + 17352*myMouse−>f i l t e rOu tput [2] . Z
− 7666*myMouse−>f i l t e rOu tput [1] . Z) /10000;

myMouse−>f i l t e rOutpu t [k index] .A = (80*myMouse−>sen sor In tput [k index] .A + 161*myMouse−>

sen sor In tput [2] .A + 80*myMouse−>sen sor In tput [1] .A + 17352*myMouse−>f i l t e rOu tput [2] .A
− 7666*myMouse−>f i l t e rOu tput [1] .A) /10000;

myMouse−>f i l t e rOutpu t [k index] . E = (80*myMouse−>sen sor In tput [k index] . E + 161*myMouse−>

sen sor In tput [2] . E + 80*myMouse−>sen sor In tput [1] . E + 17352*myMouse−>f i l t e rOu tput [2] . E
− 7666*myMouse−>f i l t e rOu tput [1] . E) /10000;

myMouse−>f i l t e rOutpu t [k index] .R = (80*myMouse−>sen sor In tput [k index] .R + 161*myMouse−>

sen sor In tput [2] .R + 80*myMouse−>sen sor In tput [1] .R + 17352*myMouse−>f i l t e rOu tput [2] .R
− 7666*myMouse−>f i l t e rOu tput [1] .R) /10000;

} else i f (k index == 0) {
i f (l a s t k in d ex != −1) {

s e c l a s t k i n d e x = l a s t k i n d e x ;
}

2371 l a s t k i n d e x = 0 ;
k index = 1 ;
myMouse−>sen sor In tput [k index] .X = curX ;
myMouse−>sen sor In tput [k index] .Y = curY ;
myMouse−>sen sor In tput [k index] . Z = curZ ;

147

myMouse−>sen sor In tput [k index] .A = curA ;
myMouse−>sen sor In tput [k index] . E = curE ;
myMouse−>sen sor In tput [k index] .R = curR ;

myMouse−>f i l t e rOutpu t [k index] .X = (80*myMouse−>sen sor In tput [k index] .X + 161*myMouse−>

sen sor In tput [0] .X + 80*myMouse−>sen sor In tput [2] .X + 17352*myMouse−>f i l t e rOu tput [0] .X
− 7666*myMouse−>f i l t e rOu tput [2] .X) /10000;

2381 myMouse−>f i l t e rOutpu t [k index] .Y = (80*myMouse−>sen sor In tput [k index] .Y + 161*myMouse−>

sen sor In tput [0] .Y + 80*myMouse−>sen sor In tput [2] .Y + 17352*myMouse−>f i l t e rOu tput [0] .Y
− 7666*myMouse−>f i l t e rOu tput [2] .Y) /10000;

myMouse−>f i l t e rOutpu t [k index] . Z = (80*myMouse−>sen sor In tput [k index] . Z + 161*myMouse−>

sen sor In tput [0] . Z + 80*myMouse−>sen sor In tput [2] . Z + 17352*myMouse−>f i l t e rOu tput [0] . Z
− 7666*myMouse−>f i l t e rOu tput [2] . Z) /10000;

myMouse−>f i l t e rOutpu t [k index] .A = (80*myMouse−>sen sor In tput [k index] .A + 161*myMouse−>

sen sor In tput [0] .A + 80*myMouse−>sen sor In tput [2] .A + 17352*myMouse−>f i l t e rOu tput [0] .A
− 7666*myMouse−>f i l t e rOu tput [2] .A) /10000;

myMouse−>f i l t e rOutpu t [k index] . E = (80*myMouse−>sen sor In tput [k index] . E + 161*myMouse−>

sen sor In tput [0] . E + 80*myMouse−>sen sor In tput [2] . E + 17352*myMouse−>f i l t e rOu tput [0] . E
− 7666*myMouse−>f i l t e rOu tput [2] . E) /10000;

myMouse−>f i l t e rOutpu t [k index] .R = (80*myMouse−>sen sor In tput [k index] .R + 161*myMouse−>

sen sor In tput [0] .R + 80*myMouse−>sen sor In tput [2] .R + 17352*myMouse−>f i l t e rOu tput [0] .R
− 7666*myMouse−>f i l t e rOu tput [2] .R) /10000;

} else i f (k index == 1) {
s e c l a s t k i n d ex = 0 ;
l a s t k i n d e x = 1 ;
k index = 2 ;

2391 myMouse−>sen sor In tput [k index] .X = curX ;
myMouse−>sen sor In tput [k index] .Y = curY ;
myMouse−>sen sor In tput [k index] . Z = curZ ;
myMouse−>sen sor In tput [k index] .A = curA ;
myMouse−>sen sor In tput [k index] . E = curE ;
myMouse−>sen sor In tput [k index] .R = curR ;

myMouse−>f i l t e rOutpu t [k index] .X = (80*myMouse−>sen sor In tput [k index] .X + 161*myMouse−>

sen sor In tput [1] .X + 80*myMouse−>sen sor In tput [0] .X + 17352*myMouse−>f i l t e rOu tput [1] .X
− 7666*myMouse−>f i l t e rOu tput [0] .X) /10000;

myMouse−>f i l t e rOutpu t [k index] .Y = (80*myMouse−>sen sor In tput [k index] .Y + 161*myMouse−>

sen sor In tput [1] .Y + 80*myMouse−>sen sor In tput [0] .Y + 17352*myMouse−>f i l t e rOu tput [1] .Y
− 7666*myMouse−>f i l t e rOu tput [0] .Y) /10000;

myMouse−>f i l t e rOutpu t [k index] . Z = (80*myMouse−>sen sor In tput [k index] . Z + 161*myMouse−>

sen sor In tput [1] . Z + 80*myMouse−>sen sor In tput [0] . Z + 17352*myMouse−>f i l t e rOu tput [1] . Z
− 7666*myMouse−>f i l t e rOu tput [0] . Z) /10000;

2401 myMouse−>f i l t e rOutpu t [k index] .A = (80*myMouse−>sen sor In tput [k index] .A + 161*myMouse−>

sen sor In tput [1] .A + 80*myMouse−>sen sor In tput [0] .A + 17352*myMouse−>f i l t e rOu tput [1] .A
− 7666*myMouse−>f i l t e rOu tput [0] .A) /10000;

myMouse−>f i l t e rOutpu t [k index] . E = (80*myMouse−>sen sor In tput [k index] . E + 161*myMouse−>

sen sor In tput [1] . E + 80*myMouse−>sen sor In tput [0] . E + 17352*myMouse−>f i l t e rOu tput [1] . E
− 7666*myMouse−>f i l t e rOu tput [0] . E) /10000;

myMouse−>f i l t e rOutpu t [k index] .R = (80*myMouse−>sen sor In tput [k index] .R + 161*myMouse−>

sen sor In tput [1] .R + 80*myMouse−>sen sor In tput [0] .R + 17352*myMouse−>f i l t e rOu tput [1] .R
− 7666*myMouse−>f i l t e rOu tput [0] .R) /10000;

} else i f (k index == 2) {
s e c l a s t k i n d ex = 1 ;
l a s t k i n d e x = 2 ;
k index = 0 ;
myMouse−>sen sor In tput [k index] .X = curX ;
myMouse−>sen sor In tput [k index] .Y = curY ;

2411 myMouse−>sen sor In tput [k index] . Z = curZ ;
myMouse−>sen sor In tput [k index] .A = curA ;
myMouse−>sen sor In tput [k index] . E = curE ;
myMouse−>sen sor In tput [k index] .R = curR ;

myMouse−>f i l t e rOutpu t [k index] .X = (80*myMouse−>sen sor In tput [k index] .X + 161*myMouse−>

sen sor In tput [2] .X + 80*myMouse−>sen sor In tput [1] .X + 17352*myMouse−>f i l t e rOu tput [2] .X
− 7666*myMouse−>f i l t e rOu tput [1] .X) /10000;

myMouse−>f i l t e rOutpu t [k index] .Y = (80*myMouse−>sen sor In tput [k index] .Y + 161*myMouse−>

sen sor In tput [2] .Y + 80*myMouse−>sen sor In tput [1] .Y + 17352*myMouse−>f i l t e rOu tput [2] .Y
− 7666*myMouse−>f i l t e rOu tput [1] .Y) /10000;

myMouse−>f i l t e rOutpu t [k index] . Z = (80*myMouse−>sen sor In tput [k index] . Z + 161*myMouse−>

sen sor In tput [2] . Z + 80*myMouse−>sen sor In tput [1] . Z + 17352*myMouse−>f i l t e rOu tput [2] . Z
− 7666*myMouse−>f i l t e rOu tput [1] . Z) /10000;

myMouse−>f i l t e rOutpu t [k index] .A = (80*myMouse−>sen sor In tput [k index] .A + 161*myMouse−>

sen sor In tput [2] .A + 80*myMouse−>sen sor In tput [1] .A + 17352*myMouse−>f i l t e rOu tput [2] .A
− 7666*myMouse−>f i l t e rOu tput [1] .A) /10000;

myMouse−>f i l t e rOutpu t [k index] . E = (80*myMouse−>sen sor In tput [k index] . E + 161*myMouse−>

sen sor In tput [2] . E + 80*myMouse−>sen sor In tput [1] . E + 17352*myMouse−>f i l t e rOu tput [2] . E
− 7666*myMouse−>f i l t e rOu tput [1] . E) /10000;

2421 myMouse−>f i l t e rOutpu t [k index] .R = (80*myMouse−>sen sor In tput [k index] .R + 161*myMouse−>

sen sor In tput [2] .R + 80*myMouse−>sen sor In tput [1] .R + 17352*myMouse−>f i l t e rOu tput [2] .R
− 7666*myMouse−>f i l t e rOu tput [1] .R) /10000;

}

i f (l a s t k i n d e x != −1) {
i f ((myMouse−>f i l t e rOu tput [k index] .X == myMouse−>f i l t e rOu tput [l a s t k i n d ex] .X) && (

myMouse−>f i l t e rOutpu t [k index] .Y == myMouse−>f i l t e rOutpu t [l a s t k i n d e x] .Y) && (

148

myMouse−>f i l t e rOutpu t [k index] . Z == myMouse−>f i l t e rOutpu t [l a s t k i n d e x] . Z) && (
myMouse−>f i l t e rOutpu t [k index] .A == myMouse−>f i l t e rOutpu t [l a s t k i n d e x] .A) && (
myMouse−>f i l t e rOutpu t [k index] . E == myMouse−>f i l t e rOutpu t [l a s t k i n d e x] . E) && (
myMouse−>f i l t e rOutpu t [k index] .R == myMouse−>f i l t e rOutpu t [l a s t k i n d e x] .R)) /*
che ck i ng i f t h e sensor has moved or not */

{
pr in tk (KERN INFO ”myMouse driver : submi t i nput even t s : no movement o f sen sor .\n”) ;

} else {
d i f fX = myMouse−>f i l t e rOutpu t [k index] .X − myMouse−>f i l t e rOu tput [l a s t k i n d e x] .X;
d i f fY = myMouse−>f i l t e rOutpu t [k index] .Y − myMouse−>f i l t e rOu tput [l a s t k i n d e x] .Y;

2431 d i f f Z = myMouse−>f i l t e rOutpu t [k index] . Z − myMouse−>f i l t e rOu tput [l a s t k i n d e x] . Z ;
d i f fA = myMouse−>f i l t e rOutpu t [k index] .A − myMouse−>f i l t e rOu tput [l a s t k i n d e x] .A;
d i f fE = myMouse−>f i l t e rOutpu t [k index] . E − myMouse−>f i l t e rOu tput [l a s t k i n d e x] . E;
d i f fR = myMouse−>f i l t e rOutpu t [k index] .R − myMouse−>f i l t e rOu tput [l a s t k i n d e x] .R;

i f (((d i f fX <= DIS JITTER VALUE POSI) | | (d i f fX > DIS JITTER VALUE NEGI)) && ((d i f fY <=
DIS JITTER VALUE POSI) | | (d i f fY > DIS JITTER VALUE NEGI)) && ((d i f f Z <=

DIS JITTER VALUE POSI) | | (d i f f Z > DIS JITTER VALUE NEGI)) && ((d i f fA <=
ANG JITTER VALUE POSI) | | (d i f fA > ANG JITTER VALUE NEGI)) && ((d i f fE <=
ANG JITTER VALUE POSI) | | (d i f fE > ANG JITTER VALUE NEGI)) && ((d i f fR <=
ANG JITTER VALUE POSI) | | (d i f fR > ANG JITTER VALUE NEGI))) { /* j i t t e r d e t e c t e d*/

pr in tk (KERN INFO ”myMouse driver : submi t i nput even t s : recorded movement o f sen sor i s
t r eat ed as j i t t e r .\n”) ;

return 0 ; /* not r e p o r t i n g */
}

2441 }
}

i f (useTransferFlag == 1) {

retVal = boundary check (myMouse) ;

i f (avg t rack index == (ARRAY SIZE AVG−1)) {
avg t rack index = 0 ;

} else {
2451 avg t rack index++;

}
myMouse−>f i l t e rOutAgv [avg t rack index] .X = myMouse−>f i l t e rOu tput [k index] .X;
myMouse−>f i l t e rOutAgv [avg t rack index] .Y = myMouse−>f i l t e rOu tput [k index] .Y;
myMouse−>f i l t e rOutAgv [avg t rack index] . Z = myMouse−>f i l t e rOu tput [k index] . Z ;
myMouse−>f i l t e rOutAgv [avg t rack index] .A = myMouse−>f i l t e rOu tput [k index] .A;
myMouse−>f i l t e rOutAgv [avg t rack index] . E = myMouse−>f i l t e rOu tput [k index] . E;
myMouse−>f i l t e rOutAgv [avg t rack index] .R = myMouse−>f i l t e rOu tput [k index] .R;

i f (f i l t e rOutNo == −1) {
2461 f i l t e rOutNo++;

myMouse−>currentAvgOutput .X = myMouse−>f i l t e rOutput [k index] .X;
myMouse−>currentAvgOutput .Y = myMouse−>f i l t e rOutput [k index] .Y;
myMouse−>currentAvgOutput . Z = myMouse−>f i l t e rOutput [k index] . Z ;
myMouse−>currentAvgOutput .A = myMouse−>f i l t e rOutput [k index] .A;
myMouse−>currentAvgOutput .E = myMouse−>f i l t e rOutput [k index] . E ;
myMouse−>currentAvgOutput .R = myMouse−>f i l t e rOutput [k index] .R;

} else {
sum avg .X = 0 ;

2471 sum avg .Y = 0 ;
sum avg . Z = 0 ;
sum avg .A = 0 ;
sum avg .E = 0 ;
sum avg .R = 0 ;

/* i f (f i l t e rOu tN o < (ARRAY SIZE AVG−1)) { */
i f (f i l t e rOutNo < (avgSampleNo − 1)) {

f i l t e rOutNo++;
for (i =0; i <(f i l t e rOutNo+1) ; i++) {

2481 sum avg .X = sum avg .X + myMouse−>f i l t e rOutAgv [i] .X;
sum avg .Y = sum avg .Y + myMouse−>f i l t e rOutAgv [i] .Y;
sum avg .Z = sum avg . Z + myMouse−>f i l t e rOutAgv [i] . Z ;
sum avg .A = sum avg .A + myMouse−>f i l t e rOutAgv [i] .A;
sum avg .E = sum avg .E + myMouse−>f i l t e rOutAgv [i] . E ;
sum avg .R = sum avg .R + myMouse−>f i l t e rOutAgv [i] . R;

}

sum avg .X = (myMouse−>lastAvgOutput .X + sum avg .X) /(f i l t e rOutNo+2) ;
sum avg .Y = (myMouse−>lastAvgOutput .Y + sum avg .Y) /(f i l t e rOutNo+2) ;

2491 sum avg . Z = (myMouse−>lastAvgOutput . Z + sum avg .Z) /(f i l t e rOutNo+2) ;
sum avg .A = (myMouse−>lastAvgOutput .A + sum avg .A) /(f i l t e rOutNo+2) ;
sum avg .E = (myMouse−>lastAvgOutput .E + sum avg .E) /(f i l t e rOutNo+2) ;
sum avg .R = (myMouse−>lastAvgOutput .R + sum avg .R) /(f i l t e rOutNo+2) ;

} else {
i f ((avgSampleNo − 1) == avg t rack index) {

for (i =0; i<avgSampleNo ; i++) {
sum avg .X = sum avg .X + myMouse−>f i l t e rOutAgv [i] .X;
sum avg .Y = sum avg .Y + myMouse−>f i l t e rOutAgv [i] .Y;
sum avg .Z = sum avg . Z + myMouse−>f i l t e rOutAgv [i] . Z ;

149

2501 sum avg .A = sum avg .A + myMouse−>f i l t e rOutAgv [i] .A;
sum avg .E = sum avg .E + myMouse−>f i l t e rOutAgv [i] . E ;
sum avg .R = sum avg .R + myMouse−>f i l t e rOutAgv [i] . R;

}
} else i f ((avgSampleNo − 1) < avg t rack index) {

for (i =(avg t rack index − (avgSampleNo − 1)) ; i <(avg t rack index+1) ; i++) {
sum avg .X = sum avg .X + myMouse−>f i l t e rOutAgv [i] .X;
sum avg .Y = sum avg .Y + myMouse−>f i l t e rOutAgv [i] .Y;
sum avg .Z = sum avg . Z + myMouse−>f i l t e rOutAgv [i] . Z ;
sum avg .A = sum avg .A + myMouse−>f i l t e rOutAgv [i] .A;

2511 sum avg .E = sum avg .E + myMouse−>f i l t e rOutAgv [i] . E ;
sum avg .R = sum avg .R + myMouse−>f i l t e rOutAgv [i] . R;

}
} else i f ((avgSampleNo − 1) > avg t rack index) {

for (i =0; i <(avg t rack index+1) ; i++) {
sum avg .X = sum avg .X + myMouse−>f i l t e rOutAgv [i] .X;
sum avg .Y = sum avg .Y + myMouse−>f i l t e rOutAgv [i] .Y;
sum avg .Z = sum avg . Z + myMouse−>f i l t e rOutAgv [i] . Z ;
sum avg .A = sum avg .A + myMouse−>f i l t e rOutAgv [i] .A;
sum avg .E = sum avg .E + myMouse−>f i l t e rOutAgv [i] . E ;

2521 sum avg .R = sum avg .R + myMouse−>f i l t e rOutAgv [i] . R;
}

for (i =(ARRAY SIZE AVG − (avgSampleNo − (avg t rack index+1))) ; i<ARRAY SIZE AVG; i
++) {

sum avg .X = sum avg .X + myMouse−>f i l t e rOutAgv [i] .X;
sum avg .Y = sum avg .Y + myMouse−>f i l t e rOutAgv [i] .Y;
sum avg .Z = sum avg . Z + myMouse−>f i l t e rOutAgv [i] . Z ;
sum avg .A = sum avg .A + myMouse−>f i l t e rOutAgv [i] .A;
sum avg .E = sum avg .E + myMouse−>f i l t e rOutAgv [i] . E ;
sum avg .R = sum avg .R + myMouse−>f i l t e rOutAgv [i] . R;

2531 }
}

sum avg .X = (myMouse−>lastAvgOutput .X + sum avg .X) /(avgSampleNo +1) ;
sum avg .Y = (myMouse−>lastAvgOutput .Y + sum avg .Y) /(avgSampleNo +1) ;
sum avg . Z = (myMouse−>lastAvgOutput . Z + sum avg .Z) /(avgSampleNo +1) ;
sum avg .A = (myMouse−>lastAvgOutput .A + sum avg .A) /(avgSampleNo +1) ;
sum avg .E = (myMouse−>lastAvgOutput .E + sum avg .E) /(avgSampleNo +1) ;
sum avg .R = (myMouse−>lastAvgOutput .R + sum avg .R) /(avgSampleNo +1) ;

}
2541

myMouse−>currentAvgOutput .X = sum avg .X;
myMouse−>currentAvgOutput .Y = sum avg .Y;
myMouse−>currentAvgOutput . Z = sum avg . Z ;
myMouse−>currentAvgOutput .A = sum avg .A;
myMouse−>currentAvgOutput .E = sum avg .E;
myMouse−>currentAvgOutput .R = sum avg .R;

}

retVal = tran s f e rFunct i on (myMouse , inputdev , myMouse−>currentAvgOutput .X, myMouse−>

currentAvgOutput .Y, myMouse−>currentAvgOutput . Z , myMouse−>currentAvgOutput .R, myMouse
−>currentAvgOutput .E, myMouse−>currentAvgOutput .A) ;

2551 } else {
retVal = tran s f e rFunct i on (myMouse , inputdev , myMouse−>f i l t e rOu tput [k index] . X, myMouse−>

f i l t e rOutpu t [k index] .Y, myMouse−>f i l t e rOutpu t [k index] . Z , myMouse−>f i l t e rOutpu t [
k index] .R, myMouse−>f i l t e rOutput [k index] . E, myMouse−>f i l t e rOutput [k index] .A) ;

}

return 0 ;
}

stat i c void myMouse readData (struct i nput po l l ed dev * po l l ed dev)
{

int retVal , byte s i o , val ;
2561 unsigned char * send buf com ; /* data b u f f e r t o be send to t he d e v i c e */

myMouseType *mouse = pol l ed dev−>pr i v at e ;
struct input dev * inputdev = pol l ed dev−>input ;

mutex lock(&mouse−>bulk io mutex) ;
i f (! mouse−>i n t e r f a c e) { /* d i s c onn ec t was c a l l e d */

retVal = −ENODEV;
goto ex i t ;

}

2571 i f (updateFlag == 1) {
send buf com = kmalloc (mouse−>dataLength , GFP KERNEL) ;
switch (r f rameOriFlag) {
case 0 : /* g en e r i c */

send buf com [0] = ’S ’ ;
send buf com [1] = ’T ’ ;
send buf com [2] = ’ 0 ’ ;
send buf com [3] = ’ , ’ ;
send buf com [4] = ’ 0 ’ ;
send buf com [5] = ’ , ’ ;

2581 send buf com [6] = ’ 0 ’ ;
send buf com [7] = ’ , ’ ;

150

send buf com [8] = ’ 0 ’ ;
send buf com [9] = ’ \0 ’ ;
break ;

case 1 : /* XY */
send buf com [0] = ’S ’ ;
send buf com [1] = ’T ’ ;
send buf com [2] = ’ 0 ’ ;
send buf com [3] = ’ , ’ ;

2591 send buf com [4] = ’ 90 ’ ;
send buf com [5] = ’ , ’ ;
send buf com [6] = ’ 0 ’ ;
send buf com [7] = ’ , ’ ;
send buf com [8] = ’ 0 ’ ;
send buf com [9] = ’ \0 ’ ;
break ;

case 2 : /* XZ */
send buf com [0] = ’S ’ ;
send buf com [1] = ’T ’ ;

2601 send buf com [2] = ’ 0 ’ ;
send buf com [3] = ’ , ’ ;
send buf com [4] = ’ 90 ’ ;
send buf com [5] = ’ , ’ ;
send buf com [6] = ’ 90 ’ ;
send buf com [7] = ’ , ’ ;
send buf com [8] = ’ 0 ’ ;
send buf com [9] = ’ \0 ’ ;
break ;

case 3 : /* YZ */
2611 send buf com [0] = ’S ’ ;

send buf com [1] = ’T ’ ;
send buf com [2] = ’ 0 ’ ;
send buf com [3] = ’ , ’ ;
send buf com [4] = ’ 0 ’ ;
send buf com [5] = ’ , ’ ;
send buf com [6] = ’ 90 ’ ;
send buf com [7] = ’ , ’ ;
send buf com [8] = ’ 0 ’ ;
send buf com [9] = ’ \0 ’ ;

2621 break ;
default : /* g en e r i c */

send buf com [0] = ’S ’ ;
send buf com [1] = ’T ’ ;
send buf com [2] = ’ 0 ’ ;
send buf com [3] = ’ , ’ ;
send buf com [4] = ’ 0 ’ ;
send buf com [5] = ’ , ’ ;
send buf com [6] = ’ 0 ’ ;
send buf com [7] = ’ , ’ ;

2631 send buf com [8] = ’ 0 ’ ;
send buf com [9] = ’ \0 ’ ;
break ;

}

retVal = usb bulk msg (mouse−>usbdev , mouse−>out p ipe , send buf com , mouse−>dataLength , &
bytes i o , 10000) ;

i f (retVal != 0) {
free myMouseData (mouse) ;
k f r e e (send buf com) ;
mutex unlock(&mouse−>bulk io mutex) ;

2641 pr i n tk (KERN INFO ”myMouse driver : myMouse readData : f a i l e d to send command f o r making
sen sor0 A=90 being the zero to wintracker .\n”) ;

goto ex i t ;
}
k f r e e (send buf com) ;

}

retVal = usb bulk msg (mouse−>usbdev , mouse−>out p ipe , mouse−>send bu f f e r , mouse−>dataLength
, &bytes i o , 500) ; /* t imeou t t ime i s 500 msec */

i f (retVal != 0) {
mutex unlock(&mouse−>bulk io mutex) ;
p r i n tk (KERN INFO ”myMouse driver : usb myMouse probe : f a i l e d to send command f o r s i n g l e

output to wintracker with retVal : %d .\n” , retVal) ;
2651 }

retVal = usb bulk msg (mouse−>usbdev , mouse−>i n p ipe , mouse−>data , mouse−>dataLength , &
bytes i o , 500) ; /* t imeou t t ime i s 500 msec */

i f (! retVal) {
val = submi t i nput even t s (mouse , inputdev , mouse−>data) ;

}
ex i t :

mutex unlock(&mouse−>bulk io mutex) ;
i f (retVal)

p r i n tk (KERN INFO ”myMouse driver : myMouse readData : myMouse readData f a i l e d with r e s u l t %
d .\n” , retVal) ;

2661 }

stat i c void i n i t d e v i c e d a t a (void)

151

{
useTransferFlag = 0 ; /* not t o use t he t r a n s f e r f u n c t i o n */
updateFlag = 0 ; /* no update */
minXpos = 0 ;
maxXpos = MAX SCREEN X;
minYpos = 0 ;
maxYpos = MAX SCREEN Y;

2671 minZpos = 0 ;
maxZpos = MAX SCREEN Y;
su r t hr e sho ld = 1 ;
s e l t h r e s h o ld = 10 ;
srcMulFactor = 1 ;
rframeMulFactor = 1 ;
s r cFactor = 1 ;
inputFactor = 1 ;
x s r c r e s o l u t i o n = MAX SCREEN X;
y s r c r e s o l u t i o n = MAX SCREEN Y;

2681 z r e s o l u t i o n = MAX SENSOR DIS VAL;
l e f tBtnCl i c ked = 0 ; /* s e t t o not c l i c k e d */
r ightBtnCl i cked = 0 ; /* s e t t o not c l i c k e d */
l e f tBtnDb lCl i cked = 0 ; /* s e t t o not c l i c k e d */
X sensorPos = 0 ;
Y sensorPos = 0 ;
Z sensorPos = 0 ;
k index = −1;
l a s t k i n d e x = −1;
s e c l a s t k i n d ex = −1;

2691 c l i c k I n tended = 0 ;
l e f tC l i ckOn ly = 0 ;
avg t rack index = −1;
f i l t e rOutNo = −1;
avgSampleNo = 25 ;

}

stat i c void in i t myMouse input (struct i nput p o l l ed dev * inputPol lDev , struct usb dev i ce *udev
, myMouseType *myMouse)

{
struct input dev * inputdev ;

2701
inputdev = inputPol lDev−>input ;

/* s e t t i n g t he t y p e s o f e v en t s t he d e v i c e w i l l su ppor t */
s e t b i t (EV KEY, inputdev−>evb i t) ;
s e t b i t (EV ABS, inputdev−>evb i t) ; /* X, Y, Z , r o l l , p i t c h and yaw as abs */

/* f o l l o w i n g are t he key s / b u t t o n s t he d e v i c e w i l l su ppor t */
s e t b i t (BTN LEFT, inputdev−>keyb i t) ;
s e t b i t (BTN RIGHT, inputdev−>keyb i t) ;

2711
/* s e t t i n g t he a b s o l u t e e v en t s */
i nput se t ab s params (inputdev , ABS X, 0 , x s r c r e s o l u t i o n , 0 , 0) ;
i nput se t ab s params (inputdev , ABS Y, 0 , y s r c r e s o l u t i o n , 0 , 0) ;
i nput se t ab s params (inputdev , ABS Z , (−1)* z r e s o l u t i on , z r e s o l u t i o n , 0 , 0) ;
i nput se t ab s params (inputdev , ABS RX, MIN SENSOR ANG VAL, MAX SENSOR ANG VAL, 0 , 0) ; /*

need t o s e t t h i s va l u e */
i nput se t ab s params (inputdev , ABS RY, MIN SENSOR ANG VAL, MAX SENSOR ANG VAL, 0 , 0) ; /*

need t o s e t t h i s va l u e */
i nput se t ab s params (inputdev , ABS RZ , MIN SENSOR ANG VAL, MAX SENSOR ANG VAL, 0 , 0) ; /*

need t o s e t t h i s va l u e */

/* s e t t i n g d e v i c e r e l a t e d in fo rmat ion */
2721 usb make path (udev , myMouse−>phys , s i zeo f (myMouse−>phys)) ;

s t r l c a t (myMouse−>phys , ”/ input0” , s i zeo f (myMouse−>phys)) ; /* making t he in pu t d e v i c e
path */

inputdev−>name = myMouse−>name ; /* i t cou ld be hard coded */
inputdev−>phys = myMouse−>phys ;
inputdev−>id . bustype = BUS USB;
inputdev−>id . vendor = udev−>d e s c r i p t o r . idVendor ;
inputdev−>id . product = udev−>d e s c r i p t o r . idProduct ;
inputdev−>id . v e r s i on = udev−>d e s c r i p t o r . bcdDevice ;

2731 inputPol lDev−>p o l l i n t e r v a l = myMouse−>po l l I n t e r v a l ; /* how o f f e n t he d e v i c e t o be p o l l e d*/
}

stat i c int usb myMouse probe (struct u s b i n t e r f a c e * i n t f , const struct usb dev i c e i d * dev id)
{

struct u s b ho s t i n t e r f a c e * i f a c e d e s c ;
struct u sb endpo in t de sc r i p to r * in endpoint , * out endpoint ;
myMouseType *myMouse ;
int errNo ;
char * tempBuffer ;

2741 unsigned char * send buf com ; /* data b u f f e r t o be send to t he d e v i c e */
int retVal , byt e s wr i t t en ;

struct usb dev i ce *usbdev = in t e r f a c e t o u sbd ev (i n t f) ;

152

i f a c e d e s c = in t f−>c u r a l t s e t t i n g ; /* g e t t i n g t he c u r r e n t l y a c t i v e i n t e r f a c e s e t t i n g */

i f (i f a c e d e s c −>desc . bNumEndpoints < 2) { /* t h e r e shou ld be a t l e a s t two endpo i n t s one IN
and o th e r i s OUT */

pr in tk (KERN INFO ”myMouse driver : usb myMouse probe : endpoint number i s l e s s than 2.\ n”) ;
return −ENODEV;

2751 }

/* g e t t i n g t he d e v i c e en dpo i n t s */
i n endpo in t = &i f a c e d e s c −>endpoint [0] . desc ;
out endpoint = &i f a c e d e s c −>endpoint [1] . desc ;

/* ch ec k i ng t he s t a t u s o f t h e endpo in t */
i f (((in endpoint−>bmAttributes & USB ENDPOINT XFERTYPE MASK) != USB ENDPOINT XFER BULK) &&

((out endpoint−>bmAttributes & USB ENDPOINT XFERTYPE MASK) != USB ENDPOINT XFER BULK))
{

pr in tk (KERN INFO ”myMouse driver : usb myMouse probe : the endpoints are not o f bulk type .\
n”) ;

return −ENODEV;
2761 }

i f (((in endpoint−>bEndpointAddress & USB ENDPOINT DIR MASK) != USB DIR IN) | | ((
out endpoint−>bEndpointAddress & USB ENDPOINT DIR MASK) != USB DIR OUT)) {

pr in tk (KERN INFO ”myMouse driver : usb myMouse probe : couldn ’ t f i nd proper endpoints .\n”) ;
return −ENODEV;

}

/* c r e a t i n g myMouseType d e v i c e */
i f (! (myMouse = create myMouse (usbdev , i n t f))) {

pr in tk (KERN INFO ”myMouse driver : usb myMouse probe : f a i l e d to c r e a t e myMouse type dev i ce
.\n”) ;

return −ENOMEM;
2771 }

/* s e t t i n g d e v i c e name */
i f (! (tempBuffer = kmalloc (63 , GFP KERNEL))) {

free myMouseData (myMouse) ;
p r i n tk (KERN INFO ”myMouse driver : usb myMouse probe : f a i l e d to a l l o c a t e tempBuffer .\n”) ;
return −ENOMEM;

}
i f (usbdev−>d e s c r i p t o r . iManufacturer && u sb s t r i ng (usbdev , usbdev−>de s c r i p t o r . iManufacturer

, tempBuffer , 63) > 0)
s t r c a t (myMouse−>name , tempBuffer) ;

2781 i f (usbdev−>d e s c r i p t o r . iProduct && u sb s t r i n g (usbdev , usbdev−>d e s c r i p t o r . iProduct ,
tempBuffer , 63) > 0)

s p r i n t f (myMouse−>name , ”%s %s ” , myMouse−>name , tempBuffer) ;
i f (! s t r l e n (myMouse−>name))

s p r i n t f (myMouse−>name , ”Customized USB Pointer Device %04x:%04x” , l e 16 t o cpu (usbdev−>

d e s c r i p t o r . idVendor) , l e16 t o cpu (usbdev−>d e s c r i p t o r . idProduct)) ;
k f r e e (tempBuffer) ;

/* I n i t i a l i z i n g d e v i c e data */
i n i t d e v i c e d a t a () ;

/* I n i t i a l i z i n g i npu t d e v i c e */
2791 in i t myMouse input (myMouse−>inputPol lDev , usbdev , myMouse) ;

/* c r e a t e endpo in t p ipe */
myMouse−>i n p ip e = usb rcvbu lkp ipe(usbdev , in endpoint−>bEndpointAddress) ;
myMouse−>out p ipe = usb sndbulkp ipe (usbdev , out endpoint−>bEndpointAddress) ;

/* i n i t i a l i z e t he p o l l d e v hand l e r */
myMouse−>inputPol lDev−>pr i va te = myMouse ;
myMouse−>inputPol lDev−>po l l = myMouse readData ; /* need t o d e f i n e t h i s f u n c t i o n */

2801 /* f o l l o w i n g command i s t o d i s a b l e l a s t t o r e c e i v e r : e n a b l i n g on ly t he f i r s t one */
send buf com = kmalloc (myMouse−>dataLength , GFP KERNEL) ;
send buf com [0] = ’S ’ ;
send buf com [1] = ’A ’ ;
send buf com [2] = ’ 1 ’ ;
send buf com [3] = ’ 0 ’ ;
send buf com [4] = ’ 0 ’ ;
send buf com [5] = ’ \0 ’ ;
mutex lock(&myMouse−>bulk io mutex) ;
retVal = usb bulk msg (usbdev , myMouse−>out p ipe , send buf com , myMouse−>dataLength , &

bytes wr i t t en , 10000) ; /* t imeou t t ime i s 10 sec */
2811 i f (retVal != 0) {

free myMouseData (myMouse) ;
k f r e e (send buf com) ;
mutex unlock(&myMouse−>bulk io mutex) ;
p r i n tk (KERN INFO ”myMouse driver : usb myMouse probe : f a i l e d to send command f o r only

enab l i ng r e c e i v e r 0 to wintracker .\n”) ;
return retVal ;

}

mutex unlock(&myMouse−>bulk io mutex) ;
k f r e e (send buf com) ;

153

2821
/* r e g i s t e r i n g i npu t d e v i c e */
errNo = i n pu t r e g i s t e r p o l l e d d e v i c e (myMouse−>inputPol lDev) ;
i f (errNo) {

pr in tk (KERN INFO ”myMouse : input dev i ce r e g i s t e r f a i l e d , errNo : %d .\n” , errNo) ;
free myMouseData (myMouse) ;
u sb s e t i n t f d a t a (i n t f , NULL) ;
return errNo ;

}
else {

2831 pr i n tk (KERN INFO ”myMouse : Detected dev i ce : %s .\n” , myMouse−>name) ;
u sb s e t i n t f d a t a (i n t f , myMouse) ; /* s av i ng in pu t d e v i c e s t r u c t u r e in fo rmat ion */

retVal = s y s f s c r e a t e g r oup (&usbdev−>dev . kobj , &at t r group) ;
i f (retVal) {

pr in tk (KERN INFO ”myMouse : cou ld not c r e a t e s y s f s nodes .\n”) ;
}

return 0 ;
}

2841 }

stat i c void usb myMouse disconnect (struct u sb in t e r f a c e * i n t f)
{

myMouseType *mouse = u sb g e t i n t f d a t a (i n t f) ;
struct usb dev i ce *udev = mouse−>usbdev ;

u sb s e t i n t f d a t a (i n t f , NULL) ; /* s e t t i n g i n t e r f a c e t o NULL va l u e */
i f (mouse) {

i n pu t un r e g i s t e r p o l l e d d e v i c e (mouse−>inputPol lDev) ;
2851 free myMouseData (mouse) ;

sy s f s r emove group(&udev−>dev . kobj , &at t r group) ;
}

}

/* ############## Module s t r u c t u r e and i n i t i a l i z a t i o n ############## */

/* Module parameters */
stat i c int maxXRes = MAX SCREEN X;

2861 module param (maxXRes , uint , 0644) ;
MODULEPARM DESC(xres , ”Maximum hor i z o n t a l r e s o l u t i o n . ”) ;

stat i c int maxYRes = MAX SCREEN Y;
module param (maxYRes , uint , 0644) ;
MODULEPARM DESC(yres , ”Maximum v e r t i c a l r e s o l u t i o n . ”) ;

/* Fo l l ow ing d e v i c e s w i l l work w i t h t he d r i v e r */
stat i c struct u sb de v i c e i d usb myMouse id tab le [] = {

{ USB DEVICE(DEVICE VENDOR ID, DEVICE PRODUCT ID) } , /* USB DEVICE − macro d e f i n e d in
l i n u x / usb . h f i l e */

2871 { } /* Terminat ing en t r y */
} ;
MODULE DEVICE TABLE (usb , usb myMouse id tab le) ; /* b i n d i ng t he module w i t h t he d e v i c e */

stat i c struct usb d r i v e r usb myMouse driver = {
. name = ”myMouse usb” ,
. probe = usb myMouse probe ,
. d i s connect = usb myMouse disconnect ,
. i d t a b l e = usb myMouse id table ,

} ;
2881

/* module i n i t i a l i z a t i o n − c a l l e d when the module i s i n s t a l l e d */
stat i c int i n i t usb myMouse init (void)
{

int retVal ;
retVal = u s b r e g i s t e r (&usb myMouse driver) ; /* r e g i s t e r i n g t he d r i v e r w i t h t he usb

subsystem */
i f (retVal) {

pr in tk (KERN INFO ”myMouse : u s b r e g i s t e r f a i l e d . Error number %d” , retVal) ;
}

2891 /* i n f o (DRIVER VERSION ” : ” DRIVER DESC) ; */
return retVal ;

}

/* module e x i t − c a l l e d when the module i s removed */
stat i c void e x i t usb myMouse exit (void)
{

u s b d e r e g i s t e r (&usb myMouse driver) ; /* d e r e g i s t e r i n g t he d r i v e r w i t h t he usb subsystem */
}

2901 /* Module p r o p e r t i e s */
MODULEAUTHOR(DRIVER AUTHOR) ;
MODULE DESCRIPTION(DRIVER DESC) ;
MODULE LICENSE(DRIVER LICENSE) ;
MODULE VERSION(DRIVER VERSION) ;

154

modu l e i n i t (usb myMouse init) ;
module exi t (usb myMouse exit) ;

155

B.2 Initialization Daemon Source Code

Listing B.2: Code segment of Initialization Daemon

1 int main (void)
{

rframeType ac t i v e r f r ame ;
s c r I n f o saved SrcData , X SrcData ;
typeCalValues calVal ;
rpenParam par ame t e r l i s t ;
type3Dpoint point1 , point3 ;
int retVal , aspectRChangeFlg ;
char msg [5 0 0] ;

11 daemonize () ;
open log (DAEMONNAME, LOG PID, LOGDAEMON) ;
s ys l o g (LOG INFO, ” Star t i ng Daemon . ”) ;
c l o s e l o g () ;
log message (LOG FILENAME, ” r f r ame In i t : Daemon i n i t i a l i z a t i o n done”) ;

retVal = getSysfsNodePath (&rpenParam fi l ePath) ;
i f (retVal != 0) {

l og message (LOG FILENAME, ” r f r ame In i t : s y s f s f i l e path not found ”) ;
}

21
/* The i n f i n i t e Loop */
while (1) {

/* 1 s t check i f t h e r e i s a v a l i d XML f i l e p r e s e n t */
retVal = isVal idXMLExists () ;

i f (retVal == 0) { /* v a l i d */
retVal = getActiveFrameTemplate (&ac t i ve r f rame) ;
i f (retVal == 0) { /* has a c t i v e t emp la t e */

retVal = i s Sc r e enEx i s t s () ;
i f (retVal > 0) { /* s c r een data e x i s t s */

31 retVal = getScreenData (&saved SrcData) ;
retVal = getDe fau l tScr een In fo (&X SrcData) ;
i f (retVal == 0) { /* s u c c e s s f u l l y go t Xwindows sc r een data */

i f ((saved SrcData . defScrWidth == X SrcData . defScrWidth) && (saved SrcData .
defScrHeight == X SrcData . defScrHeight)) { /* s t a r t u p s i t u a t i o n − wr i t e a l l
data in s y s f s */

retVal = i sSys f sNodeEx i s t s (&rpenParam fi l ePath) ;
i f (retVal == 0) { /* s y s f s node e x i s t s */

l og message (LOG FILENAME, ” r f r ame In i t : Got s y s f s ”) ;
/* check t he s y s f s node data i s up t o da t e */
retVal = readrframeSizeParam (¶mete r l i s t , &rpenParam fi l ePath) ;
retVal = readScreenResParam (¶mete r l i s t , &rpenParam fi l ePath) ;

41 i f (retVal == −1) {
l og message (LOG FILENAME, ” r f r ame In i t : Something i s wrong ge t t i ng s y s f s

data ! ! ”) ;
}
i f (! ((a c t i v e r f r ame . rframeWidth == pa ramet e r l i s t . rfWidth) && (saved SrcData .

defScrWidth == par amet e r l i s t . xRes))) {
/* not up t o da t e − wr i t e s y s f s data */
retVal = wr i t eA l l Sys f sData(&act i ve r f rame , &saved SrcData) ;
i f (retVal == 0) {

l og message (LOG FILENAME, ” r f r ame I n i t : DEBUG: s u c c e s s f u l l y wrote in
s y s f s ”) ;

/* l e a v e and wa i t */
} else {

51 log message (LOG FILENAME, ” r f r ame I n i t : ERROR: couldn ’ t wr i t e in s y s f s ”) ;
/* l e a v e and wa i t */

}
} else {

/* e v e r y t h i n g i s OK */
l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: ever th ing OK”) ;
/* l e a v e and wa i t */

}
} else {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: s y s f s node does not ex i s t ”) ;
61 snp r i n t f (msg , 500 , ”Error : main . c : main : s y s f s path : \”%s \”” ,

rpenParam fi l ePath) ;
log message (LOG FILENAME, msg) ;

retVal = getSysfsNodePath (&rpenParam fi l ePath) ;
i f (retVal != 0) {

l og message (LOG FILENAME, ” r f r ame In i t : s y s f s f i l e path not found”) ;
}
/* l e a v e and wa i t */

}
} else { /* s c r een r e s o l u t i o n changed */

71 /* r e c a l c u l a t e r e l a t e d data */
retVal = ca l cu l at eAspectRat (X SrcData . defScrWidth , X SrcData . defScrHeight , &

calVal) ;
X SrcData . aspectRat io = calVal . aspectRat io ;

156

retVal = ca l cu l at eS rcRes (X SrcData . defScrWidth , X SrcData . defScrWidthMM , &
calVal) ;

X SrcData . srcMMtoPX = calVal . srcDotsPerMM ;
X SrcData . s e l e c t e d = 1 ;
i f (retVal == 0) {

i f (calVal . aspectRat io != saved SrcData . aspectRat io) {
aspectRChangeFlg = 1 ;
log message (LOG FILENAME, ”ERROR: aspect r a t i o o f the new s et sc r een does

not match the p rev i ou s one”) ;
81 /* a sp e c t r a t i o changed − r e s t r i c t e d f o r t he t ime b e i ng */

point1 .X = ac t i v e r f rame .X1 ;
point1 .Y = ac t i v e r f rame .Y1 ;
point1 . Z = ac t i v e r f rame . Z1 ;
point3 .X = ac t i v e r f rame .X3 ;
point3 .Y = ac t i v e r f rame .Y3 ;
point3 . Z = ac t i v e r f rame . Z3 ;

/* in ca se o f g e n e r i c c a l c u l a t e h e i g h t */
i f (a c t i ve r f rame . rframeType == 0) {

91 retVal = calFrameHeightByWidth(a ct i v e r f r ame . rframeWidth , X SrcData .
aspectRat io , &calVal) ;

a c t i ve r f rame . r frameHeight = calVal . r f rameHeight ;
retVal = calPointByDis(&point1 , &point3 , a c t i v e r f r ame . r frameHeight) ;

/* in ca se o f XY−p lane c a l c u l a t e w id t h */
} else i f (a c t i v e r f rame . rframeType == 1) {

retVal = calFrameWidthByHeight(a c t i v e r f r ame . rframeHeight , X SrcData .
aspectRat io , &calVal) ;

a c t i ve r f rame . rframeWidth = calVal . rframeWidth ;
retVal = calPointByDis(&point1 , &point3 , a c t i v e r f r ame . rframeWidth) ;

/* in ca se o f XZ−p lane c a l c u l a t e h e i g h t */
} else i f (a c t i v e r f rame . rframeType == 2) {

101 retVal = calFrameHeightByWidth(a ct i v e r f r ame . rframeWidth , X SrcData .
aspectRat io , &calVal) ;

a c t i ve r f rame . r frameHeight = calVal . r f rameHeight ;
retVal = calPointByDis(&point1 , &point3 , a c t i v e r f r ame . r frameHeight) ;

/* in ca se o f YZ−p lane c a l c u l a t e w id t h */
} else i f (a c t i v e r f rame . rframeType == 3) {

retVal = calFrameWidthByHeight(a c t i v e r f r ame . rframeHeight , X SrcData .
aspectRat io , &calVal) ;

a c t i ve r f rame . rframeWidth = calVal . rframeWidth ;
retVal = calPointByDis(&point1 , &point3 , a c t i v e r f r ame . rframeWidth) ;

}

111 ac t i ve r f rame .X3 = point3 .X;
a c t i ve r f rame .Y3 = point3 .Y;
a c t i ve r f rame . Z3 = point3 . Z ;

retVal = updateFrameTemplate (a c t i v e r f r ame . rfName , &act i v e r f r ame) ;
i f (retVal == 0) {

l og message (LOG FILENAME, ” r f r ame I n i t : DEBUG: s u c c e s s f u l l y saved rframe
data in XML”) ;

} else {
l og message (LOG FILENAME, ” r f r ame I n i t : DEBUG: could not save rframe data

in XML”) ;
}

121 } else {
/* s c r een re s changed w i t h same a s p ec t r a t i o */
aspectRChangeFlg = 0 ;

}
retVal = updateScreenData(&X SrcData) ;
i f (retVal == 0) {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: s u c c e s s f u l l y saved sc r een
data in XML”) ;

} else {
l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: could not save sc r een data

in XML”) ;
}

131 retVal = updateMultiFactorData (X SrcData . defScrHeight , a c t i ve r f rame .
r frameHeight) ;

i f (retVal == 0) {
l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: s u c c e s s f u l l y saved

mult iFactor data in XML”) ;
} else {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: could not save mult iFactor
data in XML”) ;

}
}

/* check i f s y s f s node e x i s t s */
retVal = i sSys f sNodeEx i s t s (&rpenParam fi l ePath) ;

141 i f (retVal == 0) { /* s y s f s node e x i s t s */
i f (aspectRChangeFlg == 0) { /* on ly wr i t e s c r een r e l a t e d i n f o */

retVal = wr i t eS rcSys f sData(&act i ve r f rame , &X SrcData) ;
i f (retVal == 0) {

l og message (LOG FILENAME, ” r f r ame I n i t : DEBUG: s u c c e s s f u l l y wrote in
s y s f s ”) ;

/* l e a v e and wa i t */

157

} else {
l og message (LOG FILENAME, ” r f r ame I n i t : ERROR: couldn ’ t wr i t e in s y s f s ”) ;
/* l e a v e and wa i t */

}
151 } else { /* wr i t e a l l i n f o */

retVal = wr i t eA l l Sys f sData(&act i ve r f rame , &X SrcData) ;
i f (retVal == 0) {

l og message (LOG FILENAME, ” r f r ame I n i t : DEBUG: s u c c e s s f u l l y wrote in
s y s f s ”) ;

/* l e a v e and wa i t */
} else {

l og message (LOG FILENAME, ” r f r ame I n i t : ERROR: couldn ’ t wr i t e in s y s f s ”) ;
/* l e a v e and wa i t */

}
}

161 } else {
l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: s y s f s node does not ex i s t ”) ;
/* l e a v e and wa i t */
retVal = getSysfsNodePath (&rpenParam fi l ePath) ;
i f (retVal != 0) {

l og message (LOG FILENAME, ” r f r ame In i t : s y s f s f i l e path not found”) ;
}

}
}

}
171 } else {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: no sc r een in f o ”) ;
/* l e a v e and wa i t */

}
} else {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: no a ct i v e rframe ”) ;
/* l e a v e and wa i t */

}
} else {

l og message (LOG FILENAME, ” r f r ame In i t : DEBUG: no va l i d XMl f i l e ”) ;
181 /* l e a v e and wa i t */

}

openlog (DAEMONNAME, LOG PID, LOGDAEMON) ;
s ys l o g (LOG INFO, ”Now pausing f o r 120 second . ”) ;
c l o s e l o g () ;
log message (LOG FILENAME, ” r f r ame In i t : Now pausing f o r 120 second ”) ;

s l e ep (30) ; /* wa i t 2 min */
}

191 log message (LOG FILENAME, ” r f r ame In i t : End of Daemon operat i on ”) ;
open log (DAEMONNAME, LOG PID, LOGDAEMON) ;
s ys l o g (LOG INFO, ”Ending Daemon . ”) ;
c l o s e l o g () ;
e x i t (EXIT SUCCESS) ;

}

158

B.3 Feedback Daemon Source Code

Listing B.3: Code segment of Feedback Daemon

int main (void)
{

struct t imespec i n t e rv a l , remainder ;
4 typeMovement last movement , c u r r en t p o s i t i on ;

rframeType ac t i v e r f r ame ;
int retVal , counter , s c rou t s ound f l a g , l e f tB tnC l i c k f l a g , l e f t C l i c k s o u nd f l a g ;
long t imeDi f f s e c ;
gboolean autoAdjMode , cursor ChStatus ;

Cursor outbd cursor , c l u t ch cu r s or , ap ro su rThes cu r sor , ap ro se lThes cu r sor ,
l e f t c l i c k c u r s o r , su rProx cu r sor ;

char msg [5 0 0] ;

i n t e r v a l . t v s e c = 0 ;
i n t e r v a l . tv n sec = 500000000; /* 500 msec */

14
daemonize () ;

open log (DAEMONNAME, LOG PID, LOGDAEMON) ;
s ys l o g (LOG INFO, ” Star t i ng Daemon . ”) ;
c l o s e l o g () ;
log message (LOG FILENAME, ”rframe FBAutoA : Daemon i n i t i a l i z a t i o n done”) ;

/* daemon s p e c i f i c i n i t i a l i z a t i o n */
last movement .X = 0 ;
last movement .Y = 0 ;

24 last movement . Z = 0 ;
last movement . event t ime = 0 ;
s c r o u t s ound f l a g = 0 ;
l e f tC l i c k s o u nd f l a g = 0;
autoAdj Status = 0 ; /* OFF */
autoAdjMode = FALSE;
cursor ChStatus = FALSE;
d i s p l ay = XOpenDisplay(NULL) ;
root = RootWindow(di sp lay , Defau l tScreen (d i s p lay)) ;
outbd cursor = XCreateFontCursor (d i sp lay , XC i ron cros s) ;

34 d e f a u l t cu r s o r = XCreateFontCursor (d i sp lay , XC l e f t p t r) ;
su rProx cu r sor = XCreateFontCursor (d i sp lay , XC double arrow) ;
c l u t c h c u r s o r = XCreateFontCursor (d i sp lay , XC diamond cross) ;
ap ro su rThes cu r sor = XCreateFontCursor (d i sp lay , XC based arrow down) ;
ap ro se lThe s cu r s o r = XCreateFontCursor (d i sp lay , XC dotbox) ;
l e f t c l i c k c u r s o r = XCreateFontCursor (d i sp lay , XC based arrow up) ;

s p r i n t f (msg , ”My Process ID : %d .\n” , ge tp id ()) ;
l og message (LOG FILENAME, msg) ;

44 retVal = getSysfsNodePath (&rpenParam fi l ePath) ; /* g e t t i n g t he s y s f s f i l e path */
retVal = getSetXMLData () ;
s np r i n t f (msg , 500 , ”Threshold va lues : s u r t h re sho ld : %d and s e l t h r e sh o l d : %d” , su r th re sho ld ,

s e l t h r e sh o l d) ;
log message (LOG FILENAME, msg) ;

counter = 0 ;

/* The i n f i n i t e Loop */
while (1) {

54 retVal = i sSys f sNodeEx i s t s (&rpenParam fi l ePath) ;
i f (retVal != 0) {

retVal = getSysfsNodePath (&rpenParam fi l ePath) ; /* g e t t i n g t he s y s f s f i l e path */
}

retVal = readSensorPosParam (&cu r r en t po s i t i on , &rpenParam fi l ePath) ;
s n p r i n t f (msg , 500 , ” retVal value o f readSensorPosParam : %d” , retVal) ;
l og message (LOG FILENAME, msg) ;
retVal = readClickEventParam (& l e f tB tnC l i c k f l a g , &rpenParam fi l ePath) ;
s n p r i n t f (msg , 500 , ” retVal value o f readClickEventParam : %d and l e f t B t nC l i c k f l a g value :

%d” , retVal , l e f t B t nC l i c k f l a g) ;
64 log message (LOG FILENAME, msg) ;

i f ((last movement .X != cur r en t p o s i t i on .X) | | (last movement .Y != cu r r en t p o s i t i o n .Y) | |
(last movement .Z != cu r r e n t p o s i t i o n . Z)) {

/* t h e r e was a movement */
i f (last movement . event t ime != 0) {

t imeD i f f s e c = (long) (l ab s (cu r r en t p o s i t i o n . event t ime − last movement . event t ime)) ;
s n p r i n t f (msg , 500 , ”Time D i f f e r en c e : %ld ” , t imeD i f f s e c) ;
log message (LOG FILENAME, msg) ;

} else {
s np r i n t f (msg , 500 , ” last movement . event t ime : %ld ” , (long) last movement . event t ime) ;

74 log message (LOG FILENAME, msg) ;
}

159

s np r i n t f (msg , 500 , ” value o f autoAdj Status : %d” , autoAdj Status) ;
log message (LOG FILENAME, msg) ;

i f (autoAdj Status == 1) { /* i f t h e au to a d j u s t mode i s ON */
i f ((autoAdjMode == FALSE) && (t imeD i f f s e c > i nA c t i v e l im i t)) {

autoAdjMode = TRUE;
/* s e t t h e t r a n s f e r f u n c t i o n not t o be used by t he d e v i c e d r i v e r */

84 /* t o show a c t u a l s en sor p o s i t i o n */
retVal = writeFlagParam (0 , −1, −1, &rpenParam fi l ePath) ;
i f (retVal == −1) {

l og message (LOG FILENAME, ”Could not save f l a g i n f o in s y s f s node”) ;
}

} else i f ((autoAdjMode == TRUE) && ((t imeD i f f s e c > 5) && (t imeD i f f s e c <

i nA c t i v e l im i t))) {
/* g e t t h e cu r r en t r frame o r i e n t a t i o n and ad j u s t t h e new rframe o r i e n t a t i o n

a c c o r d i n g l y */
retVal = getActiveFrameTemplate (&ac t i ve r f rame) ;
i f (retVal == −1) {

l og message (LOG FILENAME, ”Could not get a c t i ve rframe data from XML”) ;
94 }

i f (a c t i ve r f rame . rframeType == 0) { /* i f t h e r frame i s a g en e r i c one
then */

ac t i ve r f rame . rframeType = gener i cOr i ;
}

l og message (LOG FILENAME, ”Going to re−de f i n e the a c t i ve rframe ”) ;

a c t i v e r f r ame .X1 = last movement .X;
a c t i v e r f r ame .Y1 = last movement .Y;
a c t i v e r f r ame . Z1 = last movement . Z ;

104
/* c a l c u l a t e t he o t he r r frame po i n t s */
i f (a c t i v e r f rame . rframeType == 1) { /* i f t h e r frame t ype = ON XY p lane */

ac t i ve r f rame .X2 = ac t i ve r f rame .X1 ;
a c t i v e r f rame .Y2 = (act i v e r f r ame .Y1 + act i v e r f r ame . r frameHeight) ;
a c t i v e r f rame . Z2 = ac t i v e r f rame . Z1 ;

a c t i ve r f rame .X3 = (act i v e r f r ame .X1 + ac t i v e r f r ame . rframeWidth) ;
a c t i v e r f rame .Y3 = ac t i v e r f rame .Y1 ;
a c t i v e r f rame . Z3 = ac t i v e r f rame . Z1 ;

} else i f (a c t i v e r f r ame . rframeType == 2) { /* i f t h e r frame t ype = ON XZ
p lane */

114 ac t i ve r f rame .X2 = (act i v e r f r ame .X1 + ac t i v e r f r ame . rframeWidth) ;
a c t i v e r f rame .Y2 = ac t i v e r f rame .Y1 ;
a c t i v e r f rame . Z2 = ac t i v e r f rame . Z1 ;
a c t i v e r f rame .X3 = ac t i v e r f rame .X1 ;
a c t i v e r f rame .Y3 = ac t i v e r f rame .Y1 ;
a c t i v e r f rame . Z3 = (act i v e r f r ame . Z1 + act i v e r f r ame . r frameHeight) ;

} else i f (a c t i v e r f r ame . rframeType == 3) { /* i f t h e r frame t ype = ON YZ
p lane */

ac t i ve r f rame .X2 = ac t i ve r f rame .X1 ;
a c t i v e r f rame .Y2 = ac t i v e r f rame .Y1 ;
a c t i v e r f rame . Z2 = (act i v e r f r ame . Z1 + act i v e r f r ame . r frameHeight) ;

124 ac t i ve r f rame .X3 = ac t i ve r f rame .X1 ;
a c t i v e r f rame .Y3 = (act i v e r f r ame .Y1 + act i v e r f r ame . rframeWidth) ;
a c t i v e r f rame . Z3 = ac t i v e r f rame . Z1 ;

}
/* t h e new rframe have t he same w id t h and h e i g h t as t he o l d one */
/* save (update) t he new rframe in XML */
retVal = updateFrameTemplate (a c t i ve r f rame . rfName , &ac t i ve r f r ame) ;
i f (retVal == −1) {

l og message (LOG FILENAME, ”Could not update updated rframe data in XML”) ;
}

134 /* save in s y s f s */
retVal = wr i t eA l l Sys f sData(&act i ve r f rame , &sa v e d s r c I n f o) ;
i f (retVal == −1) {

l og message (LOG FILENAME, ”Could not save s y s f s date ”) ;
}

autoAdjMode = FALSE;
}

}

i f (autoAdjMode == FALSE) {
144

s npr i n t f (msg , 500 , ” po s i t i on va lues : x : %d , y : %d and z : %d” , c u r r e n t p o s i t i o n .X,
cu r r e n t p o s i t i o n .Y, c u r r en t p o s i t i on . Z) ;

log message (LOG FILENAME, msg) ;

/* do the p r o c e s s i n g f o r changing t he cu r so r and making sound i f needed */
/* check t he current movement v a l u e s w i t h x r e s and y re s in s a v e d s r c I n f o */
/* i f cu r r en t v a l u e s are g r e a t e r then change cu r so r appearance and make sound */
/* use g d k w in dow s e t c u r s o r () f o r s e t t i n g t he cu r so r appearance */
/* need t o f i n d a way to produce t he sound */
i f ((c u r r en t p o s i t i on .X > s a v ed s r c I n f o . defScrWidth) | | (c u r r e n t p o s i t i o n .Y >

s a v e d s r c I n f o . defScrHeight) | | (cu r r en t p o s i t i on .X < 0) | | (cu r r en t p o s i t i o n .Y <

0)) { /* out o f s c r een */
154 log message (LOG FILENAME, ”out o f sc r een i s c a l l e d ”) ;

i f (s c r ou t s o und f l a g != 1) {

160

cursor ChStatus = TRUE;
s c ro u t s o und f l a g = 1 ;
gnome sound play (OUTSRC SND FILE) ;
log message (LOG FILENAME, ”played the out o f sc r een sound ”) ;
XDefineCursor (d i sp lay , root , outbd cursor) ;
XFlush (d i s p l ay) ;

}
} else i f ((cu r r en t p o s i t i o n .Z < 0) && (abs (cu r r en t p o s i t i o n .Z) >

POSI CLUTCH THRESHOLD)) { /* above t he s u r f a c e (+) c l u t c h */
164 log message (LOG FILENAME, ” po s i t i v e c l u t ch i s c a l l e d ”) ;

i f (s c r ou t s o und f l a g != 1) {
cursor ChStatus = TRUE;
s c ro u t s o und f l a g = 1 ;
gnome sound play (OUTSRC SND FILE) ;
log message (LOG FILENAME, ”played the out o f sc r een sound ”) ;
XDefineCursor (d i sp lay , root , c l u t ch cu r s o r) ;
XFlush (d i s p l ay) ;

}

174 } else i f ((cu r r en t p o s i t i o n .Z < 0) && (abs (cu r r en t p o s i t i o n .Z) <= sur faceProx im i ty))
{ /* j u s t above t he s u r f a c e */

l og message (LOG FILENAME, ” su r f a c e poximity i s c a l l e d ”) ;
cursor ChStatus = TRUE;
XDefineCursor (d i sp lay , root , su rProx cu r sor) ;
XFlush (d i s p l ay) ;
i f (s c r ou t s o und f l a g == 1) {

s c ro u t s o und f l a g = 0 ;
}

} else i f ((cu r r en t p o s i t i o n .Z >= 0) && (c u r r e n t p o s i t i o n . Z <= sur th re sho ld)) { /*
wi t h i n s u r f a c e and s u r f a c e t h r e s h o l d */

l og message (LOG FILENAME, ” approaching su r f a c e th re sho ld i s c a l l e d ”) ;
184 cursor ChStatus = TRUE;

XDefineCursor (d i sp lay , root , ap ro su rThes cu r sor) ;
XFlush (d i s p l ay) ;
i f (s c r ou t s o und f l a g == 1) {

s c ro u t s o und f l a g = 0 ;
}

} else i f ((cu r r en t p o s i t i o n .Z > 0) && (cu r r en t p o s i t i o n . Z > su r th re sho ld) && (
cu r r e n t p o s i t i o n . Z <= s e l t h r e s h o l d) && ((last movement . Z − cu r r en t p o s i t i o n .Z) >

0)) { /* between s u r f a c e t h r e s h o l d and s e l T h r e s h o l d + coming back */
l og message (LOG FILENAME, ” approaching s e l e c t i o n th re sho ld i s c a l l e d ”) ;
cursor ChStatus = TRUE;
XDefineCursor (d i sp lay , root , ap r o s e lThe s cu r s o r) ;

194 XFlush (d i s p l ay) ;
i f (s c r ou t s o und f l a g == 1) {

s c ro u t s o und f l a g = 0 ;
}

} else i f ((cu r r en t p o s i t i o n .Z > 0) && (cu r r en t p o s i t i o n . Z > su r th re sho ld)) { /*
beyond su r f a c e t h r e s h o l d */

l og message (LOG FILENAME, ” i n s i d e c l i c k −event range i s c a l l e d ”) ;
cursor ChStatus = TRUE;
XDefineCursor (d i sp lay , root , l e f t c l i c k c u r s o r) ;
XFlush (d i s p l ay) ;
i f (s c r ou t s o und f l a g == 1) {

204 s c ro u t s o und f l a g = 0 ;
}

} else i f (cursor ChStatus == TRUE) {
l og message (LOG FILENAME, ” conver t i ng cu r sor to d e f au l t ”) ;
cursor ChStatus = FALSE;
XDefineCursor (d i sp lay , root , d e f a u l t c u r s o r) ;
XFlush (d i s p l ay) ;
i f (s c r ou t s o und f l a g == 1) {

s c ro u t s o und f l a g = 0 ;
}

214 }

i f (l e f t B t nC l i c k f l a g == 1) {
i f (l e f t C l i c k s o u nd f l a g != 1) {

l e f t C l i c k s o u nd f l a g = 1 ;
gnome sound play (CLICK SND FILE) ;
log message (LOG FILENAME, ”played the l e f t c l i c k sound”) ;

}
} else {

i f (l e f t C l i c k s o u nd f l a g == 1) {
224 l e f t C l i c k s o u nd f l a g = 0 ;

gnome sound play (UNCLICK SND FILE) ;
log message (LOG FILENAME, ”played the l e f t u nc l i ck sound”) ;

}
}

} else {
l og message (LOG FILENAME, ”autoAdjMode value was TRUE”) ;

}

234 s npr i n t f (msg , 500 , ” value o f current movement . event t ime : %ld ” , (long) cu r r en t p o s i t i on
. event t ime) ;

log message (LOG FILENAME, msg) ;

161

/* change l a s t movement data */
last movement .X = cu r r en t p o s i t i on .X;
last movement .Y = cu r r en t p o s i t i on .Y;
last movement .Z = cu r r en t p o s i t i on . Z ;
last movement . event t ime = cu r r en t p o s i t i o n . event t ime ;

}

244 i f (nanosl eep (& in t e r v a l , &remainder) == −1) {
i f (errno == EINTR) {

l og message (LOG FILENAME, ” nanosleep in te r rup ted by EINTR”) ;
} else {

l og message (LOG FILENAME, ” nanosleep in te r rup ted by EINTR”) ;
s np r i n t f (msg , 500 , ” nanosleep in te r rup ted with errno : %d” , errno) ;
log message (LOG FILENAME, msg) ;

}
}

254 counter++;
i f (counter == 100) {

retVal = getSetXMLData () ;
s n p r i n t f (msg , 500 , ”Threshold va lues : su r t h re sho ld : %d and s e l t h r e sh o l d : %d” ,

su r th re sho ld , s e l t h r e sh o l d) ;
log message (LOG FILENAME, msg) ;
counter = 0 ;

}
}

XFreeCursor (d i sp lay , outbd cursor) ;
264 XFreeCursor (d i sp lay , c l u t ch cu r s o r) ;

XFreeCursor (d i sp lay , ap ro su rThes cu r sor) ;
XFreeCursor (d i sp lay , ap r o s e lTh es cu r s o r) ;
XFreeCursor (d i sp lay , l e f t c l i c k c u r s o r) ;
XFreeCursor (d i sp lay , su rProx cu r sor) ;
XFreeCursor (d i sp lay , d e f a u l t c u r s o r) ;

XCloseDisplay (d i sp l ay) ;

log message (LOG FILENAME, ”rframe FBAutoA : End of Daemon operat i on ”) ;
274 openlog (DAEMONNAME, LOG PID, LOGDAEMON) ;

s ys l o g (LOG INFO, ”Ending Daemon . ”) ;
c l o s e l o g () ;
e x i t (EXIT SUCCESS) ;

}

162

B.4 Rframe Definition Application Source Code

Listing B.4: Code segment of Rframe Definition Application

/* #### Ca l c u l a t i o n f un c t i o n s ######### */
2

/* ch ec k i ng i f two l i n e s are p e r p end i c u l a r */
int i sP erpend i cu l a r (type3Dpoint *point1 , type3Dpoint *point2 , type3Dpoint * point3) {

type3Dpoint resVector1 , resVector2 ;
int vecDotValue ;

resVector1 .X = point1−>X − point2−>X;
resVector1 .Y = point1−>Y − point2−>Y;
resVector1 . Z = point1−>Z − point2−>Z ;

12 resVector2 .X = point3−>X − point1−>X;
resVector2 .Y = point3−>Y − point1−>Y;
resVector2 . Z = point3−>Z − point1−>Z ;

vecDotValue = resVector1 .X* resVector2 .X + resVector1 .Y* resVector2 .Y + resVector1 . Z*
resVector2 . Z ;

i f (vecDotValue == 0) { /* t h e two v e c t o r s are p e r p end i c u l a r */
return 0 ;

} else {
return −1;

22 }
}

/* re−a d j u s t s po in t 3 accord ing t o point1 , po in t 2 and the r frame t y pe */
int calPointByDisPlusLine (type3Dpoint *point1 , type3Dpoint *point2 , type3Dpoint *point3 ,

type3Dpoint * retPoint , int d i s tance) {
type3Dpoint tmpVectorP2P1 , tmpVectorP1P3 , tmpVecP1Pprim3 ;
type3Dpoint projVP2P1OnP1P3 ;
int vecDotValue , lengthSqrP2P1 , lengthP1Pprim3 , retValue ;

tmpVectorP2P1 .X = point1−>X − point2−>X;
32 tmpVectorP2P1 .Y = point1−>Y − point2−>Y;

tmpVectorP2P1 .Z = point1−>Z − point2−>Z ;

tmpVectorP1P3 .X = point3−>X − point1−>X;
tmpVectorP1P3 .Y = point3−>Y − point1−>Y;
tmpVectorP1P3 .Z = point3−>Z − point1−>Z ;

vecDotValue = tmpVectorP2P1 .X*tmpVectorP1P3 .X + tmpVectorP2P1 .Y*tmpVectorP1P3 .Y +
tmpVectorP2P1 . Z*tmpVectorP1P3 . Z ;

lengthSqrP2P1 = (tmpVectorP2P1 .X*tmpVectorP2P1 .X) + (tmpVectorP2P1 .Y*tmpVectorP2P1 .Y) + (
tmpVectorP2P1 . Z*tmpVectorP2P1 . Z) ;

42 projVP2P1OnP1P3 .X = (vecDotValue / lengthSqrP2P1) *tmpVectorP2P1 .X;
projVP2P1OnP1P3 .Y = (vecDotValue / lengthSqrP2P1) *tmpVectorP2P1 .Y;
projVP2P1OnP1P3 .Z = (vecDotValue / lengthSqrP2P1) *tmpVectorP2P1 . Z ;

tmpVecP1Pprim3 .X = tmpVectorP1P3 .X − projVP2P1OnP1P3 .X;
tmpVecP1Pprim3 .Y = tmpVectorP1P3 .Y − projVP2P1OnP1P3 .Y;
tmpVecP1Pprim3 . Z = tmpVectorP1P3 .Z − projVP2P1OnP1P3 . Z ;

lengthP1Pprim3 = sqr t (tmpVecP1Pprim3 .X*tmpVecP1Pprim3 .X + tmpVecP1Pprim3 .Y*tmpVecP1Pprim3 .Y
+ tmpVecP1Pprim3 .Z*tmpVecP1Pprim3 .Z) ;

52 /* new ad j u s t e d po in t 3 */
retPoint−>X = point1−>X + di s tance *(tmpVecP1Pprim3 .X/ lengthP1Pprim3) ;
retPoint−>Y = point1−>Y + di s tance *(tmpVecP1Pprim3 .Y/ lengthP1Pprim3) ;
retPoint−>Z = point1−>Z + d i s tance *(tmpVecP1Pprim3 . Z/ lengthP1Pprim3) ;

retValue = i sPe rpend i cu l a r (point1 , point2 , r e tPo in t) ;
i f (retValue == 0)

return 0 ;
else

return −1;
62 }

163

B.5 XML Data Format to Store Rframe Data

Listing B.5: XML Document Type Definition (DTD)

<?xml version=” 1. 0 ” encoding=”ISO−8859−1”?>
< !DOCTYPE rframeTemplates [
<!ELEMENT rframeTemplates (Templates , Screens , InputRes , SensorRange , AvgSampleNo ,

Mult iFactor , AutoAdjustMode)>
< !ELEMENT Templates (Template) *>
< !ELEMENT Template (rfType , rfName , Act ive , Points , Sur faceThres , S e l ec tThres ,

SurProximity , rfWidth , r fHe i gh t)>
< !ELEMENT rfType (#PCDATA)>

7 < !ELEMENT rfName (#PCDATA)>
< !ELEMENT Active (#PCDATA)>
< !ELEMENT Points (Point)+>

< !ELEMENT Point (X , Y , Z)>
< !ELEMENT X (#PCDATA)>
< !ELEMENT Y (#PCDATA)>
< !ELEMENT Z (#PCDATA)>
< !ELEMENT SurfaceThres (#PCDATA)>
< !ELEMENT Se l ec tThres (#PCDATA)>
< !ELEMENT SurProximity (#PCDATA)>

17 < !ELEMENT rfWidth (#PCDATA)>
< !ELEMENT r fHe i gh t (#PCDATA)>
< !ELEMENT Screens (Screen) *>
< !ELEMENT Screen (ScreenWidthPX , ScreenHeightPX , ScreenWidthMM , ScreenHeightMM ,

AspectRatio , SrcMMtoPX , Se l ec t ed)>
< !ELEMENT ScreenWidthPX (#PCDATA)>
< !ELEMENT ScreenHeightPX (#PCDATA)>
< !ELEMENT ScreenWidthMM (#PCDATA)>
< !ELEMENT ScreenHeightMM (#PCDATA)>
< !ELEMENT AspectRatio (#PCDATA)>
< !ELEMENT SrcMMtoPX (#PCDATA)>

27 < !ELEMENT Se l ec t ed (#PCDATA)>
< !ELEMENT InputRes (#PCDATA)>
< !ELEMENT SensorRange (#PCDATA)>
< !ELEMENT AvgSampleNo (#PCDATA)>
< !ELEMENT Mult iFactor (s r cMu l t iFactor , r fMu l t iFactor)>
< !ELEMENT s r cMu l t iFactor (#PCDATA)>
< !ELEMENT r fMu l t iFactor (#PCDATA)>
< !ELEMENT AutoAdjustMode (AutoActive , InActiveMin , GenericRfOri)>
< !ELEMENT AutoActive (#PCDATA)>
< !ELEMENT InActiveMin (#PCDATA)>

37 < !ELEMENT GenericRfOri (#PCDATA)>
]>

164

References

[Apl00] J. Dwight Aplevich. The Essentials of Linear State-Space Systems.
John Wiley & Sons, New York, NY, USA, 2000.

[Bac00] Eric R. Bachmann. Inertial and Magnetic Tracking of Limb Segment
Orientation for Inserting Humans into Synthetic Environments. PhD
thesis, Naval Postgraduate School, Monterey, CA, USA, December
2000.

[BS90] Teresa W. Bleser and John Sibert. “Toto: a tool for selecting inter-
action techniques.” In UIST ’90: Proceedings of the 3rd annual ACM
SIGGRAPH symposium on User interface software and technology, pp.
135–142, New York, NY, USA, 1990. ACM.

[Car03] John M. Carroll, editor. HCI Models, Theories, and Frameworks: To-
wards a Mutidisciplinary Science. Morgan Kaufmann Publishers, San
Francisco, CA, USA, 2003.

[CLR01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Riverst, and
Clifford Stein. Introduction to Algorithms. MIT Press, Cambridge,
MA, USA, 2nd edition, 2001.

[Con09] Sixense’s TrueMotion Controller. http://www.ecnmag.com/CES-
2009-Best-of-011609.aspx, 22 September 2009.

[Cor09] Ascension Technology Corporation. Burlington, Vermont, USA.
http://www.ascension-tech.com, 8 August 2009.

[CRK05] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman.
Linux Device Drivers. O’Reilly Media, Inc., Sebastopol, CA, USA,
3rd edition, February 2005.

[Dav61] Harry F. Davis. Introduction to Vector Analysis. Allyn and Bacon,
Inc., Boston, MA, USA, 1961.

[DTR07] Nguyen Thong Dang, Monica Tavanti, Ivan Rankin, and Matthew
Cooper. “A comparison of different input devices for a 3D environ-
ment.” In ECCE ’07: Proceedings of the 14th European conference on
Cognitive ergonomics, pp. 153–160, New York, NY, USA, 2007. ACM.

[Fel09] Mark Feldman. “The Win95 Game Pro-
grammer’s Encyclopedia.” Basic 3D Math:
http://www.geocities.com/SiliconValley/2151/math3d.html, 24
September 2009.

165

[Fer91] Frank J. Ferrin. “Survey of Helmet Tracking Technologies.” In SPIE
Proceedings, Vol. 1456: Large-Screen Projection, Avionic, and Helmet-
Mounted Displays, pp. 86–94, 1991.

[FH93] S. Sidney Fels and Geoffrey E. Hinton. “Glove-Talk: A neural net-
work interface between a data-glove and a speech synthesizer.” IEEE
Transactions on Neural Networks, 3(6):2–8, Jan 1993.

[FS06] Shinichi Fukushige and Hiromasa Suzuki. “Interactive 3D pointing
device using mirror reflections.” In GRAPHITE ’06: Proceedings of
the 4th international conference on Computer graphics and interactive
techniques in Australasia and Southeast Asia, pp. 231–235, New York,
NY, USA, 2006. ACM.

[Han97] Chris Hand. “A Survey of 3D Interaction Techniques.” Computer
Graphics Forum, 16(5):269–281, 1997.

[HBF05] Johann B Hummel, Michael R. Bax, Michael L. Figl, Yan Kang,
Calvin Maurer Jr., Wolfgang W. Birkfellner, Helmar Bergmann, and
Ramin Shahidi. “Design and application of an assessment protocol for
electromagnetic tracking systems.” Med. Phys., 32(7):2371–9, July
2005.

[Her76] Christopher F. Herot. “Graphical input through machine recognition
of sketches.” SIGGRAPH Comput. Graph., 10(2):97–102, 1976.

[HHN85] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. “Direct
Manipulation Interfaces.” Human-Computer Interaction, 1:311–338,
1985.

[Hin08] Ken Hinckley. “Input technologies and techniques.” In The human-
computer interaction handbook: fundamentals, evolving technologies
and emerging applications, pp. 151–168. Lawrence Erlbaum Associates
Inc., NJ, USA, 2nd edition, 2008.

[HPG94] Ken Hinckley, Randy Pausch, John C. Goble, and Neal F. Kassell. “A
survey of design issues in spatial input.” In UIST ’94: Proceedings
of the 7th annual ACM symposium on User interface software and
technology, pp. 213–222, New York, NY, USA, 1994. ACM.

[IBH01] Milan Ikits, J. Dean Brederson, Charles D. Hansen, and John M.
Hollerbach. “An Improved Calibration Framework for Electromag-
netic Tracking Devices.” In VR ’01: Proceedings of the Virtual Reality
2001 Conference (VR’01), pp. 63–70, Washington, DC, USA, 2001.
IEEE Computer Society.

166

[Inc09a] InterSense Inc. Billerica, MA, USA. http://www.intersense.com, 5
September 2009.

[Inc09b] Northern Digital Inc. Waterloo, Ontario, Canada.
http://www.ndigital.com/index.php, 7 September 2009.

[Inc09c] PhaseSpace Inc. San Leandro, CA, USA.
http://www.phasespace.com/index.html, 5 September 2009.

[Inc09d] Sensable Technologies Inc. http://www.sensable.com/index.htm, 6
September 2009.

[Inc09e] Polhemus Incorporated. Colchester, Vermont, USA.
http://www.polhemus.com, 8 August 2009.

[Ini09] Inition. London, UK. http://www.inition.co.uk, 11 August 2009.

[Jac96] Robert J. K. Jacob. “Human-computer interaction: input devices.”
ACM Comput. Surv., 28(1):177–179, 1996.

[JLM93] Robert J.K. Jacob, John J. Leggett, Brad A. Myers, and Randy
Pausch. “Interaction Styles and Input/Output Devices.” Behaviour
and Information Technology, 12(2):69–79, March-April 1993.

[JS92] Robert J. K. Jacob and Linda E. Sibert. “The perceptual structure of
multidimensional input device selection.” In CHI ’92: Proceedings of
the SIGCHI conference on Human factors in computing systems, pp.
211–218, New York, NY, USA, 1992. ACM.

[JSM94] Robert J. K. Jacob, Linda E. Sibert, Daniel C. McFarlane, and Jr.
M. Preston Mullen. “Integrality and separability of input devices.”
ACM Trans. Comput.-Hum. Interact., 1(1):3–26, 1994.

[Kin99] Volodymyr Kindratenko. “Calibration of electromagnetic tracking de-
vices.” Virtual Reality: Research, Development, and Applications,
4(2):139–150, 1999.

[Kin00] Volodymyr Kindratenko. “A survey of electromagnetic position tracker
calibration techniques.” Virtual Reality: Research, Development, and
Applications, 5(3):169–182, 2000.

[KWR06] Ernst Kruijff, Gerold Wesche, Kai Riege, Gernot Goebbels, Martijn
Kunstman, and Dieter Schmalstieg. “Tactylus, a pen-input device
exploring audiotactile sensory binding.” In VRST ’06: Proceedings of
the ACM symposium on Virtual reality software and technology, pp.
312–315, New York, NY, USA, 2006. ACM.

167

[Len04] Eric Lengyel. Mathematics for 3D Game Programming and Computer
Graphics, Second Edition. Charles River Media, Inc., Rockland, MA,
USA, 2004.

[Lov05] Robert Love. Linux Kernel Development. Novell Press, Indianapolis,
Indiana, USA, 2nd edition, June 2005.

[LS97] Mark A. Livingston and Andrei State. “Magnetic Tracker Calibration
for Improved Augmented Reality Registration.” Presence: Teleopera-
tors and Virtual Environments, 6(5):532–546, 1997.

[Ltd09] Animazoo UK Ltd. http://www.animazoo.com/default.aspx, 5
September 2009.

[MAB92] Kenneth Meyer, Hugh L. Applewhite, and Frank A. Biocca. “A survey
of position trackers.” Presence: Teleoperators and Virtual Environ-
ments, 1(2):173–200, 1992.

[MCR90] Jock Mackinlay, Stuart K. Card, and George G. Robertson. “A seman-
tic analysis of the design space of input devices.” Humam-Computer
Interaction, 5(2):145–190, 1990.

[MI01] Atsuo Murata and Hirokazu Iwase. “Extending Fitts’ Law to a three-
dimensional pointing task.” Human Movement Science, 20:791–805,
2001.

[MIT09] SixthSense MIT Media Lab. http://www.media.mit.edu/research, 8
September 2009.

[MKS01] I. Scott MacKenzie, Tatu Kauppinen, and Miika Silfverberg. “Accu-
racy measures for evaluating computer pointing devices.” In CHI ’01:
Proceedings of the SIGCHI conference on Human factors in computing
systems, pp. 9–16, New York, NY, USA, 2001. ACM.

[Mot09] BurstGlove Motion4U. http://www.3dmotion4u.com, 8 September
2009.

[MPC04] F. Martinot, P. Plénacoste, and C. Chaillou. “The DigiTracker, a
Three Degrees of Freedom Pointing Device.” In 10th Eurographics
Symposium on Virtual Environments, pp. 99–104, June 2004.

[Nat09] LabVIEW National Instruments Corporation. TX, USA.
http://www.ni.com, 17 September 2009.

[Nie93] Jakob Nielsen. Usability Engineering. Academic Press, New York,
USA, 1993.

168

[NMF98] Mark A. Nixon, Bruce C. McCallum, W. Richard Fright, and N. Brent
Price. “The Effects of Metals and Interfering Fields on Electromag-
netic Trackers.” Presence: Teleoperators and Virtual Environments,
7(2):204–218, 1998.

[Obl09] g-speak Oblong Industries. http://oblong.com, 8 September 2009.

[Pro09a] Microsoft Project Natal. http://en.wikipedia.org/wiki/Project Natal,
7 September 2009.

[Pro09b] Xbox 360 Project Natal. Microsoft, http://www.xbox.com/en-
US/live/projectnatal, 7 September 2009.

[PV89] T.S. Perry and J. Voelcker. “Of mice and menus: designing the user-
friendly interface.” IEEE Spectrum, 26(9):46–51, Sep 1989.

[RBG00] Jannick P. Rolland, Yohan Baillot, and Alexei A. Goon. Fundamentals
of Wearable Computers and Augmented Reality. Lawrence Erlbaum,
NJ, USA, 2000.

[RC08] Jeffrey Rubin and Dana Chisnell. Handbook of Usability Testing: How
to Plan, Design, and Conduct Effective Tests. Wiley Publishing, Inc.,
Indianapolis, Indiana, USA, 2nd edition, May 2008.

[Sen09] Project Natal Sensor. http://xbox360.ign.com/articles/101/
1016309p1.html, 22 September 2009.

[SHC96] Andrei State, Gentaro Hirota, David T. Chen, William F. Garrett,
and Mark A. Livingston. “Superior augmented reality registration by
integrating landmark tracking and magnetic tracking.” In SIGGRAPH
’96: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pp. 429–438, New York, NY, USA, 1996.
ACM.

[Shn83] Ben Shneiderman. “Direct Manipulation: A Step Beyond Program-
ming Languages.” Computer, 16(8):57–69, 1983.

[Six09] TrueMotion Sixense Entertainment. http://www.sixense.com, 8
September 2009.

[SK88] Robert D. Strum and Donald E. Kirk. First principles of discrete
systems and digital signal processing. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1988.

[SK04] Oliver Stefani and Ioannis Karaseitanidis. “Designing 3D input devices
for immersive environments.” In 2004 IEEE International Conference
on Systems, Man and Cybernetics, volume 7, pp. 6280–6285, Oct. 2004.

169

[Sko96] Paul F. Skopowski. “Immersive Articulation of the Human Upper
Body in a Virtual Environment.”. Master’s thesis, Naval Postgrad-
uate School, Monterey, California, USA, December 1996.

[SP05] Ben Shneiderman and Catherine Plaisant. Designing the User Inter-
face : Strategies for Effective Human-Computer Interaction. Addison-
Wesley, Boston, MA, USA, 4th edition, 2005.

[SPS92] Andrew Sears, Catherine Plaisant, and Ben Shneiderman. “A new
era for high precision touchscreens.” In Advances in human-computer
interaction (vol. 3), pp. 1–33. Ablex Publishing Corp., Norwood, NJ,
USA, 1992.

[Ste03] James Stewart. Calculus: Early Transcendentals. Thomson Learning
Inc., Belmont, CA, USA, 5th edition, 2003.

[SWK04] Ehud Sharlin, Benjamin Watson, Yoshifumi Kitamura, Fumio Kishino,
and Yuichi Itoh. “On tangible user interfaces, humans and spatiality.”
Personal Ubiquitous Comput., 8(5):338–346, 2004.

[Sys09] Vicon Motion Systems. Colorado, USA.
http://www.vicon.com/index.html, 5 September 2009.

[VB04] James M. Van Verth and Lars M. Bishop. Essential Mathematics for
Games and Interactive Applications: A Programmer’s Guide. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[VB05] Daniel Vogel and Ravin Balakrishnan. “Distant freehand pointing and
clicking on very large, high resolution displays.” In UIST ’05: Proceed-
ings of the 18th annual ACM symposium on User interface software
and technology, pp. 33–42, New York, NY, USA, 2005. ACM.

[Ven08] Sreekrishnan Venkateswaran. Essential Linux Device Drivers. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 2008.

[VR 07] VR Space Inc., Taoyuan, Taiwan. Wintracker: User’s Manual, Jan
2007.

[WBV99] Greg Welch, Gary Bishop, Leandra Vicci, Stephen Brumback, Kurtis
Keller, and D’nardo Colucci. “The HiBall Tracker: high-performance
wide-area tracking for virtual and augmented environments.” In VRST
’99: Proceedings of the ACM symposium on Virtual reality software
and technology, pp. 1–10, New York, NY, USA, 1999. ACM.

[Wel09] Gregory F. Welch. “History: The use of the kalman filter for human
motion tracking in virtual reality.” Presence: Teleoper. Virtual Envi-
ron., 18(1):72–91, 2009.

170

[Wii09] Nintendo Wii. http://www.nintendo.com/wii/what/controllers, 22
September 2009.

[Win09] VR-Space Inc. Wintracker II. http://www.vr-space.com, 5 August
2009.

[WLH07] Richard S. Wright, Benjamin Lipchak, and Nicholas Haemel.
Opengl®superbible: comprehensive tutorial and reference. Addison-
Wesley Professional, fourth edition, June 2007.

[Won07] Alexander Wong. “Low-Cost Visual/Inertial Hybrid Motion Capture
System for Wireless 3D Controllers.”. Master’s thesis, University of
Waterloo, Waterloo, Ontario, Canada, 2007.

[Zha95] Shumin Zhai. Human Performance in Six Degree of Freedom Input
Control. PhD thesis, University of Toronto, ON, Canada, 1995.

[Zha98] Shumin Zhai. “User performance in relation to 3D input device de-
sign.” SIGGRAPH Computer Graphics, 32(4):50–54, 1998.

[ZMB96] Shumin Zhai, Paul Milgram, and William Buxton. “The influence of
muscle groups on performance of multiple degree-of-freedom input.”
In CHI ’96: Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 308–315, New York, NY, USA, 1996. ACM.

[ZMI99] Shumin Zhai, Carlos Morimoto, and Steven Ihde. “Manual and gaze
input cascaded (MAGIC) pointing.” In CHI ’99: Proceedings of the
SIGCHI conference on Human factors in computing systems, pp. 246–
253, New York, NY, USA, 1999. ACM.

171

