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A Compositional Approach for Verifying

Sampled-Data Supervisory Control

Abstract

Sampled-data supervisory control deals with timed discrete event systems

(TDES) where the supervisors are to be implemented as sampled-data controllers.

A sampled-data controller views the system as a series of inputs and outputs and

is controlled by a periodic clock. It samples its inputs, changes state, and up-

dates its outputs on each clock edge (the tick event). The sampled-data supervi-

sory control framework provides a set of conditions that the TDES system must

satisfy to ensure its correct behaviour in order to be implemented as sampled

data controllers. A serious limitation for automatic verification of systems is

the size of the system’s synchronous product. To overcome this limitation, we

propose the use of a compositional approach to the verification of sampled-data

supervisory control. In this approach, first we recast the required conditions for

sampled-data supervisory control in terms of other properties such as language

inclusion, nonblocking or controllability, which already have existing composi-

tional methods and algorithms. This makes the sampled-data properties suitable

for compositional verification, considerably increasing the size of systems that can

be handled using sampled-data supervisory control. We also develop and imple-

ment a set of algorithms for the compositional verification of these sampled-data

properties. We provide an example of the SD Controlled Flexible Manufacturing

System to test our algorithms.
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CHAPTER 1

Introduction

A discrete event system (DES) [CL10, Won11] is a dynamic system whose state

space is discrete and whose state can only change in response to instantaneous

occurence of events over time. The applications of DES can be found in many ar-

eas including manufacturing systems, traffic systems, communication protocols,

data communication networks and database management systems.

A DES model can be represented as either timed DES (TDES) model [Ost89,

Ost90, OW90] or untimed DES model. In an untimed DES model, we are only

concerned with the sequence of events taking place in order to satisfy a given set

of specifications. Such a model is only concerned in the logical behavior of the

system such as finding if a particular state (or set of states) of the system can be

reached or not. In such models, the actual timing of events is not considered. In a

TDES model, timing information is important as well as the sequence of events .

Its important to consider the time at which the system reaches a particular state

and the amount of time it spends there. Its also important to be able to specify

when an event will occur, and not just the ordering of the event occurences.

The supervisory control theory introduced by Ramadge and Wonham [RW89,

Won11, WR87] provides a formal frame work for analyzing discrete event sys-

tems. In this theory an automaton is used to model the system(the plant) to

be controlled and the specification of the desired system behaviour. The aim is

to impose a given specification on the system by means of a supervisor which

restricts the behaviour of a system. The theory provides methods and algorithms
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to obtain a supervisor that ensures that the system always produces the desired

behaviour. It is desirable for a system to satisfy two properties, controllability

(undesired actions don’t occur) and nonblocking (system doesn’t deadlock or live-

lock).

The supervisory control is often used for complex, safety critical systems,

therefore it is very important to verify automatically that the supervisor satisfies

the required properties. However, large and complex systems have a very large

state space as they are usually modeled as the synchronous product of a group

of component DES, thus the state space size increases exponentially in the num-

ber of the components. Such a problem is known as the state space explosion

problem. This makes the verification of complex systems more challenging. To

address the state space explosion problem, different approaches to system verifi-

cation have been proposed and investigated.

Symbolic verification [McM93] is one method of verifying complex finite state

safety critical systems. It is possible to verify extremely large systems having as

many as 1020 states by using Binary decision diagrams (BDD) [Bry92]. Sev-

eral systems of industrial complexity have been verified[CCMM95, HGCC96,

HGKCL95] using this technique. In spite of being quite successful, symbolic

model checking has its limitations. In some cases it can easily encounter the

state space explosion problem.

Another technique which has been successful to overcome state space ex-

plosion is compositional verification [CLM89, GL94, KM00]. The compositional

verification method splits up the verification of a system into the verification of

its components. That means we can verify that a system satisfies the properties

of interest by checking its components one by one, rather than checking the whole

system. Separate verification of components limits state explosion.

Once we have designed our system, we next need to physically implement our

2



supervisors, which brings us to the focus of this thesis. The sampled-data (SD)

supervisory control framework was proposed in [Wan09, LW10] to implement

TDES supervisors as sampled-data controllers. An SD controller is controlled by

a periodic clock and views the system as a series of inputs and outputs. The

sampled-data supervisory control provides a set of conditions that can be used to

ensure correct behaviour (i.e. our controller retains nonblocking and controlla-

bility) when implementing TDES supervisors as SD controllers. The algorithms

in [Wan09] for verification of these properties have been implemented using sym-

bolic methods.

In this thesis, we propose a compositional approach for verifying the proper-

ties of sampled-data supervisory control in order to increase the size of systems

to which this theory can be applied. Our approach to develop a compositional

verification method for sample-data supervisory control is to first redefine the re-

quired property for the given system in terms of either controllability, nonblocking

or a language inclusion problem, and then show that this new representation is

equivalent. We can then use the existing compositional approaches for verifying

controllability, nonblocking, and language inclusion to check these conditions.

1.1 Related Work

The implementation of a controller in supervisory control has always been a

challenging problem. A lot of research [BHG+93, Bal94, GR87] has been done to

establish the fact that in order to implement a controller, its behaviour needs to

satisfy additional properties not included in the traditional supervisory control

theory. In [Mal03] the author suggests conditions to be satisfied for implementing

nonblocking controllers for untimed nonblocking supervisors.

Sampled-data supervisory control theory [LW10, Wan09] establishes a set of

conditions that need to be satisfied in order to implement TDES supervisors as

3



SD controllers. This theory is developed using the theory of supervisory control

of timed DES [BW94, Bra92] as a basis.

Verification and synthesis of discrete event systems has been an interesting

area for researchers in the recent years. [ÅFF02] takes advantage of the modular

structure of the system to develop an efficient algorithm for verifying control-

lability. In [BMM04], the authors present a new approach for the verification

of safety properties, controllability and language inclusion, based on subsystem

verification. They combine the use of counter-examples and heuristics to identify

subsystems incrementally.

The verification of nonblocking has been a more challenging problem. A

lot of effort has gone into the study of compositional semantics of nonblocking

[KS94, RMR06] and its verification [FM09, PCL06]. In [FM09], the authors pro-

pose a compositional approach to verify nonblocking for a large discrete event

system. The method avoids computing the synchronous product directly, but

instead the synchronous product is computed gradually, and the results are sim-

plified using conflict-preserving abstractions based on process-algebraic results

about fair testing. The authors propose using the the same method to verify

controllability.

In [ML08] authors Malik and Leduc discuss the conversion of nonblock-

ing property into a more expressive property called generalised nonblocking and

present its compositional verification method in [ML09]. Its implementation is

presented in [Fra11]. In a similar manner, Malik and Leduc provide a compo-

sitional approach for verifying HISC [Led02, LBLW05, LDS09, LLD06, LLW05,

Led09] which is presented in [LM10].

An efficient algorithm which uses the compositional technique for the detec-

tion of control loops is given in [MM06]. The technique takes advantage of the

modular structure of discrete event system models to identify and check subsys-

4



tems, in such a way that the results of checking the subsystems can be used to

draw conclusions about the properties of the entire system.

The use of language projection can greatly improve the performance of com-

postional verification to verify properties of a large discrete event system. In

[WM08], the authors propose the use of abstraction by language projection to

prove or disprove that a large system of composed finite-state machines satisfies

a given safety property.

1.2 Structure of the Thesis

In this thesis we present a compositional approach for verifying sampled-data su-

pervisory control systems. In Chapter 2, we present the definitions and notations

that are used throughout the thesis. Chapter 3 is an introduction to sampled-

data systems and the required conditions for sampled-data supervisory control.

It also gives examples for the properties to illustrate their meaning.

In Chapters 4 and 5, we provide the new definitions for the SD properties.

We express each property in terms of a language inclusion, nonblocking or con-

trollability property and provide detailed proofs to show that the new definitions

are equivalent to the ones originally given in [Wan09, LW10].

In Chapter 6, we present our algorithms to verify the SD properties and

discuss the implementation of the algorithms. In Chapter 7, we present the SD

controlled FMS example from [Wan09] and discuss the results of applying our

software to it. Finally we conclude with conclusions and future work in Chapter

8.
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CHAPTER 2

Preliminaries

A discrete event system is a dynamic system whose state space is discrete and

whose state can only change in response to instantaneous occurence of events

over time. DES are modelled as automata that generate a formal language of

distinct symbols. Supervisory control theory [RW89, Won11, WR87] provides

a theoretical framework for the control of discrete event systems. This chapter

presents an overview of the the terminology and concepts used in this thesis.

2.1 Languages

Let alphabet Σ be a non-empty finite set of distinct symbols. A string is a finite

sequence of symbols which belong to Σ. The set Σ∗ defines the set of all finite

sequence of events of the form σ1σ2...σn (n ≥ 1) as well as the empty string, ǫ.

Given a string s, |s| = n defines the length of the string. The empty string ǫ has

length 0. Let Σ+ denote the set of all finite non-empty symbol sequences. We

can then define Σ∗ := Σ+ ∪{ǫ}. The catenation operation of strings is defined as

cat : Σ∗ × Σ∗ → Σ∗

where cat(ǫ , s) = cat(s, ǫ ) = s, and cat(s,t) = st.

Let s, t ∈ Σ∗. String t is said to be a prefix of s, denoted as t ≤ s, if (∃u

∈ Σ∗)su = t. Clearly ǫ is a prefix of all strings, as (∀s ∈ Σ∗)ǫ ≤ s. Also, every

string s ∈ Σ∗ is a prefix of itself, as s ≤ s.

A language over Σ is any subset L ⊆ Σ∗. The prefix closure of L, written as

6



L, is defined as L = {s ∈ Σ∗|(∃t ∈ L)s ≤ t}. Clearly, a language is a subset of

its prefix closure, i.e. L ⊆ L. A language is called prefix closed if L = L.

The usual set operations, such as union, intersection, difference etc., are

applicable to languages since languages are sets. For sets Σ and Σ1, the notation

Σ−Σ1, or Σ\Σ1 refers to the set {x|x ∈ Σ∧x /∈ Σ1}, the set of elements of Σ that

are not in Σ1. Similarly Pwr(Σ) refers to the set of all subsets of Σ, including ∅,

the empty set.

Let L ⊆ Σ∗. The eligibility operator, EligL : Σ∗ → Pwr(Σ), is defined for s

∈ Σ∗ as EligL(s) := {σ ∈ Σ | sσ ∈ L}.

We define the Nerode equivalence relation on Σ∗ with respect to L (or mod

L) as follows. For strings s, t ∈ Σ∗,

s ≡L t or s ≡ t (mod L) iff (∀ u ∈ Σ∗) su ∈ L iff tu ∈ L.

The above definition states that we say s and t are Nerode equivalent with respect

to the language L if and only if they can be extended by any string u ∈ Σ∗ such

that either both strings are in L or neither string is in L. In other words, if strings

s and t are equivalent mod L then both s and t can be continued in exactly the

same way by right concatenation with respect to membership in L.

2.2 Discrete Event Systems

2.2.1 Generator

Formally, we model DES as a generator G, which is a tuple

G = (Q, Σ, δ, q0, Qm)

where Q is the state set, Σ is the event set, δ : Q ×Σ → Q is the (partial)

transition function, q0 is the initial state, and Qm ⊆ Q is the set of marked

states.

As δ : Q × Σ → Q is a partial function, δ(q, σ)! means δ(q, σ) is defined for
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S1S0

!α

β γ

Figure 2.1: An Example DES

σ ∈ Σ at state q ∈ Q. We can extend the transition function to δ : Q × Σ∗ → Q

as

δ(q, ǫ) = q for q ∈ Q.

δ(q, sσ) = δ(δ(q, s), σ) for s ∈ Σ∗ , σ ∈ Σ, and q ∈ Q,

provided q′ := δ(q, s)! and δ(q′, σ)!.

A DES G can be represented by a transition graph. The states in Q are

represented by the nodes(circles) in the graph. Transitions are represented by

the edges. The small arrow pointing to a state labels the initial state. and the

marked states are represented by a shaded circle. Usually, a controllable event

is graphically shown by a slash on the transition edge. For the figures in this

thesis, we have prefixed uncontrollable events with a “!” to distinguish between

controllable and uncontrollable events.

For convenience, we use the notation ΣG to define the event set that DES G

is defined over. Similarly we will use the notations QG, δG, q0,G and Qm,G for the

other components of DES G.

The closed behaviour of DES G is described by the language

L(G) = {s ∈ Σ∗ | δ(q0, s)!}

The marked behaviour of DES G is defined as

Lm(G) = {s ∈ Σ∗ | δ(q0, s)! ∧ δ(q0, s) ∈ Qm}

Note that Lm(G) ⊆ L(G) and ǫ ∈ L(G) as long as Q 6= ∅.

A state q ∈ Q is reachable if there is a string s ∈ Σ∗ with δ(q0, s)! and
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δ(q0, s) = q. G itself is reachable if q is reachable for all q ∈ Q .

A state q ∈ Q is coreachable if there is s ∈ Σ∗ such that δ(q, s) ∈ Qm. G is

coreachable if q is coreachable for every q ∈ Q.

We define equivalence relation λ on Q as:

(∀q, q′ ∈ Q)q ≡ q′ (mod λ) iff

i) (∀s ∈ Σ∗) η(q, s)! ⇔ η(q′, s)!

ii) (∀s ∈ Σ∗) η(q, s)! ∧ η(q, s) ∈ Qm ⇔ η(q′s)! ∧ η(q′, s) ∈ Qm

Nonblocking [Won11] is a very crucial property for discrete event systems. It

is the ability to reach a marked state from all reachable states. Formally defined,

G is said to be nonblocking if every reachable state is coreachable. The language

form of the definition is:

Lm(G) = L(G)

We say that a set of DES is nonconflicting, if the synchronous product (see

definition in next section) is nonblocking.

2.2.2 Synchronous Product

In real life, it is more convenient to model a system using more than one DES

that interact with each other when they run concurrently. To model a system, we

need a way to represent the entire system running in parallel. The synchronous

product [Won11] is used to combine two or more DES into a single one. Each

DES in the system usually shares some events in their alphabet with other DES

in the system. These shared events must be executed by all components at the

same time.

To define the synchronous product, we first need to define the natural projec-

tion operator and its inverse. Let Σ∗
i ⊆ Σ, i=1,2. We define the natural projection

Pi : Σ∗ → Σ∗
i and Σ = Σ1 ∪ Σ2 as:

Pi(ǫ) = ǫ
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Pi(σ) =











ǫ if σ /∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ) s ∈ Σ∗, σ ∈ Σ

Pi(s) removes all events that belong to Σ − Σi, for string s ∈ Σ∗. The inverse

image of Pi is P−1
i : Pwr(Σ∗

i ) → Pwr(Σ∗). For L ⊆ Σ∗
i , we get

P−1
i (L) := {s ∈ Σ∗|Pi(s) ∈ L}.

Let Li ⊆ Σ∗
i . The synchronous product of L1 and L2 is defined as

L1 ‖ L2 = P−1
1 L1 ∩ P−1

2 L2

For DES G1 = (Q1, Σ, δ1, q0,1, Qm,1) and DES G2 = (Q2, Σ, δ2, q0,2, Qm,2) de-

fined over the same event set Σ, the product of two DES is defined as

G1 × G2 = (Q1 × Q2, Σ, δ1 × δ2, (q0,1, q0,2), Qm,1 × Qm,2)

where δ1 × δ2 : Q1 × Q2 × Σ → Q1 × Q2 is defined as

(δ1 × δ2)((q1, q2), σ) := (δ1(q1, σ), δ2(q2, σ))

whenever δ1(q1, σ)! and δ2(q2, σ)!, otherwise undefined.

By this definition, we have

L(G1 × G2) = L(G1) ∩ L(G2) and Lm(G1 × G2) = Lm(G1) ∩ Lm(G2)

For DES G1 = (Q1, Σ1, δ1, q0,1, Qm,1) and DES G2 = (Q2, Σ2, δ2, q0,2, Qm,2)

the synchronous product G = G1 ‖ G2 of the two DES is defined as :

G := (Q1 × Q2, Σ1 ∪ Σ2, δ, (q0,1, q0,2), Qm,1 × Qm,2),

where δ((q1, q2), σ) is only defined and equals

(q′1, q
′
2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1 or

(q1, q
′
2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

When we synchronize two DES, we get a new DES with the synchronized lan-

gauges as its language i.e.

L(G) = L(G1) ‖ L(G2), Lm(G) = Lm(G1) ‖ Lm(G2)
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Let G1 be a DES with event set Σ1 and Σ2 be another event set such that

Σ1 ∩ Σ2 = ∅. We define the selfloop operation on G1 as selfloop(G1,Σ2) =

(Q1, Σ1 ∪ Σ2, δ2, q0,1, Qm,1),

where δ2 : Q1 × (Σ1 ∪ Σ2) → Q1 is a partial function defined as:

δ2(q, σ) :=



























δ1(q, σ) σ ∈ Σ1, δ1(q, σ)!

q σ ∈ Σ2

undefined otherwise

In this thesis, when using the synchronous product to combine individual

DES Gi (i=1,2) we will typically assume that first the DES is extended to be

over the alphabet Σ by adding selfloops, and then combined using the product

operator. Therefore G1 ‖ G2 = selfloop(G1, Σ − Σ1) × selfloop(G2, Σ − Σ2).

2.2.3 Controllability and Supervision

The notion of supervisory control [Won11] is introduced by assuming that some

events can be disabled i.e. not allowed to occur by an external agent (also known

as a supervisor). The alphabet Σ is partitioned into two disjoint subsets Σc and

Σu, where Σc is the set of controllable events (which can be enabled or disabled)

and Σu is the set of uncontrollable events (which cannot be disabled). Once we

reach a state in the DES where an uncontrollable event can occur, the event

cannot be prevented.

Let the DES G = (Q, Σ, δ, q0, Qm) represent the possible system behaviour

(i.e. our plant) and let K ⊆ Σ∗ be a language describing the desired safe be-

haviour of our system. We say K is controllable with respect to G if

KΣu ∩ L(G) ⊆ K.

The above definition says that K is controllable with respect to L(G) if every

string in K∩ L(G) followed by an uncontrollable event σ that is possible in L(G),
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then σ must be accepted in K as well. We can also express this definition as

(∀s ∈ K ∩ L(G))EligL(G)(s) ∩ Σu ⊆ EligK(s)

Note that the languages ∅, L, and Σ∗ are all controllable with respect to G.

To represent our desired system behaviour, we define a DES S =

(X, ΣS, ξ, x0, Xm) called a supervisor. Supervisors monitor the events generated

by the plant, and disable events according to some control law. We say supervisor

S is controllable for plant G if

L(S) Σu∩ L(G) ⊆ L(S)

2.2.4 Language Inclusion

Language inclusion is used to check if the language of a system is included by the

language of a given DES. Let DES G represent our system and DES R define

the requirements. Language inclusion is defined as follows:

Definition 2.1. Let G and R be two DES using the same alphabet Σ. We say

G satisfies R if L(G) ⊆ L(R).

In other words G satisfies R, if and only if every string in L(G) is also in

L(R). Language inclusion is also used to check for language equality. For two

languages L1 and L2, L1 = L2 can be expressed as L1 ⊆ L2 and L2 ⊆ L1.

2.3 Timed Discrete Event Systems

The timed DES (TDES) theory introduced by Brandin et al [BW94, Bra92], adds

onto untimed DES theory. A special event tick is added to the event set which

models the passage of time representing the tick of a global clock. The event

set Σ, for a TDES, is expressed as the disjoint union of non-tick events called

activity events (Σact) and the tick event, i.e. Σ = Σact ∪̇ {tick}. Additional
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control method is introduced by means of forcible events (Σfor). A forcible event

is defined as an event which is guaranteed to occur before the next tick thus

preempting the tick. It models the situation in which something is forced to

occur within a certain time frame. Hence it is possible not only to prevent some

events (prohibitable events Σhib ⊆ Σact) from occurring by disabling them, but

also to force some events to occur before the next clock tick.

We formally define a TDES as the tuple G = (Q, Σ, δ, q0, Qm) where, Q is

the state set, Σ = Σact∪̇{tick} is the event set, δ : Q ×Σ → Q is the (partial)

transition function, q0 ∈ Q is the initial state and Qm ⊆ Q is the set of marked

states. For convenience, we extend δ to function δ : Q ×Σ∗ → Q in the same

way as we did in the untimed DES definition.

2.3.1 Controllability and Supervision

Same as untimed DES, control for timed DES is described by disabling control-

lable events. The event set Σ is divided into controllable and uncontrollable

events. We define the set of controllable events as Σc := Σhib ∪ {tick} where

Σhib ⊆ Σact is the set of activity events that can disabled by supervisors. Clearly,

the difference between controllable events and prohibitable events is that the

prohibitable events do not contain the tick event, as a tick event is disabled in

the system to model the forcing of an event. We define the set of uncontrollable

events for G as Σu := Σ − Σc

Controllability for timed DES is defined as follows:

Definition 2.2. A language K ⊆ L(G) is said to be controllable with respect to

G if,

(∀s ∈ K)EligK(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {tick}) if EligK(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligK(s) ∩ Σfor 6= ∅
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The above definition says tick can only be disabled when there exists an

eligible forcible event to preempt the tick.

Definition 2.3. Supervisor S = (X, Σ, ξ, x0, Xm) is controllable with respect to

G = (Q, Σ, δ, q0, Qm) if for all s ∈ L(S) ∩ L(G),

EligL(S)(s) ⊇











EligL(G)(s) ∩ (Σu ∪ {tick}) if EligL(S)∩L(G)(s) ∩ Σfor = ∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Note that the closed and marked behaviour of a TDES is defined in the

same way as for an untimed DES. The definitions for nonblocking and language

inclusion remains the same as for untimed DES.
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CHAPTER 3

Sampled-Data Supervisory Control

In this chapter we present an overview of sampled-data supervisory control.

Sampled-data supervisory control deals with the implementation of TDES su-

pervisors as SD controllers. In order to translate a TDES supervisor to an SD

controller such that it exhibits correct behaviour, we have to verify some ad-

ditional properties about our system. The basic definitions and notations are

presented briefly but not in detail. The details can be found in [Wan09, LW10].

We briefly introduce the sampled-data setting for TDES and the properties re-

quired to implement TDES systems as SD controllers. Here we are only concerned

about effeciently verifying these properties. For details about how to convert a

TDES supervisor to an SD controller, see [Wan09].

3.1 SD Controller

When using an SD controller to control a system, an input is associated with

each event, and an output is associated with each controllable event. An event

is considered to have occured when its corresponding input becomes true during

a given clock period. A controllable event is considered to be enabled when its

output is set to true by the controller, otherwise it is considered to be disabled.

Finally, we associate the clock edge that drives the SD controller with the TDES

tick event.

An SD controller samples the value of its inputs on each clock edge, and then
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uses the information to decide what its next state is going to be. This means the

SD controller only knows about its inputs at each clock edge, and all it knows

is whether a given input is true or false. This only tells the controller that the

event has occurred during the clock period that just ended. This means that an

SD controller has no information about event ordering; i.e which event occurred

first or last, as well as how many times the event occurred if it occurred more

than once. The only ordering information that remains is which clock period did

the event occur in. Also, an SD controller only changes state on a clock edge,

meaning its outputs can only change at a clock edge, and then stay constant

for the rest of the clock period. This means enablement and forcing decisions

are determined right after the clock edge and cannot change until the next clock

edge.

In Figure 3.1, we see on the third rising edge of the clock, the SD controller

Figure 3.1: Sampling Events

knows that both events e1 and e2 have occurred, but not which one occured first.

This means that the SD controller cannot tell the difference between the strings

Event1-Event2-tick, Event2-Event1-tick, or Event1-Event2-Event1-tick.

In TDES, the general assumptions are that events occur in a particular order,

we know immediately when events occur and that there is no communication

delay; i.e. enablement and forcing occurs immediately. These assumptions are not
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true in general for SD controllers, thus giving rise to concurrency and timing issues

when implementing TDES as SD controllers. These issues bring up concerns

with respect to controllability, nonblocking, plant model correctness, and the SD

controller’s ability to determine which state the TDES system currently is in.

In [Wan09, LW10], the authors identify a number of existing TDES properties

as well as introduce some new properties, in particular SD controllability, to

address these issues and to make it easier to translate a TDES supervisor to an

SD controller.

3.2 System Assumptions

To implement sampled-data controllers, the following assumptions are made

about the system. It is up to the designer of the system to ensure that the

system implements the following assumptions.

1) The set of prohibitable events is equal to the set of forcible events

(Σhib = Σfor).

2) Enabling a forcible event means the event is forced to occur once in that clock

period.

3) All SD controllers are implemented centrally with a common clock, such that

all inputs are sampled at the same time and all outputs updated at the same

time.

4) An event is assumed to have occured as soon as its input to the controller goes

true. If the input goes true very close to a clock edge, it is assumed to occur

immediately in the next sampling period.

5) When an event is forced to occur in a sampling period, it should occur only

during that clock period and not the next one.

6) The length of an input signal should always be appropriate, so as to not be

missed by SD controllers (too short) or not to be intrepreted to occur in multiple
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clock periods (too long).

Applicable systems should not find Assumptions 1, 2, 5, and 6 very restric-

tive. Assumptions 3 and 4 partially address timing delay issues and are likely to

be removed in future work.

3.3 SD Preliminaries

An SD controller can only observe ǫ and strings ending with a tick. These strings

are called sampled strings and are defined as:

Lsamp = Σ∗.tick ∪ {ǫ}

where Σ is the system’s event set.

Concurrent strings are all the strings possible in the system since the last

sampled string and which end with a tick event. These strings determine the next

state of an SD controller as the SD controller only changes state at each clock

edge (the occurence of tick event). They are defined as

Lconc = Σ∗
act.tick ⊂ Lsamp

However, if two concurrent strings contain the same events but in different order

and/or number, an SD controller would not be able to distinguish between the

strings. To express this uncertainty we define the occurrence operator. The

occurrence operator takes a string and returns the occurrence image of the string

(the set of events that make up the string). For s ∈ Σ∗, the occurrence operator,

Occu: Σ∗ → Pwr(Σ) is defined as:

Occu(s) = {σ ∈ Σ | s ∈ Σ∗σΣ∗}

For a TDES S = (X, Σ, ξ, x0, Xm), sampled states are those states that are reached

by sampled strings; thus they are partially observable. They are defined as:
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Xsamp = {x ∈ X | (∃s ∈ L(S) ∩ Lsamp)x = ξ(x0, s)}

Essentially, a controller starts at the initial state x0 and changes from one sampled

state to the next as concurrent strings occur.

3.4 SD Properties

Described below are the conditions for TDES which are essential to implement

sampled-data supervisory control.

3.4.1 Plant Completeness

The concept of plant completeness was introduced by Balemi in [Bal94]. Balemi

states that controllable events often are part of the supervisors implementation

and can occur when we want them to occur. However, to make the system easier

to model and understand, a plant can be modeled more restrictively.

Definition 3.1. A plant G is complete for for its supervisor S if

(∀s ∈ L(G) ∩ L(S))(∀σ ∈ Σc)sσ ∈ L(S) =⇒ sσ ∈ L(G)

The above definition is given in terms of controllable events which includes

the tick event. As timed DES is just concerned with the occurence of activity

events, plant completeness has been adapted in [Wan09], to only apply to activity

events and is defined below.

Definition 3.2. Let TDES G be a plant and TDES S be a supervisor. G is

complete for S if

(∀s ∈ L(G) ∩ L(S))(∀σ ∈ Σhib)sσ ∈ L(S) =⇒ sσ ∈ L(G)
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The above definition states that for every state in the plant G, if a pro-

hibitable event is enabled by the supervisor S, it must be possible in the plant.

If compared to the definition of a supervisor S being controllable with respect to

plant G, we can see that it’s the same if we switch the supervisor S with plant

G and replace controllable events with uncontrollable events.

S1S0

tick

paint_blue

tick!finish

Figure 3.2: Plant

S1S0

tick

paint_blue
paint_red

tick
!finish

Figure 3.3: Supervisor

Figure 3.2 and 3.3 show a plant and a supervisor in which the plant is not

complete for the supervisor. At state S0 in the plant, event paint red is not

eligible, while its eligible at state S0 in the supervisor.

3.4.2 Activity Loop Free

To ensure that a TDES does not allow a tick event to be indefinitely preempted

by activity events, it is required that the TDES be activity loop free (ALF)

[BW94]. In a TDES, activity events (Σact ⊆ Σ) are non-tick events which show a

sequence of events occuring over a period of time. The occurence of a tick event

represents the notion of time passing, allowing us to specify time bounds for the

occurence of activity events. Therefore, it is desired that the sequence of activity

events terminate after a finite number of steps, ensuring that our TDES does not

model the unrealistic situation where an activity event loop could be executed

continuously by indefinitely preempting a tick event.
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Definition 3.3. A TDES G = (Q, Σ, δ, q0, Qm) is activity loop free if

(∀q ∈ Qreach)(∀s ∈ Σ+
act)δ(q, s) 6= q

where Qreach ⊆ Q is the set of all reachable states of G.

The plant in Figure 3.2 fails the ALF condition since at state S1, the loop

paint blue − finish can occur an infinite number of times with no tick event.

The ALF condition is only applied to the system’s closed-loop behaviour.

The supervisors are not required to be ALF as they may contain self-loops that

are not possible in the plant. However, selfloops essentially provide enablement

information but do not have any useful next-state information for SD controllers,

so they can be ignored for translation purposes. The definition given below makes

supervisors much easier to translate. It states that if selfloops of any activity

events are removed from the TDES, the rest of the TDES must be ALF.

Definition 3.4. Let G = (Q, Σ, δ, q0, Qm) be a TDES, and let G′ be G with all

activity event selfloops removed. G is non-selfloop activity loop free if G′ is ALF.

The proposition below states that if individual DES are all ALF, then the

synchronous product of these DES is also ALF. This means that we can simply

check the individual DES to check whether the system is ALF instead of checking

the whole system at once.

Proposition 3.1. [Wan09] For TDES G1 and G2, if G1 and G2 are each ALF

then their synchronous product G = G1 ‖ G2 is ALF.

3.4.3 Proper Time Behaviour

To make sure that the closed-loop system would not reach a state at which no

more tick events are ever possible, it is required for the plant to have proper time

21



behaviour, as defined by Kai Wong et. al. [WW96].

Definition 3.5. TDES G has a proper time behaviour if

(∀q ∈ Qreach)(∃σ ∈ Σu ∪ tick)δ(q, σ)!

The above definition says that at every reachable state of the system, either

an uncontrollable event or a tick event must be possible.This condition ensures

that when a controllable event is disabled by a supervisor, there is either a tick

event or an uncontrollable event still possible. This condition is applied only to

the plant TDES.

S3S1 S4S0 S5S2

ev1 tickev2tick

finish

ev2

Figure 3.4: Example TDES for SD Properties

The TDES in Figure 3.4 fails proper time behaviour since at state S5 only

a prohibitable event finish is eligible which could be disabled by the supervisor

effectively ”stopping the clock”.

3.4.4 S-singular Prohibitable Behaviour

Another restriction on our system is S-singular prohibitable behaviour, where

TDES S is the supervisor. This property reflects the fact that SD controllers

only allow prohibitable events to occur once during a sampling period. This re-

quirement make sure the plant models this correctly, instead of showing behavior

that will never physically occur. We define this property as:
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Definition 3.6. For TDES G = (Q, Σ, δ, q0, Qm) and TDES S = (X, Σ, ξ, x0, Xm),

G has S-singular prohibitable behaviour if

(∀s ∈ L(S) ∩ L(G) ∩ Lsamp)(∀s ∈ Σ∗
act)ss

′ ∈ L(S) ∩ L(G) =⇒

(∀σ ∈ Occu(s′) ∩ Σhib)σ /∈ EligL(G)(ss
′)

The TDES G in Figure 3.4 fails S-singular prohibitable behaviour as the

prohibitable event ev2 occurs twice in a sampling period.

3.4.5 SD Controllable Languages

The conditions that a TDES closed-loop system has finite statespace, be ALF

and nonblocking, that the plant have proper time behaviour and be complete

for the supervisor, and that the supervisor be controllable for the plant does

not guarantee that the system behaviour under the control of the SD controllers

would be nonblocking and controllable. Therefore another property called SD

controllability is introduced to address these concerns and is defined as:

Definition 3.7. A supervisor S = (X, Σ, ξ, x0, Xm) is said to be SD controllable

with respect to G = (Q, Σ, δ, q0, Qm) if, ∀s ∈ L(S)∩L(G), the following statements

are satisfied:

i) EligL(G)(s) ∩ Σu ⊆ EligL(S)(s)

ii) If tick ∈ EligL(G)(s) then

tick ∈ EligL(S)(s) ⇔ EligL(S)∩L(G)(s) ∩ Σhib = ∅

iii) If s ∈ Lsamp then

1. (∀s ∈ Σ∗
act)[ss

′ ∈ L(S) ∩ L(G)] =⇒

[EligL(S)∩L(G)(ss
′) ∪ Occu(s′)] ∩ Σhib = EligL(S)∩L(G)(s) ∩ Σhib

2. (∀s′, s′′ ∈ Lconc)[ss
′, ss′′ ∈ L(S) ∩ L(G) ∧ Occu(s′) = Occu(s′′)] ⇒

ss′ ≡L(S)∩L(G) ss′′ ∧ ss′ ≡Lm(S)∩Lm(G) ss′′

iv) Lm(S) ∩ Lm(G) ⊆ Lsamp

23



S3

S0

S5

S6
S2

S7

S1 S4

tick
paint_red

tick

tick

tickpaint_red

tick

paint_blue

tick

paint_blue

tick

tick

!pattern1

!pattern2

Figure 3.5: SD Controllability Example 1 - Plant
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Figure 3.6: SD Controllability Example 1 - Supervisor

Point (i) in this definition is the standard untimed controllability condition.

Combined with point ii (⇐) part it implies standard timed DES controllability.

Point ii (⇒) part states that we must disable a tick event if we enable a pro-

hibitable event that is possible in the plant. Point (iii.1) states that if an event is

possible in a clock period, it must be possible immediately after the tick and stay

possible in the clock period until it occurs. Point (iii.2) says all concurrent strings

with the same occurence image in a clock period must have the same future with

respect to the closed and marked behaviour of the system. Point (iv) says all

marked strings must be sampled strings. Combined with point (iii.2) this ensures

that if our TDES system is nonblocking then our plant and SD controller will be
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nonblocking as well.

S6

S2S1

S5

S4
S0

S3

paint_red
tick

tick

paint_red
paint_blue

tick

paint_blue

tick

tick
tick

!pattern

Figure 3.7: SD Controllability Example 2 - Plant

S6

S2S1

S5

S4
S0

S3

paint_blue
paint_red

paint_red
tick

tick

tick

paint_blue

tick

!pattern

Figure 3.8: SD Controllability Example 2 - Supervisor

3.4.5.1 SD Controllability Examples

Figures 3.5 and 3.6 show a plant and supervisor such that the plant and su-

pervisor satisfy SD controllability point(i), point(ii) and point(iii.1), but fails to

satisfy point (iii.2) and (iv). In the system, state S1, which is a sampled state,

leads to states S6 and S7 by concurrent strings with the same occurence image

{paint blue, paint red, tick}.

According to point(iii.2), the states S6 and S7 should represent the same
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nerode equivalent cells of the system with respect to its closed and marked be-

haviour. But state S6 leads to state S0 by pattern1 event, while state S7 leads

to state S0 by pattern2 event. Clearly the states do not have the same future

with respect to the closed behaviour of the system.

Also, event pattern1 and pattern2 lead to State S0 which is a marked state.

This violates point(iv) of SD controllability definition as point(iv) requires all

marked strings to be sampled strings; thus only the tick event should lead us to

a marked state.

In Figure 3.7 and 3.8, we show a modified version of the the system from

Figure 3.5 and 3.6. In this example, the system fails to satisfy point (ii), but

satisfies the point(iii.2) of SD controllability definition. At state S1, the event

tick and the prohibitable events paint blue, and paint red are eligible. According

to point(ii), tick should be disabled by the supervisor if there is a prohibitable

event eligible to preempt tick.
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CHAPTER 4

Compositional Verification for SD Properties

In this thesis, we present new definitions for the sampled data supervisory con-

trol properties. These new representations express the required properties for

sampled-data supervisory control in terms of other properties such as controlla-

bility, nonblocking or language inclusion. This makes it easy to see exactly what

checks need to be performed for compositional verification, and on which com-

ponents. These properties already have existing compositional methods defined

for them, so the methods can be reused.

We have organised the compositional verification of the properties required

for sampled-data supervisory control into two separate chapters for better read-

ability. In this chapter, we discuss the properties plant completeness, activity

loop free, S-singular prohibitable behaviour and proper time behaviour. The

next chapter focuses on SD controllability. We will show that these new repre-

sentations are equivalent to the definitions of the properties that we presented in

Section 3.4.

4.1 Plant Completeness

We now restate the plant completeness property (see page 19) in terms of standard

untimed controllability. We can state the untimed controllability definition from

Section 2.2.3 in the alternate form below:

Definition 4.1. Let TDES G = (Q, Σ, δ, q0, Qm) be a plant and TDES S =
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(X, Σ, ξ, x0, Xm) be a supervisor. S is said to be controllable with respect to G if

(∀s ∈ L(S))(∀σ ∈ Σu)sσ ∈ L(G) =⇒ sσ ∈ L(S)

Comparing the plant completeness definition to the above definition, we can

easily see that we can adapt the controllability check by relabelling plants as su-

pervisors, supervisors as plants, prohibitable events as uncontrollable events, and

uncontrollable events as controllable events. After relabelling, we can just apply

the compositional verification algorithm for standard controllability [BMM04] on

the relabelled system.

4.2 Activity Loop Free

In this section, we develop a method to verify if a TDES G is Activity-loop free

(ALF) (see definition on page 20). To do this we will use the concept of paths.

Let G = (Q, Σ, δ, q0, Qm). A path in G is an alternating sequence of states

and events

π = q0
σ1−→ .......

σn−→ qn

where δ(qi, σi+1) = qi+1 for all 0 ≤ i ≤ n. State q0 is called its origin and state

qn its end. L(π) = σ1.....σn is the label of path π. The language accepted by the

TDES G is

L(G) = { L(π) | π is a path in G with q0 as origin } .

Definition 4.2. For TDES G = (Q, Σ, δ, q0, Qm) and Σact ⊆ Σ, a path π in G

is called a Σact-path if L(π) ∈ Σ∗
act. A Σact-loop is a Σact-path of length (i.e.

|L(π)|) at least one with the same origin and end. A Σact-loop is reachable in G

if its origin is reachable in G. If G does not contain any reachable Σact-loops, G

is called Σact-loop free.
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For two TDES defined over the same alphabet set, it is sufficient to show

that only one of the TDES is Σact-loop free, to show that the whole system is

Σact-loop free [MM06].

The Lemma below shows that we can use the existing modular loop-detecting

algorithm [MM06] to determine if G is ALF.

Lemma 4.1. G is activity loop free iff G is Σact-loop free.

Proof. This is obvious from the ALF definition and the Σact-loop free definition.

4.3 S-singular Prohibitable Behaviour

The S-singular prohibitable behaviour property (see page 22) requires that a

prohibitable event be allowed to occur in the plant only once during a sampling

period. We can state the definition in the alternative form below:

Definition 4.3. Let TDES G = (Y, Σ, δ, y0, Ym) and TDES S = (X, Σ, ξ, x0, Xm).

G has S-singular prohibitable behaviour if

(∀s ∈ L(G) ∩ L(S) ∩ Lsamp)(∀t ∈ Σ∗
act)(∀σ ∈ Σhib)

(st ∈ L(S) ∩ L(G)) ∧ (stσ ∈ L(G)) ⇒ σ /∈ Occu(t)

S1

S0

S2

tick

tick

σ

eσ

4.1: TDES T σ
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Definition 4.4. Let G = (X, Σ, δ, x0, Xm), σ ∈ Σhib, eσ /∈ Σ, Eσ = {σ, eσ, tick}.

Let PEσ
: Σ∗ → E∗

σ be a natural projection. Construct TDES Gσ such that L(Gσ)

= L(G) ∪{seσ | sσ ∈ L(G)}.

We express this property as a language inclusion problem by introducing, for

each σ ∈ Σhib, a new DES T σ which exhibits the behaviour that the event σ can

only occur once between tick events. We then construct T σ =

(XT , ΣT , δT , x0, XTm
) as shown in Figure 4.1.

We now present two lemmas related to T σ that will be useful later, in this section.

Lemma 4.2. L(T σ) = ({ǫ, σ}tick)∗eσ

Proof. It is sufficient to show:

I) L(T σ) ⊇ ({ǫ, σ}tick)∗eσ and II) L(T σ) ⊆ ({ǫ, σ}tick)∗eσ

Part I) Show: L(T σ) ⊇ ({ǫ, σ}tick)∗eσ

Let s ∈ ({ǫ, σ}tick)∗eσ

We will show that s ∈ L(T σ)

Having s ∈ ({ǫ, σ}tick)∗eσ implies that there exists s′ ∈ E∗
σ such that ss′ ∈

({ǫ, σ}tick)∗eσ.

Let s′′ = ss′

Since s′′ ∈ ({ǫ, σ}tick)∗eσ, there exists t ∈ ({ǫ, σ}tick)∗ such that s′′ = teσ.

We note that {ǫ, σ}tick = {tick, σtick}.

From Figure 4.1, we see that δT (S0, tick) = S0

Also δT (S0, σ) = S1 and δT (S1, tick) = S0.

This implies δT (S0, t′) = S0 for all t′ ∈ {ǫ, σ}tick. (1)

Now we will show that for all t ∈ ({ǫ, σ}tick)∗ it holds that δT (S0, t) = S0.

Since t ∈ ({ǫ, σ}tick)∗ there exists n ∈ N0 such that t ∈ ({ǫ, σ}tick)n

We will show by induction on n that δT (S0, t) = S0

Inductive Base: n = 0
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t ∈ ({ǫ, σ}tick)0 ⇒ t = ǫ

Clearly δT (S0, ǫ) = S0.

Inductive Step: n → n+1, t ∈ ({ǫ, σ}tick)n+1

By inductive assumption, δT (S0, t) = S0 for t ∈ ({ǫ, σ}tick)n.

t′ ∈ ({ǫ, σ}tick)n+1 ⇒ t′ ∈ ({ǫ, σ}tick)n{ǫ, σ}tick

By (1) we have δT (S0, t′′) = S0 for all t′′ ∈ {ǫ, σ}tick and by inductive assumption

we have δT (S0, t) = S0 for t ∈ ({ǫ, σ}tick)n.

This implies that δT (S0, t′) = S0 for t′ ∈ ({ǫ, σ}tick)n+1 .

Inductive step complete.

We thus conclude that for t ∈ ({ǫ, σ}tick)∗ it holds that δT (S0, t) = S0

We have s′′ = teσ

Clearly from the Figure 4.1, δT (S0, eσ) = S2.

=⇒ s′′ ∈ L(T σ)

Since L(T σ) is a prefix closed language and s ≤ s′′, we have s ∈ L(T σ) as required.

Part I complete.

Part II) Show: L(T σ) ⊆ ({ǫ, σ}tick)∗eσ

Let s ∈ L(T σ).

We now show that s ∈ ({ǫ, σ}tick)∗eσ.

Since s ∈ L(T σ) this implies δT (S0, s) = X for some X ∈ {S0, S1, S2}.

We will first examine case X = S0 and X = S1.

Clearly from Figure 4.1, X = S0 or X = S1 implies s does not contain eσ.

First we will show by induction on |s| that:

1) If δT (S0, s) = S0 then s ∈ ({ǫ, σ}tick)∗ and

2) if δT (S0, s) = S1 then s ∈ ({ǫ, σ}tick)∗σ

Inductive Base: n = 0, s = ǫ

Clearly ǫ ∈ ({ǫ, σ}tick)∗ and δT (S0, ǫ) = S0.

Inductive Step: n → n+1, s = tα with α ∈ {σ, tick}
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By inductive assumption:

1) If δT (S0, t) = S0 then t ∈ ({ǫ, σ}tick)∗ and

2) If δT (S0, t) = S1 then t ∈ ({ǫ, σ}tick)∗σ

Since s ∈ L(T σ) there exists state y such that δT (S0, t) = y and δT (y,α)=X.

Clearly from the Figure 4.1, y is either S0 or S1.

Case (X = S0)

Clearly from Figure 4.1, only a tick transition allows δT (y, α) = S0, thus α = tick.

case i) if (y = S0)

=⇒ δT (S0, t) = S0

By inductive assumption, t ∈ ({ǫ, σ}tick)∗

=⇒ s = tα ∈ ({ǫ, σ}tick)∗tick

=⇒ s ∈ ({ǫ, σ}tick)∗

case ii) if (y = S1)

=⇒ δT (S0, t) = S1

By inductive assumption, t ∈ ({ǫ, σ}tick)∗σ

=⇒ s = tα ∈ ({ǫ, σ}tick)∗σtick

=⇒ s ∈ ({ǫ, σ}tick)∗

By case i) and ii) we can conclude that

if δT (S0, s) = S0 then s ∈ ({ǫ, σ}tick)∗ (2)

Case (X = S1)

Clearly from Figure 4.1, only a σ transition allows δT (y, α) = S1 only from the

state S0.

⇒ α = σ and y = S0

=⇒ δT (S0, t) = S0

By inductive assumption, t ∈ ({ǫ, σ}tick)∗ since δT (S0, σ) = S1

=⇒ s = tα ∈ ({ǫ, σ}tick)∗σ

=⇒ s ∈ ({ǫ, σ}tick)∗σ as required.
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Inductive step complete.

We have now shown that:

(a) for X = S0, s ∈ ({ǫ, σ}tick)∗ ⊆ ({ǫ, σ}tick)∗eσ (3)

(b) for X = S1, s ∈ ({ǫ, σ}tick)∗σ ⊆ ({ǫ, σ}tick)∗eσ

Now we examine the case δT (S0, s) = S2

Clearly from Figure 4.1, δT (S0, eσ) = S2 and this is the only way to get to S2.

=⇒ (∃t) s = teσ and δT (S0, t) = S0.

By (3), this implies t ∈ ({ǫ, σ}tick)∗

=⇒ s = teσ ∈ ({ǫ, σ}tick)∗eσ ⊆ ({ǫ, σ}tick)∗eσ

Now we have shown for all X ∈ {S0, S1, S2 } , s ∈ ({ǫ, σ}tick)∗eσ

Part II complete.

Thus we can conclude that L(T σ) = ({ǫ, σ}tick)∗eσ

Lemma 4.3. Let σ ∈ Σ and Eσ = {σ, eσ, tick}. Then

s ∈ ({ǫ, σ}tick)∗ iff s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 = { 0,1,2,3,.......}

Proof. To show our claim, we have to show:

I) s ∈ ({ǫ, σ}tick)∗ =⇒ s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 and

II) s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 =⇒ s ∈ ({ǫ, σ}tick)∗

Part I) Show: s ∈ ({ǫ, σ}tick)∗ =⇒ s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0.

Let s ∈ ({ǫ, σ}tick)∗.

This implies there exists s′ ∈ E∗
σ such that ss′ ∈ ({ǫ, σ}tick)∗.

This implies there exists some n ∈ N0 such that ss′ ∈ ({ǫ, σ}tick)n.

Appending {ǫ, σ} to both sides we get

ss′{ǫ, σ} ∈ ({ǫ, σ}tick)n{ǫ, σ} from some n ∈ N0.

Since s ≤ ss′{ǫ, σ} ∈ ({ǫ, σ}tick)n{ǫ, σ} from some n ∈ N0.

Clearly by taking n′ ≤ n, we can use ({ǫ, σ}tick)n′

{ǫ, σ} to contain any prefix of

ss′{ǫ, σ}.
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This implies s ∈ ({ǫ, σ}tick)n{ǫ, σ} from some n ∈ N0 as required.

Part I complete.

Part II) Show: s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 =⇒ s ∈ ({ǫ, σ}tick)∗.

Let s ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0.

Appending tick to both sides, we get:

s tick ∈ ({ǫ, σ}tick)n{ǫ, σ}tick for some n ∈ N0.

=⇒ s tick ∈ ({ǫ, σ}tick)n+1 for some n ∈ N0.

=⇒ s tick ∈ ({ǫ, σ}tick)∗.

=⇒ s ∈ ({ǫ, σ}tick)∗, as required.

Part II complete.

By part I and II we conclude that s ∈ ({ǫ, σ}tick)∗ iff s ∈ ({ǫ, σ}tick)n{ǫ, σ} for

some n ∈ N0 = {0,1,2,3,.....}.

We will prove that our language inclusion property is equivalent to the

S-singular prohibitable behaviour property. The proof that follows is based on

an initial proof sketch by the author’s thesis supervisors, Dr. R. Malik and Dr.

R. Leduc.

Theorem 4.1. Let TDES G = (X, Σ, δ, x0, Xm) and S = (Y, Σ, ξ, y0, Ym). G has

S-singular prohibitable behaviour iff

(∀σ ∈ Σhib) PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)

Proof. To prove this claim, we will need to show

I) G has S-singular prohibitable behaviour

⇒ (∀σ ∈ Σhib)PEσ
(L(Gσ ‖ S)) ⊆ L(T σ).

II) (∀σ ∈ Σhib)PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)

⇒ G has S-singular prohibitable behaviour.

Part I) Show G has S-singular prohibitable behaviour =⇒

(∀σ ∈ Σhib)PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)
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Assume G has S-singular prohibitable behaviour.

Let σ ∈ Σhib, s ∈ L(Gσ ‖ S) (1)

We show by induction on n = |s| that PEσ
(s) ∈ L(T σ).

Sufficient to show that PEσ
(s) ∈ ({ǫ, σ}tick)∗eσ by Lemma 4.2

Inductive Base: n = 0, s = ǫ

Then PEσ
(s) = PEσ

(ǫ) = ǫ ∈ ({ǫ, σ}tick)∗eσ

Inductive Step: n → n + 1, s = tα

By inductive assumption, PEσ
(t) ∈ ({ǫ, σ}tick)∗eσ

We know by (1) that tα = s ∈ L(Gσ) = L(G) ∪ {seσ | sσ ∈ L(G)}.

That means if s contains eσ, then eσ is only the last event of s.

That is eσ /∈ Occu(t), and t ∈ Σ∗.

Therefore PEσ
(t) ∈ ({ǫ, σ}tick)∗ and t ∈ L(G) (by construction of Gσ). (2)

Also, t ≤ s ∈ L(Gσ ‖ S) and t ∈ Σ∗ ⇒ t ∈ L(G) ∩ L(S). (3)

Consider four cases:

a) α /∈ {σ, eσ, tick}

Then PEσ
(s) = PEσ

(tα) = PEσ
(t) ∈ ({ǫ, σ}tick)∗eσ by inductive assumption.

b) α = tick

Then since PEσ
(t) ∈ ({ǫ, σ}tick)∗ by (2) we have:

PEσ
(t) ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0, by Lemma 4.3.

Thus, PEσ
(s) = PEσ

(t tick) = PEσ
(t)tick implies that:

PEσ
(s) ∈ ({ǫ, σ}tick)n{ǫ, σ}tick

⇒ PEσ
(s) ∈ ({ǫ, σ}tick)n+1

⇒ PEσ
(s) ∈ ({ǫ, σ}tick)∗

Appending eσ to this string gives: PEσ
(s)eσ ∈ ({ǫ, σ}tick)∗eσ

We thus have: PEσ
(s) ∈ ({ǫ, σ}tick)∗eσ

c) α = σ

Let t =uv such that u ∈ Lsamp and v ∈ Σ∗
act. We thus have:
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PEσ
(u) ≤ PEσ

(uv) = PEσ
(t) ∈ ({ǫ, σ}tick)∗

=⇒ PEσ
(u) ∈ ({ǫ, σ}tick)∗

=⇒ PEσ
(u) ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 by Lemma 4.3

Since u ∈ Lsamp, PEσ
(u) cannot end with σ. We thus have:

PEσ
(u) ∈ ({ǫ, σ}tick)n ⊆ ({ǫ, σ}tick)∗.

From (3), it follows that uv = t ∈ L(G) ∩ L(S) and that:

u ≤ t =⇒ u ∈ L(G) ∩ L(S) ∩ Lsamp.

Also s = tσ ∈ L(Gσ) = L(G) ∪ {weσ | wσ ∈ L(G)} with σ 6= eσ

⇒ uvσ = s ∈ L(G).

Then, given that σ ∈ Σhib, it follows from the definition of S-singular prohibitable

behaviour that σ /∈ Occu(v).

=⇒ PEσ
(v) = ǫ since v ∈ Σ∗

act.

Thus, PEσ
(t) = PEσ

(uv) = PEσ
(u) ∈ ({ǫ, σ}tick)∗.

Appending σtickeσ to this string gives:

PEσ
(s)tickeσ = PEσ

(tσ)tickeσ = PEσ
(t)σtickeσ

⇒ PEσ
(s)tickeσ ∈ ({ǫ, σ}tick)∗σtickeσ

⇒ PEσ
(s)tickeσ ∈ ({ǫ, σ}tick)+eσ

⇒ PEσ
(s)tickeσ ∈ ({ǫ, σ}tick)∗eσ

We thus have: PEσ
(s) ∈ ({ǫ, σ}tick)∗eσ

d) α = eσ

Let t = uv such that u ∈ Lsamp and v ∈ Σ∗
act.

Since PEσ
(u) ≤ PEσ

(uv) = PEσ
(t) ∈ ({ǫ, σ}tick)∗, we have:

PEσ
(u) ∈ ({ǫ, σ}tick)∗

=⇒ PEσ
(u) ∈ ({ǫ, σ}tick)n{ǫ, σ} for some n ∈ N0 by Lemma 4.3.

Since u ∈ Lsamp, PEσ
(u) cannot end with σ. This implies:

PEσ
(u) ∈ ({ǫ, σ}tick)n ⊆ ({ǫ, σ}tick)∗.

From (3), it follows that uv = t ∈ L(G) ∩ L(S) and that:
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u ≤ t ⇒ u ∈ L(G) ∩ L(S) ∩ Lsamp.

Also, s = teσ ∈ L(Gσ) = L(G) ∪ {weσ | wσ ∈ L(G)} implies uvσ = tσ ∈ L(G).

Then, given that σ ∈ Σhib, it follows from the definition of S-singular prohibitable

behaviour that: σ /∈ Occu(v).

Since v ∈ Σ∗
act, this implies PEσ

(v) = ǫ.

Thus, PEσ
(t) = PEσ

(uv) = PEσ
(u) ∈ ({ǫ, σ}tick)∗.

=⇒ PEσ
(s) = PEσ

(teσ) = PEσ
(uveσ) = PEσ

(u)eσ ∈ ({ǫ, σ}tick)∗eσ

We thus have: PEσ
(s) ∈ ({ǫ, σ}tick)∗eσ

Part I complete.

Part II) Show (∀σ ∈ Σhib)PEσ
(L(Gσ) ‖ S)) ⊆ L(T σ) =⇒ G has S-singular pro-

hibitable behaviour.

Assume (∀σ ∈ Σhib)PEσ
(L(Gσ ‖ S)) ⊆ L(T σ).

Let s ∈ L(G) ∩ L(S) ∩ Lsamp, t ∈ Σ∗
act, σ ∈ Σhib such that st ∈ L(G) ∩ L(S) and

stσ ∈ L(G).

Must show σ /∈ Occu(t)

Since stσ ∈ L(G), by construction steσ ∈ L(Gσ)

Let PΣ : (Σ ∪ {eσ})
∗ → Σ∗ be a natural projection.

Since st ∈ L(S), we have PΣ(steσ) = st ∈ L(S)

=⇒ steσ ∈ L(Gσ ‖ S)

=⇒ PEσ
(st)eσ = PEσ

(steσ) ∈ PEσ
(L(Gσ ‖ S)) ⊆ L(T σ) = ({ǫ, σ}tick)∗eσ, by

Lemma 4.2.

Then there exists v ∈ E∗
σ such that PEσ

(st)eσv ∈ ({ǫ, σ}tick)∗eσ.

This implies v = ǫ because eσ cannot occur in {ǫ, σ}tick.

=⇒ PEσ
(st) ∈ ({ǫ, σ}tick)∗.

Since PEσ
(s) ≤ PEσ

(s)PEσ
(t) = PEσ

(st) it follows that PEσ
(s) ∈ ({ǫ, σ}tick)∗

Then by Lemma 4.3, there exists n ∈ N0 such that PEσ
(s) ∈ ({ǫ, σ}tick)n{ǫ, σ}.

=⇒ PEσ
(s) ∈ ({ǫ, σ}tick)n since s ∈ Lsamp and PEσ

(s) cannot end with σ.
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Combining with PEσ
(st) ∈ ({ǫ, σ}tick)∗ we see that there also exists m ∈ N0 such

that PEσ
(t) ∈ ({ǫ, σ}tick)m.

However, since t ∈ Σ∗
act, t does not contain any occurrences of tick, so it follows

that m=0, i.e. PEσ
(t) = ǫ.

Given σ ∈ Eσ, this implies σ /∈ Occu(t).

Part II complete.

By part I and II we conclude that G has S-singular prohibitable behaviour iff

(∀σ ∈ Σhib) PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)

4.4 Proper Time Behaviour

A TDES G has proper time behaviour (see page 22) if at every reachable state,

either a tick or an uncontrollable event is possible.

Definition 4.5. Let G = (Q, Σ, δ, q0, Qm) be a TDES and Υ ⊆ Σ. G is called

Υ-enabling if for every trace s ∈ L(G) there exists σ ∈ Υ such that sσ ∈ L(G).

We will now show that if we take Υ = Σu ∪ {tick}, then verifying that G

has has proper time behaviour is equivalent to verifying that G is Υ-enabling.

Lemma 4.4. G has proper time behaviour iff G is (Σu ∪ {tick})-enabling.

Proof. To prove our claim we will show:

1) G has proper time behaviour implies G is (Σu ∪ {tick})-enabling and

2) G is (Σu ∪ {tick})-enabling implies G has proper time behaviour.

Part 1) Show G has proper time behaviour implies G is (Σu ∪ {tick})-enabling.

Assume G has proper time behaviour.

By Definition 3.5 (see page 22), this implies for every reachable state q of G

(∃σ ∈ Σu ∪ {tick}) such that δ(q, σ)!

We can rewrite this definition as
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(∀s ∈ L(G))(∃σ ∈ Σu ∪ {tick}) such that sσ ∈ L(G)

It immediately follows that G is (Σu ∪ {tick})-enabling, as required.

Part 2) Show G is (Σu ∪ {tick})-enabling implies G has proper time behaviour.

Assume G is (Σu ∪ {tick})-enabling.

From Definition 4.5 we have:

(∀s ∈ L(G))(∃σ ∈ Σu ∪ {tick}) such that sσ ∈ L(G)

From Definition 3.5 it follows that G has proper time behaviour.

Let G = (Q, Σ, δ, q0, Qm), Υ ⊆ Σ and ? /∈ Σ. We will now show that we can

express the Υ-enabling property as a nonblocking problem by first marking all

states of the plant DES G. To do this we construct Gω such that L(Gω) = Lm(Gω)

= L(G). Finally, we need to introduce a new TDES TΥ as shown in Figure 4.2.

S2S1
Σ

Υ

?

Figure 4.2: TDES TΥ

We now prove that our nonblocking property is equivalent to the Υ-enabling

property.

Theorem 4.2. G is Υ-enabling iff Gω ‖ TΥ is nonblocking

Proof. We must show that:

I) G is Υ-enabling ⇒ Gω ‖ TΥ is nonblocking and

II) Gω ‖ TΥ is nonblocking ⇒ G is Υ-enabling.

Part I) Show G is Υ-enabling ⇒ Gω ‖ TΥ is nonblocking

Assume G is Υ-enabling. (1)
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Let Ω = Σ ∪ {?}, and PΣ : Ω∗ → Σ∗ be a natural projection.

Let s ∈ L(Gω ‖ TΥ) = P−1
Σ L(Gω) ∩ L(TΥ) (2)

Sufficient to show that: (∃s′ ∈ Ω∗)ss′ ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ)

Consider two cases:

Case i) s ∈ Lm(TΥ)

From (2), we have s ∈ P−1
Σ L(Gω).

⇒ s ∈ P−1
Σ Lm(Gω) as L(Gω) = Lm(Gω)

⇒ s ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ)

We then take s′ = ǫ, and we have

ss′ ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ), as required.

Case ii) s /∈ Lm(TΥ)

From (2), we have s ∈ P−1
Σ L(G) as L(Gω) = L(G)

From (1) we have (∃σ ∈ Υ) such that PΣ(s)σ ∈ L(G) = Lm(Gω)

As σ ∈ Υ ⊆ Σ, PΣ(σ) = σ. We thus have:

PΣ(s)σ = PΣ(s)PΣ(σ) = PΣ(sσ)

⇒ PΣ(sσ) ∈ Lm(Gω)

⇒ sσ ∈ P−1
Σ Lm(Gω)

By construction of TΥ , s /∈ Lm(TΥ) implies s takes TΥ to state S2

As σ ∈ Υ, this implies sσ ∈ Lm(TΥ). We thus have:

sσ ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ)

Taking s′ = σ we have:

ss′ ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ), as required.

Part II) Show: Gω ‖ TΥ is nonblocking ⇒ G is Υ-enabling

Assume Gω ‖ TΥ is nonblocking. (3)

We will show that this implies that G is Υ-enabling.

Let s ∈ L(G) = L(Gω)

Sufficient to show that (∃σ ∈ Υ) such that sσ ∈ L(G)
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By construction of TΥ, s ∈ L(TΥ) (as s ∈ Σ∗) and s? ∈ L(TΥ).

⇒ s? ∈ P−1
Σ L(Gω) ∩ L(TΥ)

From (3), we have: (∃s′ ∈ Ω∗)s?s′ ∈ P−1
Σ Lm(Gω) ∩ Lm(TΥ)

By construction of TΥ, s? takes TΥ to state S2

⇒ (∃σ ∈ Υ)(∃s′′ ∈ Ω∗)s′ = σs′′

⇒ s?σs′′ ∈ P−1
Σ Lm(Gω) = P−1

Σ L(Gω)

⇒ sPΣ(?σs′′) ∈ L(Gω) as s ∈ Σ∗

⇒ sPΣ(?)PΣ(σ)PΣ(s′′) ∈ L(Gω)

As L(Gω) is prefix closed, we have:

sPΣ(?)PΣ(σ) ∈ L(Gω)

As σ ∈ Υ ⊆ Σ and ? /∈ Σ we have sσ ∈ L(Gω)

sσ ∈ L(G) as required.

From part I and II we can conclude that G is Υ-enabling iff Gω ‖ TΥ is nonblock-

ing.
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CHAPTER 5

Compositional Verification of SD Controllability

In this chapter, we present SD controllability point(ii), point(iii) and point(iv).

As SD controllability point(i) implies standard controllability, we will not discuss

it in detail.

We redefine the SD controllability definitions in terms of other properties

that already have well defined compositional methods and show that these new

representations are equivalent to the original definitions in [Wan09] that we pre-

sented in section 3.4.

5.1 SD Controllability Point (ii)

The SD controllability point (ii) (see page 23) applies to strings accepted by the

closed-loop system in which tick is eligible in the plant afterwards. It states that if

both tick and a prohibitable event are possible, then tick must be disabled by the

supervisor. Also, we cannot disable a tick unless there is an eligible prohibitable

event to preempt the tick. For simplicity, we restate the SD controllability point

(ii) definition below in a self contained form.

Definition 5.1. Let TDES G = (Q, Σ, δ, q0, Qm) and TDES S = (X, Σ, ξ, x0, Xm).

G and S satisfy SD controllability point (ii), if for all s ∈ L(G) ∩ L(S) it follows

that

if tick ∈ EligL(G)(s) then tick ∈ EligL(S)(s) ⇐⇒ EligL(S)∩L(G)(s) ∩ Σhib = ∅
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We can express SD controllability point(ii) in two parts.

ii.a) (⇒): (∀s ∈ L(S) ∩ L(G)) s tick ∈ L(S) ∩ L(G) =⇒

EligL(S)∩L(G)(s) ∩ Σhib = ∅

ii.b) (⇐): (∀s ∈ L(S) ∩ L(G) s tick ∈ L(G) =⇒

EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅

Now we present a lemma related to SD controllability point (ii.b) definition.

Lemma 5.1. (∀s ∈ L(S) ∩ L(G)) if s tick ∈ L(G) then

EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅ ⇐⇒

[(EligL(S)∩L(G)(s)∩Σhib = ∅) ⇒ tick ∈ EligL(S)(s)].

Proof. Let s ∈ L(S) ∩ L(G)

Assume s tick ∈ L(G) (1)

We have to show that

I)EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅ =⇒

[(EligL(S)∩L(G) ∩ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)] and

II) [(EligL(S)∩L(G) ∩ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)] =⇒

EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅

Part I) Show EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅ =⇒
[

(EligL(S)∩L(G) ∩ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)
]

Assume EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅. (2)

Assume EligL(S)∩L(G) ∩ Σhib = ∅

=⇒ tick ∈ EligL(S)∩L(G)(s) by (2)

=⇒ tick ∈ EligL(S)(s) as required.

Part I complete.

Part II) Show [(EligL(S)∩L(G) ∩ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)] =⇒

EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅

Assume [(EligL(S)∩L(G) ∪ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)].

This implies ¬(EligL(S)∩L(G) ∩ Σhib = ∅) ∨ tick ∈ EligL(S)(s)
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We have two cases.

Case i) ¬(EligL(S)∩L(G) ∩ Σhib = ∅)

=⇒ EligL(S)∩L(G) ∩ Σhib 6= ∅

=⇒ EligL(S)∩L(G) ∩ ({tick} ∪ Σhib) 6= ∅

Case ii) tick ∈ EligL(S)(s)

=⇒ tick ∈ L(S) ∩ L(G) by (1)

=⇒ EligL(S)∩L(G) ∩ ({tick} ∪ Σhib) 6= ∅

Part II complete.

By part I and II we conclude that

EligL(S)∩L(G)(s) ∩ ({tick} ∪ Σhib) 6= ∅ ⇐⇒

[(EligL(S)∩L(G)(s) ∩ Σhib = ∅) ⇒ tick ∈ EligL(S)(s)].

5.1.1 SD Controllability Point (ii.a)

We will now express this property as a language inclusion problem. Our first

step is to express as event occurrences whether a given event in Σ is enabled at

a given state in our TDES.

Definition 5.2. Let G = (X, Σ, δ, x0, Xm) be a TDES, α ∈ Σ, eα /∈ Σ. Let

PΣ : (ΣE
α )∗ → Σ∗ be a natural projection. Construct TDES Eα(G) with alphabet

ΣE
α = Σ ∪̇ {eα} by adding eα selfloops to all states in G with α enabled. Let

Eα(G) = (X, Σ ∪ {eα}, δE, x0, Xm) and for x ∈ X

δE(x, σ) =



























δ(x, σ) if σ ∈ Σ and δ(x, σ) is defined

x if σ = eα and δ(x, α) is defined

undefined otherwise

We first need to prove a result about Eα(G) that would be useful in the

proofs that follow.
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Lemma 5.2. Let L′ = {s ∈ (ΣE
α )∗ | PΣ(s) ∈ L(G) and

(∀t) if teα ≤ s then PΣ(t)α ∈ L(G) }

Then L(Eα(G)) = L′.

Proof. It is sufficient to show: 1) L(Eα(G)) ⊇ L′ and 2) L(Eα(G)) ⊆ L′

Part 1) Show L′ ⊆ L(Eα(G))

Let s ∈ (ΣE
α )∗ and let PΣ(s) ∈ L(G). (1)

Assume (∀t) if teα ≤ s then PΣ(t)α ∈ L(G) (2)

Sufficient to show that s ∈ L(Eα(G))

Since PΣ(s) ∈ L(G) there exists x such that δ(x0, PΣ(s)) = x.

We will show by induction on |s| that δE(x0, s) = x which implies s ∈ L(Eα(G)).

Inductive Base: s = ǫ

Clearly, δ(x0, PΣ(ǫ)) = δ(x0, ǫ) = x0 = δE(x0, ǫ).

Inductive Step: s = t′σ

As s ∈ (ΣE
α )∗, we have t′ ∈ (ΣE

α )∗ and σ ∈ ΣE
α .

Since PΣ(s) ∈ L(G) by (1), hence δ(x0, PΣ(s))! and δ(x0, PΣ(t′))!

Then let δ(x0, PΣ(t′)) = x′

By inductive assumption, t′ ∈ L(Eα(G)), δE(x0, t
′)!, δ(x0, PΣ(t′))!, and δE(x0, t

′)

= δ(x0, PΣ(t′)) = x′.

As σ ∈ ΣE
α = Σ ∪ {eα}, we have two cases.

Case i) σ ∈ Σ

We thus have:

PΣ(t′σ) = PΣ(t′)σ ∈ L(G) by (1).

This implies there exists x in X such that δ(x0, PΣ(t′)) = x′ and δ(x′, σ) = x.

Since δE(x, σ) = δ(x, σ) for such a case, by the definition of Eα(G), we have:

δE(x′, σ) = x

By inductive assumption δE(x0, t
′) = x′, and thus: δE(x0, t

′σ) = x

Case ii) σ = eα
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We thus have teα ≤ s and by (2), we have PΣ(t′)α ∈ L(G).

=⇒ δ(x′, α)!

=⇒ δE(x′, eα) = x′ by the definition of Eα(G).

We thus take x = x′, and then, by inductive assumption δE(x0, t
′) = x′, which

gives us:

δE(x0, t
′eα) = x

From case i) and ii) we have s ∈ L(Eα(G)).

Part 1 complete.

Part 2) Show L(Eα(G)) ⊆ L′

Let s ∈ L(Eα(G))

We will show by induction on |s| that

(a) δ(x0, PΣ(s)) = δE(x0, s) i.e. PΣ(s) ∈ L(G).

(b) (∀t) if teα ≤ s then PΣ(t)α ∈ L(G)

Inductive Base: s = ǫ

(a) Clearly, δ(x0, PΣ(ǫ)) = δE(x0, ǫ) = x0.

(b) As s = ǫ cannot have teα as its prefix, so we are done.

Inductive Step: s = t′σ with σ ∈ ΣE
α

Since s ∈ L(Eα(G)), also t′ ∈ L(Eα(G)) so δE(x0, t
′) = x for some x ∈ X.

By inductive assumption, we have:

(a) δ(x0, PΣ(t′)) = δE(x0, t
′) = x

(b) (∀t′′) if t′′eα ≤ t′ then PΣ(t′′)α ∈ L(G)

As σ ∈ ΣE
α = Σ ∪ {eα} we have two cases:

Case i) σ ∈ Σ

By inductive assumption (a), δ(x0, PΣ(t′)) = δE(x0, t
′) = x.

=⇒ δE(x, σ) = δ(x, σ), by the definition of Eα(G).

It thus follows that δ(x0, PΣ(t′)σ) = δE(x0, t
′σ).

=⇒ δ(x0, PΣ(s)) = δE(x0, s).
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We have thus shown condition (a).

We note that (b) follows immediately from the inductive assumption and fact

σ 6= eα.

Case ii) σ = eα

Note that δE(x, eα) is defined only if δ(x, α) is defined, by the definitions of Eα(G).

As t′σ = t′eα ∈ L(Eα(G)), it follows that δ(x, α)!, δ(x0, PΣ(t′)) = δE(x0, t
′) = x,

and δE(x0, eα) = x.

This implies that δ(x0, PΣ(s)) = δ(x0, PΣ(t′eα)) = δ(x0, PΣ(t)) = x = δE(x0, t
′) =

δE(x0, t
′eα) = δE(x0, s).

We have thus shown condition (a).

To show (b), let teα ≤ s

If t is a proper prefix of t′ it follows from inductive assumption (b) that for all

teα ≤ s, it holds that PΣ(t)α ∈ L(G).

Otherwise t = t′ and since δ(x0, PΣ(t′)α) is defined, it follows that PΣ(t)α ∈ L(G).

Part 2 complete.

By part 1 and 2 we have L(Eα(G)) = L′

Typically we construct our TDES modularly. We thus have G = G1 ‖ ...... ‖

Gn = (X, Σ, δ, x0, Xm), with TDES Gi = (Xi, Σi, δi, x0,i, Xm,i) for i = 1,...,n. For

each Gi, we construct an Eα(Gi) as per Definition 5.2 with each Eα(Gi) sharing

the same eα event. For simplicity, we assume α ∈ Σi, for all i = 1,...,n. We can

simply selfloop α at each state in Gi, without changing L(G). We would then

want to construct an Eα(G) modularly as Eα(G) = Eα(G1) ‖ ..... ‖ Eα(Gn). The

Lemma below shows us that our modular Eα(G) gives us the same language as

first constructing G, and then constructing Eα(G) from G using Definition 5.2

directly.

Lemma 5.3. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm), with TDES Gi =

(Xi, Σi, δi, x0,i, Xm,i) and α ∈ Σi, i=1,....,n. Then
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L(Eα(G)) = L(Eα(G1) ‖ ..... ‖ Eα(Gn))

Proof. Let PΣi
: (ΣE

α )∗ → Σ∗
i and Pi : (ΣE

α )∗ → (Σi ∪ {eα})
∗ be natural projec-

tions.

We note that as Σi ⊆ Σ, we have PΣi
◦ PΣ = PΣi

(1)

We also note that as Σi ⊆ Σi ∪ {eα}, we have PΣi
◦ Pi = PΣi

(2)

Sufficient to show:

1) L(Eα(G)) ⊆ L(Eα(G1) ‖ ..... ‖ Eα(Gn)) and

2) L(Eα(G)) ⊇ L(Eα(G1) ‖ ..... ‖ Eα(Gn))

Part 1) Show L(Eα(G)) ⊆ L(Eα(G1) ‖ ..... ‖ Eα(Gn))

Let s ∈ L(Eα(G))

Sufficient to show: (∀i ∈ {1, ...., n}) Pi(s) ∈ L(Eα(Gi)

Let i ∈ {1, ...., n}

By Lemma 5.2, it is sufficient to show that PΣi
(Pi(s)) ∈ L(Gi) and (∀t) if

teα ≤ Pi(s) then PΣi
(t)α ∈ L(Gi)

As s ∈ L(Eα(G)), we have PΣ(s) ∈ L(G) by Lemma 5.2.

=⇒ PΣi
(PΣ(s)) ∈ L(Gi)

=⇒ PΣi
(s) ∈ L(Gi) by (1)

=⇒ PΣi
(Pi(s)) ∈ L(Gi) by (2)

We will now show (∀t) if teα ≤ Pi(s) then PΣi
(t)α ∈ L(Gi)

Let teα ≤ Pi(s)

=⇒ (∃t′ ∈ P−1
i (t)) t′eα ≤ s (3)

=⇒ PΣ(t′)α ∈ L(G) by Lemma 5.2

=⇒ PΣi
(PΣ(t′)α) ∈ L(Gi)

=⇒ PΣi
(PΣ(t′))α ∈ L(Gi) as α ∈ Σi

=⇒ PΣi
(t′)α ∈ L(Gi) by (1)

=⇒ PΣi
(Pi(t

′))α ∈ L(Gi) by (2)

=⇒ PΣi
(t)α ∈ L(Gi), as Pi(t

′) = t by (3).
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Part 1 complete.

Part 2) Show L(Eα(G)) ⊇ L(Eα(G1) ‖ ..... ‖ Eα(Gn))

Let s ∈ L(Eα(G1) ‖ ..... ‖ Eα(Gn))

By Lemma 5.2 it is sufficient to show that PΣ(s) ∈ L(G) and (∀t) if teα ≤ s then

PΣ(t)α ∈ L(G)

To show PΣ(s) ∈ L(G) it is sufficient to show:

(∀i ∈ {1, ...., n})PΣi
(PΣ(s)) ∈ L(Gi)

Let i ∈ {1, ...n}

Sufficient to show PΣi
(s) ∈ L(Gi), by (1)

From (4), we have Pi(s) ∈ L(Eα(Gi))

By Lemma 5.2, we have PΣi
(Pi(s)) ∈ L(Gi)

=⇒ PΣi
(s) ∈ L(Gi) by (2)

We thus have PΣ(s) ∈ L(G)

We will now show: (∀t) if teα ≤ s then PΣ(t)α ∈ L(G)

Let teα ≤ s (5)

To show PΣ(t)α ∈ L(G), it is sufficient to show:

(∀i ∈ {1, ...., n})PΣi
(PΣ(t)α) ∈ L(Gi)

Let i ∈ {1, ...., n}

We note that PΣi
(PΣ(t)α) = PΣi

(PΣ(t))α = PΣi
(t)α as α ∈ Σi, and by (1).

It is sufficient to show PΣi
(t)α ∈ L(Gi)

By (5), we have teα ≤ s

=⇒ Pi(teα) = Pi(t)eα ≤ Pi(s)

From (4), we have Pi(s) ∈ L(Eα(Gi))

By Lemma 5.2, we thus have PΣi
(Pi(t))α ∈ L(Gi)

=⇒ PΣi
(t)α ∈ L(Gi) by (2)

We thus conclude that s ∈ L(Eα(G))

Part 2 complete.
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By Part 1 and 2 we conclude

L(Eα(G)) = L(Eα(G1) ‖ ..... ‖ L(Eα(Gn))

X1X0

etick

etick
Σ

Σ\Σhib

Figure 5.1: TDES TE
Σ

Finally, we need to construct TDES TE
Σ as shown in Figure 5.1. TDES TE

Σ

captures the idea that once tick is possible, it can’t be followed by a prohibitable

event. We note that the alphabet of TE
Σ is ΣE

tick = Σ ∪ {etick}.

We now need to prove a result about TE
Σ that we will need later in this

section.

Lemma 5.4. Let L′ = {s ∈ (ΣE
tick)

∗ |

(∀t) (∀α) if tetickα ≤ s then α /∈ Σhib}

Then L(TE
Σ ) = L′

Proof. Let δT be the transition function for TE
Σ .

It is sufficient to show: 1) L(TE
Σ ) ⊇ L′ and 2) L(TE

Σ ) ⊆ L′

Part 1) Show L′ ⊆ L(TE
Σ )

Let s ∈ L′.

Assume (∀t) (∀α) tetickα ≤ s ⇒ α /∈ Σhib (1)

We show by induction on n = |s| that the following holds:

a) If s = uetick for some u then δT (X0,s)=X1

b) If s 6= uetick for all u then δT (X0,s)=X0

Inductive Base: n=0, s = ǫ

=⇒ s 6= uetick for all u

So it is enough to show that δT (X0,s)=X0
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Clearly δT (X0,ǫ)=X0.

Inductive Step: n → n+1 , s = t′σ with t′ ∈ (ΣE
tick)

∗, | t′ | = n, and σ ∈ ΣE
tick

By inductive assumption t′ satisfies (a) and (b).

This implies t′ ∈ L(TE
Σ ) (1)

Consider the following cases:

Case i) σ = etick

Then s = uetick for u = t′, so it is enough to show δT (X0,s)=X1

Since t′ ∈ L(TE
Σ ) by (1), it follows by the construction of TE

Σ that δT (X0,s) = X1

as either δT (X0, t′) = X0 or δT (X0, t′) = X1, but in both cases the next state is

X1.

Case ii) σ ∈ Σ

=⇒ s 6= uetick for all u.

It is thus enough to show δT (X0,s) = X0

Since t′ ∈ L(TE
Σ ) by (1), there are two cases.

Case ii.a) t′ = t′′etick

By inductive assumption (a), δT (X0,t′) = X1.

Since σ ∈ Σ, this means t′′etickσ ≤ s ∈ L′.

This implies σ /∈ Σhib by definition of L′.

Then by construction of TE
Σ , δT (X1,σ) = X0 for σ ∈ Σ\Σhib.

Thus δT (X0,s) = X0

Case ii.b) t′ 6= t′′etick

Then by inductive assumption (b), δT (X0,t′)=X0.

Then by the construction of TE
Σ , δT (X0,σ) = X0 for σ ∈ Σ.

=⇒ δT (X0,s) = X0

Now we have shown for all s ∈ L(TE
Σ ) that δT (X0,s) = X0 or δT (X0,s)=X1

=⇒ s ∈ L(TE
Σ )

Part 1 complete.
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Part 2) Show L(TE
Σ ) ⊆ L′

Let s ∈ L(TE
Σ ).

Show tetickα ≤ s implies α /∈ Σhib

Assume tetickα ≤ s.

Clearly by the construction on TE
Σ , δT (X0, tetick) = X1 as tetick ≤ s ∈ L(TE

Σ ).

As δT (X1, σ) is undefined for σ ∈ Σhib, we have:

tetickα ≤ s ∈ L(TE
Σ ) =⇒ α /∈ Σhib

Part 2 complete.

From part 1 and 2 we conclude that L(TE
Σ ) = L′

Now we present a proposition which we will need for our main theorem later

in this section. The proof is based on an initial proof sketch by the author’s thesis

supervisors, Dr. R. Malik and Dr. R. Leduc.

Proposition 5.1. Let TDES G = (Q, Σ, δ, q0, Qm) and TDES S

= (X, Σ, ξ, x0, Xm). G and S satisfy SD controllability point (ii.a) iff

L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

Proof. Show

I) G and S satisfy SD controllability point (ii.a) =⇒

L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

II) L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ ) =⇒

[(∀s ∈ L(S) ∩ L(G))s tick ∈ L(G) ∩ L(S) ⇒ EligL(G)∩L(S)(s) ∩ Σhib = ∅]

Part I) Show G and S satisfy SD controllability point (ii.a) ⇒

L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

Let G, S be TDES that satisfy SD controllability point (ii.a)

Let s ∈ L(Etick(G)) ∩ L(Etick(S))

=⇒ s ∈ (ΣE
tick)

∗ by Lemma 5.2

Let t ∈ (ΣE
tick)

∗, α ∈ ΣE
tick such that tetickα ≤ s
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Sufficient to show α /∈ Σhib by Lemma 5.4

Since tetick ≤ tetickα ≤ s ∈ L(Etick(G)), we have PΣ(t)tick ∈ L(G) by Lemma 5.2

Similarly, PΣ(t)tick ∈ L(S)

=⇒ PΣ(t)tick ∈ L(G) ∩ L(S)

Since G and S satisfy SD controllability point (ii.a), we have

EligL(G)∩L(S)(PΣ(t)) ∩ Σhib = ∅ (1)

Also tetickα ≤ s ∈ L(Etick(G))

=⇒ PΣ(tα) = PΣ(tetickα) ∈ L(G) by Lemma 5.2

Similarly, PΣ(tα) ∈ L(S)

If α = etick then α /∈ Σhib and we are done. We can thus assume PΣ(α) = α

without any loss of generality.

=⇒ PΣ(t)α = PΣ(tα) ∈ L(G) ∩ L(S)

which means that α ∈ EligL(G)∩L(S)(PΣ(t))

Then from (1), we have α /∈ Σhib

Part I complete.

Part II) Show L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ ) =⇒

[(∀s ∈ L(S) ∩ L(G))s tick ∈ L(G) ∩ L(S) ⇒ EligL(G)∩L(S)(s) ∩ Σhib = ∅]

Assume L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

Let s ∈ L(S) ∩ L(G) and assume s tick ∈ L(G) ∩ L(S)

Let α ∈ EligL(G)∩L(S)(s).

⇒ sα ∈ L(G) ∩ L(S)

Sufficient to show that α /∈ Σhib

First we note that setickα ∈ L(Etick(G)) by Lemma 5.2 because PΣ(setickα) =

sα ∈ L(G) and PΣ(s)tick = s tick ∈ L(G)

Likewise, setickα ∈ L(Etick(S))

Therefore setickα ∈ L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

Then α /∈ Σhib by Lemma 5.4
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Part II complete.

By part I and II we conclude that G and S satisfy SD controllability point (ii.a)

iff L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

5.1.2 SD Controllability Point (ii.b)

We will now express this property as a nonblocking problem. Our first step is

to express as event occurrences whether tick is disabled at a given state in our

TDES plant.

Definition 5.3. Let TDES G = (X, Σ, δ, x0, Xm), α ∈ Σ, dα,G /∈ Σ and ΣD
α,G =

Σ ∪ {dα,G}. Let PΣ : (ΣD
α,G)∗ → Σ∗ be a natural projection. Construct TDES

Dα(G) from G, by adding a dα,G selfloop at each state in G that α is disabled

at. Let Dα(G) = (X, Σ ∪ {dα,G}, δD, x0, Xm) and for x ∈ X

δD(x, σ) =



























δ(x, σ) if σ ∈ Σ and δ(x, σ) is defined

x if σ = dα,G and δ(x, α) is not defined

undefined otherwise

We first need to prove a result about Dα(G) that we will need later in other

proofs.

Lemma 5.5. Let L′ = {s ∈ (ΣD
α,G)∗ | PΣ(s) ∈ L(G) and

(∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G)}

Then L(Dα(G)) = L′

Proof. It is sufficient to show: 1) L(Dα(G)) ⊇ L′ and 2) L(Dα(G)) ⊆ L′

Part 1) Show L′ ⊆ L(Dα(G))

Let s ∈ (ΣD
α,G)∗ and PΣ(s) ∈ L(G). (1)

Assume (∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G) (2)
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Sufficient to show that s ∈ L(Dα(G))

Since PΣ(s) ∈ L(G), this implies δ(x0, PΣ(s))!.

We will show by induction on |s| that δD(x0, s) = δ(x0, PΣ(s)). This will imply s

∈ L(Dα(G)).

Inductive Base: s = ǫ

Clearly δ(x0, PΣ(ǫ)) = δ(x0, ǫ) = x0 = δD(x0, ǫ)

Inductive Step: s = t′σ

As s ∈ (ΣD
α,G)∗, we have t′ ∈ (ΣD

α,G)∗ and σ ∈ ΣD
α,G.

Since PΣ(s) ∈ L(G) by (1), we have δ(x0, PΣ(s))! and δ(x0, PΣ(t′))!.

Let δ(x0, PΣ(t′)) = x′.

By inductive assumption, t′ ∈ L(Dα(G)), δD(x0, t
′)!, and δD(x0, t

′) = δ(x0, PΣ(t′))

= x′

As σ ∈ ΣD
α,G = Σ ∪ {dα,G}, we have two cases:

case i) σ ∈ Σ

=⇒ PΣ(t′)σ = PΣ(t′σ) = PΣ(s) ∈ L(G) by (1)

This implies there exists x in X such that δ(x0, PΣ(t′)) = x′ and δ(x′, σ) = x.

Since δD(x, σ) = δ(x, σ) by the definition of Dα(G), we have:

δD(x′, σ) = x

By inductive assumption δD(x0, t
′) = x′, which implies:

δD(x0, t
′σ) = δD(x0, s) = x

case ii) σ = dα,G

This implies t′dα,G ≤ s and it follows by (2) that PΣ(t′)α /∈ L(G)

=⇒ δ(x′, α) is not defined.

=⇒ δD(x′, dα,G) = x′ by the definition of Dα(G)

By inductive assumption, δD(x0, t
′) = δ(x0, PΣ(t′)) = x′. We thus have:

δD(x′, dα,G) = δD(x0, t
′dα,G) = x′ = δ(x0, PΣ(t′dα,G)) = δ(x0, PΣ(t′))

From case i) and ii) we can conclude that s ∈ L(Dα(G))
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Part 1 complete.

Part 2) Show L(Dα(G)) ⊆ L′

Let s ∈ L(Dα(G))

We will show by induction on |s| that

(a) δ(x0, PΣ(s)) = δD(x0, s) i.e. PΣ(s) ∈ L(G)

(b) (∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G)

Inductive Base: s = ǫ

Then,

(a) clearly δ(x0, PΣ(ǫ)) = δD(x0, s) = x0

(b) As s = ǫ cannot have tdα,G as its prefix, therefore we are done.

Inductive Step: s = t′σ with σ ∈ ΣD
α,G

Since s ∈ L(Dα(G)), we have t′ ∈ L(Dα(G)) so δD(x0, t
′) = x for some x ∈ X.

By inductive assumption, we have:

(a) δ(x0, PΣ(t′)) = δD(x0, t
′) = x

(b) (∀t′′) if t′′dα,G ≤ t′ then PΣ(t′′)α /∈ L(G)

As σ ∈ ΣD
α,G = Σ ∪ {dα,G}, we have two cases:

case i) σ ∈ Σ

By inductive assumption (a), δ(x0, PΣ(t′)) = δD(x0, t
′) = x. It thus follows that:

δD(x, σ) = δ(x, σ), by the definition of Dα(G).

=⇒ δ(x0, PΣ(t′)σ) = δ(x0, PΣ(t′σ)) = δD(x0, t
′σ)

=⇒ δ(x0, PΣ(s)) = δD(x0, s)

We have now shown condition (a).

We note that (b) follows immediately from the inductive assumption and fact

σ 6= dα,G.

case ii) if σ = dα,G

Note δD(x, dα,G) is only defined if δ(x, α) is undefined, by the definition of Dα(G).

By inductive assumption, it follows that δ(x, α) is not defined.
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=⇒ δD(x, dα,G) = x

This implies δ(x0, PΣ(s)) = δ(x0, PΣ(t′dα,G)) = δ(x0, PΣ(t′)) = x = δD(x0, t
′) =

δD(x0, t
′dα,G) = δD(x0, s)

We have now shown condition (a).

We now have to show (b).

Let tdα,G ≤ s.

If t is a proper prefix of t′, it follows from inductive assumption (b) that for all

tdα,G ≤ s it holds that PΣ(t)α /∈ L(G).

Otherwise t = t′ and since δ(x0, PΣ(t′)α) is not defined it also follows that

PΣ(t)α /∈ L(G).

Part 2 complete.

By 1 and 2 we have L(Dα(G)) = L′

Typically, we construct our TDES modularly. We thus have G = G1 ‖ .... ‖

Gn = (X, Σ, δ, x0, Xm) , with Gi = (Xi, Σi, δi, x0,i, Xm,i) for i = 1,...,n. For each

Gi, we construct a Dα(Gi) using Definition 5.3, with each Gi having their own

dα,Gi
event. Note that if α /∈ Σi, then α is effectively selflooped at every state in

Gi, so dα,Gi
will never occur in Dα(Gi).

We then construct Dα(G) = Dα(G1) ‖ .... ‖ Dα(Gn) modularly as well.

We note that ΣD
α,G = Σ ∪̇ {dα,G1, ...., dα,Gn

}, Dα,G = {dα,G1, ...., dα,Gn
}. Let PΣ :

(ΣD
α,G)∗ → Σ∗ be a natural projection.

We now present a lemma that is analogous to Lemma 5.5, but for a modularly

constructed Dα(G).

Lemma 5.6. Let G = G1 ‖ .... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σi, δi, x0,i, Xm,i) for i = 1,...,n. Let Dα(G) = Dα(G1) ‖ .... ‖ Dα(Gn). Let

L′ = {s ∈ (ΣD
α,G)∗ | PΣ(s) ∈ L(G) and

(∀t) (∀d ∈ Dα,G) if td ≤ s then PΣ(t)α /∈ L(G)}

Then L(Dα(G)) = L′
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Proof. Let PΣi
: (ΣD

α,G)∗ → Σ∗
i , and Pi : (ΣD

α,G)∗ → (Σi ∪ {dα,Gi
})∗ be natural

projections for i = 1,....,n.

We note that as Σi ⊆ Σ, PΣi
◦ PΣ = PΣi

(1)

We also note that as Σi ⊆ Σi ∪ {dα,Gi
}, PΣi

◦ Pi = PΣi
(2)

It is sufficient to show: 1) L(Dα(G)) ⊆ L′ and 2) L(Dα(G)) ⊇ L′

Part 1) Show L(Dα(G)) ⊆ L′

Let s ∈ L(Dα(G))

Sufficient to show PΣ(s) ∈ L(G) and (∀t)(∀d ∈ Dα(G)) if td ≤ s then PΣ(t)α /∈

L(G)

We start by showing PΣ(s) ∈ L(G)

As G = G1 ‖ ..... ‖ Gn, it is sufficient to show:

(∀i ∈ {1, ...., n})PΣi
(PΣ(s)) ∈ L(Gi).

Let i ∈ {1, ..., n}

As PΣi
◦ PΣ = PΣi

by (1), it is sufficient to show PΣi
(s) ∈ L(Gi)

As s ∈ L(Dα(G)), we have Pi(s) ∈ L(Dα(Gi))

By Lemma 5.5, we have PΣi
(Pi(s)) ∈ L(Gi)

=⇒ PΣi
(s) ∈ L(Gi) by (2)

We thus have PΣ(s) ∈ L(G)

We now show (∀t)(∀d ∈ Dα,G) if td ≤ s then PΣ(t)α /∈ L(G)

Let d ∈ Dα,G and td ≤ s

As d ∈ Dα,G, we have (∃i ∈ {1, ...n}) d = dα,Gi
.

Let i be this index.

As s ∈ L(Dα(G)), we have Pi(s) ∈ L(Dα(Gi))

By Lemma 5.5 and (2), we have PΣi
(Pi(s)) = PΣi

(s) ∈ L(Gi)

As tdα,Gi
≤ s, we have Pi(tdα,Gi

) = Pi(t)dα,Gi
≤ Pi(s)

By Lemma 5.5, we can conclude PΣi
(Pi(t))α /∈ L(Gi)

=⇒ PΣi
(t)α /∈ L(Gi) by (2)
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As Pi(s) ∈ L(Dα(Gi)), and Pi(t)dα,Gi
≤ Pi(s), this implies α ∈ Σi, as otherwise

dα,Gi
would never occur in Dα(Gi).

=⇒ PΣi
(t)α = PΣi

(tα) /∈ L(Gi)

=⇒ tα /∈ L(G)

Part 1 complete.

Part 2) Show L′ ⊆ L(Dα(G))

Let s ∈ L′ (3)

Sufficient to show (∀i ∈ {1, ...n})Pi(s) ∈ L(Dα(Gi))

Let i ∈ {1, ...n}

By Lemma 5.5 and (2), it is sufficient to show that

PΣi
(Pi(s)) = PΣi

(s) ∈ L(Gi) and (∀t) if tdα,Gi
≤ Pi(s) then PΣi

(t)α /∈ L(Gi)

We first show PΣi
(s) ∈ L(Gi)

By (3) and definition of L′, we have PΣ(s) ∈ L(G)

=⇒ PΣi
(PΣ(s)) ∈ L(Gi)

=⇒ PΣi
(s) ∈ L(G) by (1)

We now show (∀t) if tdα,Gi
≤ Pi(s) then PΣi

(t)α /∈ L(Gi)

We note that we have two cases:

If α /∈ Σi, then this is automatically true.

We can thus assume α ∈ Σi without any loss of generality.

Let tdα,Gi
≤ Pi(s)

=⇒ (∃t′ ∈ P−1
i (t)) t′dα,Gi

≤ s (4)

=⇒ PΣ(t′)α /∈ L(G) by (3) and definition of L′

=⇒ PΣi
(PΣ(t′)α) /∈ L(Gi)

=⇒ PΣi
(t′α) /∈ L(Gi) by (1)

=⇒ PΣi
(t′)α /∈ L(Gi), as α ∈ Σi

=⇒ PΣi
(Pi(t

′))α /∈ L(Gi) by (2)

=⇒ PΣi
(t)α /∈ L(G) as Pi(t

′) = t by (4)
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Part 2 complete.

By 1 and 2 we have L(Dα(G)) = L′

We will now express the SD controllability point (ii.b) property as a Υ-

enabling problem (see page 38) with Υ = Dtick,G ∪ Σhib ∪ {tick}. We can then

use theorem 4.3 (see page 39) to express Υ-enabling property as a nonblocking

check.

Now we present a proposition which we will need for our main theorem later

in this section. TDES Dtick(G) is constructed using the modular Dα(G) definition

with α = tick. The proof is based on an initial proof sketch by the author’s thesis

supervisors, Dr. R. Malik and Dr. R. Leduc.

Proposition 5.2. Let G = G1 ‖ .... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σi, δi, x0,i, Xm,i), i= 1,...,n. Let S = (Y, Σ, ξ, y0, Ym). G and S satisfy SD

controllability part (ii.b) iff

Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling.

Proof. To prove this claim it is sufficient to show that

I) If G and S satisfy SD controllability part (ii.b) then

Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling and

II) If Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling, then

(∀s ∈ L(S) ∩ L(G)) s tick ∈ L(G) =⇒ EligL(G)∩L(S)(s) ∩ ({tick} ∪ Σhib) 6= ∅

Let PΣi
: (ΣD

α,G)∗ → Σ∗
i and Pi : (Σα,G)∗ → (Σi∪{dα,Gi

})∗ be natural projections,

i = 1,...n.

We note that as Σi ⊆ Σ, we have PΣi
◦ PΣ = PΣi

(1)

We also note that as Σi ⊆ Σi ∪ {dα,Gi
}, we have PΣi

◦ Pi = PΣi
(2)

Part I) Show if G and S satisfy SD controllability part (ii.b) then

Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling.

Let G, S be TDES that satisfy SD controllability point (ii.b).
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Let s ∈ L(Dtick(G) ‖ S)

=⇒ s ∈ L(Dtick(G)) as G and S are both over Σ (3)

=⇒ PΣ(s) ∈ L(G) by Lemma 5.6 (4)

We need to show that:

(∃α ∈ Dtick,G ∪ Σhib ∪ {tick})sα ∈ L(Dtick(G) ‖ S)

Consider two cases:

Case a) PΣ(s)tick ∈ L(G)

By SD controllability point (ii.b) and (4), we have

EligL(G)∩L(S)(PΣ(s)) ∩ ({tick} ∪ Σhib) 6= ∅

i.e there exists α ∈ Σhib ∪ {tick} such that PΣ(s)α ∈ L(G) ∩ L(S)

Note PΣ(sα) = PΣ(s)α ∈ L(G) as Σhib ∪ {tick} ⊆ Σ

=⇒ sα ∈ L(Dtick(G)) by Lemma 5.6 since s ∈ L(Dtick(G)) by (3), α /∈ Dtick,G

and PΣ(sα) ∈ L(G).

⇒ sα ∈ L(Dtick(G) ‖ S) with α ∈ Σhib ∪ {tick} ⊆ Dtick,G ∪ Σhib ∪ {tick}

Case b) PΣ(s)tick /∈ L(G)

We have PΣ(s) ∈ L(G) by (2)

⇒ tick /∈ EligL(G)(PΣ(s))

⇒ (∃i ∈ {1....n})tick /∈ EligL(Gi)(PΣi
(PΣ(s)))

i.e. PΣi
(PΣ(s))tick /∈ L(Gi)

=⇒ PΣi
(s)tick /∈ L(Gi) by (1)

We note that PΣ(s) ∈ L(G) implies by (1):

PΣi
(PΣ(s)) = PΣi

(s) ∈ L(Gi)

We next note that: s ∈ L(Dtick(G)) ⇒ Pi(s) ∈ L(Dtick(Gi))

Also, we have PΣi
(Pi(s)) = PΣi

(s) ∈ L(Gi), by (2).

As PΣi
(Pi(s))tick = PΣi

(s)tick /∈ L(Gi), we can conlcude by Definition 5.3:

Pi(s)dtick,Gi
∈ L(Dtick(Gi))

Also for j 6= i , Pj(sdtick,Gi
) = Pj(s) ∈ L(Dtick(Gj)) because s ∈ L(Dtick(G))
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Therefore sdtick,Gi
∈ L(Dtick(G))

Also PΣ(sdtick,Gi
) = s ∈ L(S) and thus sdtick,Gi

∈ L(Dtick(G) ‖ S) with dtick,Gi
∈

Dtick,G ⊆ Dtick,G ∪ Σhib ∪ {tick}.

Part I complete.

Part II) Show: If Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling, then

(∀s ∈ L(G) ∩ L(S)) s tick ∈ L(G) =⇒ EligL(G)∩L(S)(s) ∩ ({tick} ∪ Σhib) 6= ∅

Let Dtick(G) ‖ S be (Dtick,G ∪ Σhib ∪ {tick}) − enabling.

Let s ∈ L(G) ∩ L(S), s tick ∈ L(G)

Need to show:

(∃α ∈ Σhib ∪ {tick})sα ∈ L(G) ∩ L(S)

Since s ∈ L(G) ∩ L(S) and PΣ(s) = s ∈ L(G), we have by Lemma 5.6:

s ∈ L(Dtick(G))

=⇒ s ∈ L(Dtick(G) ‖ S)

Since Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling, we have

(∃α ∈ Dtick,G ∪ Σhib ∪ {tick})sα ∈ L(Dtick(G) ‖ S)

We note for any i ∈ {1....n} that:

s tick ∈ L(G) ⇒ PΣi
(s tick) = PΣi

(s)tick ∈ L(Gi)

=⇒ Pi(s)dtick,Gi
/∈ L(Dtick(Gi)) by Lemma 5.5

=⇒ Pi(sdtick,Gi
) /∈ L(Dtick(Gi))

=⇒ sdtick,Gi
/∈ L(Dtick(G))

=⇒ sdtick,Gi
/∈ L(Dtick(G) ‖ S)

Given sα ∈ L(Dtick(G) ‖ S) it follows that α 6= dtick,Gi
for i = 1,....,n.

We thus have α /∈ Dtick,G, and α ∈ Σhib ∪ {tick} with sα ∈ L(Dtick(G) ‖ S).

=⇒ sα ∈ L(S) as PΣ(sα) = sα

We also have sα ∈ L(Dtick,G), as sα ∈ L(Dtick(G) ‖ S) and ΣD
α,G ⊇ Σ.

=⇒ PΣ(sα) = sα ∈ L(G), by Lemma 5.6

We thus have α ∈ Σhib ∪ {tick} with sα ∈ L(G) ∩ L(S) as required.
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Part II complete.

By part I and II we conclude that G and S satisfy SD controllability point (ii.b)

iff Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling.

We will now prove that checking SD controllability point (ii) is equivalent to

checking the language inclusion and Υ-enabling property below.

Theorem 5.1. Let G = G1 ‖ .... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σi, δi, x0,i, Xm,i), i= 1,...,n. Let S = (Y, Σ, ξ, y0, Ym). G and S satisfy SD

Controllability point (ii) iff

L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ ) and Dtick(G) ‖ S is

(Dtick,G ∪ Σhib ∪ {tick}) − enabling.

Proof. It is sufficient to show:

I) G and S satisfy SD controllability point (ii) =⇒ L(Etick(G)) ∩ L(Etick(S)) ⊆

L(TE
Σ ) and Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling.

II) Dtick(G) ‖ S is (Dtick,G∪Σhib∪{tick})−enabling and L(Etick(G)) ∩ L(Etick(S))

⊆ L(TE
Σ ) =⇒ G and S satisfy SD controllability point (ii)

Part I) Let G and S satisfy SD controllability point (ii)

By proposition 5.1 we have L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

By proposition 5.2, we have Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling

Part I complete.

Part II) Let Dtick(G) ‖ S is (Dtick,G ∪Σhib ∪{tick})− enabling and L(Etick(G))∩

L(Etick(S)) ⊆ L(TE
Σ )

By proposition 5.1 we have L(Etick(G)) ∩ L(Etick(S)) ⊆ L(TE
Σ )

=⇒ [(∀s ∈ L(S) ∩ L(G))s tick ∈ L(G) ∩ L(S)EligL(G)∩L(S)(s) ∩ Σhib = ∅] which

implies (ii.a).

By proposition 5.2 we have Dtick(G) ‖ S is (Dtick,G ∪ Σhib ∪ {tick}) − enabling
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=⇒ [(∀s ∈ L(S)∩L(G)) s tick ∈ L(G) =⇒ EligL(G)∩L(S)(s)∩ ({tick}∪Σhib) 6= ∅]

which implies (ii.b).

=⇒ G and S satisfy SD controllability point (ii) by Lemma 5.1.

Part II complete.

5.2 SD Controllability Point (iii)

SD controllability point (iii) deals with sampled strings and is divided into two

parts, point (iii.1) and point (iii.2).

5.2.1 SD Controllability Point (iii.1)

The SD controllability point (iii.1) property (see page 23) is defined in terms of

the closed-loop system. For simplicity, we restate the property below in terms of

some TDES G, which would correspond to our closed-loop system.

Definition 5.4. Let G =(Q, Σ, δ, q0, Qm) be a TDES. G satisfies SD controlla-

bility point (iii.1) if

(∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗
act)st ∈ L(G) =⇒

(EligL(G)(st) ∪ Occu(t)) ∩ Σhib = EligL(G)(s) ∩ Σhib

This point states that if a prohibitable event is possible in a given clock

period, it must be possible immediately after the tick and stay possible until it

occurs. It also says that no new prohibitable events may become possible until

after the next clock tick. For the compositional verification, we can separate the

set equality condition into two parts, ⊆ and ⊇. They are defined as:

iii.1a) (∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗
act)st ∈ L(G) =⇒

EligL(G)(s) ∩ Σhib ⊆ (EligL(G)(st) ∪ Occu(t)) ∩ Σhib
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iii.1b) (∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗
act)st ∈ L(G) =⇒

(EligL(G)(st) ∪ Occu(t)) ∩ Σhib ⊆ EligL(G)(s) ∩ Σhib

Here part ’a’ expresses the condition that that an event eligible to occur after

a tick stays eligible until it occurs, and part ’b’ expresses that no new prohibitable

events become eligible until after the next tick.

5.2.1.1 SD Controllability Point (iii.1a)

We will now express SD controllability point (iii.1a) as a language inclusion prob-

lem. Our first step is to express as event occurrences whether a given α ∈ Σhib is

enabled or disabled at a given state in TDES G.

Definition 5.5. Let TDES G = (X, Σ, δ, x0, Xm), α ∈ Σ, eα /∈ Σ, dα,G /∈ Σ and

ΣED
α,G = Σ ∪ {eα, dα,G}. Let PΣ : (ΣED

α,G)∗ → Σ∗ be a natural projection. Con-

struct TDES EDα(G) from G by adding selfloops of eα to all states where α is

enabled, and selfloops of dα,G to all states where α is disabled in G. Let EDα(G)

= (X, Σ ∪ {eα, dα,G}, δED, x0, Xm) and for x ∈ X

δED(x, σ) =











































δ(x, σ) if σ ∈ Σ and δ(x, σ) is defined

x if σ = eα and δ(x, α) is defined

x if σ = dα,G and δ(x, α) is not defined

undefined otherwise

We first need to prove a result about EDα(G) that we will need later in this

section.

Lemma 5.7. Let L′ = {s ∈ (ΣED
α,G)∗|PΣ(s) ∈ L(G), and

[(∀t) if teα ≤ s then PΣ(t)α ∈ L(G)] and

[(∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G)] }

Then L(EDα(G)) = L′.
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Proof. It is sufficient to show: 1) L(EDα(G)) ⊇ L′ and 2) L(EDα(G)) ⊆ L′

Part 1) Show L′ ⊆ L(EDα(G))

Let s ∈ (ΣED
α,G)∗ and PΣ(s) ∈ L(G) (1)

Assume (∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G) (2)

Sufficient to show that s ∈ L(EDα(G))

Since PΣ(s) ∈ L(G) this implies δ(x0, PΣ(s))!

We will show by induction on |s| that δED(x0, s) = δ(x0, PΣ(s)). This will imply

s ∈ L(EDα(G)).

Inductive Base: s = ǫ

Clearly δ(x0, PΣ(ǫ)) = δ(x0, ǫ) = x0 = δED(x0, ǫ)

Inductive Step: s = t′σ

As s ∈ (ΣED
α,G)∗, we have t′ ∈ (ΣED

α,G)∗ and σ ∈ ΣED
α,G.

Since PΣ(s) ∈ L(G) by (1), we have δ(x0, PΣ(s))! and δ(x0, PΣ(t′))!

Let δ(x0, PΣ(t′)) = x′.

By inductive assumption, t′ ∈ L(Dα(G)), δED(x0, t
′)!, δ(x0, PΣ(t′))! and

δED(x0, t
′) = δ(x0, PΣ(t′)) = x′.

As σ ∈ ΣED
α,G = Σ ∪ {eα, dα,G} we have three cases

case i) σ ∈ Σ

=⇒ PΣ(t′)σ = PΣ(t′σ) = PΣ(s) ∈ L(G) by (1)

This implies there exists x in X such that δ(x0, PΣ(t′)) = x′ and δ(x′, σ) = x.

Since δED(x, σ) = δ(x, σ) by the definition of EDα(G), we have:

δED(x′, σ) = x

By inductive assumption, δED(x0, t
′) = x′.

=⇒ δED(x0, t
′σ) = x = δ(x′, σ) = δ(x0, PΣ(t′σ))

case ii) σ = dα,G

=⇒ t′dα,G ≤ s

It follows by (2) that PΣ(t′)α /∈ L(G)

66



=⇒ δ(x′, α) is not defined

=⇒ δED(x′, dα,G) = x′ by the definition of EDα(G).

By inductive assumption δED(x0, t
′) = x′, and δ(x0, PΣ(t′)) = x′.

This implies δED(x0, t
′dα,G) = x′ = δ(x0, PΣ(t′)) = δ(x0, PΣ(t′dα,G))

Case iii) σ = eα

We thus have teα ≤ s and it follows by (2) that PΣ(t′)α ∈ L(G)

=⇒ δ(x′, α)!

=⇒ δED(x′, eα) = x′ by the definition of EDα(G).

By inductive assumption δED(x0, t
′) = x′, and δ(x0, PΣ(t′)) = x′.

This implies δED(x0, t
′eα) = x′ = δ(x0, PΣ(t′)) = δ(x0, PΣ(t′eα)).

From case (i), (ii) and (iii), we can conclude that s ∈ L(EDα(G)).

Part 1 complete.

Part 2) Show L(EDα(G)) ⊆ L′

Let s ∈ L(EDα(G)).

We will show by induction on |s| that:

(a) δ(x0, PΣ(s)) = δED(x0, s) i.e. PΣ(s) ∈ L(G)

(b) [(∀t) if tdα,G ≤ s then PΣ(t)α /∈ L(G)] and [(∀t) if teα ≤ s then PΣ(t)α ∈

L(G)]

Inductive Base: s = ǫ

Then,

(a) clearly δ(x0, PΣ(ǫ)) = δED(x0, s) = x0.

(b) As s = ǫ cannot have tdα,G or teα as its prefix, and we are done.

Inductive Step: s = t′σ with σ ∈ ΣD
α,G

Since s ∈ L(Dα(G)), also t′ ∈ L(Dα(G)).

=⇒ δED(x0, t
′) = x for some x ∈ X.

By inductive assumption:

(a) δ(x0, PΣ(t′)) = δED(x0, t
′) = x

67



(b) [(∀t′′) if t′′dα,G ≤ t′ then PΣ(t′′)α /∈ L(G)] and [(∀t′′) if t′′eα ≤ t′ then

PΣ(t′′)α ∈ L(G)]

As σ ∈ ΣD
α,G = Σ ∪ {eα, dα,G} we have three cases:

case i) σ ∈ Σ

By inductive assumption (a), δ(x0, PΣ(t′)) = δED(x0, t
′) = x so δED(x, σ) =

δ(x, σ) by the definition of EDα(G).

It then follows that δ(x0, PΣ(t′)σ) = δ(x0, PΣ(t′σ)) = δED(x0, t
′σ)

=⇒ δ(x0, PΣ(s)) = δED(x0, s)

We have now shown condition (a).

We note that (b) follows immediately from the inductive assumption and the

facts that σ 6= eα and σ 6= dα,G.

case ii) σ = dα,G

Note δED(x, dα,G) is only defined if δ(x, α) is undefined, by the definition of

EDα(G).

By inductive assumption, it follows that δ(x, α) is not defined.

=⇒ δED(x, dα,G) = x

This implies δ(x0, PΣ(s)) = δ(x0, PΣ(t′dα,G) = δ(x0, PΣ(t′)) = x = δED(x0, t
′dα,G)

= δED(x0, s).

We have thus shown condition (a).

Now to show (b), let tdα,G ≤ s.

If t is a proper prefix of t′ it follows from inductive assumption (b) that for all

tdα,G ≤ s it holds that PΣ(t)α /∈ L(G).

Otherwise t = t′ and since δ(x0, PΣ(t′)α) is not defined, it also follows that

PΣ(t)α /∈ L(G).

Now, let teα ≤ s.

As σ = dα,G, teα < s, thus teα ≤ t′. The result thus follows from the inductive

assumption.
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Case iii) σ = eα

Note that δED(x, eα) is defined only if δ(x, α) is defined, by the definition of

EDα(G).

By inductive assumption it follows that δ(x, α) is defined.

=⇒ δED(x0, eα) = x

This implies δ(x0, PΣ(s)) = δ(x0, PΣ(t′eα)) = δ(x0, PΣ(t)) = x = δED(x0, t
′eα) =

δED(x0, s).

We have now shown condition (a).

To show (b), let teα ≤ s.

If t is a proper prefix of t′ it follows from inductive assumption (b) that for all

teα ≤ s, it holds that PΣ(t)α ∈ L(G).

Otherwise t = t′ and since δ(x0, PΣ(t′)α) is defined, it follows that PΣ(t)α ∈ L(G).

Now, let tdα,G ≤ s.

As σ 6= dα,G, tdα,G < s, thus tdα,G ≤ t′. The result thus follows from the inductive

assumption.

Part 2 complete.

By part 1 and 2 we have L(EDα(G)) = L′

Typically we construct our system modularly. We thus have G = G1 ‖ ....... ‖

Gn = (X, Σ, δ, x0,i, Xm,i), with Gi = (Xi, Σi, δ, x0,i, Xm,i), for i=1,.....,n. For each

Gi, we will construct an EDα(Gi). They will all share eα /∈ Σ, but will each have

their own dα,Gi
/∈ Σ event. This is to capture the fact that α is only possible

when enabled by all, but disabled when at least one Gi disables it. We would

then construct EDα(G) modularly as EDα(G) = EDα(G1) ‖ ...... ‖ EDα(Gn).

We would thus have Dα,G = {dα,G1, ...., dα,Gn
}, ΣED

α,G = ΣED
α,G1

∪ .....∪ΣED
α,Gn

= Σ ∪̇

{eα, dα,G1 , ...., dα,Gn
}. Finally, let PΣ : (ΣED

α,G)∗ → Σ∗ be a natural projection.

As we will be constructing in our proofs an EDα(Gi) for each α ∈ Σhib, and

applying Lemma 5.7 to the result, this only makes sense if α is in the event set
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of TDES Gi = (Xi, Σi, δ, x0,i, Xm,i). For simplicity of our proofs, we will assume

each Gi is over event set Σ. This does not represent a loss in generality, since if

Σi < Σ, we can just selfloop at every state in Gi the events in Σ \ Σi, without

altering the resulting G = G1 ‖ ....... ‖ Gn.

Finally, we need to construct TDES Tα,G, for each α ∈ Σ, as shown in Figure

5.2. We note that the alphabet of Tα,G is ΣED
α,G. TDES Tα,G captures the idea

that α should stay enabled for the sampling period until it occurs. Now we will

prove a result about Tα,G that we will need later in this section.

S1

S0 S2

tick

tick tick

α

α

α

eα

eα

eα

Dα,G

Dα,G

Figure 5.2: TDES Tα,G

selfloop: Σ \ {tick, α}

Lemma 5.8. Let L′ = {s ∈ (ΣED
α,G)∗| for all uvd ≤ s such that PΣ(u) ∈ Lsamp,

PΣ(v) ∈ Σ∗
act and d ∈ Dα,G, it holds that α ∈ Occu(v)

or eα /∈ Occu(v)}

Then L(Tα,G) = L′.

Proof. Let PED : (ΣED
α,G)∗ → ({eα} ∪ Dα,G)∗ be a natural projection.

Let δT be the transition function for Tα,G.

It is sufficient to show: 1) L(Tα,G) ⊆ L′ and 2) L(Tα,G) ⊇ L′
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Part 1) Show: L(Tα,G) ⊆ L′.

Let s ∈ L(Tα,G).

Let uvd ≤ s such that PΣ(u) ∈ Lsamp, PΣ(v) ∈ Σ∗
act, d ∈ Dα,G.

Show α ∈ Occu(v) or eα /∈ Occu(v)

Since s ∈ L(Tα,G), clearly s ∈ (ΣED
α,G)∗.

Also, this implies δT (S0, s)!.

Since uvd ≤ s there exists x, y, z ∈ {S0, S1, S2} such that:

δT (S0, u) = x and δT (x, v) = y and δT (y, d) = z

Clearly by the construction of Tα,G, it follows from PΣ(u) ∈ Lsamp that x = S0

or x = S1. (1)

From d ∈ Dα,G, it follows by the construction of Tα,G, that y = z = S0 or y = z

= S2 as Dα,G events are selfloops only in Tα,G.

case i) y = z = S0

By (1), x = S0 or x = S1.

From PΣ(v) ∈ Σ∗
act it follows that v does not contain tick.

=⇒ x = S0 and PED(v) ∈ (Dα,G)∗

This implies eα /∈ Occu(v).

case ii) y = z = S2

From (1), we have x = S0 or x = S1. In either case, to reach S2, v must contain

an ”α” by construction of Tα,G

=⇒ α ∈ Occu(v)

By case (i) and (ii), we have: α ∈ Occu(v) or eα /∈ Occu(v).

Since u, v, d were chosen arbitrarily, s ∈ L′.

Part 1 complete.

Part 2) Show L′ ⊆ L(Tα,G)

Let s ∈ L′.

We show by induction on |s| that the following holds:
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a) If PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗, then δT (S0,s) = S2

b) If PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗ and s=ueαt′ for some u and some t′ ∈

(Σ \ {α, tick})∗, then δT (S0,s) = S1

c) If PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗ and s6= ueαt′ for all u, and for all t′ ∈

(Σ \ {α, tick})∗ then δT (S0,s) = S0

Note that here we are using the fact that σ′ ∈ (Σ \ {α, tick})∗ are selflooped at

every state in Tα,G, so σ′ does not cause a state change.

Inductive Base: s = ǫ

Then PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗ and s 6= ueαt′ for all u, and for all t′ ∈

(Σ \ {α, tick})∗ so we need to show δT (S0,s) = S0.

Clearly, δT (S0,ǫ) = S0

Inductive Step: s = tσ, with t ∈ (ΣED
α,G)∗ and |t| = n and σ ∈ (ΣED

α,G)

By inductive assumption:

a) If PΣ(t) /∈ Lsamp.(Σ \ {α, tick})∗, then δT (S0,t) = S2

b) If PΣ(t) ∈ Lsamp.(Σ \ {α, tick})∗ and t=ueαt′ for some u and some t′ ∈

(Σ \ {α, tick})∗, then δT (S0,t) = S1

c) If PΣ(t) ∈ Lsamp.(Σ \ {α, tick})∗ and t6= ueαt′ for all u and for all t′ ∈

(Σ \ {α, tick})∗, then δT (S0,t) = S0

This implies t ∈ L(Tα,G) as t must satisfy one of these cases, and each case implies

δT (S0,t)!. (1)

Consider the following seven cases:

case i) σ = tick

=⇒ PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗ and s 6= ueαt′ for all u, and for all t′ ∈

(Σ \ {α, tick})∗.

It is sufficient to show δT (S0,s) = S0.

We have δT (S0,t)! by (1) and thus δT (S0,s) = δT (δT (S0,t),tick) = S0, as tick

transitions are defined in all states in Tα,G, and all lead to S0.
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case ii) σ = α

=⇒ PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗

It is sufficient to show δT (S0,s) = S2.

We have δT (S0,t)! by (1), and thus δT (S0,s) = δT (δT (S0,t),α) = S2, as α is de-

fined as all states in Tα,G and always lead to S2.

case iii) σ = eα and PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗

Sufficient to show δT (S0,s) = S1.

We have δT (S0,t)! by (1).

If PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗ then also PΣ(t) ∈ Lsamp.(Σ \ {α, tick})∗, as

PΣ(s) = PΣ(teα) = PΣ(t).

So by inductive assumption (b) and (c), either δT (S0,t) = S0 or δT (S0,t) = S1.

It thus follows by the construction of Tα,G that:

δT (S0,s) = δT (S0,tσ) = S1

case iv) σ = eα and PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗

Sufficient to show δT (S0,s) = S2.

We have δT (S0,t)! by (1).

If PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗ then also PΣ(t) /∈ Lsamp.(Σ \ {α, tick})∗

So by inductive assumption (a), δT (S0,t) = S2.

It follows by the construction of Tα,G that:

δT (S0,s) = S2

case v) σ ∈ Dα,G and PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗

Sufficient to show δT (S0,s) = S0.

We note that if PΣ(s) ∈ Lsamp.(Σ\{α, tick})∗, then PΣ(t) ∈ Lsamp.(Σ\{α, tick})∗.

Note s = td for some d ∈ Dα,G.

Then since PΣ(s) ∈ Lsamp.(Σ \ {α, tick})∗, we have s = uvd for some u with

PΣ(u) ∈ Lsamp and v with PΣ(v) ∈ (Σ \ {α, tick})∗ ⊆ Σ∗
act.

From the definition of L′ it follows for all such u and v that eα /∈ Occu(v).
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=⇒ t 6= u′eαt′ for any u′ and any t′ ∈ (Σ \ {α, tick})∗.

By inductive assumption (c), δT (S0,t) = S0.

It follows by the construction of Tα,G that:

δT (S0,s) = δT (S0,tσ)= S0

case vi) σ ∈ Dα,G and PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗

Sufficient to show δT (S0,s) = S2.

If PΣ(s) /∈ Lsamp.(Σ \ {α, tick})∗ then PΣ(t) /∈ Lsamp.(Σ \ {α, tick})∗.

So by inductive assumption (a), δT (S0,t) = S2.

It follows by the construction of Tα,G that:

δT (S0,s) = S2

case vii) σ ∈ Σ \ {α, tick}

For condition (a), if PΣ(t) /∈ Lsamp.(Σ \ {α, tick})∗ then PΣ(tσ) = PΣ(t)σ /∈

Lsamp.(Σ \ {α, tick})∗. Also as all σ′ ∈ (Σ \ {α, tick})∗ are selflooped in Tα,G,

δT (S0,t) = δT (S0,tσ) = S2.

For condition (b) and (c), if PΣ(t) ∈ Lsamp.(Σ \ {α, tick})∗, then PΣ(tσ) =

PΣ(t)σ ∈ Lsamp.(Σ \ {α, tick})∗.

For (b), if t =ueαt′ then tσ = ueαt′σ. Taking t′′ = t′σ ∈ (Σ\ {α, tick})∗ , and (b)

is still satisfied. Also, δT (S0,tσ) = δT (S0,t) = S1.

For (c), if for all u and t′ ∈ (Σ \ {α, tick})∗, t 6= ueαt′, then tσ 6= ueαt′σ for any

such u and t′. Also, δT (S0,tσ) = δT (S0,t) = S0.

Inductive step complete.

Now we have shown for all s ∈ L′ that δT (S0,s)! and that δT (S0,s)=S0 or

δT (S0,s)=S1 or δT (S0,s)=S2.

This implies s ∈ L(Tα,G).

Part 2 complete.

By part 1 and 2 we have L(Tα,G) = L′

Now we present two propositions that will be useful for our main theorem
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later in this section. The two proofs that follow are based on initial proof sketches

by the author’s thesis supervisors, Dr. R. Malik and Dr. R. Leduc.

Proposition 5.3. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σ, δ, x0,i, Xm,i), i = 1,....n. If G satisfies SD controllability point (iii.1) then

L(EDα(G)) ⊆ L(Tα,G) for each α ∈ Σhib.

Proof. Assume G satisfies SD controllability point (iii.1).

Let Pi : (ΣED
α,G)∗ → (Σ ∪ {eα, dα,Gi

})∗ be a natural projection, i = 1,...,n.

We note that as Σ ⊆ Σ ∪ {eα, dα,Gi
}, that PΣ ◦ Pi = PΣ. (1)

Let α ∈ Σhib, s ∈ L(EDα(G)) ⊆ (ΣED
α,G)∗.

Let uvdα,Gi
≤ s such that PΣ(u) ∈ Lsamp, PΣ(v) ∈ Σ∗

act, i ∈ 1....n, and eα ∈

Occu(v).

Sufficient to show α ∈ Occu(v) by Lemma 5.8.

Since uvdα,Gi
≤ s ∈ L(EDα(G)) we have:

Pi(uv)dα,Gi
∈ L(EDα(Gi))

=⇒ PΣ(Pi(uv))α /∈ L(Gi) by Lemma 5.7

=⇒ PΣ(uv)α /∈ L(Gi) by (1)

=⇒ PΣ(uv)α /∈ L(G) = L(G1) ∩ ..... ∩ L(Gn) (2)

As s ∈ L(EDα(G)), we have Pj(s) ∈ L(EDα(Gj)) for j = 1,....n.

=⇒ PΣ(Pj(s)) ∈ L(Gj) by Lemma 5.8, j = 1,...,n

=⇒ PΣ(s) ∈ L(Gj) by (1), j = 1,....,n

=⇒ PΣ(s) ∈ L(G)

=⇒ PΣ(uv) ≤ PΣ(uvdα,Gi
) ≤ PΣ(s) ∈ L(G) (3)

Since eα ∈ Occu(v), v can be written as v = v1eαv2 with v1, v2 ∈ (ΣED
α,G)∗ and

PΣ(v1) ≤ PΣ(v) ∈ Σ∗
act.

Since uv1eα ≤ uv1eαv2 = uv ≤ s ∈ L(EDα(G)), we have:

Pj(uv1)eα ∈ L(EDα(Gj)) for all j=1 .... n

=⇒ PΣ(Pj(uv1))α ∈ L(Gj) for all j by Lemma 5.7.
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=⇒ PΣ(uv1)α ∈ L(Gj) for all j by (1)

=⇒ PΣ(uv1)α ∈ L(G)

=⇒ PΣ(u) ∈ L(G) ∩ Lsamp and PΣ(v1) ∈ Σ∗
act with PΣ(uv1) ∈ L(G)

By definition of SD controllability point (iii.1), we have:

(EligL(G)(PΣ(uv1)) ∪ Occu(PΣ(v1))) ∩ Σhib = EligL(G)(PΣ(u)) ∩ Σhib (4)

Similarly using PΣ(v) ∈ Σ∗
act with PΣ(uv) ∈ L(G) (by (3)) and definition of SD

controllability point (iii.1), we have:

(EligL(G)(PΣ(uv)) ∪ Occu(PΣ(v))) ∩ Σhib = EligL(G)(PΣ(u)) ∩ Σhib (5)

Since PΣ(uv1)α ∈ L(G) =⇒ α ∈ EligL(G)(PΣ(uv1)), and also α ∈ Σhib we have:

α ∈ (EligL(G)(PΣ(uv1)) ∪ Occu(PΣ(v1))) ∩ Σhib

= EligL(G)(PΣ(u)) ∩ Σhib by (4)

= (EligL(G)(PΣ(uv)) ∪ Occu(PΣ(v))) ∩ Σhib by (5)

⊆ (EligL(G)(PΣ(uv)) ∪ Occu(PΣ(v)))

By (2) α /∈ EligL(G)(PΣ(uv)), thus we have α ∈ Occu(PΣ(v)) ⊆ Occu(v), as

required.

Proposition 5.4. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σ, δ, x0,i, Xm,i), i = 1,....,n. If L(EDα(G)) ⊆ L(Tα,G) for each α ∈ Σhib

then

(∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗
act)

st ∈ L(G) =⇒ EligL(G)(s) ∩ Σhib ⊆ (EligL(G)(st) ∪ Occu(t)) ∩ Σhib

Proof. Assume L(EDα(G)) ⊆ L(Tα,G) for each α ∈ Σhib.

Let s ∈ L(G) ∩ Lsamp, t ∈ Σ∗
act and assume st ∈ L(G).

Let α ∈ EligL(G)(s) ∩ Σhib, i.e. α ∈ Σhib and sα ∈ L(G).

Let α /∈ EligL(G)(st), i.e. stα /∈ L(G).

Sufficient to show α ∈ Occu(t).

Since st ∈ L(G) and stα /∈ L(G) we have:

(∃i ∈ {1....n})stα /∈ L(Gi).
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We thus have seαtdα,Gi
∈ L(EDα(Gi) because PΣ(seαtdα,Gi

) = st ∈ L(G) ⊆

L(Gi), PΣ(s)α = sα ∈ L(G) ⊆ L(Gi), PΣ(seαt)α = stα /∈ L(Gi), and dα,Gi
, eα /∈

Occu(s) ∪ Occu(t) since st ∈ L(G) ⊆ Σ∗.

We also have seαt ∈ L(EDα(Gj)) for all j 6= i because PΣ(seαt) = st ∈ L(G) ⊆

L(Gj), PΣ(s)α = sα ∈ L(G) ⊆ L(Gj), and dα,Gj
, eα /∈ Occu(s) ∪ Occu(t) since

st ∈ L(G) ⊆ Σ∗.

It follows that seαtdα,Gi
∈ L(EDα(G)) because dα,Gi

is not in the alphabet of

Gj, j 6= i.

=⇒ seαtdα,Gi
∈ L(Tα,G) as L(EDα(G)) ⊆ L(Tα,G) by assumption.

Since seαtdα,Gi
≤ seαtdα,Gi

∈ L(Tα,G), PΣ(s) = s ∈ Lsamp, PΣ(eαt) ∈ Σ∗
act, dα,Gi

∈

Dα,G, and eα ∈ Occu(eαt), we have by Lemma 5.8:

α ∈ Occu(eαt)

=⇒ α ∈ Occu(t) as required.

5.2.1.2 SD Controllability Point (iii.1b)

We will now express SD controllability point (iii.1b) as a language inclusion prob-

lem. Our first step is to express as event occurrences whether a given α ∈ Σhib is

disabled at a given state in a given TDES.

Let α ∈ Σ, and TDES G = (X, Σ, δ, x0, Xm) = G1 ‖ ..... ‖ Gn where G is

constructed from the synchronous product of TDES Gi = (Xi, Σi, δ, x0,i, Xm,i), i

= 1,....,n. For each Gi we will construct a Dα(Gi) using definition 5.3 on page

54, each with their own dα,Gi
event with alphabet ΣD

α,Gi
= Σi ∪ {dα,Gi

}. Note

that if α /∈ Σi, then α is effectively selflooped at every state in Gi, so dα,Gi
, will

never occur in Dα(Gi).

We then construct Dα(G) modularly with Dα(G) = Dα(G1) ‖ ..... ‖ Dα(Gn),

Dα,G = {dα,G1, . . . , dα,Gn
}, ΣD

α,G = ΣD
α,G1

∪ . . . ∪ ΣD
α,Gn

= Σ ∪̇ {dα,G1, . . . , dα,Gn
},

and the natural projection PΣ:(ΣD
α,G)∗ → Σ∗.
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Finally we need to construct TDES Uα,G as shown in Figure 5.3. TDES

Uα,G captures the idea that α can only be enabled immediately after the tick has

occured. We note that Uα,G has alphabet ΣD
α,G. We now need to prove a result

about Uα,G that we will need later in this section.

S1

S0

S2

tick

tick

tick

α
α

Dα,G

Dα,G

Dα,G

5.3: TDES Uα,G

selfloop: Σ \ {tick, α}

Lemma 5.9. Let PD : (ΣD
α,G)∗ → (Dα,G ∪{α, tick})∗ be a natural projection. Let

L′ = {s ∈ (ΣD
α,G)∗|(∀u, v ∈ (ΣD

α,G)∗) PΣ(u) ∈ Lsamp, PD(v) ∈ (Dα,G)∗, and

uvα ≤ s =⇒ PD(v) = ǫ}

Then L(Uα,G) = L′.

Proof. Let δU be the transition function for Uα,G.

It is sufficient to show: 1) L(Uα,G) ⊆ L′ and 2) L(Uα,G) ⊇ L′

Part 1) Show L(Uα,G) ⊆ L′

Let s ∈ L(Uα,G).

Let u, v ∈ (ΣD
α,G)∗.

Assume uvd ≤ s, PΣ(u) ∈ Lsamp, and PD(v) ∈ (Dα,G)∗.

Must show implies PD(v) = ǫ.

Since s ∈ L(Uα,G), clearly s ∈ (ΣD
α,G)∗.

Also, this implies δU (S0, s)!.

Since uvα ≤ s there exist x, y, z ∈ {S0, S1, S2} such that:

78



δU(S0, u) = x, δU(x, v) = y, and δU(y, α) = z

For α, it follows by the construction of Uα,G that y = S0 and z = S2, or y = z =

S2.

Since PD(v) ∈ (Dα,G)∗, if follows that v does not contain α. As PΣ(u) ∈ Lsamp,

the construction of Uα,G ensures u takes us to state S0 or S1. Also, state S2

cannot be reached from S0 or S1 without an α.

=⇒ y 6= S2.

=⇒ y = S0 and z = S2.

Clearly, by the construction of Uα,G it follows from PΣ(u) ∈ Lsamp that x = S0

or x = S1.

=⇒ δU(S0,v) = S0 or δU(S1,v) = S0

As PD(v) ∈ (Dα,G)∗ it follows that v does not contain tick.

This implies x = S0 and PD(v) = ǫ, as S0 cannot be reached from S1 without a

tick, and any d ∈ Dα,G would take us to S1.

Since u, v were chosen arbitrarily, s ∈ L′.

Part 1 complete.

Part 2) Show L′ ⊆ L(Uα,G)

Let Σ∗
0 = Σ \ {α, tick}. These are events selflooped at each state in Uα,G.

Let LD
samp = (ΣD

α,G)∗.tick.Σ∗
0 ∪ Σ∗

0

Let s ∈ L′.

We show by induction on |s| that the following holds:

a) If s ∈ LD
samp then δU(S0,s) = S0

b) If s /∈ LD
samp and s = uv for some u ∈ LD

samp and some v such that PD(v) ∈

(Dα,G)+, then δU(S0,s) = S1

c) If s /∈ LD
samp and s 6= uv for any u ∈ LD

samp and any v such that PD(v) ∈ (Dα,G)+,

then δU(S0,s) = S2

Inductive Base: s = ǫ
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It is suffiecient to show δU(S0,s) = S0, as ǫ ∈ LD
samp.

Clearly, δU(S0,ǫ) = S0

Inductive Step: s = tσ with t ∈ (ΣD
α,G)∗ and |t| = n and σ ∈ (ΣD

α,G).

By inductive assumption, we have:

a) If t ∈ LD
samp then δU(S0,t) = S0

b) If t /∈ LD
samp and t = uv for some u ∈ LD

samp and some v such that PD(v) ∈

(Dα,G)+, then δU(S0,t) = S1

c) If t /∈ LD
samp t 6= uv for any u ∈ LD

samp and any v such that PD(v) ∈ (Dα,G)+,

then δU(S0,t) = S2

This implies t ∈ L(Uα,G). (2)

Consider the following three cases:

case i) s ∈ LD
samp

Note that σ ∈ Σ0 ∪ {tick} and it is enough to show δU (S0,s) = S0.

By (2), δU (S0,t)!, and thus δU (S0,s) = δU(S0,t tick) = S0 by construction of Uα,G

as tick is defined at all states, and always leads to S0.

If σ ∈ Σ0, then if s ∈ LD
samp, then t ∈ LD

samp, thus δu(S0,t) = S0.

=⇒ δu(S0,s) = δu(S0,tσ) = δu(S0,t) = S0.

case ii) s /∈ LD
samp and s = uv for some u ∈ LD

samp and some v such that PD(v) ∈

(Dα,G)+

It is sufficient to show δU (S0,s) = S1.

Since u ∈ LD
samp and v 6= ǫ, we have u ≤ t. We thus have by inductive assumption

(a) that δU(S0,u) = S0.

Since PD(v) ∈ (Dα,G)+, it follows that v contains at least one d ∈ Dα,G, and no

α or tick events. It follows by the construction of Uα,G that:

δU(S0,v) = S1

This implies δU(S0,s) = S1.

case iii) s /∈ LD
samp and s 6= uv for any u ∈ LD

samp and any v such that PD(v) ∈
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(Dα,G)+

It is sufficient to show δU (S0,s) = S2.

We first note that as ǫ ∈ LD
samp, there exists at least one u ∈ LD

samp such that u

≤ s, and PΣ(u) ∈ Lsamp.

As s 6= uv for any u ∈ LD
samp, we can choose the largest u ∈ LD

samp such that u ≤

s and PΣ(u) ∈ LD
samp (i.e. for (∀u′ ∈ Lsamp) u′ ≤ s and PΣ(u′) ∈ Lsamp ⇒ u′ ≤ u)

and there will still not exist a v such that PD(v) ∈ (Dα,G)+.

Let u be as defined above.

We note that as u ∈ LD
samp, either u ∈ Σ∗

0 or u ∈ (ΣD
α,G)∗.tick.Σ∗

0, i.e. either u

at most contains events in Σ0 (thus no σ′ ∈ Dα,G ∪ {α, tick}) or u ends in a tick

followed by at most events in Σ0.

As PΣ(u) ∈ Lsamp as well, this implies either u = ǫ, or ends in a tick.

We note that adding the PΣ(u) ∈ Lsamp condition is equivalent to taking the

largest u ∈ LD
samp and stripping off any trailing σ ∈ Σ0.

Let v ∈ (ΣD
α,G)∗ such that uv = s and we have PD(v) /∈ (Dα,G)+ by the statement

of case (iii).

This implies PD(v) 6= ǫ since s /∈ LD
samp and thus there must exist and α or d

∈ Dα,G that follows the largest LD
samp prefix of s.

Also as u is the largest LD
samp prefix of s such that PΣ(u) ∈ Lsamp, there cannot

be a tick in Occu(v).

As PD(v) 6= ǫ, contains no ticks and does not contain only d ∈ Dα,G, the definition

of PD implies that α ∈ Occu(v).

As u ∈ LD
samp and v 6= ǫ, we have u ≤ t. We thus have by inductive assumption

(a) that:

δU(S0,u) = S0 (3)

As tick /∈ Occu(v), we have v ∈ (Dα,G ∪ {α} ∪ Σ0)
∗.

=⇒ (∃t1 ∈ (Dα,G ∪ Σ0)
∗)(∃t2 ∈ (Dα,G ∪ {α} ∪ Σ0)

∗)v = t1αt2
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We thus have ut1α ≤ uv ≤ s, PΣ(u) ∈ Lsamp, t1 ∈ (ΣD
α,G)∗, and PD(t1) ∈ (Dα,G)∗.

As s ∈ L′, we can conclude by definition of L′ that: PD(t1) = ǫ.

=⇒ t1 ∈ Σ∗
0

As δU(S0,u) = S0 by (3), we have δU(S0,ut1) = S0 as σ ∈ Σ0 are selflooped at

every state in Uα,G.

As uv = s, and v = t1αt2, we see that δU(S0, ut1α) = S2 by construction of Uα,G.

All that remains is to show that δU(S0, ut1αt2) = S2.

We next note that each σ′ ∈ (Dα,G ∪ {α} ∪ Σ0) is selflooped at state S2 in Uα,G.

=⇒ δU(S0, ut1αt2) = S2 as t2 ∈ (Dα,G ∪ {α} ∪ Σ0)
∗.

=⇒ δU(S0,s) = S2, as required.

Inductive step complete.

Now we have shown for s ∈ L′, that δU (S0,s)=S0, δU (S0,s)=S1 or δU(S0,s)=S2.

This implies s ∈ L(Uα,G).

Part 2 complete.

By part 1 and 2 we have L(Uα,G) = L′

Now we will present two propositions which will be useful for our main

theorem later in this section. The proofs that follow are based on an initial proof

sketch by the author’s thesis supervisors, Dr. R. Malik and Dr. R. Leduc. For

consistency with Section 5.2.1.1, we will assume that all of the component Gi

are defined over event set Σ in the remaining propositions and theorems in this

section. Please see the discussion on page 69 for more information.

Proposition 5.5. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σ, δ, x0,i, Xm,i), i = 1,....,n. If G satisfies SD controllability point (iii.1) then

L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib.

Proof. Assume G satisfies SD controllability point (iii.1).

Let PD : (ΣD
α,G)∗ → (Dα,G ∪ {α, tick})∗ be a natural projection.
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Let α ∈ Σhib, s ∈ L(Dα(G)) ⊆ (ΣD
α,G)∗.

Let uvα ≤ s for some u, v ∈ (ΣD
α,G)∗.

Let PΣ(u) ∈ Lsamp, and PD(v) ∈ (Dα,G)∗.

By Lemma 5.9 it is sufficient to show PD(v) = ǫ.

We first note that as PD(v) ∈ (Dα,G)∗, tick /∈ Occu(v), thus PΣ(v) ∈ Σ∗
act.

Since uvα ≤ s ∈ L(Dα(G)) we have by Lemma 5.6:

PΣ(uvα) ∈ L(G)

=⇒ α ∈ EligL(G)(PΣ(uv)) (1)

Then it holds that PΣ(u) ∈ L(G) ∩ Lsamp, α ∈ Σhib, PΣ(v) ∈ Σ∗
act and PΣ(uv) ∈

L(G).

Then by definition of SD controllability point (iii.1) and by (1) we have:

α ∈ (EligL(G)(PΣ(uv)) ∪ Occu(PΣ(v))) ∩ Σhib = EligL(G)(PΣ(u)) ∩ Σhib (2)

Then it also holds for every prefix v′ ≤ v since PΣ(v′) ∈ Σ∗
act, and PΣ(uv′) ∈ L(G).

We thus have:

EligL(G)(PΣ(uv′)) ∪ Occu(PΣ(v′))) ∩ Σhib = EligL(G)(PΣ(u)) ∩ Σhib

We thus have by (2):

α ∈ EligL(G)(PΣ(uv′)) ∪ Occu(PΣ(v′))) ∩ Σhib

⊆ EligL(G)(PΣ(uv′)) ∪ Occu(PΣ(v′))

Since PΣ(v′) ≤ PΣ(v) and PD(v) ∈ (Dα,G
∗), α /∈ Occu(PΣ(v′)), we have:

α ∈ EligL(G)(PΣ(uv′))

=⇒ PΣ(uv′)α ∈ L(G)

Let Pi : (ΣD
α,G)∗ → (Σ ∪ {dα,Gi

})∗ be a natural projection, i = 1,...,n.

We note that as Σ ⊆ Σ ∪ {dα,Gi
}, we have PΣ ◦ Pi = PΣ, i = 1,....,n. (3)

Let i ∈ {1, ..., n}.

We thus have: PΣ(uv′)α ∈ L(Gi).

Also, s ∈ L(Dα(G)) implies Pi(s) ∈ L(Dα(Gi)) and Pi(uv′) ≤ Pi(uv) ≤ Pi(s) ∈

L(Dα(Gi)).

83



Given that PΣ(Pi(uv)) = PΣ(uv) ∈ L(Gi), Pi(uv′) ∈ (ΣD
α,Gi

)∗; Pi(uv′) ≤ Pi(uv),

and PΣ(Pi(uv′))α = PΣ(uv′)α ∈ L(Gi), we have:

Pi(uv′)dα,Gi
� Pi(uv) by Lemma 5.5

Since this holds for every prefix v′ ≤ v, we have:

dα,Gi
/∈ Occu(Pi(v))

Also, dα,Gi
/∈ Occu(v) because dα,Gi

∈ ΣD
α,Gi

.

Since this is true for all i ∈ {1, ...., n}, we have:

(∀d ∈ Dα,G)d /∈ Occu(v).

Since PD(v) ∈ (Dα,G)∗ this implies PD(v) = ǫ as required.

Proposition 5.6. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σ, δ, x0,i, Xm,i), i = 1,....,n. If L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib then

(∀s ∈ L(G) ∩ Lsamp)(∀t ∈ Σ∗
act)

st ∈ L(G) =⇒ (EligL(G)(st) ∪ Occu(t)) ∩ Σhib ⊆ EligL(G)(s) ∩ Σhib

Proof. Assume L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib.

Let s ∈ L(G) ∩ Lsamp , t ∈ Σ∗
act and st ∈ L(G).

Let α ∈ Σhib and α /∈ EligL(G)(s).

Sufficient to show α /∈ EligL(G)(st) ∪ Occu(t).

Given st ∈ L(G) and α /∈ EligL(G)(s), it is sufficient to show α /∈ EligL(G)(st
′)

for every prefix t′ ≤ t such that t′ ∈ (Σact \ {α})
∗.

Let t′ ∈ (Σact \ {α})
∗, t′ ≤ t and assume α ∈ EligL(G)(st

′). (1)

We will show that α ∈ EligL(G)(st
′) creates a contradition.

Since s ∈ L(G) and α /∈ EligL(G)(s), it follows that:

(∃i ∈ {1....n}) α /∈ EligL(Gi)(s).

Consider the string: sdα,Gi
t′α ∈ ΣD∗

α,Gi
⊆ ΣD∗

α,G

=⇒ PΣ(sdα,Gi
t′α) = st′α ∈ L(Gi) (by (1)) and PΣ(s)α = sα /∈ L(Gi)

=⇒ sdα,Gi
t′α ∈ L(Dα(Gi)) by Lemma 5.5

Let Pj : (ΣD
α,G)∗ → (Σ ∪ {dα,Gj

})∗ be a natural projection, j = 1,....,n.
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Also, Pj(sdα,Gi
t′α) = st′α for all j 6= i. This implies:

Pj(sdα,Gi
t′α) = st′α ∈ L(Dα(Gj)) because st′α ∈ L(Gj) by (1).

Therefore sdα,Gi
t′α ∈ L(Dα(G)) ⊆ L(Uα,G).

We thus have:

sdα,Gi
t′α ∈ (ΣD

α,G)∗, PΣ(s) = s ∈ Lsamp, PD(dα,Gi
t′) ∈ (Dα,G)∗, and sdα,Gi

t′α

≤ sdα,Gi
t′α.

This implies PD(dα,Gi
t′) = dα,Gi

= ǫ, by Lemma 5.9, which is a contradition.

=⇒ α /∈ EligL(G)(st
′), as required.

We will now prove that checking SD controllability point (iii.1) is equivalent

to checking the language inclusion properties below.

Theorem 5.2. Let G = G1 ‖ ...... ‖ Gn = (X, Σ, δ, x0, Xm) with Gi =

(Xi, Σ, δ, x0,i, Xm,i), i = 1,....,n. G satisfies SD controllability point (iii.1) iff

L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib

Proof. To prove the above claim we have to show:

I) If G satisfies SD controllability point (iii.1) then L(EDα(G)) ⊆ L(Tα,G) and

L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib, and

II) If L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib, then G

satisfies SD Controllability point (iii.1)

Part I) Show: If G satisfies SD controllability point (iii.1) then

L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib.

By propositions 5.3 and 5.4 we have L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆

L(Uα,G) for each α ∈ Σhib as required.

Part I complete.

Part II) Show if L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆ L(Uα,G) for each α ∈

Σhib, then G satisfies SD Controllability point (iii.1).

Applying propositions 5.5 and 5.6, we have that G satisfies SD Controllability
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point (iii.1a) and (iii.1b).

=⇒ G satisfies SD Controllability point (iii.1).

Part II complete.

By Part I and II we conclude G satisfies SD controllability point (iii.1) iff

L(EDα(G)) ⊆ L(Tα,G) and L(Dα(G)) ⊆ L(Uα,G) for each α ∈ Σhib

5.2.2 SD Controllability Point (iii.2)

SD controllability point (iii.2) (see page 23) states that for a sampled string

s, extended by concurrent strings s′ and s′′ such that s′ and s′′ have the same

occurrence images, the strings ss′ and ss′′ should have the same future with

respect to the system’s closed and marked behaviour. That means that the string

ss′ must be nerode equivalent to string ss′′ with respect to the system’s closed

and marked behaviour. The SD controllability point (iii.2) property is defined in

terms of the closed-loop system. For simplicity, we restate the property below in

terms of some TDES G, where G would correspond to our closed-loop system.

Definition 5.6. Let G = (Q, Σ, δ, q0, Qm) be a TDES.

G satisfies SD controllability point (iii.2) if

(∀s ∈ L(G) ∩ Lsamp)(∀s′, s′′ ∈ Lconc)ss
′, ss′′ ∈ L(G) ∧ Occu(s′) = Occu(s′′)

⇒ ss′ ≡L(G) ss′′ ∧ ss′ ≡Lm(G) ss′′

As we have stated earlier, a typical system is composed of several TDES.

For automatic verification of a system, it is necessary to compute its synchronous

product which can easily lead to the state space explosion problem. We can

avoid computing the synchronous product of a system by exploiting its modular

structure. For the compositional verification of SD controllability point (iii.2) we

present a theorem which states that if individual TDES all satisfy our property,

then the synchronous product of these TDES also satisfies the SD controllability
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point (iii.2) property. We can thus simply check the individual TDES to verify

that our TDES system satisfies SD controllability point (iii.2).

Theorem 5.3. Let G1 = (Q1, Σ1, δ1, q0,1, Qm,1) and G2 = (Q2, Σ2, δ2, q0,2, Qm,2)

be two TDES. If G1 and G2 each satisfy SD controllability point (iii.2) then

G1 ‖ G2 satisfies SD controllability point(iii.2).

Proof. Let G1 = (Q1, Σ1, δ1, q0,1, Qm,1) and G2 = (Q2, Σ2, δ2, q0,2, Qm,2) be two

TDES and Σ = Σ1 ∪ Σ2, and let P1 : Σ∗ → Σ∗
1 and P2 : Σ∗ → Σ∗

2 be natural

projections. Let G = G1 ‖ G2, then L(G) = P−1
1 L(G1) ∩ P−1

2 L(G2).

Let G1 and G2 each satisfy SD controllability point (iii.2). (1)

Let s ∈ L(G) ∩ Lsamp, s
′, s′′ ∈ Lconc. (2)

Assume ss′, ss′′ ∈ L(G) and Occu(s′) = Occu(s′′). (3)

Sufficient to show that ss′ ≡L(G) ss′′ and ss′ ≡Lm(G) ss′′.

Let si = Pi(s), s
′
i = Pi(s

′) and s′′i = Pi(s
′′), i = 1, 2.

Let Pi(Occu(t)) := {Pi(σ)|σ ∈ Occu(t)} − {ǫ}, for t ∈ Σ∗.

To apply SD controllability point (iii.2) to G1 and G2, it is sufficient to show that

si ∈ L(Gi) ∩ Lsamp, s
′
i, s

′′
i ∈ Lconc, Occu(s′i) = Occu(s′′i ) and sis

′
i, sis

′′
i ∈ L(Gi).

From (2) we have s ∈ L(G) ∩ Lsamp

⇒ si = Pi(s) ∈ L(Gi)

As s ∈ Lsamp, either s = ǫ or s ∈ Σ∗.tick.

If s = ǫ, Pi(s) = ǫ ∈ Lsamp.

If s ∈ Σ∗.tick, Pi(s) ∈ Σ∗.tick as tick ∈ Σi.

We thus have: Pi(s) ∈ Lsamp.

⇒ Pi(s) ∈ L(Gi) ∩ Lsamp.

From (2) we also have s′, s′′ ∈ Lconc

⇒ Pi(s
′), Pi(s

′′) ∈ Lconc, as tick ∈ Σi.

⇒ s′i, s
′′
i ∈ Lconc

From (3) we also have Occu(s′) = Occu(s′′)
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⇒ Pi(Occu(s′)) = Pi(Occu(s′′))

⇒ Occu(Pi(s
′)) = Occu(Pi(s

′′))

⇒ Occu(s′i) = Occu(s′′i )

From (3) we have ss′, ss′′ ∈ L(G)

⇒ Pi(ss
′), Pi(ss

′′) ∈ L(Gi)

⇒ Pi(s)Pi(s
′), Pi(s)Pi(s

′′) ∈ L(Gi)

⇒ sis
′
i, sis

′′
i ∈ L(Gi)

Now we have si ∈ L(Gi) ∩ Lsamp, s
′
i, s

′′
i ∈ Lconc, Occu(s′i) = Occu(s′′i ) and

sis
′
i, sis

′′
i ∈ L(Gi) for i ∈ {1, 2}.

By the definition of SD controllability point(iii.2), we have:

sis
′
i ≡L(Gi) sis

′′
i and sis

′
i ≡Lm(Gi) sis

′′
i , for i ∈ {1, 2}. (4)

Now we will show that ss′ ≡L(G) ss′′ and ss′ ≡Lm(G) ss′′

Part I) To show that ss′ ≡L(G) ss′′

Sufficient to show: (∀u ∈ Σ∗)ss′u ∈ L(G) iff ss′′u ∈ L(G)

Let u ∈ Σ∗.

A) Show ss′u ∈ L(G) ⇒ ss′′u ∈ L(G)

Assume ss′u ∈ L(G).

Must show implies ss′′u ∈ L(G)

Let ui = Pi(u) for i ∈ {1,2}.

Sufficient to show: Pi(ss
′′u) = sis

′′
i ui ∈ L(Gi), i = 1,2

Let i ∈ {1,2}.

We note that ss′u ∈ L(G) implies:

Pi(ss
′u) ∈ L(Gi)

⇒ Pi(s)Pi(s
′)Pi(u) ∈ L(Gi)

⇒ sis
′
iui ∈ L(Gi)

From (4) and the definition of Nerode Equivalence we get:

sis
′′
i ui ∈ L(Gi), as required.
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B) Show: ss′′u ∈ L(G) ⇒ ss′u ∈ L(G)

Proof is identical to proof of Part A after relabelling s′ to s′′ and s′ to s′′.

Part I complete.

Part II) ss′ ≡Lm(G) ss′′

Sufficient to show: (∀u ∈ Σ∗)ss′u ∈ Lm(G) iff ss′u ∈ Lm(G)

Let u ∈ Σ∗

A) Show ss′u ∈ Lm(G) ⇒ ss′′u ∈ Lm(G)

Assume ss′u ∈ Lm(G)

Must show implies ss′′u ∈ Lm(G)

Let ui = Pi(u) for i ∈ {1,2}.

Sufficient to show: Pi(ss
′′u) = sis

′′
i ui ∈ Lm(Gi), i = 1,2.

Let i = ∈ {1,2}.

We note that ss′u ∈ Lm(G) implies:

Pi(ss
′u) ∈ Lm(Gi)

⇒ Pi(s)Pi(s
′)Pi(u) ∈ Lm(Gi)

⇒ sis
′
iui ∈ Lm(Gi)

From (4) and the definition of Nerode Equivalence we have:

sis
′′
i ui ∈ Lm(Gi), as required.

B) Show ss′′u ∈ Lm(G) ⇒ ss′u ∈ Lm(G)

Proof is identical to proof of Part A after relabelling s′ to s′′ and s′′ to s′.

Part II complete.

From part I and II we can conclude that ss′ ≡L(G) ss′′ and ss′ ≡Lm(G) ss′′, as

required.

5.3 SD Controllability Point (iv)

SD controllability point (iv) (see page 23) states that all marked strings must

be sampled strings in the closed-loop system. For simplicity, we will express
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this property below in terms of some TDES G, where G would be equal to our

closed-loop system.

Definition 5.7. TDES G = (Q, Σ, δ, q0, Qm) satisfies SD controllability point(iv)

if

Lm(G) ⊆ Lsamp = Σ∗.tick ∪ {ǫ}

Let TDES G = (Q, Σ, δ, q0, Qm) with ω /∈ Σ, and Σ = Σact ∪̇ {tick}. Let

ΣT = Σ ∪ {ω}. We will now show that we can express SD controllability point

(iv) as a language inclusion problem. We first introduce a new TDES T =

(XT , ΣT , δT , x0, XTm
), shown in Figure 5.4, that captures the concept of sampled

strings. We also introduce a new event ω /∈ Σ that takes us from the marked

states of G to a dump state. Now, let Gω be such that L(Gω) = L(G) ∪Lm(G)ω.

X1

X0 X2

tick

tick

Σact

Σact

ω

Figure 5.4: TDES T

We first prove the lemma below which we will need for our main theorem.

Lemma 5.10. L(T ) = Σ∗ ∪ Lsamp ω

Proof. Let δT be the transition function for T .

To prove our claim it is sufficient to show:

1) L(T) ⊇ Σ∗ ∪ Lsampω and 2) L(T) ⊆ Σ∗ ∪ Lsampω
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Part 1) Show: Σ∗ ∪ Lsamp ω ⊆ L(T)

Let s ∈ Σ∗ ∪ Lsampω

Must show implies s ∈ L(T)

Either s ∈ Σ∗ or s ∈ Lsampω.

Case 1.1) s ∈ Σ∗

We show by induction on string length that s ∈ L(T)

Let n = |s|.

Inductive Base:

n = 0, s = ǫ

We have ǫ ∈ L(T ) automatically as TDES T (in Figure 5.4) has an initial state.

Inductive Step:

n → n + 1, s = tα with t ∈ Σ∗ and α ∈ Σ

By inductive assumption t ∈ L(T)

=⇒ δT (X0, t)!

Let X = δT (X0, t)!

Thus we need to show that δT (X, α)!

As ω /∈ Σ and t ∈ Σ∗, X 6= X2

=⇒ X = X0 or X = X1 [from Figure 5.4]

α ∈ Σ = Σact ∪ {tick}

Clearly (from Figure 5.4) (∀σ ∈ Σact)δT (X0, σ)! and δT (X1, σ)!

Also δT (X0, tick)! and δT (X1, tick)!

=⇒ δT (X, α)!

=⇒ δT (X0, tα)!

=⇒ s ∈ L(T ) as required.

Part 1.1 complete.

Case 1.2) s ∈ Lsamp ω

Let s ∈ Lsampω. We must show s ∈ L(T ).
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From definition of Lsamp we have

s ∈ (Σ∗.tick ∪ {ǫ})ω

We now have 2 cases:

Case a) s ∈ ǫω = ω

Clearly (from Figure 5.4) δT (X0, ω) = X2

We thus we have ω ∈ L(T ).

=⇒ s ∈ L(T )

Case b) s ∈ Σ∗.tickω

=⇒ (∃s′ ∈ Σ∗)s = s′tickω

From case 1.1 we know that s′ ∈ L(T) as s′ ∈ Σ∗

=⇒ (∃X ∈ XT )δT (X0, s
′) = X

As s′ ∈ Σ∗ and ω /∈ Σ∗, X 6= X2, we have:

X = X0 or X = X1 [by Figure 5.4]

Case: X = X0

Clearly (from Figure 5.4)

δT (X0, tick) = X0 and δT (X0, ω) = X2

=⇒ s = s′tickω ∈ L(T )

Case: X = X1

Clearly (from Figure 5.4)

δT (X1, tick) = X0 and δT (X0, ω) = X2

=⇒ s = s′tickω ∈ L(T )

Part 1.2 complete.

Thus from part 1.1 and part 1.2 we can conclude that Σ∗ ∪ Lsampω ⊆ L(T).

Part 1 complete.

Part 2) Show: L(T) ⊆ Σ∗ ∪ Lsampω

Let s ∈ L(T).

=⇒ δT (X0, s)!
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=⇒ (∃X ∈ XT )δT (X0, s) = X

Case a) X = X0 or X = X1

By Figure 5.4, X = X0 or X = X1 implies that s does not contain ω.

=⇒ s ∈ Σ∗ as L(T) ⊆ Σ∗
T

=⇒ s ∈ Σ∗ ∪ Lsampω

Case b) X = X2

=⇒ (∃s′ ∈ Σ∗
T )s = s′ω

=⇒ δT (X0, s
′) = X0

=⇒ s′ ∈ Σ∗

We have two cases: s′ = ǫ or s′ 6= ǫ

Case b.1) s′ = ǫ

=⇒ s = ǫω = ω ∈ Lsampω

Case b.2) s′ 6= ǫ

=⇒| s′ |6= 0

=⇒ (∃s′′ ∈ Σ∗)(∃σ ∈ Σ)s′ = s′′σ (1)

=⇒ (∃X ′ ∈ XT )δT (X0, s
′′) = X ′

=⇒ X ′ = X0 or X ′ = X1 as s′′ contains no ω

Case: X ′ = X0

Clearly (by Figure 5.4) only tick allows δT (X0, σ) = X0

We thus have σ = tick.

=⇒ s′′tick ∈ Σ∗tick ⊆ Lsamp

=⇒ s′ = s′′σ ∈ Lsamp by (1)

=⇒ s = s′ω ∈ Lsampω, as required

Case: X ′ = X1

Clearly (by Figure 5.4) only tick allows δT (X1, σ) = X0

We thus have σ = tick.

=⇒ s′′tick ∈ Σ∗tick ⊆ Lsamp
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=⇒ s′ = s′′σ ∈ Lsamp by (1)

=⇒ s = s′ω ∈ Lsampω as required

Part 2 complete.

Thus by part 1 and 2 we conclude L(T) = Σ∗ ∪ Lsampω

We will now prove that checking SD controllability point (iv) is equivalent

to checking the language inclusion property below.

Theorem 5.4. G satisfies SD controllability point (iv) iff L(Gω) ⊆ L(T )

Proof. We must show that:

I) G satisfies SD controllability point (iv) ⇒ L(Gω) ⊆ L(T ) and

II) L(Gω) ⊆ L(T ) ⇒ G satisfies controllability point (iv).

Part I) Show: G satisfies SD controllability point (iv) ⇒ L(Gω) ⊆ L(T )

Assume G satisfies SD controllability point (iv). (1)

Let u ∈ L(Gω)

We will now show that this implies u ∈ L(T ).

Applying the definition of Gω, we have:

u ∈ L(G) ∪ Lm(G)ω

⇒ u ∈ L(G) or u ∈ Lm(G)ω

Case i) u ∈ L(G) ⊆ Σ∗

As Σ∗ ⊆ L(T ) (by Lemma 5.10), we have u ∈ L(T ) as required.

Case ii) u ∈ Lm(G)ω

⇒ (∃s ∈ Lm(G)) such that u = sω

⇒ s ∈ Lm(G)

From (1) we have s ∈ Lsamp.

⇒ sω ∈ Lsampω

As u =sω and Lsampω ⊆ L(T ) by Lemma 5.10, we can conclude u ∈ L(T ) as

required.

94



Part II) Show: L(Gω) ⊆ L(T ) ⇒ G satisfies SD controllability point (iv)

Let L(Gω) ⊆ L(T ). (2)

We will show that this implies Lm(G) ⊆ Lsamp.

Let u ∈ Lm(G) ⊆ Σ∗.

Will show implies u ∈ Lsamp.

By the definition of Gω, L(Gω) = L(G) ∪ Lm(G)ω

⇒ uω ∈ Lm(G)ω

As Lm(G)ω ⊆ L(Gω) (by the definition of L(Gω)) and L(Gω) ⊆ L(T ) (by (2))

we conclude: uω ∈ L(T )

Since L(T ) = Σ∗ ∪ Lsampω and ω /∈ Σ∗, we have that : uω /∈ Σ∗

⇒ uω ∈ Lsampω

⇒ u ∈ Lsamp as required.

From part I and II, we can conclude that G satisfies SD controllability point (iv)

iff L(Gω) ⊆ L(T ).
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CHAPTER 6

Algorithms

In this chapter we present the algorithms to check the required conditions for

sampled data supervisory control which are plant completeness, ALF, S-singular

prohibitable behaviour, proper time behaviour and SD controllability. Essentially,

most of the algorithms presented in this chapter use existing compositional verifi-

cation algorithms for controllability, nonblocking and language inclusion. We will

discuss the construction/modification required for the needed automata to adapt

the SD properties as described in Chapters 4 and 5, and specify which algorithm

we will use to verify each property. The only new algorithm that we introduce

in this chapter is for verifying SD controllability point (iii.2). We present both a

monolithic algorithm and an incremental algorithm for this property. All algo-

rithms have been implemented in Java and are a part of the DES research tool

Supremica [Sup].

Typically we will be evaluating a system G = G1 ‖ ..... ‖ Gn =

(Y, Σ, δ, y0, Ym) composed of the synchronous product of n TDES. For ease of

reference we will specify G as the set of Gi that it is composed from and use the

notation Gi ∈ G to represent one of these TDES.

In Chapter 3, when we discussed our system comprised of our TDES plant

G, and supervisor S, we assumed that they were both defined over the common

event set Σ, and that our closed-loop system was G × S. However, Supremica

only uses the synchronous product operator so our closed-loop system will be

G ‖ S and G and S may be defined over different alphabets.
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In this chapter, we will assume G is defined over event set ΣG, and S is defined

over event set ΣS. We define our system’s event set to be Σ := ΣG ∪ ΣS. To

apply the definitions from Chapter 3 (that assume both G and S to be defined

over Σ), we can construct TDES G′ and S ′ from G and S by adding selfloops of

any events in Σ \ΣG to G, and in Σ \ΣS to S. We can then apply the definitions

to G′ and S ′ directly.

6.1 Plant Completeness

This property can be evaluated using the standard untimed controllability al-

gorithm, after relabeling a few variables. We relabel the plants as supervisors,

supervisors as plants, all prohibitable events as uncontrollable events, and all

uncontrollable events as controllable events. We then check that our supervi-

sor ”is controllable for our plant” using the existing incremental controllability

algorithm [BMM04].

6.2 ALF

We can verify that our closed system is activity-loop free by using the existing

modular control-loop checker algorithm [MM06], after relabeling a few variables.

We relabel the event tick as an uncontrollable event and all other events as

controllable events. We then check that G ‖ S has no control-loops using the

existing control-loop checker algorithm [MM06]. By Lemma 4.1 in Section 4.2,

this implies the system is ALF.
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6.3 S-singular Prohibitable Behaviour

This algorithm (Algorithm 1) checks that our plant G = G1 ‖ .... ‖ Gn has

S-singular prohibitable behaviour, where S is our supervisor. The algorithm con-

structs for each σ ∈ Σhib, a new TDES Gσ
i ( i = 1,....,n) and a requirement TDES

T σ, as described in Section 4.3. Then it checks if PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)

(for each σ ∈ Σhib) by using the modular language inclusion check algorithm

[BMM04]1. If the language inclusion check is not satisfied for any σ, it returns

false. If all checks are satisfied it returns true and we can conclude by Theorem

4.1, that G has S-singular prohibitable behaviour.

Algorithm 1 S − singularProhibitableBehaviour(G, S)

1: for all σ ∈ Σhib do
2: Create event eσ /∈ Σ.
3: for all Gi ∈ G do
4: Construct Gσ

i from Gi by using the Construct Gσ Algorithm (Algo-
rithm 2) and add it to Gσ (i.e. Gσ = Gσ

1 ‖ ...... ‖ Gσ
n).

5: end for
6: Construct T σ as shown in Figure 4.1 on page 29.
7: Use the Language Inclusion Check Algorithm to check if PEσ

(L(Gσ ‖
S)) ⊆ L(T σ).

8: if ¬(PEσ
(L(Gσ ‖ S)) ⊆ L(T σ)) then

9: return False
10: end if
11: end for
12: return True

6.4 Proper Time Behaviour

This algorithm (Algorithm 3) verifies that the TDES system has proper time

behaviour by constructing a TDES TΥ as per Figure 4.2 with Υ = Σu ∪ {tick},

and the modified components Gω
i (see Section 4.4) for each TDES plant Gi (i =

1The algorithm actually evaluates the equivalent L(Gσ ‖ S) ⊆ P
−1

Eσ

(L(T σ)) as adding self-
loops to T σ is easier than evaluating a natural projection.
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Algorithm 2 Construct Gσ(G, σ)

1: Create a new TDES Gσ with the states, transitions and event set of TDES
G.

2: Create a new state y′ and add it to the states of Gσ

3: Add the event eσ to the event set of Gσ

4: for all transitions t in G of the form (y1, σ
′, y2) do

5: if (σ′ = σ) then
6: Create a new transition (y1, eσ, y′) and add it to the transitions of

Gσ

7: end if
8: end for
9: return Gσ

1, ...., n) that our plant G = G1 ‖ ..... ‖ Gn is composed from. It then constructs

Gω = Gω
1 ‖ .... ‖ Gω

n . Then we check if TΥ ‖ Gω is nonblocking by running the

existing compositional conflict checker algorithm [FM09]. We can then conclude,

by Theorem 4.2 and Lemma 4.4, that G has proper time behaviour.

Algorithm 3 ProperTimeBehaviour(G)

1: for all Gi ∈ G do
2: Construct Gω

i by marking all states of Gi and add it to Gω.
3: end for
4: Construct TΥ as shown in Figure 4.2 on page 39 with Υ = Σu ∪ {tick}
5: Use the compositional conflict checker to check if Gω ‖ TΥ is nonblocking.
6: if Gω ‖ TΥ is nonblocking then
7: return True
8: else
9: return False

10: end if

6.5 SD Controllability Point (ii)

We verify SD controllability point(ii) in two parts. If the TDES system passes

both tests, we conclude it satisfies SD controllability point (ii) as per Theorem

5.1. Both algorithms are presented below.
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6.5.1 SD Controllability Point (ii.a)

This algorithm (Algorithm 4) checks that the system satisfies SD controllability

point (ii.a) (see page 43) by constructing a requirements TDES TE
Σ , the modified

plant components Etick(Gi) and the modified supervisor components Etick(Si) for

the plant TDES G = G1 ‖ ... ‖ Gn and supervisor TDES S = S1 ‖ ..... ‖ Sm,

as described in Section 5.1.1. It then constructs Etick(G) = Etick(G1) ‖ ..... ‖

Etick(Gn) and Etick(S) = Etick(S1) ‖ ..... ‖ Etick(Sm). Then it uses the incre-

mental language inclusion checker [BMM04] to check if L(Etick(G) ‖ Etick(S)) ⊆

L(TE
Σ ). We can then conclude by Proposition 5.1 that the system satisfies SD

controllability point (ii.a).

Algorithm 4 SD Controllability point (ii.a)

1: Create event etick /∈ Σ
2: for all Ai ∈ G ‖ S do
3: Construct Etick(Ai) by adding a selfloop with the event etick to the states

of Ai with tick enabled and add it to Etick(G ‖ S).
4: end for
5: Construct TE

Σ as shown in Figure 5.1 on page 50.
6: Use the Language Inclusion Check Algorithm to check if L(Etick(G) ‖

Etick(S)) ⊆ L(TE
Σ ).

7: if ¬(L(Etick(G) ‖ Etick(S)) ⊆ L(TE
Σ )) then

8: return True
9: else

10: return False
11: end if

6.5.2 SD Controllability Point (ii.b)

This algorithm verifies that our system satisfies SD controllability point (ii.b) (see

page 43). It constructs the TDES TΥ, as per Figure 4.2 with Υ = Dtick,G∪Σhib∪

{tick}, and the modified components Dtick(G
ω
i ) of TDES plant G = G1 ‖ ..... ‖

Gn, as described in Section 5.1.2. Next it constructs Dtick(G
ω) = Dtick(G

ω
1 ) ‖
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.... ‖ Dtick(G
ω
n). Then it checks if Dtick(G

ω) ‖ S ‖ TΥ, where S is our supervisor,

is nonblocking by running the compositional conflict checker algorithm [FM09]

on the system. We can then conclude by Proposition 5.2 and Theorem 4.2

that the system satisfies SD controllability point (ii.b).

Algorithm 5 SD Controllability point (ii.b)

1: for all Gi ∈ G do
2: Create event dtick,Gi

/∈ Σ
3: Construct Dtick(Gi) by adding a selfloop with the event dtick,Gi

to the
states of Gi with tick disabled.

4: Construct Dtick(G
ω
i ) by marking all states of Dtick(Gi) and add it to

Dtick(G
ω).

5: end for
6: Construct TΥ as shown in Figure 4.2 on page 39 with Υ =

{dtick,G1, ...., dtick,Gn
} ∪ {tick} ∪ Σhib.

7: Use the compositional conflict checker to check if Dtick(G
ω) ‖ S ‖ TΥ is

nonblocking.
8: if Dtick(G

ω) ‖ S ‖ TΥ is nonblocking then
9: return True

10: else
11: return False
12: end if

6.6 SD Controllability Point (iii.1)

The SD controllability point(iii.1) is verified in two parts. If the system passes

both tests, we can conclude it passes SD controllability point (iii.1) by Theorem

5.2. Both algorithms are presented below.

6.6.1 SD Controllability Point (iii.1a) Algorithm

The first algorithm (Algorithm 6) checks that our TDES system satisfies SD

controllability point (iii.1a) (see page 64) by constructing a requirements TDES

Tα,G‖S as shown in Figure 5.2 and the modified components EDα(Ai) for G ‖ S
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where G = G1 ‖ .... ‖ Gn and S = S1 ‖ ....Sm and α ∈ Σhib. For each component

Ai that makes up G ‖ S, it constructs EDα(Ai) using the method described in

Section 5.2.1.1. It then creates EDα(G ‖ S) as the synchronous product of all

the EDα(Ai). It then calls the incremental language inclusion checker algorithm

[BMM04] to check if L(EDα(G ‖ S)) ⊆ L(Tα,G‖S) for each α ∈ Σhib. We can

then conclude by Proposition 5.3 that the system satisfies SD controllability

point (iii.1a).

Algorithm 6 SD Controllability point (iii.1a)

1: for all α ∈ Σhib do
2: Create event eα /∈ Σ
3: for all Ai ∈ G ‖ S do
4: Create event dα,Ai

5: Construct EDα(Ai) by adding a selfloops with event eα to the states
of Ai with α enabled and selfloops with the event dα,Ai

to the states
of Ai with α disabled.

6: Add EDα(Ai) to EDα(G ‖ S).
7: end for
8: Construct Tα,G‖S as shown in Figure 5.2 on page 70.
9: Use the Language Inclusion Check Algorithm to check if L(EDα(G ‖

S)) ⊆ L(Tα,G‖S)
10: if ¬(L(EDα(G ‖ S)) ⊆ L(Tα,G‖S)) then
11: return False
12: end if
13: end for
14: return True

6.6.2 SD Controllability Point (iii.1b) Algorithm

This algorithm (Algorithm 7) checks that the system satisfies SD controllability

point (iii.1b) (see page 64) by constructing a requirements TDES Uα,G‖S , as shown

in Figure 5.3, and the modified components Dα(Ai) for TDES G ‖ S where G

= G1 ‖ .... ‖ Gn, S = S1 ‖ ....Sm, and α ∈ Σhib. For each component Ai that

makes up G ‖ S, the algorithm constructs Dα(Ai) using the method described
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in Section 5.2.1.2. It then creates Dα(G ‖ S) as the synchronous product of

all the Dα(Ai). Then it uses the incremental language inclusion checker to check

if L(Dα(G ‖ S)) ⊆ L(Uα,G‖S) for each α ∈ Σhib. We can then conclude by

Proposition 5.5 that our system satisfies SD controllability point (iii.1b).

Algorithm 7 SD Controllability point (iii.1b)

1: for all α ∈ Σhib do
2: for all Ai ∈ G ‖ S do
3: Create event dα,Ai

4: Construct Dα(Ai) by adding a selfloop with the event dα,Ai
to the

states of Ai with α disabled and then add Dα(Ai) to Dα(G ‖ S).
5: end for
6: Construct Uα,G‖S as shown in Figure 5.3 on page 78.
7: Use the Language Inclusion Check Algorithm to check if L(Dα(G ‖ S)) ⊆

L(Uα,G‖S).
8: if ¬(L(Dα(G ‖ S)) ⊆ L(Uα,G‖S)) then
9: return False

10: end if
11: end for
12: return True

6.7 SD Controllability Point (iii.2)

We introduce two algorithms here for verifying SD controllability point (iii.2).

Since there is no existing algorithm in Supremica [Sup] to check the nerode equiv-

alence of concurrent strings, first we develop a ’monolithic checker’ for checking

nerode equivalence of concurrent strings in a TDES. This algorithm constructs

the synchronous product of the TDES components in the system and then verifies

if the system satisfies SD controllability point(iii.2).

The second algorithm is developed using an incremental approach for ver-

ifying the nerode equivalence of concurrent strings, it verifies that the system

satisfies SD controllability point (iii.2) by using an incremental approach guided

by counterexamples similar to the incremental controllability checker in [BMM04].
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Both algorithms are presented below.

6.7.1 Monolithic Verification Algorithm

This algorithm (Algorithm 8) checks point (iii.2) of the SD controllability defini-

tion for TDES A = (Y, Σ, δ, y0, ym) using the definition given in Section 5.2.2.

It analyses the concurrent behaviour of A by starting at sampled state y0, and

determining all the concurrent strings leaving y0, noting the sampled states these

strings lead to. If two concurrent strings leaving y0 have the same occurrence

image, point (iii.2) requires that they must go to the λ-equivalent states.

The above process is repeated for all reachable sampled states, and if they

all pass, then we can conclude that A satisfies SD controllability point (iii.2).

Otherwise we can conclude that it does not.

If TDES A fails point (iii.2), Algorithm 8 generates two counterexamples,

ce1 and ce2. They are composed of strings s ∈ Lsamp, s
′, s′′ ∈ Lconc and u ∈ Σ∗

with ce1 = ss′u and ce2 = ss′′. Strings s, s′ and s′′ correspond to the strings in

the definition of SD controllability point (iii.2) given on page 86. We have that

ss′, ss′′ are accepted by TDES A, s′ and s′′ have the same occurrence image,

but ss′ and ss′′ are not nerode equivalent with respect to L(A) or Lm(A). String

u is an example that causes nerode equivalence to fail. For example, if equiva-

lence for L(A) failed, then ss′u ∈ L(A) but ss′′u /∈ L(A). The counterexamples

will be used in Algorithm 13, the incremental verification algorithm. The two

counterexamples, ce1 and ce2, are flagged to apply to either L(A) or Lm(A).

With respect to the state based algorithm presented here, sampled string s

corresponds to the current sampled state being processed by Algorithm 8. Con-

current strings s′ and s′′ correspond to two sampled states added to the set Yequ

in Algorithm 10. Finally string u will be determined when a state pair fails the

test at line 11 or lines 15-16 in Algorithm 12. If line 11 fails, string u takes
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us to the marked state, if lines 15-16 fail, string u takes us to state reached by

the σ ∈ Σ transition.

We first need to define some variables that we will use in Algorithm 8. Let

YSF ⊆ Y represent sampled states found by the algorithm. Let YSP ⊆ Y repre-

sent sampled states found and waiting to be processed. Let pNerFail ⊆ Pwr(Y )

be the subset of Y that we need to check for λ-equivalence. We will use the nota-

tion ”pop” to remove an element from a set, and ”push” to add an element. To

determine which concurrent strings are possible from our sampled state, we not

only need to know which state we have reached, but the occurrence image of the

string that brought us to that state. We will use the concept of nodes, where a

node is a tuple (Σ′, y) ⊆ Pwr(Σ)× Y. The set Σ′ represents the occurrence image

of the string that brought us to state y.

For our algorithm, let CN ⊆ Pwr(Σ)× Y be the set of nodes that represent

Algorithm 8 Monolithic SD Controllability point (iii.2)(A)

1: YSF := YSP := {y0}
2: pNerFail := ∅
3: while (YSP 6= ∅) do
4: y := pop (YSP )
5: do AnalyseSampleState(y, YSF , YSP , CN)
6: do CheckNerodeCells(CN,pNerFail)
7: end while
8: if (pNerFail = ∅) then
9: return True

10: end if
11: controllable := RecheckNerodeCells(pNerFail)
12: if (controllable) then
13: return True
14: else
15: create Counterexamples
16: return False
17: end if

sampled states that were reached from the current sampled state. This means

the occurrence image will correspond to a concurrent string.
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The subalgorithms used in Algorithm 8 are defined in the following sections.

We also assume that TDES A is available to all subalgorithms. The algorithms

for creating a counterexample can be found in [BMM04].

6.7.1.1 AnalyzeSampledState Algorithm

We first need to define some variables that we will use in Algorithm 9. Let

FN ⊆ Pwr(Σ)× Y be the set of nodes that we have already found. Let PN

⊆ Pwr(Σ)× Y be the set of nodes that we have found, but not yet processed.

Algorithm 9 AnalyzeSampledState(y, YSF , YSP ,CN)

1: FN:= PN:= {(∅, y)}, CN = ∅
2: while (PN 6= ∅) do
3: (Σ′, y′) = pop(PN);
4: for all σ ∈ Σ do
5: if (δ(y′, σ)!) then
6: y′′ := δ(y′, σ)
7: Σ′′ := Σ′ ∪ {σ}
8: if (σ = tick) then
9: push ((Σ′′, y′′), CN)

10: if (y′′ /∈ YSF ) then
11: push(y′′, ZSF )
12: push(y′′, ZSP )
13: end if
14: else
15: if ((Σ, y′′) /∈ FN) then
16: push((Σ′′, y′′), FN)
17: push((Σ′′, y′′), PN)
18: end if
19: end if
20: end if
21: end for
22: end while

The analyzeSampledState algorithm (Algorithm 9) determines which concur-

rent strings are possible from sampled state y, and to which sampled states the
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strings lead. Actually it is sufficient for us to track the occurrence image of our

strings, and use the strings themselves thus reducing complexity.

Algorithm 9 keeps track of the nodes ((Σ′, y′) ⊆ Pwr(Σ)× Y) that we have

found, not the actual state. The reason is that a state could be reached by

multiple strings. We start with the node (∅, y) which corresponds to Occu(ǫ) and

our starting sampled state, y, and loop until there are no more nodes to process.

As Σ and Y are finite sets, it follows that Pwr(Σ) × Y is finite. As lines 14-17

ensure a node is added at most once to PN, we are assured our algorithm will

process a node at most once, thus we will terminate in a finite number of steps.

For each node (Σ′, y′) added to PN, we determine (lines 4-19), which events

are possible at state y′. If event σ ∈ Σ is possible at y′, we determine the next

state y′′ and the occurrence image of the string that takes us to y′′ (line 7). If σ

is the tick event, then y′′ is a sampled state. We don’t add node (Σ′′, y′′) to PN

as the tick terminates our concurrent string, but we add (Σ′′, y′′) to CN (line 9).

We add y′′ to YSF and YSP only if y′′ has not been found already. If σ is not tick,

we add node (Σ′′, y′′) to PN only if we have not already seen (Σ′, y′′).

Finally, we note that when Algorithm 9 terminates, CN will contain the set

of all sampled states reached from y, and the occurrence image of the concurrent

strings that reached them. This will be used by the calling routine to determine

which states point (iii.2) requires to be λ-equivalent.

6.7.1.2 CheckNerodeCells Algorithm

The CheckNerodeCells algorithm (Algorithm 10) examines nodes (Σ′, y′) in CN,

to determine which states point (iii.2) requires to be λ-equivalent. CN contains all

the sampled states reached from the concurrent sampled states and the occurrence

images of the concurrent string that reached that state.

Algorithm 10 examines each (Σ′, y′) ∈ CN, and groups into a set (Yequ) all of
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the sampled states with the same occurrence image (line 2-13). If the resulting

set contains more than one distinct state, the Yequ is added to pNerFail. Each

Yequ ∈ pNerFail will be later tested for λ-equivalence.

Algorithm 10 CheckNerodeCells(CN, pNerFail)

1: while (CN 6= ∅) do
2: (Σ′, y′) := pop(CN)
3: Yequ := {y′}
4: SameCell := True
5: for all (Σ′′, y′′) ∈ CN do
6: if (Σ′ = Σ′′) then
7: push(y′′, Yequ)
8: CN := CN - (Σ′′, y′′)
9: if (y′ 6= y′′) then

10: SameCell := False
11: end if
12: end if
13: end for
14: if (¬SameCell) then
15: push(Yequ,pNerFail)
16: end if
17: end while

6.7.1.3 ReCheckNerodeCells Algorithm

We first define variables Yvis ⊆ Y × Y . This variable represents state pairs that

are required to be λ-equivalent. If algorithm ReCheckNerodeCells returns ”True”,

then it means they have all been found to be equivalent.

Algorithm 11 checks the state subsets stored in pNerFail to see if the states

in a given subset are λ-equivalent to each other. If pNerFail is not empty, we

call the subalgorithm RecheckNerodeCell for each element Yequ in pNerFail. If

RecheckNerodeCell returns true, this means that the set YV is will contain the

state pairs encountered so far which satisfy the definition of λ-equivalent. If
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Algorithm 11 ReCheckNerodeCells(pNerFail)

1: YV is := ∅
2: while (pNerFail 6= ∅) do
3: Yequ := pop(pNerFail)
4: Pass := ReCheckNerodeCells(Yequ , Yvis)
5: if (¬Pass) then
6: return False
7: end if
8: end while
9: return True

RecheckNerodeCell returns false, the system fails to satisfy SD controllability

Point (iii.2).

6.7.1.4 RecheckNerodeCell Algorithm

We first define variables Ypend ⊆ Y × Y . This variable represents state pairs that

we need to test for λ-equivalence (see λ-equivalence definition on page 9).

For each set of states (Yequ) that Algorithm 12 is passed as a parameter, we

check that these states are λ-equivalent to each other. The algorithm starts by

removing a state y1 from the set Yequ and initializing the pending list Ypend to

the empty set. While Yequ is not empty, the algorithm adds the state pairs of

the form (y1, y2) to Ypend where y2 is removed from Yequ. We also store the state

pair (y1, y2) and (y2, y1) both in the visited list, YV is, since λ is an equivalence

relationship, thus symmetric. We note that the state pairs in Yvis represents

states already shown to be λ-equivalent from a previous call to Algorithm 12,

or represents state pairs that must be shown to be λ-equivalent, if the system

satisfies SD controllability point (iii.2). The set Yvis also is used to ensure a state

pair is only added once to Ypend, ensuring that the algorithm terminates in a finite

number of steps.

Our approach to checking that the state pairs in Ypend are λ-equivalent is
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Algorithm 12 ReCheckNerodeCell(Yeq , YV is)

1: y1 := pop(Yequ)
2: Ypend = ∅
3: while (Yequ 6= ∅) do
4: y2:= pop (Yeq)
5: push ((y1, y2), YV is)
6: push ((y2, y1), YV is)
7: push ((y1, y2), Ypend)
8: end while
9: while Ypend 6= ∅ do

10: (y1, y2) := pop(Ypend)
11: if ((y1 ∈ Ym ∧ y2 /∈ Ym) ∨ (y2 ∈ Ym ∧ y1 /∈ Ym)) then
12: return False
13: end if
14: for all σ ∈ Σ do
15: if (¬(¬δ(y1, σ)! ∧ ¬δ(y2, σ)!)) then
16: if (¬δ(y1, σ)! ∨ ¬δ(y2, σ)¬!) then
17: return False
18: end if
19: y′

1 = δ(y1, σ)
20: y′

2 = δ(y2, σ)
21: if ((y′

1 6= y′
2) ∧ ((y′

1, y
′
2) /∈ YV is)) then

22: push ((y′
1, y

′
2), YV is)

23: push ((y′
2, y

′
1), YV is)

24: push ((y′
1, y

′
2), Ypend)

25: end if
26: end if
27: end for
28: end while
29: return True

to attempt to disprove that the pairs are λ-equivalent. If we can’t disprove this,

then they must be λ-equivalent.

Examining the λ-equivalent definition, we see that if state y1 and y2 are λ-

equivalent, then they must be both marked, or neither. Lines 11-13 test this,

returning false if they fail the test.

The next test for λ-equivalence is that for each σ ∈ Σ, there must be a σ

transition at both states, or at neither. Lines 14-18 check this, returning false
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if the test fails.

The final test is that if there is a σ ∈ Σ transition at both y1 and y2, then

their next states y′
1 and y′

2 must be λ-equivalent. We test this by adding state

pair (y′
1, y

′
2) to Ypend. To make sure we terminate, we only add (y′

1, y
′
2) to Ypend

if (y′
1, y

′
2) are already in Yvis. If they are in Yvis, then they are known already to

be equivalent from a previous call to Algorithm 12 , or they have already been

added to Ypend. This is handled by lines 19-25.

If states y1 and y2 are not λ-equivalent, then at some point a set of states

must be added to Ypend that will fail the test at lines 11-13 or lines 14-18,

causing the algorithm to return false, ending the point (iii.2) check. If we empty

Ypend and find no state pairs that failed our checks, then all state pairs that we

added to Yvis must be λ-equivalent. This means we can return true for Yequ, and

the state pairs in Yvis do not need to be tested again, and can thus be reused in

future calls for the current automata.

6.7.2 Incremental Verification Algorithm

The incremental verification algorithm (Algorithm 13) presented here is devel-

oped on the lines of the incremental verification algorithms for controllability and

language inclusion guided by counter-examples [BMM04].

For plant G = G1 ‖ .... ‖ Gn and our supervisor S = S1 ‖ .... ‖ Sm,

the algorithm verifies that G ‖ S satisfies SD controllability point (iii.2) using

Theorem 5.3. Theorem 5.3 says that if TDES G1 and G2 satisfy point (iii.2) then

G1 ‖ G2 satisfy point (iii.2) also. This means that if we partition the automata

that make up G ‖ S into subsystems, and show that each subsystem satisfies

point (iii.2), then G ‖ S also satisfies point (iii.2).

We first need to define some variables that we will use in Algorithm 13. Let

UnProcessed be the set of TDES that we have yet to process. Let Processed
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be the set of TDES that we have already processed. Let Current be the set of

TDES that we are currently testing. All three are subsets of the set of TDES

that comprise our plant G and supervisor S. We also use Sync(Current) to stand

for the synchronous product of the TDES contained in Current.

Algorithm 13 SD Controllability point (iii.2)(G ‖ S)

1: UnProcessed = ∅, Processed = ∅.
2: for all Ai ∈ G ‖ S do
3: push(Ai, UnProcessed)
4: end for
5: while (Unprocessed 6= ∅) do
6: Ai := pop(UnProcessed)
7: Current := {Ai}
8: Use Algorithm 8 to check if Sync(Current) satisfies point (iii.2)
9: while (Sync(Current) fails point(iii.2)) do

10: Get Counterexamples ce1=ss′u and ce2=ss′′ from Algorithm 8
11: if (there exists Aj ∈ ((Unprocessed ∪ Processed) \ Current) such

that Aj does not accept both ce1 and ce2) then
12: push(Aj ,Current)
13: else
14: return False
15: end if
16: Use Algorithm 8 to check if Sync(Current) satisfies point (iii.2)
17: end while
18: UnProcessed := Unprocessed \ Current
19: push(Current,Processed)
20: end while
21: return True

Algorithm 13 selects unprocessed TDES component Ai and runs the mono-

lithic checker (Algorithm 8) to see if Ai satisfies point (iii.2) (lines 6-8). If the

check fails, Algorithm 8 provides counterexamples ce1 := ss′u and ce2 := ss′′,

which are described in Section 6.7.1. The algorithm then tries to determine

another TDES Aj in the system that rejects either counterexamples. If it finds

one, it’s added to the set Current, and the algorithm checks if Sync(Current)

now satisfies point (iii.2). If no such automata exists, then it’s clear from the

definition of the counterexamples in Section 6.7.1 that G ‖ S must also fail
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point (iii.2), by the same counterexamples.

Heuristics are used to choose which TDES Aj to add to Current. For

our algorithm, we have used the same methods and heuristics as the algorithms

presented in [BMM04] for controllability and language inclusion; therefore we do

not give the details of the heuristics here. The details can be found in [BMM04].

6.8 SD Controllability Point (iv)

This algorithm (Algorithm 14) checks that the TDES system satisfies SD con-

trollability point (iv) by constructing a TDES T , as shown in Figure 5.4, and

the modified components Aω
i for TDES G ‖ S where G = G1 ‖ ..... ‖ Gn, S =

S1 ‖ .... ‖ Sm, and ω /∈ Σ.

Algorithm 14 SD controllability Point (iv) Algorithm

1: Create event ω /∈ Σ
2: for all Ai ∈ G ‖ S do
3: Construct Aω

i using Algorithm 15 and add it to Aω

4: end for
5: Construct TDES T as shown in Figure 5.4 on page 90.
6: Use the Language Inclusion Check Algorithm to check if L(Aω) ⊆ L(T )
7: if (L(Aω) ⊆ L(T )) then
8: return True
9: else

10: return False
11: end if

For each component TDES that makes up G and S, the algorithm creates an

Aω
i using method described in Section 5.3. For each marked state, the algorithm

creates an ω transition from the marked state to a dump state. It then creates

the TDES Aω which is the synchronous product of the above Aω
i . It then uses the

existing language inclusion checker to check if L(Aω) ⊆ L(T ). If the check passes,

we can then conclude by Theorem 5.4 that the system passes SD controllability
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point (iv).

Algorithm 15 Construct Aω(A)

1: create a new TDES Aω with the states, transitions and event set of TDES A.
2: Add new state y′ to Aω

3: for all states y in A do
4: if (y is a marked state) then
5: create a new transition (y, ω, y′) and add it to the transitions of Aω

6: end if
7: end for
8: add the event ω /∈ Σ to the event set of Aω

9: return Aω
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CHAPTER 7

SD Controlled FMS Example

For the application of our compositional verification algorithms, we consider the

example of the SD controlled flexible manufacturing system (FMS) from [Wan09].

Figure 7.1: Flexible Manufacturing System Overview

The example is based on the untimed flexible manufacturing System from

[Hil08]. A detailed description on how it is adapted to the SD controllable setting

can be found in [Wan09]. The original FMS consists of six plant components
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and five one slot buffers. The buffers are treated as specifications, with the

requirement that they do not overflow or underflow. In [Hil08] and [Wan09] the

event are labeled as mostly numbers, whereas we choose to label them with event

names which represent their meanings, for convenience. Figure 7.1 shows the

structure of the flexible manufacturing system. In the following sections we give

a brief description of the plants and supervisors for the example. In a TDES, we

use a small circle to represent a state. The initial state has an incoming arrow

with no label and all marked states are indicated by a gray filled circle. In the

individual TDES if an arrow is labelled by multiple events, then it represents a

transition for each event. An uncontrollable event is represented by a ! prefix

attached to its label.

S8

S4

S2 S5

S3
S1

S6

S7

tick

B4_to_robot_for_B7

robot_takes_from_B2

tick

tick

tick

tick

tick

tick

B4_to_robot_for_B6

tick

!robot to B7

!robot to B6

!robot to B4

Figure 7.2: Robot

S4

S2

S1

S3

tick

B8_to_PM

tick

tick

tick

!PM to B8

Figure 7.3: Painting
Machine - PM

7.1 Plants

The SD Controlled flexible manufacturing system consists of the following plant

components: two conveyors Con2 and Con3, a Robot, a Lathe that can pro-

duce two different part types (A and B), a painting machine PM, a finishing

machine AM, SystDownNup which handles the shutdown and restart of the
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!Lathe to B4 A
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Figure 7.4: Lathe

S8S3

S4

S2 S5

S1

S6

S7

ticktick

tick
tick
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Initialize_AM
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B7_to_AM

B6_to_AM

tick

!Finished from B7

!Finished from B6

Figure 7.5: Finishing Machine - AM

system, and three other plants AddNoPartEntersSystem, AddNoB6toAM

and AddNoB7toAM.

These last three plant components add several new expansion events to the

system, namely no part enters system, noB6 to AM a, noB6 to AM b,

noB7 to AM a, and noB7 to AM b. Expansion events are events that are not

part of the physical system, but were added as part of the supervisor implemen-

tation to aid in communication between supervisors. Figures 7.2 - 7.11 show

the TDES for the plant components.
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Figure 7.6: AddNoPartEntersSystem
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Figure 7.7: Conveyer- Con3

7.2 Supervisors

In this section we give a brief overview of each supervisor for the SD controlled

flexible manufacturing system. Supervisors B2, B4, B6, B7 and B8 control

the flow of parts through the corresponding buffers in order to prevent over-

flow and underflow of the buffers. The supervisors TakeB2, SupB4, B4Path

and LathePick handle the flow of parts from buffer B4 to Lathe and back

again, whereas moving parts from buffer B4 to buffer B6 and buffer B7 is han-

dled by TakeB4PutB6 and TakeB4PutB7. The supervisors ForceB6toAM,

ForceB7toAM, ForceInitializeAM and AMChooser deal with the paths

from buffers B6 and B7 leading through the AM and including when the parts

exit the system. Each supervisor is briefly described in the following sections.

7.2.1 B2

In addition to preventing underflow and overflow of buffer B2, supervisor B2

also decides when to force the event part enters system. It immediately forces
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Figure 7.11: Conveyer - Con2

this event when the system starts so that Con2 accepts a new piece into the

system. Then it waits for the piece to enter buffer B2 before enabling the event

robot takes from B2. It also makes sure that another part cannot enter the

system until the event robot takes from B2 occurs, thus preventing overflow.

7.2.2 B6 and B7

The supervisors B6 and B7 control their own respective buffers, enabling and

disabling events to prevent overflow or underflow. They do not force any events.

7.2.3 B8

The supervisor B8 not only prevents overflow and underflow but also controls the

movement of a piece between buffer B7 and machine PM. It observes the progress
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Figure 7.14: Supervisor B6

of the parts and forces the events B7 to Con3, B8 to PM and B8 to Con3 when

required.

7.2.4 TakeB2

Supervisors TakeB2 addresses two issues. First it decides which part the Robot

should take when a part is waiting in both buffers B2 and B4. Supervisor

TakeB2 forces the Robot to first take the part from buffer B2, then from buffer

B4 and then again from buffer B2 and so on. It waits for a piece to enter

buffer B2 (event part enters B2) and immediately enables and forces the event
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robot takes from B2 to move the piece to buffer B4. Then it waits for the piece

to go to Lathe for processing, then be returned to buffer B4. Then it takes the

piece from buffer B4 and moves the piece to buffer B6 or B7 (depending upon

the type of the piece), before it allows the Robot to take a piece from buffer B4

again.

Second TakeB2 deals with a blocking issue related to buffer B4. The buffer

B4 accepts a piece from the Robot and gives it to the Lathe for processing. While

this piece is being processed, it is possible that buffer B4 might accept another

piece from the Robot, thus leaving no place for the Lathe to return the part
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that it was processing. This would result in making the system block. TakeB2

resolves this issue by disabling event robot takes from B2 until the part being

processed by Lathe is returned to buffer B4 and then moved to buffer B6 or buffer

B7.

S7

S3
S1

S4

S0

S5

S2

S6tick

tick
tick

tick

B4_to_Lathe_B
B4_to_Lathe_A

B4_to_robot_for_B6

tick

tick
B4_to_robot_for_B7

tick

tick

robot_takes_from_B2

!Lathe to B4 A !Lathe to B4 B

!robot to B4

Figure 7.17: Supervsior B4

7.2.5 B4

In addition to ensuring that buffer B4 does not overflow or underflow, supervisor

B4 also makes sure that once there is a piece in buffer B4, appropriate action

is taken when the piece is taken out. When the Robot puts a piece in buffer

B4 by means of event robot to B4, supervisor B4 makes sure that only event

B4 to Lathe A and B4 to Lathe B can occur to move the piece out of buffer B4

to Lathe. The piece can then be processed by the Lathe depending on its type.

The piece is then returned by the Lathe to buffer B4 using events Lathe to B4 A

or Lathe to B4 B. The type A piece then proceeds to buffer B6 by the event

B4 to robot for B6, the type B piece proceeds by B4 to robot for B7.
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Figure 7.18: Supervisor B4Path
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Figure 7.19: Supervsior LathePick

7.2.6 B4Path

The supervisor B4Path ensures correct flow of material through the B4 to Lathe

path. It disables the event robot takes from B2 once a part is taken to buffer B4

from buffer B2, and disables B4 to robot for B6 and B4 to robot for B7 until

the Robot puts a part in buffer B4.

7.2.7 LathePick

This supervisor helps in controlling the flow of material through the B4 to Lathe

path as well. Supervisor LathePick enforces the decision that the Lathe first

process a part of type A, and then a part of type B, and so on.

7.2.8 TakeB4PutB6

The event B4 to robot for B6 is used for moving a part from buffer B4 to buffer

B6. Supervisor TakeB4PutB6 decides when to enable and force this event. Af-

ter waiting for event Lathe to B4 A to occur, it forces event B4 to robot for B6.

It then waits for the event B6 to AM to occur which indicates that buffer B6 is
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Figure 7.20: Supervisor TakeB4PutB6

empty and ready to take a new part.
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tick tick

tick

tick

B7_to_AM

!Lathe to B4 B

!Lathe to B4 B

Figure 7.21: Supervisor TakeB4PutB7

7.2.9 TakeB4PutB7

This supervisor takes care of two issues. First, it decides when to enable and

force the event B4 to robot for B7. Second, we have a nonblocking issue. When

a part put in buffer B7 goes to PM for processing, a situation could arise where

the Robot puts another part in buffer B7 such that there is no place for the first

part being processed to return to buffer B7. Supervisor TakeB4PutB7 observes

and waits until buffer B4 has a part of type B ready to be transferred to buffer B7

(event Lathe to B4 B). Then it enables and forces the event B4 to robot for B7

to transfer the part. Next it waits for the part to leave from buffer B7 (event
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B7 to AM) before it allows Robot to take another part from buffer B4 (event

B4 to robot for B7).

7.2.10 ForceB6toAM

Supervisor ForceB6toAM watches for the event robot to B6 which means there

is a part in buffer B6 ready to go to AM. At this point the supervisor forces the

event B6 to AM . However, this event could currently be disabled by other su-

pervisors or not possible in the plant. In this case, it forces event noB6 to AM a

or noB6 to AM b and tries again to force the event B6 to AM after the tick.

S3S1

S4S0

S2
tick

tick

tick

no_B6_to_AM_a
no_B6_to_AM_b

B6_to_AM

tick

!robot to B6

Figure 7.22: Supervisor ForceB6toAM
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S2tick
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tick
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no_B7_to_AM_a

B7_to_AM

tick

!Con3 to B7

Figure 7.23: Supervsior ForceB7toAM

7.2.11 ForceB7toAM

This supervisor represents exactly the same behaviour for event B7 to AM as

supervisor ForceB6toAM does for event B6 to AM . See Figure 7.23 for details.

7.2.12 ForceInitializeAM

The supervisor ForceInitializeAM primarily decides when to force the event

Initialize AM . The supervisor forces this event straightaway and then waits
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Figure 7.24: Supervisor ForceInitializeAM

for the events Finished from B6 or Finished from B7 to occur before forc-

ing the event Initialize AM again. The other task of this supervisor is to en-

able the events noB6 to AM a and noB7 to AM a when the respective events

B6 to AM and B7 to AM are not eligible to occur in the plant component AM.

When these events are eligible in the plant, the supervisor enables noB6 to AM b

and noB7 to AM b instead. This ensures that when events B6 to AM and

B7 to AM are not possible in the plant, events noB6 to AM a and

noB7 to AM a will always be possible after a tick. It also ensures that the

’a’ and ’b’ events never become eligible at the same time.

We note that the two supervisors ForceInitializeAM and AMChooser

work in harmony with each other with respect to the ’a’ and ’b’ events. Su-

pervisor AMChooser ignores the ’a’ events, therefore never disabling them,

and Supervisor ForceInitializeAM never disables the ’b’ events when events

B6 to AM and B7 to AM are eligible in the plant.
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Figure 7.25: Supervisor AMChooser

7.2.13 AMChooser

This supervisor has to choose which buffer to service when both buffers B6 and B7

have a part waiting to be processed by AM. If both the buffers receive a part in the

same sampling period, then the part in buffer B7 is chosen to be processed first.

Then the part in buffer B6 is processed and the parts are kept on being chosen

in alternating manner. If only one buffer has a part in a given sampling period,

then that part is processed. In order to implement this ordering, the supervisor

AMChooser sometimes has to disable events B6 to AM or B7 to AM and then

to compensate it enable events noB6 to AM b or noB7 to AM b, respectively.

7.2.14 handleSystDown

The supervisor handleSystDown enforces the shutdown/restart mechanism.

Initially it enables the event part enters system and disables the event

no part enters system. Once the event shutdown has occured, it disables

part enters system and enables no part enters system. When the event restart

occurs, it does the reverse. It also ensures the events part enters system and
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Figure 7.26: Supervisor handleSystDown

no part enters system are never enabled at the same time and one of them is

always possible and enabled immediately after a tick. This supervisor works in

conjunction with supervisor B2 to stop new parts from entering the system to

allow the system to empty out and shut down.

7.3 Results

Monolithic Modular/Compositional

Runtime
(sec)

Total
States

Peak
States

Runtime
(sec)

Total
States

Peak
States

Faster
runtime

Peak state
difference

Plant Completeness 0.271 82,608 82,608 0.088 1,344 1,344 3 times -81,264

Activity-loop Free 0.122 19,532 19,532 0.004 46 8 30 times -19,524

Proper Time Behaviour 7.236 2,359,296 2,359,296 0.0642 124 16 112 times -2,359,280

S-singular Prohibitable Behaviour 5.746 2,726,064 82,608 0.111 490 62 51.7 times -82,546

SD Controllability i 0.637 82,608 82,608 0.407 16,212 16,212 1.5 times -66,396

SD controllability ii.a 0.265 105,328 105,328 0.174 164,497 164,497 1.5 times 59,169

SD Controllability ii.b 0.147 165,216 165,216 7.014 193,332 41,714 -48 times -123,502

SD Controllability iii.1 12.38 5,089,080 164,576 0.221 23,277 3,709 56 times -160,867

SD Controllability iii.2 0.128 82,608 82,608 0.010 171 171 12.8 times -82,437

SD Controllability iv 0.253 82,608 82,608 0.165 148,068 148,068 1.5 times 65,460

Table 7.1: Statistics from FMS Example

To test our algorithms, we applied our compositional verification algorithms

on the example of SD controlled Flexible Manufacturing System. Table 7.1

shows the results of the verification using our algorithms. For comparision pur-

poses we have included the results of the monolithic algorithms as well. This is

given to provide insight to how well the compositional approach works as com-
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pared to the monolithic approach.

Table 7.1 shows the total number of states, peak number of states and

average run time (in seconds) for each algorithm. Average runtimes are calculated

from several runs of the algorithms. The total number of states represents the

total states constructed for the synchronous product, whereas the peak number

of states identify the size of the largest automaton constructed by the algorithm.

The table also shows the increase factor for the runtime and the difference in peak

states for each algorithm for comparison purposes. The Runtime factor shows how

many times faster the compositional algorithm is as compared to the monolithic

one. A negative sign shows how much slower the compositional algorithm is than

the monolithic algorithms. The last column shows the difference in peak states

for both the algorithms. A negative sign shows that the monolithic algorithm

constructs that many fewer states than the compositional algorithm.

The algorithms for Proper Time Behaviour, S-singular prohibitable

behaviour, SD Controllability point (ii) and SD controllability point (iii.1) con-

struct and add an additional TDES to the system therefore increasing the total

number of states constructed by the algorithms. The algorithms for S-singular

prohibitable behaviour and SD controllability point (iii.1) invoke the checker

again and again for each prohibitable event in the system, resulting in even more

number of states. The peak number of states are different than total number

of states for the monolithic versions of these algorithms as it represent the size

of the syncronous product constructed by the algorithm for a single run of the

checker. For SD controllability point (iii.1), we have merged the results for the

Algorithm 6 (SD controllability point (iii.1a)) and Algorithm 7 (SD controlla-

bility point (iii.1b)). Therefore the peak states entry for this property represents

the total number of states for one of the algorithms.

The tests were run on a 2.2GHz computer with 4GB of memory, running
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under Fedora Linux 15 using Supremica version 201202221527. The verification

using monolithic algorithms took about 27.18 seconds with the total number of

states of the synchronous product calculated as 82,608. The verification of com-

positional algorithms took a total of 8.258 seconds. This represents a speedup

by a factor of three. We also not that if we replaced the modular check of SD

controllability (ii.b) with a monolithic check, we would have a total run time of

1.39 seconds which would represent a 14 times speedup.

As shown in Table 7.1, all the algorithms except for SD Controllability (ii.b)

show improvement in terms of runtime. In Chapter 5, Section 5.1.2, we redefine

SD controllability (ii.b) as a nonblocking property. The check involves the TDES

TΥ, which considers the entire event set Σ and it is likely that all TDES need to

be taken into account to verify that the property is satisfied. In that case, the

incremental verifiers cannot be of much help and thus it takes more time to per-

form the compositional constructions as well as verifying the property. Similar

results can be seen for the properties SD Controllability (ii.a) and SD controlla-

bility (iv) for the the peak states. Since both of these properties also construct

and use automata that consider the entire event set Σ, the algorithms end up

using more peak states than the monolithic algorithms as they perform more con-

structions and verification for the compositional methods. For an example that

fails the condition, it is quite likely that the modular algorithm will determine

this faster than the monolithic algorithm. For most of the algorithms the results

show that the compositional approach gives us better results in terms of time for

this example.
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CHAPTER 8

Conclusions

8.1 Conclusions

In this thesis we developed a compositional verification method for the sampled-

data supervisory control approach that deals with timed DES systems to imple-

ment the supervisors as sampled-data (SD) controllers.

The sampled-data supervisory control approach identifies a set of conditions

a system should satisfy when its supervisor, S, is implemented as an SD con-

troller. These conditions are plant completeness, activity-loop free, S-singular

prohibitable behaviour, proper time behaviour and SD controllability. To com-

positionally verify these SD properties, we redefined them in terms of other prop-

erties such as language inclusion, nonblocking and controllability. Redefining

them in terms of these other properties makes it easy to apply their exisiting

compositional verification algorithms to verify the SD properties.

We then presented the algorithms for the compositional verification of these prop-

erties. We implemented the algorithms in Java as a part of the project Suprem-

ica. Finally, we considered a flexible manufacturing system example from the

literature, and applied our software to it. We demonstrated that we were able to

handle this example, with better results than a monolithic approach.
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8.2 Future Work

Since the sampled-data supervisory control framework is still relatively new, and

there are not many timed DES examples available, we could not analyse the true

potential of our algorithms and code. Further work towards verifying larger and

more complex models would give a better idea of the potential of the algorithms.

Also, as we ran out of time, heuristics for the the algorithm for verifying SD con-

trollability point (iii.2) could not be explored and developed; therefore different

heuristics for automata selection could be investigated.

132



Bibliography
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