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Abstract

Hierarchical Interface-based Supervisory Control (HISC) is a method to alleviate
the state-explosion problem when verifying the controllable and nonblocking prop-
erties of a large discrete event system. By decomposing a system as a number of
subsystems according to the HISC method, we can verify the subsystems separately
and the global system controllability and nonblocking property are guaranteed, so
that potentially great computation effort is saved.

In this thesis, we first present a predicate-based synthesis algorithm for each type
of subsystem and then prove the correctness of the algorithms. Then a predicate-
based verification algorithm for each type of subsystem is provided. Based on the
predicate-based algorithms, a symbolic implementation is proposed by using Binary
Decision Diagrams (BDD) and the fact that a subsystem is usually composed of a
number of components. With the symbolic implementation, we can handle a much
larger subsystem of each type.

Two large and complicated examples (with estimated worst-case state space on
the order of 10%°) extended from the AIP example are provided for demonstrating
the capabilities of the algorithms and the implementation. A software tool for the

synthesis and verification using our approach is also developed.
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Chapter 1

Introduction

A Discrete Event System (DES) is a dynamic system that is discrete in state space
and is event-driven. Ramadge and Wonham (RW) [36] proposed the supervisory con-
trol theory framework for a class of general DES, in which the DES is represented
as an automaton over an event alphabet, and its behavior is described by the lan-
guage generated by the automaton. The events in the alphabet are partitioned as
controllable events which can be disabled and uncontrollable events which can not
be disabled. By disabling and enabling controllable events, a system controller can
restrict the behavior of a plant. Such a controller is also called a supervisor. Two
properties, controllability and nonblocking, are usually desirable for the behavior of

the controlled system.

Although the supervisory control theory does not require the language to be reg-
ular, in practice the language should be, so that the automaton representing the
language has a finite state space. The control action in the theory is based on the
strings generated by the plant. However, the number of the strings could be infinite.
In order to implement such a controller, a supervisor DES can be designed so that

the synchronous product of the plant DES and the supervisor DES can generate the
1
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desired behavior. We can design the supervisor DES by hand, and then verify the

controllable and nonblocking properties.

In [48], RW provided an algorithm to synthesize an optimal supervisor according
to an arbitrary specification language. An optimal supervisor means that it is a
minimally restrictive controller that satisfies the specification and is nonblocking and
controllable. The complexity of this algorithm is polynomial on the number of the

DES states.

The most intuitive but inefficient method to store a DES in a computer is to save
the state space and transitions in look-up tables directly. To check the controllable
and nonblocking properties, we have to traverse the DES which means we have to
go through and search the look-up tables. However, most practical systems have a
very large state space since they are usually modeled as the synchronous product of
a group of component DES, so the state space size is increased exponentially on the

number of the components. Such a problem is known as the state explosion problem.

The software TCT [47] is a tool using the above method to store a DES. It provides
a synthesizing routine (supcon) to compute the optimal supervisor and other routines
to help model a system and check properties. Due to the state explosion problem,
TCT can only handle some simple systems under the memory limitations (With 1GB
RAM, TCT can handle a system on the order of 107 states). Therefore, it is necessary
to find other efficient approaches to model and represent DES such that for a large
system a supervisor can be synthesized and nonblocking and controllable properties

can be verified.
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1.1 Research Review

In order to overcome the state explosion problem, usually two categories of ap-
proaches can be applied: to explore control architectures and to explore internal

structures of DES.

Modular control [13,34,49] is an early and widely used method, which implements
control action by designing multiple supervisors. Each supervisor is responsible to
implement part of the control specifications. In [3,30, 39,45, 50], this approach is
extended as decentralized control by allowing each supervisor access only to partial
observations of the plant. These architectures successfully solved the controllability

verification but not for the nonblocking verification.

Another architectural approach is the model aggregation methods or the bottom
up methods [8,18,33,41,46,52]. In these methods, the aggregation model(high-level)
is obtained from low-level models by language aggregation or state aggregation. The
"hierarchical consistency” concept is introduced to make sure that a high-level super-
visor can be implemented in low-levels. However, as aggregate models are constructed
from low-levels sequentially, a given level can not be constructed until all the levels
below it have been constructed. Furthermore, the conditions for this type of ap-
proaches are sufficient and necessary, which means that a change on one level may

affect all the levels above it.

In [35], RW introduced a static state feedback supervisory control framework
by using predicates to store the state space and define the specifications. In [47],
a dynamic state feedback control is also introduced by using memory components.

However, they did not mention how to represent a predicate.

In the VDES [9, 10, 28,29] or Petri Net [32,42,43] framework, a system state is

represented by a vector with integer components, and state transitions by integer

3
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vector addition. The specifications are defined in the form of linear inequalities. The
supervisor is synthesized by using linear programming algorithms. These approaches
are applied well on the systems with high degree of regularity. Moreover, to verify
the nonblocking property or synthesize a nonblocking controller, a reachability graph
may need to be constructed first.

STCT [51] utilized the fact that a system is usually modeled as a group of DES
components, so that each state of the system can be represented as a vector. It
then does the synthesis process based on the synchronous product of the plant and
the specification components but does not actually build the synchronous product.
By using IDD (Integer Decision Diagram, an extension of Binary Decision Diagram
(BDD) [6]) to encode the state space and transitions of the system, STCT can synthe-
size an optimal controllable and nonblocking supervisor for a system with closed-loop
state space size on the order of 10%, but that system is quite artificial, and there is
no rigorous theoretical foundation for the algorithms.

Ma [31] presented a top-down multi-level design model called State Tree Structures
(STS) which was initiated in [44] by using the idea of state charts [17]. A STS includes
a State Tree to store states and holons to store local dynamics. A sub-state-tree is
used to store a state set and a basic sub-state-tree is used to represent one state.
Set operations such as union could be done by the join operation of two sub-state-
trees, and global dynamics could be constructed from the local holons, but there
is no easy sub-state-tree operation corresponding to the intersection of two state
sets. Furthermore, not all of the state sets can be represented as one sub-state-tree.
However, by using STS, one could model a system from the top level and treat each
module as a superstate, and later on the module can be further designed in detail.
These modeling steps reflect the hierarchical nature of most complex systems, so

modeling a system as a STS will be straightforward.

4
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To solve the above problems in STS, Ma used BDDs to represent state sets. Due
to the rich structure of STS, the state sets can be represented by BDDs compactly. By
using the optimized recursive algorithms, he modeled and synthesized a state-based
supervisor for a system with an estimated state space on the order of 10%*. However,
in order to construct the global transitions from local transitions, STS requires the
local coupling condition: no shared events between two holons matched to the OR
superstates that are not AND-adjacent to the same AND superstates. This restriction
could force a modeler to flatten the STS, so that it makes the STS less structural
and some optimization techniques (e.g. coreachable inference) work less efficiently.
We will talk more about this in the AIP example chapter. Furthermore, in STS, the
synthesis process is still working on the global state space, which grows exponentially

on the number of components.

Leduc et al. [21-27] proposed the Hierarchical Interface-based Supervisory Control
(HISC) by bringing the information hiding theory from software engineering into su-
pervisory control. By using this method, a system is decomposed into one high-level
subsystem and multiple low-level subsystems. Between the high-level subsystem and
each low-level subsystem, there is a well-defined interface which restricts the inter-
action of the subsystems. All the communications between the high-level subsystem
and low-level subsystems must be done through a specific interface. Therefore, after
modeling the interfaces, we can model those subsystems simultaneously. The really
valuable thing in HISC is that as long as each subsystem and its interface satisfies cer-
tain local conditions, then the global controllable and nonblocking properties can be
guaranteed, which means that we only need to work on the states in each subsystem
instead of the states of the synchronous product of the whole system. With automata
based algorithms, Leduc successfully verified a system with an estimated worst-case

closed-loop state space on the order of 10*'. Richter et al. [37] also modeled and

5
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verified a bottling plant by using the HISC method with estimated state space on
the order of 107 (They obtained this number by multiplying the number of states in

each component DES).

1.2 Thesis Overview

Because the algorithms in [21] (Leduc) explicitly list the states and transitions,
each subsystem could not be very large. With 1GB of RAM, he could handle in-
dividual components only as large as 10°-107 states. This might put limitations on
modeling a real system especially for the high-level. Dai [14] is developing synthesis
algorithms to compute the supervisors for each subsystem. However, his algorithms
are still based on the explicit state and transition listing, thus do not save much
computation.

As each subsystem in HISC is usually modeled as a group of plant DES and a group
of specification/supervisor DES, each subsystem-wide state can be represented as a
vector, where each member of the vector is the state of a component DES. Therefore,
we can use BDD to represent the state space and transitions for each subsystem, and
develop algorithms based on BDD representations to verify or synthesize supervisors
for it. By using the BDD representation and algorithms, our program is able to
handle much larger subsystem, so the power of HISC is greatly improved.

In this thesis, we need to verify not only the controllable and nonblocking proper-
ties but also the interface consistent conditions in [21] for the high-level and low-level
subsystems. The conditions we used are from [23,24], an equivalent version of the
conditions in [21]. A proof for the equivalence between the two can be found in [14,24].
We first present the synthesis algorithms based on specifications for each type of sub-

system, and then give the verification algorithms based on modular supervisors for

6
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each type of subsystem. The correctness of the algorithms is proved. A software tool
to implement these algorithms is also developed.

Two examples of industrial size are provided to show the capability of our algo-
rithms in this thesis. The first one is extended from the AIP example in [21], which
synthesizes a high-level supervisor with state space on the order of 10'°. In the second
example, we build a feedback system by treating each high-level subsystem in the first
example as a low-level system, and then synthesize a low-level supervisor.

As the structure of each subsystem could be thought of as a special STS with
three levels (Level 0 is the root AND superstate, and each state in Level 1 is an
OR superstate corresponding to each component DES, and each state in Level 2 is a
simple state corresponding to each state in the component DES), we borrowed many

ideas from [31], especially with respect to BDD implementation.

1.3 Thesis Structure

The remaining chapters in this thesis are organized as follows.

In Chapter 2, we present the necessary algebra and language foundations for
proofs in this thesis. Basic supervisory control theory of DES and some fundamental
operations of DES and propositions are also presented.

In Chapter 3, we give an overview for the HISC method, and then give an equiv-
alent definition of the interface consistent condition for the purpose of proving our
synthesis algorithms.

In Chapter 4 and 5, the synthesis and verification algorithms based on predicate
operations for an HISC system are presented and proved.

In Chapter 6, we give a BDD-based implementation of the algorithms in Chapter

4 and 5. The encoding techniques and optimization techniques for the BDD imple-
7
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mentations are the main focus of this chapter.
In Chapter 7 and 8, examples to show the capabilities of our algorithms and BDD
implementations are presented.

Finally, in Chapter 9, we discuss the future work and conclusions.



Chapter 2

Preliminaries

In this chapter, we first discuss some basic algebraic and linguistic concepts that
will be used in the later chapters. Then we introduce the predicate and predicate
transformers which are important for our later algorithms. After that, we give an
overview of DES and the RW supervisory control theory. We also state and prove
several fundamental propositions. This chapter is largely based on [47]. Proposi-

tion 2.1 is an extension of Theorem 3.18 from [19] by Huth and Ryan.

2.1 Algebra

2.1.1 Posets and Lattices

Let X be a set, and < be a binary relation on X. < is a partial order if it has

the following three properties:
o reflexive: (Vx e X))z <z
e transitive: (Vz,y,z€ X)z<y&y<z=zx<z

e antisymmetric: (Vr,y € X)z<y&y<z=zx=y
9
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If < is a partial order on X, then the pair (X, <) is called a poset. If < is
understood, we could call X a poset.
Let (X, <) be a poset, z,y € X. An element [ € X is a meet of x and y(denote

itasaxMy =11, if
<z &l<y& (VaeX)a<z&a<y=a<l).
Dually, an element u € X is a join of x and y(denote it as z Ly = u), if
r<u&y<u& (MWeX)x<b&ky<b=u<b).

Let L be a set. A poset (L, <) is a lattice if the meet and join of any two elements
in L always exist.
Let S be a nonempty subset of L and [ € L. Element [ is the infimum of S (inf S)

if
VyeS)Ii<y & (VzeL)((Vye S)z<y)=2<I
Dually, u € L is the supremum of (sup(S)) if
VyeS)y<u & VzeL)((VyeSy<z)=u<z

A lattice (L, <) is complete if, for any nonempty subset S of L, both inf.S and
sup S always exist. Every finite lattice is complete.

Let X be a set. Define Pwr(X) as the set consisting of all the subsets of X.
(Pwr(X), Q) is a complete lattice [15]. This fact is fundamental for the correctness

of our algorithms.

n [47], the meet of elements 2 and y is denoted as x A y, and the join of them is denoted as
x V y, but we will use the notation A for predicate operation and and V for predicate operation or,
because the predicate operations are heavily used in this thesis.

10
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2.1.2 Equivalence Relations

Let X be a nonempty set, and E a binary relation on X. FE is an equivalence

relation if

o (Ve X)zEx (reflexive)

o (Vo,2' € X)axFEz' = 2'Ex (symmetric)

o (Va,2' 2" € X)xEx' & 2’ Ex" = xEx" (transitive)

Let z € X, define [z] C X as [z] := {a' € X|2'Ex}. [z] is called the coset or
equivalent class of x with respect to the equivalence relation FE.

By z € [z], [z] is nonempty.

Let z,y € X, then it can be shown that either [z] = [y]| or [z] N [y] = 0. Namely,

[z] and [y] are either equal or disjoint.

2.1.3 Monotone Functions and Fixpoints

Let (X, <) be a complete lattice. A function f : X — X is monotone if

(Ve,ye X)z<y= f(z) < f(y).

Let X be a set, and f: X — X be a function. An element x € X is a fizpoint of
fifz = f(z). Let (X, <) be a complete lattice. The element x is the greatest fixpoint

of fif
(Vo' € X) 2/ = f(2!) = 2’ < u.

Let X be a set, and f : X — X be a function. For z € X, denote f°(z) for z,

fi(x) for f(z), f2(z) for f(f(x)), ..., and fi(z) for
11
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FUf(.. f(x), i €{0,1,2,...}.
\q‘,—/

We now state Theorem 2.1 which is the well known Knaster-Tarski Theorem [40].
Theorem 2.1 (Knaster-Tarski Theorem). Let (X, <) be a complete lattice, and let

f X — X be a monotone function. Then the greatest fixpoint of f exists and is

equal to sup{x|x < f(z)}. O

Note that the set X can be uncountable infinite, and that this theorem does not
say anything about how to compute the greatest fixpoint. It only states the existence.

For our usage, the complete lattice is (Pwr(X*), C). ¥* is countable infinite, while
Pwr(%*) is uncountable infinite.

Proposition 2.1 is a special case of the Knaster-Tarski theorem, and it also gives

a method to compute the greatest fixpoint for the special case.

Proposition 2.1. Let X be a finite set with n elements, n € {0,1,...}. If a function
f: Pwr(X) — Pwr(X) is a monotone function with respect to C, then there exists
k€ {0,1,2,...} such that k < n and f*(X) is the greatest fixed point of f with
respect to (Pwr(X),C), and (Vi € {1,2,...}) i > k = fi{(X) = fH¥X).

Proof:

1. Show that there exists k < n, f*(X) is a fixpoint of f, i.e. fH(X) = fF1(X).
We know that f(X) C X,

= f3(X) C f(X), as [ is monotone.
= f3(X) C fA(X)

= fTHH(X) C f1(X)
So, we have

12
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X cmx)c--C X)X

Assume Pk < n, f*(X) = f*1(X), then

X cmx) e fiiX)cX

This is impossible, because X only contains n elements, and f*+1(X) c f*(X)
(k € {0,1,...}) means that f*"1(X) contains at least one less element than

fFF(X) does.

. Show that f*(X) is the greatest fixpoint of f,i.e. (VS € Pwr(X)) S = f(S) =
S C fHX).

Let S € Pwr(X), and assume S = f(S).

Must show this implies S C f*(X).

We know that S C X

= f(S) C f(X), as f is monotone

=S5 C f(X), asS=f(9)

= f(S) C f?(X), as f is monotone

. Show that (Vi € {1,2,...})i > k = fi(X) = f*(X).

This follows immediately since f*(X) is a fixpoint of f, i.e. f*(X) = fF(X).

U
13
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2.2 Languages

Let X be a finite set of symbols, and we refer to X as an alphabet. A string over 3

is a finite sequence of symbols in ¥. Denote X1 as the set of all such strings over X.

to

Let € (¢ X) be the empty string (no symbols), we write 2* = 3T U {e}.

We define the operation of concatenation of strings: cat : ¥* x ¥* — ¥* according

cat(e, s) = cat(s,€) = s, 5€ X7,

cat(s,t) = st, s, te Xt

A language L is a subset of ¥*, and thus an element of Pwr(3*).
Let s,t € X*. ¢ is said to be a prefiz of s (t < s) if (Ju € ¥*) tu = s.

Let L C ¥*. The (prefiz) closure of L is defined as:
L:={tex*(3seL)t<s}

A language L is closed if L = L.

The following proposition will be used in following chapters.

Proposition 2.2. Let Ly, Ly € Pwr(X*). Then the following holds:

L_1UL_2:L1UL2

proof:

L1 ULy C Ly U Ly follows immediately since L{ CLiULyand Ly C Ly U L.
We now show L; U Ly C L U L.

Let s € Ly U Ly (1)
Must show this implies s € L; U Ly

By (1), we know (3s' € ¥*) ss’ € Ly U Ly

= ss' € Ly or ss’ € Ly (2)
14
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If ss' € Ly, then s € L. We thus have s € L; U L. (3)
Similarly, if ss’ € Lo, then s € L,. We thus also have s € Ly U L. (4)
By (2), (3) and (4), we can conclude s € L; U L.

O
Let L C ¥* and s € ¥*. The operator Elig; : ¥* — Pwr(X) is used to get the set

of eligible events for s with respect to L.
Elig; (s) := {0 € X|so € L}.
Let L C ¥*. The Nerode equivalence relation on X* with respect to L is defined as
(Vs,teX*)s=pt iff VueX*)suelstuel.

Write || L || as the cardinality of the set of the equivalence class of =p. If || L || is
finite, we say L is reqular. All the languages in this thesis are reqular unless otherwise
stated.

For a regular language L, if we treat each Nerode equivalence class as a state,
then we can build a recognizer with finite number of states to tell if a string s € ¥*

is in L or not. Such a recognizer is said to be canonical.

2.3 DES
A DES G is a generator, and formally defined as a five tuple

G = (Q, 2;57 qo, Qm)v

where @ is the state set; ¥ = X .UY,, where X, is the set of controllable events,
and Y, is the set of uncontrollable events; § : Q x X — @ is the (partial) transition
function; qq is the wnitial state, and @, C @ is the set of marker states. We always

assume () and X are finite.

15
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Let g € Q,0 € ¥. We use §(q,0)! to mean that d(q, o) is defined.

The transition function d can be extended to ¢ : () X ¥* — @ according to

d(q,€) =q
d(q,s0) =6(d(q; 5),0)

provided ¢’ := 0(q, s)! and §(¢’,0)!. Note that d(q, €) is always defined.

A DES over ¥ is the empty DES if Q = (), and we denote it as EMPTY.

A DES G can be represented as a transition graph. The nodes(circles) in the
graph represent states in ). The edges represent transitions. The initial state is
labeled with an entering arrow (o), and the marker states are labels with an exiting
arrow(o—). If the initial state is also a marker state, it will be labeled with a double
side arrow (o« ). The controllable transitions are labeled with a slash on the edge.
Figure 2.1 is the transition graph representation for the well known MACH DES.

The DES M ACH includes three states s0, s1 and s2. State s0 is the initial state and

s2
sl

Figure 2.1: MACH

the only marker state. There are four transitions: (s0,q,sl), (sl,(,s0), (s1, A, s2),
(s2,14,80). Events «,p are controllable events and events (3, A are uncontrollable
events. Note that the event set ¥ may include events other than the four events

shown in the graph.
16
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A DES G generates two languages: L(G) and L,,(G), which are called the closed

behavior of G and the marked behavior of G respectively, and are defined as follows.

L(G) == {s € X*[0(qo, 5)'}

L (G) :={s € X*6(qo, ) € Qm}

The language L(G) is closed, and L,,(G) C L(G).

Let ¢ € Q. State ¢ is reachable if 3s € ¥* such that 0(go,s) = g. State ¢ is

coreachable if s € 3* such that §(q, s) € Q.
A DES G is reachable, if every state in (Q is reachable.
A DES G is coreachable, if every state in () is coreachable.

A DES G is trim, if every state in () is reachable and coreachable.

A DES G is nonblocking, if every reachable state in ) is coreachable. i.e. L,,(G) =
L(G).

We say that DES G represents a language K C ¥* if G is nonblocking and
L,(G) = K. We thus have L(G) = K.

In the tuple definition of G, we define that 6 : Q x ¥ — @ is a partial func-
tion. We say such a DES G is deterministic. Instead, one can define a DES T :=
(Q, %, 7,90, Qm), where Q, 3, qo and @, are defined as in G, but 7: Q@ XX — Pwr(Q)

is a total function. We say such a DES T is nondeterministic.

As every nondeterministic DES can be converted to a deterministic DES, we

assume that all the DES in this thesis are deterministic.

17
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2.4 Operations on DES

2.4.1 Product and Meet

Let G1 = (Q1,%,01,q1,,Q1,,) and Ga = (Q2, X, 62, ¢2,, Q2,,) be two DES defined

over the same alphabet . The product of two DES is defined as:

G1 x Gy = (Ql X Q2,%,01 X 09, (Q1O;Q20)7Q1m X sz),

where 01 X 05 : Q1 X Q2 X X — Q1 X Qo is given by

(01 % 02)((q1,G2), o) = (01(q1,0), 02(g2, 7)),

whenever 01(q;,0)! and d3(gz, 0)!.
From the definition, we have L(G1 X Ga) = L(G1) N L(Gz), and L,,(G1 X Ga) =
L, (G1) N Ly (Ga).

The meet of DES G; and Gg is defined as G; x Gg but only including the

reachable states, and we denote it as meet(Gy, G2).
Obviously, L(meet(G1, Gz)) = L(G1 X G2) and L,,(meet(G1, G2)) = L;,,(G1 x
Go).

2.4.2 Synchronous Product
Synchronous Product on Languages

Let X1, 35 be two alphabets, ¥ = 1 U .
18
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Define the natural projection P; : 3* — ¥*(i = 1,2) according to

€ 1f0§§EZ

o if o€l

Pi(se) = P(s)Pi(0) seX* oceX

Clearly, (Vs,t € ¥*) P;(st) = Pi(s)P;(t). In other words, P; is catenative.

Let P! : Pwr(X}) — Pwr(X*) be the inverse image function of P;, namely for

(2

HC¥r,

P7Y(H) = {s € ¥*|Pi(s) € H}.

7

Let Ly C X3, Ly C 35, The synchronous product Ly || Ly C ¥* is defined as

Lyi||Ly := P7Y(Ly) N Pyt (Ly).

Selfloop

Let G1 = (Q1,%1,01,¢1,,Q@1,,) be a DES defined on alphabet ¥, and ¥ be
another alphabet with X; N Yy = (). The selfloop operation on Gy is used to generate

a new DES G by selflooping each event in Y5 on each state of G;. Formally,
G = Selﬂoop(le 22) = (Qb 21 U 227 527 d19> le)7

where 05 : Q1 X (X1 U X) — @ is a partial function and defined as

(

51(q70-)a (S E1751((]70-)!

52(Q70) = q, S 22

undefined, otherwise
\

19
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Let P : (X1 UZX2)* — 37 be a natural projection, then we have

L(selfloop(G1, %)) = P (L(Gq))
Ly, (selfloop(Gy,Y,)) = Py (L (G1))

Synchronous Product on DES

Let Gy = (Q1, 21,01, 19, Q1,,), G2 = (Q2, 32, 02, @2y, Q2,,) be two DES. The syn-
chronous product of G1 and Gg is defined as 2
G1 || Gg = selfloop(G1, Xo — ¥1) x selfloop(Ga, X; — Xs).

Note that the alphabet set of G1 || Gz is 31 UXs. The product of two DES G1, G2

is actually a special case of the synchronous product where > = .
We define sync(Gq, Gz) as the DES Gy || G2 but only with reachable states.

Then, we have

L(G1 || G2) = L(sync(G1,Gz)) = L(G1) | L(G2) = Py (L(G1)) N P (L(G2))
Lin(G1 || G2) = Lin(syne(Gi, G2)) = Lin(G) || Lin(G2) = Py (Lin(G1)) N P (Lin(Ga))

Note that our synchronous product operation on DES is associative. Namely, for

DES Gl, Gz, Gg, we have

(G1[] G2) || G3) = (G1 || (G2 || Gs))

sync(sync(Gy, Gz), G3) = sync(Gq, sync(Gaz, G3))

2.5 Predicates and Predicate Transformers

2.5.1 Predicates

Let G = (Q,%,6,q0, @) be a DES. A predicate P defined on @ is a function

P:Q — {1,0}. P is identified by a corresponding state subset

2The operator is same as the synchronous product operator on languages, but they can be easily
distinguished by context.
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Qr:={q€@|P(q) =1} CQ.

If ¢ € Qp, we write ¢ = P and say q satisfies P or P includes q. So, ¢ = P if and only
if P(q) = 1. We write Pred(Q) for the set of all predicates defined on @, so Pred(Q)
can be identified by Pwr(Q). With the predicates, we can build boolean expression

using the following operations:

(=P)(q) =1 iff P(q) =0

(PLAPy)(g) =1 iff Pi(q) =1 and Py(q) =1
(PV R)(g) =1 iff Pi(q) =1 or Py(q) =1
(P, — P)(q) =1 iff Py(g) = 1 and Py(q) =0

where P, P, P, € Pred(Q) and ¢ € Q. Clearly, P, — Py, = Py A =P,

The two special predicates true and false are identified by @ and ) respectively.
The predicate P, is identified by Q,,.

For convenience, if () is understood, for (); C @), denote the predicate identified by
@1 as pr(Qq). For a predicate P, € Pred(Q), denote the corresponding state subset
Qp, as st(Py).

The relation < on Pred(Q) is defined as

(VPl,PQGPTed(Q)) P=Pift PANP=DP.

It can easily be shown that < is a partial order on Pred(Q). Clearly, P; < Py iff
Qp, CQp,s0 (VgeQ) g P = qF P

If P, < P,, we say that P, is stronger than P,, and we also say that P; is a
subpredicate of Ps.

Under the identification of Pred(Q) with Pwr(Q) and < with C, it is clear that

(Pred(Q), =) is a complete lattice. The top element is true, and the bottom element
21
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is false.
For a predicate P € Pred(Q), we define Sub(P) to be the set of all the sub-
predicates of P. Clearly, Sub(P) is identified by Pwr(Qp), and (Sub(P), <) is also a

complete lattice with top element P and bottom element false.

Proposition 2.3. Let @ be the state set of a DES G with n states, n € {0,1,...},
and let P be a predicate on Q. If a function f : Sub(P) — Sub(P) is a monotone
function with respect to <, then there exists k € {0,1,...} such that k < n and f*(P)
is the greatest fixed point of f with respect to (Sub(P), =), and (Vi € {1,2,...}) i >
k= f!(P)= f*(P).

proof:
Immediately from Proposition 2.1 and the identifying relationship of Sub(P) with
Pwr(Qp), = with C, P with Qp, and false with (.

2.5.2 Predicate Transformers

Let G = (Q,%,0,q0, Q) be a fixed DES. A predicate transformer is a function
f: Pred(Q) — Pred(Q). We now introduce several predicate transformers which will

be used later on.

e R(G,.)

Let P € Pred(Q). The reachability predicate R(G, P) is defined to hold pre-
cisely on those states that can be reached in G from ¢q via states satisfying P.

Formally,

L gFP=qF RG,P)

2. qF R(G,P)& 0 eX & d(q,0)! & 0(q,0) = P=0(q,0) = R(G, P)
22
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3. No other states satisfy R(G, P).
In other words, ¢ = R(G, P) if and only if there exists a path in G from ¢q to ¢
and each state on the path satisfies P. Therefore, gy ¥ P = R(G, P) = false.
Clearly, R(G, P) =< P and R(G,.) is monotone with respect to < . Note that
R(G, true) exactly includes all the reachable states in Q.
CR(G,.)

Let P € Pred(Q). The coreachability predicate CR(G, P) is defined to hold
precisely on those states that can reach a marker state in G via states satisfying

P. Formally,
1. P, AP = false = CR(G, P) = false
2. qEP,NP=qECR(G,P)

3. ECRG,P)&¢d EP&oeX &, o) &dld,o)=q = ¢ E
CR(G, P)

4. No other states satisfy CR(G, P).

In other words, g = CR(G, P) if and only if there exists a path in G from ¢ to

a marker state satisfying P and each state on the path satisfies P.

Clearly, CR(G, P) < P and CR(G,.) is monotone with respect to =< . Note

that CR(G, true) exactly includes all the coreachable states in Q.

TR(G, .Y
Let > C ¥. With G and ¥’ fixed, TR(G, .,%’) is a predicate transformer. Let

P € Pred(Q). TR(G, P,%) is defined to hold precisely on those states that can

reach a state satisfying P in G only via transitions with events in ¥’. Formally,
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1. P = false = TR(G,P,Y) = false
2. ¢EP=qETR(G,PY)

3. g =TRG,P,Y)&d €Q&oeX &i(d.0) &d(d,0)=q = ¢ =
TR(G,P,Y)

4. No other states satisfy TR(G, P, ).
In other words, g = TR(G, P,) if and only if there exists a path in G from ¢

to a state satisfying P and each transition event in the path is in ¥’. Note that

the states on the path (excluding the end point state) do not need to satisfy P.

Clearly, P X TR(G, P,%’), and TR(G, P,¥’) is monotone with respect to <.

CR(G,P,Y,)

Let P’ € Pred(Q) and ¥’ C ¥. With G, P’ and ¥ fixed, CR(G, P',¥’,.) is also
a predicate transformer. Let P € Pred(Q). CR(G, P',%’, P) is defined to hold
precisely on those states that can reach a state satisfying P’ in G via states

satisfying P and transitions with events in ¥’. Formally,
1. PPAP = false = CR(G, P',¥', P) = false
2. qE P ANP=qECR(G,P Y P)

3. ¢ ECR(G,P,Y,P)&q EP&oeX &b(d,0) &d(d,0)=q = ¢ |
CR(G, P, %, P)

4. No other states satisfy CR(G, P', ¥/, P).

In other words, ¢ = CR(G, P, ¥/, P) if and only if there exists a path in G
from ¢ to a state which satisfies P’ and each state on the path satisfies P and

each transition event is in Y'.
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Clearly, CR(G,P,¥',P) < P and PP AN P < CR(G,P',¥', P). Note that
CR(G,.) is actually a special case of CR(G, P’,¥’,.) with P’ = P,, and ¥/ = .

Proposition 2.4. For a fivzed G, fized predicate P' € Pred(Q), and ¥ C X, the

predicate transformer CR(G, P', Y, .) is monotone with respect to =<, i.e.
(VPl, PQ < PT@d(Q))PI j P2 = CR(G, Pl, E,,Pl) j CR(G,P/,E/, PQ)

proof:

Let Py, Py € Pred(Q). Assume P; < P;. Must show this implies
CR(G, P,Y, P,) < CR(G, P, 5, By).

Let ¢ = CR(G, P, 3, P)). (1)
We now show implies ¢ = CR(G, P, ¥, P,).
From (1), we know (3k € {1,2,...})(3q1,¢2,---,qx € Q)(Fo1,09,..., 061 € X),

G =q, g =P
qi+1:5(Qi70i)> Z:1,2,,]€—1

Qi):Ph i:1,2,...,l€

By P, X P, we have

(Fke{1,2,.. )3, 92, ..., qr € Q)(3o1,092,...,01,1 €Y)

@ =q, q =
Qi-l—l:(s((huo-i)) Z:17277k_]—
qi):PQ, ?::1,2,...,]%’

= qECR(G,P Y, P)
O
As these predicate transformers play important roles in our algorithms, we give

an example for them. Let G be the DES shown in Figure 2.2(a). A state labeled
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with a predicate (P or P’) means that it satisfies that predicate. For example, state
s3 satisfies P but not P’, state sl satisfies neither P nor P’, and state s2 satisfies
both P and P’. The other figures in Figure 2.2 show the result of the above predicate
transformers. The states filled with gray color satisfy the corresponding predicate

transformer result.

(¢) CR(G, P) = pr({s0, s2, s5, 56, s7}) (d) TR(G,pr({s7}),{al,a2,a3,ad,a6}) = pr({
50,81, 82, s4,sT})

(e) CR(G, P',{al,a2,a4,ab,a7,a8}, P) = pr({
50,52, s5,s6})

Figure 2.2: Example for predicate transformers
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2.5.3 Languages Induced by Predicates

Let G = (Q,%,6,q0,@m) be a DES, and P € Pred(Q) be a predicate on Q.
The language L(G, P) is the closed language induced by P. Informally, L(G, P) is
the closed language generated by the DES G with only those states satisfying P.

Formally,
L(G,P) :={w € ¥*|(Yv < w)d(qo,v) = P}.
Similarly, we define L,,(G, P) as the marked language induced by P.
Lim(G, P) := {w € L(G, P)|d(qo, w) € Qm}

We can define a DES G’ based on DES G and P as follows. If ¢y ¥ P, then
G’ is defined as the EMPTY DES. Otherwise let G’ := (Q', %, g0, Q),), where
Q' = Qp,Q., == Qp N Q, and the partial function ¢’ : Q' x ¥ — Q' is defined

according to

5/70-, if § /70_!&5 /,0'
(V¢ € QYo € %) 8(¢,0) = (¢,0) (¢,0)! & 0(¢,0) = P

undefined, otherwise.

Essentially, the DES G’ is the DES G after removing all the states not satisfying
P and all the transitions with source states or target states not satisfying P. Now one
may think of L(G, P) and L,,(G, P) as L(G’) and L,,(G’) respectively.

The following two propositions will be used in following chapters.
Proposition 2.5. Let G = (Q, %, 9, o, @m) be a DES, then the following holds:
(VP € Pred(Q))(Vs € £*) s € L(G, P) < 6(q0, 5) = R(G, P).

proof:
Let P € Pred(Q) and s € ¥*. Must show implies s € L(G,P) < §(qo,s) E

R(G, P).
27



Master Thesis — R. Song — McMaster — Computing and Software

s € L(G,P)
& (Vt < s) 0(qo,t) E P, by definition of L(G, P)

<~ (Eln S {O, 1,2,.. .})(30‘0,0'1, s, 0p_1 € Z)(qu,QQ, e Qn € Q)

S = 0’00'1 ”'0-’)’1,—1

Gn = 6(qo, 5)
G EP i=0,1,...,n

Qi+1:5(qiao-i)7 i:0717"'7n_1

(g, 5) = R(G, P).
O

From this proposition, it is clear that the language L(G, P) only depends on those
states satisfying R(G, P).

Proposition 2.6. Let G = (Q, %, 9, qo, Q) be a DES, then the following holds:

(VP € Pred(Q))(Vs,t € L(G, P)) 6(qo,5) = 0(qo;t) = s =pe.p)t & s =1, cp) t

where =pq,p) and =r,,(g,p) are the Nerode equivalence relations on X* with respect

to L(G, P) and L,,(G, P) respectively.

proof:
Let P € Pred(Q),s € L(G,P) and t € L(G, P). (1)
Assume 6(qo, 8) = (qo, t). (2)

1. Show s EL(GJD) t.
Sufficient to show that (Yu € ¥*)su € L(G, P) < tu € L(G, P).

Let u € ¥*. Must show the following two points.
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(a) su€ L(G,P)=tue L(G,P)
Assume su € L(G, P). (3)
We now show that tu € L(G, P).
By (3) and Proposition 2.5, we know (g, su) = R(G, P). (4)
If u = ¢, then tu =t € L(G, P) from (1). So, we assume u # e.
Let u:= 0109 - 0,, where n € {1,2,...} and 01,09,...,0, € X.

By (4) and the definition of R(G, P), we have

d(qo, so1) | P,0(qo, s0102) = P,...,8(qo, S0109- - 0y,) = P. (5)
By (2) and G is deterministic, we have
d(qo, so1) = d(qo, tor), 0(qo, So102) = d(qo, tor102), « -,
6(qo, 50102 -+ 0) = 6(qo, to102 - - 0). (6)
By (5)(6), we have
5(qo, tor) = P,8(qo, toroy) = P, ..., 0(qo, toros - 0,) = P. (7)
From (1), we know t € L(G, P). From this and Proposition 2.5, we have
0(go, 1) = R(G, P) (8)
By (7),(8) and the definition of R(G, P), we have 6(qo,tu) = R(G, P).
= tu € L(G,P), by Proposition 2.5
(b) tu € L(G,P) = su € L(G, P)

Identical to Part 1(a) by exchanging s and t.

2. Show s =1,.(a,p) t.
Sufficient to show that (Yu € ¥*) su € L,,,(G, P) < tu € L, (G, P).

Let u € ¥*. Must show the following two points.
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(a) su € Ly,(G,P)=tu€ L, (G, P)
Assume su € L, (G, P). 9)
We now show that tu € L,,(G, P).
By (9) and the definition of L,,(G, P), we have
su € L(G, P) & §(qo, su) € Qm
= d(qo, su) = R(G, P) & (qo, su) € @y, by Proposition 2.5 (10)
If u=c¢, then tu =1t € L,,(G, P) from (1) and (2). So, we assume u # €.
Let u:= o109 -+ 0,, where n € {1,2,...} and 01,09,...,0, € X.

By (10) and the definition of R(G, P), we have

(5(6]0,80’1) ): P,é((]o,SO’lOQ) |: P, RN ,(S(QQ,SO'lO'Q‘ . ‘O'n) ): P

6(qo, 0109+ 07,) € Qny (11)

By (2) and G is deterministic, we have

5(Q07 801) - 5(Q0;t01)7 5(q07 8010-2) - 5(Q0>t0102)7 Tty
d(qo, so109 -+~ 0,) = 6(qo, to109 - - - 0y). (12)

By (11)(12), we have

d(qo,tor) = P,6(qo,toros) E P, ...,0(q,tor09 - 0,) = P.

5(q07 t0—102 e Un) S Qm (13)
From (1), we know t € L(G, P). From this and Proposition 2.5, we have
(a0, t) = R(G, P) (14)

By (13),(14) and the definition of R(G, P), we have

5(Q0>tu) ): R(G’ P) & 5((]0,tU) € Qm
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=tu € L(G, P) & 0(qo,tu) € Q,,, by Proposition 2.5
= tu € L, (G, P), by definition of L,,(G, P)
(b) tu € L,(G,P) = su € L,,(G, P)

Identical to Part 2(a) by exchanging s and t.

Let s € L(G, P). We define the following set of strings
LG, P) = {t € L(G, P)|(3u < t) (do, ) = o(do. 5)}.

We see that L*(G, P) exactly includes all the strings in L(G, P) reaching or passing
through the state d(qo, s).

From the definition of L*(G, P), we have
L(G, P) = L¥(G, P) = {t € L(G, P)|(Yu < 1) 8(go,u) # 6(q0, )} (21)
Let K C L(G, P). The following definition will be useful later on.

L¥(G,P)= ] L*(G, P).

seK

Proposition 2.7. Let G = (Q, %, 0, qo, Q) be a DES, P, P’ € Pred(Q),s € L(G, P)
and ¢ = 0(qo, s). Let P':= P — pr({q}), then the following holds

L(G,P')=L(G,P)— L*(G, P)
proof:

1. Show that L(G, P') C L(G, P) — L*(G, P).

Let t € L(G, P'). (1)
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We now show this implies ¢t € L(G, P) — L*(G, P).
By (1) and the fact P’ < P, we have t € L(G, P). (2)
By (1) and the definition of L(G, P’), we also have

(Vo <) 6(qo,v) = P

= (Vv <t) 6(qo,v) #¢q, by definition of P’

= (Vv < 1) 6(qo, v) # 6(qo; )

=te L(G,P)— L*(G,P), by Equation 2.1 and (2)

. Show that L(G, P) — L*(G, P) C L(G, P').

Let ¢ € L(G, P) — L*(G, P). (3)
We now show this implies t € L(G, P’).

By (3) and (2.1), we know (Vv <t) d(qo,v) # (qo, 9)

= (Vv <) 6(q0,v) # ¢

= (Vv <t) d(qo,v) E P, aste L(G,P)

=te L(G,F)

O

This proposition states that if we remove all the strings in L*(G, P), it is equivalent

to removing the state d(qo, s) from P.

2.6 Supervisory Control

2.6.1 Controllable Languages

Let G = (Q,2, 0,0, Q) be a DES with ¥ = ¥ .UY,,.

Let K C ¥*. K is controllable with respect to G if
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(Vs € K)(Vo € %,) so € L(G) = so € K

Let S C ¥* and ¥y C . Denote S¥, as the set {so|s € S,0 € ¥}. The

condition for language K being controllable with respect to G can be rewritten as
K¥Y,NL(G)CK

We can also use the Elig operator to express that K is controllable with respect

to G as
(Vs € K N L(G)) Elig,q(s) N S, C Eligz(s)

The above three representations for controllable language will be used in this
thesis interchangeably.

Clearly, ), L(G) and X* are always controllable with respect to G.

Let £ C ¥* be an arbitrary language. Define the set of all sublanguages of E that

are controllable with respect to G as
C(F):={K C E|K is controllable with respect to G}

Proposition 2.8 (From [47]). C(E) is nonempty and is closed under arbitrary unions.

In particular, the supremal element sup C(FE) € C(E).

O
This proposition says that supC(E) C E. Therefore, we can compute supC(FE)

by removing strings from FE.

2.6.2 Supervisory Control

Let G = (Q, %, 0, qo, @) be a nonempty DES with 3 = X.UX,,. A control pattern

is the union of ¥, and a subset of ¥.. Then, the set all of control patterns is
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[':={y € Pwr(X)|y 2 X,},

where 7y is a control pattern.

A supervisory control for G is any map V : L(G) — I". We write the pair (G, V)
as V/G. We also refer to G as the plant (DES).

The closed behavior of V/G is defined to be the language L(V/G) C L(G), which

is described as follows.
1. e L(V/G)
2. If se L(V/G),0 € V(s), and so € L(G) then so € L(V/G)
3. No other strings belong to L(V/G).
Clearly, € € L(V/G) and L(V/G) is closed and {e} C L(V/G) C L(G).

The marked behavior of V/G is defined as L,,(V/G) = L(V/G) N L,,(G). We
always have ) C L,,,(V/G) C L(G).

V' is a nonblocking supervisory control(NSC) for G if L,,(V/G) = L(V/G).

Usually, given a plant DES G, we want the plant G to behave in a desired way.
That means that we want a sublanguage of L,,(G) which represents a set of desired
tasks that the plant is supposed to complete. It is also desired that the controlled
system be nonblocking. However, it is not always true that we can find a nonblocking
supervisory control for a sublanguage of L,,(G).

Let K C L C ¥*. We say the language K is L-closed if K = KN L.

Theorem 2.2 (From [47]). Let K C L,,(G), K # (. There exists a NSC'V for G
such that L,,(V/G) = K if and only if K is controllable with respect to G and K is
L, (G)-closed.
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The above supervisory control V' does not play a role in marking a string, so the
desired sublanguage K is required to be L,,(G)-closed. If we also allow V' to include
marking, then we can implement a more flexible supervisory control.

Let K C L, (G). We redefine the marked behavior of V/G as L,,(V/G) =
L(V/G)N K. The map V : L(G) — T is called a marking nonblocking supervisory

control (MNSC) for the pair (K,G) if L,,(V/G) = L(V/G).

Theorem 2.3 (From [47]). Let K C L,,,(G), K # (). There exists a MNSC'V for the
pair (K, G) such that L,,(V/G) = K if and only if K is controllable with respect to
G. O

In this thesis, we will focus on MNSC.

2.6.3 Implementation of MNSC V for G

The supervisory control V' : L(G) — T is mainly used for theoretical purpose. In
reality, it is not convenient to build such a map.

Let K C L,,(G) be a desired marked sublanguage for a nonempty DES G =
(@Q,%,0,q0,Qm). Assume K is controllable. By Theorem 2.3, there exists a MNSC V/
such that K = L,,(V/G), K = L(V/G).

In order to implement the language K, we construct a DES over ¥ = 3 .UX,
which we will refer to as a supervisor, say S, such that K = L,,,(S x G) C L,,,(G)
and L(S x G) = K. Then we say that S implements V. In order to ensure that S
implements V, by Theorem 2.3 and the MNSC definition, the following wverification

conditions are required.

1. L,(S x G) is controllable with respect to G.
(2.2)

2. L,(SxG)=L(S x G).
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The first condition can be written as
Ln(Sx G)EyNL(G) C Lu(S x G)
As we also require the second condition to hold, the first condition is equivalent to
LSxG)X, NL(G)C LS xG)

A supervisor S is controllable with respect to G if it satisfies the first condition.
A supervisor S is nonblocking for G if it satisfies the second condition. The second
condition also states that S x G is nonblocking.

In [21], the first condition is defined as L(S)X, N L(G) C L(S), we now show that

our condition is equivalent to it.

Proposition 2.9. Let G be a plant DES, S be a supervisor for G, and both G and

S are defined over event set ¥ = ¥ ,UX,. Then we have

L(S x G)S, N L(G) C L(S x G) iff L(S)S, N L(G) C L(S)

proof:

1. (if) Assume L(S)X, N L(G) C L(S). (1)
Must show this implies L(S x G)X, N L(G) C L(S x G).

Let s € L(S x G)S, N L(G). 2)
We now show implies s € L(S x G).

By (2) we know s € L(S)X, N L(G) & s € L(G)

=se L(S)&se L(G), by (1)

= s € L(S x G), by definition of L(S x G)
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2. (only if) Assume L(S x G)X, N L(G) C L(S x G). (3)
Must show this implies L(S)X, N L(G) C L(S
Let s € L(S)X, N L(G). (4)
We now show implies s € L(S).
By (4), we know (3¢’ € L(S))(Fo € ) s =50 & s € L(G) (5)
= s € L(S) & s'o € L(G)
=5 €L(S)& s € L(G) & s'oc € L(G), as L(G) is closed
=3 e L(SxG)&soe L(G)
= sdo e L(SxG)E, & s'o € L(G)
= s'oce L(Sx G), by (3)
= s'oc € L(S), by definition of L(S x G)
= s € L(S), by (5
O
Except for some trivial systems, usually both the plant G and the supervisor S
are modeled as a group of modular(component) DES. The final G and S are the
synchronous product of their modular components. For convenience, we sometimes
add some artificial events to supervisor DES. The events must be selflooped at each
state of the plant G. Similarly, the supervisors may not care about some events in
the plant DES, so those events may not appear in any of the supervisor DES. Then,
we have to selfloop all the "don’t care events” at each state of S.
Let S =S || - || S, G =Gy || - || Gp, myn € {1,2,...}. Let S’ :=

selfloop(S, X — Xg) and G’ := selfloop(G, X — Y ), where Yg and ¢ are the

event set for S and G respectively. The verification conditions (Equation 2.2) become
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1. L(S'x GNX, NL(G") C L(S' x G,

2. Ln(S' x G/) = L(S' x G')).

2.6.4 Supervisor Synthesis

Sometimes, it is difficult to design a controllable and nonblocking supervisor S for
a plant G, especially for a complicated system.

To this end, we need a synthesis method to build a controllable and nonblocking
supervisor S from a specification DES E, which only cares about the system require-
ments. However, E is usually not controllable with respect to G and E x G may
block, so we would like to find the supremal sublanguage sup C(L,,(E x G)). Then
according to Theorem 2.3, a MNSC V' can be built. If we construct a nonblocking
DES KDES representing sup C(L,,(E x G)), then KDES implements V.
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Chapter 3

HISC Overview

The Hierarchical Interface-based Supervisory Control (HISC) framework was pro-
posed by Leduc et al. in [21-27] to alleviate the state explosion problem. In this
chapter, we first give an overview of the HISC system structure and then give the

definitions of high-level and low-level proper supervisors.

3.1 System Structure

An HISC system currently is a two-level system which includes one high-level sub-
system and n low-level subsystems (n > 1). The high-level subsystem communicates
with each low-level subsystem through a separate interface. Figure 3.1 shows the
system block diagram and the conceptual flow of information. In [21], if n = 1, the
system is called a serial interface system, otherwise the system is called a n'* de-
gree parallel interface system. Because the serial interface system is a special case
of a parallel interface system, here we only discuss the parallel interface system and
call the n'* degree parallel interface system as the n'" degree interface system. All

the subsystems and interfaces are modeled as DES automata. In order to restrict
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High Level SubSystem
g U ZR, U ZA]U U ZRWU ZA”

21{1 ZA] ZRW ZA”
Interface , " Interface
2p,U Xy 2pUXy
A A
2R
f T4, 2R, T4
Low Level Subsystem Low Level Subsystem ,,
ZL1U2R1UZA[ E[quZR/,UZA”

Figure 3.1: HISC block diagram

the information flow at the interface, for an n'" degree interface system, the system

alphabet is partitioned into pairwise disjoint alphabets:

ke{l,...n}
In the remainder of this chapter, j is always an index with range {1,...,n}.

The high-level subsystem is modeled by DES G, which is the product of the high-
level plant GY% and the high-level supervisor Sy (both are defined over event set
YaU(Ukeqr, (2R, U 4,])). The ;% low-level subsystem is modeled by DES Gz,
which is the product of the j* low-level plant Gij and the j™* low-level supervisor
St, (both are defined over event set X LJUE RJUE Aj), and the j* interface is modeled
by Gy, (defined over event set X RJ.UE 4;)- The description for each event partition is
as follows:

g : The set of high-level events, exist only in high-level subsystem.
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YRr; : The set of request events for the 5" interface.
Y4, : The set of answer events for the 5" interface.
%1, : The set of j low-level events, exist only in the j"* low-level subsystem.

For controllability, the event set X is also partitioned as ¥ = ¥ .U, where X, is

the controllable event set and >, is the uncontrollable event set.

We refer to DES Gy = Gy || G, || ... || Gi, as the high-level and DES
g L = G I | G L, as the " low-level. For convenience, the following event sets are

also defined:

Y1, = Yg,UB4, The set of interface events for the j interface

n} DA, The set of all the answer events

-----

Yy = (Uke{L...,n}ZIk)UZH The set of interface and high-level events

Y, = ZL].UE]]. The set of jth interface and low-level events

X = Uke{17,,.7n}21Lk The set of all interface and low-level events

Y = 2rg N2, The set of the high-level uncontrollable events
Yihe = 2y N X The set of the high-level controllable events

Yy = X, N3y The set of the jth low-level uncontrollable events
e, =2, N e The set of the jth low-level controllable events

Then the high-level subsystem and the high-level are defined over event set Yp.
The j™ interface is defined over event set ¥ 1;, and the 5" low-level subsystem and
the j' low-level are defined over event set 2 11, We also have Xy = ¥,U%),. and

Y, = Y5, US... The overall system structure is shown in Figure 3.2.
J J J
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HIGH - LEVEL

High-level Subsystem(G,)

G, S

3 Qv No s
S,

LOW-LEVEL 1

e s e e e e 2

P QP
Gy, G, -

2ILn

LOW-LEVEL n

Lo i e e S e —

Figure 3.2: HISC system structure

Command-pair Interfaces

interface as defined below.

., G, supervisors Sy, Sg,, ..

42

.,Sr,, and interfaces Gy, ..

The interface DES play a very important role in the HISC structure. The high-
level subsystem Gy send requests through an interface to a low-level subsystem. Once
the low-level subsystem completes the requested job, it sends back an answer through
the interface to the high-level subsystem. However, until the low-level subsystem
completes the requested job, it can not accept another request from the high-level.

To enforce such a mechanism, the interface DES is required to be a command-pair

Definition 3.1. For the n'* degree interface system composed of plant components

o) G'In7 the jth
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interface DES G, = (X}, Xz,UX4,, &), x5, Xj,,) 18 a command-pair interface if *:
(A) L(Gp,) € (Sg, T4,
(B) Lin(Gp) = (Xgr;-X4,)" N L(G))

¢

An example command-pair interface from [23], with Xg, := {p;li = 1,2,3} and

Y4, i=A{ogli =1,...,7}, is shown in Figure 3.3.

sl

Figure 3.3: Example interface

3.1.2 Flat System
An HISC system is actually a structured flat system. The flat plant is defined as
PLANT := G}, || G}, || - | G,
and the flat supervisor is defined as
SUP :=Sp || S, |-+ | Sz, | G [ -+ || G-

Therefore, both PLANT and SUP are defined over event set >. The whole flat

system is the product of the flat supervisor and the flat plant.

L As we require G 1;t0 be expressible as a tuple including initial state xj,, it thus can not be an
empty DES. It follows that the empty string belongs to L(Gy,), and thus to L,,(Gy;) by point B.
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SYSTEM := SUP x PLANT

As stated in Chapter 2, we want to ensure SYSTEM satisfies the following two

properties.

1. L(SYSTEM)Z, N L(PLANT) C L(SYSTEM)

2. L,(SYSTEM) = L(SYSTEM)

The first property is called global controllability, and the second property is called

global nonblocking.

3.2 Local Conditions

One of the most important benefits of modeling a system as an HISC system
is that we can guarantee global controllability and nonblocking by only checking
local conditions on the high-level and each low-level separately. The conditions here
are based on [23] and [27]. Please refer to them for a more detailed discussion.
All our conditions here are based on either the high-level languages or the low-level
languages. We do not directly use the conditions in [23] because our conditions are
more convenient to prove the correctness of the predicate algorithms in the next
chapters. All we do here mainly is to remove low-level event selfloops from the
languages in high-level conditions in [23], and to remove high-level event selfloops

from the languages in low-level conditions in [23].

Definition 3.2. For the n'* degree interface system that respects the alphabet parti-
tion given by 3.1 and is composed of plant components G%;, G ..., GY , supervisors

Su,St,,-..,S.,, and interfaces Gyp,,..., Gy, , for all j € {1,...,n}, define

GZ = SelﬂOOp(G[j, ZIH — EIJ-)
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Gi, := selfloop(Gy;, ¥1,)

%

From the definition, G’}j is defined over ¥;y, and Gllj is defined over ¥Xrz,. Now

we define
Gh:=Gh x---x G} .
Therefore, the high-level Gz and j** low-level G 1, can be defined as

gH:SHxG%xG’} gL].:SLjXGinGle

3.2.1 Interface Consistent

Definition 3.3. The n'* degree interface system composed of plant components
G%,GY,,...,G] , supervisors Sy,Sy,,...,S.,, and interfaces Gy,,..., Gy, is in-
terface consistent with respect to the alphabet partition given by 3.1, if for all

j €{1,...,n}, the following conditions are satisfied:
e Multi-level Properties

1. The event set of Gy is X1y, and the event set of G is Xz,

2. Gy, is a command-pair interface.

e High-level Properties
3. L(Gy x Hk:ﬁ;*’" Gl %4, NPy, (L(Gr) © L(Grr X Hk:ﬁ;‘-"” Gh),
J ’ J

h .__ h h h h .
where Hk:klyz.;m GIk = Grl1 e X G‘,IJ__1 X GIj+1 XX G »
J

Pris,y + X7y — X7, is a natural projection.
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e Low-level Properties

4. L(Gp,)Sk, N Prly  (L(Gy)) € L(Gy,),

L%,

where Prjs, + ¥, — X, 1s a natural projection.
5. (Vs € X7p,.Br,NL(GL,)) EligL(ng)(SEzj)ﬂEAj = EligL(GIj)(PIj(s))ﬂEA].,

where Elig; g, )(sX7) := Uies; EligL(ng)(sl);

J

P ¥ — ZZ is a natural projection.
6. (Vs € L(Gy,)) Pr(s) € Lu(Gr) = (Gl e 5 ) sl € L(Gr,)

O

For the purpose of later proofs, we will give an equivalent interface consistent
definition in Definition 3.5. For convenience to prove the equivalence between Defin-
ition 3.3 and Definition 3.5, we first present an intermediate version of the interface

consistent definition.

Definition 3.4. The n'* degree interface system composed of plant components
GY,GY ..., Gl , supervisors Sg,Sz,,...,S.,, and interfaces Gy, ..., Gy, is in-
terface consistent with respect to the alphabet partition given by 3.1, if for all

Jj €{1,...,n}, the following conditions are satisfied:
e Multi-level Properties

1. The event set of G¥, and Sy is X;p, and the event set of G’Ej and Sp, is

XL,

J
2. Gy, is a command-pair interface.
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e High-level Properties

3. L(Gu)Xa, N L(G}}j) C L(Gg)
e Low-level Properties

4. L(Gr,)XR, N L(Gllj) C L(GyL,)

5. (\V/S € Z?LJ_.ZRJ. N L(gL])) Eth(gLJ)(SZ*LJ) N EA]. = Eth(GlIJ)(S) N EAJ.,

where EligL(ng)(SE’ij) = UlEszEth(ng)<Sl)

6. (Vs € L(Gr,)) s€ Lm(Gl[j) = (3l € Xj,)sl € Ln(Gr,)

Proposition 3.1. Definition 3.3 is equivalent to Definition 3.4.

proof:

For the n'* degree interface system that respects the alphabet partition given by 3.1
and is composed of plant components G%;, G , ..., G ,supervisors Sy, Sy, ,...,SL,,
and interfaces Gy, ..., Gy,, we prove the equivalence between each point in Defini-

tion 3.3 and Definition 3.4.

1. Point 1 in both definitions are equivalent.
As we defined Gy := Sy x GY; and G, := S, X Gij in Section 3.1, Point 1
in both definitions are clearly equivalent.

2. Point 2 in both definitions are equivalent.

Point 2 in both definitions are exactly the same.

47



Master Thesis — R. Song — McMaster — Computing and Software

3. Point 3 in both definitions are equivalent.

By the definitions of Pp,s,,, and G?J_? we have Py (L(Gy,)) = L(G’}j). Thus

LilSrm

we know Point 3 in Definition 3.3 is equivalent to

.....

We now show that (1) is equivalent to Point 3 in Definition 3.4.
By the definition of G, we have Gy = Gy X G} x -+ x G .

The rest proof of this point is identical to the proof of Proposition 2.9 by

substituting ¥ with Xy, 3, with X4, Y. with Xy — X4, S with Gy X
4. Point 4 in both definitions are equivalent.

By the definitions of Pris;,, and Gllj, we have PI;|1EIL]- (L(Gp)) = L(Gllj). Thus

we know Point 4 in Definition 3.3 is equivalent to
L(GpL;)¥a, N L(GZI],) C L(Gyg,) (2)

We now show that (2) is equivalent to Point 4 in Definition 3.4.
By the definition of G, we have G, = G, x Gy,.

The rest proof of this point is identical to the proof of Proposition 2.9 by
substituting ¥ with Yrn;, Y with YRy Y with Y, — YR, S with GLJ., G
with GZIJ_, and S x G with G .

5. Point 5 in both definitions are equivalent.

By comparing Point 5 in Definition 3.3 and Point 5 in Definition 3.4, it is

sufficient to show
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(Vs € X7, -Xr, N L(GL,)) EligL(Gl,j)(S) MYy, = Eligyq, ) (Pr;(5)) N Xa;.

Let

(a)

S € E?Lj‘ERj N L(QLJ) (3)

Show that EligL(Gsz)(s) NX4, C EligL(GIj)(PIj(S)) N X4,

Let a € EligL(Gsz)(s) N X4, (4)
We now show that o € EligL(GIj)(PIj (5)) N Xy,

By (4), we know sa € L(Gllj)

= sa € PI;llzle (L(Gy;)), by the definitions of G} and Pryjsi.,

= P1j|2,Lj(SOé) € L(Gy,)

= PIj|E,Lj(3)Oé € L(Gy), asa€ Xy, by (4)

From (3), we know s € X7, . By the definitions of Ps i, and Pp;, we thus
have P (s)a € L(Gy,)

=o€ EligL(GIj)(PIj(s)) NX4,.

Show that EligL(GIj)(P]j(s)) NXy, C EligL(ng)(s) Ny,

Let a € EligL(GIj)(PIj(s)) N Xy, (5)
We now show that a € EligL(Gle)(s) N X4,

By (5), we know P, (s)a € L(Gy))

From (3), we know s € X7, .. By the definitions of Pris,,, and Py, we thus
have Pp s, (s)a € L(Gy,)

= PIj|2,Lj(SOC) € L(Gy), asac Xy, by (5)

= sa € PI;|IZIL]~ (L(Gy))

= sa € L(G ), by the definitions of G} and Pryjsi.,

J
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6. Point 6 in both definitions are equivalent.

By comparing Point 6 in Definition 3.3 and Point 6 in Definition 3.4, it is

sufficient to show
(Vs € L(ng)) s € Lm(Gle) iff PIj(s) € Lm(GIj)

Let s € L(Gy,).
= s €Xj,, by the fact that G is defined over ¥y . (6)

Let function Pps,, : X7, — X} be a natural projection.
J

(a) Show that s € Lm(Gle) = Pr,(s) € Ln(Gy,).
Assume s € L,,(Gh ). Must show this implies Py, (s) € Lin(Gr,).
From assumption s € Lm(Gle), by the definitions of Py, ~and Gle, we
have s € PI;‘IEILJ- (Lim(Gr,)).
= PIjIEzLj(S) € Ln(Gy))
= Pr,(s) € L(Gyy), by (6) and the definitions of P, and Pris,,-
(b) Show that P, (s) € Ln(Gr) = s € Lm(Gle)
Assume Py, (s) € Ly, (Gy,). Must show this implies s € L, (GF).
From assumption Pr,(s) € L,,(Gy;), by (6) and the definitions of P, and
P1j|gILj, we have ngmj (5) € Lim(Gy,).
= s € P;ﬁzmj (Lin(Gr)))

= s € Lm(Gle), by the definitions of Prjs,, and GZIJ_.
[

We now give our final interface consistent definition. We will always use this

definition in the rest of this thesis.
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Definition 3.5. The n!* degree interface system composed of plant components
G%,GY,,...,Gl , supervisors Sy, Sy,,...,S.,, and interfaces Gy,,..., Gy, is in-
terface consistent with respect to the alphabet partition given by 3.1, if for all

j €{1,...,n}, the following conditions are satisfied?:

e Multi-level Properties

1. The event set of G%; and Sy is Xy, and the event set of Gﬁj and Sp, is

XL,

J

2. Gy, is a command-pair interface.
e High-level Properties

3. L(Gu)¥a; N L(G’}j) C L(Gp)
e Low-level Properties

4. L(Gr,)XgR, N L(Géj) C L(GrL,)

5. (Vs € L(Gr,))(Vp € Eg,)(Va € X4,)
spa € L(Gl]j) = (3l e X})) spla € L(G 1)

6. (Vs € L(GL,)) 5 € Lu(Gh) = (A €D} ) sl € Ln(Gr,))

Proposition 3.2. Definition 3.5 is equivalent to Definition 3.4.

proof:
For the n'" degree interface system that respects to the alphabet partition given by 3.1
and is composed of plant components G%;, G , ..., G ,supervisors Sy, Sy, ,...,SL,,

and interfaces Gy, ..., Gy,

2This definition is only for proving our synthesis algorithm. For understanding HISC, please see
the interface consistent definition in [23] by Leduc.
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1. assume for all j € {1,...,n}, the system satisfies all the conditions in Def-
inition 3.4. Must show this implies the system satisfies all the conditions in

Definition 3.5 as well.

Point 1, 2, 3, 4 and 6 in both definitions are exactly same, so the system satisfies

Point 1, 2, 3, 4 and 6 in Definition 3.5.

We now show that the system also satisfies Point 5 in Definition 3.5.

Let j € {1,...,n},s € L(Gr,),p € LR, € X4,. (1)

Assume spa € L(Gh ). (2)

Must show implies (3 € X7 ) spla € L(Gy,).

By (1), we know s € L(Gyr,), p € Xk,

= sp € L(Gr,), by Point 4 in Definition 3.4

= sp € X7, Xg, N L(GrL,)

= Eligrg, y(spXi,) NXa; = Eth(Gle)(SP) NX4;, (3)
by Point 5 in Definition 3.4

By (2), we have spa € L(G})

= ac EligL(Gsz)(sp) N X4,

= o € Eligy(g, )(spX],) N4, by (3)

J

= (3l € X7)) spla € L(Gr,)
2. assume for all j € {1,...,n}, the system satisfies all the conditions in Def-

inition 3.5, must show this implies the system satisfies all the conditions in

Definition 3.4 as well.

Point 1, 2, 3, 4 and 6 in both definitions are exactly same, so the system satisfies

Point 1, 2, 3, 4 and 6 in Definition 3.4.
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We now show that the system also satisfies Point 5 in Definition 3.4.
Let j € {1,...,n} andsEE}Lj.ERjﬂL(ng). (3)

Must show this implies EligL(ng)(sZ*Lj) NXy = EligL(Gsz)(s) N X4,

(a) Show that EligL(ng)(sEzj) NXy C EligL(Gsz)(s) N Xy,
Sufficient to show that
(VaeXy)(Vlel])ac EligL(ng)(sl) = ac€ EligL(Gsz)(s).
Let @ € £a,,0 € 5 .
Assume a € Eth(ng)(sl). (4)
Must show this implies « € EligL(Gsz)(s)
By Gr;, =8, x G} x G, we have L(Gy,) C L(GY) (5)
By (4) and (5), we have a € EligL(Gsz)(sl)
As Gle .= selfloop(Gy,,%y,), we have EligL(Gsz)(s) = EligL(Gsz)(sl).
So, a € EligL(ng)(s).
(b) Show that EligL(Gsz)(s) NXy C EligL(ng)(sE’ij) N Xy,
Sufficient to show that (Vo € ¥y, )sa € L(Gllj) = (3l € X7)) sla €
L(GL,).
From (3), we know s € X7, .Yp, N L(Gy;)
= (3s' € L(G,))(3p € XR,;) s'p=5
= (Va € Xy,) s'pa € L(GZIJ_) = (3l e X})) 'pla € L(G 1),

by Point 5 in Definition 3.5

= (Vo € Ba)) sa € L(GY) = (A € X7 ) sla € L(Gr,).
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Note that although Point 5 in Definition 3.5 is stronger than Point 5 in Defin-
ition 3.4, the two definitions are equivalent, because Point 5 in Definition 3.5 only
requires some extra conditions which are already present in Point 4 of both definitions.

By Proposition 3.1 and Proposition 3.2, we know that Definition 3.3 and Defini-

tion 3.5 are equivalent.

3.2.2 Local Conditions for Global Nonblocking

Definition 3.6. The n'" degree interface system composed of plant components
GY,GY ..., Gl , supervisors Sy, Sr,,...,Sg,, and interfaces Gy,,..., Gy, is said
to be level-wise nonblocking with respect to the alphabet partition given by 3.1, if

the following two conditions are satisfied:

1. Nonblocking at the high-level: L, (Gu) = L(Gn)

2. Nonblocking at the low-level: (Vj € {1,...,n}) L, (Gr,;) = L(GL,;)

¢

Theorem 3.1 (From [24]). If the n'* degree interface system composed of plant com-
ponents GY,, G ..., GY , supervisors Sy, Sp,, ..., Sg,, and interfaces Gy, ..., Gy,
15 level-wise nonblocking and interface consistent with respect to the alphabet partition

gwen by 3.1, then

L.(SYSTEM) = L(SYSTEM)

3.2.3 Local Conditions for Global Controllability

Definition 3.7. The n'* degree interface system composed of plant components

GY,GY ..., G , supervisors Sy, Sy,,...,Sg,, and interfaces Gy,,..., Gy, is said
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to be level-wise controllable with respect to the alphabet partition given by 3.1, if for

all j € {1,...,n} the following two conditions are satisfied:

1. The alphabet of G, and Sy is ¥y, the alphabet of Glzj and Sp, is Xz, and
the alphabet of Gy, is Xp,

2. Controllable at the high-level: L(Gg)Yn, N L(GY, x G C L(Gy)
3. Controllable at the low-level: L(G )X, N L(GE,) € L(G1,)

%

Theorem 3.2. If the n'" degree interface system composed of plant components
Gy, GY,, ..., G, supervisors Sy, Sy, ,...,SL,, and interfaces Gy, ..., Gy,, is level-

wise controllable with respect to the alphabet partition given by 3.1, then
L(SYSTEM)YX, N L(PLANT) C L(SYSTEM)

proof:

Follows immediately from Theorem 2 of [24] and Proposition 2.9.

3.3 Level-wise Interface Controllable Supervisor

From Section 3.2, we can see that all the conditions are either based on the high-
level or a single low-level. Therefore, we can verify the global controllability and
global nonblocking by only verifying the local conditions. For convenience, we now

group the conditions by levels and give several corresponding definitions.

Definition 3.8. For the n!* degree interface system that respects the alphabet parti-
tion given by 3.1 and is composed of plant components G%;, G} ..., G}, , supervisors

S#,Sr,,...,Sr,, and interfaces Gy, ..., Gy, define the following:
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e Sy is high-level interface controllable (HIC), if the following conditions are sat-
isfied:

2. (Vjedl,...,n}) L(Gu)Xa, N L(GZ) C L(Gg)
e Sy is a high-level proper supervisor, if the following conditions are satisfied:

1. Sp is high-level interface controllable.

2. L,(Gy)=L(Gg)

e Forall j € {1,...,n}, Sy, is j low-level interface controllable (LIC;), if the
following conditions are satisfied:
L L(Gr;)%w, N L(GL,) C L(GL,)
2. L(Gr,)xRr, N L(GY) € L(Gr;)

3. (Vs € L(Gyr,))(Vp € Xg,)(Va € Xy,)
spa € L(Gl]j) = (3l € X7)) spla € L(G1)

4. (Vs € L(G1,)) s € Lm(G]) = (Al € 37 ))sl € Ln(Gr,)

e Forall j € {1,...,n}, S, is a 5t low-level proper supervisor, if the following

conditions are satisfied:

1. Sg, is 5" low-level interface controllable.

2. Ln(G1) = L(GL)
%

Proposition 3.3. For the n'" degree interface system that respects the alphabet parti-

tion given by 3.1 and is composed of plant components G%;, G ..., GY , supervisors
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Su,St,,---,SL,, and interfaces Gy, ..., Gy

n

. the flat system is nonblocking and the
flat supervisor is controllable for the flat plant if for all j € {1,...,n}, the following

conditions are satisfied:
1. The alphabet of GY; and Sy is L.
2. The alphabet of Gij and Sg,; is Xz,
3. Gy, is a command-pair interface.
4. Sy is a high-level proper supervisor.
5. Sp; 15 a 3t low-level proper supervisor.

proof:
If the system satisfies all the above five conditions, clearly, it is interface consistent,
level-wise nonblocking and level-wise controllable, so the flat system is is nonblocking

and the flat supervisor is controllable for the flat plant by Theorem 3.1 and 3.2.
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Chapter 4

Synthesis of HISC

In [21-27], the supervisors in an HISC system are designed by hand, and then the
system is verified for the interface consistent, level-wise controllable and nonblock-
ing conditions. However, for a complicated system it is very desirable to synthesize
the supervisors from some specifications which specify the desired system behavior
but the system containing them does not necessarily satisfy all the required con-
ditions. In this chapter, we first discuss how to compute the supremal high-level
and low-level interface controllable sublanguages, and then give the predicate-based
algorithms. These algorithms can easily be implemented by using Binary Decision

Diagrams(BDD) as we will discuss in Chapter 6.

4.1 Introduction

In the previous chapter, we specified that a n'* degree interface system is composed
of plants, supervisors and interfaces. By supervisors, we expect that the system
containing them not only have the desired behavior but also is interface consistent,

level-wise controllable and level-wise nonblocking. As we discuss the synthesis process
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in this chapter, we will assume that a n'" degree parallel interface system is composed
of plants, specifications and interfaces. By specifications, we mean that they specify
the desired behavior but the system containing them is likely not interface consistent,
level-wise controllable and level-wise nonblocking.

For the n'" degree interface system that respects the alphabet partition given by
3.1 and is composed of plant components G%;, G} , ..., G} , supervisors Sy, S,
..., Sg,, and interfaces Gy, ..., Gy, , if we replace the high-level supervisor Sy
by a high-level specification DES Ep (defined over ¥;y), and for all j € {1,...,n},
we replace the j* low-level supervisor S L, by a §t" low-level specification DES E L
(defined over ¥jz,), then the resulting system is called a n'" degree specification
interface system. We refer to the original system with supervisors as a n'* degree
supervisor interface system. In case we do not care whether a system is composed of
specifications or supervisors, we refer to it as a n* degree interface system.

We can apply all the concepts defined for a n'* degree supervisor interface sys-
tem to a n'" degree specification interface system by replacing each supervisor DES
by its corresponding specification DES. To make things clear, we give the following

corresponding definitions for a n** degree specification system.
e The high-level subsystem: Gy := Ey x G%,.
e The j™ low-level subsystem: Gp, := Ej, x Gi.jef{l,....,n}
e The high-level: Gy := Eg x Gf, x G
e The j* low-level: Gr, =Ep, x Gﬁj X Gllj,j e{l,...,n}
We now give the starting point for the synthesis process.

Definition 4.1. The n'" degree parallel interface specification system composed of

plant components G4, G} ,..., G} , specifications Ey, Er,, ..., Er,, and interfaces
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Gy,...,Gy

s

is HISC-valid with respects to the alphabet partition given by 3.1, if

for all j € {1,...,n}, the following conditions are satisfied:

1. The alphabet of G%, and Ey is Xp.
2. The alphabet of Gﬁj and By is ¥z,

3. Gy, is a command-pair interface.

¢

Obviously, the three conditions are exactly same as the first three conditions
in Propositions 3.3 except that we use the specification DES instead. Given a n'"
degree HISC-valid parallel interface specification system, our main objective in this
chapter is to develop a method to synthesize a proper high-level supervisor and proper
low-level supervisors such that the marked behavior of the constructed n'” degree
supervisor interface system is as large as possible. That is, we would like to compute
the largest marked sublanguages of the high-level and each of the low-levels such
that the DES representing each is either a proper high-level supervisor or a proper
low-level supervisor, as appropriate. We say such a proper high-level supervisor or
low-level supervisor is locally mazximally permissive for its level.
Let @ be the n'* degree HISC-valid specification interface system' that respects
the alphabet partition given by 3.1 and is composed of plant components G, G7 ,
. G’in, specifications Ey,Ey,,...,Er , and interfaces Gy,,..., Gy, We assume
that all the DES in system ® have a finite number of states. In this chapter, we

always use the system ®, and j is always an index with range {1,...,n}.

For later usage, we give the tuple definitions for the following DES:

Gu = (Qu, 211,08, 98y, Qn,); G = Yu, X1w, 18, Yuy, Yu,,),
"'We use the Greek letter to mean that @ is not a simple DES, but a structured system.
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En == (Zu, %10, Cu, 21y, Z1,,) G}IL- = (thEIH’ i Jo7Xh );
Gl = (X", Sy, & af, X)),
ng = (QLj7ZILj75Lj’quO’Qij)7 G‘IZ/J = (YLj,EILjanjvij()’Yij)v

Er, := (Z1,,211,,CL;0 ZLjo> L) Gl[]- = (X}, X1, X ).

J’ Jo’

So,

Gu=Zy xYyg x X" Sy, Cu x ng < " (zuy, yuy, 5), Zn,, X Yu,, x XD)
Gr, = (Zu, x Y1, x X!, 811,,Co, X 0, X € (2Lj0s YLjor ©5)s Zijo X Yij, X XL )
Gl = (XP x -  x X2 Sy, & x oo x &l (af, oo al ), XP x- o x X

vm

4.2 High-level Supervisor Synthesis

In this section, we show how to synthesize a locally maximally permissive proper

high-level supervisor for system ®.

4.2.1 High-level Interface Controllable Language

Definition 4.2. For system ®, let K C X7, be a language. K is high-level interface

controllable(HIC) with respect to system ® if

1. K NLGE x Gh) C K
2. (Vj€{l,...,n}) KS4, NL(G}) C K
%

Obviously, the empty language () is high-level interface controllable with respect
to system @®. Note that the definition is based on the language K, so K is high-level
interface controllable with respect to system @® iff K is high-level interface controllable

with respect to system ®.
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For an arbitrary language £ C X7, we define the set of all sublanguages of E

that are high-level interface controllable with respect to system ® as
Cy(F) :={K C E|K is high-level interface controllable with respect to system ®}

Clearly, (Cu(E),C) is a poset. We now show that the supremum in this poset

always exists in Cy (E).

Proposition 4.1. For system ®, let E C ¥%,,. The set Cx(F) is nonempty and is
closed under arbitrary unions. In particular, Cy(E) contains a (unique) supremal

element, supCy(F) = U{K|K € Cy(E)}.
proof:

1. Show that Cy(E) is nonempty
The empty language ) is high-level interface controllable with respect to system

P, so 0e CH(E)

2. Show that Cy(FE) is closed under arbitrary unions.
Let B be an index set. Assume that (V3 € B)Kjz € Cy(E). Sufficient to show
that Ugep K € Cu(E).
Let K := UgepKp. (1)
Sufficient to show that K is high-level interface controllable with respect to

system ®. Then by Definition 4.2, we have to show the following:

(a) Show that K%, N L(GY, x G C K
Let s € KX, N L(GE, x Gh). (2)
Must show this implies s € K.

From (2), we know (3s' € K)(30 € Xp,)8'0 = s (3)
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As s’ € K, we can conclude (Ju € ¥%,) s'u € K
= (38 € B)s'u € K3, by (1)
= s € Kg, by (1)
= so e EE,W
= s'0 € KgX, N L(GE x Gh), by (3) and (2)
= s'o € K3, as Kz € Cy(FE)
= (Ju € X5)s'ou’ € Kp
= sou’ € K, by (1)
= su' € K, by (3)
=seK
(b) Show that (Vj € {1,...,n}) K4, N L(GZ) CK
Let j € {1,...,n}. Let s € KX, ﬂL(G?j). Must show this implies s € K.
The rest is identical to Part 2(a) (from the line labeled with (3)) after
substituting X5, with X4 , X7 with X7, and L(GY, x GF) with L(G}}j).

3. Show that supCy(F) = U{K|K € Cy(E)}.
Let Ky := U{K|K € Cy(E)} (4)
Clearly, for all K € Cy(FE), we have K C Ky,
All that remains is to show:
(VK' € Pur(3iy)) (VK € Cy(E)) K C K') = Ky, C K')
Let K' € Pwr(X}y)
Assume (VK € Cy(F)) K C K’ (5)
Must show this implies K, C K’

Let s € Kgyp (6)
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Must show implies s € K’
By (4) and (6), we know (3K € Cyx(F))s € K

=se K', by (5

4. Show that supCy(FE) € Cyx(FE).

This immediately follows from Part 3: supCy(E) = U{K|K € Cy(E)}.

0
From Proposition 4.1, we have sup Cy(E) C E, which means that we can compute
sup Cy(F) by removing strings from F.

The following lemma will be used later.
Lemma 4.1. For system ®, let L C X%5,. If L is closed then sup Cy (L) is also closed.

proof:
Assume L = L. Must show this implies sup Cy (L) = sup Cy(L).

supCy (L) C supCy(L) is automatic. We now show supCy (L) C supCy(L).

Sufficient to show that supCg(L) C L and supCg(L) is high-level interface con-

trollable with respect to system ®.

sup Cg (L) is high-level interface controllable with respect to system ® automati-

cally by the definition of high-level interface controllable language.
By Proposition 4.1, we know that supCy(L) C L.
= supCy (L) C L.

= supCy(L) C L, as L is closed.
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4.2.2 supCy(L,,(Gy)) and the Greatest Fixpoint of Qy

For system @, if we compute the supremal high-level interface controllable sub-
language of L,,(Gp), then a DES representing this sublanguage is a maximally per-
missive proper high-level supervisor. Therefore, we have to find a method to compute

sup Cy (L, (Gr)). To this objective, we define the following function.

Definition 4.3. For system ®, define the function Qg : Pwr(X3,) — Pwr(Xiy)

according to
where Qg g and HIC are functions for system ®, which are defined as following;:

o Qung: Pur(Yt,) — Pwr(Xy)
(VK € Pwr(X%y) Quns(K) = Ln(Gy)NK
o HIC : Pwr(X3iy) — Pwr(Shy)
(VK € Pwr(X%y,)) HC(K) = supCh(K).

¢

Since the supremal element of sup Cy(K) is unique and must exist by Proposi-
tion 4.1, the function HIC is well-defined. The function €25y and HIC both are defined
on Pwr(3%,), so we can composite them and the function Qp is well-defined.

Clearly, function Qg yp is monotone with respect to C, and HIC is also monotone
with respect to C by Proposition 4.1, so the function {2y is monotone with respect
to C as well.

By the Knaster-Tarski Theorem(Theorem 2.1), the greatest fixpoint of the func-

tion Qg with respect to (Pwr(33;), C) must exist.
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Proposition 4.2. For system ®, supCy (L., (Gr)) is the greatest fixpoint of the func-

tion Qg with respect to (Pwr(X3y), C).

proof:

By the definition of Qy, we can rewrite it as
(VK € Pwr(XZ%y) Qu(K) = L, (Gy) NsupCy(K)
Let S =supCu(Ln(Gn)).

1. Show that S is a fixpoint of Qy, i.e. S = Qy(S5).
Sufficient to show that S C Qg (S) and Qg (S) C S.
Qu(S) = Ln(Gr) NsupCx(S)

As S is high-level interface controllable with respect to system ®, S is high-level

interface controllable as well. Then,

Qu(S)=L,(Gu)NS (1)
By Proposition 4.1, S C L,,(G). Also S C S, so we have S C Q(S). (2)
Now we show that Qg (S) C S.

Let t € Qp(9). (3)
Must show this implies t € S.

By (3), we have t € Qy(5)

=1t€ L,(Gy)andt €S, by (1)

9]

= {t} € Lyn(Gn) and {t} C

= {t} € Ln(Gn) and {t} C

)
—~~

IS
N—

Let §' = S U {t}.
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= 5" C Ln(Gn), (5)
by (4) and S C L,,(Gy)

We now show that S’ is high-level interface controllable with respect to system

P.
It is enough to show that

S5 N L(Gh; x Gb) €S and (V) € {1,....n}) S84, NL(G}) C 5.

o Show that 5%, N L(G% x G) C &7
S is high-level interface controllable, so %, N L(GY, x G*) C S. (6)
By (4) and (6), we have {t}X,, N L(G?, x GI) C S (7)
From (6) and (7), we have (S U {t})2,, N L(G% x GH) C S
= (SU{t})Sh. N L(GY, x G#) C S, by Proposition 2.2
= S, NL(GY, x Gl C S
= 5%, NL(GY, x Gl C 9, (8)

as S C S’ and thus S C 5
e Show that (Vj € {1,...,n}) 5’24, N L(G}) C 5",

Let j € {1,...,n}. We show S'%,, ﬂL(GI) S’

S is high-level interface controllable, so S¥4, N L(G 1]) cs. 9)
By (4) and (9), we have mEAj N L(Gh) cS (10)
From (9) and (10), we have (SU {t})X4 L(G’}j) cS

= (SU{t})Ea, N L(G}) €S, by Proposition 2.2
= 554, N L(G}) C S
= S84, NL(GE) € 5, (11)
as S C 9" and thus S C 57
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By (5), (8), (11), we have S" € Cx(Ln(Gy)). As S is the supremal high-level

interface controllable sublanguage of L,,(Gy), we get S" C S.

={t} C S

=teS

We thus have Q4(S) € S. Combining it with (2) gives Qg (5) = S.

. Show that S is the greatest fixpoint of Q. i.e. (VI € Pwr(X5y5))T = Qu(T) =
TCS.

Let T € Pwr(X7y). Assume T = Qg (7). Must show this implies 7" C S.

Sufficient to show that T is high-level controllable with respect to system ® and

T =Qu(T)
= L(Gy) NsupCx(T) (12)

C supCp(T)

By Lemma 4.1, sup Cy/(T) is closed, so combining with (12), we have
T CsupCx(T)

By Proposition 4.1, we know that sup Cy(T) C T. Therefore, we have
T =supCy(T)

So, T is high-level controllable with respect to system @, which means that T

is high-level controllable with respect to system ®.

From (12), clearly, T'C L,,(Gp).
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4.2.3 Computing the greatest fixpoint of 2y

From the above section, we know that we can compute the supCy(L,,(Gg)) by
computing the greatest fixpoint of Q. It is tempting to compute the greatest fixpoint

by iteration of Q.

Proposition 4.3. For system ®, the set theoretic limit lim; .., Q% (L(Gy)),i €

{1,2,...} exists, and supCy(L,,(Gr)) C lim; .o Q4 (L(GR)).

proof:
Let S :=supCy(L(Gn)).
1. Show that lim; .., Q% (L(Gg)) exists.

From the definition of Qp, we know Qy(L(Gy)) = Lim(Gr) NsupCr(L(GH)),
so by L,,(Gu) C L(Gy) and supCr(L(Gy)) € L(Gy) by Proposition 4.1, we

have
Qu(L(Gn)) € L(Gn)
= 0% (L(Gr)) C Qu(L(Gy)), as Qg is monotone.

= O3 (L(Gr)) C Q%4 (L(GH)), as Qg is monotone.

Then, we have

L(Gu) 2 Qu(L(Gn)) 2 Q4(L(Gn)) D -

Therefore, lim; o Q% (L(Gy)) exists and equals to (2, Qy(L(Gr)).

2. Show that S C lim; ..o Qi (L(Gr)).

By Proposition 4.1, we have S C L(Gp)
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= Qu(S) CQu(L(GH)), as Qy is monotone.
=S CQu(L(GH)), asS=Qy(S) by Proposition 4.2.
= Qy(S) C 0% (L(Gy)), as Qy is monotone.

= S CO%(L(Gy)), asS=Qg(S) by Proposition 4.2.

= S C limy_o Qi (L(Gp)).

O
Note that we start the iteration from the closed language L(Gy). It remains to
show the reverse lim; ., Q4 (L(Gy)) C supCx (L, (Gx)). For practical computation,
we also have to show that the limit will be reached after a finite number of iterations on
Qpu. In general case, actually lim; . Q% (L(Gy)) € supCr(L,,(Gu)). Please see [48]
for details. However, in the case that all the languages are regular, the reverse holds
and the number of iterations on (g is finite, as we will show in the following sections.
To iterate the computation on the function 2y, we first must know how to com-
pute the function HIC, i.e. to compute the supremal high-level interface controllable
sublanguage of a closed language. Here, we only focus on the special class of closed
languages. Let Pred(Qp) be the set of all predicates on Q g, the state set of Gp. Let
Phra € Pred(Qp) be a predicate?, we now show how to compute sup Cx(L(G g7, Pha))-
Note that L(Gy) = L(Gy,true), so at the starting point, we let Py, = true and then
compute sup Cry(L(Gm, Pha))-
We compute sup Cy(L(Gu, Pra)) by creating another function, and we will prove

that sup Cy(L(G 1, Pra)) is the greatest fixpoint of that function.

2Phq is just an arbitrary predicate. We use this notation as we need to distinguish a given
predicate (Pp,) with an arbitrary predicate P in the next subsection.
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4.2.4 Computing supCy(L(Gy, Pha))

Definition 4.4. For system ®, let P, € Pred(Qg) be a given predicate. Define the

function Qe : Pwr(L(Gu, Pha)) — Pwr(L(Gu, Phra)) according to

(VK € Pwr(L(GH, Pha)))
Qure(K) ={se€ K | {s}SnNLG:, xGH CK &
(V7 €{1,...,n}) {s}Z4, N L(G}) C K)}

J

¢
Clearly Qpc is monotone. Note that Qp;o(K) € K C L(Gy, Pha), so this
function is well-defined, and it only removes strings from K.
To make it easier to understand and use this function, the definition can be rewrit-
ten as
(VK € Pur(L(Gx, Pha)))
Qure(K) :={se K| (Vt<5s)
(Yo, € Shy) to, € L(GE, x G!) = to, € K) &
((Voo, € 4,) tog, € L(G}) = to,, € K) &

((Vo,, € Xa,) toa, € L(G’}n) = to,, € ?)}

Proposition 4.4. For system ®, let Pn, € Pred(Qy) be the given predicate for
function Qyrc. Then sup Cy(L(Gy, Pra)) is the greatest fixpoint of Qyc with respect
to (Pwr(L(Gu, Pra)), ).

proof:
Let S = supCyx(L(Gu, Pra)). By Proposition 4.1, S C L(Gy, Phra), S is a valid

input for Qgrc.
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1. Show that S = Qg (S).
Quic(S)={s€ S| {s}Zm NL(GL, x Gl C S &
(Vi e{1,...,n}) {s}54, N L(G}) C 5)}
By the definition of S, clearly, all the strings in S must satisfy the condition,
so Quro(S) = S.
2. Show that S is the greatest fixpoint of Qg;c, i.e.
(VT € Pur(L(Gy,Pra))) T = Quic(T) =T C S.
Let T € Pur(L(G g, Pha))- Assume T = Qg o(T).

Must show this implies 7' C S.
Sufficient to show that T is high-level interface controllable with respect to
system ®.
Quic(T) ={s €T | {s}Zn NL(GL, x G CT &
(Vi e{1,...,n}) {s}Z4, N L(G}) C T)}
So,
T={seT|{s}SmNLGLxGHCT &
(Vi e{1,...,n}) {s}Z4, N L(G}) CT)}
Then, we have
T NLGE x GHCT & (Ve {l,...,n}) TEa, NL(GE) CT),
which means T is high-level interface controllable with respect to system ®.

]

From Proposition 4.4, we know that we can compute the supCy(L(G gy, Pra)) by
computing the greatest fixpoint of Qg;c. It is also tempting to compute the greatest

fixpoint by iteration of Qg;c.
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Proposition 4.5. For system ®, let Py, € Pred(Qpy) be the given predicate for the

function Q. The set theoretic limit lim; o Qs ;0(L(GH, Pra)),i € {1,2,...} exists,

and sup Cy(L(Gr, Phra)) C lim; oo Qi70(L(GH, Pha))-

proof:

Let S :=supCu(L(Gu, Pha))-

1. Show that lim; .o Q% ;o (L(Gu, Pha)) exists.
From the definition of Qy ¢, we have Qure(L(GH, Pra)) € L(GH, Pha)-
= Oh1c(L(GH, Pha)) € Qurc(L(G, Pha)),  as Qurc is monotone,

= O30 (L(GH, Pra)) € Q%,0(L(GH, Pra)), as Qgre is monotone.

Then, we have
L(G, Pra) 2 Quic(L(Gu, Pra)) 2 Q10(L(Ga, Pha)) 2

So, lim; oo Q4 ;o (L(GH, Pha)) exists and equals to Nizo Q1o (L(GH, Pha))-

2. Show that S C limi—. Qe (LG, Pra))-
By Proposition 4.1, we have S C L(Gy, Pha)
= Qu1c(S) € Qurc(L(Gu, Pha)),  as Quic is monotone.
= S C Qure(L(Gu, Pra)), as S = Quic(S) by Proposition 4.4.
= Qurc(S) C Q% ,0(L(GH, Pra)),  as Qpre is monotone.

= S C % 0(L(GH, Pa)), as S =Qpuic(S) by Proposition 4.4.

= S Climy oo Uyy0(L(Ga, Pha))-
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It remains to show that lim; ... Q% ;o (L(Gy, Pha)) € sup Cu(L(Gw, Pra)) and that
we only need to iterate a finite number of iterations in the case that Gy only has

finite number of states.

Definition 4.5. For system ®, define the function Wy : Pred(Qg) — Pwr(X5y)
according to
(VP € Pred(Qu))
Wy (P) := {s € L(Gu, P) | (304 € Thu) so, € L(GYxGH) & so, ¢ L(Gu, P)) or
(3 e{1,...,n})(B0a; € Ba,) s04, € L(G},) & 504, ¢ L(Gu, P)) }

¢
Note that Wy (P) C L(Gg, P). The following two lemmas will be used in the

proof of the next proposition.

Lemma 4.2. For system ®, the following holds:
(VP € Pred(Qpu))(Vs,t € L(Gg, P))

s € Wr(P) & (6u(qmy, s) = 0ulqmy.t)) =t € Wy (P),

where qg, is the initial state of Gy as defined in section 4.1.

proof:
Let P € Pred(Qp), and s,t € L(Gy, P). (1)
Assume 6y (qm,, ) = 0u(qn,,t) and s € Wy (P). (2)

Must show this implies ¢t € Wy (P).
Let =r(gy.p), =p@txch)» =r@r) (1 € {1,...,n}) be the Nerode equivalence
J

relation on 5 with respect to L(Gg, P), L(GY, x G?), and L(G?J_) respectively.

From (2), we have 6y (qn,,s) = 0u(qu,, t)

By Proposition 2.6, we thus have s =g, p) (3)
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As Gy = Eg x GI, x G, x --+ x Gp,, we can conclude ng x &"((ym,,zh),s) =
i % & ((ymy, 25), t) and (V) € {1,....n}) EF(af,,s) = £ (a7, 1).
By Proposition 2.6 and the fact L(GY, x G true) = L(G% xG") and L(G?j,true) =

L(G}Ilj), we thus have s =/ qr . qn t and (Vj € {1,....n}) s = )t (%)

From (1), we have s € Wy (P)
= ((3ou € Spu)so, € L(Gh, x GY) & so, ¢ L(Gy, P)) or
(35 €{1,...,n}) (B0, € Ta,) 504, € L(G]) & s04, ¢ L(Gu, P))
= ((30y € Shy) to, € L(GY, x Gb) & to, ¢ L(Gy, P)) or
(35 €{1,...,n})(B0a, € Bu,) tou, € L(G}) & to, ¢ L(Gu, P)), by (3)(4)
=t e Wg(P)
O

Lemma 4.3. For system ®, let Py, € Pred(Qpy) be the given predicate for Qgjc.
Then the following holds:
(VP € Sub(Pry)) (Vs € L(Gy, P))

(T <s)teWy(P)) < sé¢ Que(L(Gy, P))

proof:

Let P € Sub(Py,) and s € L(Gp, P). (1)

1. Show that (3t < s) t € Wy (P)) = s ¢ Qrc(L(Gr, P))
Assume (3t < s) t € Wy(P). (2)
Must show this implies s ¢ Qp;c(L(Gy, P)).
From (2), we have

(3t < s5)((Fow € Sha) toy, € L(GY, x GY) & to, ¢ L(Gy, P)) or

(37 €{1,...,n}) Bo4, € X4,) to,, € L(G’}j) &to,, & L(Gu, P))
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= =((Vt < s5) (Vo € Epy) toy € L(GY, x G}) = to, € L(Gy, P)) &
((Vou, € B4,) tog, € L(G}) = to,, € L(Gn, P)) &

((VO’an c ZAn) to,, € L(G}Iln) = to,, € L(QH,P)))

= s ¢ Quic(L(Gu, P)), by definition of Q¢

2. Show that s ¢ Qyic(L(Gy, P)) = (3t <s)t € Wy(P).
Assume s ¢ Qurc(L(GH, P)). (3)
Must show this implies (3t < s) t € Wg(P).
From (1), we know s € L(Gp, P). From (3), we thus have

= =((Vt < s5) ((Vou € Epy) to, € L(GY, x GY) = to, € L(Gu, P)) &
((Vou, € B4,) tog, € L(G}) = to,, € L(Gu, P)) &

((Vo,, € $a,) toa, € L(G? ) = to,, € L(Gu, P)))
= (3t < 5)((Fou € Sha) to, € L(GY, x GY) & to, ¢ L(Gy, P)) or
(37 €{1,...,n}) (3oq, € B)) toy, € L(GY) & too, ¢ L(Gu, P)) (4)
As s € L(Gy, P) and L(Gy, P) is closed, we have t € L(Gy, P) (5)
By (4) and (5), we have (3t < s) t € Wy(P).

]

The above two lemmas state a very important fact. If a string s € L(Gpy, P) is in
Wy (P) with P < Pp,, Lemma 4.2 says that all strings in L(G g, P) that go from ¢g,
to the state dpy(qn,,s) are also in Wy (P), while Lemma 4.3 says that all strings in
L(Gy, P) that are extended from a string in Wy (P) are not in Qpc(L(Gy, P)). It

means that if a string s € L(Gy, P) is in Wy (P), then all the strings in L(Gy, P))
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that lead from qp, to or pass through the state éy(qg,, s) are not in Qg c(L(Gh, P)).

The fact is formally proved as follows by using these two lemmas.

Proposition 4.6. For system ®, let Pn, € Pred(Qp) be the given predicate for

QHjc, then
(VP € Sub(Pra)) LG, P) — Quic(L(Gu, P)) = LW (Gy, P),
where LV PN (G, P) = Usew,(p)L*(Gw, P) as defined in Section 2.5.5.

proof:

Let P € Sub(Pha).

1. Show that LYW# (") (G, P) C L(Gy, P) — Quic(L(Gu, P)).
Let s € L") (G, P). (1)
Must show this implies s € L(Gy, P) — Quic(L(Gy, P)).
From (1), we know (3t € Wy (P)) s € LY (G, P)
= (3t e Wu(P)) s € {uc LGy, P)|(3v < u) 6u(qu,,v) = 0u(qu,,t)}
= s¢€ L(Gy, P) & (3v < 5)(3t € Wy (P)) du(quy, v) = 6u(qm,,t)

=s€L(Gy,P) & (Fv<s)veWy(P),
by Lemma 4.2 and the fact L(Gy, P) is closed.

= S c L(gH,P> & s ¢ QHjc(L(gH,P>>7 by Lemma 4.3

= s € L(Gu,P) — Quric(L(Gy, P))

2. Show that L(G g, P) — Qurc(L(Gw, P)) € LW P)(Gy, P).
Let s € L(QH, P) — QHjc(L(gH,P)) (2)

Must show this implies s € LW#(") (G, P).
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Sufficient to show that (3t € Wg(P)) s € L'(Gy, P)

From (2), we know s € L(Gpu, P) & s ¢ Quic(L(Gu, P)).
=se€L(Gy,P)& (Ft<s)&teWyg(P), byLemma 4.3
= (3t € Wy(P)) s € L'(Gy, P), as t is a prefix of s and L(Gy, P) is closed.

]

Now, if we look at Proposition 2.7, it seems that we can compute Qp;0(L(G g, P))
by removing all the states in {¢ € Qg|(3s € Wy (P))ou(qu,,s) = q} from the state
set Qg of Gpy.

For any ¢ € Qp, as Gy = Eg x GE, x G"| there must exist unique z € Zg,y € Yy
and z € X" such that ¢ = (z,y, z). For the state 2 € X", as G} = G}, x--- x G} |,

there must also exist unique z; € X?, ..., 2, € Xff such that x = (x1,...,x,), so

q= (Z,y7.7§') = (Zayamlv s 73371,) (41)

Definition 4.6. For system ®, let P, € Pred(Qp) be a given predicate. Define the

function g @ Sub(Phra) — Sub(Phra) according to

(VP € Sub(Phy))
iro(P) = P—pr(Badry U{q E R(Gn, P) | (30 € Xp,UX4) du(g, o) | ~P}),
where Badgy = {q¢ = R(Gu, P)|
(Bou € Zpa) (nm x €"((y,2),00)! & Culz,0u) D) or
(35 €{L,....n})(30a, € Ba,) (E}(z),00,)! &
Cr X X &P x - x oy x €y X x (2, T, wn),0a,) ) )

and ¢ = (2,y,x) = (2,y,21,...,%,) as in equation (4.1).
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Note that [Ig;c(P) = P = Pha, so the function is well-defined.

Proposition 4.7. For system ®, let Pp, € Pred(Qpu) be the given predicate for

QHjc, then
1. (VP € SUb(Pha>) QH]c'(L(gH,P>> = L(gH,HHjc(P))

2. (Vi€ {0,1,...}) Qy1o(L(Gn: Pra)) = L(Gr, Wy 10(Pha)

proof:

1. Let P € Sub(Phy). Must show that Qp;o(L(Gy, P)) = L(Gu, Ugic(P)).
We prove this proposition by a series of transformation.
Qu1c(L(Gu, P))
= L(Gy, P) — LWa(P)(Gy P), by Proposition 4.6
= L(gH7 P) - UwGWH(P)Lw(gH7 P)
= L(Gu, P — pr(Uuew, (»{0u(qm,w)})), by Proposition 2.7
= L(gH,P —pr({qg € R(Gu, P)|du(qu,, w) = q for some w € WH(P)})),

as Wg(P) C L(Gy, P) and by Proposition 2.5
= L(Gu, P~ pr({a € R(Gn, P)|(Gw € L(Gu, P)) ulqu,,w) = q &
(30w € Ehu) wo, € L(GE x GY) & wo, ¢ L(Gy, P)) or
(3 €{1,...,n}) (300, € £a,) woa, € L(G}) & woq, ¢ L(gH,p))})>,
by definition of Wy (P)
= 1(Gu P—pr({a b R(Gu, P)
(Gow € Sha) i x £"((y, 7). 00)! &

(61(q,04) ) or (0r(q,04)! & 61(q,0,) ¥ P))) or

(37 e{1,...,n})(3oa, € Ba,) EMxj,00,)! &
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(5H(Q7Uaj) /.VOT (5H<qaaaj)! & 5H(Q7Uaj) ¥ P)))})>7

where ¢ = (2,y,2) = (2,9, 21,...,T,) as in equation (4.1).

= 1(Gu. P —pr({a b R(Gu, P)
((Fow € Su) (i x E((y, ), 00)! & (g, 00) ) or
(i % €"((y,0),0)! & 0(q, 0u)! & Sn1(q,0) ¥ P)) or
(35 €{L,....n}H(F0a, € Ba,) (& (2}, 00,)! & 0u(g,04,) }) or
(6825, 00,)! & On(a,00,)! & bn(a,00,) # P))}) ).

by logical distribution law.

= L(Gu. P~ pr({a - R(Gu. P)|
(Cow € Ba) (na x E"((y,2), 00)! & du(q,00) )) or
(61(q,00)! & Sn(q,04) ¥ P)) or
(3 € {1,....n}) (30, € Su,) (€15, 00)! & u(q,00,) J) or
(6r1(4,70,)! & Ou(a,0,) ¥ P))}) ).
as 0 (¢, 0u)! = N x &"((y,2),0,)! and S (q, 0q,)! = &} (), 04,)!

by definition of dg.

= 1(Gu. P ~pr({a b= R(Gu, P)
(0w € Sh) (i x E"((y:2),0)! & Sa(a,0.) }) or Sa(q,0.) ¥ P) or
(3 € {L,-...n})Gou, € Za)) (€ (27,00, & ba(g.00,) J) or
on(a,00,) ¥ P)})),
as 6p(q,04) B P < 0p(q,0,)! & 6u(gq,0,) # P and
0r(q,04,) ¥ P < 61(q,04,)! & 61(q,04;) ¥ P.

= (G P—pr({a b R(Gu, P)
((EIO-U S Zhu)(nH X €h<<yam)70u)! & CH(Zao-u) /l/) or 5H(Qa0u) jé P) or
(G5efy,..., n})(Foa, € Xa,) (5?(3@,0%)! &

CHXT]HX&{ZX"'XE;];lX ]}'L+1x"'x€7hi((zvyaxl aaaa xj—laxj+1 7777 xn),aaj) /)OT
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61(q,0q;) ¥ P)})), by definition of dp.

—2(9n. P~ pr({a - R(Gn, P)|
(0w € Sha) (0 xE"(y, @), 0)! & Car(2,04) 1) or (g, 00) |= =) or
(3 €{1,...,n}) Foa, € Ba,) (€(x),00,)! &
Caxnu XEPx- - x&M  x&h  xox&l((z,y, w1, 1,40, - 2n), 0q,) )) OF
311(q,00;) ﬂP)})>, by ¢ ¥ P& q = -P
= 1(Gu P—pr({a b R(Gu, P)
(Gou € ) mir % €((y,2),00)! & Culz,04) 1) or
((Jow € Epu) 0u(q,00) E —P) or
(37 €{L,....,n})(30a, € Ba,) & (x;,00,)! &
Cor XM XEP X XE X ER X X ER (2,4, 1, o o1, Ty -1 B0y Oay) 1) OF

((F7e{1,...,n})(Foa, € Xa;) 6u(q,0q;) F ﬁP)})), by regrouping conditions

= L(Gu, P — pr(Badry U{q = R(Gu, P)|
((Fow € Bnu) 0u(g, 0u) = —P) or
(7 €{L,....,n})(Foo, € Z4;) 0n(q,04;) | ~P)})),
by definition of Bad gy
= L(Gu, P —pr(Badry U{q = R(Gu, P)|
(F0w € ) Gu(q, o) = —=P) or
((F0a € Xa) 0u(q,0a) = ~P)}))
= L(Gu, P —pr(Badry U{q = R(Gu, P) | (30 € Epy UX4) dulq,0) | ~P}))

= LGy, Uuic(P)).

2. Show that (Vi € {0,1,...}) Qiy1o(L(G, Pra)) = L(Gr, Iy 1 (Pra))

We prove this by induction.
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(a) Base case: (i =0)
By the definitions of Q% ,o(L(Gu, Pra)) and I1% ;o (Pha) (see section 2.1.3),

we have
Q% 1c(L(G ., Pra)) = L(GH, Pha)
L(Gu, 1% 16(Pha)) = L(G 1, Pha)
So, Qy1c(L(Gr, Pha)) = L(Gu, 10 (Pha))
(b) Inductive step:
Let k € {0,1,...}. Assume Q% ,(L(G#, Pha)) = L(G i, 1T5116(Pha)). Must
show this implies Q% L (L(Gw, Pha)) = L(Gw, 0 (Pha))-
Ve (LG, Pra)) = Quio(U10(L(G 1, Pha)))
= Quro(L(Gm, Wy 10(Pra))), by assumption
= L(Gu, 116(Pha)), by taking I, (Pha) as our

predicate P in Point 1 of this proposition.

Now, if we take a look at the definition of the function Il5;c, we can see that for

any P < P, the function Iy ;¢ only removes states in R(Gy, P) from P. Precisely,

IIgre only removes all the states in pr(Badgy U {q | R(Gu,P) | (30 € Xy, U

¥4) 0u(q,0) E —P}), which is a subpredicate of R(Gpy, P). If we also remove any

state that is not in R(Gp, P), then the language L(Gg, P) is not affected at all,

because the L(Gy, P) is only dependent on R(G g, P). Similarly, removing any state

that is not in R(Gpy, P) does not affect the language L(G g, Il g;c(P)) either, because

it is only dependent on a subpredicate of R(G g, P). The following function I'g;e is

a replacement of the function Ilz;c.
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Definition 4.7. For system ®, let P, € Pred(Q ) be a given predicate. Define the

function I'yre : Sub(Phe) — Sub(Ppe) according to

(VP € Sub(Ph,))

Uric(P) =P —pr(Badg U{q € Qu | (30 € Ep, UX4) dulq,0) =P},
where Bady := {q € Qy]

(Bou € Bpa) (nm x " ((y,2),0u)! & Culz,0u) 1)) or

((Fje{l,....,n})(F0a, € Ba,) (€ (x),00,) &

CH XN X 5? X X E]}'l—l X f]h-i-l X X g:{((z,y,lﬂl,...,xj,1,$j+1,...,.’I/'n),O'aj> /))}

and ¢ = (2,y,2) = (2,y,21,...,%,) as in equation (4.1).

Note that for system ®, Bady is constant.

Corollary 4.1. For system ®, let Pp, € Pred(Qy) be the given predicate for the

function Qurc, Ugre and U'gre. Then the following holds:

1. (VP € Sub(Pra)) Qu1c(L(Gw, P)) = L(Gu, Tuic(P))

2. (Vie{0,1,...}) Quic(L(Gr, Pra)) = L(G#, Uyrc(Pha)
proof:

1. Let P € SUb(P]w), show that Qch(L<gH, P)) = L(gH,Fch<P))

By the definitions of I15;¢ and I'g ¢, and from the above description, we know
that removing states that are not in R(Gg, P) does not affect the language

L(gH,HHjc(P)) We thus have
L(gH7HHIC(P)) = L(gH,FHIC(P)) (1)

By Point 1 of Proposition 4.7, we know
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Qurc(L(Gu, P)) = L(Gu, Uuic(P)). (2)

By (1) and (2), we have QHjc(L(gH, P)) = L(QH, FH]C(P))

2. Show that (Vi € {0,1,...}) Q4 ;c(L(GH, Pha)) = L(Gu, Uy 10 (Pra))

Identical to the proof of Part 2 of Proposition 4.7 after substituting Il ;o with

Larc.

The following lemma will be used in the next proposition.

Lemma 4.4. For system ®, let Py, € Pred(Qp) be the given predicate for the func-

tion U'grc. The function I' o is monotone with respect to <, 1i.e.
(VPy, Py € Sub(Pra)) Pr 2 Po = Tpic(P) 2 Tie(P)

proof:
Let Py, Py € Sub(Py,). Assume Py < Py. Must show implies Trro(P1) < Taic(Ps).
Tyre(Py) =P —pr(Bady U{q € Qu | (30 € By, UX4)dn(g,0) E P })
= Py A—pr(Bady U{q € Qp | (30 € B4, US)d(q,0) E —P1})
= Pu A (mpr(Badm)) A =(pr({g € Qu | (30 € Xnu UXa) dr(q,0) = ~P1)}))
= PuA (mpr(Badg)) Apr({g € Qu | (Vo € Xnu UXa) 0u(g,0)! = du(g,0) = P1)})
2 P/ (mpr(Badm)) Apr(fg € Qu | (Vo € Xnu UXa) 0m(q,0)! = du (g, 0) = P2)}),
by assumption P < P,.
= Py A (mpr(Badw)) A =(pr({g € Qu | (30 € Xnu UXa) dr(q,0) = ~P2)}))
= P, A—pr(Bady U {q € Qp | (30 € S, US4)d(q,0) | —R})
= P, —pr(Badg U{q € Qn | (30 € Ly UX4) du(q,0) | ~F2})
=Tnic(P)
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Proposition 4.8. For system ®, let Py, € Pred(Qp) be the given predicate for the

function Qe and Ugye, then,

1. There exists k € {0,1,2,...} with k < |st(Ppa)| such that T%;o(Pha) is the
greatest fixpoint of the function I o with respect to (Sub(Ppa), <), and where

st(Ppa) is the identifying state subset of Qg for Pha.
2. sup Cu(L(Gu, Pha)) = LG, T510(Pha))

proof:

1. Show that there exists k < |st(Pp)| such that the greatest fixpoint of the

function 'grc is equal to I'¥ ;o (Pha).

As we assume the number of states in Gy is finite (Section 4.1), the number of
states in st(Pp,) is also finite. By Lemma 4.4, we know that "¢ is monotone
with respect to <, so by Proposition 2.3, there exists k < |st(Pp,)| such that

the greatest fixpoint of the function Iz is equal to T'% o (Pra)-
2. Show that sup Cr(L(G, Pha)) = L(Gu, T1c(Pha))

(a) Show that sup Cx(L(GH, Pha)) € L(Gw, % ;0(Pha))
By Proposition 2.3, we know that
(Vi€ {0,1,...}) i > k= LG, T ;0(Pra) = LG, Tk 10(Pha))
= 1imy oo L(G . T 10 (Pha)) = LG, T (Pha))
= limy oo Q1o (L(G 1, Pha)) = L(Gu, T%;0(Pra)), by Corollary 4.1
= supCy(L(Gu, Pra)) C L(Gu, T%,0(Pra)), by Proposition 4.5
(b) Show that L(Gu, T%;0(Pra)) C supCu(L(GH, Pha))

From Point 1 of this proposition and Proposition 2.3, we have
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Thir0(Pha) = Tific(Pha)
= L(Gm, Tli1c(Pha)) = L(Gu, U0 (Pra) (1)
Qio(L(G . Pra)), by Corollary 4.1

Q10 (e (L(G s Pha)))

QH[C’( (QH, F%[O(Pha)))a by Corollary 4.1

gH; 1—‘HIC’ 7Dha

L( (
L(Gu, T (Pha
( (

) =
)
)
L(G . Dirc(Pra)) =

So, L(Gw,T% ,o(Pu,)) is a fixpoint of the function Qprc. By Proposi-

tion 4.4, sup Cy(L(Gu, Pra)) is the greatest fixpoint of Qp ¢, thus,

LG, T%1c(Pra)) C supCu(L(Gw, Pha))

We are now able to write a computer program to compute sup Cy(L(Gy, Phra)) by

computing I'% - (Pra) (k € {0,1,2,...}), and we know that after at most |st(Pp,)]

number of iterations, a fixpoint of I' ;¢ will be reached, which is the greatest fixpoint

of I'yre by Proposition 2.3. However, such a program based on function I'y;¢ is not

efficient enough. For instance, each time when we implement the I' ;¢ function, we

have to do the predicate subtracting operation. The following alternative method can

avoid this.

Definition 4.8. For system ®, define the function PHIC : Pred(Qy) — Pred(Qn)

according to

(VP € Pred(Qg)) PHC(P) := =“TR(Gy,~P V pr(Bady), Xp, UX4).

The following lemma will be used in the next proposition.

Lemma 4.5. For system ®, the following two points hold:

1. The function PHIC is monotone with respect to =<, i.e.

(VPl,PQ - PT@d(QH)) P1 j P2 = PHIC(Pl) j PHIC(PQ)
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2. (VP € Pred(Qy)) PHC(P) < P.

proof:

1. Show that PHIC is monotone.
Let Py, Py, € Pred(Qpg).
Assume P; < P,. Must show this implies PHIC(P;) < PHIC(F;).
By assumption P; < P, we have =P, < = P;.

= TR(gH,_‘Pz \/pr(BadH), EhuUZA) j TR(gH, _‘Pl \/pr(BadH), E}WUZA),

as T'R is monotone
= —PHC(Py) < ~PHC(P,)
= PHC(P;) < PHIC(P,)
2. Show that (VP € Pred(Qg)) PHIC(P) < P.
Let P € Pred(Qp). We will now show that PHIC(P) < P.
PHIC(P) = -TR(Gy, PV pr(Bady), Xp, U X4)
— —PHIC(P) = TR(Gy,—P V pr(Badg), She U S)
= =P < =PHIC(P), by definition of TR and fact =P < =P V pr(Badg)

= PHIC(P) < P.

Proposition 4.9. For system ®, the following holds:

(VPha € Pred(Qg)) supCru(L(GH, Pra)) = L(Gy, PHIC(Ppy)).
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proof:

Let Py € Pred(Qp) be the given predicate for the function 'y ¢ (i.e. Sub(Pha)
is the domain and codomain for 'y ).

From Lemma 4.5, we know PHIC(P},) = Pha, so PHIC(Pp,) € Sub(Pp,) and is thus
a valid input of I'gy¢.

From Proposition 4.8, sufficient to show PHIC(Py,,) is the greatest fixpoint of "¢

1. Show that PHIC(Py,) is a fixpoint of 'y ¢, i.e. PHIC(Pp,) = T'yre(PHIC(Pha)).
[ pro(PHIC(Pr,)) = PHIC(Pra) —
pr(Bady U{q € Qu | (3o € X4, UX4) 0p(q,0) E ~PHC(Ppa)})
To show I' gy (PHIC(Phe)) = PHIC(Ph,), sufficient to show that
(V¢ € Qg) ¢ |E PHIC(Pra) = ¢ ¥ pr(Bady) &
¢ ¢1{q € Qu| (Fo € LpUXa) du(q,0) F ~PHIC(Pha) }
Let ¢ € Q. Assume ¢’ = PHIC(Py,). (1)

Must show the following two points.

(a) Show ¢ ¥ pr(Badg).
By (1), we have ¢’ = PHIC(Ph,)
= ¢ ¥ TR(GH, PraVpr(Bady), X, UXa)
= ¢ ¥ pr(Bady), by definition of TR

(b) Show ¢ ¢ {q € Qu | (30 € Xy, UX4) 6u(q,0)  ~PHIC(Pra)}
We prove this by contradiction.
Assume ¢ € {q € Qn | (30 € Shy US) bn(q.0) = ~PHC(Py,)}.
= ¢ €{qeQu |

(Jo € Xp,UXy) 0g(q,0) ETR(GH, " Pra Vpr(Bady), X, UXA)}
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= (Jo € ZpuUX4) 0(¢',0) ETR(GH, 7 Pra V pr(Bady), Xp, UX4)
= ¢ ETR(GH,Ph. Vpr(Bady),Xp, UX4), by definition of TR
= ¢ = ~PHIC(Pha),
which contradicts with (1): the assumption ¢’ = PHIC(Pp,), so
qd ¢{q€Qpu | (Fo € X UX,) dg(q,0) | ~PHIC(Pra)}-
2. Show that PHIC(P},) is the greatest fixpoint of T'xrc, i.e.
(VP € Sub(Ppy)) P' =Tyio(P') = P < PHIC(Py,).
Let P € Sub(Pp,). Assume P’ = I'gro(P’). (2)
Must show this implies P’ < PHIC(Pp,).
We show this by contradiction.
Assume P’ A PHIC(Pp,)
= (3¢ = P')¢' ¥ PHIC(Pha)
= (3¢ = P')q' FTR(Gr, = Pre V pr(Badp), By, U a) (3)
By the definition of I'y;¢, we have
Cuic(P) =P —pr(Badg U{qg € Q| (Jo € Ly, UX4) du(q,0) =—-P'})
=P A-pr(BadgU{qg e Q| (3o € Xy, UX4) du(q,0) E -P'})
=P ' A—pr(Badg) A—pr({g€ Q| (3o € Ly, UX4) du(q,0) E -P'})
=P —pr(Bady) —pr({g € Q| (3o € £, UX4) 0u(q,0) E -P'}) (4)

From (3), by the definition of T'R, one of the following two conditions must be

satisfied.

(a) ¢' = ~Pra V pr(Badp)

By (3), we also have ¢' = P’
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= ¢ = Phray, as P’ € Sub(Pha)

= ¢/ = ~(=Pu

= ¢ ¥ ~Pha

= ¢ = pr(Bady), as{ | =P Vpr(Bady).

As ¢’ = pr(Bady) and I'g;o(P') = P, by (4), we thus have ¢’ # P’, which
contradicts ¢’ = P’ in (3).

¢ ¥ =Py V pr(Bady)

= (s € (ZpUXa)") 0u(d,s) = =Pha V pr(Bady), by definition of TR

= (3]{3 S {1,2,...}) (qu,QQ,...,qk+1 € QH) (301,0‘2,...,0'k c ZhuUZA>

@ =q
Qk+1 = —Phra V pr(Bady) (5)
5H(Qi70i) = qi+17i = 1727"'7k

S =0102...0L

First,we show that ¢z, = —P".

By (5), we have qx1 = —Pha V pr(Bady).

If gki1 E —Pha, as P! = Py, we have =Py, < =P'; thus qx1 | P

If g1 = pr(Bady), by (4) and assumption I'gy;o(P’') = P’, we also have
qk+1 ): -P'.

Thus, in both cases we have ¢x.1 | = P'. (6)

Now we show that ¢ = —P’.

By (5), we know g (qk, 0%) = qrs1- By (6), we know ¢x1 = =P’ By (4)

and assumption ['g;o(P') = P, we thus have ¢, = —P'.
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Similarly, we can prove that ¢; = - P fori =k —1,...,1. As ¢ = ¢ by
(5), we have ¢’ = —P’, which contradicts ¢’ = P’ in (3).
As Part (a) and Part (b) both will cause contradictions, we have P’ < PHIC(Ph,).

[]

4.2.5 Computing Qynp(L(GH, P))

For a predicate P € Pred(Qp), in the previous section, we have found a way
to compute supCy(L(Gp, P)). To complete the computation for the function Qg,

we now show the method to compute Qyyp(L(Gy, P)), i.e. the method to compute

Lin(Gu) N L(GH, P).
Proposition 4.10. For system ®, the following holds:

proof:

Let P € Pred(Qg).

1. Show that L, (G, CR(Gy, P)) € Lm(Gy) N L(Gy, P)
Clearly, Lin(Gu, CR(Gr, P)) C Lin(Gr). (1)
By the definition of CR(Gp,.), we know CR(Gy, P) < P.
= Ln(Gu,CR(Gy, P)) C Ln(Gu, P)
= L(Gn,CR(Gx, P)) C L(Gy, P) (2)

By (1) and (2), Ln(Gu, CR(Gi, P)) € Lin(Gi) O L(G, P).
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Must show implies s € L,,,(Guy,CR(Gy, P)).

Sufficient to show s € L(Gy, CR(Gy, P)) and 0u(qn,, s) € Qu,,, where Qp,, is

the marker state set of Gy as defined in Section 4.1.

From (3), we know s € L,,(Gp)

= 01 (qu,, ) € Qum,, (4)
From (3), we also know s € L(Gy, P)

= (Ine{0,1,...})(3q0,q1,- - -, Gn € Qu)(Fo0,01,...,0n_1 € X1H)
do = qu, (qu, is the initial state of Gp)
aEP i=0,1,....n (5)

0u(qi,0i) = Giv1, ©1=0,1,...,n—1

S = 0'00'1 ‘.'O—’I’Lfl

qn = 5H(QH07 S)'

By (4) and (5), we know (Vi € {0,1,...,n}) ¢; = CR(Gu, P)

= s € L(Gu,CR(Gy, P)), as qo = qu, by (5)

4.2.6 The Algorithm to Compute supCy(L,,(Gg))

It is time to put everything for the high-level together and to obtain our algorithm.

Definition 4.9. For system ®, define the function I'y : Pred(Qy) — Pred(Qp)

according to

(VP € Pred(Qy)) Tyu(P):= CR(Gy, PHC(P))
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As PHIC (by Lemma 4.5) and the predicate transformer CR(Gy, .) are monotone,

the function I'y is monotone.

Lemma 4.6. For system ®, the following holds:

(VP € Pred(Qu)) Ln(Gu, CR(Gu, P)) = L(Gu, CR(Gy, P))

proof:

Let P € Pred(Qpg).

Ln(Gu,CR(Gy,P)) C L(Gu,CR(Gy, P)) is automatic.
We now show L(Gy,CR(Gy,P)) C Lyn(Gr, CR(GH, P)).
Let s € L(QH,C’R(QH,P)) (1)

Must show this implies s € L,,(Gy, CR(Gg, P)).

Sufficient to show (35" € X3) s’ € L,(Gu, CR(GH, P)).
By (1), we know s € L(Gy,CR(G g, P))

= (E”C < {0, 1, .. .})(ElqO,ql, o, QR € QH)<E|O'0,0'1, e, Op—1 € E[H)

do = qH,
5H(Qi)ai)ZQi+l7 Z:07177]{:_]-

S =0001* " 0Ok—_1-

As g € CR(Gpy, P), it follows that

(Fne{0,1,...1) n > k) Eqrt1,- -G € Qu)(FOk, Okg1s -+, 0n1 € Xirpr)

QneQHm

6u(qi,00) = qivr, i=kk+1,....n—1
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Let s' = 040441 ...0,—1. Combining (2) and (3), we thus have

(n € {0,1,...})Bq0, q1,---,qn € Qu)(300,01,...,0n-1 € Z11)

qo = qHy
I € Qmu,,
¢ =ECR(Gy,P), i=0,1,...,n
ou(gi, o) = qiv1, 1=0,1,....,n—1

ss’ = 00901 0Op—1

= ss' € L(Gu,CR(Gu, P))

Lemma 4.7. For system ®, the following holds:

(VP € Pred(Qy)) (Vi € {1,2,...}) Ln(Gy, T4 (P)) = L(Gy, T4 (P))

proof:
Let i € {1,2,...}, and P € Pred(Qp). By definition of 'y, we have
Lin(Gr, Ty (P)) = Lin(Grr, T (T (P)))
= L, (Gy,CR(Gy, PHC(I'; ' (P)))), by definition of I'yy

=Tn(Gm, CR(Gy, P))) by letting P’ = PHIC(I';(P))
= L(Gy,CR(Gy, P)), by Lemma 4.6

= L(Gu, CR(Gu, PHC(T';;(P))))

= L(Gy, T, (P)), by definition of T'y

Proposition 4.11. For system ®, the following two points hold:

2. (VP € Pred(Qg))(Vi € {1,2,...}) Qu(L(Gy,P)) = Ln(Gu, ' (P))
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proof:
1. Show that (YP € Pred(Qy)) Qu(L(Gy, P)) = Lin(Gu,Tu(P))
Let P € Pred(Qp).
Qu(L(Gy, P)) = Ly(Gy) NsupCr(L(Gy, P)), by definition of Qy
= Lin(Gu) NsupCu(L(Gn, P))
= L,(Gy) N L(Gy, PHIC(P)), by Proposition 4.9
= L (Gu,CR(Gy, PHIC(P))), by Proposition 4.10

= LGy, T'y(P)), by definition of I'y

2. Show that (VP € Pred(Qpu))(¥i € {1,2,...}) Q4 (L(Gu, P)) = Lyn(Gr, Ty (P))

Let P € Pred(Qp). We prove this by induction.

(a) Base Case: i = 1
By Point 1 of this proposition, we know Qg (L(G, P)) = Lin(Gu, Tu(P))
= Qy(L(Gw, P)) = Ly, (Gr, Tu(P))

(b) Inductive step.
Let k € {1,2,...}. Assume Q% (L(Gy, P)) = Ln(Gy, T (P)). Must show
O (L(Gw, P)) = L(Gu, T (P)).
O (L(Gw, P)) = Qu(Q(L(Gu, P)))

= Qu(Ln(Gw,T%(P))), by inductive assumption

= Ly (Gu) NsupCu(Lm(Gu,T%(P))), by definition of Qp
= L (Gu) NsupCu(L(Gw, I (P))), by Lemma 4.7
= QH(L(QH, F];{(P))), by definition of QH

= L,(Gy, T%™(P)), by Point 1 of this proposition.
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Theorem 4.1. For system ®, the following two points hold:

1. There exists k € {0,1,...} such that k < |Qp| and T% (true) is the greatest

fixpoint of the function 'y with respect to (Pred(Qg), <).
2. supCar(Lon(Gr)) = 5up Car(Lon(Gir, truc)) = Lon(Gor, Ty (true).
proof:

1. Show that there exists k € {0,1,...} such that k¥ < |Qg| and ['%(true) is the

greatest fixpoint of the function I'y; with respect to (Pred(Qg), =<).

As T'y is monotone and |@Qg| is assumed to be finite (Section 4.1), we know
immediately from Proposition 2.3 that there exists £ € {0,1,...} such that

k < |Qpg| and T% (true) is the greatest fixpoint of the function I'f.

2. Show that sup Cy (L, (Gr)) = sup Cy (L (G, true)) = Ly, (G g, Tk (true)).

sup Cr (L (Gu)) = sup Cy (L (Gu, true)) is automatic as L, (G ) = L (Gu, true).

(a) Show that sup Cy (L (G, true)) C Ly (Gw, ¥ (true))
By Proposition 2.3, we know that

Vie {1,2,...}) i >k = L, (Gu,T%(true)) = L,(Gg, T (true))

= lim; oo L (Ga, T4 (true)) = Lo (G, Tk (true))
= lim; o Q4 (L(G g, true)) = L, (Gy, T¥ (true)), by Proposition 4.11
= sup Cy(Lp(Gu, true)) C L, (Gu, T (true)), by Proposition 4.3

(b) Show that L,,(G g, % (true)) C sup Cy(Lm (G, true)).

Based on the value of k, we show this in two cases:
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e Case 1: ke€{1,2,...}
By Point 1 of this theorem and Proposition 2.3, we have

Tk (true) = D5 (true)

Ln(Ga, Tk (true)) = L (Gu, T (true))

Lo (G, TX (true)) = Q5 (L(Gy, true)), by Proposition 4.11
L(Gw, T8 (true)) = Qu(Q5(L(G g, true)))

Ly(Gr, T(true)) = Q(Lin(G, D (true))),

by Proposition 4.11 and k € {1,2,...}
e Case 2: k=0
If TY (true) is the greatest fixpoint of 'z, then by Proposition 2.3 we
know that
'L (true) = TY (true), (1)

so T'L(true) is also the greatest fixpoint of T'g.

L(Gu, T (true)) = Qg (L (Ga, Ty (true))), by Case 1

L (Gr, T (true)) = Qu(Ly(Ga, TY (true))), by (1)

From Case 1 and Case 2, we know that L,,(Gg, % (true)) is always a

fixpoint of the function Q.

By Proposition 4.2, sup Cy (L, (G, true)) is the greatest fixpoint of Qy,

50 L (G, T (true)) C sup Cr (L, (G, true)).

Corollary 4.2. For system ®, let Sy be a DES defined over event set Xy with
L(Sy) = L(Gy, T%(true)) and L,,(Sy) = Ln(Gu, T (true)), where k € {0,1,...}
and T% (true) is the greatest fizpoint of U'y with respect to (Pred(Qy), =). Then for

the n' degree parallel interface system composed of G, GY , ..., G} Gy, ...,
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Gy, Sy, Er,, ..., Ep, with respect to the alphabet partition in Equation 3.1, Sy is

a high-level proper supervisor.

proof:
We first note that by Theorem 4.2, an appropriate k € {0, 1,...} exists such that

% (true) is the greatest fixpoint of I'yy with respect to (Pred(Qp), <).

1. Show that L,,(Sg x G¥, x G?) = L(Sy x G¥, x G).
Ln(SH) = Li(G g, T (true))
= Lm(Su) € Lin(Gn)
= L,(Sy) C Ln(Eg x GE, x Gh)
= Lin(Sw) C Ln(GY; x GT)
= L,,(Sg) = Ln(Sy x G, x Gh) (1)
Similarly, we can show that L(Sy) = L(Sy x G, x G&) (2)

If k€ {1,2,...} and T'% (true) is the greatest fixpoint of 'y, then by Lemma 4.7

we know that L,,(Sy) = L(Sy).
If k = 0 and 'Y (true) is the greatest fixpoint of 'y, then as |Q /| is assumed to

be finite (Section 4.1), by Proposition 2.3 we know that I'}; (true) = T'Y (true) .

= L(Sy) = L(Gy,TL(true)) and L,,(Sg) = Ln(Gu, T (true))

= L, (Sy) = L(Sy), by Lemma 4.7.

Therefore, we always have

Lm(Su) = L(Su), (3)

when k € {0,1,...} and T'%(true) is the greatest fixpoint of I'.

Combining (1), (2) and (3), we can conclude L,,(Sg x G x G#) = L(Sy X
G x Gh).
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2. Show that Sy is high-level interface controllable.

By Part 1, Definition 3.8 and Definition 4.2, it is sufficient to show that L,,(Sg x

GY, x G") is high-level interface controllable.
From Theorem 4.1, we know L,,(Sg) is high-level interface controllable.

By (1), we can conclude L,,(Sg x GY, x G") is also high-level interface control-

lable.

The supervisor Sy can be built by trimming off states from G g that do not satisfy
% (true). A trim supervisor DES Sy can be built by trimming states from Gy that
do not satisfy R(G g, % (true)).

Algorithm 4.1 shows how to compute I'¥, (true), where k € {0,1,...} and T'% (true)
is the greatest fixpoint of 'y with respect to (Pred(Qg),=). By Point 1 of Theo-
rem 4.1, we know that the greatest fixpoint will be reached after finite number of

iterations.

Algorithm 4.1 Computing the greatest fixpoint of I'y w.r.t. (Pred(Qg), =)
t Pyag,, < pr(Badg);
P, — true;
repeat
P, — Pp;
P, — CR(Gy,"TR(Gu, P>V Poady, Xhu U 24));
until P1 = P2
return Pi;

Line 5 computes I'y(P,), because CR(Gy, " TR(GH, Py V Poaay, Zpu U X4)) =

CR(Gn, PHC(P,)) = Lig(P).
100



Master Thesis — R. Song — McMaster — Computing and Software
4.3 Low-level Supervisor Synthesis

In this section, we show how to synthesize a maximally permissible proper low-
level supervisor for the j¥ low-level in system ®,5 € {1,...,n}. Unlike the high-level
supervisor synthesis, the low-level supervisor synthesis is much more complicated.

We first only discuss part of the conditions for the j™ low-level.

4.3.1 The j"* Low-level P4 Interface Controllable Language

Definition 4.10. Let K C Z’;Lj be a language. K is j** low-level Pj interface

controllable (LPC;) with respect to system ® if the following conditions are satisfied:
1. K%, NL(G],) €K
2. KXp, NL(G)) CK

%

Clearly, the empty language () is j** low-level P4 interface controllable and the
definition is based on the language K, so K is j** low-level P4 interface controllable
with respect to system ® iff K is j™* low-level P4 interface controllable with respect
to system ®.

The low-level P4 interface controllable language definition is quite simple. Notice
that the first condition here is identical to the first condition in the the high-level
interface controllable language definition(Definition 4.2) by substituting ¥;5 with
Yrr,s Yhu With 3y, L(GH; % G") with L(G’L’j). The second condition in Definition 4.2
is actually composed of n sub-conditions. The second condition here is identical
to the j* sub-conditions of the second condition in Definition 4.2 by substituting
Yrg with ¥y, Y4, with Xg;, L(G}) with L(G} ). Also notice that all the sub-

conditions in the second condition of Definition 4.2 are independent. Therefore, the
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following propositions or lemmas are provided without detailed proofs, but with the
corresponding propositions or lemmas in Section 4.2. The detailed proofs can be
easily obtained by appropriate substitutions from the corresponding propositions or
lemmas.
For an arbitrary language £ C X7, , we define the set of all sublanguages of £
that are j'" low-level P4 interface controllable with respect to system ® as
LPC;(E):={K CE | K is j™ low-level

P4 interface controllable with respect to system ®. }

Clearly, (LPC;(E), C) is a poset. The following proposition shows that the supre-

mum in this poset always exists in LPC;(E).

Proposition 4.12. For system ®, LPC;(E) is nonempty and is closed under arbi-
trary unions. In particular, LPC;(E) contains a (unique) supremal element,

sup LPC;(E) = U{K|K € LPC;(E)}.

proof: Similar to Proposition 4.1.
O
From Proposition 4.12, we have sup LPC;(E) C E, which means that we can

compute sup LPC;(E) by removing strings from FE.

Lemma 4.8. For system ®, let L C X7, . If L is closed then sup LPC;(L) is also

closed.

proof: Similar to Lemma 4.1.
O

Let P, € Pred(Qr,) be a given predicate, we now give our method to compute

sup LPC;(L(GL;, Pia;))-
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Definition 4.11. For system ®, let P;,, € Pred(Qr,) be a given predicate. Define

the function Qppc; : Pwr(L(Gy;, Pla,)) — Pwr(L(GL,, Pi,)) according to

(VK € Pwr(L(GL,, Pia,)))
Qppo,(K) :={s € K | {s}Sn, NL(G],) CK & ({s}r, N L(G}) C K)}

¢
Clearly Qzpc; is monotone. Note that Qppc,(K) € K C L(Gy;, Pla,), so this
function is well-defined, and it only removes strings from K.
To make it easier to understand and use this function, the definition can be rewrit-
ten as
(VK € Pwr(L(GL,,Pu,)))
Qrpe, (K) = {s € K | (Vt < s)((Vo, € Ey;) to, € L(G])) = to, € K) &
((Vor, € Xg,) to,, € L(Gllj) = to,, € K)}.

Proposition 4.13. For system ®, let Pio; € Pred(Qyr;) be the given predicate for
Qrpc;. Then sup LPC;(L(Gy,, Pu;)) is the greatest fixpoint of Qppc; with respect to
(Pwr(L(Gr;, Pia;))s ©)-

proof: Similar to Proposition 4.4.
O
From Proposition 4.13, we know that we can compute the sup LPC;(L(G1,, Pi;))
by computing the greatest fixpoint of 27 pc;. It is also tempting to compute the

greatest fixpoint by iteration of 2rpc,.

Proposition 4.14. For system ®, let Py,; € Pred(QL.) be the given predicate for
the function Qppc,. The set theoretic limit lim; o €2 Lrc; (L(GL;, Pu;)),i € {1,2,...}

exists, and sup LPC;(L(GL;, Pia;)) C lim;_ Q Lpc; (L(GL,, Pia,))-
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proof: Similar to Proposition 4.5.

O
It remains to show that lim; e Qppe, (L(GrL;, Pia,)) S sup LPC;(L(GL;, Pia,))
and that we only need to iterate a finite number of iterations in the case that G L

has a finite number of states.

Definition 4.12. For system @, define the function Wy, : Pred(Qr;) — Pwr (X))
according to
(VP € Pred(Qr,))
W, (P):={s € L(Gy,,P) | (Fo, € Tu,) sou € L(GY)) & so, ¢ L(Gy,,P)) or
(30, € Ty) 50, € L(GY) & s0, ¢ LGy, P)) )

¢
Note that Wi (P) € L(Gy,, P). The following two lemmas will be used in the

proof of the next proposition.

Lemma 4.9. For system ®, the following holds:
(VP € Pred(Qr,;))(Vs,t € L(GyL,, P))

s € WL]'(P) & (5Lj(qu07 8) = 6Lj (QLjovt)) =te WLj (P)v
where qr;, is the initial state of G, as defined in section 4.1.

proof: Similar to Lemma 4.2.

]

Lemma 4.10. For system ®, let Py,, € Pred(Qyr,) be the given predicate for Qppc, .
Then the following holds:
(VP € Sub(Pu,))(¥s € L(Gy,, P))

((Ht < S) te WLJ(P)) <~ S ¢ QLpCj(L(ng,P)).
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proof: Similar to Lemma 4.3.
[
The above two lemmas state a very important fact. If a string s € L(Gy,, P)
is in Wp,(P) with P < Py, Lemma 4.9 says that all strings in L(Gy,, P) that
go from qrj, to the state dr,(qrj,,s) are also in Wy (P), while Lemma 4.10 says
that all strings in L(Gy,, P) that are extended from a string in Wy, (P) are not in
Qrpc,(L(GL,, P)). It means that if a string s € L(Gy,, P) is in W, (P), then all the
strings in L(Gr;, P)) that lead from qrj, to or pass through the state d.,(qr;,, s) are
not in Qrpc, (L(Gr,, P)). The fact is formally proved as follows by using these two

lemmas.

Proposition 4.15. For system ®, let Pi,; € Pred(Qy;) be the given predicate for

QLPCJ-7 then
(VP € Sub(Pu,)) L(G1,, P) — Qupe,(L(Gr,, P)) = LY P(G,,, P),
where L't (P)(QLJ.,P) = Usew,, ) L*(Gr,;, P) as defined in Section 2.5.5.

proof: Similar to Proposition 4.6.
O
Now, if we look at Proposition 2.7, it seems that we can compute Qrpc, (L(Gr,, P))
by removing all the states in {q € Qr,|(3s € Wr,(P))dr,(qrj,,s) = q} from the state
set Qr; of G .
For any ¢ € Qr,, as G, = Er, X G, X GZIJ_, there must exist z € Zi;,y €Y,
and x € X} such that

q=(2y,z) (4.2)

Definition 4.13. For system ®, let Py, € Pred(Qr;) be a given predicate. Define

the function Iz pc, : Sub(Pla,) — Sub(Pia,) according to
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(VP € Sub(Pis,))
Iy pc,(P) = P — pr(Badgg,; U
{¢F R(GL;, P) | (B0 €%, USg)) b1,(q,0) | ~P}),
where Badg,, = {q = R(G1,, P)|
((Bou € B,) nr,(y,00)! & Cr, x E5((2,2),00) }) or
(3o, € Bgy) &, 00)! & Gy < e, ((2,9),00,) D}
and g = (z,y,2) as in equation (4.2).
¢

Note that Il pc,(P) <= P =X P, so the function is well-defined. Let P €
Pred(Qr,). Function I1; pc; removes all the states in {q € Qr,|(3s € Wi, (P))dr,(qrjy,5) =

q} from P. The following proposition shows this.

Proposition 4.16. For system ®, let Pi,; € Pred(Qy;) be the given predicate for

QLPCj) then
1. (VP € SUb(Plaj)) QLpCj(L<ng,p)) = L(nganLPCj<P))
2. (VZ S {07 17 .- }) QiLPC'j (L<ng7Plaj)) - L(ngu HiLPCj (Pla]-))

proof: Similar to Proposition 4.7.
[
Now, if we take a look at the definition of the function IIzpc;, we can see that
for any P =< Pla, the function Uy pc; only removes states in R(G Lj,P) from P.
Precisely, Il pc; only removes all the states in pr(Badgr, U{q F R(Gr,,P) | (3o €
Yi; UXR;) 01,(q,0) |E —~P}), which is a subpredicate of R(Gp,, P). If we also remove
any state that is not in R(Gy,, P), then the language L(Gp,, P) is not affected at
all, because the L(Gp,, P) is only dependent on R(Gp,, P). Similarly, removing any

state that is not in R(Gy,, P) does not affect the language L(Gr,, Il pc,;(P)) either,
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because it is only dependent on a subpredicate of R(Gy,, P). The following function

I'rpc; is a replacement of the function Il pc;.

Definition 4.14. For system ®, let Py, € Pred(Qr;) be a given predicate. Define

the function I'Lpe; : Sub(P,) — Sub(Pia,) according to

(VP € Sub(Plaj ))

Pree,(P) = P —pr(Bady, U{q = Qu, | (B0 € S, USk,) 0, (q,0) = ~P}),
where Bady, = {q € Qy,|
((Bou € Bu,) nr, (Y, 00)! & o, x E5((2,2),00) }) or
(3o, € Bgy) &, 00)! & Gy 01, ((2,9),00,) D}

and g = (z,y, ) as in equation (4.2).

Note that for system ®, Badp, is constant.

Corollary 4.3. For system ®, let P, € Pred(Qr;) be the given predicate for the

Junction Qppc;, Uppo, and U'ppc;. Then the following holds:
1. (VP € SUb(Plaj)) QLPCj (L(QLJ,P)) = L(ngarLPCj (P))
2. (VZ € {07 17 .- }) QiLPCj (L<ng>Plaj)) = L(nga FZ'LPCj (Plaj))

proof: Similar to Corollary 4.1.

The following lemma will be used in the next proposition.

Lemma 4.11. For system ®, let Pio; € Pred(Qr,) be the given predicate for the

function Urpc;. The function ['Lpc; is monotone with respect to =X, i.e.

(VPL, Py € Sub(Pia,)) Pr X Py = I'rpe,(P1) 2 I'pe, (FP2)
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proof: Similar to Lemma 4.4.

]

Proposition 4.17. For system ®, let Py, € Pred(Qr,;) be the given predicate for

the function Qppc; and U'ppc;, then,

1. There erists k € {0,1,2,...} with k < |st(P,)| such that F]Zch(Plaj) is the
greatest fizpoint of the function I'Lpc, with respect to (Sub(Pia,), %), and where

s5t(P,) is the identifying state subset of Qr, for P, .

2. sup £P63<L<gLJ ) Plaj )) - L(ng7 FIZPC’J- (Pl‘lj))

proof: Similar to Proposition 4.8.
O
Now, we are able to write a computer program to compute sup LPC;(L(Gr;, Pia,))
by computing I'f pe, (Pia;) (k € {0,1,2,...}), and we know that after at most [st(Piq, )]
number of iterations, a fixpoint of I'r po; will be reached, which is the greatest fixpoint
of ' pc; by Proposition 2.3. However, such a program based on function I'rpc; is
not efficient enough. For instance, each time when we implement the 'y pc; function,
we have to do the predicate subtracting operation. The following alternative method

can avoid this.

Definition 4.15. For system ®, define the function PLPC; : Pred(Qr;) — Pred(Qr,)
according to

(VP € PT@d(QLj)) PLPCj<p) = ﬁTR(gL]., -P \/pr(BadLj), Zluj U ER].).

Lemma 4.12. For system ®, the following holds:

1. The function PLPC; is monotone, i.e.

(VPl,PQ - PT@d(QLj)) P1 = P2 = PLF(jJ(Pl) j PLPCJ(PQ)
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2. (VP € Pred(Qyr,)) PLPC;(P) X P.

proof: Similar to Lemma 4.5.

O
Proposition 4.18. For system ®, the following holds:
(VPu, € Pred(Qr,)) sup LPC;(L(Gr,, Pu,)) = L(G1,, PIPC;(Pi,)).
proof: Similar to Proposition 4.9.
O

The following lemma is obvious, but for later convenience, we give a proof here.

Lemma 4.13. For system ®, the following holds:

(VP S Pred(QL]‘))(Vq S QL]') q ): PLPC](P> = ((Vp S ER]') £]l<x7p)' = 6Lj ((L p)')

proof:
Let P € Pred(Qy,) and q € Q.
Assume ¢ |= PLPC;(P). (1)
Must show this implies (Yp € Xg,) & (x, p)! = 0r,(q, p)!.

Let p € Xg,. Assume & (x, p)!. We now show 4, (¢, p)!.

From (1), we have ¢ = PLPC;(P)

= q = "TR(Gr,,~PVpr(Badg,), X, UXg,)

= q¥ TR(Gr,,~PVpr(Bady,), X, UXg,)

= q¥ pr(Badg,), by definition of TR

= Cz, X 1L, ((2,9),p)!, by definition of Bady, and ¢ = (z,y,z) and &(x, p)!

=>6Lj(q,p)!, by 6Lj :CLj XnLj Xg]l and 6;(x>p)'
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4.3.2 The j"* Low-level Interface Controllable Language

Definition 4.16. Let K C ¥j, . K is 3™ low-level interface controllable (LIC;) with

respect to system ® if the following conditions are satisfied:
1. K is j" low-level P4 interface controllable.
2. (Vs € K)(Vp € Sg,)(Vo € By4,) spa € L(Gllj) = (3 € X7)) spla € K
3. (Vs€K) seL,(Gh)=3@lex;)sle K
¢

Obviously, the empty language () is j** low-level interface controllable with respect
to system ®. Note that the first and the second conditions are based on the closed
language K.

For a language K C Z?Lj, if K satisfies the second condition of LIC;, we say that
K is j™ low-level P5-satisfied, and if K satisfies the third condition of LIC;, we say
that K is j%" low-level P6-satisfied.

For an arbitrary language E C X7, we define the set of all sublanguages of

that are j*" low-level interface controllable with respect to system ® as
Cr,(E) :={K C E|K is j™ low-level interface controllable with respect to system ®}

Clearly, (Cr,(E), ) is a poset. We now show that the supremum always exists in

Cy,(E).

Proposition 4.19. Let E C X7, . The set Cr;(E) is nonempty and is closed un-

der arbitrary unions. In particular, Cp,(E) contains a (unique) supremal element,

supCr,(E) = U{K|K € Cr,(E)}.
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1. Show that Cpr,(E) is nonempty

The empty language 0 is j** low-level interface controllable with respect to

system @, so ) € Cp,(E).

2. Show that Cr,(F) is closed under arbitrary unions.

Let

B be an index set. Assume that (V3 € B) Kg € Cr,(F). Sufficient to show

that UgeBKg S CLj (E)

Let

K = UgepKp € Cp,(E). Tt is sufficient to show that K is j™ low-level

interface controllable with respect to system ®. By Definition 4.16, we have to

show the following:

(a)

Show that K, N L(GY)) € K

Identical to the proof of Proposition 4.1(Part 2(a)) by substituting X,
with y,,, L(GE, x G}) with L(G},) and Cp with Cr;.

Show that KX g, N L(GZIJ_) CK

Identical to the proof of Proposition 4.1 (Part 2(a)) by substituting Xy,

with S, L(GY x GF) with L(GY ) and Cpr with Cy,.

Show that (Vs € K)(Vp € Zg,)(Va € X4,) spa € L(Gllj) = (Al €
27,) spla € K.

Let s € K,p € ¥, € Yy,. (1)
Assume spa € L(G)). (2)

Must show this implies (3 € 7 ) spla € K.
By (1), we have s € K

= (3s' € Xj;,) s’ € K
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= (30 € B) ss' € K3
=sc Ky (3)
By (3), (2) and K € Cr;(E), we have (3l € X7 ) spla € Kp
= (3l € X7)) spla € K, asK;CK

(d) Show that (Vs € K) s € L,,(G}) = (A € X} )sl € K
Let s € K. (4)
Assume s € Lm(Gle). (5)
Must show this implies (3 € ¥ ) sl € K.
By (4), we have s € K
= (3s' € Xj;,) s’ € K
= (30 € B) ss' € K
=s€ Kg (6)
By (6), (5) and K € Cr;(E), we have (3l € X7 ) sl € Kj

:>(3leE*Lj)sleK, as Kg C K
3. Show that supCr,(F) = U{K|K € Cr,(E)}.
Identical to the proof of Proposition 4.1 (Part 3) by substituting Cy with Cr,
and ZIH with EILJ'-
4. Show that supCr, (E) € Cr,(E).
This immediately follows from Part 2 and Part 3.

]

From Proposition 4.19, we have supCyr,(E) C E, which means that we can com-

pute sup C,(E) by removing strings from E.
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4.3.3 supCr,(Ln(Gr,)) and the Greatest Fixpoint of (1,

For system ®, if we compute the supremal j* low-level interface controllable
sublanguage of L,,(Gyr;), then a DES representing this sublanguage is a maximally
permissible j** proper low-level supervisor. Therefore, we need to find a method to

compute sup Cr, (L, (Gr,)). For this purpose, we define the following function.

Definition 4.17. For system ®, define the function Q; : Pwr (X7, ) — Pwr(Z7,)

according to
(VK € Pwr(X7,))) Q,(K) == Qrnp, (e, (s, (LIPC;(K))))
where QpnB;, s, (ps, , IPC; are functions for system @, which are defined as follows:
o IPC;: Pwr(Xj, ) — Pwr(Xy,)
(VK € Pwr(¥7,,)) IPC;(K) := sup LPC;(K)
o (s, ¢ Pwr(Z?Lj) — Pwr(Eij)
(VK € Pur(S,)

Qs (K) :={s € K | (Vt <5)(Vp € Eg,)(Va € Xy,)
tpa € L(Gllj) = (3l € X7)) tpla € K}

® Qg+ Pur(Xy, ) — Puwr(¥y,))
(VK € Pur(S;,,)
Qe (K) i={s € K|(Vt < 5) t € L, (GY) = (N € X7 )tl € Lin(Gr,) N K}
e Orng; - PW"(Z?LJ-) - PWT(EHJ-)

(VK € P'UJT‘(E;LJ)) QLNBj(K) = Lm<gLJ) NnK
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As all the functions in €, are defined on Pwr(Z?LJ_), so we can compose them
together.

Clearly, €25, s, 2zyp, are monotone with respect to C . By Proposition 4.12,
it is also clear that LPC; is monotone with respect to C . Therefore, the function €2,
is monotone with respect to C as well.

Note that (VK € Pwr(¥7,,)) IPC;(K) C K,Qy,(K) C K,Qy,(K) € K and
Qrnvp,(K) C K.

By the Knaster-Tarski Theorem(Theorem 2.1), the greatest fixpoint of the func-

tion €2, with respect to (Pwr(X7, ), C) must exist. The following lemmas will be

used later on.

Lemma 4.14. For system ®, let L C X7, be a closed language, then 5, (L) and

Qpe; (L) are also closed.

proof:

Assume L = L. Must show implies Q,5, (L) = Qp5,(L) and Qug,(L) = Qyq,(L).

Qps,; (L) € Qs (L) and Qp6,(L) € Qp6,(L) are automatic.

1. Show that €5 (L) C Q5 (L)
Let s € m (1)
Must show this implies s € ,5,(L).
From (1), we have (3s' € X7, ) ss' € Qys,(L)
= ss' € L & ((Vt < s5')(Vp € Xg,)(Va € Xy,)
tpa € L(GlIJ_) = (3l € X})) tpla € L)
=s€ L& ((Vt <s5)(Vp € Xpg,)(Va € Xy,)

tpa € L(GlIJ_) = (3l €X})) tpla € L), as L is closed.

= S € Qp5j (L)
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2. Show that €p6,(L) C Qpg, (L).
Let s € m.
Must show this implies s € 6,(L).
From (2), we have (3s' € X7, ) ss' € (e, (L)
=ss' e L& ((Vt<ss)te Lm(Gle) = (Al e Xy )t € Lin(Gr,) N L)

=se L& ((Vt<s)te L,(Gh) = 3 eX))tl€ Lyn(Gr,)NL),

as L is closed.

= 5 € Qs (L).

Lemma 4.15. For system @ and for all T € Pwr(X7, ),
1. T =sup LPC;(T) iff T is j™* low-level P} interface controllable.
2. T =Qus,(T) iff T is j™ low-level P5-satisfied.

proof:

Let T' € Pwr(Xy,).

1. Show that T = sup LPC,;(T) iff T is j* low-level P4 interface controllable.

We first show T = sup LPC;(T) iff T is j* low-level P4 interface controllable.

(a) Show (T = sup LPC;(T)) = (T is j*" low-level P4 interface controllable).

Assume T= sup LPC,(T).

Must show this implies T is j* low-level P4 interface controllable.

Sufficient to show that T € LPC;(T).

By Proposition 4.12, we know sup LPC,(T) = U{K|K € LPC,;(T)}.
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=T =U{K|K € LPC;(T)}, by (1)
= T € LPC;(T), by Proposition 4.12
(b) Show (T is j* low-level P4 interface controllable) = (T = sup LPC;(T)).
Assume T is j*" low-level P4 interface controllable. (2)
Must show this implies T = sup LPC;(T).
By (2), we know T € LPC;(T)
= T Csup LPC;(T) (3)
By Proposition 4.12, we know sup LPC;(T) C T (4)

From (3) and (4), we have T = sup LPC;(T).

From Definition 4.10, we know that 7" is j*" low-level P4 interface controllable

iff T is j** low-level P4 interface controllable.

So, we have T = sup LPC;(T) iff T is j** low-level P4 interface controllable.

. Show that T = Q5,(T) iff T is j'™ low-level P5-satisfied.
T is j' low-level P5-satisfied
& (Vs € T)(Vp € Bg,)(Va € By,) spa € L(GIIJ_) = (3l € X7)) spla € T

& (Vs e T)(VE < 5)(Vp € Bg,)(Va € By,)
tpa € L(GZIJ_) = (A eX})) tpla € T, asT is closed

& (VseT) s e W, (T)
& T C Qs (T)

& T =0, (T), as Qs (T) CT by definition of €5,
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Proposition 4.20. For system ®, supCr,(Ln(Gyr,)) is the greatest fizpoint of the

function Qp; with respect to (Pwr(X7,), C).

proof:

Let S :=supCr;(Ln(Gr,))-
1. Show that S is a fixpoint of r_, i.e. S = Qp,(S)

(a) Show that S = sup LPC;(S) and S = Qy5,(S5).
As S is j™ low-level interface controllable, S is j** low-level P4 interface
controllable and j low-level P5-satisfied.
By Lemma 4.15, we have S = sup LPC;(S) and S = Q5,(95).
(b) Show that S = L,,(Gr,) NS
Sufficient to show that S C L,,(G1,) NS and L,,(Gr,) NS C S.
By Proposition 4.19, we have S C L,, (G, ). (1)
=S C Lm(ng)ﬂg, as S C S
Now we show L,,(Gr,) NS C S.
Let t € Ly, (G,) NS, (2)
Must show this implies ¢t € S.
From (2), we have t € L,,,(G.) and t € S

J

= {t} C Ln(Gy,) and {t} C S

= {t} € Ln(Gy,) and {1} C

Ul

(3)
Let S := S U{t}.

= 8" C Liy(Gr,;), by (1)and (3) (4)
We now show S’ is j*" low-level interface controllable with respect to system

P.
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i.

11.

11l

Show that S5, N L(GY ) € 5’

S is j' low-level interface controllable, so S%,, N L(GY)) < S. (5)
By (3) and (5), we have mEluj NL(GL,) € S (6)
From (5) and (6), we have (S U {t})Z,, N L(GY)) C S

= (SU{t})Zi, N L(G},) €S, by Proposition 2.2

= 5%, NL(GY,) C S

= S/, N L(GY)) < S’, as S C S’ by definition of S’ (7)

Show that S'Sg, N L(Gl]j) cs

S is j™ low-level interface controllable, so SXg, N L(GZIJ_) cS. (8
By (3) and (8), we have mZRj N L(Gllj) cS 9)
From (8) and (9), we have (S U W)ERJ. N L(GlIJ_) cS

= (SU{t})Zg, N L(G})CS, by Proposition 2.2

= 5%, NL(G})C S

= S'Sg, N L(Glfj) C S’ as S C S by definition of S’ (10)

Show that (Vs € §7)(Vp € Bg,)(Ya € Xa,) spa € L(G}) = 3l € 37 ) spla € 57
S is j™ low-level interface controllable, so
(Vs € S)(Vp € Zg,)(Va € By,) spa € L(GZIJ_) = (3lex})) splac S (11)
By (3) and (11), (Vs € {t})(Vp € Zg,) (Vo € T4,)

spa € L(Gllj) = (3l e X7)) spla € S (12)
By (11) and (12), (Vs € SU{t})(Vp € Zg,)(Va € B4,)

spa € L(GL) = (3l e %7 ) spla € S
= (Vs € SU{t})(Vp € Tg,)(Va € Zy4,)

spa € L(GZIJ_) = (A e X)) spla € S, by Proposition 2.2

= (Vs € §)(Vp € Bg,) (Vo € By4,)

spa € L(GZIJ_) = (A e 7)) spla € S (13)
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iv. Show that (Vs € §) s € Ly, (G}) = (3 €%} )sl € &
S is j'* low-level interface controllable, so
(Vse€S)se Lm(Gle) = (3leXy) sles. (14)
By (3) and (14), we have
(Vs € {t}) s € Lm(G}) = (A €5} ) sl € S. (15)
By (14) and (15),we have
(Vse SU{t}) s € Ln(Gh )= (Al eX; ) sles
= (Vs € SU{t}) s € L(G},) = (3l € £}) sl € S, by Proposition 2.2

= (Vse ) se€ Ln(Gl)=> (Blex;)sles (16)

By (4), (7), (10), (13) and (16), we have S" € Cr,(Lm(Gz,)).
As S =supCr,(Lm(Gr,)), we then have S’ C S.
= {t} C S
=tels
(¢) Show that S = Q,(5)
Sufficient to show that
(Vs € S)(Vt <s)t e Ln(Gh)= BleX;)tel,(G,)NS
Let s € S and t < s. (17)
Assume t € Lm(Gle). Must show this implies (30 € X7 ) ¢l € L, (G1,) ns

From (17) and the assumption ¢ € Lm(Gle), by the definition of S, we have

(Fex)tles

= (3lex; ) tle L,(Gr;,)NS, by Part 1(b)

By combining (a), (b), (c) and the definition of Q;, we know S = (S5).
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2. Show that S is the greatest fixpoint of 2. i.e.
(VI' € Pwr(27,,)) T =Q.,(T) =T CS.
Let T' € Pwr(X7,,). Assume T = Qp,(T'). Must show this implies 7' C S.

Sufficient to show that 7" is j** low-level controllable with respect to system ®

and T' C L, (Gr,)-
T =6, (T)
= Qrv i, (Qps, (Qps, (LPC;(T))))
= Ln(1,) 1 Dy, (s, (sup £PC,(T))) (18)
C Qs (s, (sup LPC,(T)))
As T is closed, by Lemma 4.8, sup LPC,(T) is closed. Then by Lemma 4.14,
Qps; (Qps, (sup LPC;(T))) is also closed. So by (18), we have

T C Q5. (s, (sup LPC, (T))) (19)

For any L € Puwr(Xj,), we have sup LPC;(L) C L by Proposition 4.12,
Qps,(L) € L by the definition of Q,5, and €,5,(L) C L by the definition of

Qs , 50 We know
o, (s, (sup LPC,(T)) € T (20)
By (19) and (20), we have
T = Oy, (s, (sup LPC, (1)) 1)

Function 2,6, and €25, only remove strings from their inputs, and sup LPC; (T) C

T, so from (21) we have

T = sup ,CPC] (T), T = Qij (T) and T = Qpﬁj (T) (22)
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From T = sup LPC;(T) and T = Oy, (T), by Lemma 4.15, we know that T is
4" low-level P4 interface controllable and j** low-level P5-satisfied.
It remains to show that T is j'* low-level P6-satisfied.
Sufficient to show that (Vu € T') u € Lm(Gle) = (3leX])ueT.
Let u € T. Assume u € L,,(GY,). Must show this implies (3 € ¥} ) ul € T.
From (18) and (21), we also have T = L,,(Gr,) N T (23)
From (22), we have T = Oy, (T)
>T={scT|(Vt<s)te Lm(Gﬂj) = (3l eXy)) tl € Ln(G1,) NnT}
uc{seT|(Vt<s)teLn(GL)= (A e} )tleLy(Gr,)NT} asueT
= (Vt <) (t€ Ln(G) = Bl eX;) tl € Ly(Gr,)NT)
= u € Lm(Gﬂj) = (A€ X},) ul € Ly(Gr,) NT, asu<u
= (3l €X}) ul € Ly (Gy,) NT, by assumption u € Lm(GlIJ_)

= (3l eXy)ul €T, by (23)

From (18), clearly, ' C L,,(Gv1,)-

4.3.4 Computing the Greatest Fixpoint of (1,

From Proposition 4.20, we know that we can compute supCy,(L,(Gr,)) by com-
puting the greatest fixpoint of {2r . It is tempting to compute the greatest fixpoint

by iteration of (.

Proposition 4.21. For system ®, the set theoretic limit lim; o(L(Gy,)),7 € {1,2,...}

exists, and sup Cr, (L (Gr,)) C lim;_o Qij(L(ng)).
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proof:

Identical to the proof of Proposition 4.3 by substituting G i with G, sup Cyz with
supCr,;, {2y with ., Proposition 4.1 with Proposition 4.19, and Proposition 4.2 with
Proposition 4.20.

O

Similar to the high-level, here we start the iteration from the closed language
L(Gr,;). It remains to show the reverse lim; . Qij(L(ng)) CsupCr,(Lm(Gr,)) and
that the limit will be reached after a finite number of iterations on 2, (i.e. i < 00).
Again, in general case, the reverse does not hold, but in our case where all the
languages are regular, the reverse does hold and the number of iterations on € is
finite, as we will show.

For a given predicate P € Pred(Qy,), we already know the method to compute
sup LPC;(L(Gy,, P)) from Proposition 4.18. We now show the method to compute
Qps, (L(G1,, P)) and e, (L(GL,, P)).

Computing Q,5,(L(Gy,, P))

Definition 4.18. For system @, define the function Wy, : Pred(Qr;) — Pwr (X7,
according to
(VP € Pred(Qr,)) Wy, (P) :={s € L(Gr,, P) | (3p € Xg,)(Fa € Xy,)
spa € L(GY) & (VI € 37 spla ¢ L(Gr,, P)}
¢

Clearly, for all P € Pred(Qr;), Wys,(P) € L(G1,, P).

Lemma 4.16. For system ®, the following holds:
(VP € Pred(Qr,))(Vs,t € L(GyL,, P))

(5 € Wps, (P) & (61,(qrjor 8) = 01,(qLje: 1)) = t € Wis, (P).
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proof:
Let P € Pred(Qy,), and s,t € L(Gy,, P). (1)
Assume 0(qrj,, 8) = 0(qrjy,t) and s € Wy, (P). (2)

Must show this implies ¢ € W5, (P).

Let = L(Gr,;.P)s = LG} ) be the Nerode equivalence relation on X7, with respect to
L(Gy,;, P) and L(Gl[j) respectively.

From (2), we have §(qz;y, ) = 9(qrjo,t)

= S =L(Gy,.P) t, (3)

by Proposition 2.6

As G, =E; x G} x GZIJ_ and 9, (qLjo, 5) = 01, (qrjo, t), We have
gj (132'07 S) = £§<xé07 t)
=5 =@ b (4)

by Proposition 2.6 and fact L(G} ,true) = L(GY,).

From (2), we have s € W, (P)

= (Jp € Lg,)(Ba € Xy,) spa € L(GZIJ_) & (Ve X)) spla ¢ L(Gr,, P)

= (Jp € Tg,;)Fa € Xy,) tpa € L(Gle) & (Ve X)) tpla ¢ L(GyL,, P), by (3)(4)
=t e Wy, (P), aste L(Gr,, P).

Lemma 4.17. For system ®, the following holds:
(VP € Pred(Qr,)) (Vs € L(GL,, P)) (Ft < s)t € Wys,(P)) & 5 & Qs (L(GL,, P))).

proof:
Let P € Pred(Qr,) and s € L(Gy,, P). (1)
1. Show that (3t < s)t € Wys,(P)) = s & Q5,(L(G1,, P)).

Assume (3t < s) t € Wy, (P). (2)
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Must show this implies s ¢ Q5. (L(Gz,, P)).
From (2), we have
(3t < s)(dp € Xp,;)(Fa € Xy,) tpa € L(Gllj) & (Ve X)) tpla ¢ L(GL,, P)

= 2((Vt < 5)(Vp € Bg,)(Va € Ly))
tpa € L(GZIJ_) = (A € X})) tpla € L(Gy,, P))

=5 ¢ Qps, (L(Gr,, P)).

2. Show that s ¢ Qps, (L(Gy,, P)) = (3t < s) t € W5 (P).
Assume s & Qp5,(L(Gy,, P)).
Must show this implies (3t < s) t € W5, (P).
From (1), we know s € L(Gr,, P). Combine this with (3), we thus have

—((Vt < 5)(Vp € Bg,)(Va € Xy))
tpa € L(Gle) = (A € X})) tpla € L(Gy1,, P))

= (Jt < s)(Fp € Xg,)(Fa € Xy,)
tpa € L(Glfj) & (Ve X)) tpla ¢ L(GyL,, P)

As s € L(Gr,;, P) and L(Gp,, P) is closed, we know t € L(Gy,, P).

By (4) and (5), we thus have (3t < s) t € Wy, (P).

Proposition 4.22. For system ®, the following holds
(VP € Pred(Q,)) L(G1,, P) — s, (L(G1,, P)) = LG, , P),
where L5 (P)(Q'Lj, P) = UsGWp5j P L*(Gr,, P).

124



Master Thesis — R. Song — McMaster — Computing and Software

proof:

Identical to the proof of Proposition 4.6 after substituting Sub(P,) with Pred(Qy,),
Quic with Qps,, Wy (P) with Wy (P), Gy with G, 6y with 6z;, qu, with qrj,
Lemma 4.2 with Lemma 4.16 and Lemma 4.3 with Lemma 4.17.

]

Definition 4.19. For system ®, define the function I'y5, : Pred(Qr;) — Pred(Qr,)
according to
(VP € Pred(Qr,))
Lps, (P) =P —pr({q € Qr,;|(3p € Xg,;)(Ba € Xy,)
&z, pa)l & 61,(q.p) F = CR(GL;, Pa, X1, P)}).
where P, := pr({¢’ € Qr,|0,(¢,a) F P}) and

q = (z,y,x) as in equation 4.2 (Page 105).

The following lemma will be used later on.

Lemma 4.18. For system ®, I';5. is monotone with respect to =<, i.e.

(VPl,P2 € PT@d(QLj)) Pl j PQ = Fp5j(pl) j Fij(P2)-

proof:
Let P, P, € Pred(Qr,). Assume P; = P.
Must show this implies I'ys,(P1) =< Tps, (P2).
Ly, (P1) = P1 — pr({q € Qu,|(3p € Eg,)(Bar € Xy))
&(@, pa)l & 01,(q,p) = CR(G1,, Pas X1, P1)})
=PiA=pr({q € Qr,|(Fp € Lg,)(Ba € Xy,)
5w, pa)! & 0r,(q,p) == CR(GL,;, Pa, ¥1;, P1)})
=P Apr({qg € Qr,|(Vp € Bg,)(Va € Xy))

& (x, pa)! = 0r,(q,p) E CR(GL,, Pa, X1, P1)})
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<P Apr({qg € Qr,|(Vp € Bg,)(Va € Ey,)
& (@, pa)l = 01,(q, p) E CR(GL;, Pa Xy, P)}),
as P < P, and CR is monotone.
=P, A-pr({qg € Qr,|(3p € Zg,)(Ba € By,)
iz, pa)! & 01,(q,p) E = CR(GL,, Po, X1, P2)})
=P, —pr({q € Qr,;|(3p € Bg,)(Fa € Xy,)
&z, pa)l & 61,(¢,p) F = CR(G 1L, Pas Xi;5 P2)})
=I5, (P2)

The following lemma will be used in the proof of next proposition.

Lemma 4.19. For system ®, let P € Pred(Qr,),w € X7, and ¢ € Qr;. If q =
R(G1,;, P) and q = 61,(qrjy, w), then
(Vp € B, ) (Vo € B4,) 61,(q,p) = CR(GL,s Pa, X, P) iff 3l € X)) wplor € L(GL,, P),

where Py = pr({q' € Qr,;0L,(¢', ) = P}) as defined in Definition 4.19.

proof:
Assume g = R(Gp,, P) and q = 01, (qrjo, w).
Let p € Xg, and o € Yy,
or,(¢,p) ECR(GL;, Pa, ¥1;, P)
& (Fke{0,1,...})3o1,...,00 € 1,)3q1, .- ., qry2 € Q1)

¢ = 6z,(q,p)
G+1 F P
Q- Qo2 E P
Giv1 = 01,(¢i,09),i=1,2,... .k
Qrv2 = 01, (qrv1, @),

by the definitions of CR and P,.
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& (3ke{0,1,..})Fo1,...,00 € By1,)
or,(q,po1---ora) = R(Gr,, P), asql R(Gr,,P)
& (A exy) wola € L(Gy,, P),
by letting [ = o1 - - - 03 and the assumption ¢ = R(Gr,, P) and ¢ = dr,(qr;,, w).
[

Proposition 4.23. For system ®, the following holds:
(VP € Pred(Qr,))
(Vg |= P)(Yp € Er;) (2, p)! = 01,(a,)!) = (s, (L(G L0 P)) = L(GrL;, Tps; (P))),

where ¢ = (z,y,x) as in equation (4.2) (Page 105).

proof:
Let P € Pred(Qy,).
Assume (Vg |= P)(¥p € Sr,) €z, p)! = 6z, (¢, o). 1)
Must show this implies Q5,(L(Gr;, P)) = L(GL,,T'ps,(P)).
We first claim the following holds by (1).
(Vg = P)(Vp € Zg,)(Va € B4,) &(x, pa)l = oL, (q, p). (2)
Proof of the claim:
Let ¢ = P,p € X, and o € Xy.
Assume & (z, pa)!. (3)
Must show implies dz,(q, p)!.
From (3) and the definition of &, we know that & (x, p)! and ! (&l(z, p), a)!.
= &(x, p)!
= 0r,(g,;p)!, by (1)
Claim proven.

We now prove this proposition by a series of transformation.
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Qps; (L(GL;, P))

= L(G,, P) — LV (P)(ng, P), by Proposition 4.22

= L(G1,, P) — Uwew,s,(») L"(GL,, P)

= L(G,, P —pr(U WEW,s, »10z,(qz,,w)})), by Proposition 2.7

= L(G1;, P —pr({qg € R(GL,;, P)|oL; (gL, w) = q for some w € Wy, (P)})),

as W5, (P) C L(Gy,, P) and by Proposition 2.5
= L(G1,, P —pr({g € R(G1,, P)|(Fw € L(Gy,, P))(3p € Eg,)(Fer € E4;)
0r,;(qrs0,w) = q & wpa € L(GY)) & (VI € B ) wpla ¢ L(Gr,, P)})),
by definition of W,
= L(Gy,, P —pr({g € R(GL,, P)|(Gw € L(GL,, P))(3p € Sr)(3a € X,
Or; (qr0,w) = q & &z, pa)! &
(0r,(q, p)! or r,(q,p) }) &Vl € X7 ) wpla ¢ L(Gy,, P)})),
as (01, (q, p)! or 61, (q,p) /) is always true, where g = (z,y, ) as in equation (4.2)
= L(G1,, P —pr({g € R(G1,, P)|(Fw € L(Gr,, P))(3p € Eg,)(Fr € ;)
01, (qr,0, w) = q & &, pa)! &
(0z,(a.p) Yor (0r,(q,p)! & (VI € B} ) wple ¢ L(Gr,, P)))})),
by logical distribution law and the fact that 6., (¢, p) } = (VI € £} ) wpla ¢ L(Gr,, P).
= L(G1,, P —pr({g = R(Gy;, P)|(3p € Zg,)(3a € Ty))
&, pa)t & (0r,;(q, p) Yor (d1,(q: p)! & 01,(q, p) ¥ CR(G ;s Py Xy, P)))})),
by Lemma 4.19, where P, := pr({¢’ € Qr,|dz,(¢, @) |= P}) as defined in Definition 4.19.
= L(G1,;, P —pr({g = R(Gr,, P)|(3p € Tg,) (3 € Ty,)
&z, pa)! & (31,(q,p) ) or 61,(¢,p) E = CR(GL,, Pas X1, P))})),
as (01, (¢.p) ¥ CR(G1, . Pa, 51, P)) & (01, (¢.p)! & 01, (¢, p) = ~CR(Gr, . Pa. Sp,,. P))
= L(G1,, P —pr({g = R(GL,, P)|(3p € Zg,)(Ja € Ty,)
(&, pa) & o1, (q,p) D) or (&, pa)t & 61,(q, p) b= = CR(GL;, Pa, 21,5 P))})),

by logical distribution law.
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= L(Gr,, P —pr({qd F R(GL;, P)|
(3p € Bg,)(Ba € Bya,) iz, pa)! & 61, (q,p) = = CR(GL,, Par X1, P)})),
as (f;(x, pa)l & 0r,(q, p) }) is always false by (2).
= L(Gr,, P —pr({q € Q]
(3 € Sn,) (B0 € Sa,) (2, pa)! & 01, (4,0) =~ CR(Ga,, Pas Sy, P)}),
as removing the states satisfying (true — R(Gp,, P)) from P
does not change the resulting language, by Proposition 2.5.
= L(GL;, Ips; (P))
[
In this proposition, we put the assumption (Vg |= P)(Vp € Xg,) &(z,p)! =
dr,(q, p)!, because in the function Q, the input language for the function 5, is

always ;" low-level P4 interface controllable. Algorithm 4.2 shows how to compute

[ps, (P), where P € Pred(Qy,;).

Algorithm 4.2 T'p5,(P)
1: Pyags < false;
2: for each o € Y4, do

3. Poe—pr({d € Qu, | 0r,(d, ) E P});

4: PCRa — CR(ng, P,, ZLj? P);

5. for each p € Y, do

6: Pbad5 — Pbad5 Vpr({q € QLj ’ 5;(377904)' & 5Lj ((.Z7 p) ): _\PCRa});
7. end for

8: end for

9: return P — Pyugs;

In Line 6, ¢ = (z,y, ) is as in equation (4.2). In our BDD implementations, the
computation of Pegr, is a very costly step. However, usually in an HISC system the
number of answer events is small. Furthermore, as the computation of each answer
event is independent, we can compute the Py,45 for each answer event in parallel and

then combine them together.
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Computing Q6 (L(GL;, P))

Definition 4.20. For system @, define the function Wy, : Pred(Qr;) — Pwr (X7,
according to

(VP € Pred(Qr,))

Wye,(P) == {s € L(G,,P) | s € Lm(GQj) & (VieXy,) sl ¢ Lin(Gr;) N L(GrL,, P)}

¢
Clearly, for all P € Pred(Qr,), Wys,(P) € L(Gr,, P).
Lemma 4.20. For system ®, the following holds:
(VP € Pred(Qr,;))(Vs,t € L(GyL,, P))
(s € Wi, (P) & (91, (arjo, 5) = 01, (ajo, 1)) =t € Wi, (P).
proof:
Let P € Pred(Qy,), and s,t € L(Gy,, P). (1)
Assume 0z, (qrjo, s) = 9r,(qLjo,t) and s € Wi, (P). (2)

Must show this implies ¢ € W, (P).

Let =L(G1,.P), ELm(GLIj), and =Lun(91,) be the Nerode equivalence relation on X7,
with respect to L(Gy,, P), Lm(Gle) and L,,(Gy,) respectively.

From (2), we have 6(qr;y, ) = 9(qrjo,t)

= 5 =L(g,,.p) & s =Ln(G1,) b (3)

by Proposition 2.6 and fact L,,(Gr,) = Lm(Gr,,true).

As G, = Ep; x G’ij X GZIJ_ and 61, (qrjo, ) = 61,(qrjo, ), we have
§; (J"é’o: s) = 5;(172'07 t)

by Proposition 2.6 and fact Lm(Gl[j) = Lm(Gle,true).

From (2), we have s € Wy, (P)
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= s € L,(Gh) & (V1 €%} ) sl ¢ Lu(Gr,) N LGy, P)

=t € Ly(GY) & (VI €%} )t ¢ Ly(Gr,) N L(GL, P), by (3)(4)
=t € Wy, (P), aste L(Gr,;,P).

Lemma 4.21. For system ®, the following holds:

(VP € Pred(Qy,))(Vs € L(Gy,, P)) (3t < 5) t € Wy, (P)) & 5 & Qs (L(G1,, P))).

proof:

Let P € Pred(Qy,) and s € L(Gy,, P).

1. Show that ((Ft < s)t € Wy, (P)) = s & Qp,(L(GL,, P)).
Assume (3t < s) t € Wy, (P).
Must show this implies s ¢ Q6,(L(G1,, P)).
From (2), we have
(Ft<s)t€Ln(Gh)& M eX])tl¢ Ln(Gr,)NL(GL;, P)
= (vt <s)t € Ly(GY) = (3l e X} ) tl € Ly(Gr,) N L(Gy;, P))
= 5 ¢ Qs (L(GL,, P))
2. Show that s & Q6 (L(G,, P)) = (3t < 5) t € Wi, (P)).
Assume s & Qp6,(L(G1,, P)).
Must show this implies (3t < s) t € Wy, (P).
From (1), we know s € L(Gr;, P). Combine this with (3), we thus have
((Vt <)t € Ln(Gh) = Bl eX}) tl € Ln(Gr;) N L(Gr,, P))

= (3t <s)t€Ln(Gh) & (WeL;)tl ¢ Ln(Gr,) NL(GL,, P)
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As s € L(Gy,, P) and L(Gr,, P) is closed, we know t € L(Gy,, P). (5)

By (4) and (5), we thus have (3t < s) t € Wy, (P).

Proposition 4.24. For system ®, the following holds
(VP € Pred(Qr,)) L(Gr,, P) = e, (L(Gu,, P)) = L™ (G 1, P),
where L7 (P)(ng, P) = Usew,s, L (G, P).

proof: Identical to the proof of Proposition 4.6 after substituting Sub(Pp,) with
PT@d(QL].), QH]C with Qpﬁj, WH(P) with Wpﬁj(P), gH with gL]., 6H with 5L]-7 dH,
with ¢rj,, Lemma 4.2 with Lemma 4.20, Lemma 4.3 with Lemma 4.21.

O

Definition 4.21. For system @, define the function I'ys, : Pred(Qr,) — Pred(Qr,)
according to
(VP € Pred(Qy,)) Ty, (P) := P — (Px, —CR(Gy,, Py, .51, P)),
where Py, =pr({g€ Qv e X} }), P, =pr(Qy,, ),
q = (z,y,2) as in equation 4.2 (Page 105),
and X ]l-m and @, are the marker state sets of Gle and G, respectively

as defined in Section 4.1.

o

Note that for system ®, Px, and P, are constant. The following lemma will

be used later on.
Lemma 4.22. For system ®, 'y, 1s monotone with respect to <, i.e.

(\V/Phpg S PT@d(QLj)) PP = Fpﬁ].(Pl) = Fp(jj(PQ).
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proof:
Let P, P, € Pred(Qr;). Assume P; = P.
Must show this implies I'ys;(P1) =< T, (P2).
FPGj(Pl)
=P — (Px,, —CR(G1,, Pr,,,>L,, P1)), by definition of I'ys, (P1)
=P A=(Px;,, N2 CR(GL,, Pr, . Y1,;, P1))
=P A (=Px,, VCR(Gy,,Pr,, 3L, P1))
=P A(=Px,, VCR(GL,, Pr,, ,YL;, %)), as PL X P, and CR is monotone
=P AN=(Px, N=CR(GL,, P, Y1, P2))
=P, — (Px,, —CR(GL,, Pr,,,%L,, P2))
= D6, (P2)
O
In order to show the method to compute {24, we need the following proposition

and lemma.
Proposition 4.25. For system ®, the following holds:
(\V/P S PT@d(QLj)) Lm(gL]) N L(ng,P) = Lm(ng7OR(ng,P)).

proof:
Identical to the proof of Proposition 4.10 after substituting G g with G, Qg with

QLj? QHm with Qij, (SH with 6Lj7 E[H with EIL]..

Lemma 4.23. For system ®, the following holds:
(VP S P’I"GCZ(QLJ.)) Lm(gLJ) ﬂL(gLJ,P) = Lm(ng,P).

proof:

Let P € Pred(Qy,).
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1. Show that L,,(Gr,, P) € Ln(Gr,) N L(Gy,, P).
Clearly, L,(Gr,;, P) € Lim(Gr,;) and Ly,(Gr,, P) € L(Gyr,, P), 80 Li(G1,, P) C
Lm(Gr;) N L(GL,, P).

2. Show that L(G1,) N L(GL,, P) C Ln(Gy,, P).
By Proposition 4.25, we know L,,(Gr,) N L(Gy,, P) = Lm(G1,,CR(Gy,, P)).
By the definition of C'R, we also know that L,,(Gr;, CR(Gr,, P)) € Lm(Gz,, P).

SO, Lm(gLJ) ﬂL(gL].,P) Q Lm(gL].,P).

The following lemma will be used in the proof of next proposition.

Lemma 4.24. For system ®, let P € Pred(Qr;),w € EjLJ_ and q € Qr,. If ¢ =
5(QLj07w) and q = R(ng,P), then

q F CR(Gr;, Prj,., X1, P) if and only if (3L € X)) wl € Lin(G1,, P),
where Pr, = pr(Qyr, ) as defined in Definition 4.21.

proof:
Assume q = 0(qrj,, w) and q = R(Gy,, P).
q FCR(G1,, Prj,., X1;, P)
& (Fke{0,1,..)For,...,00 €3,) B, - - Gr1 € Qr,)

q1 = (q
dk+1 ):Pij
qi, - -+, qk+1 ):P

di+1 = 5Lj(q%0-i)7i = 1a27 s '7k
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& (3ke{0,1,..})Fo1,...,00 € By1,)
or,(¢,01...01) F R(Gr,;, P) & 0,(q,01...0%) € Qrj,,
by ¢ = R(Gr,, P) and the definition of Pp;, .
< (3 exy) wl € LG, P),
by letting [ = o7 ... 0% and the assumption ¢ = 0(qrj,, w) and ¢ = R(Gy,, P).
[

Proposition 4.26. For system ®, the following holds:
(VP € Pred(Qr,;)) Qps,(L(GL,, P)) = L(GL,, s, (P)).

proof:
Let P € Pred(Qy,). We prove this proposition by a series of transformation.
e, (L(GL,, P))
(Gr, ) LW (P) (G1,,P), by Proposition 4.24
(g ) - UweWpa (gL )
(
(GL

G, P —pr(U wewpﬁ.(P){CSLj(QLjoa w)})), by Proposition 2.7
P —pr({g € R(GyL,, P)|dr;(qr,;,, w) = q for some w € Wy, (P)})),
as Wy, (P) € L(G1,, P) and by Proposition 2.5

= L(Gr,, P —pr({q € R(Gr;, P)|(Fw € L(G1,, P)) dr,(qr,,,w) = q &

WE Ln(Gh) & (¥ € 55) wl ¢ L(G1,) 1 LG, P)}).

by definition of W, (P)
= L(Gr,, P —pr({g € R(Gy,;, P)|(3w € L(Gy,, P)) or,(qr,,,w) = q &

w e Lu(G) & (VI € 5 ) wl ¢ L(Gy,, P)})), by Lemma 4.23
= L(Gr,. P —pr({g F R(G1,, P)|lz € X] & q¥ CR(Gy,. Pr,, . 21, P)})),s
by Lemma 4.24,

L
L
L
L(G

where P, = pr(Qy, ) as defined in Definition 4.21,

and ¢ = (z,y,x) as in Equation 4.2 (Page 105).
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= L(GL,, P—pr({g € Qulz € X & q¥ CR(GyL,, Pr,,, Y1, P)})),

as removing the states satisfying (true — R(Gr,, P))

does not change the resulting language, by Proposition 2.5.
L(Gr;, P~ (pr({q € Qu,lx € X} }) — CR(Gy1,, Pr,,,» 21,0 P)))
L(G;, P—(Px,, —CR(GL,, Pr,,, > L,, P))), where Py, is as in Definition 4.21.
L

(ng ) FPGj (P))

4.3.5 The Algorithm to Compute supCr (L, (G1,))

For a predicate P € Pred(Qr,), we know from Proposition 4.25 and the definition
of Qrnp, that
Qung;(L(GL,;, P)) = Lin(Gr,) N L(GL,, P) = Lin(G1,,CR(GL;, P)).
We now put all the predicate functions together to show the method to compute

sup Cp, (Lu(G1,)).

Definition 4.22. For system @, define the function I'y, : Pred(Qr,) — Pred(Qr,)
according to
(VP € Pred(Qr,)) I't,(P) == CR(GL,, Tys, (I'ys, (PLPC;(P))))
¢

By Lemma 4.12, PIPC; is monotone; by Lemma 4.18, T'p5. is monotone; by
Lemma 4.22, I')s, is monotone; the predicate transformer CR(Gy,,.) is monotone;

thus the function I'z; is also monotone.

Lemma 4.25. For system ®, the following holds:

(VP € Pred(Qy,)) Lm(Gr,,CR(Gy,, P)) = L(G1,,CR(Gy,, P))
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proof:
Identical to the proof of Lemma 4.6 by substituting Gy with G, Qg with Q

'R

QHm Wlth Qij, ZIH Wlth ZIL]-’ 5]_[ Wlth 5Lj-

Lemma 4.26. For system ®, the following holds

(Vi€ {1,2,...})(VP € Pred(Qr,)) Lm(ng,FiLj(P)) = L(ng,FiLj(P))

proof:
Let i € {1,2,...}, and P € Pred(Qy;). By definition of I';, we have
Lin(Gr, T (P)) = Lin(G1,, T, (151 (P)))
= Lin(Gr,s OR(Gr,, Ty, (s, (PLPC; (T (P)))))),
by definition of I'r,
= Lm(G1,,CR(GL,, P)),
by letting P’ := Ty, (Iys, (PLPC; (I 1 (P))))

= L(Gr,,CR(GL;, ")), by Lemma 4.25
= L(Gr,;, CR(Gr,, Ty, (s, (PLPC; (T (P))))))
= L(Gy,, I"'LJ_(P))7 by definition of I'z,

Proposition 4.27. For system ®, the following two points hold:
1. (VP € Pred(Qy,)) Qu,(L(GL,;, P)) = Lm(GL,, 'L, (P))

2. (VP € Pred(Qy,))(Vi € {1,2,...}) Q) (L(Gr,, P)) = Lu(G1,, T, (P))

proof:

1. Show that (VP € Pred(Qyr;)) Qp,(L(GL,, P)) = Lm(Gr,;, ', (P))

Let P € Pred(Qy,).
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Qr;(L(Gr;. P))

= Qrn; (s, (s, (IPC;(L(G1,;, P))))), by definition of

= Ln(G1,) s, (s, (sup LPC;(L(G1,, P)))), by definitions of IPC; and Qpy 5,
= Lo(Gr,) N Qpe, (s, (sup LPC;(L(G 1, P)))), as L(Gy,, P) is closed

= Lin(G1,) N Qpe, (s, (L(G 1, PIPC;(P)))), by Proposition 4.18.

= Lin(G1,) s, (L(G1,, Tps, (PLPC;(P)))), by Lemma 4.13 and Proposition 4.23.
= Ln(G1,) N L(GL,, Ty, (Tps, (PLPC;(P)))), by Proposition 4.26

= L(G1,, CR(G1,, Uy, (s, (PLPC;(P))))), by Proposition 4.25

= Ln(Gr,, T, (P))

2. Show that (YP € Pred(Qy,))(¥i € {1,2,...}) 9} (L(GrL,, P)) = Ln(Gr,, T (P))

Let P € Pred(Qr,). We now prove this by induction.

(a) Base Case: i =1
By Point 1, we have Qle(L(gL]., P))=L},(G.,,I',(P))
(b) Inductive step.
Let k € {1,2,...}. Assume Qf (L(Gy;, P)) = Lm(Gz,, T, (P)).

Must show Q5™ (L(Gr,;, P)) = Lm(G1,, T (P)).

J

U LG, P) = Qu, (%, (L(G,, P))

= Qr,(Lim(G1,, T}, (P))), by inductive assumption

= QLNBj (Qpﬁj (Qij (Sllp ﬁPCJ(Lm(gLJ ) F’ZJ (P))))))7
by definition of 2,
== QLNBj (Qp6j (Qp5j (Sllp ‘CPCJ<L<gLJ ) FIICJJ (P>>)>))7

by Lemma 4.26
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=Qp,(L(GL; Flzj(P))), by the definition of Q.

= Lm(G1,, F]Zjl(P)), by Point 1 of this proposition.

Theorem 4.2. For system ®, the following two points hold:

1. There exists k € {0,1,...} such that k < |Qr,| and F'zj (true) is the greatest

fizpoint of the function ', with respect to (Pred(Qy,;), =<).
2. sup CL]- (Lm(gLJ)) = sup CL]' (Lm(gLJ ’ tTU@)) - LWL(gL]' ) F]f;] (tTU@))

proof:

1. Show that there exists & € {0,1,...} such that & < |Qr,| and F]Zj (true) is the

greatest fixpoint of the function I'y; with respect to (Pred(Qr,), <).

As I'z, is monotone and |Qr,| is assumed to be finite (Section 4.1), we know
immediately from Proposition 2.3 that there exists k£ € {0,1,...} such that

k<|Qr,| and F’Zj (true) is the greatest fixpoint of the function I'z .

2. Show that supCr, (Lm(Gz,)) = supCr, (L (Gr,, true)) = Ln(Gr,, F’zj(true)).

supCr,(Lm(Gr,)) = supCr,(Lm(Gr,, true)) is automatic as L,,(Gr,;) = Lm(Gr,, true).

(a) Show that supCr,(Lm(Gr,,true)) C Lm(Gr,, P,’{j (true))
By Proposition 2.3, we know that

(Vie{l,2,...}) i > k= Lu(Gr,, T, (true)) = Lm(ng,P’,gj (true))

= limy oo Lin(G1;, FiLj (true)) = Ly (Gr,, I"zj (true))
= lim; o Qij(L(ng,true)) = Lm(G1,, F’z]_ (true)), by Proposition 4.27

= supCr. (Lm(Gr. true)) C L,,(Gr.,T% (true)), by Proposition 4.21
J J J LJ
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(b) Show that L,,(Gr,, Flzj (true)) € supCr, (Lm(G1,, true)).
Based on the value of k, we now show this in two cases:
e Case 1: ke{1,2,...}
By Point 1 of this theorem and Proposition 2.3, we have

I} (true) = F’Zrl(true)

= Lin(Gr,, Tf, (true)) = Ly(Gr,, TEH (true))

= Li(Gr,, T} (true)) = Q7 (L(G,, true)), by Proposition 4.27
= Ln(G1,, F’Zj (true)) = QLj(Q’Zj(L(ng,true)))

= Lin(Gr,;, T, (true)) = Qup, (Lin(Gr, T (true))),

by Proposition 4.27 and k € {1,2,...}
o Case 2: k=0
If FOL], (true) is the greatest fixpoint of 'z, then by Proposition 2.3 we

know that
I%j (true) = F%j (true), (1)
SO F}:j (true) is also the greatest fixpoint of I'z,.
= Lin(G1,, Fij (true)) = Qp, (L (G, Fle (true))), by Case 1
= Ln(G1,. T, (true)) = Qp, (Ln(Gr, T (true))), by (1)

From Case 1 and Case 2, we know that Lm(ng,F,’gj (true)) is always a
fixpoint of the function €.

From Proposition 4.20, supCr,(Lm(Gr,,true)) is the greatest fixpoint of
the function Q;, so L, (G, F’j—jj (true)) C supCr, (L (G, true)).

]

Corollary 4.4. For system ®, let S, be a DES defined over event set Xyr, with

Ln(St;) = Lin(Gy,, Flfj (true)) and L(Sr;) = L(Gy1,, F’Zj (true)), where k € {0,1,...}
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and F’zj(true) is the greatest fizpoint of ', with respect to (Pred(Qr,), =). Then for
the n'" degree parallel interface system composed of GY,, GY , ..., G} , Gy, ...,

G, Eq, Er,, ..., Er,_, S, Ep ., Ep, with respect to the alphabet partition

10

in Equation 5.1, S, is a 3" low-level proper supervisor.

proof:
We first note that by Theorem 4.2, an appropriate k € {0, 1,...} exists such that

F’Zj (true) is the greatest fixpoint of I'y; with respect to (Pred(Qy,), <).

1. Show that L,,(S, x G, x G}) = L(Sy, x G}, x G ).
Lin(St;) = Lin(Gy,, F’j—ij (true))
= Ln(St;) € Lin(G1;)
= Lin(S,) € Ln(EL, x G} x G}
= Ln(S1,) € L(GY x G})
= Ln(S1,) = Lu(S1, x G} x G} ) (1)
Similarly, we can show that L(Sy;) = L(Sr; x G7, X Gle) (2)

Iftke{l,2,...} and F’zj (true) is the greatest fixpoint of I'z,, then by Lemma 4.26

we know that L,,(Sz;) = L(Syr,).

Itk = 0 and T'7_(true) is the greatest fixpoint of I'r;, then as [Qy, | is assumed to

be finite (Section 4.1), by Proposition 2.3 we know that Fle(true) = F%j (true).

= L(S1,) = L(G1,, T}, (true)) and L,(Sr,) = Lim(Gr;, 'y, (true))
= Ln(St,) = L(St,), by Lemma 4.26.
Therefore, we always have

Lm(SLj) = L(SLj>7 (3>

when k£ € {0,1,...} and Flzj (true) is the greatest fixpoint of I'z,.
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Combining (1), (2) and (3), we can conclude L, (Sg, x G, x GZIJ_) = L(Sg,; x
G}, x Gh).

2. Show that Sy is the 5t low-level interface controllable.

By Part 1 and Definition 3.8, Definition 4.10, and Definition 4.16, it is sufficient

to show that L, (Sz, x G, x Gllj) is j'" low-level interface controllable.

From Theorem 4.2, we know that L,,(Sy,) is j* low-level interface controllable.
By (1), we can conclude L, (Sp; x Gf x Gle) is also j low-level interface

controllable. O

The supervisor Sp; can be constructed by removing states from G, that do not
satisfy F'Zj (true). A trim supervisor DES Sy, can be built by removing states from
G, that do not satisfy R(G,, Fﬁj (true)).

- k k

Algorithm 4.3 shows how to compute I'; (true), where k € {0,1,...} and I'} (true)
is the greatest fixpoint of I'y; with respect to (Pred(Qy,), <). By Point 1 of Theo-

rem 4.2, we know the greatest fixpoint will be reached after finite number of iterations.

Algorithm 4.3 Computing the greatest fixpoint of I'y, w.r.t. (Pred(Qr,), =)

1: Pyaq, « pr(Badg,);

2: P & true;

3: repeat

4: Py« Py

5 P TR(GL,~PV PbadLj,Eluj UXkg,);

6: Py, (P1);

T P1<—P1—(Pij—CR(ng,Pij,ZLJ,Pl));
8: P« CR(Gyr,, P1);

9: until P, = P,

10: return Pi;

In the algorithm, Px;,, and Pr;,, are as defined in Definition 4.21. Line 5 computes
PLPC;(P1). I'ps,(P1) in Line 6 can be computed by using Algorithm 4.2. Line 7
computes I'pg,(Py). Line 8 is for the function Qpyp;.
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Chapter 5

Verification of HISC

In this chapter, we briefly discuss the method to verify a n'* degree supervisor
interface system and we give the verification algorithms.

In the previous chapter, we proved that for system ®, we can synthesize a high-
level proper supervisor by trimming off states from Gy and the j* low-level proper
supervisor by trimming off states from G .

For the n'* degree supervisor interface system that respects the alphabet partition
given by 3.1 and is composed of plant components G4, G} ,..., G} , supervisors
Sw,St,,--.,S,, and interfaces Gy,,...,Gy,, we can treat all the supervisors as
their corresponding specifications (assuming the system is HISC-valid) and apply the
synthesis algorithm to the system. If Sy is a high-level proper supervisor, then there
would be no reachable state that must be removed from G . Similarly, if Sy is a gt
low-level proper supervisor(j € {1,...,n}), then there would be no reachable state
that must be removed from G L

Algorithm 5.1 shows the verification algorithm for the high-level. Bady in Line
2 is a state subset as defined in Definition 4.7, and pr(Bady) denotes the predicate

identified by Bady.
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Algorithm 5.1 High-level verification

=W N

: Pp — R(Gp,true);
: Ppady < pr(Badpy);
if (PR A PbadH) then
return ”The high-level supervisor is not controllable or the high-level fails to satisfy interface consistent

condition Point 3.7;

end if

if (Pr # PR ANCR(Gy,true)) then
return ”The high-level is blocking.”;

end if

return ”The high-level supervisor is high-level interface controllable and the high-level is nonblocking.”;

Algorithm 5.2 shows the verification algorithm for the j* low-level. Bad 1, in Line

2 is a state subset as defined in Definition 4.14, and pr(Bady,) is the predicate iden-

tified by Badp,. I'ps,(true) in Line 6 can be computed by using Algorithm 4.2. Line

9 verifies the interface consistent condition Point 6. Line 12 verifies the nonblocking

property.

Algorithm 5.2 The 7' low-level verification

=W N =

10:

12:
13:
14:
15:

: Pr— R(Gp; true);
: PbadLj — pr(BadL].);
if (PR AN PbadL ) ) then
J
return ”The j** low-level supervisor is not controllable or the j** low-level fails to satisfy interface consistent

condition Point 4.”;

end if
if Pr # Pr A Tys,(true) then

return ”The j*" low-level fails to satisfy interface consistent condition Point 5.”;
end if
if Pr # Pr A —\(Pij - CR(ng, Pij s ELJ.,LLT’LLG)) then

return ”The j** low-level fails to satisfy interface consistent condition Point 6.”;
: end if
if Pr # Pr A CR(ng,tT’ue) then

return ”The j*" low-level is blocking.”;

end if

return ”The jt* low-level supervisor is jt" low-level interface controllable and the j** low-level is nonblocking.”;

Usually, the verification process is faster than the synthesis process, because the

verification algorithms do not need to compute the greatest fixpoints as Algorithm 4.1

and Algorithm 4.3 need to do.

144



Chapter 6

Symbolic Computation for HISC

Synthesis and Verification

In the previous two chapters, we developed the algorithms for the synthesis and
verification of an HISC system. The efficiency of these algorithms is dominated by the
computation of the four predicate transformers: R, CR, TR and CR. In this chapter,
we first discuss how to use logic formulas to represent state subsets and transitions
in a system, and then present how to compute the predicate transformers from the
logic formulas. After that, we briefly introduce a method of using Reduced Ordered
Binary Decision Diagram (ROBDD, or simply BDD) [6] to implement the algorithms.
We then present an approach for controller implementation. Finally, we give a small
tutorial example to demonstrate the algorithms.

Most of the ideas in this chapter are originally invented by Ma in [31] for the
State Tree Structure (STS) or researchers in the model checking area. The approach
to represent the state subsets and transitions for the HISC high-level or low-levels
as logic formulas and BDD can be thought of as a special case of the approach for

STS. The optimization technique using the tautology (Equation 6.2) to reduce the
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intermediate BDD is also applied in our implementations. What is new here is that we
simplified the logic formula representation for a flat system composed of component
DES and applied these ideas and techniques for the HISC synthesis and verification

algorithms.

6.1 Symbolic Representation of State Subsets and

Transitions

In Chapter 2, we discussed predicates defined on the state set of a DES, but we
did not discuss how to define a predicate other than its corresponding state subset.
From now on, we call a predicate that are defined on the state set of a DES as a
state predicate. A state predicate essentially is a boolean function whose domain is
the state set of the DES and range is {0, 1}. If we use the identifying state subset
to define a state predicate, then it is no better than directly using the state subset in
our algorithms. In this section, for a given HISC system, we present how to define a
state predicate as a logic formula, so the formula also represents a state subset. We
say that the logic formula is a symbolic representation of the state subset.

In order to represent the high-level and low-levels in an HISC system symbolically,
we also need to define predicates that are defined on the transitions of a DES, which
we will call transition predicates. Then we will discuss how to use logic formulas to
define the transition predicates.

The high-level or low-levels in an HISC system can be thought of as a special flat
system which is composed of component DES: plant(s), supervisor(s) /specification(s)
and interface(s). Because our symbolic representation for state subsets and transitions

does not care about the type of a component DES, in this section, we only talk about
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the symbolic representation for a flat system composed of component DES.

6.1.1 Symbolic Representation of State Subsets

Let the system G := (Q, 3,0, qo, @.n) be the cross product of component DES

G = (Q1,%,01, ¢19,Q1,,), -, G = (Qn, X, 0, Gng, Qn,,, ), where n € {1,2,...}. i.e.
G =G| x--xG,,

Let ¢ € @, then there exists a unique ¢; € @1, ..., ¢, € @, such that ¢ =
(q1,---,qn). We say ¢ is the first component part of ¢; ...; ¢, is the n* component
part of q.

Definition 6.1. For the system G composed of components Gy, ..., G,, the state
variable v;(i € {1,...,n}) for the i component DES G; is a variable whose domain
is @;. The state variable vector v for G is (vy,...,v,), where vy, ..., v, are the state

variables for each component.

&

Let i € {1,...,n} and ¢; € Q;, v; = ¢; returns 1 if the state variable v; has been
assigned value ¢;, otherwise it returns 0. Let A C @ be a state subset, then the

predicate P, for A can be written by!

Pa(v) = \/(Ul:ql/\v2:q2/\~-/\vn:qn). (6.1)
qeEA

For convenience, if v is understood, we write P, instead of P4(v). Clearly, for all
q € Q, qe Aifand only if P4(¢) = 1. Here we use = to stand for logical equivalence,

because = has been used to test if v; has been assigned value ¢;.

'As a flat system composed of component DES is a special case of STS, we will not give a
soundness and completeness proof for the logic formula representation, interested readers can find a
proof for STS in [31].
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For alli € {1,...,n}, if we treat v; = ¢; as a propositional atom, then the formula
generated by Equation 6.1 is a propositional logic formula. This is a very important
aspect, because a predicate logic formula can not be represented as a BDD.

This formula does not look promising, but if we notice the following tautology,
we will see it is possible that the formula can be greatly simplified as the following

examples show.

qi€Q;
Figure 6.1 is the simplified small factory example from [47] with buffer size two.
The event set for the system is 3 = {ay, ag, 01, f2}. All the states in each component

should also be added selfloops with events not appearing on the component.

Figure 6.1: Small factory example

Let vag, va,, vpur be the state variables for the component DES M;, M, and
BUF respectively, then the state variable vector for the small factory is v = (v,
U, Upur). Let A C {1, Wi} x {Iy, Wa}x {so, s1,s2} be a state subset of the small
factory. Let P4 be the state predicate for A.

First let A := {(I1, 2, s0)}, then by Equation 6.1, we have Pa(v) := (v, =
Iy Nvp, = Is ANvgyr = Sg). This formula for the predicate Py is not simpler than a

state subset.
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Now let A := {(I1, I5, s0), (W1, Is, 80), (I1, L2, s1), (Wh, I3, 81), (I1, I3, S2), (W1, I3, 82) },
then by Equation 6.1, we have
Ps(v) := (vp, = iAoy, = IyANvgyr = So)V (v, = WiAvy, = L Avgur = $o)V
(var, = L1 Avpg, = Lo ANvppr = s1)V(vy, = WiAvy, = I Avpyr = s1)V
(var, = L1 Aoy, = I ANvgyr = $2) V (v, = Wi Aoy, = I ANvgpr = $2)
= (vp, = LhiVou, = Wi)A(va, = I)A(vpur = soVupur = s1VUBUF = S2),

by the distributive law of propositional logic

LA (vp =) A 1
= (vap, = o)

We can see that Pa(v) := (vp, = I2) is much simpler than the state subset A.
Furthermore, the formula clearly says that A includes all the states whose My part
is 1.

With the given formula representation for a state predicate, we can easily check if
a state is in the corresponding state subset. Let P4(v) := (vy, = I2) be a predicate

for the small factory system. For example, the state (11, Is, s9) € A because

PA([17[27SO) = ([2 = [2) = 17
and the state (I, Wa, s1) ¢ A because
PA(Il,WQ,Sl) = (WQ = IQ) = 0.

With the formula representation for a state predicate, the set operations such as
intersection, union and complement can be done by the logic operations A, V and —
on formulas. We now give examples for the small factory system.

Let Ay, Ay C {11, Wi}x {Iy, Wa}x {s0, s1,52} be two state subsets of the small

factory, and

Ay ={(I1, I, s0), W1, I, 80), (11,12, 82), (Wi, Is, s2)},
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AQ — {(]17127SO>; (-[1;-[2781)7 (IhWQ)SO)a <]17W2781)a(W1712780>a (W17]2781)7

(W1,W2,30)7 (W1,W2,81)}~

Let P4, and P4, be the state predicates for A; and A, respectively, then by

Equation 6.1, we have the simplified formulas as

Py, (V) :== (v, = I2) A (vur = S0 V vpur = S2)

Pa,(v) := (vBur = 50 V Uur = $1).

[ ] AlﬂAg

By set intersection, A; N Ay = {(I1, I2, S0), (W1, I3, 80)}, and

Py, NPy, = (v, = I2) A (vpur = S0 V vpur = s2) A (Vur = So V Upur = S1)

(var, = I2) A\ (vBuF = So).

One can see that P4, A P4, really represents the state subset A; N As.

AU A,

By set union,
AIUA2 - {<117]27 80)7 (W17[27 SO); (117]27 S2)7 <W17127S2)7 (117127 Sl)? (Ila W27SO)7
(117W2731)7 (W17[2751)7 (W17W2780)7 (WhWQaSl)}?

and
Pu,V Py, = ((var, = L) A(vpur = S0 Vupur = S2)) V (Veur = So V Upur = S1)
= (’UM2 = [2> V (UBUF = So V VBUF — 81>.

P4, V Py, also represents the state subset A; U As.

Ay
By set complement,

A_Z = {([17 [2> 82)7 (Ila WZ: 52)a (le 127 82)7 (le W27 82)}7
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and
—Ps, = ~(vpur = So V VBur = 1)
= (UBUF = 52)-

So, = P4, represents the state subset As.

6.1.2 Symbolic Representation of Transitions

Let G := (Q, %, 0, qo, @) be the system in Section 6.1.1 composed of Gy, ..., G,.

For a given event o € ¥, the transition function § is essentially a subset of the set

Q@x Q.

Definition 6.2. For the system G composed of components Gy, ..., G,, for a given
event o € X, a transition predicate N, defined on () x ) is a boolean function

Ny : Q x Q — {1,0} according to

1, d(q,0)! & d(q,0) =¢
(Vq,q' € Q) No(q,q') :==

0, otherwise.

O

Let o0 € ¥ be an event, then N, identifies all the transitions for o in G. Like the
representation of a state subset, we can also use the a logic formula to represent the
subset of () x @ (thus a transition predicate), but now we need two different sets of
state variables for each component DES. One variable will be for the source state of

a transition, the other will be for the target state of a transition.

Definition 6.3. For the system G composed of components Gy, ..., G, the normal
state variable v;, (1 € {1,...,n}) and the prime state variable v} for each component

DES G; are two variables whose domains both are ();. The normal state variable
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vector v is (vy,...,v,) and the prime state variable vector v' is (v, ..., v)), where

rvn

v1,...,v, are normal state variables for each component in G, and vi,...,v] are

prime state variables for each component in G.

¢

For a given event ¢ € X in the system G composed of components G, ..., Gy,

the transition predicate for N, can be written as

N, (v, V') := /\ ( \/ (vi =q; N, = q£)> (6.3)
(gi,4})

i€{1,2,...,n} €QiXQy,
61’((]1'70'):‘1»/;

Note the following fact. Let i € {1,...,n} and o € X. If for all ¢; € Q;,:(¢;,0) /,

then

< \/ (Uz'—fh/\vé—q;)>50
(9i,q])€Q:i x Qs
8i(qi,0)=d,

Therefore, N,(v,v’) = 0. This is in line with that the system will block an event
if one of the component DES blocks the event.

Equation 6.3 assumes that every component DES is defined on the event set 3.
However, when we design a system with multiple component DES, each component
DES is defined on its own event set. The system event set is the union of all the
component event set and the system is the synchronous product of all the component
DES. Therefore, Equation 6.3 requires that each component DES must be selflooped
with all the events that are not in its own event set, on each state. This not only
creates a lot of clutter, but also makes the formula to represent the transitions much

more complicated.

To solve this problem, for each o € 3, we use the transition tuple (v,,v’, N,) to
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represent the transitions on o, where v, is a normal state variable set including all
the normal state variables whose corresponding component DES event set contains
o, and v) is a prime state variable set including all the corresponding prime state
variables of the normal state variables in v,. For those state variables that are not in
the set v,, we know that ¢ must be selflooped on each state of their corresponding
component DES.

For the system G composed of components Gy,...,G,, let G| = (Q1,%1, 7],
Go, @1, )5+ Gl = (Qny X0, 0Ly G Qn,,,) be the component DES such that G; =
selfloop(G1, % — ¥4),...,G, = selfloop(G),> — %,)). So, we have G =G || --- ||
G and X=X, U---UX,.

For a given event o € ¥ in the system G with components G/,..., G/, the tuple

(v4, 0., N,) can be written by 2

V, = {Ui € V|0' S ZZ}, ’U; = {U; S V/|U S Ez} (64)

N,(v,v') = /\ ( \/ (vi=q ANV} = qé)) (6.5)
{ie{1727“'7n}‘0—62i} (%‘JIDGQMQ@
81 (qi,0)=q.
Although the tuple (v,, v, N,) are created from unselflooped components, note
that the tuple actually expresses the selfloop information, which means that by cre-
ating the tuple we automatically selfloop o for each component whose own event set

does not contain o. Note also that Equation 6.4 and 6.5 can be used for creating the

transition tuples for selflooped components as well.

We now create the transition tuples for all the events in the small factory example

shown in Figure 6.1 to demonstrate how to use Equation 6.4 and 6.5.

2Here we are abusing the notation a bit, as v and v’ should not be treated as state variable sets.
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hd (van’v/apNal)

Vao, = {UMUUBUF}? U:Jq = {Ug\/h’U%UF}
Noq = (le =1L A /UEWI = Wl) A

((vBur = s0 AN Vpyp = s0) V (VBur = 51 A Upyp = 51))

L4 (vﬁp U/glv Nﬁl)
Vg, = {le,UBUF},Ufgl = {UMNU;BUF}
N51 = (UM1 = W1 A U§V[1 = Il) A

((vBur = s0 ANVpyp = 51) V (VBur = 51 A Upyp = 52))

hd (’Uam 'U/a2> Naz)

Vo = {?}1\42,UBUF}7U/CY2 = {U§\427UIBUF}
N, = (vMQ =LA vg\b - WQ) A

((vBur = 51 ANvgyp = s0) V (VBUF = S2 A Upyp = 51))
b (’Uﬁzv v,lﬁgv N52)

Vg, ‘= {UM2}7UIBQ = {'UE\/IQ}

Ng, := (v, = Wa Ay, = 1)

6.2 Symbolic Computation of Predicate Transform-
ers

With the logic formula representation for state subsets and transitions, we now talk
about how to compute the four predicate transformers TR, R, CR and CR. Because

CR is a special case of CR, we only discuss CR in this section.
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In this section, we will use the system G composed of components G/,..., G/,

defined in Section 6.1.2.

6.2.1 Computation of Transition and Inverse Transition

For the system G = (Q,%,0,qo, @m) composed of components GY,..., G}, to
compute the predicate transformer R, we must know how to compute 6(q, o), where
g € Q and 0 € ¥. A state predicate P € Pred(()) can represent a state subset
®@p C Q. To compute all the states that can be reached by a ¢ transition from
any state in QQp, we can compute Ueq,{0(¢g,0)}. However, this method is rather
time consuming, especially when the state space of a system is large. We hope we
can instead directly compute the function 4 : Pred(Q) x ¥ — Pred(Q), defined as

follows:

-~

(VP € Pred(Q))(Vo € X) 6(P,0) :==pr({¢' € @ | (3q |= P) d(g,0) = ¢'}).

For the system G, to compute the predicate transformers TR and C'R, we define

a function 671 : Q x ¥ — Pwr(Q) according to

(Vge Q)(o €X) 07 (q,0) ={d €Q|d(d,0) =q}.

Let P € Pred(Q) be a predicate. To compute all the states that have a o transition
to any state satisfying P, we can compute Uypd ' (g, o). Similarly, we hope we can
instead directly compute the function 51 Pred(Q) x ¥ — Pred(Q), defined as

follows:

—~

(VP € Pred(Q))(Vo € £) 6 1(P,0) == pr({q € Q | 8(g,0) = P}).

As in [31], we will use a method similar to the relational product, developed by

~

the researchers in the model checking area [11], to compute §(P, o) and 5/—\1(P, o).
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Definition 6.4. For the system G composed of components G/, ..., G/, forallo € ¥,
let (v,, v, N,) be the transition tuple for ¢ in G.

For all i € {1,...,n}, if v; € v,,v] € v, then define Fv; N, and Fv.N, as

Ju;N, = \/ Ny g /vil,

GEQ;
N, := \/ N,lq:/vl],
GEQ;
where N, [g;/v;] is the resulting predicate by assigning g; to v;; N,[g;/v!] is the resulting
predicate by assigning ¢; to v..

O

The above definition of Jv;V, and Fu.N, is based on the existential quantifier
elimination method for finite domain [2]. That is, Jv; and Jv} eliminate the variable
v; and v, from N, respectively. The results of Jv; N, and Jv; N, are still propositional
logic formulas, which can be represented by BDD.

Let ¢ € ¥ and (v,,v,, N,) be the transition tuple for ¢ in G. Assume v, =

~

{1,702, ... Uy} and v, = {V],0),...0,,}, where m € {1,...,n}. For convenience, we

define the shorthand Jv, N, and v/ N, as follows:

EIUO'NO' = 361(3@\2 e (El/ﬁmNg) <o )7
v/, N, := 30,30, - (Fo,N,) - ).

The resulting logic formula for Jv, N, contains only the prime variables in v/ . If
we replace all the prime variables as normal variables, denoted it as Jv, N,[v) — v,],
then the resulting predicate Jv, N, [v] — v,] represents the target state set of all the
o transitions in G (i.e. Each state in the target state set has a o transition entering
it). We need to do the variable replacement because we use the normal state variables

to express the logic formula of a state subset predicate.
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As the resulting logic formula for v/ NV, contains only the normal variables in v,,
we do not need to do the variable replacement. Jv! N, represents the source state set
of all the ¢ transitions in G (i.e. Each state in the target state set has a o transition
leaving it).

We now give an example to demonstrate Jv,N, and Jv. N,. Figure 6.2 shows

a system with only one component Gg. Let vg, vy be the normal and prime state

variable for the component Gpg.

Figure 6.2: Example DES Gg

e Ju,N,, W.N,
For the event «, we have
v i= (o}, v = {v}
Ny = (vg = 50 ANV = 51) V (Vg = 51 AV = $9).
Jv, N, := Jvg N,
= (so =50 AUy =51) V (80 =81 Aw
(s1 =580 ANV =51)V (51 =51 ANV = 59)V

(S92 =80 ANV = $1) V (52 = 51 AUy = 52)

Vg =81 VU = S9
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Fu N, [V, — v,] :=vEg =81 Vug = so.

The logic formula vg = s1 V vg = s, represents the state subset {sy, s2}, which

exactly includes the target states of all the o transitions in Gg.
v/ N, := FuN,
= (vp =SoAso=51)V (Vg =81 NSy =82)V
(v =so A sy =351)V (vp =81 NSy =59)V
(v = So A sa=81)V (Vg = $1 A S3 = S2)
=vg =8 VU =S8
The logic formula vg = so V vg = $1 represents the state subset {sg, s1}, which
exactly includes the source states of all the a transitions in Gg.
JvsNg, Jv3Np
For the event 3, we have
v = {vg}, v = {vp}
Ng := (vg = 51 ANV = sp).
JvgNg := JvpNg

= (s =51 ANV =50) V (51 =81 AVl = S0) V (82 = 51 Al = sp)

11l
<
&
|
w
o

=(vp =81 A8 =50)V (vE =81 Ns1 =380V (v =5 A Sy =5p)

Il
S
S|

|
VA
&
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We now give an example to compute the state set consisting of target states of all
the (3 transitions in the small factory example shown in Figure 6.1.
vg, = {vr,, VBUF}, v, = {Vh,» VBur}-
Ng, = (vp, = Wi Ay, = 1) A
(vBur = 8o AVpyp = 1) V (Upur = $1 A Upyp = $2))
Jvg, Ng, 1= Fup, (3vpurNg,)
= Juar, ((var, = Wi A vy, = I)A
((so = s0 NV = s1) V (80 = 81 N Vgpp = S2)V
(s1 =50 ANVgyp = 51) V (51 = 81 ANUgyp = S2)V
(52 =80 A Vpyp = $1) V (52 = 81 A Upyp = 52)))

= Joa, ((var, = Wi Ay, = 1) A (Vpyp = 51V Upyp = 52))

(L =WiAvy, =1) V(WL =WiAvy, =11) A

(U/BUF =81 VUpyp = 52)

(Uf\m = 1) N\ (Vyr = 51V Vpyp = S2)

El’UﬁlN/gl [’Ulﬂl — vﬁl] = (U]\/[1 = Il) N (UBUF =5V VBUF — 82).

For the system G composed of components G7,..., G/, let ¢ € ¥. From the
above definitions and examples, it is clear that Jv,N,[v] — v,] exactly computes
the predicate representing the state subset {¢’ € @ | (3¢ € Q) é(q,0) = ¢'} and v/ N,

exactly computes the predicate representing the state subset {q € Q | d(¢,0)!}.

With the help of existential quantifier elimination method, we now can compute
5 and 61 symbolically. For system G, let P € Pred(Q) and o € X. g(P, o) requires
computing the predicate representing the state subset {¢’ € Q|(3q = P) d(¢q,0) =

q'}, while c?l(P, o) requires computing the predicate representing the state subset
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~

{q € Qld(q,0) = P}. So, 6(P,o) and 5/—\1(P, o) can be computed as follows:

§(P,o) := (Fv,(N, A P))[v), — v,] (6.6)

—~

6~ Y(P,o) =3 (N, A (Plv, — v.])) (6.7)

In Equation 6.6, by first computing N, A P, we restrict the o transitions to those
whose source states satisfy P.

In Equation 6.7, note that P is first transformed to the prime variable format,
because we want to restrict the o transitions to those whose target states satisfy P.

For convenience, we omit the hat on g(P, o) and (5/—\1(P, o), because from the
parameters we can clearly tell what the functions are.

We now give examples again for the small factory example shown in Figure 6.1 to
demonstrate the computing of §(P, o) and 6 (P, o).

Let P be a state predicate defined on the state set of the small factory example

shown in Figure 6.1, and let P := (vy, = W1 Avgyr = $1). We now demonstrate how
to compute §(P, o) and 67 1(P, ay).
e /(P ay)
No, AP = (vag, = I ANy, = Wa) A
(vBur = $1 A Vyp = s0) V (vBur = $2 AVpyp = 51)) A
(var, = Wi Avgur = s1).
= (v, = Lo ANV, = W) A
(vpur = $1 AN Ugyp = So A vay = Wh).
ey (Nay A P) := Fuag, (3vpur((van, = I A vy, = Wa) A
(vpur = s1 A Vgpp = So Aoy = Wh)))

= 31}]\/[2((1)]\/[2 = ]2 N UE\/[Q = WQ) VAN (U/BUF = So A Uny, = Wl))
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= (v, = W) A (Vpp = s0) A (var, = Wh)

O(P, ) == (Fvay(Noy A P)) [V, — Vo,

[

(Vi = Wa) A (Vppp = s0) A (var, = Wh))[vg, — Vas]

(var, = Wa) A (vBur = so) A (vn, = Wh)

° 5_1(P7 Oé1>

Noy N (Plvg, — v, ]) == (vp, = Iy Avy, = W) A
((vBuP = SoA\VyF = S0)V(vBur = $1A\Vpyp = $1))A

(Vay, = Wi Avgyp = s1)
= (var, = L) A (Vy, = Wi) A (vBur = 51) A (Vppp = 51)
0P, ay) := 3, (Na, A (Plvg, — v),]))
= vy, (Fpyr(van, = L) AWy, = Wi)A(vsur = s1)A(Vpyr = 51)))

= ("01\41 = Il) A (UBUF = 81)

6.2.2 Computation of R

For the system G composed of components G, ..., G/, let P € Pred(Q). From
the definition of R(G,.), we can write a straightforward algorithm for R(G, P) as

shown in Algorithm 6.1.

Algorithm 6.1 R(G, P)(Straightforward)

. P — PApr({qo});
: repeat
P2 «— P]_7

1
2
3
£ P PV (Ve8P 0) A P));
5
6

: until P1 = P2
: return Py;
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In Line 4 of the algorithm, we never remove states from P;. As the number of
states in G is finite, after finite number of steps we will have P1 = P2; thus the
algorithm will terminate.

Algorithm 6.1 works like a breadth first search. As found by Ma in [31], a
breath first search method could generate a very complicated intermediate result,
even though the final result is quite simple because of the tautology in Equation 6.2.
An algorithm (shown below) working like a depth first search can greatly reduce the
intermediate result. The following example is almost directly taken from [31] for
the sake of content completeness, the difference is that the example there is used

for explaining the algorithm of a predicate transformer similar to our T'R predicate

(1) B @ B>

Figure 6.3: Example system M

transformer.

Figure 6.3 shows a system M composed of two component DES M; and M,. For
simplicity, let P := true be the input predicate of R(M,.), i.e. we now compute
R(M, true). Let vy, and vy, be the state variables for M; and M, respectively.

Initially, P, = (va, = So A v, = to);

e [irst iteration

P1 I:P1\/(’U]\/[1:Sl/\U]\/[z:'[Z())\/(U]\/[1 :So/\UMQZt1)
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= (UMl = 51 A Umy = to) V (UM1 = Sp A\ (UM2 = t() V Uny = tl))

e Second iteration
Py =PV (v, =s1Avp, =t)V(va, = seAvp, = to) V (va, = SoAvyg, = ta)
= (var, = S0) V (var, = $1 A (Vg = to Vun, =11)) V (Var, = S2 A v, = to)
e Third iteration
P =PV (vp, = s2 Avpg, =11) V (v, = $1 A vpg, = o)

(var, = S0) V (v, = $1) V (var, = S2 A (vpg, = to V Upg, = 1))

(var, = S0) V (vag, = $1) V (var, = S2 A (g, = to V Upg, = t1))
e Fourth iteration
P1 Z:P1\/(UM1 282/\’UM2 :tg)

1

Although the result can be represented as 1, one can see that the intermediate
logic formula is much more complicated than the result during the computation.

To reduce the intermediate result, we can take a look at equation 6.2. Only when
a state variable can be assigned to all the values in its domain, the part related to
the state variable can be reduced to 1. In the above example, for instance, if we first
compute the transitions aq, 31,71, then vy, can be assigned to all the states in its
domain {sg, s1, s2}, so this part can be reduced to 1.

For the system G composed of components G/, ..., G/, Algorithm 6.2 formally
states the above idea. The algorithm chooses the events component by component.

Note that in Line 7, the event set is X;, but the transition function is 4. This
algorithm makes great use of the tautology of Equation 6.2 to reduce the intermediate

result. The difference between this algorithm and the previous one is the order of
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Algorithm 6.2 R(G, P)
1. P PApr({q});

2: repeat

3: P2 — P17

4: for i« 1tondo

5 repeat

6: Py — Py

7 Pr = PV (Vyes, (0(P1,0) A P));
8 until P, = P

9: end for
10: until P, = B,
11: return Pi;

choosing events. In Line 7 of the algorithm, we never remove states from P;. As the
number of states in G is finite, after finite number of steps we will have P1 = P3 for
the repeat loop from Line 5 to Line 8 and P1 = P2 for the repeat loop from Line
2 to Line 10; thus the algorithm will terminate.

Now we compute R(M, true) according to Algorithm 6.2, where M is shown in
Figure 6.3. The phrase "outer repeat” means the one on Line 2, and ”inner repeat”
means the one on Line 5.

Initially, P, = (va, = So A v, = to);

e First outer repeat iteration

i :=1; // For the component M;

— First inner repeat iteration
Py = PV (vpy, = 51 Aoy, = to)
= (vpr, = So VU, = S1) Avag, = to
— Second inner repeat iteration
Py := PV (vp = S2 A vy, = o)
= vp, = Yo
— Third inner repeat iteration

Pl Z:UM2:t0

i:=2; // For the component M,
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— First inner repeat iteration
Py =PV (vpy, = t1)
= (vp, =to Vg, = 1)
— Second inner repeat iteration
Py := PV (vy, = to)

=1
— Third inner repeat iteration
P1 =1

e Second outer repeat iteration
P=1

During the computation, we can see the intermediate predicates are much shorter
than those of the previous algorithm. This is very important for our BDD-based
algorithms, because the running time of BDD operations directly depends on the
number of BDD nodes, and the number of nodes a BDD contains is proportional to
the length of its corresponding logic formula (simplified).

For the system G composed of components Gi,..., G/, let P € Pred(Q). We
now discuss another optimization technique for the computation of R(G, P).

Notice that during the computation of R(G, P), we always compute the new
reachable states from all the states that have been reached. This is obviously not
efficient in an automata-based algorithm, because we can compute the new reachable
states from the states that were found most recently (or in last loop). In our symbolic
algorithms, however, computing from all the states that have reached could make the
algorithm run faster because the tautology could dramatically reduce the size of the
intermediate logic formulas.

However, in our experience, under some cases, computing the new reachable states
from the states most recently found is faster than computing them from all the states
that have been reached. For instance, in the AIP example in next chapter, computing

from the most recently found states is faster.
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Algorithm 6.3 shows how to compute R(G, P) from the most recently found states.
Again, In Line 9 of the algorithm, we never remove states from P;. As the number of
states in G is finite, after finite number of steps we will have P1 = P3 for the repeat
loop from Line 6 to Line 10 and P1 = P2 for the repeat loop from Line 3 to Line

12; thus the algorithm will terminate.

Algorithm 6.3 R(G, P)(Experimental)

1. Py P Apr({qo});
2: Py — false;

3: repeat

4: Poew — P — Py

5 Py« P

6: fori« 1tondo

7 repeat

8: P3 — Pl,

9 Pre PV (Vyes, (0(Pacus ) A P));
10: until P, = P;

11:  end for
12: until Pl = P2
13: return Pi;

As this technique does not always make the algorithm work more efficient, we
only give the algorithm for the predicate transformer R. For predicate transformers
TR and CR, the algorithms applying this technique can easily be obtained. Further-
more, when we say the algorithm for the predicate transformer R later on, we mean

Algorithm 6.2.

As we need to do synthesis and verification on the AIP example in the next
chapter, in the current version of our software tool, we use Algorithm 6.3 to compute
the R predicate transformer. Similarly, we also apply this optimization technique to

compute TR and CR in our current software tool.
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6.2.3 Computation of TR

For the system G composed of components G/,..., G/, let ¥’ C ¥ be a fixed
event subset, P € Pred(Q). From the definition of TR(G,.,Y’), we can write a
straightforward algorithm for TR(G,>’, P) as shown in Algorithm 6.4. Like the

algorithm for R(G, P), this algorithm will terminate in finite number of steps.

Algorithm 6.4 TR(G, P, Y¥')(Straightforward)
1. P« P;
2: repeat
3 Py Py

4 PPV (\/JGE, 5‘1(P1,0)>;

5

6

cuntil P =P,
: return Py;

An improved algorithm using the tautology of Equation 6.2 is given in Algo-
rithm 6.5.

Algorithm 6.5 TR(G, P,Y)
1. P« P;
2: repeat
3 Py« P
for i — 1 ton do

4

5 repeat
6: Py — Pp;
7
8

P — PV (Vaez’mzi 571(]31,0))%
until P, = P;
9: end for
10: until P, = P,
11: return Pi;

6.2.4 Computation of CR

For the system G composed of components Gi,..., G/, let ¥’ C ¥ and P’ €

Pred(Q) be fixed, and let P € Pred(Q). From the definition of CR(G, P’,%,.), we
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can write a straightforward algorithm for CR(G, P’, ¥, P) as shown in Algorithm 6.6.

Like the algorithm for R(G, P), this algorithm will terminate in finite number of steps.

Algorithm 6.6 CR(G, P', %', P)(Straightforward)
1. Pp— P NP;
2: repeat
33 Py Py
4 P e PV (\/
5
6

ves (071 (PLO) A P));
cuntil P, =P,

: return P

An improved algorithm using the tautology of Equation 6.2 is given in Algo-
rithm 6.7.

Algorithm 6.7 CR(G, P',%, P)

1: Pp— P AP;

2: repeat

3 P P

4: for i+ 1tondo

5 repeat

6: P; — Py

7 Pr PV (Vesys, (07 (P1,0) A P));
8 until P, = P

9: end for
10: until P, = B,
11: return Pi;

6.3 Miscellaneous Computation for HISC Synthe-
sis and Verification

Let ® be the n'* degree interface system that respects the alphabet partition given

by Equation 3.1 and is composed of plant components G%;, G ..., GY | specifica-
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tions Ey,Er,,...,Ey , and interfaces Gy,,...,Gy,. Let j be an index with range
{1,...,n}. For system ®, from Section 6.2 we already know how to symbolically
compute the predicate transformers that we used in the algorithms we defined in the
previous two chapters. However, to complete the full task of HISC synthesis and
verification symbolically, we also have to compute pr(Bady) for the high-level and
pr(Bady,) for the 7 low-level for each j € {1,...,n}, to verify that all the interface
DES are command-pair interface and to verify that system ® respects the alphabet

partition given by Equation 3.1.

6.3.1 Computation of pr(Badp)

For system ®, we now copy the definition of pr(Bady) from Chapter 4 here for
convenience.
Badp := {q € Qnl
(Bou € i) (i x "((y,2),00)! & Culz,04) D) or
(35 €{1,...,n})(30a, € Ta,) (€1 (z),00,)! &
Ca xmu X € xox eh el o (g m, w1, T, - T0),0a,) 1) T

where ¢ = (2,y,x) = (2,9, 21,...,T,) as in Equation 4.1 (Page 79).

For system ®, let v,y and v}, be the normal state variable vector and the prime
state variable vector for the high-level Gy, respectively.

For system ®, for each ¢ € ¥p, let (v,,v), N,) be the transition tuple for ¢ in
the high level Gy; For each 0, € X, let (vp14,, CI Ny14,) be the transition tuple
for the component DES of G, x G#; For each o, € ¥y, let (V5,005 Vs 5, ) Nso,) De
the transition tuple for the component DES of Ey; For each j € {1,...,n} and each
a € Xy, let ('U(H_I].),a, UI(H—I]-),w N(H—Ij),a) be the transition tuple for the component
DES of Ey x Gj; x G}, x -~ x G}, x G}, x -+ x G} . For each j € {1,...,n}

i+
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and each a € ¥4, let vy, and U/Ij respectively be the normal and prime state variable
for the interface G, and Ny, , be the transition predicate for a in the interface DES

Gy..

J

Now, for system ®, we can compute pr(Bady) symbolically by

pr(Bady) := ( \/ (HU;I,JUN;DI,M N _‘GU;,%N&%))) \4

O'uezhu

( V \/ (av}ijj,a/\ﬁ(angIj)yaN(H,jm)))

je{l,...,n} OJGZA].

In order to save memory space, for o, € Xj,, we do not define N,,, in our

/
pl,ou

software tool directly. We compute 3(v,r, U V), , )Ny, instead of directly defining

!/

104 ) No, Tepresents the transition predicate for o,

N o,- In most cases, I(vpr,, Uv
in Ey, i.e. N,,,. However, if o, is blocked by DES G¥, x G” (e.g. o, is in the
event set of a component DES, but there is no o, transition in that DES) and there
exist o, transitions in the component DES of Ey and o, is never blocked by any
component DES or combinations of component DES of Eg, then by Equation 6.3,
we have Np; o, =0, Ny, =0 and N;,, # 0, but I(vyre, U, )Ny, = 0. However,

pl,ou

— / —
because Ny, =0, we have v}, , Ny, = 0. Then we always have

EI,v,pI,O'uNpLUu A _|<E|IU/S,O'UN570'u) = 0

regardless of the value of =(3v’, . N;,, ). Therefore, by replacing Ny, with 3(v,;,, U

V1 5. )No, does not change the result of pr(Bady).
Similarly, for j € {1,...,n} and o € Xy4;, we compute Jvy,(Jv; Ny) instead of
directly defining Ny _r,) o For the similar reason as above, this replacement does not

affect the result of pr(Badg).
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6.3.2 Computation of pr(Bady,)

For system ® with j € {1,...,n}, we now discuss how to compute pr(Bady,) for
the j** low-level in system ®.

For convenience, we reprint the definition of Bady, from Chapter 4 here.

BadLj = {q € QLj’((Elo—l'U«j € Eluj) 1L, (yaaluj)! & CLj X ggl'((zax)aaluj) /V) or
((3p € Zg,) &(, p)! & (o, x 11, ((2,9),0) N}

where ¢ = (z,y,x) as in Equation 4.2 (Page 105).

For system @, let v;z, and v} 1, be the normal state variable vector and the prime
state variable vector for the j* low-level G 1, respectively.

For system @, for each o € X, let (v,,v;, N;) be the transition tuple for o
in the j** low-level G1,; For each o, € Xy, let (vy,,, v, , Nyo,) be the transition
tuple for the component DES of Gﬁj; For each o, € ¥y, let (Vsro,, Vir gy s Nolow)
be the transition tuple for the component DES of Ep; X GZIJ_; For each p € Xpg,,
let (v(z,—1,),p; v’(Lj_]j)’p, N(z,-1;),,) be the transition tuple for the component DES of
Ep, x Gﬁj; For each p € X, let vy, and Ulzj respectively be the normal and prime
state variable for the interface G, and Ny, , be the transition predicate for p in the
interface DES G,.

For the j* low-level in system @, we can now compute pr(Bad 1,) symbolically by

pr(Bady,) == ( \ @, Ny, A ﬁ(av;IJuNsl,au))>v

O'uezlu]-

( \/ <3U/IjNIj7p A _‘<E|U1Lj_1j),pN(Lj—Ij),p)>)

PEXR,

Similarly to how we compute pr(Bady), for o, € Xy, we compute J(v,q, U

/

v, ,. ) No, instead of directly defining N, ., , and for p € Xg,, we compute Jvy, (Elv’lj N,)
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instead of directly defining Nz, 1,),. For similar reasons as for the computation of

pr(Bady), we know that these replacements will not change the result of pr(Bady, ).

6.3.3 Miscellaneous Computation in Algorithm 4.2

For system ® with j € {1,...,n}, we now show how to compute P, for o € ¥,
and P € Pred(Qy,) in Algorithm 4.2 and how to compute pr({q € Qy, | & (z, pa)! &
dr,(q,p) F ~Fer,}) in Line 6 of Algorithm 4.2, where ¢ = (2,y, ) as in Equation 4.2
(Page 105).

For convenience, we copy here P, in Definition 4.19 here

Py :=pr({¢ € Qr,;01,(¢',a) = P})

For system @, let vy, and v 1, be the normal state variable vector and the prime
state variable vector for the j¥ low-level G 1, respectively.

For system @, for each o € ¥y, let (v,, v}, N;) be the transition tuple for o in
the j* low-level G 1;; For each o7, € Xy, let v, and U/Ij respectively be the normal
and prime state variable for the interface Gy, and N, Lo, be the transition predicate
for o7, in the interface DES Gy,

For system @, let o € ¥4, and P € Pred(Qr,). From the definition of P,, we

know P, = 5;3_1(P, a). So, we can compute P, symbolically by
P, := 30, (N4 A (Plv, — v)))

For system @, let p € Yg,,a € ¥4, and Fer, € Pred(Qr;). We can compute

pr({q € QulEi(x, pa)! & 61,(q, p) = ~Fer, }) symbolically by

Elv}j(NIM A ((Elv’lezj,a)[UIj — Uﬁrj]))/\
v, (N, A ((mFer, ) [V, — v)])).
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EIU'IjN I, computes the state predicate including all the states in Qr, with «
transition defined. So, Jvj (Ny;,, A (30, Npje)[v; — vi])) computes the state
predicate including all the states in Qr, with p transitions defined, and the tar-
get states of these p transitions are the source states of a transitions in Qr,. That
is to say, Jv} (N1, A ((Jv], N1 o) [vr; — v7,])) computes the predicate identifying the

set {q € Qu, | &, p)1}.

6.3.4 Verifying Event Partition

One of the most fundamental properties in the HISC architecture is that an HISC
system must respect the event partition defined in Equation 3.1.

As it is usually the case that the number of events in an HISC system is very
limited compared to the number of states (e.g. only hundreds in the AIP example in
next chapter), the efficiency of the algorithm to verify this property is not critical.

The method used in our software tool is as follows. For each event in the system,
we encode it as an integer value. From the integer value, we are able to know which
event set the event belongs to. We save the event name and its encoded integer value
for all events in a balanced binary search tree® with the event name as the key.

Initially, the tree is empty. When we read a component DES file, we can determine
which event partition each event belongs to based on the information in the DES file
and where the DES file belongs in the system (e.g. part of the high-level, the ;"
interface, the j low-level, etc.). Thus we can encode it as an integer value. Then we
search for this event in the tree. If the event does not exist, we insert this event into
the tree. Otherwise, we compare the integer value associated with the event in the
tree and the value we just encoded. If they are the same, then there is no problem.

Otherwise, it means that this event is in two different event partitions. After we finish

3The data structure used in our software tool is GNU C++ STL map, which is a red-black tree.
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reading all the DES, if there are no two events having the same name but different
integer values, then we know the system respects the event partition.

As the data structure to save all the events is a balanced binary search tree, the
worst-case searching and insertion time for each event are both O(log, n), where n is
the number of events in the system. Thus the total time for handling each event is
still O(log, n), and the worst-case verification time for event partition is O(mn log, n),

where m is the number of DES components in the system.

6.3.5 Verifying Command-pair Interfaces

For the HISC system ®, we also need to verify if all the interfaces in the system
are command-pair interfaces.

Let j € {1,...,n}. We now discuss the algorithm to verify the j** interface DES
G, = (Xj,%1,,&5, 75, Xj,). Because Gy, is usually composed of single component
DES, efficiency is not the main concern for the verification algorithm.

For all o0 € X1, let Nj, , be the transition predicate for o in Gy,. Let v, and U/Ij
be the normal state variable and prime state variable for G;; respectively.

Algorithm 6.8 shows how to verify if the j% interface DES G 1; is a command-pair
interface.

Line 1 to 4 says that G, can not be an empty DES. Line 5 computes the predicate
including all the reachable states. Line 6 computes the predicate including all the
reachable marker states.

Line 7 and 8 computes the predicate including all the reachable states which are
the target states of answer event transitions plus the initial state. The states satisfying
Pp; should only be the source states of request event transitions.

Line 9 and 10 computes the predicate including all the reachable states which are
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Algorithm 6.8 Verifying if G, is a command-pair interface

2 Pry, o pr({zjo});
. if (Pr;, = false) then

1

2

3 return "G 1; has no initial state.”;
4: end if

5. Pr, « R(Gy;, true);
6: Pr, <« pr(X;,,) A Pr;

7o Pr; — Vaex, (QuNo)lp, — vrl);

8: Pr; < (Pr; N Pr;) V Py,

9: Pa; — \/peZRJ_((Hvlg‘NIyp)[vllj - Ulj])?

10: Pa; < Pa; A Prj;

11: Ppa, « \/aeEAj §i(Pr;,a);

12: Par; < Vpesy, &(Pa;00);

13: if (Par; # false) or (Pra; # false) then

14:  return "Gy, fails Point A of the command-pair interface definition”;
15: end if

16: if (Pg, # Py, ) then

17:  return "Gy, fails Point B of the command-pair interface definition”;

18: end if
19: return "Gy, is a command-pair interface.”;

the target states of request event transitions. The states satisfying P4, should only
be the source states of answer event transitions.

Line 11 computes the predicate including all the reachable states which are the
target states of answer event transitions with source states satisfying Pg;.

Line 12 computes the predicate including all the reachable states which are the

target states of request event transitions with source states satisfying Py .

Now we informally explain the correctness of the algorithm.
From Line 1 to 4, the algorithm makes sure that Gy, is not empty.
In the following, we always assume Gy, is not empty.

We first discuss Point A of Definition 3.1. To show the correctness of the algorithm
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for Point A, it is sufficient to show that
(Vs € L(Gy;)) s € (Xg,.X4,)* if and only if Pra, = false and Pyg, = false.
Equivalently, we can show that (3s € L(Gy,)) s ¢ (Xg,.X4,)* if and only if

Pra; # false or Par, # false.

1. Show ((Is € L(Gy,)) s & (Xr,.X4,)*) = Pra, # false or Pyg, # false.
Let s € L(Gy). Assume s ¢ (Xg;.X4,)* Must show this implies Pra; #

false or Pagr, # false.

From s ¢ (Xg;.X4,)*, we know that one or more of the following three conditions

must be satisfied.

(a) s € 55 4, 0,55

= (Fu,v € ¥])(3on, a2 € By;) s = uaragv.

From Line 7 and 8, we know that &;(x,,ua1) = Pg,.

From Line 11, we know that {;(x;,, ua1as) = Pra,, so Pra, # false.
(b) s € X7 .Xg,.Xg;. 2],

= (Ju,v € ¥7)(3p1, p2 € Lg;) s = up1pov.

From Line 9 and 10, we know that &;(x;,, up1) = Pa;.

From Line 12, we know that {;(x;,, up1p2) = Par,, 50 Pag, # false.
(c) s €Xa,. 27,

= (3o € X4;)(Fu € X7) s = au.

From Line 8, we know that xj, = Pg,.

From Line 11, we know that {;(x;,,a) |= Pra,, so Pra, # false.

From (a), (b) and (c), we know that Point 1 holds.
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2. Show Pra, # false or Pygr;, # false = ((Is € L(Gy;)) s & (Xg,;-X4;)%).

From Line 7, 8 and 11, we know that if Pra;, # false then (3s € L(Gy;)) s €

Ej—j.EA]..ZAj.ZZ_ or s € ZAJ"ZZ'

From Line 9, 10 and 12, we know that if Py, # false then (3s € L(Gy;)) s €
5 S, L, L

We can thus conclude that Point 2 holds.

We now discuss Point B of Definition 3.1. Assuming Point A of Definition 3.1
holds, to show the correctness of Point B, it is sufficient to show that Gj, satisfies
Point B if and only if Pr, = Py, .

From Point B, we know Gy, satisfies Point B if and only if all the target states
(reachable) of all answer event transitions in G, and the initial state of G;, must be
marked (i.e. Pr, < P, .), and there is no other states being marked (i.e. P =

Pp,.). Therefore, we have G, satisfies Point B if and only if P, = P, .

6.4 BDD Implementations of Algorithms

So far, we have shown how to represent an HISC system as logic formulas and
the method to implement the HISC synthesis and verification algorithms from the
logic formulas. The logic formulas we used can be directly represented as an Integer
Decision Diagram(IDD) [16,51]. We use Binary Decision Diagram (BDD) [6] to
represent the formulas, as a BDD software package is readily available now. The BDD
software package we used is BuDDy 2.4 developed by Jorn Lind-Nielsen. Due to space
and time constraints, we will not give an introduction for BDD or the software package
here. Readers are referred to [19] for an introduction to BDD and its application to

symbolic model checking, and to [1] for the BDD package implementation details.
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Each state variable in our logic formula is a finite domain variable (simply means
that a variable can only be assigned finite number of values), which can be represented
by a block of binary variables. For instance, a state variable for a 3-state DES can
be represented by two binary variables, and a state variable for a 5-state DES can
be represented by three binary variables. Assume the number of states in a DES is
m, by replacing the finite domain state variable for this DES with a block of binary
variables, we actually extend the variable domain to 2%, where k = [log, m]. That
is, we actually extend the number of states in the DES to 2¥. However, because of
the transition predicate, those extended states will be treated as unreachable states,

which do not affect the language result at all.

All the logic operations such as A, V, = and 3 can be done by corresponding BDD
operations directly. For the 3 operation of a finite domain variable, we have to do 4
operation on all of its corresponding binary variables. For example, a state variable v
with domain {0,1,2} is represented by two binary variables v; and vs. The operation Jv
can be done by Jv;(Jvs) instead. A very good aspect in the software package BuD Dy
is that it provides a series of functions with prefix ” fdd_”, which allow developers
to be able to implement the logic operations on finite domain variables directly.
In other words, we can implement operations in terms of finite domain variables
(state variables in our case), and BuD Dy package will automatically translate the

operations into ones on their corresponding binary variables. Please refer to the

source code of our software tool in Appendix A for more details.

6.4.1 State Variable Ordering

A well-known fact of BDD is that the order of variables in a BDD can dramat-

ically change the number of the BDD nodes. Because the efficiency of all the BDD
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operations directly depends on the number of the BDD nodes, the variable order in
a BDD plays an important role in the algorithm’s actual efficiency. However, to find
the optimal order for BDD is NP-Complete [4], so heuristics on variable orders are
usually used to reduce the BDD size.

In our case, we always keep binary variables in a block for each finite domain
variable together because of the tautology in Equation 6.2. Therefore, we only care
about the order of the finite domain variables, i.e. the state variables.

Although the software package provides a so-called dynamic BDD variable order-
ing function [38] to optimize the order, an initial variable order is critical, otherwise
the dynamic ordering function will not have as much effect as expected.

The method we used is that two state variables should be kept closer if their
corresponding DES have more shared events. This method was found by Zhang
in [51]. The central idea behind this method is that a BDD can be reduced more if
two state variables that share more information are kept closer.

Assuming there are k component DES in the high-level or a low-level of an HISC
system, for example, we can arrange the state variables for all the DES by trying
to make the value of C'ross in the following expression as small as possible. The C'
in the expression is a matrix storing the number of shared events between the i

component and the j* component in the current order.*
kook
Cross = Z Z Cli,j]l*x(j —i—1)
i=1 j=i+2

For a high-level or low-level with k& DES, there are k! different orders. It is im-
practical to compute Cross for all the possible orders on a personal computer for a

even moderately large k(e.g. k = 50,k! = 3 x 105%). Therefore, we use the sifting

4This expression is quite experimental, but it works well in our experience.
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algorithm [38] to compute only a very small number of the orders, and then choose
the order with the smallest value for Cross among them as the initial order. Here we
only adopt how the sifting algorithm swaps the variables. We then compute Cross
for the order after each swapping. As a result, it has much less computation than to

swap two variables in a BDD and then count the number of BDD nodes.

6.5 Controller Implementation

Let @ be the n* degree HISC-valid specification interface system that respects
the alphabet partition given by Equation 3.1 and is composed of plant components
GY, G, ..., Gl | specifications Ey,Ep,, ..., Er,, and interfaces Gy, ..., Gz, . From
Chapter 4, we can synthesize a high-level proper supervisor Sy by making Sy rep-
resent L,,(Gg, % (true)), where k € {0,1,...} and T'%(true) is the greatest fix-
point of I'y with respect to (Pred(Qp), <), and synthesize a j™ low-level proper
supervisor Sy, by making Sy, represent Lm(ng,Flzjj (true)) for all j € {1,...,n},
where k; € {0,1,...} and FIZJJ (true) is the greatest fixpoint of I'y; with respect
to (Pred(Qr,), X). The supervisor SUP for the whole system would be SUP :=
Su || S, || -+ | S, || G, || -++ || Gy,. However, the automata-based supervisors
SH,SL,,--.,S, could easily be very large, so that they are very difficult to imple-
ment. For example, Sy for the 3-2 AIP example in the next chapter has a state space
size on the order of 10*2.

From the synthesis algorithms in Chapter 4, we can see that Sy can be obtained
by trimming off states from the high-level Gy, and Sy, can be obtained by trimming
off states from the j** low-level G r;»J €{1,...,n}. Therefore, we can implement the
supervisor for system @ in another way as follows.

For system ®, let Py be the resulting predicate of the Algorithm 4.1 for the high-
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level, i.e. Py := I'};(true) and Py, be the result predicate of the Algorithm 4.3 for
the j™ low-level(j € {1,...,n}), ie. Pp, := F]ij (true). Assume® Py # false and
Pr, # false for all j € {1,...,n}. In the following, j is always an index with range
{1,...,n}.

Let G := (Q,%,0,q0, Qm) be the DES tuple for the synchronous product of all
the DES in system ®, then X is defined as in Equation 3.1 and ¥ := X.UX,. A state

q € @ can be represented as a tuple

(ZHawaZLU'">ZLn>yL1>"'7yLnax1a'"7-7371)7 (68)
where 2y € Zy,yy € Yy, 21, € Z1,,..., 210, € Z1,,Y1, € Y1,,---,YL, € Y1,, 21 €
Xi,...,z, € X, (see Section 4.1 for more information).

For each o € X, define the control predicate f, € Pred(Q) for o as following:

1, (c€Xy & ou((za,ym,x1,...,2,),0) = Py) or

(U € EL1 & 6L1((ZL17:UL1’$1)’0-> ): PLI) or
- or

(U € ZLn & 5Lw,((ZLn,7yLn7xn)7a-) ': PLn) or

(Vg € Q) fo(q) = (0 € 51, & Gl ors- 20 0) b= Prr) &
(0n, ((zL4, YLy, 21),0) = PLI)) or

(6.9)

(c €2, & (6u((zu,ym,x1,...,3y),0) | Py) &
(0, ((2L,,, YL, ¥n),0) = PL,))

0, otherwise

Equation 6.9 is based on the event partition in Equation (3.1), and the fact that
G is defined over X7y and G L, 18 defined over X ;-
For ¢ € @Q and o € ¥, o should then be enabled at state ¢ if f,(q) = 1. Therefore,

from the control predicate f, for all 0 € ¥, we can decide the control action. To

5If Py or any of Pr,(j €{1,...,n}) are equal to false, this would mean no supervisor exists, so
we would have nothing to implement.
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implement, we only need to use the predicates for o € 3., as our supervisor is
controllable by our synthesis process and Theorem 3.2. Thus it will never try to
disable o € ¥, when o is possible in the plant. Note that each of these predicates can
also be represented as a BDD, and usually the BDD representation is much smaller
than the automata representation. However, to evaluate f,, we need to know the
current state of G.

We will use all the component automata models (component DES) G%,, Gil, cee
Gin, Ey,Er,...,Er , Gy, ..., Gy, in system ® to trace the state of the physical
plant. In other words, we will use the automata models as a kind of observer to
provide our controller with the needed system state information. Note that the plant
DES and specification DES are usually the synchronous product of component DES
again. For example, the high-level plant in the AIP example in the next chapter is
composed of 19 component DES. Although the synchronous product of them could
be very large, the individual DES are usually very small.

Let ¥, = {01,09,...,01} (k € {0,1,...}). Figure 6.4 shows the overall picture of
what our controller will look like. In the diagram, the plant models G%,, G} ..., G}
and specification models Ex, E;,, ..., E; would be replaced by their own component
DES. We also assume that all the events exist as part of the physical plant. There
are many issues about the controller implementations which are beyond the scope of
this thesis; here we only want to show that we do not need to build the automata
supervisors Sy and Sp; (j € {1,...,n}) to implement our controller. Interested
readers are referred to [20] to see an example.

Equation 6.9 can actually be simplified. Notice that Point 3 and Point 4 in the
interface consistent definition are very similar to the definitions of the controllable
language. As the supervisor of the system never disable the uncontrollable events,

the supervisor for the high-level should never disable the answer events, and the
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------------------------------------------------------------
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Figure 6.4: Control diagram

supervisor for the j% low-level should never disable the request events in the ;"

low-level.

Proposition 6.1. For system ®, let G := (Q, %, 0, qo, Qm) be the DES tuple for the
synchronous product of all the DES in system ®. Let q € () be a reachable state with
a tuple as in Equation 6.8, s € ¥* and q = 0(qo, s). If the following three points are
true:
® S:=0109 0y,
where k € {0,1,...}(k =0 means s =€) and 01,09,...,0; € ¥;
® q1:=6(q0,01),q2 .= 6(q1,02), ..., = Qi = 0(qr—1, Ok), (1)
where q1,q2, ..., qx € Q;

o f0'1(q0) = 1af02(q1) = 17-"af0k(qk;—1) = 1a

then the following two points hold:

1. (Vje{l,...,n})(Vp € Xg,)

(5H((ZH7yH7x17"'azn)vp) ': PH) = (6Lj((ZLj7ij’xj)7p) ': PLj)
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2. (Vje{l,....,n})(Va € By,)

(Or, (21,91, %), @) | Pr,) = (6 (2, Y, 71, - - -, n), @) = Pr)
proof:

1. Show Point 1 holds.
Let j € {1,...,n},p € Xg,.
Assume 0y ((zg, Yy, T1,--.,Tn), p) = Py. (2)
Must show this implies 0z, ((2z,,yz,, 7;), p) F Pr,-
Let function PRJ;z; : ¥* — X7, be a natural projection.
From (2), we have 0y ((zg, yu, 1, .,Tn), p) &= Py
= 0u((za, Yy, T1, .. xn), p)!
= &(xj,p), as Gy :=Eyg x G x G x---x G},
= &i(zj,p)!, by definition of G’}j (see Section 3.2) and the fact p € X,
= &2, p)!, by definition of G,
= PRI;;(s)p € L(Glfj), by (1) and definition of G (3)
From the definition in Equation 6.9 and (1), we have
PRI;z;(s) € L(Gy,, Pr,). (4)

By Theorem 4.2, we know that L,,(Gr;, Pr;) is j low-level interface control-
lable. From Definition 4.16, we know that L.,(Gr,, Pr,) is 3t low-level P4
interface controllable. From Definition 4.10, we know that m is 5t
low-level P4 interface controllable. By Corollary 4.4, we have m =
L(Gy,, Pr,). Thus we know that L(Gp,, Pr,) is j™ low-level P4 interface con-

trollable. By Definition 4.10, (3) and (4), we now have
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PRI;;(s)p € L(Gy,, Pr;)

= 01, ((21,,Yyr;. 5), p) = P

. Show Point 2 holds.

Let j € {1,...,n},a € X4,.

Assume 0z, ((2z,,yz,, ), @) = Pr,.

Must show this implies dy ((zg, yu, 1, ..., 2n), @) E Py.
Let function PRIy : 3* — X754 be a natural projection.
From (5), we have dr,((21,,9r,,%;), ) F P,

= 0r,((22;,91,, 7)), a)!

= &(rj,a)l, asGr =B, x G x Gl

= (xj,a)!, by definition of Gllj (see Section 3.2) and the fact o € Xy,
= & (zj,a)!, by definition of G’}j

= PRI/ (s)a € L(G’}j), by (1) and definition of G
From the definition in Equation 6.9 and (1), we have

PRJ]H(S) & L(QH, PH)

(6)

(7)

By Theorem 4.1, we know that L,,(G g, Py) is high-level interface controllable.

By Definition 4.2, we know that L,,(G g, Py) is high-level interface controllable.

By Corollary 4.2, we have L,,(Gy, Py) = L(Gg, Py). Thus we have L(G g, Py)

is high-level interface controllable. By Definition 4.2, (6) and (7), we now have

PRJ[H(S)O./ € L(gH, PH)

:>6H((ZH7yH7x1a"'7xn)7a) ):PH
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From the above proposition, now for all ¢ € ¥., we can redefine the predicate

fo € Pred(Q) as following:

1, (U €EXy UERI U---UZRn & (5H((ZH7yH,LL'1,...7{L'n)7J) ': PH) or
((T S ELl UZA1 & (SLI((ZLl,yLl,l‘l),O') ':PLI) or

(Vg€ Q) fo(q) == <eeoor (6.10)

(c€¥r, UXa, &dr,((22,,YL,,7n),0) F PL,)

0, otherwise

This allows us to replace the set of global control predicates f, with the set of

local control predicates fu, and fr; .
For each 0 € ¥.N(XgUXg, U---UXg, ), we define the predicate fr, € Pred(Qp)
as

]-7 5H((ZH7yH;xla"'7xn)va)}ZPH
(Vq € Q) fHo'(ZHayHaxlw .. 71'71) = (611)

0, otherwise
For each j € {1,...,n}, 0 € ¥.N (X, UXy,), we define the predicate f, €
Pred(Qr,) as
1, 6Lj((ZLj7yLJ7xl)5o) ':PLj
(V9 € Q) fryo(zn, yr, ) = ’ (6.12)
0, otherwise
Let X.N (EH U ERl y---u ERn) = {0‘1,0‘2, ce ,O'kH} (k’H S {0, 1,.. }) and X, N
(X, UXy,) :={0j-1,0j-2,...,05_,} (k; €{0,1,...}) for j € {1,...,n}. The control
diagram in Figure 6.4 can be modified as shown in Figure 6.5. Again, we assume all
the events in the system exist as part of the physical plant.

For system ®, for each 0 € X.N (X UXg, U---UXg ), the predicate fy, can be

computed by

fro == 5;11(PH,U)-
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Figure 6.5: New control diagram

Let (vy,, vy , Nu,) be the transition tuple for o in the high-level Gy, then the

predicate fg, can be computed symbolically by

fro = Yy (Nu, A (Pylvm, — v} ).

For system @, for each j € {1,...,n}, 0 € ¥, N (XL, UXy,), the predicate P,

can be computed by

i

Jo

= 5;],1(PLJ., o).

Let (vp, ,v, ,Ni, ) be the transition tuple for o in the j™ low-level G, then
the predicate fr,, can be computed symbolically by

ijU = El'vleU<Nng A (PLJ' [vchr - UIL' ]))

Jo

187



Master Thesis — R. Song — McMaster — Computing and Software

6.5.1 Simplifying Control Predicates

Let G := (Q,%,0,qo, Qm) be the DES tuple for the synchronous product of all
the DES in system ®. If we use local control predicates as in Figure 6.5, then a state
q € @ (in the form of Equation 6.8) can be reached in the controlled system only if
(2m,Ym, 21, ..., 2,) = Py and for all j € {1,...,n},(21,,9z,,2;) = Pr,. Based on

this fact, we can simplify the control predicate for all o € ¥, as follows:

LoeX.N(BgUXp U---UXg)

If o € ¥.N(XgUXg U---UZXg,), fu, is required only for the state set
{q € Q|(zu,yn,x1,...,2,) E Py}. For the other states in @), the return value

of fy, can either be 0 or 1, as these states are unreachable.

For a state ¢ € @) in the form of Equation 6.8, let gy = (zm,ym, 1, ..., Tyn)
be the high-level part of q. Let dy, € Pred(Qg) and dy, := Py. A predicate
fr, € Pred(Qp) satisfying dg, A fi; = du, A fg, will have the same effect as
fu, has, because for state ¢, if dg,(qu) = 1, then fg, = f}; , otherwise we do
not care the value of fx, (qx) as ¢ is unreachable. In other words, f3 and fg,

are equal on the domain defined by the constraint dy, [12].
Predicate f}; can be computed by the function bdd_simplify in the BDD pack-
age we are using when passed dp, and fy, as arguments.®

2. 0€X.N(X,UXy,),je{l,...,n}

If 0 € ¥.N (¥, UXy,), then fr, is required only for the state set {q €
Q[(zL;,yr; T1;) F Pr,}. For the other states in @, the return value of fy, can

either be 0 or 1, as those states are unreachable.

6Usually, the BDD for f1r, is smaller than the BDD for fz,, but according to the documentation
of the BuD Dy package, it is not guaranteed.
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For a state ¢ € @ in the form of Equation 6.8, let gz, := (21,,¥yr,,7r,) be the
4t low-level part of ¢. Let dp, € Pred(Qr;) and dp, := Pr,. A predicate
f’chr € Pred(Qy,) satisfying dr, A f/ng =dg, N fr;, will have the same effect
as fr,, has, because for state ¢, if dz, (qr,) =1, then fr, = fija, otherwise we
do not care the value of fr, (qz;) as ¢ is unreachable. That is, fij(, and fr,

are equal on the domain defined by the constraint dp,, .

Predicate fijo can be computed by the function bdd_simplify in the BDD

package we are using when passed dr, and fr,, as arguments.

For system ®, let o0 € X.. If 0 is not permitted at a state in a plant component
means that ¢ can not happen at that state physically, then the control predicates
fHo oOr ijU (7 € {1,...,n}) can be further simplified. In the control diagram in
Figure 6.5, if 0 € 3. N (XgUXR, U---UXR,), fu, has an actual effect only at a state
q € @ (in the form of Equation 6.8) with ny(yg,o)!, i.e. o transition is defined at
the high-level plant part of ¢. Also if 0 € X.N (X7, UXy,;), then fr,;, has an actual
effect only when a state ¢ € @ (of the form of Equation 6.8) with 5z, (yr,,0)! i.e. o
transition is defined at the j** low-level plant part of q.

For system ®, let ¢ € ¥.. Assume o can not happen if a plant component does

not permit it. By the above analysis, we have the following:
l.oeX.N(EgUXg U---UXg,)

If o € ¥.N Xy UXg, U---UXg, ), fu, is required only for the state set
{q € Ql(zu,yu,x1,...,x,) E Py & nu(yy,o)!}. For the other states in @, the
return value of fy_ can either be 0 or 1 as either the states are unreachable or

o can not physically occur in the high-level plant.

For a state ¢ € @ in the form of Equation 6.8, let gy = (zmg,ym, x1,...,Ts)

be the high-level part of q. Let dy € Pred(Qm) and dy_ = Py Apr({qu €
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Qunu(ym,o)'}). A predicate fr; € Pred(Qp) satisfying dy A fi; = dy A fu,
will have the same effect as fy, has, because for the state ¢, if d; (qn) = 1,
then fy, = ff_, otherwise we do not care the value of fy,(qy) as either q is
unreachable or o can not physically occur in the high-level plant. That is, ff;_
and fp, are equal on the domain defined by the constraint d7; .

We can also simplify fp, as fj; in the following proposition.

Proposition 6.2. For system ®, let o0 € . N (g UXg, U---UXg, ). For each
q € Q in the form of Equation 6.8, let qy = (2, Yy, x1, - - ., Ty) be the high-level
part of q. Let dy;, € Pred(Qp) and dyy = Py Apr({quw € Qu|du(qm,0)'}). Let
Fy, € Pred(Qg) satisfying d; A Fu, = dy A fn,, then ff = Fg, Apr({qa €
QulCax&rx.. . x"((zg,x1,...,2,),0)!}) and fu, are also equal on the domain

defined by the constraint dy .

proof:

Sufficient to show that dyy A fy = dy A fu,. We show this by a series of

transformations starting from the left hand side of the equation.
dy, N IH,
=dy N Fu, Npr({am € QulCa x & x ... x & ((zu, @1, ..., 2y),0)1})
= Py A pr({qu € Qu|nu(yu,o)!}) N Fu, A
pr({qy € QulCuy x & x ... x (25,71, ..., 2,),0)!}), by definition of dy.
= Py ANpr({qu € Qulog((zu,ym, x1,...,T0),0)!}) A Fr,
=dy A Fu,, by definition of df;_
=dy A fu,, asdy AFy,=dy A fn,

= Py ANpr({qa € Quldu(qu,0)!'}) A fu,, by definition of df;_ (1)
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By the definition of fy_ , we know that for all gy € Qu, fu,(qu) = 1 if and
only if 0y (qu, o) = Py, which implies that dg(qm,o)!. By the definition of =<,

we thus have

fr, 2 pr({an € Quldu(qu,o)'}) (2)

By (2), we can conclude that (1) is equivalent to Py A fg, (3)

We know that for all gy € Qu, oy (qu,0)! = ny(yu,o)!, so we have

pr{qn € Quldu(qu,o)'}) = pr{en € Qulna(ym,o)'}) (4)

By (2) and (4), we have

fu, 2 or{an € Qunu(ym,0)'}). (5)

By (5), we know that (3) is equivalent to

Py Npr({qm € Qulnu(ym,o)'}) A fu,

=dy A fu,, by definition of df; .

Lo €N N(E,UXy,),je{l,...,n}

If 0 € ¥.N (XL, UXy,), then fr is required only for the state set {q €
Q|(zz;,yr,v1,) F Pr, & nr,(yr,,o)!}. For the other states in @), the return
value of fr, can either be 0 or 1, as either the states are unreachable or o can

not physically occur in the j** low-level plant.

For a state ¢ € @ in the form of Equation 6.8, let ¢z, := (zz,,yz,,2r,) be
the j% low-level part of ¢. Let d/Lj(, € Pred(Qr,;) and d’LjG = P, Npr({ar, €

Qr,ne,;(yr,, 0)!}). A predicate f7 € Pred(Qy,) satisfying d; . A ff =dj, A
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J1,, will have the same effect as f7 ., has, because for the state g, if d'LjU (qr;) = 1,
then fr,, = ff, , otherwise we do not care the value of fr,(qr;) as either ¢ is
unreachable or ¢ can not physically occur in the j** low-level plant. That is,

1,, and fr,, are equal on the domain defined by the constraint dj,_ .

"

We can also simplify fr. as L,, In the following proposition.

Proposition 6.3. For system ®, let j € {1,...,n} and o € X.N (X1, UXy,).
For each q € Q in the form of Equation 6.8, let q, = (z1,,yr;,7L,) be the
5t low-level part of q. Let dp,, = Pr, Apr({ar; € Qu,lor,(qr;. 0)'}). Let
Fr, € Pred(Qy,;) satisfying d’ija ANEy, = d’ija A fr;,, then 1’;’;0 = Fp, A
pr{qr, € Qu,lC, x &((2,,25),0)!}) and fr, are also equal on the domain

defined by the constraint d’Ljo.

proof:

Identical to the proof of Proposition 6.2 by substituting all the high-level pred-
icates with their corresponding j* low-level predicates, dy with 0r,;, Ca with

Cr;» i with ng, and £ x --- £F with &

Our software tool (source code in Appendix A) produces fg,, fz, and f3; for
all events in 3. N (¥g UXg, U---U3Xpg,), and fr, , fija and f’L’;U for all events in
YeN(Xr,UXy,) forall j € {1,...,n}. In the rest of this thesis, we will refer to f; and
fij(, as prime simplified control predicates and refer to fr and fi’; _as triple-prime

simplified control predicates.
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6.6 A Small Example

In this section, we present a small example for HISC synthesis and provide the final
automata supervisors and control predicates. This example is only for the purpose of
demonstrating algorithms, so it is a bit contrived.

This example is inspired from the transfer line example from [47]. The system dia-
gram is shown in Figure 6.6. Components m1 and m2 are two machines. Component

tu is a test unit. Components b1 and b2 are two buffers with capacity 1.

ml_st ml_cpl m2_st m2_cpl tu_st tu_pass
bl b2 —
T tu_fail

Figure 6.6: System diagram for small example

We model the system as an HISC system as follows. We treat m1 and m2 as two
low-level subsystems with interfaces intfm1 and intfm2 as shown in Figure 6.7(e)
and Figure 6.7(f), respectively.

The low-level subsystem for low-level m1 is composed of one plant component,
low_m1(Figure 6.7(g)), and the low-level subsystem for low-level m2 is composed of
one plant component, low_m2(Figure 6.7(h)).

The high-level subsystem is composed of one plant component high_tu as shown in
Figure 6.7(d) and three specification components high_ m2, high b1 and high_b2 as
shown in Figure 6.7(c), Figure 6.7(a) and Figure 6.7(b) respectively. The specification
high m2 tells that a part must be completely processed by m2. The specification
high b1l and high b2 are used to control the underflow and overflow of buffer bl

and buffer b2.

The event partition is shown as follows:
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s0
ml_cpl, m2 st
tu_fail -
sl

(a) high bl (spec)

m2_st m2_cpl

S

(c) high_m2 (spec)

(e) Interface to
low level m1

s5 ml_st s4

ml_taskl

m1_task2 s3

s2

(g) low_m1 (plant)

m2_cpl

m2_cpl tu_st

sl

(b) high b2 (spec)

sO

tu_pass,

tu_st .
- tu_fail

sl

(d) high_tu (plant)

m2_st

sl

m2_brk

s2

s3

(f) Interface to low level m2

s5

m2_taskl

A

m2_task2

2@,
s7

(h) low_m2 (plant)

Figure 6.7: The small example
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Yy = {tu_st, tu_pass,tu_fail}

Y, = {ml.st}, ¥4, = {ml_cpl}

YR, = {m2.st, m2_rpr}, ¥4, := {m2_cpl,m2_brk}

Y, = {ml_taskl,ml task2}, ¥, := {m2_pretask, m2_taskl, m2_task2}

By using our software tool, we synthesized trim automata supervisors for the
high-level and low-levels m1 and m2. They are shown in Figure 6.8, Figure 6.9, and

Figure 6.10 respectively.

tu_pass

tu_fail

Figure 6.8: Synthesized high-level proper supervisor

ml_taskl
s2

Figure 6.9: Synthesized low-level proper supervisor for low-level m1

m2_taskl

sl s3

Figure 6.10: Synthesized low-level proper supervisor for low-level m2
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Although event m2_cpl is controllable, notice that the high-level supervisor can not
disable it when intfm?2 is at state s1 or s3. This is because m2_cpl is an answer event
and the high-level containing this supervisor must satisfy Point 3 of the interface-
consistent condition (Definition 3.5). However, if we treat this HISC system as a
flat system, a synthesized supervisor could allow event m2_st when buffer 52 is full.
In order to prevent the overflow of buffer 62, the supervisor could then disable event
m?2_cpl. This would have the effect of allowing the low-level to do the actual operation
but not reporting the result. Thus in general, we can not use a normal flat synthesis
algorithm to synthesize a flat supervisor for an HISC system model.

From the low-level DES low_m1 and interface DES intfm1l, it is clear that
low_m1 || intfm1 = low_m1. By inspecting the DES low_m1, we see that a string
reaching state s4 can not reach a marker state by a string composed of only low-
level(m1) events. Therefore, we need to trim off state s4. The resulting trim DES is
the final supervisor for low-level ml.

From the low-level DES low_m2 and interface DES intfm2, we also have low_m2
| intfm2 = low_m2. By inspecting the DES low_m2, we can not find a string [
composed of only low-level (m2) events such that m2_pretask m2_st [ m2_cpl belongs
to the closed language of low-level m2. Therefore, s6 must be trimmed off. The
resulting trim DES is the final supervisor for low-level m2.

The BDD representations for control predicates fm,., .., [Hmo s> SHiuzrpes fHius a1€
shown in Figure 6.11. In the diagrams, dotted line means the variable at its source
is assigned to be 0 and solid line means the variable at its source is assigned to be
1. The states in each of the component DES are encoded as the number in their
names.(e.g. s0 is encoded as 0, sl is encoded as 1, ...). As intfm2 contains four
states, we need two binary variables for it. The binary value for a state is encoded

with least significant bit first (e.g. sl is encoded as 10 (intfm2 0 = 1, intfm2_1 = 0)
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(C) mezJ»pr

Figure 6.11: Control predicates for m1_st, m2_st, m2_rpr, tu_st

(©) Stz

Figure 6.12: Prime simplified control predicates for m1_st, m2_st, m2_rpr, tu_st

(©) fH sy (d) fr,,..

Figure 6.13: Triple-prime simplified control predicates for m1_st, m2_st, m2_rpr, tu_st
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and s2 is encoded as 01 (intfm2.0 = 0, intfm2_1 = 1) in DES intfm?2).

The BDD representations for prime simplified control predicates and triple-prime
simplified control predicates are shown in Figure 6.12 and Figure 6.13, respectively.

For low-level m1, the only control predicate is fr,, . ,...,, Which is always equal to
false, so are fr, ~ and ff’

For low-level m2, the control predicate fr,,., . ..... 18 also always false. The BDD

representations for the control predicate fr, ., ., and its simplified versions f7,
m2_c m2._cp

l

and 7’ are shown in Figure 6.14.
L2m2,cpl

(@) framsn ®) fro (o) 1!

Figure 6.14: The control predicates for m2_cpl.
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Chapter 7

The AIP Example

In order to demonstrate our approach, in this chapter we give an example with a
large and complex high-level subsystem, which is modified from the AIP example! in
[21,23,26]. First we give an introduction of the ATP and our new control specifications,
which are extensions of the one used in the original example. Next we present a set
of plant DES and a set of modular supervisor DES and then verify each subsystem
satisfies its corresponding conditions.After that, we relax the system by removing one
restriction of the modular supervisors in the high-level and then synthesize a high-
level proper supervisor. Finally, we report our results. The reason we focus on the
high-level is that it is usually the limiting factor as it is often more complex than the
low-levels and usually increases in complexity as we add new low-levels to an existing
system. In next chapter, we will give an example with large and complex low-level

subsystems.

'In this chapter, for convenience we cite some diagrams directly or with some minor changes
from [21,23,26] with permission.
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7.1 Introduction of the AIP

The AIP is a highly automated manufacturing system, and was first modeled
as a discrete event system using modular supervisory control theory in [5] (Brandin
and Charbonnier) and [7](Charbonnier).? Leduc then modeled the AIP with more
detailed behavior added in [21,23,26] and verified the properties of controllability and
nonblocking using the HISC method.

The AIP system includes a central loop (CL) conveyor, and four external loop

(EL) conveyors. Between each external loop and the central loop, there is a transport

N

1/0 Station
(10)

EL11
Transport Unit 2 External

(TU2) Loop 3 (EL3)

R
- o
E External Loop 4 (EL4) E
4
Transport Unit 4
External c1 (U <— EL31
Loop 1 (EL1) f —\c“
Assembly ¢
Station 1(AS1)
Transport Unit 1 Transport Unit 3
(TU1) Central Loop (CL) RS
Assembly
Station 3
J? (AS3)
c2 c3
_>
—_

EL22
EL21

External Loop 2(EL2)

Assembly Station 2
(AS2)

Figure 7.1: The AIP system architecture(from [21])

2What the author really read is an English version translated by R. Leduc.
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unit (TU) to transport pallets between them. At external loops 1, 2 and 3, they
each have an assembly station (AS) including a robot to process pallets. At external
loop 4, an Input/Output (I/O) station is there to allow pallets to enter and leave
the system. Two types of pallets, Typel and Type2, can be processed by the AIP
system. The system architecture is shown in Figure 7.1. In the diagram, the arrows
indicate the direction a pallet can move on a given loop.

The four transport units separate the central loop into four areas: C1, C2, C3 and
C4. For each external loop conveyor, there are also two areas separated by either an
assembly station (external loop 1, 2 and 3) or by an I/O station (external loop 4).
These areas could be thought of as a buffer area. See Figure 7.1 for labels for these
areas.

All three assembly stations have the same components and structure (see Fig-

ure 7.2) but different functions. The assembly station AS1 is capable of doing Task1A

( ——»  External Loop X (EL X)

-

3
3w g >
i EN
O 50 CIRW deviee X O
I S B
N
/N ES X.1 ;g Legend
=
Extractor X ”’g O Pallet sensor
> . Drawer sensor
AN\Esx2 &
A Extractor sensor
l:l Read/write device
Raising platform X Robot X > Pallet gate
Assembly Station X (AS X) l Palle sop

Figure 7.2: Assembly station of external loop X = 1, 2, 3 (from [21])

and Task1B, and AS2 is capable of doing Task2A and Task2B, while AS3 can do all

the tasks. AS3 also repairs assembly errors to pallets. AS1 and AS2 can break down,
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while AS3 is assumed to never break down. AS3 can also substitute for AS1 and
AS2 when they break down. In an assembly station, there are three pallet sensors
(PS X4, PS X.5, PS X.6) to detect a pallet arriving at the pallet gate, arriving at
the pallet stop, or leaving the assembly station, respectively. Pallet gate X.2 can
prevent other pallets from entering the assembly station while the station is busy.
R/W device X can read and write information on the label of a pallet. Pallet stop
SP X.2 is used to prevent the pallet from leaving the station when it has not yet
been processed. Extractor X is able to transfer a pallet between the conveyor and
the raising platform. Two extractor sensors (ES X.1, ES X.2) are used to detect the
location of the extractor. Raising platform X is used to feed the pallet to the robot

(Robot X) to be processed, and move the processed pallet to the extractor.

In a transport unit (see Figure 7.3), there are three pallet sensors (PS 5.X.1, PS

5.X.2, PS5.X.3) close to the central loop side to detect a pallet arriving at pallet

Legend i// F\\

O Pallet sensor
‘ Drawer sensor Central Loop (CL)
|:| Read/write device

\ Pallet
gate
/

l Pallet stop
. Transfer drawer

EREIILY

X6 Sd
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‘X'S sa

g

O. .
X'g s
Crxssd

R/W device 5.X[__| '
) T X |
07, 0® 20
S E wo »*3Z
e 2L TF
Transport -s «
UnitX (TUX) =

External Loop X (EL X)

Figure 7.3: Transport unit for external loop X = 1, 2, 3, 4 (from [21])
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gate 5.X, arriving at the transfer drawer (TD X) and leaving the transport unit to
next area of the central loop, respectively. There are another three pallet sensors (PS
X.1, PS X.2, PS X.3) close to the external loop X side to detect a pallet arriving
at pallet gate X.1, arriving at transfer drawer (TD X), and leaving the transfer unit
to the external loop X, respectively. A pallet coming from the central loop can be
transferred to the external loop X or liberated to the next area of the central loop,
while a pallet coming from the external loop can only be transferred to the central
loop. Pallet gate 5.X and pallet gate X.1 can prevent a pallet from entering the
transfer unit when it is busy. Two pallet stops (SP5.X, SP X.1) are used to control
pallets leaving the transfer unit. Transfer drawer (TD X) moves pallets between the
central loop and the external loop X. Two drawer sensors can detect the location of
the drawer.

The I/O station should have similar components and structure as an assembly
station except there is no robot, extractor and raising platform. Due to lack of
detailed information and time limit, here we assume that there is a sensor to detect
if a pallet is ready to enter the system and a sensor to detect if a pallet is ready to

leave the system.

7.2 Control Specifications

Our control specifications for the AIP system are extended from the specifications
in [21,23]. For convenience, here we list all the specifications but the new ones begin
with a ™. We also assume that initially the ATP system is empty (i.e. no pallet in

the system).

1. *Input: The type of the pallets entering the system must alternate, starting

with Typel.
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. Output: The type of the pallets leaving the system must alternate starting

with Typel.

. Routing: Typel pallet must first go to AS1 to undergo Taskl and then go to
AS2 to undergo Task2. Type2 pallet must first go to AS2 to undergo Task2 and
then go to AS1 to undergo Taskl. Both types of pallets are allowed to leave

the system only when both tasks are done.

. Assembly errors: When the robot in AS1 or AS2 makes an assembly error, the
R/W device in AS1 or AS2 will write assembly error information on the pallet
label, and then AS3 will repair the pallet and AS1 and AS2 can do assembly

task again.

. Assembly station breakdown: When either AS1 or AS2 breaks down, all the
pallets for that station will be routed to AS3 for assembly. However, when AS1
or AS2 is repaired, all the pallets not already in external loop 3 are rerouted to

the original station.

. Assembly task ordering: Assembly tasks are performed in a different order
for pallets of different types. For a Typel pallet, TasklA is performed before
Task1B, and Task2A is performed before Task2B. For a Type2 pallet, Task1B

is performed before task 1A, and Task2B is performed before task 2A.

. Maximum capacity of assembly stations: At any time, only one pallet is

allowed in a given assembly station.

. *Maximum capacity of I/O station: At any time, only one pallet is allowed

in the I1/O station.
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9. *Maximum capacity of external loops: At each area of each external loop,

the maximum allowed number of pallets at a given time is three.

10. *Maximum capacity of the central loops: At each area of the central loop,

the maximum allowed number of pallets at a given time is two.

7.3 System Structure

In [21,23], the AIP system is modeled as a bi-level HISC system with one high-
level and seven low-levels. The low-levels represent AS1, AS2, AS3, TU1, TU2, TU3,
and TU4. In our example, we keep all the low-levels and add one more low-level for
the 1/O station. Therefore, in total we have one high-level and eight low-levels. The
system structure is shown in Figure 7.4. As a large portion of our example will be the
same as [21,23,26], we will only present what is new and direct readers to [21,23, 26]
for the remaining details.

The high-level is composed of the high-level subsystem Gy and 8 interfaces

Gy, j € {1,...,8}. Each low-level j contains the §t" low-level subsystem G 1, and

High Level

Gy : : (&) :' Gus |1 Gua |i1] Gus |+ i| Gis | 11| Gur |ii] Gus

ASI i1 AS2 % AS3 i TUL ii TUz ¢+ TU3 i T4 1 IO

‘Low Level 1 : ‘LowLevel 2 Low Level 3 | ‘Low Level 4 | Low Level 5 i ‘Low Level 6 | Low Level 7 | :Low Level 8 |

Figure 7.4: The AIP system structure
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the j interface Gy,.

For the I/0 station, we model the two sensors to detect that pallets are ready to
enter or leave the system in the high-level. As we do not have the internal structure
of the I/O station, we only provide an interface DES for the low-level 8 (I/O station)
and have the low-level 8 subsystem containing only one plant component DES and
set X1, = &. The plant DES contains only an initial state, which is also marked.

.....

defined based on the event partition given in [21]. The primed event set below stands

for the corresponding event set from the AIP example in [21].
Y = (¥ — {PalletArvGEL2.AS3}) U
{QPalletOut.10, IsPalletOut.10, NoPalletOut.10, QPalletTypelln.10O,
QPalletType2In. 10, IsPalletTypelIn. IO, IsPalletType2In.10,
NoPalletTypelin.10, NoPalletType2In. 10}
Y, = X7, where i € {1,2,4,5,6,7}
s = X, U{Pallet ArvGEL 2.AS3}
ELS =g
Y, = Xy, where k € {1,...,7}
Y gy = {MuvInTypelPallet. 10, MvInType2Pallet. 10, MvOutPallet. 10}
Ya, =Y, , where k € {1,...,7}
Y g = {CplMvInPallet. 10, CplMvOutPallet. IO}
In the DES diagrams in this chapter, initial states are identified by a thick circle,
and marker states are filled in with gray. Uncontrollable events are shown in italic
font, and controllable events are shown in normal font. For a given DES, its event

set is taken to be that of the event labels shown on transitions in the diagram unless

explicitly state otherwise.
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7.4 The Interface DES

For low-level 1 to 7, we use the same interface as in [23,26]. The interfaces for
low-level 1 and 2 are shown in Figure 7.5 with k = AS1, AS2. The interface for
low-level 3 (AS3) is shown in Figure 7.6. The interfaces for low-levels 4, 5, and 7 are
shown in Figure 7.7 with ¢ = TU1, TU2, TU4. The interface for low-level 6 (TU3) is
shown in Figure 7.8. Finally, the interface for low-level 8 (I/0O) is shown in Figure 7.9.

s0 ProcPallet.k

ProcCplk
ProcErr.k

ProcPallet. AS3

sl

ProcCpl.AS3
ProcErr.AS3
s3 PalletRepd.AS3
Figure 7.5: Interface to low-level w = Figure 7.6: Interface to low-level 3

1,2 (from [23]) (from [23])

TrnsfToEL3_Up st

TrnsfToEL3_1D
TrnsfToEL3_2D
TrnsfToEI3_BD

TrnsfToEL.q NoTrnsfEL.TU3

NoTrnsfEL.q TrnsfCpIToEL.TU3

TrnsfCpIToEL.q

TrnsfELToCL.TU3

TrnsfELToCL.q s0

s,

s2 TrnsfCplToCL.TU3
TrnsfCplToCL.q
LibPallet. TU3
LibPallet.q
PalletRIsd.q PalletRIsd.TU3
s3 s3
Figure 7.7: Interface to low-level v = Figure 7.8: Interface to low-level

4,5,7 (from [23]) 6 (from [23])
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sl

MvOutPallet.I0
CpIMvOutPallet.1I0

s0 MvInTypel Pallet.10

MvInType2Pallet.1I0
PalletArvGEL_2.AS3 PalletArvGEL_2.AS3

CpIMvInPallet.10
s2 PalletLvGEL_2.AS3 PalletLvGEL_2.AS3

Figure 7.9: Interface to low-level 8 Figure 7.10: CapGateEL_2.AS3
7.5 Low-level Subsystems

For low-level 1 (AS1), 2 (AS2), 4 (TU1), 5 (TU2), 6 (TU3) and 7 (TU4), we
use exactly the same models as in [23,26]. For low-level 3 (AS3), we make some
minor modifications. The reason for these modifications is that there was no capacity
restriction on external loop 3 in [23]. In order to show the relationship between
the event ProcPallet.AS3 and PalletArvGEL_2.AS3, Leduc created a high-level plant
component DES that was in Figure 12.3 in [21] (PalletArvGateSenEL_2.AS3).
However, in this thesis, we will enforce a capacity restriction on external loop 3. This
allows us to move this functionality to low-level 3 (AS3). The following shows how

we modified the models for low-level 3.

e Replace the plant component CapGateEL_2.AS3 by the one in Figure 7.10.

e Replace the supervisor component OperateGateEL_2.AS3 by the one in Fig-

ure 7.11.

e Add a plant component Pallet ArvGateSenEL_2.AS3 as shown in Figure 7.12.
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ProcPallet.AS3
ProcCpl.AS3
ProcErr.AS3

PalletRepd.AS3 GOpenEL_2.AS3

PalletArvGEL_2.AS3 -

P>

sl
ProcPallet.AS3
PalletLvGEL_2.AS3

GClosesEL_2.AS3

s0 sl

2 PalletArvGEL_2.AS3

Figure  7.12: Pallet ArvGate-

Figure 7.11: OperateGateEL_2.AS3 SenEL_2.AS3
For low-level 8 (I/0O), as described in section 7.3, we lack the information and time
needed to model the subsystem in more detail, so we model its subsystem containing

only a one-state plant DES as shown in Figure 7.13

soo

Figure 7.13: Low-level § Subsystem

7.6 The High-level Subsystem

In this section, we present the high-level subsystem G g for the AIP. The high-level
controls the global behavior of the system, such as controlling the capacity of each
area of the central loop and external loops, detecting the status of AS1 and AS2 and
reporting the status to other low-levels. As our newly added control specifications
primarily focus on the capacity of the conveyor areas, the high-level is significantly
larger and more complicated than the one in [23].

To demonstrate our high-level verification algorithms and synthesis algorithms, we
designed all the modular supervisors by hand to meet the control specifications and

then verified that the system under the control of these supervisors satisfies all the
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high-level conditions (e.g. level-wise controllable, level-wise nonblocking and interface
consistent). In the next section, we will relax the restrictions and then synthesize a
supervisor to satisfy the control specifications.

The AIP high-level subsystem Gpg is composed of 19 plant components and 21
supervisor components, as shown in Figure 7.14. The high-level plant G%; and su-

pervisor Sy are defined to be the synchronous product of the indicated automata.

G
ASStoreUpState.AS1, ASStoreUpState.AS2, QueryPalletAtTU.TUL, QueryPalletAtTU.TU2 "
QueryPalletAtTU.TU3, QueryPalletAtTU.TU4, QueryPalletAtIO,CapEL12, CapEL22,
CapEL32, CapEL42, CapEL11, CapEL21, CapEL31, CapEL41, CapC1, CapC2, CapC3, »
CapC4 Gy

ManageTUl, ManageTU2, ManageT U3, ManageT U4, ManagelO, DetWhichStnUp,
HndIComEventsAS, OFProtEL11, OFProtEL21, OFProtEL31, OFProtEL41, OFProtEL12,
OFProtEL22, OFProtEL32, OFProtEL42, OFProtC1, OFProtC2, OFProtC3, OFProtC4,
AltMvInTypes, OFProtAIP Sy

Figure 7.14: Component DES in the AIP high-level

7.6.1 Plant Components

We start from the set of DES ASStoreUpSate.k, where &k = AS1, AS2, shown
in Figure 7.15. These two DES are used to check the status of AS1 and AS2 and tell
when the high-level is allowed to send the requests ProcPallet.k and DoRpr.k.?

The next set of DES we introduce are QueryPalletAtTU.:;, where : = TUI,
TU2, TU3, TU4, shown in Figure 7.16. The DES QueryPalletAtTU.: can tell if
a pallet is waiting to enter the transport unit i from the central loop (by detecting
the gate sensor PS 5.X.1 (X =1 when ¢ = TU1, ..., X = 4 when ¢ = TU4)) or the

related external loop (by detecting the gate sensor PS X.1).

3Actually we could remove those selfloop transitions on these two DES, since we now use
command-pair interface for AS1 and AS2. The interfaces to low-level 1 and low-level 2 guaran-
tee when the request events ProcPallet.k and DoRpr.k can happen.
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ASDwn.k

StnDwn.k

RobUp.k
Figure 7.15: ASStoreUpState.k = AS1, AS2 (from [23])

sl

QPalletOut.IO

QPalletAtEL.i

IsPalletOut.10

NoPalletOut.10
s0

QPalletTypelIn.IO

NoPalletEL.i
IsPalletEL.i

sO s2

IsPalletTypelln.IO

IsPalletCL.i NoPalletTypelln.10

QPalletAtCL.i
NoPalletCL.i

QPalletType2In.I0

IsPalletType2In.10
NoPalletType2In.10

Figure 7.16: QueryPalletAtTU.z,
1 = TU1, TU2, TU3, TU4 Figure 7.17: QueryPalletAtIO

We now describe the DES QueryPallet AtIO, shown in Figure 7.17. This DES

models the behavior of the the sensors in the I/O station. It provides a way to

determine if a pallet is ready to leave the system or if a Typel or Type2 pallet is

ready to enter the system.

The next series of DES represent the fact that a pallet on an external loop can

arrive at a transport unit only if it has been processed by the associated assembly sta-

tion or brought in from the I/O station. They are CapEL12, CapEL22, CapEL32

and CapEL42 as shown in Figure 7.18. Theoretically, each of the four DES should
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have infinite states. However, because the supervisors will limit the capacity of each
of the conveyor areas EL12, EL22, EL32 and EL42 to three, we are safe to make each
of them contain five states. Readers might ask why these DES have capacity of four,
this is because we would like to show that the supervisors really prevent the fourth

pallet from entering any of the above areas.

ProcCpl.AS1 ProcCpl.AS1 ProcCpl.AS1 ProcCplAS1

ProcErr.AS1 IsPalletEL.TU1 ProcEit.ASL [spqailetEL.TUI ProcErr.AS1 IsPalletEL.TUI ~ ProcEr.AST  ropaiietEL. TUI
ASDwn.AS1 ASDwn.AS1 ASDwn.AS1 ASDwn.AS1

TrnsfCplToCL.TUI TrnsfCplToCL.TUI TrnsfCplToCL.TUI TrnsfCplToCL.TUI

(a) CapEL12

ProcCplLAS2 ProcCpl.AS2 ProcCpl.AS2 ProcCpl.AS2
ProcErr.AS2 sPalletEL.TU2 ProcErr.AS2 [spailetEL.TU2 ProcErr.AS2  IsPalletEL.TU2 ProcErrAS2  ropanepr TU2
ASDwn.AS2 ASDwn.AS2 ASDwn.AS?2 ASDwn.AS2

TrnsfCpIToCL.TU2 TrnsfCplToCL.TU2 TrnsfCpIToCL.TU2 TrnsfCplToCL.TU2

(b) CapEL22

ProcCplAS3 ProcCplAS3 ProcCpl.AS3 ProcCpl.AS3

ProcErr.AS3  [spalletEL. TU3 ProcErr.AS3  [spalletEL.TU3 ProcErr.AS3 IsPalletEL.TU3 ProcErr.AS3  ropajietE . TU3
PalletRepd.AS3 PalletRepd.AS3 PalletRepd.AS3 PalletRepd.AS3

TrnsfCpIToCL.TU3 TrnsfCplToCL.TU3 TrnsfCplToCL.TU3 TrnsfCplToCL.TU3

(c¢) CapEL32

IsPalletEL.TU4 IsPalletEL.TU4 IsPalletEL.TU4 IsPalletEL.TU4
CpIMvInPallet.10 CpIMvInPallet.IO CpIMvInPallet.10 CpIMvInPallet.IO

TrnsfCplToCL.TU4 TrnsfCplToCL.TU4 TrnsfCplToCL.TU4 TrnsfCplToCL.TU4

(d) CapEL42

Figure 7.18: CapEL12, CapEL22, CapEL32, CapEL42

Now we describe the series of DES representing the fact that a pallet on the center

loop can arrive at a transport unit from the central loop only if it has been liberated or
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transferred from the external loop by the previous transport unit. They are CapC1,
CapC2, CapC2 and CapC4 as shown in Figure 7.19. Each of them should also
have infinite states, but because the supervisors will limit the capacity of each central

loop area to two, we are safe to make each of them contain only 4 states.

TrnsfCplToCL.TU4 IsPalletCL.TUI TrnsfCplToCL.TU4  IsPalletCL.TUI TrnsfCplToCL.TU4 IsPalletCL.TUI
PalletRlsd.TU4 PalletRIsd.TU4 PalletRIsd. TU4

s3
PalletRIsd. TU1 PalletR1sd. TUI PalletR1sd.TU1
TrnsfCplToEL.TUI TrnsfCplToEL.TUI TrnsfCpIToEL.TUI
(a) CapCl1

TrnsfCplToCL.TUL IsPalletCL.TU2 TrnsfCplToCL.TUL  IsPalletCL.TU2 TrnsfCplToCL.TULl IsPalletCL.TU2
PalletRIsd. TU1 PalletRIsd. TU1 PalletRIsd. TU1

s3
PalletRlsd.TU2 PalletRIsd.TU2 PalletRlsd.TU2
TrnsfCpIToEL.TU2 TrnsfCplToEL.TU2 TrnsfCplToEL.TU2
(b) CapC2

TrnsfCpIToCL.TU2 IsPalletCL.TU3  TrnsfCplToCL.TU2 IsPalletCL.TU3 TrnsfCplToCL.TU2 IsPalletCL.TU3
PalletRlsd.TU2 PalletRIsd. TU2 PalletRIsd. TU2

s3
PalletRIsd.TU3 PalletRIsd.TU3 PalletRIsd.TU3
TrnsfCplToEL.TU3 TrnsfCplToEL.TU3 TrnsfCplToEL.TU3
(c) CapC3

TrnsfCplToCL.TU3  IsPalletCL.TU4 TrnsfCplToCL.TU3  IsPalletCL.TU4 TrnsfCplToCL.TU3 IsPalletCL.TU4
PalletR1sd. TU3 PalletR1sd. TU3 PalletR1sd. TU3

s3
PalletRIsd.TU4 PalletRIsd. TU4 PalletRIsd. TU4
TrnsfCpIToEL.TU4 TrnsfCplToEL.TU4 TrnsfCpIToEL.TU4
(d) CapC4

Figure 7.19: CapC1, CapC2, CapC3, CapC4

The plant components CapEL11, CapEL21 and CapEL31 (Figure 7.20(a),
7.20(b), 7.20(c)) represents the fact that a pallet can be processed by an assembly

station only if it has been transferred to the associated external loop. The plant
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component CapEL41 (Figure 7.20(d)) represents the fact that a pallet can arrive at
the I/O station only if it has been transferred to external loop 4 by transport unit
TU4. Again, these DES should have infinite states theoretically, but the supervisors
will limit the capacity of these areas to 3, so we are safe to make it contain only 5

states.

TrnsfCpIToEL.TU1 TrnsfCpIToEL.TU1 TrnsfCpIToEL.TU1 TrnsfCpIToEL.TU1

ProcPallet.AS 1 ProcPallet.AS 1 ProcPallet.AS 1 ProcPallet.AS 1

(a) CapEL11

TrnsfCpIToEL.TU2 TrnsfCpIToEL.TU2 TrnsfCpIToEL.TU2 TrnsfCpIToEL.TU2

ProcPallet.AS2 ProcPallet.AS2 ProcPallet.AS2 ProcPallet.AS2

(b) CapEL21

TrnsfCpIToEL.TU3 TrnsfCpIToEL.TU3 TrnsfCpIToEL.TU3 TrnsfCpIToEL.TU3

ProcPallet. AS3 ProcPallet. AS3 ProcPallet. AS3 ProcPallet. AS3

(¢) CapEL31

IsPalletOut.10 IsPalletOut.10 IsPalletOut.10 IsPalletOut.10
TrnsfCplToEL.TU4

CpIMvOutPallet.10 CpIMvOutPallet.10 CpIMvOutPallet.10 CpIMvOutPallet.10

(d) CapEL41

Figure 7.20: CapEL11, CapEL21, CapEL31, CapEL41

7.6.2 Supervisor Components

We now discuss the supervisor components for the AIP high-level subsystem. We

first introduce the group of four supervisors which control the transport units, Man-
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ageTU1, ManageTU2, ManageTU3 and ManageTU4. The following explains

what they do.

e ManageTU1 : If a pallet appears before TU1 at the central loop, it could be
transferred to external loop 1 or liberated. It can be liberated if AS1 breaks
down, or the conveyor area EL11 is at capacity (i.e. 3, determined by OFPro-
tEL11), or low-level 4 (TU1) says to do so through the event NoTransfEL.TU1.
If a pallet appears before TU1 at the external loop 1, then it must be transferred

to the central loop. See Figure 7.21.

e ManageTU2: If a pallet appears before TU2 at the central loop, it could be
transferred to external loop 2 or liberated. It can be liberated if AS2 breaks
down, or the conveyor area EL21 is at capacity (i.e. 3, determined by OFPro-
tEL21), or low-level 5 (TU2) says to do so through the event NoTransfEL. TU2.
If a pallet appears before TU2 at the external loop 2, then it must be transferred

to the central loop. See Figure 7.22.

e ManageTU3: If a pallet appears before TU3 at the central loop, it could
be transferred to external loop 3 or liberated. If the conveyor area EL31 is
at capacity (i.e. 3, determined by OFProtEL31), then the pallet should be
liberated. Otherwise the break down status of AS1 and AS2 will be checked
through supervisor component DetWhichStnUp. Then a corresponding re-
quest event with the status of AS1 and AS2 encoded into it will be sent to
low-level 6 (TU3). The pallet should be liberated if low-level 5 responds with
a NoTransfEL. TUS3 event. If a pallet appears before TU3 at external loop 3,

then it must be transferred to the central loop. See Figure 7.23.

e ManageTU4: If a pallet appears before TU4 at the central loop, it could
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be transferred to external loop 4 or liberated. It can be liberated if the con-
veyor area EL41 is at capacity (i.e. 3, determined by OFProtEL41), or low-
level 7 (TU4) says to do so through the event NoTransfEL.TU4 (e.g. not all
tasks have been performed on the pallet). If a pallet appears before TU4 at

external loop 4, then it must be transferred to the central loop. See Figure 7.24.

LibPallet. TU1

TrnsfToEL.TUL
StnUp.AS1

QPalletAtCL.TU1 PalletRIsd. TU1 StnDwn.AS1

NoPalletCL.TU1 TrnsfCpIToEL.TUI

QPalletAtEL.TU1

NoPalletEL.TU1

StnDwn.AS1

StnUp.AS1 StnUp.AS1

IsPalletCL.TU1

NoTrnsfEL.TUI

A PalletRIsd.TU1
TrnsfCplToCL.TUL

IsPalletEL.TUI

TrnsfELToCL.TU1
StnUp.AS1
StnDwn.AS1

LibPallet. TUI1
StmUp.ASI
StnDwn.AS1

Figure 7.21: ManageTU1

LibPallet. TU2
TrnsfToEL.TU2
StnUp.AS2

QPalletAtCL.TU2

PalletR1sd. TU2 StnDwn.AS2
NoPalletCL.TU2 TrnsfCpIToEL.TU2
QPalletAtEL. TU2
NoPalletEL.TU2
StnDwn.AS2

StnUp.AS2 StnUp.AS2

IsPalletCL.TU2

NoTrnsfEL.TU2

StnDwn.AS2
TrnsfCpIToCL.TU2 '
IsPalletEL.TU2

s3

LibPallet. TU2
StnUp.AS2
StnDwn.AS2

TrnsfELToCL.TU2

Figure 7.22: ManageTU2
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LibPallet. TU3

PalletRlsd.TU3 NoTrnsfEL.TU3

QPalletAtCL.TU3
NoPalletCL.TU3
QPalletAtEL.TU3
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TrnsfToEL3_2D
TrnsfToEL3_BD
LibPallet. TU3

TrnsfCpIToCL.TU3 IsPalletEL.TU3
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Figure 7.23: ManageTU3

TrnsfELToCL.TU4

QPalletAtEL. TU4
QPalletAtCL.TU4
NoPalletEL.TU4
NoPalletCL.TU4

IsPalletEL.TU4

TrnsfCplToCL.TU4

TrnsfCpIToEL.TU4

PalletR1sd. TU4 PalletRIsd. T U4

IsPalletCL.TU4

NoTrnsfEL.TU4

TrnsfToEL.TU4 LibPallet. TU4
LibPallet. TU4

Figure 7.24: ManageTU4

Next we introduce two supervisor DES directly obtained from [21]. The first
is DetWhichStnUp, shown in Figure 7.25. This supervisor is used to detect the
breakdown status of AS1 and AS2, and then the corresponding request event that
encodes this status will be chosen to be sent to low-level 6 (TU3). For example, if AS1

breaks down and AS2 does not, then request event LibPallet. TU3 or TrnsfToELS3_1D
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will be chosen. The second DES is HndlComEventsAS, shown in Figure 7.26. This
supervisor is used to solve a blocking problem among the supervisors ManageTU1,

ManageTU2 and DetWhichStnUp due to controllable events they use in common.

QStnUp.AS1 LibPallet. TU3
StnUp.AS1 TrnsfToEL3_2D
StnDwn.AS1

QStnUp.AS2 LibPallet. TU3
nUp.

StnUp.AS2
StnDwn.AS2
LibPallet. TY3

QStnUp.AS1 QStnUp.AS2

DetStnUp StnUp.AS1 StnUp.AS2

LibPallet. TU3

StnDwn.AS1 StnDwn.AS2

LibPallet. TU3
TrnsfToEL3_1D

StnUp.AS1
StnDwn.AS1

QPalletAtCL.TU1
NoPalletCL.TUI

QPalletAtCL.TU2 IsPalletCL.TU2 5

NoPalletCL.TU2

StnUp.AS2

AS2
SmUp.AS DetStnsUp StnDwn.AS2

StnDwn.AS2

QStnUp.AS1

Figure 7.26: HndlComEventsAS(from [21])
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We now discuss the supervisors for preventing overflow of conveyor areas EL11,
EL21, EL31 and EL41. OFProtEL11 (see Figure 7.27) is used to prevent overflow
of area EL11, but it also enforces that a pallet can not be processed by AS1 until
it has been transferred to EL11. OFProtEL21 (see Figure 7.28) is identical to
OFProtEL11 up to relabeling. OFProtEL31 (see Figure 7.29) is similar to the
previous two. It prevents overflow of area EL31 and enforces that a pallet can not be
processed or repaired by AS3 until it has been transferred to EL31. OFProtEL41(see
Figure 7.30) prevents overflow of area EL41. However, it does not have the selfloop
transitions of event MvQutPallet.10 at all states except sO and s10, because the plant
component CapEL41 (Figure 7.20(d)) and the component supervisor ManagelO
(Figure 7.34) will ensure that the event MvOutPallet.I0 will not happen at state sO
and s10.

The next four component supervisors are used to prevent overflow of conveyor
areas EL12, EL22, EL32 and EL42, shown in Figure 7.31. OFProtEL12, OF-
ProtEL22, OFProtEL32 are identical up to relabeling. OFProtEL42 disables
events QQPalletTypelIn.10 and (QQPallet Type2In.10 at state s3 instead of event Muvln-
Pallet. 10, because of the supervisor component ManagelO(Figure 7.34). If we use
event MvlnTypelPallet.10(or MvInType2Pallet.I0), then the system will be blocked
when the area EL42 is full (at state s3) and ManagelO is at state sl (or s2).

The four supervisors OFProtC1, OFProtC2, OFProtC3, and OFProtC4 are
used to prevent overflow of the conveyor areas C1, C2, C3 and C4 in the central loop,
respectively. They are identical up to relabeling and are shown in Figure 7.32.

We now describe two supervisors for the 1/O station. AltMvInTypes is used
to enforce that the type of pallets entering the system must alternates, starting with
Typel pallets. It is shown in Figure 7.33. Note that both of the states are marked,

because the last pallet entering the system can be either Typel or Type2. ManagelO
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(b) OFProtEL22
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QPalletType2In.I0 QPalletType2In.10
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(d) OFProtEL42

Figure 7.31: OFProtEL12, OFProtEL22, OFProtEL32, OFProtEL42

is used to control that the I/O station can only either move out a pallet or move in

a pallet at a given time. ManagelO is shown in Figure 7.34.

7.7 Verifying Properties

So far, we have discussed all the necessary supervisors to meet the control spec-

ifications described in Section 7.2. However, when we put everything together and
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Figure 7.32: OFProtC1, OFProtC2, OFProtC3, OFProtC4
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Figure 7.33: AltMvInTypes Figure 7.34: ManagelO
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use our software tool to verify the high-level and all the low-levels, we find that the
high-level is blocking. For example, when there are two pallets in each area of the
central loop, the system will be blocked, because all the events QQPalletCL.X and
QPalletEL. X (where X = TU1, TU2, TU3, TU4) have been disabled.

Therefore, we add one more component supervisor OFProt AIP to restrict the
number of pallets in the system (excluding external loop 4) at once to seven, shown

in Figure 7.35.

QPalletA(EL.TU4 QPalletAtEL TU4 QPalletAELTU QPalletA(EL. TU4

TrnsfCplToCL.TU4
(XX}
s7

S sl S s6
$0 TrnsfCplToEL.TU4 * TrnsfCplToEL.TU4 2 * TrnsfCplToEL.TU4

TrnsfCplToCL.TU4 TrnsfCplToCL.TU4

Figure 7.35: OFProtAIP

We then verified the system again using our program, and found that it satisfied
all the conditions (level-wise nonblocking, level-wise controllable and interface consis-
tent). We thus can conclude that the flat system is nonblocking by Theorem 3.1 and
the flat supervisor of the system is controllable with respect to the flat plant of the
system by Theorem 3.2. The system was verified on a Dell Dimension 3000 desktop
PC (Pentium 4 2.8 GHz CPU, 512MB DDR 400 memory) running Fedora Core 2.
It took 151 seconds to verify the high-level and less than 1 second to verify each
low-level. All the computational time data in the rest of this thesis is based on this
machine. The reachable state space sizes of the high-level and low-levels are listed in
Table 7.1 under the column 3-2 AIP system*. The total estimated worst-case state

space size® of the AIP system is 3.61 x 10%. The program initializes the size of the

43-2 comes from the capacity (= 3) of each external loop conveyor area and the capacity (= 2)
of each each central loop conveyor area

5The estimated size is calculated by multiplying the high-level state space size and all the low-
level state space sizes together. We use this way to estimate the system state space size because
the whole system is too large to be verified as a flat system. It is likely that the actual size of the
system is much smaller.
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BDD node table as 2,000,000 and the cache table size as 1,000,000 for this example,
and it did not increase both sizes during the verification computing. As each BDD
node and each entry in the cache table in the BDD package we used occupies 20 bytes
of memory, and the package uses 6 such cache tables for BDD operations, we actually
used (2,000,000 + 1,000,000 x 6) x 20 = 160MB memory®. We also treated this
AIP example as a flat system and tried to verify it using our BDD-based flat system
tool. The program soon used up all the memory (RAM) by increasing the node and
cache table and began to use the swap space, so the speed dramatically decreased.
The program ran for 24 hours and still couldn’t finish the computation so we thought

there is no need to let it run any more.

3-2 AIP system 5-4 AIP system
Memory for Memory for
Level/System ggg]ct;gb?é Computing |BDD nod{e and ggg]ct;gb?é Computing |BDD nod{e and

States Time (s) cache Table States Time (s) cache Table
(MB) (MB)
High-level 265*10'° 151 160 516 *10'3 1543 160
Low-level 1(AS1) 120 <1 160 120 <1 160
Low-level 2(AS2) 120 <1 160 120 <1 160
Low-level 3(AS3) 106 <1 160 106 <1 160
Low-level 4(TU1) 98 <1 160 98 <1 160
Low-level 5(TU2) 98 <1 160 98 <1 160
Low-level 6(TU3) 204 <1 160 204 <1 160
Low-level 7(TU4) 152 <1 160 152 <1 160
Low-level 8(lO) 3 <1 160 3 <1 160

Total Estimated 3.61*102° 7.04 * 1028

Table 7.1: The AIP example data (verification)

However, our BDD-based flat system tool can verify the original HISC model of
the AIP system in [23] using 160MB memory (RAM) and taking 246 seconds. The

size of the total reachable state space for this system was 7.32 x 10'3. Our BDD-based

6 Actually, our software tool always initializes the size of BDD node table as 2,000,000 and the
size of cache table size as 1,000,000, because a personal computer with more than 160MB was very
common at the time the author was writing this thesis. For some small subsystems(e.g. the low-level
subsystems of the 3-2 AIP system here), one can decrease the initial size and may not affect the
speed of the computation at all.
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HISC tool can verify the original high-level in 2 seconds. The size of the reachable
state space for the original high-level is 3.31 x 10°.

We also extend the system by increasing the capacity of each area in the central
loop to 4 and the capacity of each area in each of the external loop to 5. To do
this, we need to extend plant DES CapELX1, CapELX2, CapC.X, and supervisor
DES OFProtELX1, OFProtELX2, OFProtCX, where X = 1,2,3,4. We then
extend the supervisor OFProtAIP to restrict the number of pallets in the system
(excluding external loop 4) at once to be 15. The method to extend these DES to
the new capacity should be obvious. We call this system as the 5-4 AIP system. For
the 5-4 AIP system, the reachable state space size for the high-level was 5.16 x 103,
and the total estimated worst-case reachable state space size was 7.04 x 10%® (See
Table 7.1). We do not present the 5-4 AIP system in this thesis in detail because

some of the DES diagrams for it are too large to be put on a single page.

7.8 Synthesizing Supervisors

In the previous section, we added a supervisor OFProt AIP to restrict the number
of pallets in the AIP system (excluding external loop 4) to ensure the high-level was
nonblocking. This supervisor obviously restricts the behavior of the system. However,
it is difficult to design supervisors by hand to solve the blocking problem and not
to restrict the behavior in the mean time as the high-level is so large. Therefore,
we can use our synthesis method to produce the control predicates by treating all
the supervisor components in the system as specifications. We of course exclude
OFProtAIP from this system.

The reachable state space size for the high-level of the 3-2 AIP system under the

synthesized control predicates is 1.10 x 102, and it took 1415 seconds (24 minutes) to
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complete the synthesis process for the high-level. This is much longer than the time
to verify the 3-2 AIP system. One reason is that the high-level of this system has a
bigger state space. Another reason is that the verification algorithm (Algorithm 5.1)
does not have a similar repeat loop as the synthesis algorithm (Algorithm 4.1) has.
The total estimated worst-case reachable state space size of the system under the
control predicates is 1.50 x 10%7. Table 7.2 shows all the related data for the 3-2 AIP

system and the 5-4 AIP system.

3-2 AIP system 5-4 AIP system
Memory for Memory for
Level/System Qg?cizb‘l); Computing BDD n)cl)de Sg?cbhearb?; Computing | BDD nodye and

States Time (s) and cache States Time (s) cache Table
Table (MB) (MB)
High-level 110 *10'? 1415 160 1.14*10'° 7679 160
Low-level 1(AS1) 120 <1 160 120 <1 160
Low-level 2(AS2) 120 <1 160 120 <1 160
Low-level 3(AS3) 106 <1 160 106 <1 160
Low-level 4(TU1) 98 <1 160 98 <1 160
Low-level 5(TU2) 98 <1 160 98 <1 160
Low-level 6(TU3) 204 <1 160 204 <1 160
Low-level 7(TU4) 152 <1 160 152 <1 160
Low-level 8(lO) 3 <1 160 3 <1 160

Total Estimated 1.50 * 1027 1.51 *10°%°

Table 7.2: The AIP example data (synthesis)

In total there are 37 controllable high-level and request events in the AIP system.
For the 3-2 AIP system, the biggest BDD for the prime simplified control predicates
(see description in section 6.5.1) is for event QPallet AtELTUA (f1,,neimimn.cve)
which includes 516 BDD nodes. The BDD for the triple-prime simplified control pred-
icate for this event includes 200 BDD nodes (ff7, ..., az0.704)- FOT the 5-4 AIP system,
the biggest BDD for the prime control predicates is also for event Q Pallet At EL.TUA4,
which includes 715 BDD nodes. The BDD for the triple-prime control predicate for
this event includes 266 BDD nodes.

There are 206 controllable low-level and answer events in total. Since all the
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low-levels already satisfy their corresponding conditions, the BDD for the control
predicates are rather small. For the 3-2 AIP system (or the 5-4 AIP system), the
biggest BDD representation for the prime simplified control predicates is for event

tu3_DwnOpNeeded. TU3 ( which includes only 28 BDD nodes.

I )
fL6tu3,DwnopNeeded.TU3 ’

The BDD representation of the triple-prime simplified control predicate for this event

includes 20 BDD nodes (f/” ).

Le tu3_DwnOpNeeded. TU3

7.9 Results For the AIP Example

In this chapter, we extended the AIP example from [21,23] by adding more control
requirements. The extended system is much bigger and more complicated than the
original system which has a state space on the order of 10'3. The high-level in the 5-4
AIP system alone has a state space on the order of 10%°, and its estimated worst-case
state space is on the order of 10%°. In particular, the capacity restrictions of conveyor
areas make the system highly coupled. If we extend the STS of the AIP example
in [31] to reflect the capacity restrictions of conveyor areas, the specification DES for
them would likely need to be put on level 1 of the STS. Consequently, the STS will
become much flatter, and it will make the STS less structured.

Even though our predicate-based algorithm with BDD implementation can handle
a larger system than an automata-based algorithm, our BDD-based software tool for
a flat system can not handle the whole 3-2 AIP system. However, with the HISC
method, we can easily verify the 5-4 AIP system and synthesize supervisors on a

comimon personal computer.
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Chapter 8

Multiple AIP Example

To demonstrate the ability of our low-level synthesis and verification algorithms,
we construct a system as shown in Figure 8.1, where each MAIP-j (5 € {1,2,3}) is
the high-level of the 3-2 AIP system in the previous chapter with appropriate event
relabeling! but used as low-levels (we will discuss how to relabel events in Section 8.1).
Other than the MAIPs, the system also includes a testing unit, a packaging unit and
three 4 x 6 buffers. By 4 x 6 buffers, we mean that each buffer has 4 slots, and the
capacity of each slot is 6 (pallets). One slot must be filled or emptied completely,
which means that pallets can only be loaded into or taken out of a MAIP six at
a time. We also assume that the system always puts three Typel pallets and three
Type2 Pallets into the input buffer each time. This example is based upon the parallel
manufacturing example in [21].

As in the previous chapter, we first give a system with supervisors so that we can
examine our verification algorithms, then we relax one of the restrictions to perform

synthesis.

"We do not use the whole AIP, because our software can not handle one subsystem as large as
the whole 3-2 AIP.
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—® MAIP-1 |

4% 6 input 4 * 6 output 4 * 6 package

buffer buffer buffer
| MAIP-2 > test package
unit unit

— MAIP-3 [—

Figure 8.1: Block diagram of multiple AIPs
8.1 System Model

We model this system as a bi-level HISC system with three low-levels MAIP-
1, MAIP-2, and MAIP-3. As all the low-levels are identical up to relabeling, their
interfaces are as well. The interface for MAIP-j(j € {1,2,3}) is shown in Figure 8.2.
Event startpallets — j means that MAIP takes six pallets from an input buffer slot
and starts processing them. Event finishpallets — j means that six processed pallets

are put into an output buffer slot.

50 startpallets-j

&___ 0

finishpallets-j

Figure 8.2: IntfAIP-j(j = 1, 2, 3)

As we said before, the low-level MAIP-j(j € {1,2,3}) here is the high-level of the
3-2 AIP system in the previous chapter with event relabeling. All the events(high-

level, request and answer events) in the original high-level of the 3-2 AIP system
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are treated as low-level events in MAIP-j. We also treat all the answer events in
the original system as uncontrollable low-level events in MAIP-j to capture the fact
that we can not just disable them. The other events keep their original controllable
or uncontrollable classification. Each event name in MAIP-j is suffixed with -5 to
capture the fact that events in each MAIP actually are different events, and so that
the event partition requirements are satisfied.

The high-level plant components and all the interfaces in the original 3-2 AIP
system are treated as low-level plant components in MAIP-j, and the high-level
supervisors in the original system are treated as low-level supervisors except that
we do not include OFProtAIP in MAIP-5. We also add three plant components
PalletTypelln-j, PalletType2In-j and PalletOut-j in low-level MAIP-j, as shown

in Figure 8.3. These plant components state that MAIP-;j processes six pallets at a

time.
s0 ] s0 )
startpallets-] > ol startpallets-j ol
IsPalletTypelln.10-j IsPalletTypelIn.10-j IsPalletType2In.10-j IsPalletType2in.10-j
P IsPalletTypelln.10-j IsPalletType2In.10-j
) s2 s2
s3 s3
(a) PalletTypelln-j(j € {1,2,3}) (b) PalletType2In-j(j € {1,2,3})

sO s3

sl 2
CplMyOutPallet. 104 OCQIMVoutPauer.lemoumauez.lo-j

CplMvOutPallet.10-j

finishpallets-j

.85
CPZMVOMPGHET-10'@4CP1MV0utPallet.10-j

(c) PalletOut-j(j € {1,2,3})

s4

Figure 8.3: New low-level plants in 3-2 MAIP system(verfication)

In total, we have 30 plant components and 20 supervisor components in the low-
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level MAIP-j. The components in MAIP-j are shown in Figure 8.4. The plant G’zj
and supervisor Sz, of MAIP-j are defined to be the synchronous product of the

indicated automata.

ASStoreUpState.AS1-j, ASStoreUpState.AS2-j, QueryPalletAtTU.TUI-j,
QueryPalletAtTU.TU2-j, QueryPalletAtTU.TU3-j, QueryPalletAtTU.TU4-j,
QueryPalletAtlO-j, CapEL11-j, CapEL21-j, CapEL31-j, CapEL41-j, Gfi
CapEL12-j, CapEL22-j, CapEL32-j, CapEL42-j, CapCl-j, CapC2-j, CapC3-j, '
CapC4-j, PalletTypelln-j, PalletType2In-j, PalletOut-j,

IntfAssmbStn_AS1-j, IntfAssmbStn_AS2-j, IntfAssmbStn_AS3-j,

IntfTU_TUIL-j, IntfTU_TU2-j, IntfTU_TU3-j, IntfTU_T U4-j, IntfIO-j

ManageTUl-j, ManageTU2-j, ManageT U3-j, ManageT U4-j, ManagelO-j,
DetWhichStnUp-j, HndlComEventsAS-j, OFProtEL11-j, OFProtEL21-j, S
OFProtEL31-j, OFProtEL41-j, OFProtEL12-j,0FProtEL22-j, OFProtEL32-j, L
OFProtEL42-j, OFProtC1-j, OFProtC2-j, OFProtC3-j, OFProtC4-j, AltMvInTypes-j

J

Figure 8.4: Components in low-level subsystem MAIP-j, (j = 1,2, 3)

The high-level plant components are shown in Figure 8.5. Plant component
Source contains only one event, new_pallets, which means that six new pallets are
put into one input buffer slot. The test unit (TestUnit) takes six pallets from the
output buffer and then tests if the assembly of those pallets is correct. If any of
the six pallets can not pass the test, information will be written on the labels of the
failed pallets and the six pallets altogether must be sent back to the input buffer. For
those pallets in the group that have passed the test, they will just go through the
central loop of the MAIP-j5 undergoing no assembly operations as their labels were
not altered and are allowed to exist via the I/O station. If all six pallets pass the test,
they are placed in the package buffer. Plant component PackSys is straightforward.
Event take_pallets means that the package unit takes out all of the six successfully
processed pallets in one package buffer slot. Plant component Sink also contains only
one event, allow_exits, which means that the system allows the six packaged pallets
to exit from the system.

The high-level supervisors are shown in Figure 8.6. InBuf, OutBuf and Pack-

Buf are designed to prevent their corresponding buffers from overflow and underflow.
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deposit_pallets

sO

take_pallets sl

ret_inbuf

package

allow _exit

label_written

(a) PackSys (b) TestUnit

new _pallets allow _exit
& &

(¢) Source (d) Sink

Figure 8.5: High-level plant components

NoBlock is to make sure that the system is nonblocking.

The event partition is defined as follows, where j = 1,2,3, X%, is the high-level

" " " "
event set, Xp ..., Y% are the request event sets, and X% ... 3 are the answer

event sets for the 3-2 AIP example in the previous chapter. o-j means that the name

of event ¢ is suffixed with 7-;5”.

Yy = {take_pallets, package, allow exit, new _pallets, pallets_f outbuf,
pallets_pass, deposit pallets, pallets_fail, write label, label written,
ret_inbuf}

YR, := {startpallets-j}

Y4, := {finishpallets-j}

Sy, = {o-jlo € (XL UNL U USS US U--- U 1)
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ret_inbuf ret_inbuf ret_inbuf ret_inbuf
new _pallets new _pallets new _pallets new _pallets

s0 s2 s3 s4
startpallets-1 startpallets-1 startpallets-1 startpallets-1
startpallets-2 startpallets-2 startpallets-2 startpallets-2
startpallets-3 startpallets-3 startpallets-3 startpallets-3
(a) InBuf
startpallets-1 startpallets-1
startpallets-2 startpallets-2

startpallets-3 ¢ipishpallets-1 startpallets-3

finishpallets-2
finishpallets-3

finishpallets-1 finishpallets-1 finishpallets-1
finishpallets-2 finishpallets-2 finishpallets-2
finishpallets-3 finishpallets-3 finishpallets-3

s3
pallets_f_outbuf pallets_f_outbuf

pallets_f_outbuf pallets_f_outbuf

(b) OutBuf

deposit_pallets deposit_pallets deposit_pallets deposit_pallets

s0

take_pallets take_pallets take_pallets take_pallets

(¢) PackBuf

new _pallets new _pallets new _pallets new _pallets

s0 sl s2 $3 sd4

pallets_pass pallets_pass pallets_pass pallets_pass

(d) NoBlock

Figure 8.6: High-level supervisor components
8.2 Verifying Properties

We now use our software tool to verify this system, and find that the system
satisfies all the HISC local conditions (level-wise nonblocking, level-wise controllable
and interface consistent). We thus can conclude that the flat system is nonblocking
by Theorem 3.1 and the flat supervisor of the system is controllable with respect to
the flat plant of the system by Theorem 3.2. The resulting computational data is
shown in Table 8.1 under the column 3-2 MAIP system. We also treat this system as
a flat system and use our BDD-based software tool for flat systems to verify it. The

tool soon used up all the available memory (RAM) and there was still no result after
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24 hours.

3-2 MAIP system 5-4 MAIP system
Memory for Memory for
LeveliSystem | UMPET OF | Gomputing | BDD node | RUM2€" O | Gomputing | BDD node
States Time (s) and cache States Time (s) and cache
Table (MB) Table (MB)
High-level 4260 <1 160 4260 <1 160
"OV"J."‘f‘qe'zM;\'P'J 6.88 * 10° 66 160 3.04 %102 1397 160
Total Estimated | 1.39 * 1% 1.20 * 10*

Table 8.1: The multiple AIP example data(verification)

We also built a system by reusing the high-level in the 5-4 AIP system in the
previous chapter in a similar fashion. We refer to this system as 5-4 MAIP system.
For the 5-4 MAIP system, we increase the size of each buffer to 4 x 14 (pallets), and
assume that the system always put seven Typel pallets and seven Type2 Pallets into
a l4-pallet slot of the input buffer each time. The high-level model and interfaces
of the 5-4 MAIP system are the same as the high-level model and interfaces of the
3-2 MAIP system. The low-levels can be built by using the same method of build-
ing low-levels in the 3-2 MAIP system. The plant components PalletTypelln-j,
PalletType2In-; and PalletOut-; in low-level MAIP-j of the 5-4 MAIP system
are shown in Figure 8.7. The event partition is same as that of the 3-2 MAIP system.
This 5-4 MAIP system also satisfies all the HISC local conditions (level-wise non-
blocking, level-wise controllable and interface consistent). We thus can conclude that
the flat system is nonblocking and the flat supervisor of the system is controllable
with respect to the flat plant of the system. The resulting computational data is

shown in Table 8.1 under the column 5-4 MAIP system.
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s7

1 s2 .
startpallets-j >CS>IsPalletTypelln.10-]'>C> IsPalletTypelln.10-j - IsPa[letType]Irz.10—,/>

IsPalletTypelln.10-j

(a) PalletTypelln-j(j € {1,2,3})

sl s7

s2
startpallets-j >C)IsPalletType2In.10-j><> IsPalletType2In.10-j > 1sPalletTypten.lO—j>

IsPalletType2In.10-j

(b) PalletType2In-j(j € {1,2,3})

sl s2
Clev0utPallet.10-" OCQZMVOutPallet.IO-i' GClevOmPallez.lO-j

finishpallets-j

sO

s14

CplMvOutPallet.10-]

(c) PalletOut-j(j € {1,2,3})

Figure 8.7: New low-level plants for the 5-4 MAIP system(verification)
8.3 Synthesizing Supervisors

In the above 3-2 MAIP system, the low-level MAIP-j (5 € {1,2,3}) processes
pallets six at a time. In the previous chapter, the supervisor component OFProt ATP
was used to make sure that the number of the pallets in the 3-2 AIP system (excluding
external loop 4) is at most seven at any given time. Here we require that the above
3-2 MAIP system processes six pallets at a time, so it respects the requirement of
the component OFProt AIP in the 3-2 AIP system. We set the size of each slot as
six because we want the number of Typel pallets and the number of Type2 pallets

in each slot to be equal.

Now we increase the capacity of each slot in each buffer in the 3-2 MAIP system?

2Recall that in the 3-2 AIP system in the previous chapter, the capacity of each area in the
central loop is 2 and the capacity of each area in an external loop is 3, so in total the capacity of
the conveyors is 2 x 44+ 3 x 2 x 4 = 32.
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to 32. Consequently, the plant component PalletTypelln-j should have 16 con-
tinuous IsPalletTypelln.IO-j transitions; the plant component PalletType2In-j
should have 16 continuous IsPalletType2In.1O-j transitions, and the plant com-
ponent PalletOut-; should have 32 continuous CplMvOutPallet.IO-j transitions.
They are shown in Figure 8.8.

s0 sl
startpallets-j

s16

s2
IsPalleITypelIn.lO-j‘/'\ IsPalletTypelln.10-j ISPGUEIT)‘P@”"-IO'J"
VU LAl Ll

IsPalletTypelln.10-j

(a) PalletTypelln-j(j € {1,2,3})

sO )
sl s2 . sl6
startpallets-j 5 IsPalletType2In.10-j IsPalletType2In.10-j IsPalletType2In.10-j 5
e ———— P

IsPalletType2In.10-j

(b) PalletType2In-j(j € {1,2,3})

sO sl s2 $32
CplMvOutPallet.10- CplMvOutPallet. 10+ CplMvOutPallet.10-] CplMvOutPallet.10-]

finishpallets-j

(c) PalletOut-j(j € {1,2,3})

Figure 8.8: New low-level plants for the 3-2 MAIP system(synthesis)

When we use our software tool to verify this system, we find that it each low-
level MAIP-j (5 € {1,2,3}) blocks. We then synthesize a low-level proper supervisor
and its corresponding control predicates for each low-level MAIP-j. The resulting
computational data for this system is shown in Table 8.2 under the column 3-2 MAIP
system.

Similarly, we also increase the capacity of each slot in each buffer to 56 for the
5-4 MAIP system. Therefore, the plant component Pallet Typelln-j should have 28
continuous IsPalletTypelIn.IO-j transitions; the plant component Pallet Type2In-

7 should have 28 continuous IsPalletType2In.1O-j transitions, and the plant com-
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ponent PalletOut-j should have 56 continuous CplMvOutPallet.I1O-j transitions.
One can easily draw the diagrams for them from Figure 8.8. The low-levels of this
5-4 MAIP system also block. Therefore, we can synthesize a low-level proper supervi-
sor and its corresponding control predicates for each low-level MAIP-j. The resulting
computational data for this system is shown in Table 8.2 under the column 5-4 MAIP
system. Note that the memory for BDD node and cache table for synthesizing the
low-level MAIP-j in this system has increased to 220MB, and all the other systems
we examined in this thesis never increased the predefined BDD node and cache table
size. Note also that the computing time is very long (26.7 hours). We decided to let
the synthesizing process run this long time because it did not use up all the available

memory (RAM) in our computer (512MB).

3-2 MAIP system 5-4 MAIP system
Memory for Memory for
Level/System Sg;“cﬁbj’; Computing | BDD node g‘g;“cﬁb‘l’; Computing | BDD node
States Time (s) and cache States Time (s) and cache
Table (MB) Table (MB)
High-level 4260 <1 160 4260 <1 160
Low-level MAIP-] o 16453 16 96126
i=12,3 9.48°10" | (4 57 hours) 160 161710 1067 hours)| 220
Total Estimated | 3.3 * 1042 1.78 * 1052

Table 8.2: The multiple AIP example data(synthesis)
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, by applying symbolic method to an HISC system, we have developed
algorithms for synthesis and verification. We also gave large examples (e.g. the 5-4
AIP system has worst-case estimated state space 1.51 x 10%°) to demonstrate the po-
tential abilities of the algorithms. We now discuss some conclusions and contributions
of this thesis.

For an HISC system, a per level supervisor synthesis method based on predicate
operations was proposed. This was not provided by Leduc et al. in [21-25,27] before,
as they mainly focused on the verification method.

With the help of symbolic computation, we can handle much larger individual
subsystems for verification and synthesis (e.g. the synthesized high-level supervisor
has 1.14 x 10'® states in the 5-4 AIP system and can be computed with less than
160MB of RAM) than before. With explicit state and transition listings, a software
typically can only handle subsystems as large as 107 states with 1GB of RAM.

For the synthesized supervisors, a controller implementation scheme for an HISC
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system was provided based on a group of small local control predicates which can be
represented as BDDs (The largest prime simplified control predicate for the 5-4 AIP
system has 715 BDD nodes). As each control predicate is fairly small, the speed of
this BDD-based controller can be guaranteed.

Note here that although the system containing the synthesized supervisors has
locally maximally permissible behavior, the behavior of the flat system containing
these supervisors in general is not globally maximally permissive. This is because of
the HISC conditions, and this is the price we pay for synthesizing supervisors that
respect the interface conditions. However, it is worthwhile to do so because we could
design a very large system with great scalability.

In this thesis, we have talked about both synthesis and verification methods for
an HISC system. With the synthesis method, a system designer can mainly focus
on modeling system requirements and then compute the controller automatically.
However, the synthesized supervisor is often too large to be understood by simple
inspection by designers, especially for large systems (e.g. the AIP examples). With
the hand-designed supervisor, nevertheless, one is much more confident about the
behavior of a system. Furthermore, to verify a system is usually faster than to
synthesize a supervisor for the system, as there is no need to compute the greatest
fixpoint by repeatedly applying functions. However, sometimes it is very difficult to
design all the supervisors by hand directly and not to restrict the system behavior
too much in the mean time. For example, to make the 3-2 AIP example (verification
version) nonblocking, we had to add a supervisor (OFProtAIP, See Figure 7.35) to
restrict the system behavior. In the AIP examples we designed, we mainly design
supervisors to reflect the control requirements, but to solve the blocking problem, we
prefer to use the synthesis method. By designing system this way, we are confident

that the controlled system behavior is what we expect but not to restrict the system
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too much.

9.2 Future Work

We now discuss some future works of using symbolic method for HISC systems.

9.2.1 Intermediate BDD Size Problem

In Algorithm 4.1 and Algorithm 4.3, there is a repeat loop. We only proved
that the algorithm can terminate after finite number of iterations which is no more
than the size of the state space in the high-level or low-levels. However, for practical
systems, the number of iterations is likely to be very small. For example, the 3-2 AIP
example in Chapter 7 only takes 3 iterations.

However, once the number of iterations gets bigger, we will have an intermediate
BDD size problem. For example, in a system we worked on, the number of iterations
was 26. For this system, the size of the BDD for predicate P; during iterations 11-
18 was much bigger than its size in other iterations, although the number of states
satisfying P; was becoming smaller. Figure 9.1 shows how the number of BDD nodes
changed, and the time to complete the C'R operation at each iteration in the synthesis
process of that system. We can see that the time to complete each middle iteration
is much longer than the time to complete each iteration at the beginning or end.

Usually the specification DES is composed of many specification components. For
future work, we may synthesize supervisors first using only part of the specification
components, then use these intermediate supervisors as specifications to synthesize
a final supervisor. By doing things this way, we may be able to control the size of

intermediate BDD. This idea was inspired by Exercise 3.7.13 in [47].
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Figure 9.1: Number of BDD nodes and time for C'R operation at each iteration

9.2.2 Complexity Analysis of the Algorithms

Although we use BDD to represent a subsystem of the HISC system and use BDD
operations to do the computations, the worst case of the computational complexity
is still based on the state space size of the subsystem, which is exponential on the
number of components. It is worthwhile to do a more detailed complexity analysis,
although the actual computing time of a BDD implementation of the algorithms is

highly dependent on the system being examined.

9.2.3 Symbolic Computation for Timed HISC System

Currently, the HISC method is only for untimed discrete event systems. As timed
systems usually have much bigger state-spaces, we may apply the idea of the HISC
to design a method for timed system and then develop the algorithms suitable for
symbolic synthesis and verification. By combining these two methods, we may be

able to handle more complicated timed systems.
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Appendix A

HISC Software Program

In this appendix, we first briefly introduce the running and development environ-

ment, and then we list all the source code of the program.

A.1 Introduction of HISC Software Program

The HISC software program is implemented by using C++ and STL (Standard
Template Library), and it is compiled by using GNU g++ 3.3.3. The software was
developed by using Eclipse 3.0 with CDT (C/C++ Development Tools) plug-in on
Fedora Core 2. The BDD package we used is BuDDy 2.4 developed by Jgrn Lind-
Nielsen.

The HISC software program is implemented as a function library. For the interface
of the library, please see BddHisc.h in the source code list. All the function interfaces
are compatible with C or C++.

A very simple text user interface to demonstrate how to use the functions provided
by the library is listed in main.cpp.

Table A.1 and Table A.2 are the lists of all the source code files.
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No. | File Name Description Page
1 | BddHisc.h The interface of all the functions in the library 253
2 | BddHisc.cpp | Implementation of the functions in BddHisc.h 255
3 | Project.h Header file of Project.cpp 260
4 | Project.cpp Process Project files (.prj) 261
5 | Sub.h Header file for Sub*.cpp 267
6 | Sub.cpp Process high-level or low-level subsystem file(.sub) 269
7 | Subl.cpp Reorder DES BDD variables in high-level or low-level 273
8 | Sub2.cpp Save synthesized automata-based supervisor, 279

or synthesized local control predicates,
or the synchronous product of a verified system
9 | HighSub.h Header file for HighSub*.cpp 285
10 | HighSub.cpp | Read high-level DES files and initialize high-level BDDs | 286
11 | HighSubl.cpp | Some misc functions for high-level such as printing 294
12 | HighSub2.cpp | Verification and synthesis functions for high-level 298
13 | LowSub.h Header file for LowSub*.cpp 308
14 | LowSub.cpp Read high-level DES files and initialize high-level BDDs | 309
15 | LowSubl.cpp | Some misc functions for low-level such as printing 317
16 | LowSub2.cpp | Verify low-level interface (Command-pair) 321
17 | LowSub3.cpp | Verification and synthesis functions for high-level 323
18 | DES.h Header file for DES.cpp 334
19 | DES.cpp Process DES files 335
20 | type.h self-defined data types 344
21 | errmsg.h Error Code symbolic constants 345
22 | pubfunc.h Header file for pubfunc.cpp 346
23 | pubfunc.cpp Contains utility functions used in the program 347

Table A.1: Source code files in the software library

No. | File Name

Description Page

main.h

2 | main.cpp

Header file for main.cpp 352
A text user interface example to show how to use | 353
functions in BDD HISC library

Table A.2: Source code files for the library usage example
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A.2 Source Code

ke sk sk ok sk ks sk sk s ok sk ok sk sk o sk ok ok sk sk sk o sk sk ok sk sk sk sk ok ok sk sk sk o sk sk sk sk sk s ok sk sk sk o sk ok sk ok ok ok ok
FILE: BddHisc.h
DESCR: C/C++ interface for the HISC synthesis and verifcation package
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ok ok ok ok sk sk ok sk ok sk ok sk sk o ok ok ok sk sk sk sk ok sk ok sk sk sk ok ok sk ok sk sk sk sk sk ok sk sk sk sk ok sk sk sk s sk ok sk sk ok ok /
#ifndef _BDDHISC_H_
#define _BDDHISC_H_

/%%

* DESCR: Initialize the HISC enviorment
* PARA: None

* R?TURN: 0: sucess < 0: fail

* ok

int init_hisc();

/**

* DESCR: Clear the HISC enviorment

* PARA: None

* RETURN: O

* x/

int close_hisc();

/**

* DESCR: Load a HISC project

* PARA: prjfile: HISC project file name (input)

* errmsg: returned errmsg (output)
* RETURN: 0: sucess < 0: fail
* ok

int load_prj(const char *prjfile, char *errmsg);

/%%

* DESCR: close opened HISC project

* PARA: errmsg: returned errmsg (output)
* R?TURN: 0: sucess < 0: fail

* K

int close_prj(char *errmsg);

* DESCR: Save the project in the memory to a text file, just for verifying
* the loaded project.

* PARA: filename: where to save the text file (input)

* errmsg: returned errmsg (output)

*

RETURN: O0: sucess < 0: fail
* %

int print_prj(const char *filename, char *errmsg);

VAL

* A structure for storing computing result information

* x/
typedef struct Hisc_SuperInfo

double statesize; /*state sizex/

int nodesize; /*bdd node sizex/

int time; /*computing time (seconds)*/
}HISC_SUPERINFO;

/%%

* HISC_SAVESUPER_NONE: Not to save the synthesized supervisor

* HISC_SAVESUPER_BDD: Save synthesized BDD control predicates

* HISC_SAVESUPER_AUTOMATA: Save synthesized automata-based supervisor

* HISC_SAVESUPER_BOTH: Save both

* %/

enum HISC_SAVESUPERTYPE {HISC_SAVESUPER_NONE = 0, HISC_SAVESUPER_BDD = 1,
HISC_SAVESUPER_AUTOMATA = 2, HISC_SAVESUPER_BOTH = 3};

/%%

* To show a path from the initial state to one bad state or not

* Currently HISC_SHOW_TRACE is only for telling if a blocking state is

* deadlock or livelock

* x/
enum HISC_TRACETYPE {HISC_NO_TRACE = O, HISC_SHOW_TRACE = 1};
/%%
* To save the syn-product for a verified subsystem or not
* %/
enum HISC_SAVEPRODUCTTYPE{HISC_NOTSAVEPRODUCT = O, HISC_SAVEPRODUCT = 1};
/%%
* To synthesize on reachable statespace or not
* x/
enum HISC_COMPUTEMETHOD{HISC_ONCOREACHABLE = 0, HISC_ONREACHABLE = 1};
/%%
* DESCR: Synthesize a supervisor for a specified low level
* PARA: computemethod: computemethod,synthesize on reachable states or
* on coreachable states (input).
* subname: low level name ("all" means all the low levels) (input).
* errmsg: returned errmsg (output)
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pinfo:  returned supervisor info (output)

pnextlow: next low level sub index(initially,it must be O, mainly
used for "all") (input)

savetype: how to save the supervisors (input)

savepath: where to save the supervisors(input)

* RETURN: O: successsful < 0: error happened (See errmsg.h)

* %/

int syn_lowsuper (HISC_COMPUTEMETHOD computemethod,

char *subname,

char *errmsg,

HISC_SUPERINFO *pinfo,

int* pnextlow,

const HISC_SAVESUPERTYPE savetype,

const char *savepath);

* X X ¥ X

*ok
* DESCR: synthesize high level supervisor

* PARA: computemethod: synthesize on reachable states or on coreachable
* states (input)

* errmsg: returned errmsg (output)

* pinfo: returned supervisor infomation(output)

* savetype: how to save the supervisors (input)

* savepath: where to save the supervisor (input)

* RETURN: O: successsful < 0: error happened (See errmsg.h)
*/
int syn_highsuper (HISC_COMPUTEMETHOD computemethod,

char *errmsg,

HISC_SUPERINFO *pinfo,

const HISC_SAVESUPERTYPE savetype,

const char *savepath);

*
* DESCR: verify high level
* PARA: showtrace: show a trace to the bad state (not implemented) (input)
* errmsg: returned errmsg (output)
* pinfo: returned system infomation (output)
* saveproduct: whether to save the syn-product (input)
* savepath: where to save the syn-product (input)
* RETURN: successsful < 0: error happened (See errmsg.h)
*/
int verify_high(
HISC_TRACETYPE showtrace,
char *errmsg,
HISC_SUPERINFO *pinfo,
const HISC_SAVEPRODUCTTYPE saveproduct,
const char *savepath);

*

/%%

* DESCR: verify low level

* PARA: showtrace: show a trace to the bad state (not implemented) (input)
* subname: low level name ("all" means all the low levels) (input)

* errmsg: returned errmsg (output)

* pinfo: returned system infomation (output)

* pnextlow: next low level sub index(initially,it must be O, mainly
* used for "all") (input)

* saveproduct: whether to save syn-product (input)

* savepath: where to save syn-product (input)

* RETURN: O: successsful < 0: error happened (See errmsg.h)
* %/
int verify_low(
HISC_TRACETYPE showtrace,
char *subname,
char *errmsg,
HISC_SUPERINFO *pinfo,
int* pnextlow,
const HISC_SAVEPRODUCTTYPE saveproduct,
const char *savepath);
#endif
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[ kskskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk ok sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk ok ok ok
FILE: BddHisc.cpp
DESCR: Implementation for C/C++ interface for the HISC synthesis and
verifcation package
AUTH: Raoguang Song
DATE: (C) Jan, 2006
skokokok ok sk ok skoksk sk ok sk ok sk ok sk sk sk ok sk ok sk ok sk ok sk sk ok sk sk sk sk sk ok sk ok sk ok sk sk sk ok sk sk sk ok sk ok sk sk ok sk sk sk ok sk sk sk ok ok /

#include "BddHisc.h"
#include "Project.h"

#include <string>

#include <fstream>
#include "errmsg.h"

#include <cassert>
#include "Sub.h"
#include "LowSub.h"
#include "HighSub.h"
#include <sys/time.h>
using namespace std;
CProject *pPrj = NULL;
/%%
* DESCR: Initialize the HISC enviorment

* PARA: None
* R?TURN: 0: sucess < 0: fail
*

int init_hisc()
pPrj = new CProject();
if (pPrj == NULL)

return HISC_NOT_ENOUGH_MEMORY;
return 0;

N

*
* DESCR: Load a HISC project

* PARA: prjfile: HISC project file name (input)
* errmsg: returned errmsg (output)

* R%TURN: 0: sucess < 0: fail

*

int load_prj(const char *prjfile, char *errmsg)

int iRet = 0;

assert(prjfile != NULL);
assert(errmsg != NULL);
pPrj->InitPrj();
pPrj->LoadPrj(prjfile);
strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();

if (pPrj->GetErrCode() < 0)

if (pPrj->GetErrCode() > HISC_WARN_BLOCKEVENTS) //error happened
pPrj->ClearPrj();
//else only a warning

return iRet;

}
/%%
* DESCR: close opened HISC project
* PARA: errmsg: returned errmsg (output)
* RETURN: 0: sucess < 0: fail
* ok

int close_prj(char *errmsg)

int iRet = 0;

pPrj->ClearPrj();

pPrj->InitPrj();

strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();

if (pPrj->GetErrCode() < 0)

{

pPrj->ClearPrj();

return iRet;

}

/**

* DESCR: clear the HISC enviorment
* PARA: none

* RETURN: O
* x/

int close_hisc()

delete pPrj;
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pPrj = NULL;
return O;

N

*
* DESCR: Save the project in the memory to a text file, just for verifying
* the loaded project.

* PARA: filename: where to save the text file (input)

* errmsg: returned errmsg (output)

* R?TURN: 0: sucess < 0: fail

* ok

int print_prj(const char *filename, char *errmsg)

int iRet = O;

assert(filename '= NULL);
assert(errmsg != NULL);
pPrj->PrintPrjAll(filename) ;
strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();
pPrj->ClearErr();

return iRet;

1
/%%

* DESCR: Synthesize a supervisor for a specified low level

* PARA: computemethod: computemethod,synthesize on reachable states or

* on coreachable states (input).

* subname: low level name ("all" means all the low levels) (input).
* errmsg: returned errmsg (output)

* pinfo: returned supervisor info (output)

* pnextlow: next low level sub index(initially,it must be O, mainly
* used for "all") (input)

* savetype: how to save the supervisors (input)

* savepath: where to save the supervisors(input)

* RETURN: O0: successsful < 0: error happened (See errmsg.h)

* x/

int syn_lowsuper (HISC_COMPUTEMETHOD computemethod,
char *subname,
char *errmsg,
HISC_SUPERINFO *pinfo,
int* pnextlow,
const HISC_SAVESUPERTYPE savetype,
const char *savepath)

int iRet = 0;
assert(subname !'= NULL);
assert (errmsg !'= NULL);
assert(pinfo != NULL);
assert(pnextlow != NULL);
assert (*pnextlow >= 0);

assert((savetype == HISC_SAVESUPER_NONE) || savepath != NULL);
string sSubName = subname;
if (sSubName == "all" || *pnextlow > 0)

(*pnextlow) ++;

if (*pnextlow <= pPrj->GetNumofLows())

sSubName = pPrj->GetSub (*pnextlow)->GetSubName() ;
strcpy(subname, sSubName.data());

if (*pnextlow == pPrj->GetNumofLows())
*pnextlow = -1;
}
int i = 0;
for (i = 0; i < pPrj->GetNumofLows(); i++)

if (pPrj->GetSub(i + 1)->GetSubName() == sSubName)
break;

}
if (i < pPrj->GetNumofLows())
{

string sSavePath;

if (savetype != HISC_SAVESUPER_NONE)
sSavePath = savepath;

time_t tstart;

time (&tstart);

if (pPrj->GetSub(i + 1)->SynSuper(computemethod, *pinfo, savetype,
sSavePath) < 0)
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strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();
pPrj->ClearErr();

}

time_t tend;

time (&tend);

pinfo->time = tend - tstart;

else

string sErr = "Unable to find the low level ";
sErr += sSubName;

strcpy(errmsg, sErr.data());
iRet = HISC_NONEXISTED_LEVEL_NAME;

return iRet;

}

/**

* DESCR: synthesize high level supervisor

* PARA: computemethod: synthesize on reachable states or on coreachable
* states (input)

* errmsg: returned errmsg (output)

* pinfo: returned supervisor infomation(output)

* savetype: how to save the supervisors (input)

* savepath: where to save the supervisor (input)

* RETURN: O: successsful < O: error happened (See errmsg.h)
*/

int syn_highsuper (HISC_COMPUTEMETHOD computemethod,
char *errmsg,
HISC_SUPERINFO *pinfo,
const HISC_SAVESUPERTYPE savetype,
const char *savepath)

assert(errmsg != NULL);
assert(pinfo != NULL);
assert((savetype == HISC_SAVESUPER_NONE) || savepath != NULL);
int iRet = 0;
string sSavePath;
if (savetype != HISC_SAVESUPER_NONE)
sSavePath = savepath;
time_t tstart;
time (&tstart);
pPrj->GetSub(0) ->SynSuper (computemethod, *pinfo, savetype, sSavePath);
strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();
pPrj->ClearErr();
time_t tend;
time(&tend) ;
pinfo->time = tend - tstart;
return iRet;

N

DESCR: verify high level

PARA: showtrace: show a trace to the bad state (not implemented) (input)
errmsg: returned errmsg (output)
pinfo: returned system infomation (output)
saveproduct: whether to save the syn-product (input)
savepath: where to save the syn-product (input)

RETURN: successsful < 0: error happened (See errmsg.h)

*/

int verify_high(

HISC_TRACETYPE showtrace,

char *errmsg,

HISC_SUPERINFO *pinfo,

const HISC_SAVEPRODUCTTYPE saveproduct,

const char *savepath)

*

assert(errmsg != NULL);
assert(pinfo != NULL);
assert ((saveproduct == HISC_NOTSAVEPRODUCT) || savepath != NULL);
int iRet = O;
string sSavePath;
if (saveproduct != HISC_NOTSAVEPRODUCT)
sSavePath = savepath;
time_t tstart;
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time(&tstart);
if (pPrj->GetSub(0)->VeriSub(showtrace, *pinfo, saveproduct, sSavePath) < 0)
{

strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();

}

pPrj->ClearErr();

time_t tend;

time (&tend);

pinfo->time = tend - tstart;
return iRet;

}
/%%
* DESCR: verify low level
* PARA: showtrace: show a trace to the bad state (not implemented) (input)
* subname: low level name ("all" means all the low levels) (input)
* errmsg: returned errmsg (output)
* pinfo: returned system infomation (output)
* pnextlow: next low level sub index(initially,it must be O, mainly
* used for "all") (input)
* saveproduct: whether to save syn-product (input)

*

savepath: where to save syn-product (input)

* RETURN: O: successsful < 0: error happened (See errmsg.h)
* %/
int verify_low(

HISC_TRACETYPE showtrace,

char *subname,

char *errmsg,

HISC_SUPERINFO *pinfo,

int* pnextlow,

const HISC_SAVEPRODUCTTYPE saveproduct,
const char *savepath)

assert(subname !'= NULL);

assert(errmsg != NULL);

assert(pinfo != NULL);

assert(pnextlow != NULL);

assert (*pnextlow >= 0);

assert ((saveproduct == HISC_NOTSAVEPRODUCT) || savepath != NULL);
int iRet = 0;

string sSubName = subname;

if (sSubName == "all" || *pnextlow > 0)

(*pnextlow)++;
if (xpnextlow <= pPrj->GetNumofLows())

sSubName = pPrj->GetSub (*pnextlow)->GetSubName() ;
strcpy (subname, sSubName.data());

if (*pnextlow
*pnextlow

= pPrj->GetNumofLows())
_1;

¥
int i = 0;
for (i = 0; i < pPrj->GetNumofLows(); i++)

if (pPrj->GetSub(i + 1)->GetSubName() == sSubName)
break;

}
if (i < pPrj->GetNumofLows())

string sSavePath;
if (saveproduct != HISC_NOTSAVEPRODUCT)
sSavePath = savepath;
time_t tstart;
time (&tstart);
if (pPrj->GetSub(i + 1)->VeriSub(showtrace, *pinfo, saveproduct,
c sSavePath) < 0)

strcpy(errmsg, pPrj->GetErrMsg());
iRet = pPrj->GetErrCode();
pPrj->ClearErr();

}

time_t tend;

time (&tend);

pinfo->time = tend - tstart;
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else
{

string sErr = "Unable to find the low level ";
sErr += sSubName;

strcpy(errmsg, sErr.data());
iRet = HISC_NONEXISTED_LEVEL_NAME;

return iRet;
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[ ke skskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk ok ok sk sk ok ok ok
FILE: Project.h
DESCR: Header file of Project.cpp (Process project file (.prj))
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ok ok ok sk sk sk ook sk ok sk sk sk ok ok ok ok sk sk sk sk ok sk sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk sk sk sk sk ok sk sk sk ok ok /
#ifndef _PROJECT_H_
#define _PROJECT_H_
#include <string>
#include <map>
#include "type.h"

#include <fstream>
#include "BddHisc.h"
using namespace std;
class CSub;

class CHighSub;
class CLowSub;

class CProject

{
public:
CProject();
virtual “CProject();
void InitPrj();
void ClearPrj();
int PrintPrj(ofstream& fout);
int PrintPrjAll(string sFileName);
public:
void LoadPrj(string vsPrjFile);
int GenEventIndex(const EVENTSUB vEventSub, const int viSubIndex,
const unsigned short vusiLocalEventIndex);
EVENTSUB GenEventInfo(const int viEventIndex, EVENTSUB & vEventSub,
int & viSubIndex,
unsigned short & vusilocalEventIndex);
int AddPrjEvent(const string & vsEventName, const int viEventIndex,
EVENTSUB &vEventSub, int & viSubIndex);
int SearchPrjEvent(const string & vsEventName) ;
int GetNumofLows() const {return m_iNumofLows;};
CSub* GetSub(const int iSubIndex);
void SetErr(const string & vsErrMsg, const int viErrCode);
void ClearErr();
const char *GetErrMsg() const {return m_sErrMsg.data();};
int GetErrCode() const {return m_iErrCode;};
INVEVENTS & GetInvAllEventsMap() {return m_InvAllEventsMap;};
private:
string GetSubFileFromPrjFile(const string & vsPrjFile,
const string &vsSubDir);

private:
string m_sPrjName; //Project name
int m_iNumofLows; //Number of low-level subsystems

CHighSub *m_pHighSub; //High-level pointer
CLowSub **m_pLowSub; //Pointers for low-levels
EVENTS m_AllEventsMap; //The map containing all the events in this project
//(Event Name (key), Event global index)
INVEVENTS m_InvAllEventsMap; //The map containing all the events in this
//project (Event global index (key), Event Name)
string m_sErrMsg; //Error msg during processing this project
int m_iErrCode; //Error code during processing this project
};
#endif //_PROJECT_H_
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/3 stk ok ok sk ok sk ok ok sk ok sk sk sk s ok sk ok ok ok sk s sk ok ok s sk o sk sk sk sk sk sk sk ok sk sk sk ok sk ok sk o ok sk ok
FILE: Project.cpp
DESCR: Processing Project file (.prj)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
steoksksk sk o ok ok o sk sk ok ok sk ok sk sk sk s ok sk o sk ok sk sk sk ok sk s sk o ok sk sk ks sk sk sk ok sk sk ko s ok sk ok e skok sk ok ok /
#include "Project.h"
#include <fstream>
#include "errmsg.h"
#include "type.h"
#include "pubfunc.h"
#include "HighSub.h"
#include "LowSub.h"
#include <iostream>
#include <string>
#include <cassert>
using namespace std;

VALY
* DESCR: Constructor
* PARA: None

* RETURN: None
* ACCESS: public

*/
CProject::CProject()

InitPrj(Q);

}
/**

* DESCR: Destructor
* PARA: one

* RETURN: None

* ACCESS: public

*/
CProject:: CProject()

ClearPrj();

}

/x*
* DESCR: Initialize data members
* PARA: None

* RETURN: None
* ACCESS: public

*/

void CProject::InitPrj()

{
m_sPrjName.clear();
m_iNumofLows = 0;
m_pHighSub = NULL;
m_pLowSub = NULL;
m_AllEventsMap.clear();
m_InvAllEventsMap.clear();
m_iErrCode = 0;
m_sErrMsg.clear();

}

*k
* DESCR: Release memory used by data members

* PARA: None
* RETURN: None
* ACCESS: public

*/
void CProject::ClearPrj()

//can’t change the order of deleting highsub and lowsub, see "CSub()
delete m_pHighSub;

m_pHighSub = NULL;

if (m_pLowSub != NULL)

{

for (int i = 0; i < m_iNumofLows; i++)

delete m_pLowSub[i];
m_pLowSub[i] = NULL;
}

¥
delete[] m_pLowSub;
m_pLowSub = NULL;

}
VLS
* DESCR: Load a project file
* PARA: vsPrjFile: project file name with path

* RETURN: None
* ACCESS: public

*/
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void CProject::LoadPrj(string vsPrjFile)

ifstream fin;

string sErr;

try

{
string sPrjFile = str_trim(vsPrjFile);
if (sPrjFile.length() <= 4)

SetErr("Invalid project file name!", HISC_BAD_PRJ_FILE);
throw -1;

if (sPrjFile.substr(sPrjFile.length() - 4) != ".prj")

SetErr("Invalid project file name!", HISC_BAD_PRJ_FILE);
throw -1;

}

fin.open(sPrjFile.data(), ifstream::in);

//unable to find project file

if (!fin)
SetErr("Unable to open the project file: " + sPrjFile,
HISC_BAD_PRJ_FILE);
throw -1;

}

char scBuf [MAX_LINE_LENGTH];

string sLine;

int iField = -1; //0: SYSTEM 1:LOW 2:HIGH

char *scFieldArr[] = {"SYSTEM", "LOW", "HIGH"};

int iNumofLows = -1;
while (fin.getline(scBuf, MAX_LINE_LENGTH))
{

sLine str_nocomment (scBuf) ;

sLine = str_trim(sLine);
if (sLine.empty())
continue;
//Field name
if (sLine[0] == ’[’ && sLine[sLine.length() - 1] == ’]’)
¢ sLine = sLine.substr(l, sLine.length() - 1);
sLine = sLine.substr(0, sLine.length() - 1);
sLine = str_upper(str_trim(sLine));
iField++;
if (iField > 2)

SetErr("To many fields!", HISC_BAD_PRJ_FORMAT) ;
throw -1;

}
if (sLine !'= scFieldArr[iField])
{

sErr = "Field" + sLine + "--name or order is wrong!";
SetErr (sErr, HISC_BAD_PRJ_FORMAT);
throw -1;

//Field content
else

switch (iField)

{
case 0: //SYSTEM
if (m_sPrjName.length() == 0)
m_sPrjName = sLine;
else

SetErr("Project name can only be on one line!",
HISC_BAD_PRJ_FORMAT) ;
throw -1;
}

break;

case 1: //LOW
if (iNumofLows < 0)
{

if (!IsInteger(sLine))
{
SetErr("No number of low sub subsystems.",

HISC_BAD_PRJ_FORMAT) ;
throw -1;
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m_iNumofLows = atoi(sLine.data());
if (m_iNumofLows <= 0)

sErr = "The system must have ";
sErr += "at least one low sub system.";

SetErr (sErr, HISC_BAD_PRJ_FORMAT) ;
throw -1;

iNumofLows++;

//assign memory space for Low Sub array

m_pLowSub = new (CLowSub *) [m_iNumofLows];

for (int i = 0; i < m_iNumofLows; i++)
m_pLowSub[i] = NULL;

%lse
if (iNumofLows < m_iNumofLows)

string sLowFile =
GetSubFileFromPrjFile(sPrjFile, sLine);
m_pLowSub [iNumofLows] =
new CLowSub(sLowFile, iNumofLows + 1);
if (m_pLowSub[iNumofLows]->LoadSub() < 0)
throw -1;

else

SetErr("The number of low subs is not correct!",
HISC_BAD_PRJ_FORMAT) ;
throw -1;

iNumofLows++;

}

break;

case 2: //HIGH
if (m_pHighSub == NULL)
{

string sHighFile =
GetSubFileFromPrjFile(sPrjFile, sLine);
m_pHighSub = new CHighSub(sHighFile, 0);
if (m_pHighSub->LoadSub() < 0)
throw -1;
}
else
{
SetErr("Only one high sub is allowed.",
HISC_BAD_PRJ_FORMAT) ;

throw -1;
}
break;
default:
SetErr ("Unknown bad project file format!",

HISC_BAD_PRJ_FORMAT) ;
throw -1;
break;

}

} //while
if (iField != 2)

SetErr("Too few fields.", HISC_BAD_PRJ_FORMAT);
throw -1;

}
if (m_pHighSub == NULL)
{

SetErr("No high sub.", HISC_BAD_PRJ_FORMAT);
throw -1;

if (m_iNumofLows <= 0)

SetErr("No low sub.", HISC_BAD_PRJ_FORMAT);
throw -1;

if (iNumofLows < m_iNumofLows)

SetErr("Too few low subs.", HISC_BAD_PRJ_FORMAT);
throw -1;

fin.close();

catch (int iError)
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if (fin.is_open())
fin.close();
return;

return;

DESCR: Set error msg and err code in this project
PARA: vsvsErrMsg: Error message

*
*

*

* viErrCode: Error Code
* RETURN: None

* ACCESS: public

*
vo

id CProject::SetErr(const string & vsErrMsg, const int viErrCode)
{
m_iErrCode = viErrCode;
m_sErrMsg = vsErrMsg;
#ifdef VERBOSE

cout << "Error: " << m_sErrMsg << endl;
#endif
return;
X
*k
* DESCR: Clear error msg and err code in this project

* PARA: None
* RETURN: None
* ACCESS: public
*/
void CProject::ClearErr()

m_iErrCode = 0;
m_sErrMsg.empty () ;

return;
}
/%
* DESCR:  Generate a sub file name with path (*.sub) from a prj file name
* with path (.prj) and a sub file name without path.
* ex: vsSubFile = "/home/roger/sim.prj", vsDES = vsSubDir = "lowl",
* will return "/home/roger/sim/abc/lowl.sub"
* PARA: vsPrjFile: prj file name with path
* vsSubDir: sub file name without path

* RETURN: Generated sub file name with path

* ACCESS: private

*/

string CProject::GetSubFileFromPrjFile(const string & vsPrjFile,
const string &vsSubDir)

{
assert(vsPrjFile.length() > 4);
assert(vsPrjFile.substr(vsPrjFile.length() - 4) == ".prj");
assert (vsSubDir.length() > 0);
string sSubFile = vsSubDir + "/" + vsSubDir + ".sub";
unsigned int iPos = vsPrjFile.find_last_of(’/’);
if ( iPos == string: :npos)
return sSubFile;
else
return vsPrjFile.substr(0, iPos + 1) + sSubFile;
}
VTS
* DESCR: Get level i pointer.
* PARA: iSubIndex: level index (0: high-level, 1, 2,...: low-levels)

* RETURN: Level-i pointer

* ACCESS: public

*/
CSub* CProject::GetSub(const int iSubIndex)
{

assert(iSubIndex <= m_iNumofLows) ;
if (iSubIndex == 0)
{

assert(m_pHighSub != NULL);
return m_pHighSub;

}
else
assert(m_pLowSub != NULL);
assert (m_pLowSub[iSubIndex - 1] != NULL);
return m_pLowSub[iSubIndex - 1];
}
}
*k
* DESCR: Generate global event index from the event info in para
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PARA: vEventSub(H/R/A/L, the first 4 bits), (input)
viSubIndex(Sub index, highsub = 0, low sub start from 1.
Next 12 bits), (input)
vusiLocalEventIndex(local event index, odd: controllable,
even:uncontrollab. The rest 16 bits) (input)
RETURN: Generated global event index
ACCESS: public

int CProject::GenEventIndex(const EVENTSUB vEventSub, const int viSubIndex,

{

N

* X K X K X K X K X X

}
VLS

*
*
*
*
*
*
*
*
*
*
*
V.

*

*/

const unsigned short vusilocalEventIndex)

assert(viSubIndex >= 0 && viSubIndex <= 4096);
int iEventIndex = vEventSub;

iEventIndex = iEventIndex << 28;

int iSubIndex = 0;

iSubIndex = viSublIndex;

iSubIndex = iSubIndex << 16;

iEventIndex += iSublndex;

iEventIndex += vusilocalEventIndex;

return iEventIndex;

DESCR: Generate event type(H/R/A/L), sub index and local event index from
global event index.
PARA: viEventIndex: global event index (input)
EventSub: H/R/A/L, see type.h (output)
viSubIndex(Sub index, highsub = 0, low sub start from 1) (output)
vusiLocalEventIndex(local event index, odd: controllable,
even:uncontrollable) (output)
RETURN: Generated global event index
ACCESS: public

/
EVENTSUB CProject::GenEventInfo(const int viEventIndex, EVENTSUB & vEventSub,

int & viSubIndex,
unsigned short & vusilocalEventIndex)

int iEventSub = viEventIndex >> 28;

assert (iEventSub <= 3);

vEventSub = (EVENTSUB)iEventSub;

viSubIndex = (viEventIndex & O0xOFFF0000) >> 16;
vusilLocalEventIndex = (viEventIndex & 0xOO0OOFFFF);
return (EVENTSUB)iEventSub;

DESCR: Add an event to CProject event map
If the event exists already exists in the map, the it should have
same global index; Otherwise the event sets are not disjoint
PARA: vsEventName: Event name(input)
viEventIndex: global event index (input)
cEventSub: Event type (’H", °L’, ’R’, ’A’)
(output, only for new events)
cControllable: Controllable? (’Y’, ’N’) (output) (only for new events)

RETURN: 0: success
<0 the event sets are not disjoint.

ACCESS: public

int CProject::AddPrjEvent(const string & vsEventName, const int viEventIndex,

{

EVENTSUB &vEventSub, int & viSubIndex)

EVENTS: :const_iterator citer;

citer = m_AllEventsMap.find(vsEventName) ;

if (citer != m_AllEventsMap.end()) //the event exists, check if the global
c //event index is same.

if (citer->second != viEventIndex)
vEventSub = (EVENTSUB) (citer->second >> 28);
viSubIndex = (citer->second & OxOFFF0000) >> 16;
return -1;

}

else //the event does not exist

m_AllEventsMap[vsEventName] = viEventIndex;
m_InvAllEventsMap [viEventIndex] = vsEventName;

return O;
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*
/* DESCR: Search an event by its name
* PARA: vsEventName: Event name(input)
* RETURN: >0: Gloable event index
* <0:_not found
* ACCESS: public
*/
int CProject::SearchPrjEvent(const string & vsEventName)
{
EVENTS: :const_iterator citer;
citer = m_AllEventsMap.find(vsEventName) ;
if (citer != m_AllEventsMap.end()) //the event exists
return citer->second;
else //the event does not exist
return -1;
}
/%%
* DESCR: Save prj info in memory to a file (for checking)
* PARA: fout: output file stream

* RETURN: O: sucess -1: fail
* ACCESS: public
*/
int CProject::PrintPrj(ofstream& fout)
{
try
{
fout << "# Project File." << endl << endl;
fout << "[SYSTEM]" << endl;
fout << m_sPrjName << endl;
fout << endl;
fout << "[HIGH]" << endl;
fout << m_pHighSub->GetSubName() << endl;
fout << endl;
fout << "[LOW]" << endl;
fout << m_iNumofLows << endl;
for (int i = 0; i < m_iNumofLows; i++)

fout << m_pLowSub[i]->GetSubName() << endl;

}
fout << " " << endl;

}
catch(...)
{
return -1;

return 0;

}

/%%

* DESCR: Save all the sub files in this project to a text file for checking
* PARA: sFileName: output file name

* RETURN: O: sucess -1: fail

* ACCESS: public

*/
int CProject::PrintPrjAll(string sFileName)
{
ofstream fout;
try
{
fout.open(sFileName.data());
if (!fout)
throw -1;
PrintPrj(fout);
if (m_pHighSub->PrintSubAll(fout) < 0)
throw -1;
for (int i = 0; i < m_iNumofLows; i++)
if (m_pLowSub[i]->PrintSubAll(fout) < 0)
throw -1;
fout.close();
}
catch(...)
if (fout.is_open())
fout.close();
SetErr(sFileName + ":Unable to create the print file.",
HISC_BAD_PRINT_FILE);
return -1;
return 0;
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/%Koo okok ok okokok ok ok skok ok ok ook skok ok ok okokskok ok ok sk ko ok ok kskokokok ok ok sk ok ok ok ok ok ok
FILE: Sub.h
DESCR: Header file for Sub*.cpp (subsystem processing file)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
koo stk ok ok stk ok ok ok ok stk kb o sk sk s ok o stk s kb s ko ko ko sk ko kb s ko sk okok /
#ifndef _SUB_H_
#define _SUB_H_
#include <string>
#include <map>
#include "type.h"

#include "DES.h"
#include <fstream>
#include <fdd.h>
#include "BddHisc.h"
using namespace std;

class CSub

public: //public methods
CSub(const string & vsSubFile, int viSubIndex);
virtual ~“CSub();
virtual unsigned short AddSubEvent(const string & vsEventName,
const EVENTSUB vEventSub,
const EVENTTYPE vEventType) ;
virtual int PrintSub(ofstream & fout) = 0;
virtual int PrintSubAll (ofstream& fout) = 0;
virtual string SearchEventName (EVENTSUB k,unsigned short usiLocallndex) = 0;
virtual int LoadSub() = 0;
virtual int SynSuper(const HISC_COMPUTEMETHOD computemethod,
HISC_SUPERINFO &superinfo,
const HISC_SAVESUPERTYPE savetype,
const string& savepath) = 0;
virtual int VeriSub(const HISC_TRACETYPE showtrace,
HISC_SUPERINFO & superinfo,
const HISC_SAVEPRODUCTTYPE savetype,
const string& savepath) = 0;
public: //access methods
virtual string GetSubName() const {return m_sSubName;};
virtual int GetSubIndex() const {return m_iSubIndex;};
virtual int GetNumofDES() const
{return m_iNumofPlants + m_iNumofSpecs + m_iNumofIntfs;};
virtual unsigned short GetMaxUnCon(EVENTSUB EventSub)
{return m_usiMaxUnCon[EventSub];};
virtual unsigned short GetMaxCon(EVENTSUB EventSub)
{return m_usiMaxCon[EventSub];};
private: //DES reorder related memebers
int ** m_piCrossMatrix;
int DESReorder_Sift();
double TotalCross_Sift(double d0ldCross, double dSwapCross,
int iCur, int iFlag);
double cross(int i, int j);
int DESReorder_Force();
void UpdatePos();
void InsertDES(int iCur, int iPos);
double TotalCross_Force();
double Force(int i);
int InitialDESOrder();
protected: //protected methods
virtual string GetDESFileFromSubFile(const string & vsSubFile,
const string &vsDES);
virtual int MakeBdd() = 0;
virtual int InitBddFields();
virtual int ClearBddFields();
int DESReorder();
//SaveSuper related methods
int SaveSuper(const bdd & bddReach, const HISC_SAVESUPERTYPE savetype,
const string & savepath);
int PrintStateSet(ofstream & fout, const bdd & bddStateSet,
STATES & statesMap, int viSetFlag);
int PrintEvents(ofstream & fout);
int PrintTextTrans(ofstream & fout, bdd & bddController,
EVENTSUB EventSub, unsigned short usilLocallndex,
const bdd & bddReach, string sEventName,
STATES & statesMap);
bdd SimplifyController(const bdd & bddController, EVENTSUB EventSub,
const unsigned short usilndex) ;
protected: //fields
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string m_sSubFile; //this subsytem file name(".sub") with path.

string m_sSubName; //This subsystem name
int m_iSubIndex; //This subsystem index (High: O Low: 1,2,...)
int m_iNumofPlants; //Number of Plant DES
int m_iNumofSpecs; //Number of Specification DES
int m_iNumofIntfs; //Number of Interface DES
//(High: all interface DES; Low: 1)
CDES **m_pDESArr; //DES Array for all the DES in high or low levels.

//(High: including all interface DES,

//Low: only including 1 DES for this subsystem)
LOCALEVENTS m_SubEventsMap; //save all the events map in this subsytems

//(name (key), local index(16 bits))
//just for compute local event index.

unsigned short m_usiMaxCon[4]; //Max index of controllable events (1,3,...)
unsigned short m_usiMaxUnCon[4];//Max index of uncontrollable events(2,4,..)
/*BDD needed fields*/
int m_iNumofBddNormVar; //Num of BDD normal variables in the sub.
int *m_piDESOrderArr; //DES indices organized as clusters.
int *m_piDESPosArr; //DES positions int the m_piDESOrderArr
bdd m_bddInit; //Initial state predicate
bdd m_bddMarking; //Marking states predicate
bdd m_bddSuper; //The generated supervisor
LI111177777777777777777777777777777777777777777777777/1771777177777
//Transition predicates and its variable sets, variable pairs.
//0: High level events
//1: Request events
//2: Answer events
//3: Low level events
LII111777777777771777777777777777777777777777777777777171771777777777

//Transition predicates

bdd *m_pbdd_ConTrans[4] ;

bdd *m_pbdd_UnConTrans [4] ;

bdd *m_pbdd_UnConPlantTrans[4];

//variable(DES index) set for transition predicates

bdd *m_pbdd_ConVar [4];

bdd *m_pbdd_ConVarPrim[4];

bdd *m_pbdd_UnConVar [4] ;

bdd *m_pbdd_UnConVarPrim([4];

//plant part variables

bdd *m_pbdd_UnConPlantVar [4];

bdd *m_pbdd_UnConPlantVarPrim[4];

bdd *m_pbdd_ConPhysicVar[4]; //for simplifying controller (note: physical)
bdd *m_pbdd_ConPhysicVarPrim([4];//for simplifying controller (note:physical)
//variable pairs(normal-prime)

bddPair **m_pPair_Con[4];

bddPair #*m_pPair_UnCon[4];

bddPair **m_pPair_ConPrim[4];

bddPair #**m_pPair_UnConPrim[4];

};
#endif //_SUB_H_
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[ kskskokskok sk sk ok sk ok sk ok sk ok sk ok ok sk ok sk sk sk sk ok sk ok sk sk sk ok ok sk ok sk sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk ok ok ok
FILE: Sub.cpp
DESCR: Processing subsystem file(.sub)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ok ok ok sk sk sk ook sk ok sk ok sk sk ok ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok ok ok sk sk ok ok /

#include "Sub.h"
#include <string>

#include "DES.h"
#include <map>

#include <cassert>

#include <fdd.h>

#include "pubfunc.h"

#include "errmsg.h"

#include "type.h"

#include "Project.h"

using namespace std;

extern CProject *pPrj;

VASS

* DESCR: Constructor

* PARA: vsSubFile: subsystem file name with path (.sub) (input)
* viSubIndex: subsystem index (high: O, low: 1,2,...) (input)
* RETURN: None

* ACCESS: public
*

Su

/

CSub: :CSub(const string & vsSubFile, int viSubIndex)
{
m_sSubFile = vsSubFile;
m_sSubName.clear();
m_iSubIndex = viSublIndex;
m_iNumofPlants = -1;
m_iNumofSpecs = -1;
m_iNumofIntfs = -1;
m_pDESArr = NULL;
m_SubEventsMap.clear();

for (int k = 0; k < 4; k++)
{

m_usiMaxCon[k] = OxFFFF;
m_usiMaxUnCon[k] = 0x0;

m_piDESOrderArr = NULL;
m_piDESPosArr = NULL;
InitBddFields();

}

/**

* DESCR: Destructor
* PARA: None

* RETURN: None

* ACCESS: public

*/
CSub: : “CSub ()
if (m_pDESArr != NULL)
{
int iNumofDES = this->GetNumofDES();
for (int i = 0; i < iNumofDES; i++)

if (m_pDESArr([i] != NULL)

{
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES && m_iSubIndex == 0)
continue;
else
delete m_pDESArr[i];
m_pDESArr[i] = NULL;
}
}

¥
delete[] m_pDESArr;
m_pDESArr = NULL;

}

delete[] m_piDESOrderArr;
m_piDESOrderArr = NULL;
delete[] m_piDESPosArr;
m_piDESPosArr = NULL;

ClearBddFields();
}
/*
* DESCR: Initialize BDD related data members
* PARA: None
* RETURN: O
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* ACCESS: protected

*/
%nt CSub: : InitBddFields ()

m_iNumofBddNormVar = O;
m_bddInit = bddtrue;

m_bddMarking = bddtrue;
m_bddSuper = bddfalse;

for (int k = 0; k < 4; k++)
{

m_pbdd_ConTrans [k] = NULL;
m_pbdd_UnConTrans [k] = NULL;
m_pbdd_UnConPlantTrans[k] = NULL;
m_pbdd_ConVar [k] = NULL;
m_pbdd_ConVarPrim[k] = NULL;
m_pbdd_UnConVar [k] = NULL;
m_pbdd_UnConVarPrim[k] = NULL;
m_pbdd_UnConPlantVar[k] = NULL;
m_pbdd_UnConPlantVarPrim[k] = NULL;
m_pbdd_ConPhysicVar[k] = NULL;
m_pbdd_ConPhysicVarPrim[k] = NULL;
m_pPair_Con[k] = NULL;
m_pPair_UnCon[k] = NULL;
m_pPair_ConPrim[k] = NULL;
m_pPair_UnConPrim[k] = NULL;

return 0;
1
/*
* DESCR: Release memory for BDD related data members
* PARA: None
* RETURN:
* ACCESS: protected
*/

%nt CSub: :ClearBddFields ()
for (int k = 0; k < 4; k++)
{

delete[] m_pbdd_ConTrans[k];
m_pbdd_ConTrans [k] = NULL;

delete[] m_pbdd_UnConTrans [k];
m_pbdd_UnConTrans [k] = NULL;
delete[] m_pbdd_UnConPlantTrans[k];
m_pbdd_UnConPlantTrans[k] = NULL;
delete[] m_pbdd_ConVar [k];
m_pbdd_ConVar [k] = NULL;

delete[] m_pbdd_UnConVar[k];
m_pbdd_UnConVar [k] = NULL;

delete[] m_pbdd_ConVarPrim[k];
m_pbdd_ConVarPrim[k] = NULL;
delete[] m_pbdd_UnConVarPrim([k];
m_pbdd_UnConVarPrim[k] = NULL;
delete[] m_pbdd_UnConPlantVar [k];
m_pbdd_UnConPlantVar [k] = NULL;
delete[] m_pbdd_UnConPlantVarPriml[k];
m_pbdd_UnConPlantVarPrim[k] = NULL;
delete[] m_pbdd_ConPhysicVar[k];
m_pbdd_ConPhysicVar[k] = NULL;
delete[] m_pbdd_ConPhysicVarPriml[k];
m_pbdd_ConPhysicVarPrim[k] = NULL;
if (m_pPair_UnCon[k] != NULL)

{

for (int i = 0; i < m_usiMaxUnCon[k]; i += 2)
if (m_pPair_UnConl[k] [i/2] != NULL)
bdd_freepair(m_pPair_UnCon[k] [i/2]);
m_pPair_UnCon[k] [i/2] = NULL;
}
delete[] m_pPair_UnCon[k];
m_pPair_UnCon[k] = NULL;

}
if (m_pPair_Con[k] != NULL)
{
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for (int i = 1; i < (unsigned short) (m_usiMaxCon[k] + 1); i += 2)
if (m_pPair_Con[k][(i - 1)/2] != NULL)
{

bdd_freepair(m_pPair_Con[k][(i - 1)/2]);
m_pPair_Con[k][(i - 1)/2] = NULL;
}

}
delete[] m_pPair_Conl[k];
m_pPair_Con[k] = NULL;
}
if (m_pPair_UnConPrim[k] != NULL)
{
for (int i = 0; i < m_usiMaxUnCon[k]; i += 2)

if (m_pPair_UnConPrim[k] [i/2] != NULL)
{

bdd_freepair(m_pPair_UnConPrim([k] [i/2]);
m_pPair_UnConPrim[k] [i/2] = NULL;
}

}
delete[] m_pPair_UnConPrim([k];
m_pPair_UnConPrim[k] = NULL;

if (m_pPair_ConPrim[k] != NULL)

{
for (int i = 1; i < (unsigned short) (m_usiMaxCon[k] + 1); i += 2)
if (m_pPair_ConPrim[k][(i - 1)/2] != NULL)
{
bdd_freepair(m_pPair_ConPrim[k] [(i - 1)/21);
m_pPair_ConPrim[k] [(i - 1)/2] = NULL;
}
delete[] m_pPair_ConPrim[k];
m_pPair_ConPrim[k] = NULL;
}
return 0;
}
/*
* DESCR: Generate a DES file name with path (*.hsc) from a sub file name
* with path (.sub) and a DES file name without path.
* ex: vsSubFile = "/home/roger/high.sub", vsDES = "AttchCase.hsc",
* will return "/home/roger/AttchCase.hsc"
* PARA: vsSubFile: sub file name with path
* vsDES: DES file name without path

* RETURN: Generated DES file name with path
* ACCESS: protected

*/
string CSub::GetDESFileFromSubFile(const string & vsSubFile,
const string &vsDES)

{
assert(vsSubFile.length() > 4);
assert(vsSubFile.substr(vsSubFile.length() - 4) == ".sub");
assert (vsDES.length() > 0);
string sDES = vsDES;
if (sDES.length() > 4)
if (sDES.substr(sDES.length() - 4) == ".hsc")
{
sDES = sDES.substr(0, sDES.length() - 4);
}
}
sDES += ".hsc";
unsigned int iPos = vsSubFile.find_last_of(’/’);
if ( iPos == string::npos)
return sDES;
else
return vsSubFile.substr(0, iPos + 1) + sDES;
}
*k
* DESCR: Add events to the event Map of this sub. If the event already exits,
* return its index; Otherwise generate a new 16 bit unsigned index
* and return the index.
* PARA: vsEventName: Event name
* vEventSub: Event Sub (H_EVENT/R_EVENT/A_EVENT/L_EVENT),
* vEventType: Controllable? (CON_EVENT, UNCON_EVENT)
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* RETURN: >0: event index (odd: controllable even: uncontrollable)
* 0: _error
* ACCESS: public
*/
unsigned short CSub::AddSubEvent(const string & vsEventName,
const EVENTSUB vEventSub,
const EVENTTYPE vEventType)

LOCALEVENTS: :const_iterator citer;
citer = m_SubEventsMap.find(vsEventName);

if (citer != m_SubEventsMap.end()) //the event exists, return its index
return citer->second;

else //the event does not exist, generate a new index.
if (vEventType == CON_EVENT)
{

m_usiMaxCon[vEventSub] += 2;
m_SubEventsMap [vsEventName] = m_usiMaxCon[vEventSub];
return m_usiMaxCon[vEventSub] ;

else
{

m_usiMaxUnCon [vEventSub] += 2;
m_SubEventsMap [vsEventName] = m_usiMaxUnCon[vEventSub];
return m_usiMaxUnCon[vEventSub];

return 0;
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[ ke sk sk skok sk sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk ok ok sk sk ok ok ok
FILE: Subl.cpp
DESCR: Reordering the DES in the high-level or one low-level.
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sk sk ok ok ok sk sk ok ok ok ok sk sk ke sk ok ok sk sk sk s sk ok ok sk sk sk e sk sk ok sk sk sk s sk sk sk sk sk sk ok sk sk sk e sk ok sk ok ek ok /

#include <cassert>
#include <vector
#include "DES.h"
#include "pubfunc.h"

#include <cstdlib>
#include "Sub.h"
#include "Project.h"

/%%

* DESCR: Main DES Reorder procedure
* PARA: None

* RETURN: O

* ACCESS: public

*/
int CSub::DESReorder()
{

int iNumofDES = this->GetNumofDES() ;

//compute the marix storing number of shared events between every two DES

m_piCrossMatrix = new (int #*) [iNumofDES];

for (int i = 0; i < iNumofDES; i++)

m_piCrossMatrix[i] = new int[iNumofDES];
for (int i = 0; i < iNumofDES; i++)
for (int j = 0; j < iNumofDES; j++)
m_piCrossMatrix[i] [j] =
NumofSharedEvents (m_pDESArr[i]->GetEventsArr(),

m_pDESArr [i]->GetNumofEvents(),
m_pDESArr[j]->GetEventsArr(),
m_pDESArr [j]->GetNumofEvents());

//Generate an initial order

InitialDESOrder();

UpdatePos () ;

//Algorithm with force

DESReorder_Force() ;

UpdatePos () ;

//sifting algorithm

DESReorder_Sift();

UpdatePos () ;

//clear memory

for (int i = 0; i < iNumofDES; i++)

delete[] m_piCrossMatrix[i];
m_piCrossMatrix[i] = NULL;

delete[] m_piCrossMatrix;

m_piCrossMatrix = NULL;

//0rder m_pDESArr according to the order of m_piDESOrderArr.
CDES **pDESTmp = NULL;

PDESTmp = new (CDES *) [this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)

pDESTmp [i] = m_pDESArr [m_piDESOrderArr[il];
}
for (int i = 0; i < this->GetNumofDES(); i++)
m_pDESArr[i] = pDESTmpl[i];

¥
delete[] pDESTmp;

return 0;

1
/*

* DESCR: Using sifting algorithm to reorder DES
* PARA: None

* RETURN: O

* ACCESS: private

*/

int CSub::DESReorder_Sift ()
{

int iNumofDES = this->GetNumofDES();
bool bChanged = false;

double dMinCross = 0.0;

double dCurCross = 0.0;

int *piCurOpt = new int[iNumofDES];
int *pilnit = new int[iNumofDES];
int iTemp = O;
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int iCur = 0;

int iCount = 0;

double d0ldCross = 0.0
double dInitCross
double dSwapCross
//initialize optimal des order and loop initial order;
for (int j = 0; j < iNumofDES; j++)

O O~-

0.
0.

H
H

piCurOpt[j] = m_piDESOrderArr[j];
piInit[j] = m_piDESOrderArr[j];

//initialize cross over value

dMinCross = TotalCross_Sift(0, 0, 0, 0);
d01dCross dMinCross;

dInitCross = dMinCross;

//Initialize m_piDESPosArr

UpdatePos() ;

//Optimize the DES order

do

{

iCount++;

bChanged = false;

for (int iDES = 0; iDES < iNumofDES; iDES++)
{

iCur = m_piDESPosArr [iDES];

//move backward
for (int i = iCur; i < iNumofDES - 1; i++)

//compute dSwapCross

dSwapCross = TotalCross_Sift(0, 0, i, 1);

//swap i, i+l

iTemp = m_piDESOrderArr[i + 1];

m_piDESOrderArr[i + 1] = m_piDESOrderArr[i];
m_piDESOrderArr([i] = iTemp;

//test if current order is better

dCurCross = TotalCross_Sift(d0ldCross, dSwapCross, i, 2);
d0l1dCross = dCurCross;

%f (dCurCross - dMinCross < 0)

bChanged = true;
dMinCross = dCurCross;
for (int j = 0; j < iNumofDES; j++)
piCurOpt[j] = m_piDESOrderArr[j];
}
}
//move forward
for (int j = 0; j < iNumofDES; j++)
m_piDESOrderArr[j] = piInit[jl;
d01dCross = dInitCross;
for (int i = iCur; i > 0; i--)

//compute dSwapCross

dSwapCross = TotalCross_Sift(0, 0, i - 1, 1);

//swap i - 1, i

iTemp = m_piDESOrderArr[i - 1];

m_piDESOrderArr[i - 1] = m_piDESOrderArr[i];
m_piDESOrderArr[i] = iTemp;

//test if current order is better

dCurCross = TotalCross_Sift(d0ldCross, dSwapCross, i - 1, 2);
d01dCross = dCurCross;

if (dCurCross - dMinCross < 0)

bChanged = true;
dMinCross = dCurCross;
for (int j = 0; j < iNumofDES; j++)
piCurOpt[j] = m_piDESOrderArr[j];
}

dInitCross = dMinCross;
d01dCross = dMinCross;
if (bChanged)
{
for (int j = 0; j < iNumofDES; j++)
{
m_piDESOrderArr[j] = piCurOptl[j];
piInit[j] = m_piDESOrderArr[j];

}
UpdatePos () ;
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else
{

for (int j = 0; j < iNumofDES; j++)
m_piDESOrderArr[j] = pilnit[j];
}

}
}while(bChanged == true );
delete[] piCurOpt;
piCurOpt = NULL;
delete[] piInit;
pilnit = NULL;
return O;

DESCR: Compute total cross for sifting algorithm

PARA: d01ldCross: old cross value
dSwapCross: cross changed due to swapping

iCur: current position
iFlag: 0: completey compute total cross value
1: compute total cross based on the old cross and swapped DES
(much faster)

RETURN: mnew cross value
ACCESS: private

double CSub::TotalCross_Sift(double d0ldCross, double dSwapCross,

{

N

*
*
*
*
*

*/

int iCur, int iFlag)

double dCross = 0;
if (iFlag == 0) //completely compute the cross
{

for (int i = 0; i < this->GetNumofDES(); i++)

for (int j = i + 2; j < this->GetNumofDES(); j++)
dCross += cross(i, j);

}

}
else if (iFlag == 1) //only compute iCur, iCur + 1
{
//iCur
for (int i = 0; i < iCur - 1; i++)
dCross += cross(i, iCur);
for (int i = iCur + 2; i < this->GetNumofDES(); i++)
dCross += cross(iCur, i);
//iCur + 1
for (int i = 0; i < (iCur + 1) - 1; i++)
dCross += cross(i, iCur + 1);
for (int i = (iCur + 1) + 2; i < this->GetNumofDES(); i++)
dCross += cross(iCur + 1, i);

}
else //update

//iCur

for (int i = 0; i < iCur - 1; i++)
dCross += cross(i, iCur);

for (int i = iCur + 2; i < this->GetNumofDES(); i++)
dCross += cross(iCur, i);

//iCur + 1

for (int i = 0; i < (iCur + 1) - 1; i++)
dCross += cross(i, iCur + 1);

for (int i = (iCur + 1) + 2; i < this->GetNumofDES(); i++)
dCross += cross(iCur + 1, i);

dCross = d0ldCross - dSwapCross + dCross;

return dCross;

DESCR: Compute the cross for DES i and DES j
PARA: i,j: DES position index,

RETURN: the cross for DES i and DES j

ACCESS: private

double CSub::cross(int i, int j)

{

}

/*
*

return sqrt((double) (m_piCrossMatrix[m_piDESOrderArr[i]]
[m_piDESOrderArr[jl]) * (j - i - 1));

DESCR: Initialize a DES order for the sifting reorder algorithm
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* (some ideas are from Zhonghua Zhong’s STCT)
* PARA: None

* RETURN: O

* ACCESS: private

*/
int CSub::DESReorder_Force()
{

N

*
*
*
*
*

*/

int iNumofDES = this->GetNumofDES() ;
int iCount = 0;

//Optimize the DES order

bool bChanged = false;

double dMinCross = TotalCross_Force();
double dCurCross 0.0;

%o

iCount++;

bChanged = false;

int iOptPos = 0;

int iDES = 0;

for (iDES = 0; iDES < iNumofDES; iDES++)
{

int iPrePos = 0;

int iNextPos = iNumofDES - 1;
int iPos = m_piDESPosArr [iDES];
iOptPos = iPos;

int iNewPos = O0;

ghile (true)

double dForce = Force(iPos);
if (dForce < -0.05)

iNextPos = iPos;
iNewPos = iPos - (((iPos - iPrePos) % 2 == 0)?
((iPos - iPrePos) / 2):((iPos - iPrePos) / 2 + 1));
if (iNewPos <= iPrePos)
break;
InsertDES(iPos, iNewPos);
UpdatePos() ;
iPos = iNewPos;
dCurCross = TotalCross_Force();
if (dCurCross < dMinCross - 0.05)

iOptPos = iPos;
dMinCross = dCurCross;
bChanged = true;

}
}
else if (dForce > 0.05)
{
iPrePos = iPos;
iNewPos = iPos + (((iNextPos - iPos) % 2 == 0)7

((iNextPos - iPos) / 2):((iNextPos - iPos) / 2 + 1));
if (iNextPos <= iNewPos)
break;
InsertDES(iPos, iNewPos);
UpdatePos() ;
iPos = iNewPos;
dCurCross = TotalCross_Force();
%f (dCurCross < dMinCross - 0.05)

iOptPos = iPos;
dMinCross = dCurCross;
bChanged = true;
}
}

else
break;

}
InsertDES (m_piDESPosArr [iDES], iOptPos);
UpdatePos () ;

}
}while(bChanged == true);
return O;

DESCR: Update DES position in array m_piDESPosArr according the new order
PARA: None

RETURN: None

ACCESS: private

void CSub::UpdatePos ()

{
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for (int i = 0 ; i < this->GetNumofDES(); i++)
m_piDESPosArr [m_piDESOrderArr[i]] = i;

return;

}
/*

* DESCR: Swap variables in m_piDESOrderArr for DESReorder_Force()
* PARA: iCur: current variable position

* iPos: destinate variable position

* RETURN: None

* ACCESS: private

*/

void CSub::InsertDES(int iCur, int iPos)

int iDES = m_piDESOrderArr[iCur];
if (iCur < iPos)
{

for (int i = iCur + 1; i <= iPos; i++)
m_piDESOrderArr[i - 1] = m_piDESOrderArr[i];
m_piDESOrderArr[iPos] = iDES;

else if (iCur > iPos)
for (int i = iCur - 1; i >= iPos; i--)

m_piDESOrderArr[i + 1] = m_piDESOrderArr[i];
m_piDESOrderArr[iPos] = iDES;

return;
}
/*
* DESCR: Compute total cross for DESReorder_Force()
* PARA: None
* RETURN: total cross
* ACCESS: private
*/

double CSub::TotalCross_Force()
{

double dCross = 0;
for (int i = 0; i < this->GetNumofDES(); i++)

for (int j = i + 2; j < this->GetNumofDES(); j++)
dCross += cross(i, j);

return dCross;

}
/*

* DESCR: Decide to move DES_i left or right. (< O : move left; >0 move right)
* for DESReorder_Force()

* PARA: i: position in m_piDESOrderArr

* RETURN: returned force

* ACCESS: private

*/

double CSub::Force(int i)
{

double dForce = O;
for (int j = 0; j < i - 1; j++)
dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[il]
[m_piDESOrderArr[j1] * (j - i + 1));
for (int j = i + 2; j < this->GetNumofDES(); j++)
dForce += sqrt((double)m_piCrossMatrix[m_piDESOrderArr[i]]
[m_piDESOrderArr[jl] * (j - i - 1));
return dForce;

}

/%

* DESCR: Initialize a DES order

* PARA: None

* RETURN: O

* ACCESS: private

*/

%nt CSub: :InitialDESOrder ()
int i = 0;
int j = 0;
int k = 0;

int iNumofDES = this->GetNumofDES();
//There is no DES at all
if (iNumofDES <= 0)
return O;
//Only one DES
m_piDESOrderArr[0] = O;

if (iNumofDES <= 1)
return O;
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int iPos = 0;

double dLeftCross = 0;
double dRightCross = 0;
double dNewCross = 0;
double d01dCross = 0;
vector<int> vecDESOrder;
vector<int> vecShared;
//two or more DES
vecDESOrder . push_back(0) ;
vecDESOrder.push_back(1);

for (i = 2; i < iNumofDES; i++)

vecShared.clear();
for (j = 0; j < i; j++)

vecShared.push_back(m_piCrossMatrix[i] [vecDESOrder[jl11);

iPos = i;
d0ldCross = MAX_DOUBLE;
for (j = i; j >= 0; j—-)
{
dLeftCross = 0;
dRightCross = 0;

for (k = 0; k < j; kt++)

dLeftCross += vecShared[k] * (j - k - 1);
}
for (k = j; k < i; kt++)

dRightCross += vecShared[k] * (k - j);

}
dNewCross = dLeftCross + dRightCross;

if (dNewCross == 0)
{

iPos = j;
break;
}
else
if (dNewCross < d0ldCross - 0.05)
d01dCross = dNewCross;
iPos = j;
}
}

}
if (iPos == 0)

vecDESOrder. insert (vecDESOrder.begin(), 1i);

else if (iPos == i)
vecDESOrder.push_back(i) ;
%lse

vector<int>::iterator itr = vecDESOrder.begin();

itr += iPos;
vecDESOrder.insert (itr, i);

assert ((int)vecDESOrder.size() == this->GetNumofDES());
for (i = 0; i < (int)vecDESOrder.size(); i++)

m_piDESOrderArr[i] = vecDESOrder[i];

return 0;
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/R stk ok ok ok ok sk ok ok ok sk ok sk sk sk s ok sk o sk ok sk s sk ok ok s sk o sk ok sk sk sk sk ok sk sk sk ok s ok sk o ok ok ok
FILE: Sub2.cpp
DESCR: Save synthesized automata-based supervisor, or synthesized local
control predicates, or the syn-product of a verified system.
For the high-level or one low-level.
AUTH: Raoguang Song
DATE: (C) Jan, 2006
ok stk o ok ok o ok ok ok sk ok sk sk ok s ok sk o ok ok sk s sk ok ok s sk ko sk sk sk sk ok sk ko sk ok sk skok sk okok /

#include "LowSub.h"
#include "HighSub.h"
#include "Sub.h"
#include "Sub.h"
#include "pubfunc.h"

#include "type.h"

#include "fdd.h"
#include "Project.h"

#include "errmsg.h"
#include <string>
#include <cassert>
using namespace std;
extern CProject *pPrj;

*
/* DESCR: Save synthesized automata-based supervisor, or synthesized local
* control predicates, or the syn-product of a verified system.

* PARA: bddReach: BDD including all the reachable states (input)

* savetype: which format to save (see type.h) (input)

* savepath: where to save the result (input)

* RETURN: O0: sucess -1: fail

* ACCESS: protected

*/

int CSub::SaveSuper(const bdd & bddReach, const HISC_SAVESUPERTYPE savetype,
const string & savepath)

{

string sEventName;
bdd bddController = bddfalse;
bdd bddSimController = bddfalse;
string sCurFile;
ofstream fout;
string sLine;
string sSavePath;
char scFileName [MAX_PATH];
STATES statesMap;
string sInitState;
//save bdd variable file
try
{
sSavePath = savepath;
if (sSavePath.length() > 0)

if (sSavePath[sSavePath.length() - 1] != */?)
sSavePath += "/";

}

//bdd Controller

if (savetype == HISC_SAVESUPER_BDD || savetype == HISC_SAVESUPER_BOTH)
{

sCurFile = sSavePath + m_sSubName + "_var.txt";
fout.open(sCurFile.data());

if (!fout)

throw -1;
for (int i = 0; i < this->GetNumofDES(); i++)
{

sLine = m_pDESArr[i]->GetDESName() + " : ";
int ivarnum = fdd_varnum(i * 2);
for (int j = 0; j < ivarnum; j++)
{
sLine += str_itos(fdd_vars(i * 2)[j1);
sLine += " ";
fout << sLine << endl;
sLine.clear();
for (int j = 0; j < m_pDESArr([i]->GetNumofStates(); j++)
{
sLine = str_itos(j);
sLine += " ";
sLine += m_pDESArr[i]->GetStateName(j);
fout << sLine << endl;

}
fout << endl;

fout.close();
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//automata file
if (savetype == HISC_SAVESUPER_AUTOMATA ||

savetype == HISC_SAVESUPER_BOTH)
{

sCurFile = sSavePath + m_sSubName + "_sup.txt";
fout.open(sCurFile.data());
if (!fout)
throw -1;
//print the DES order in the state vector
fout << "# OUTPUT ORDER: ";
for (int i = 0; i < this->GetNumofDES(); i++)

fout << m_pDESArr[m_piDESPosArr[i]]->GetDESName() << " ";

}
fout << endl << endl;
//put init state into statesMap
//the index for initial state should be 0
//(mainly for convieniently transforming it to TCT format later)
if (PrintStateSet(fout, m_bddInit, statesMap, 0) < 0)
throw -1;
STATES: :const_iterator csmi = statesMap.begin();
if (csmi !'= statesMap.end())
sInitState = csmi->first;
else
sInitState.clear();

//print [States] Field

fout << "[States]" << endl;

if (PrintStateSet(fout, bddReach, statesMap, 1) < 0)
throw -1;

//print [InitState] Field

fout << endl << "[InitState]" << endl;

if (!sInitState.empty())
fout << "O #" << sInitState << endl;

//print [MarkingStates] Field

fout << endl << "[MarkingStates]" << endl;

if (PrintStateSet(fout, m_bddMarking, statesMap, 2) < 0)
throw -1;

//print [Events] Field

fout << endl << "[Events]" << endl;

if (PrintEvents(fout) < 0)
throw -1;

//print [Transtions] Fields

fout << endl << "[Transitions]" << endl;

for (int k = 0; k < 4; k++)

//UnControllable events
for (unsigned short usi = 2; usi <= m_usiMaxUnCon[k]; usi += 2)
{
sEventName = this->SearchEventName ((EVENTSUB)k, usi);
//\Gamma (N_\sigma \and C)
bddController = bdd_relprod(
m_pbdd_UnConTrans [k] [(usi - 2) / 2],
bdd_replace(bddReach, m_pPair_UnCon[k] [(usi - 2) / 21),
m_pbdd_UnConVarPrim[k] [(usi - 2) / 2]) & bddReach;
//print text transitions
if (savetype == HISC_SAVESUPER_AUTOMATA ||
savetype == HISC_SAVESUPER_BOTH)

if (PrintTextTrans(fout, bddController, (EVENTSUB)k, usi,
bddReach, sEventName, statesMap) < 0)
throw -1;
}

//Controllable events
for (unsigned short usi = 1;

usi < (unsigned short) (m_usiMaxCon[k] + 1); usi += 2)
{

sEventName = this->SearchEventName ((EVENTSUB)k, usi);
bddController = bdd_relprod(

m_pbdd_ConTrans [k] [(usi - 1) / 2],

bdd_replace(bddReach, m_pPair_Con[k] [(usi - 1) / 2]1),

m_pbdd_ConVarPrim[k] [(usi - 1) / 2]) & bddReach;
bddSimController = SimplifyController(bddController,

(EVENTSUB)k, usi);

//high level: H, R events Low level: A, L events.
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if ((m_iSubIndex == 0 && k <= 1) || (m_iSubIndex != 0 && k > 1))
{

//print bdd controller
if (savetype == HISC_SAVESUPER_BDD ||

savetype == HISC_SAVESUPER_BOTH)
{

//not simplified
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + ".bdd";
strcpy(scFileName, sCurFile.data());
if (bdd_fnsave(scFileName, bddController) !'= 0)
throw -1;
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + ".dot";
strcpy(scFileName, sCurFile.data());
if (bdd_fnprintdot(scFileName, bddController) != 0)
throw -1;
//triple-prime simplified
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + "_sim.bdd";
strcpy(scFileName, sCurFile.data());
if (bdd_fnsave(scFileName, bddSimController) != 0)
throw -1;
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + "_sim.dot";
strcpy(scFileName, sCurFile.data());
if (bdd_fnprintdot(scFileName, bddSimController) != 0)
throw -1;
//prime simplified
bddSimController = bdd_simplify(bddController,
m_bddSuper) ;
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + "_re.bdd";

strcpy(scFileName, sCurFile.data());
if (bdd_fnsave(scFileName, bddSimController) != 0)
throw -1;
sCurFile = sSavePath + m_sSubName + "_" +
sEventName + "_re.dot";
strcpy(scFileName, sCurFile.data());
if (bdd_fnprintdot(scFileName, bddSimController) != 0)
throw -1;

}

//print text transitions
if (savetype == HISC_SAVESUPER_AUTOMATA ||
savetype == HISC_SAVESUPER_BOTH)

if (PrintTextTrans(fout, bddController, (EVENTSUB)k, usi,
bddReach, sEventName, statesMap) < 0)
throw -1;

}

}
if (savetype == HISC_SAVESUPER_AUTOMATA ||
savetype == HISC_SAVESUPER_BOTH)
fout.close();

}
catch(...)
{

if (fout) fout.close();

pPrj->SetErr("Unable to save the bdd controller or .",
HISC_BAD_SAVESUPER) ;

return -1;

return O;
}
/%
* DESCR: Print all the state vectors using state names
* PARA: fout: file stream (input)
* bddStateSet: BDD respresentation of the state set (input)
* statesMap: A STL Map to store (state name vector (key), integer
* index)
* viSetFlat: O: Initial state 1: All states 2: Marking States (input)

* RETURN: O: sucess -1: fail
* ACCESS: protected

*/

int CSub::PrintStateSet(ofstream & fout, const bdd & bddStateSet,
STATES & statesMap, int viSetFlag)

{
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int *statevec = NULL;
int iStateIndex = 0;

try
{
string sLine;
bdd bddTemp = bddfalse;
bdd bddNormStateSet = bddtrue;
string sInitState;
bool bInitState = false;
//restrict the prime variable to O
for (int i = 0; i < this->GetNumofDES(); i++)
bddNormStateSet &= fdd_ithvar(i * 2 + 1, 0);
bddNormStateSet &= bddStateSet;
//save number of states
if (viSetFlag != 0)
fout << bdd_satcount(bddNormStateSet) << endl;
//Initial state
STATES: :const_iterator csmi = statesMap.begin();
if (csmi != statesMap.end())
sInitState = csmi->first;
else
sInitState.clear();
//print all the vectors
statevec = fdd_scanallvar (bddNormStateSet);
¥hile ( statevec!= NULL)
sLine.clear();
sLine = "<";
for (int i = 0; i < this->GetNumofDES(); i++)
sLine += m_pDESArr[m_piDESPosArr[i]]->GetStateName (
statevec [m_piDESPosArr[i] * 2]) + ",";
}
sLine = sLine.substr(0, sLine.length() - 1);
sLine += ">";
iStateIndex++;
//state index for initial state should be 0O
if (viSetFlag == 0)
iStatelIndex = 0;
statesMap[sLine] = iStateIndex;
?lse
//for marking states, should show the corresponding state index
if (viSetFlag == 2)
fout << statesMap[sLine] << " #" << sLine << endl;
else //all the states
if (bInitState) //initial state alredy been printed
{
statesMap[sLine] = iStatelIndex;
3 fout << iStateIndex << " #" << sLine << endl;
else
if (sLine != sInitState)
statesMap[sLine] = iStatelIndex;
fout << iStateIndex << " #" << sLine << endl;
else
{
iStateIndex--;
bInitState = true;
fout << "O" << " #" << sLine << endl;
}
}
}
}
//remove the outputed state
bddTemp = bddtrue;
for (int i = 0; i < this->GetNumofDES(); i++)
bddTemp &= fdd_ithvar(i * 2, statevec[i * 2]);
bddNormStateSet = bddNormStateSet - bddTemp;
free(statevec);
statevec = NULL;
statevec = fdd_scanallvar (bddNormStateSet);
}
¥
catch(...)
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delete[] statevec;
statevec = NULL;
return -1;

return 0;

DESCR: Print all events from the pPrj->m_InvAllEventsMap
PARA: fout: file stream (input)

RETURN: O: sucess -1: fail
ACCESS: protected

*/
%nt CSub: :PrintEvents(ofstream & fout)

N

L R O

*
*

*/

char cSub = ’\0’;
char cCon = ’\0’;
string sLine;

try

INVEVENTS: : const_iterator ci = pPrj->GetInvAllEventsMap().begin();
for (; ci != pPrj->GetInvAllEventsMap().end(); ++ci)

{
if (((ci->first & O0xOFFF0000) >> 16 == m_iSubIndex) ||
(((ci->first >> 28) == R_EVENT ||
(ci->first >> 28) == A_EVENT) && m_iSubIndex == 0))
cSub = SubValueToLetter ((EVENTSUB) (ci->first >> 28)) [0];
cCon = ci->first % 2 == 0 ? ’N’:’Y’;
sLine = ci->second + "\t\t";
sLine += cCon;
sLine += "\t\t";
sLine += cSub;
fout << sLine << endl;
}
}
}
catch (...)
{

return -1;

return 0;

DESCR: Print all the transitions one by one
PARA: fout: file stream (input)
bddController: not simplified bdd control predicate for sEventName
EventSub: °H’/’R’/’A’/L’°
usilocallndex: local index (in this sub)
bddReach: BDD respresentation of reachable states in
synthesized automata-based supervisor or syn-product of
the verified system.
sEventName: Event Name
statesMap: state name and index map (index is for the output file)

RETURN: O: sucess -1: fail
ACCESS: protected

int CSub::PrintTextTrans(ofstream & fout, bdd & bddController,

EVENTSUB EventSub, unsigned short usilLocallndex,
const bdd & bddReach, string sEventName,
STATES & statesMap)

int *statevecl = NULL;
int *statevec2 = NULL;
try
{
string sExit;
string sEnt;
bdd bddTemp = bddfalse;
bdd bddNext = bddfalse;

//extract each state from bddController
statevecl = fdd_scanallvar (bddController);
zhile ( statevecl!= NULL)
sExit.clear();
sExit = "<";
for (int i = 0; i < this->GetNumofDES(); i++)
sExit += m_pDESArr[m_piDESPosArr[i]]->GetStateName (
statevecl [m_piDESPosArr[i] * 2]) + ",";
sExit = sExit.substr(0, sExit.length() - 1);
SExit += ">";
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bddTemp = bddtrue;
for (int i = 0; i < this->GetNumofDES(); i++)
bddTemp &= fdd_ithvar(i * 2, statevecl[i * 2]);
bddController = bddController - bddTemp;
free(statevecl);
statevecl = NULL;
statevecl = fdd_scanallvar(bddController);
//Get the target state
if (usilocallndex % 2 == 0)
bddNext =
bdd_replace(
bdd_relprod(
m_pbdd_UnConTrans [EventSub] [(usilocalIndex - 2) / 2],
bddTemp,
m_pbdd_UnConVar [EventSub] [(usiLocalIndex - 2) / 21),
m_pPair_UnConPrim[EventSub] [(usilocallndex - 2) / 2]) &
bddReach;

*bddNext =
bdd_replace(
bdd_relprod(
m_pbdd_ConTrans [EventSub] [(usilocallndex - 1) / 2],
bddTemp,
m_pbdd_ConVar [EventSub] [(usilocalIndex - 1) / 2]),
m_pPair_ConPrim[EventSub] [(usilocalIndex - 1) / 2]) &
bddReach;
statevec2 = fdd_scanallvar (bddNext) ;
if (statevec2 == NULL)
throw -1;
SEnt = "<";
for (int i = 0; i < this->GetNumofDES(); i++)
sEnt += m_pDESArr [m_piDESPosArr[i]]->GetStateName (
statevec2[m_piDESPosArr[i] * 2]) + ",";
sEnt = sEnt.substr(0, sEnt.length() - 1);
sEnt += ">";
free(statevec?2);
statevec2 = NULL;
//print the transition
fout << statesMap[sExit] << " <" << sEventName << "> " <<
statesMap[sEnt] << endl;

els

}

}

catch(...)

{
free(statevecl);
statevecl = NULL;
free(statevec2);
statevec2 = NULL;
return -1;

return O;

*

* DESCR: Compute triple-prime simplified BDD control predicate for an event

* PARA: fout: file stream (input)

* bddController: BDD control predicate for event usilndex

* EventSub: ’H’/’R’/’A’/L’

* usilndex: local index (in this sub)

* RETURN: triple-prime simplified BDD control predicate

* ACCESS: protected

*/

dd CSub::SimplifyController(const bdd & bddController, EVENTSUB EventSub,
const unsigned short usilndex)

//event should be controllable
assert(usilndex % 2 == 1);
bdd bddElig = bddfalse;
bdd bddSpecElig = bddfalse;
//\dHs’
bddElig = bdd_exist (m_pbdd_ConTrans[EventSub] [(usilndex - 1) / 2],
m_pbdd_ConVarPrim[EventSub] [(usiIndex - 1) / 2]);
//spec part
bddSpecElig = bdd_exist(bddElig,
m_pbdd_ConPhysicVar [EventSub] [(usiIndex - 1) / 2]);
return bddSpecElig & bdd_simplify(bddController, m_bddSuper & bddElig);
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[ FFRA AR KKK A KKK KA K KA KKK KA KKK KA KKK KA KKK A KKK KA KKK K KA KKK KKK KK KK
FILE: HighSub.h
DESCR: Header file for HighSub#*.cpp (High-level processing files)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
AR A AR KA KKK KA K KA KKK KA KKK KA KKK KA K KA KKK KA KKK KA KKK KKK KA K [
#ifndef _HSUB_H_
#define _HSUB_H_
#include <string>

#include "Sub.h"
#include "type.h"
#include <fdd.h>
using namespace std;

class CHighSub:public CSub

{
public:
CHighSub(const string & vsHighFile, int viSubIndex);
virtual “CHighSub();
public:
virtual int PrintSub(ofstream& fout);
virtual int PrintSubAll (ofstream & fout);
virtual string SearchEventName (EVENTSUB EventSub,
unsigned short usilocallndex);
virtual int LoadSub();
virtual int SynSuper(const HISC_COMPUTEMETHOD computemethod,
HISC_SUPERINFO &superinfo,
const HISC_SAVESUPERTYPE savetype,
const string& savepath);
virtual int VeriSub(const HISC_TRACETYPE showtrace,
HISC_SUPERINFO & superinfo,
const HISC_SAVEPRODUCTTYPE savetype,
const string& savepath);
private:
virtual int MakeBdd();
int GenConBad(bdd &bddConBad) ;
int VeriConBad(bdd &bddConBad, const bdd &bddReach, string & vsErr);
int GenP3Bad(bdd &bddP3Bad);
int VeriP3Bad(bdd &bddP3Bad, const bdd &bddReach, string & vsErr);
int supcp(bdd & bddP);
bdd cr(const bdd & bddPStart, const bdd & bddP, const int viEventSub,
int & iErr);
bdd r(const bdd &bddP, int &iErr);
virtual int InitBddFields();
virtual int ClearBddFields();
void BadStateInfo(const bdd& bddBad, const int viErrCode,
const HISC_TRACETYPE showtrace,
const string &vsExtralnfo = "");
private:
int *m_piUArr[2]; //Uncontrollable event index array, O:Request 1:Answer
int *m_piCArr([2]; //Controllable event index array, O:Request 1:Answer
bdd *m_pbdd_IVar; //Interface normal variables
bdd *m_pbdd_IVarPrim; //Interface Prime Variables
bdd *m_pbdd_UnConATrans; //transition predicate for answer events
//(for interface alone).
bdd *m_pbdd_ConATrans; //transition predicate for answer events
//(only for interface alone).
};
#endif //_HSUB_H_
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[ kskoskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk ok sk sk sk sk ok sk ok sk sk sk sk ok ok sk sk ok ok ok
FILE: HighSub.cpp
DESCR: Reading high-level DES files and initialze all the BDDs
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sk ke ok o ok ok sk sk sk ok ok ok sk sk ke sk ok ok sk sk sk s sk ok sk sk sk e sk ok ok sk sk sk s sk ok sk sk sk sk ok sk sk sk e sk ok sk ok ok ok /

#include " .h"
#include "HighSub.h"

#include "LowSub.h"
#include <string>

#include "errmsg.h"
#include "type.h"

#include <fdd.h>
#include "DES.h"
#include "Project.h"

#include <fstream>
#include "pubfunc.h"

using namespace std;
extern CProject *pPrj;

/%%

* DESCR: Constructor

* PARA: vsHighFile: subsystem file name with path (.sub) (input)

* viSubIndex: subsystem index (high: 0, low: 1,2,...) (input)
* RETURN: None

* ACCESS: public

*/
CHighSub: :CHighSub(const string & vsHighFile, int viSubIndex):
CSub(vsHighFile, viSubIndex)

{
m_iNumofIntfs = pPrj->GetNumofLows();

m_piUArr[0] = NULL;
m_piUArr[1] = NULL;
m_piCArr [0] NULL;
m_piCArr[1] = NULL;
InitBddFields();

}

/**

* DESCR: Destructor
* PARA: None

* RETURN: None

* ACCESS: public

*/

CHighSub: : "CHighSub ()

{
delete[] m_piUArr[0];
m_piUArr[0] = NULL;
delete[] m_piUArr([1];
m_piUArr[1] = NULL;
delete[] m_piCArr[0];
m_piCArr[0] = NULL;
delete[] m_piCArr[1];
m_piCArr[1] = NULL;
ClearBddFields();

N

*
* DESCR: Initialize BDD related data members (only those in HighSub.h)
* PARA: None
* RETURN: O
* ACCESS: private
*/
int CHighSub::InitBddFields()
{
m_pbdd_IVar = NULL;
m_pbdd_IVarPrim = NULL;
m_pbdd_UnConATrans = NULL;
m_pbdd_ConATrans = NULL;
return 0;
}
/*
* DESCR: Release memory for BDD related data members(only those in Highsub.h)
* PARA: None
* RETURN: O
* ACCESS: private
*/
int CHighSub: :ClearBddFields()
{
delete[] m_pbdd_IVar;
m_pbdd_IVar = NULL;
delete[] m_pbdd_IVarPrim;
m_pbdd_IVarPrim = NULL;
delete[] m_pbdd_UnConATrans;

286



Master Thesis — R. Song — McMaster — Computing and Software

m_pbdd_UnConATrans = NULL;
delete[] m_pbdd_ConATrans;
m_pbdd_ConATrans = NULL;
return 0;

}

/**

* DESCR: Load high-level
* PARA: None

* RETURN: O sucess <0 fail;
* ACCESS: public

*/
int CHighSub: :LoadSub()
{

ifstream fin;

int iRet = O;

CDES *pDES = NULL;
try

m_sSubFile = str_trim(m_sSubFile);
if (m_sSubFile.length() <= 4)

{
pPrj—>SetErr("Inva1id file name: " + m_sSubFile,HISC_BAD_HIGH_FILE);
throw -1;

}

if (m_sSubFile.substr(m_sSubFile.length() - 4) != ".sub")

{
pPrj->SetErr("Invalid file name: " + m_sSubFile,HISC_BAD_HIGH_FILE);
throw -1;

}

fin.open(m_sSubFile.data(), ifstream::in);
if (!fin) //unable to find high sub file

{
pPrj->SetErr("Unable to open file: " + m_sSubFile,
HISC_BAD_HIGH_FILE);
throw -1;

m_sSubName = GetNameFromFile(m_sSubFile);
char scBuf [MAX_LINE_LENGTH];
string sLine;
int iField = -1; //0: SYSTEM 1:PLANT 2:SPEC
char *scFieldArr[] = {"SYSTEM", "PLANT", "SPEC"};
string sDESFile;
int iTmp = O;
int iNumofPlants = 0;
int iNumofSpecs = 0;
while (fin.getline(scBuf, MAX_LINE_LENGTH))
{
sLine str_nocomment (scBuf) ;
sLine str_trim(sLine);
if (sLine.empty())
continue;
if (sLine[0] == ’[’ && sLine[sLine.length() - 1] == ’]°)
{

sLine = sLine.substr(l, sLine.length() - 1);
sLine = sLine.substr(0, sLine.length() - 1);
sLine = str_upper(str_trim(sLine));
iField++;

if (iField <= 2)

if (sLine != scFieldArr[iField])
{

pPrj->SetErr (m_sSubName +
": Field name or order is wrong!",

HISC_BAD_HIGH_FORMAT) ;
throw -1;

}
%f (iField == 1)

//Check number of Plants and apply for memory space
if (m_iNumofPlants + m_iNumofSpecs <= 0)
{
pPrj->SetErr (m_sSubName +
": Must have at least one DES in this level.",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

if (m_iNumofPlants < O || m_iNumofSpecs < 0)
{
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pPrj->SetErr (m_sSubName +
": Must specify the number of plant DES and spec DES.",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

}

m_pDESArr = new (CDES *) [this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)
m_pDESArr[i] = NULL;

//Initialize m_piDESOrderArr

m_piDESOrderArr = new int[this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)
m_piDESOrderArr[i] = i;

//Initialize m_piDESPosArr

m_piDESPosArr = new int[this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)
m_piDESPosArr[i] = i;

}

else
{

pPrj->SetErr (m_sSubName + ": Too many fields!",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

?lse
switch (iField)

{
case 0: //[SYSTEM]
if (!IsInteger(sLine))
{
pPrj->SetErr (m_sSubName + ": Number of DES is absent!",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

iTmp = atoi(sLine.data());
if (iTmp < 0)
{
pPrj->SetErr (m_sSubName +
": Number of DES is less than zero!",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

if (m_iNumofPlants < 0)
m_iNumofPlants = iTmp;
else if (m_iNumofSpecs < 0)
m_iNumofSpecs = iTmp;
ilse

pPrj->SetErr (m_sSubName +
": Too many lines in SYSTEM field",
HISC_BAD_HIGH_FORMAT) ;

throw -1;

break;
case 1: //[PLANT]
sDESFile = GetDESFileFromSubFile(m_sSubFile, sLine);
pDES = new CDES(this, sDESFile, PLANT_DES);
if (pDES->LoadDES() < 0)
throw -1; //here LoadDES() will generate the err msg.
else

iNumofPlants++;
if (iNumofPlants > m_iNumofPlants)
{
pPrj->SetErr(m_sSubName + ": Too many Plant DESs",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

}
m_pDESArr [iNumofPlants - 1] = pDES;
pDES = NULL;
}
break;
case 2: //[SPEC]
sDESFile = GetDESFileFromSubFile(m_sSubFile, sLine);
pDES = new CDES(this, sDESFile, SPEC_DES);
if (pDES->LoadDES() < 0)
throw -1;  //here LoadDES() will generate the err msg.
else
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iNumofSpecs++;
if (iNumofSpecs > m_iNumofSpecs)
{
pPrj->SetErr(m_sSubName + ": Too many spec DESs",

HISC_BAD_HIGH_FORMAT) ;
throw -1;

}
m_pDESArr [m_iNumofPlants + iNumofSpecs - 1] = pDES;
pDES = NULL;

}

break;

default:
pPrj->SetErr(m_sSubName + ": Unknown error.",
HISC_BAD_HIGH_FORMAT);
throw -1;
break;

}

} //while
if (iNumofPlants < m_iNumofPlants)

pPrj->SetErr (m_sSubName + ": Too few plant DESs",
HISC_BAD_HIGH_FORMAT) ;
throw -1;

if (iNumofSpecs < m_iNumofSpecs)

pPrj->SetErr (m_sSubName + ": Too few spec DESs",
HISC_BAD_HIGH_FORMAT) ;
throw -1;
}
fin.close();
//Get all the interface DES
for (int i = 0; i < m_iNumofIntfs; i++)

m_pDESArr [m_iNumofPlants + m_iNumofSpecs + i] =
((CLowSub *)pPrj->GetSub(i + 1))->GetIntfDES();
}
//Compute the R/A events starting index in Transtion precidate arrary
for (int i = 0; i < 2; i++)

m_piUArr[i] = new int[m_iNumofIntfs];
m_piCArr[i] = new int[m_iNumofIntfs];

m_piUArr[i] [0] = O;
m_piCArr[i] [0] = O;
}
for (int i = 1; i < m_iNumofIntfs; i++)
{
m_piUArr[0] [i] = m_piUArr[0] [i-1] +
pPrj->GetSub(i)->GetMaxUnCon(R_EVENT) / 2;
m_piUArr[1] [i] = m_piUArr[1][i-1] +
pPrj->GetSub(i)->GetMaxUnCon (A_EVENT) / 2;
m_usiMaxUnCon[R_EVENT] += pPrj->GetSub(i)->GetMaxUnCon(R_EVENT) ;
m_usiMaxUnCon[A_EVENT] += pPrj->GetSub(i)->GetMaxUnCon(A_EVENT) ;
m_piCArr[0] [i] = m_piCArr[0] [i-1] +
((unsigned short) (pPrj->GetSub(i)->GetMaxCon(R_EVENT) + 1)) / 2;
m_piCArr[1][i] = m_piCArr[1] [i-1] +
((unsigned short) (pPrj->GetSub(i)->GetMaxCon(A_EVENT) + 1)) / 2;
m_usiMaxCon[R_EVENT] +=
(unsigned short) (pPrj->GetSub(i)->GetMaxCon(R_EVENT) + 1);
m_usiMaxCon[A_EVENT] +=
(unsigned short) (pPrj->GetSub(i)->GetMaxCon(A_EVENT) + 1);
}

m_usiMaxUnCon [R_EVENT] +=
pPrj->GetSub(m_iNumofIntfs)->GetMaxUnCon(R_EVENT) ;
m_usiMaxUnCon[A_EVENT] +=
pPrj->GetSub(m_iNumofIntfs)->GetMaxUnCon (A_EVENT) ;
m_usiMaxCon[R_EVENT] +=
(unsigned short) (pPrj->GetSub(m_iNumofIntfs)->GetMaxCon(R_EVENT) + 1);
m_usiMaxCon[A_EVENT] +=
(unsigned short) (pPrj->GetSub(m_iNumofIntfs)->GetMaxCon(A_EVENT) + 1);
//DES Reorder
this->DESReorder() ;

catch (int iError)

if (pDES != NULL)
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delete pDES;
pDES = NULL;

}

if (fin.is_open())
fin.close();

iRet = iError;

return iRet;
}
/*
* DESCR: Initialize BDD data memebers
* PARA: None
* RETURN: : sucess -1: fail
* ACCESS: private
*/
int CHighSub::MakeBdd()
{

o

try

{
//Initialize the bdd node table and cache size.
long long 1lNumofStates = 1;

for (int i = 0; i < this->GetNumofDES(); i++)
{

1NumofStates *= m_pDESArr[i]->GetNumofStates();

if (1NumofStates >= MAX_INT)
break;

}

if (1NumofStates <= 10000)
bdd_init (1000, 100);

else if (1NumofStates <= 1000000)
bdd_init (10000, 1000);

else if (1NumofStates <= 10000000)
bdd_init (100000, 10000);

else

bdd_init (2000000, 1000000);
//bdd_setcacheratio(16);
bdd_setmaxincrease (1000000) ;

}

giNumofBddNodes = 0;

bdd_gbc_hook (my_bdd_gbchandler) ;

//define domain variables

int *piDomainArr = new int[2];

for (int i = 0; i < 2 * this->GetNumofDES(); i += 2)

piDomainArr[0] = m_pDESArr[i/2]->GetNumofStates();
piDomainArr[1] = piDomainArr[0];
fdd_extdomain(piDomainArr, 2);

delete[] piDomainArr;

piDomainArr = NULL;

//compute the number of bdd variables (only for normal variables)

m_iNumofBddNormVar = 0;

for (int i = 0; i < 2 * (this->GetNumofDES()); i =i + 2)
m_iNumofBddNormVar += fdd_varnum(i);

//set the first level block

int iNumofBddVar = O;

int iVarNum = O;

bdd bddBlock = bddtrue;

for (int i = 0; i < 2 * (this->GetNumofDES()); i += 2)

{

iVarNum = fdd_varnum(i);
bddBlock = bddtrue;

for (int j = 0; j < 2 * iVarNum; j++)
bddBlock &= bdd_ithvar (iNumofBddVar + j);

}
bdd_addvarblock(bddBlock, BDD_REORDER_FREE) ;
iNumofBddVar += 2 * iVarNum;

}
//compute initial state predicate
for (int i = 0; i < this->GetNumofDES(); i++)
m_bddInit &= fdd_ithvar(i * 2, m_pDESArr[i]->GetInitState());
//compute marking states predicate
bdd bddTmp = bddfalse;
for (int i = 0; i < this->GetNumofDES(); i++)

bddTmp = bddfalse;
MARKINGLIST: :const_iterator ci =
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(m_pDESArr[i]->GetMarkingList()) .begin();
for (int j = 0; j < m_pDESArr[i]->GetNumofMarkingStates(); j++)

bddTmp |= fdd_ithvar(i * 2, *ci);
++ci;

i_bddMarking &= bddTmp;
}
//Initialize interface variables predicates
m_pbdd_IVar = new bdd[m_iNumofIntfs];
m_pbdd_IVarPrim = new bdd[m_iNumofIntfs];
if (m_usiMaxUnCon[A_EVENT] != 0) //Answer events
m_pbdd_UnConATrans = new bdd[m_usiMaxUnCon[A_EVENT] /2] (bddfalse);
if (m_usiMaxCon[A_EVENT] != OxFFFF) //Answer events
m_pbdd_ConATrans = new bdd[m_usiMaxCon[A_EVENT] / 2 + 1] (bddfalse);
//Compute transitions predicate
for (int k = 0; k < 3; k++)
{

if (m_usiMaxCon[k] !'= OxFFFF)
{

m_pbdd_ConTrans [k] = new bdd[m_usiMaxCon[k] / 2 + 1](bddfalse);
m_pbdd_ConVar[k] = new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pbdd_ConVarPrim[k] = new bdd[m_usiMaxCon[k]/ 2 + 1] (bddfalse);
m_pbdd_ConPhysicVar[k] =
new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pbdd_ConPhysicVarPrim[k] =
new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pPair_Con[k] = new (bddPair *)[m_usiMaxCon[k] / 2 + 1];
for (int iPair = 0; iPair < m_usiMaxCon[k] / 2 + 1; iPair++)
m_pPair_Con[k] [iPair] = NULL;
m_pPair_ConPrim[k] = new (bddPair *)[m_usiMaxCon[k] / 2 + 1];
for (int iPair = 0; iPair < m_usiMaxCon[k] / 2 + 1; iPair++)
m_pPair_ConPrim([k] [iPair] = NULL;

if (m_usiMaxUnConl[k] != 0)

m_pbdd_UnConTrans [k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConPlantTrans[k] =
new bdd[m_usiMaxUnCon[k] /2] (bddfalse) ;
m_pbdd_UnConVar [k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse) ;
m_pbdd_UnConVarPrim[k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConPlantVar[k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConPlantVarPrim[k] =
new bdd[m_usiMaxUnCon[k] /2] (bddfalse);
m_pPair_UnCon[k] = new (bddPair *)[m_usiMaxUnConl[k]/2];
for (int iPair = 0; iPair < m_usiMaxUnConl[k]/2; iPair++)
m_pPair_UnCon[k] [iPair] = NULL;
m_pPair_UnConPrim[k] = new (bddPair #*) [m_usiMaxUnCon[k]/2];
for (int iPair = 0; iPair < m_usiMaxUnConl[k]/2; iPair++)
m_pPair_UnConPrim[k] [iPair] = NULL;
}
}

map<int, bdd> bddTmpTransMap; //<event_index, transitions>
for (int i = 0, iIntf = 0; i < this->GetNumofDES(); i++)
{

//before compute transition predicate for each DES, clear it.
bddTmpTransMap.clear() ;
for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)

bddTmpTransMap [ (m_pDESArr[i]->GetEventsArr()) [j1] = bddfalse;
}
//compute transition predicate for each DES
for (int j = 0; j < m_pDESArr[i]->GetNumofStates(); j++)

TRANS: :const_iterator ci =

(*(m_pDESArr[i]->GetTrans() + j)).begin();
for (; ci != (*(m_pDESArr[i]->GetTrans() + j)).end(); ++ci)
{

bddTmpTransMap [ci->first] |= fdd_ithvar(i * 2, j) &
N fdd_ithvar(i * 2 + 1, ci->second);
}
int iIndex = O;
unsigned short usilIndex = 0;
int iSub = 0;
EVENTSUB EventSub;
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//combine the current DES transition predicate to
//subsystem transition predicate
map<int, bdd>::const_iterator ciTmp = bddTmpTransMap.begin();
for (; ciTmp != bddTmpTransMap.end(); ++ciTmp)
{
if (ciTmp->first ) 2 == 0) //uncontrollable, start from 2

//Compute index
pPrj->GenEventInfo(ciTmp->first, EventSub, iSub, usilndex);
usilndex = (usilndex - 2) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)

iIndex = usilIndex +

m_piUArr[(int)EventSub - 1][iSub - 1];

else

iIndex = usilndex;

//Compute transition predicates
if (m_pbdd_UnConVar [EventSub] [iIndex] == bddfalse)

m_pbdd_UnConTrans [EventSub] [iIndex] = bddtrue;
m_pbdd_UnConVar [EventSub] [iIndex] = bddtrue;
m_pbdd_UnConVarPrim[EventSub] [iIndex] = bddtrue;
}
m_pbdd_UnConTrans [EventSub] [iIndex] &= ciTmp->second;
m_pbdd_UnConVar [EventSub] [iIndex] &= fdd_ithset(i * 2);
m_pbdd_UnConVarPrim[EventSub] [iIndex] &=
fdd_ithset(i * 2 + 1);
//compute uncontrollable plant vars and varprimes
if (m_pDESArr[i]->GetDESType() != SPEC_DES)
{
if (m_pbdd_UnConPlantVar [EventSub] [iIndex] == bddfalse)

m_pbdd_UnConPlantTrans [EventSub] [iIndex] = bddtrue;
m_pbdd_UnConPlantVar [EventSub] [iIndex] = bddtrue;
m_pbdd_UnConPlantVarPrim[EventSub] [iIndex]= bddtrue;

}
m_pbdd_UnConPlantTrans [EventSub] [iIndex] &=
ciTmp->second;
m_pbdd_UnConPlantVar [EventSub] [iIndex] &=
fdd_ithset(i * 2);
m_pbdd_UnConPlantVarPrim[EventSub] [iIndex] &=
fdd_ithset(i * 2 + 1);

//compute uncontrollable answer events transitions
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES &&
EventSub == A_EVENT)
m_pbdd_UnConATrans [iIndex] = ciTmp->second;

else //controllable, start from 1

//Compute index
pPrj->GenEventInfo(ciTmp->first, EventSub, iSub, usilndex);
usilndex = (usilndex - 1) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)

iIndex = usilndex +

m_piCArr[(int)EventSub - 1][iSub - 1]1;

else

iIndex = usilndex;

//Compute transition predicate
if (m_pbdd_ConVar [EventSub] [iIndex] == bddfalse)

m_pbdd_ConTrans [EventSub] [iIndex] = bddtrue;
m_pbdd_ConVar [EventSub] [iIndex] = bddtrue;
m_pbdd_ConVarPrim[EventSub] [iIndex] = bddtrue;

m_pbdd_ConTrans [EventSub] [iIndex] &= ciTmp->second;
m_pbdd_ConVar [EventSub] [iIndex] &= fdd_ithset(i * 2);
m_pbdd_ConVarPrim[EventSub] [iIndex] &=fdd_ithset(i * 2 + 1);
//compute controllable actual plant vars and varprimes
//note: can not use !'= SPEC_DES
if (m_pDESArr[i]->GetDESType() == PLANT_DES)
{

if (m_pbdd_ConPhysicVar [EventSub] [iIndex] == bddfalse)

m_pbdd_ConPhysicVar [EventSub] [iIndex] = bddtrue;
m_pbdd_ConPhysicVarPrim[EventSub] [iIndex] = bddtrue;

}
m_pbdd_ConPhysicVar [EventSub] [iIndex] &=
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fdd_ithset(i * 2);
m_pbdd_ConPhysicVarPrim[EventSub] [iIndex] &=
fdd_ithset(i * 2 + 1);

//compute controllable answer events transitions
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES &&
EventSub == A_EVENT)

m_pbdd_ConATrans [iIndex] = ciTmp->second;
}

if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)

m_pbdd_IVar[iIntf] = fdd_ithset(i * 2);
m_pbdd_IVarPrim[iIntf] = fdd_ithset(i * 2 + 1);
iIntf++;

}

//compute m_pPair_UnCon, m_pPair_Con
for (int k = 0; k < 3; k++)
{

for (int j = 0; j < m_usiMaxUnCon[k]; j += 2)

m_pPair_UnCon[k] [j/2] = bdd_newpair();

SetBddPairs(m_pPair_UnCon[k] [j/2], m_pbdd_UnConVar([k][j/2],
m_pbdd_UnConVarPrim[k] [j/2]);

m_pPair_UnConPrim[k] [j/2] = bdd_newpair();

SetBddPairs (m_pPair_UnConPrim[k] [j/2],
m_pbdd_UnConVarPrim[k] [j/2],
m_pbdd_UnConVar [k] [j/21);

}
for (int j = 1; j < (unsigned short) (m_usiMaxCon[k] + 1); j += 2)
//m_usiMaxCon[k] might be OxFFFF

{

m_pPair_Con[k][(j - 1) / 2] = bdd_newpair();

SetBddPairs(m_pPair_Con[k][(j - 1) / 2],
m_pbdd_ConVar (k] [(j - 1) / 2],
m_pbdd_ConVarPrim[k] [(j - 1) / 2]);

m_pPair_ConPrim[k] [(j - 1) / 2] = bdd_newpair();

SetBddPairs(m_pPair_ConPrim[k][(j - 1) / 2],
m_pbdd_ConVarPrim[k] [(j - 1) / 2],
m_pbdd_ConVar [kl [(j - 1) / 21);

}
}
catch(...)
{
string sErr;
sErr = "Error happens when initializing high level ";
sErr += " BDD!";
pPrj->SetErr(sErr, HISC_SYSTEM_INITBDD) ;
return -1;

return O;
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FILE: HighSubl.cpp
DESCR: Some misc functions for high-level
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sk sk ke ok o ok ok sk sk sk ok ok ok sk sk ke sk ok ok sk sk sk s sk ok ok sk sk sk e sk sk ok sk sk sk s sk sk sk sk sk sk ok sk sk sk e sk ok sk sk ok ok /

#include " .h"
#include "HighSub.h"

#include "LowSub.h"
#include <string>

#include "errmsg.h"
#include "type.h"

#include <fdd.h>
#include "DES.h"
#include "Project.h"

#include <fstream>
#include "pubfunc.h"

using namespace std;
extern CProject *pPrj;
/%%
* DESCR:  Save DES list of high-level in memory to a file (for checking)
* PARA: fout: output file stream
* RETURN: 0: sucess -1: fail
* ACCESS: public

*/
int CHighSub: :PrintSub(ofstream& fout)

try
{

fout << "#Sub system: " << m_sSubName << endl;
fout << endl;

fout << "[SYSTEM]" << endl;

fout << m_iNumofPlants << endl;

fout << m_iNumofSpecs << endl;

fout << endl;

fout << "[PLANT]" << endl;

for (int i = 0; i < m_iNumofPlants; i++)

for (int j = 0; j < this->GetNumofDES(); j++)
{

if (m_piDESOrderArr[j] == i)

{

fout << m_pDESArr[j]->GetDESName() << endl;
break;

}
}
fout << "[SPEC]" << endl;
for (int i = m_iNumofPlants; i < m_iNumofPlants + m_iNumofSpecs; i++)

{
for (int j = 0; j < this->GetNumofDES(); j++)

if (m_piDESOrderArr[j] == i)

{
fout << m_pDESArr[j]l->GetDESName() << endl;
break;

}

fout << "##HHEHEHEHEHEE " << endl;

}
catch(...)
{
return -1;
return O;

/%%

* DESCR: Save all the DES in high-level to a text file for checking
* PARA: fout: output file stream

* RETURN: O: sucess -1: fail

* ACCESS: public

*/

int CHighSub::PrintSubAll(ofstream & fout)

try
if (PrintSub(fout) < 0)
throw -1;
for (int i = 0; i < m_iNumofPlants + m_iNumofSpecs; i++)

{
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if (m_pDESArr[i]->PrintDES(fout) < 0)

throw -1;
}
¥
catch(...)
{
return -1;
return O;

DESCR: Generate Bad state info during verfication

PARA:

Note: showtrace is not implemented, currently it is used for showing
a blocking is a deadlock or livelock (very slow).
bddBad: BDD for the set of bad states
viErrCode: error code (see errmsg.h)
showtrace: show a trace from the initial state to a bad state or not
(not implemented)
vsExtralnfo: Extra errmsg.

* RETURN: None
* ACCESS: private

*/
void CHighSub::BadStateInfo(const bdd& bddBad, const int viErrCode,

{

int

const HISC_TRACETYPE showtrace, const string &vsExtralnfo)

*piBad = fdd_scanallvar(bddBad);

string sErr;
if (piBad != NULL)

{

if (viErrCode == HISC_VERI_HIGH_UNCON)
sErr = GetSubName() +
": Level-wise controllable checking failed state:\n< ";
else if (viErrCode == HISC_VERI_HIGH_P3FAILED)
sErr = GetSubName() +
": Interface consistent conditions P3 checking failed state:\n< ";
else if (viErrCode == HISC_VERI_HIGH_BLOCKING)

if (showtrace == HISC_SHOW_TRACE)
sErr = GetSubName() + ": Blocking state ";
else
sErr = GetSubName() + ": Blocking state: \n < ";
}
//for blocking state, try to find the deadlock state
//if there is no deadlock state, only show one of the live lock states
if (showtrace == HISC_SHOW_TRACE)

if (viErrCode == HISC_VERI_HIGH_BLOCKING)
{

bdd bddBlock = bddBad;
bdd bddNext bddtrue;
bdd bddTemp bddtrue;
%o

bddTemp = bddtrue;

for (int i = 0; i < this->GetNumofDES(); i++)
bddTemp &= fdd_ithvar(i * 2, piBad[i * 2]);

bddNext = bddfalse;

for (int k = 0; k < 4; k++)

{

for (unsigned short usi = 2;
usi <= m_usiMaxUnConl[k] &&
bddNext == bddfalse; usi += 2)
bddNext |=
bdd_replace(
bdd_relprod(
m_pbdd_UnConTrans [k] [(usi - 2) / 2],
bddTemp,
m_pbdd_UnConVar [k] [(usi - 2) / 21),
m_pPair_UnConPrim[k] [(usi - 2) / 2]) &
bddBad;
for (unsigned short usi = 1;
usi < (unsigned short) (m_usiMaxCon[k] + 1) &&
bddNext == bddfalse; usi += 2)

bddNext |=
bdd_replace(
bdd_relprod(
m_pbdd_ConTrans [k] [(usi - 1) / 2],
bddTemp,
m_pbdd_ConVar [k] [(usi - 1) / 2]),
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m_pPair_ConPrim[k] [(usi - 1) / 2]) &
bddBad;
}

}
%f (bddNext == bddfalse) //this is a deadlock state

sErr += "(dead lock):\n< ";
break;

else //not a deadlock state
{

bddBlock = bddBlock - bddTemp;
free(piBad) ;

piBad = NULL;

piBad = fdd_scanallvar(bddBlock) ;

}
} while (piBad '= NULL);
if (piBad == NULL) //live lock
{

sErr += "(live lock):\n< ";
piBad = fdd_scanallvar(bddBad);

}
}

if (piBad !'= NULL)

{
for (int i = 0; i < this->GetNumofDES(); i++)
{

sErr += m_pDESArr[m_piDESPosArr[i]]->GetDESName() + ":" +
m_pDESArr [m_piDESPosArr[i]]->GetStateName (piBad [m_piDESPosArr[i] * 2]);

if (i < this->GetNumofDES() -1)
sErr += ", ";

}

sErr += " >\n";
sErr += vsExtralnfo;
pPrj->SetErr (sErr, viErrCode);

free(piBad) ;
piBad = NULL;
return;
}
/x*

DESCR: Search event name from high-level local event index.
Mainly handle request events and answer events.

PARA: k: R_EVENT/A_EVENT/H_EVENT/L_EVENT
usilocallndex: high-level local event index.

*
*

*

*

* RETURN: event name
* ACCESS: public

*

st

/
ring CHighSub::SearchEventName (EVENTSUB k, unsigned short usilocallndex)

int iEventIndex = 0;
if (k == R_EVENT || k == A_EVENT)
{

int iSub = 0;
unsigned short usilndex = 0;
if (usilocalIndex % 2 == 0)
{
for (iSub = 0; iSub < m_iNumofIntfs - 1; iSub++)
if (m_piUArr([k - 1][iSub] <= (usilocallndex - 2) / 2 &&
m_piUArr[k - 1]1[iSub + 1] > (usilocallndex - 2) /2)
break;
}
usiIndex = usilocalIndex - m_piUArr[k - 1] [iSub] * 2;
%lse
for (iSub = 0; iSub < m_iNumofIntfs - 1; iSub++)
if (m_piCArr[k - 1][iSub] <= (usilocallndex - 1) / 2 &&
m_piCArr[k - 1] [iSub + 1] > (usilocallndex - 1) /2)
break;

}
usiIndex = usilocalIndex - m_piCArr[k - 1] [iSub] * 2;

}
iEventIndex = pPrj->GenEventIndex ((EVENTSUB)k, iSub + 1, usilndex);
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else
iEventIndex = pPrj->GenEventIndex((EVENTSUB)k, m_iSubIndex,

usilocalIndex) ;
return (pPrj->GetInvAllEventsMap()) [iEventIndex];
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FILE: HighSub2.cpp
DESCR: Verification and synthesis for high-level
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sk ke ok o ok ok sk sk ok ok ok sk sk sk e ok ok ok sk sk sk s sk ok ok sk sk sk sk sk ok sk sk sk s sk ok sk sk sk sk ok sk sk sk e sk ok sk ok ok ok /

#include <fdd.h>
#include <string>

#include <iostream>
#include "errmsg.h"

#include "Project.h"
#include "HighSub.h"

#include "Sub.h"
#include "LowSub.h"
#include "DES.h"
#include "type.h"

#include "pubfunc.h"
#include <sys/time.h>
using namespace std;
extern CProject *pPrj;

/*%

* DESCR: Verify whether a high level is level-wise controllable,

* nonblocking and p3 satisfied or not.

* PARA: showtrace:show a trace to a bad state or not(not implemented) (input)
* superinfo: returned verification info (see BddHisc.h) (output)

* savetype: save syn-product or not (See BddHisc.h) (input)

* savepath: where to save syn-product(input)

* RETURN: O: sucess <0: fail

* ACCESS: public

*/

int CHighSub::VeriSub(const HISC_TRACETYPE showtrace,
HISC_SUPERINFO & superinfo,
const HISC_SAVEPRODUCTTYPE savetype,
const string& savepath)

int iRet = 0;
int iErr = 0;
//Initialize the BDD data memebers
CSub: :InitBddFields();
InitBddFields();
bdd bddReach = bddfalse;
string sErr;
try
{
//Make transition bdds
if (MakeBdd() < 0)
throw -1;
bdd bddBad = bddfalse;
bdd bddCoreach = bddfalse;
bdd bddBlocking = bddfalse;
bddReach = r(bddtrue, iErr);
if (iErr < 0)
throw -1;
m_bddMarking &= bddReach;
//Initialize controllable bddBad
bddBad = bddfalse;
if (VeriConBad(bddBad, bddReach, sErr) < 0)
throw -1;
//check if any reachable states belong to bad states
%f (bddBad !'= bddfalse)

BadStateInfo(bddBad, HISC_VERI_HIGH_UNCON, showtrace, sErr);
throw -2;

}
bddBad = bddfalse;

//Initialize P3 bddBad
if (VeriP3Bad(bddBad, bddReach, sErr) < 0)
throw -1;

//check if any reachable states belong to bad states
if (bddBad != bddfalse)
{

BadStateInfo(bddBad, HISC_VERI_HIGH_P3FAILED, showtrace, sErr);
throw -3;

%ddBad = bddfalse;
//Computing CR(not(bddBad))
bddCoreach = cr(m_bddMarking, bddReach, ALL_EVENT, iErr);
if (iErr != 0)
throw -1;

//check if the system is nonblocking
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bddBlocking = bddReach - bddCoreach;
if (bddBlocking != bddfalse)

BadStateInfo(bddBlocking, HISC_VERI_HIGH_BLOCKING, showtrace);
throw -4;

//final synchronous product;
m_bddSuper = bddReach;
//save supervisor
superinfo.statesize = bdd_satcount (m_bddSuper)/pow((double)2,
double (m_iNumofBddNormVar)) ;
superinfo.nodesize = bdd_nodecount(m_bddSuper);
if (savetype != HISC_NOTSAVEPRODUCT)

if (SaveSuper (m_bddSuper, HISC_SAVESUPER_AUTOMATA, savepath) < 0)
throw -1;
}

catch (int iResult)

if (iResult < -1)
{

superinfo.statesize = bdd_satcount (bddReach)/pow((double)2,
double (m_iNumofBddNormVar)) ;
superinfo.nodesize = bdd_nodecount(bddReach) ;
if (savetype !'= HISC_NOTSAVEPRODUCT)
SaveSuper (bddReach, HISC_SAVESUPER_AUTOMATA, savepath);

}
iRet = -1;
}
ClearBddFields();
CSub: :ClearBddFields();
bdd_done () ;
return iRet;
}
/**
* DESCR: Synthesize a supervisor for high-level. The superivsor states is
* saved in m_bddSuper.
* PARA: computemethod: first compute reachable states or not (See BddHisc.h)
* (input)
* superinfo: returned synthesis info (see BddHisc.h) (output)
* savetype: how to save synthesized supervisor (See BddHisc.h) (input)
*

savepath: where to save syn-product(input)

* RETURN: O: sucess <0: fail
* ACCESS: public

*/
int CHighSub: :SynSuper (const HISC_COMPUTEMETHOD computemethod,

HISC_SUPERINFO &superinfo,
const HISC_SAVESUPERTYPE savetype,
const string& savepath)

bool bFirstLoop = true;

bdd
bdd
bdd
int
int

bddK = bddfalse;

bddReach = bddfalse;
bddDead = bddfalse;
iRet = 0;
iErr = 0;

//Initialize the BDD data memebers
CSub: :InitBddFields();

InitBddFields();
try
{

iRet = 0;

//Make transition bdds
if (MakeBdd() < 0)
throw -1;
//Initialize bddBad
bdd bddBad = bddfalse;

if (GenConBad(bddBad) < 0)
throw -1;
if (GenP3Bad(bddBad) < 0)
throw -1;
//always compute on reachable states, this is the one we used for AIP
if (computemethod == HISC_ONREACHABLE)

bddReach = r(bddtrue, iErr);
if (iErr < 0)

throw -1;
bddBad &= bddReach;
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//compute controllable, p3, nonblocking fixpoint
do
{
bddK = bddBad;
if (supcp(bddBad) < 0)
throw -1;
bddBad &= bddReach;
if (bddK == bddBad && bFirstLoop == false)
break;
//Computing CR()
bdd bddTemp = bddReach - bddBad;
bddBad = bdd_not(cr(m_bddMarking, bddTemp, ALL_EVENT, iErr));
if (iErr != 0)
throw -1;
bddBad &= bddReach;
bFirstLoop = false;
} while (bddBad != bddK) ;
m_bddSuper = r(bddReach - bddBad, iErr);
if (iErr < 0)
throw -1;

else //first compute on coreachable states, then do reachable operation

{
//compute controllable, p3, nonblocking fixpoint
do

{
bddK = bddBad;

if (supcp(bddBad) < 0)
throw -1;
if (bddK == bddBad && bFirstLoop == false)
break;
//Computing CR(not(bddBad))
bddBad = bdd_not(cr(m_bddMarking, bdd_not(bddBad),
ALL_EVENT, iErr));
if (iErr != 0)
throw -1;
bFirstLoop = false;
} while (bddBad '= bddK);
m_bddSuper = r(bdd_not(bddBad), iErr);
if (iErr < 0)
throw -1;
}
m_bddMarking &= m_bddSuper;
m_bddInit &= m_bddSuper;
#ifdef PRINTDEBUG
PrintBdd();
#endif
//save supervisor
superinfo.statesize = bdd_satcount (m_bddSuper)/pow((double)2,
double (m_iNumofBddNormVar)) ;
superinfo.nodesize = bdd_nodecount (m_bddSuper) ;
if (savetype != HISC_SAVESUPER_NONE)
{

if (SaveSuper(m_bddSuper, savetype, savepath) < 0)
throw -1;
}

catch( int iErr)
iRet = -1;

}
ClearBddFields();
CSub: :ClearBddFields();
bdd_done () ;
return iRet;
}
/**
* DESCR: Compute the initial bad states(Bad_H) (uncontorlalble event part)
* PARA: bddConBad: BDD containing all the bad states (output)
* RETURN: O: sucess -1: fail

* ACCESS: private

*/

int CHighSub: :GenConBad(bdd &bddConBad)
try

bdd bddPlantTrans = bddfalse;
bdd bddSpecTrans = bddfalse;

for (int k = 0; k < 3; k++)
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{
for (int i = 0; i < m_usiMaxUnConl[k]/ 2; i++)
//Get spec transition predicate
bddSpecTrans = bdd_exist (m_pbdd_UnConTrans [k] [i],
m_pbdd_UnConPlantVar [k] [i]);
bddSpecTrans = bdd_exist (bddSpecTrans,
m_pbdd_UnConPlantVarPrim[k] [i]);
//Compute illegal state predicate for each uncontrollable event
bddConBad |=
bdd_exist (m_pbdd_UnConPlantTrans [k] [i],
m_pbdd_UnConPlantVarPrim[k] [i]) &
bdd_not (
bdd_exist (bddSpecTrans,
bdd_exist (m_pbdd_UnConVarPrim[k] [i],
m_pbdd_UnConPlantVarPrim[k] [i])));
}
}
¥
Eatch(...)
string sErr = this->GetSubName();
sErr += ": Error during generating controllable bad states.";
pPrj->SetErr (sErr, HISC_HIGHERR_GENCONBAD) ;
return -1;
return 0;

*
DESCR: Test if there are any bad states in the reachable states

(Uncontorllable event part of Bad_H)
PARA: bddConBad: BDD containing tested bad states(output).
Initially, bddBad should be bddfalse.
bddReach: BDD containing all reachable states in high-level (input)
vsErr: returned errmsg(output)

RETURN: O0: sucess -1: fail
ACCESS: private

int CHighSub::VeriConBad(bdd &bddConBad, const bdd &bddReach, string & vsErr)

{

vsErr.clear();
try

{
bdd bddPlantTrans = bddfalse;
bdd bddSpecTrans = bddfalse;

for (int k = 0; k < 3; k++)
{
for (int i = 0; i < m_usiMaxUnConl[k]/ 2; i++)

//Get spec transition predicate
bddSpecTrans = bdd_exist(m_pbdd_UnConTrans [k] [i],
m_pbdd_UnConPlantVar [k] [i]);
bddSpecTrans = bdd_exist(bddSpecTrans,
m_pbdd_UnConPlantVarPrim[k] [i]);
//Compute illegal state predicate for each uncontrollable event
bddConBad |=
bdd_exist (m_pbdd_UnConPlantTrans [k] [i],
m_pbdd_UnConPlantVarPrim[k] [i]) &
bdd_not (bdd_exist (bddSpecTrans,
bdd_exist (m_pbdd_UnConVarPrim[k] [i],
m_pbdd_UnConPlantVarPrim[k] [i])));
bddConBad &= bddReach;
}f (bddConBad != bddfalse)

vsErr = "Causing uncontrollable event:";
vsErr += SearchEventName ((EVENTSUB)k, (i + 1)* 2);
throw -1;
}
}
}
¥
catch(int)
{
}
catch(...)
{

string sErr = this->GetSubName();
sErr += ": Error during generating controllable bad states.";
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pPrj->SetErr (sErr, HISC_HIGHERR_GENCONBAD) ;

return -1;
return O;
/%%
* DESCR: Compute the initial bad states(Bad_H) (answer event part)
* PARA: bddConBad: BDD containing all the bad states (output)

* RETURN: O: sucess -1: fail
* ACCESS: private

*/
int CHighSub: :GenP3Bad(bdd &bddP3Bad)

{
try

{
bdd bddHighTrans = bddfalse;
EVENTSUB EventSub;
int iSub = 0;
unsigned short usilocallndex = O;
int iIndex = 0;
for (int iDES = 0, iIntf = O; iDES < this->GetNumofDES(); iDES++)
{

if (m_pDESArr[iDES]->GetDESType() == INTERFACE_DES)
{

for (int i = 0; i < m_pDESArr[iDES]->GetNumofEvents(); i++)
{
pPrj->GenEventInfo((m_pDESArr[iDES]->GetEventsArr()) [il,
EventSub, iSub, usilocalIndex);
if (EventSub == A_EVENT)

%f (usilocallndex % 2 == 0)

usilocalIndex = (usilocallndex - 2) / 2;
iIndex = usilocalIndex +
m_piUArr[EventSub - 1] [iSub - 1];
bddHighTrans = bdd_exist(
m_pbdd_UnConTrans [A_EVENT] [iIndex],
m_pbdd_IVar[iIntf]);
bddHighTrans = bdd_exist(bddHighTrans,
m_pbdd_IVarPrim[iIntf]);
//Compute illegal predicate for each answer event
bddP3Bad |=
bdd_exist (m_pbdd_UnConATrans [iIndex],
m_pbdd_IVarPrim[iIntf]) &
bdd_not (
bdd_exist (bddHighTrans,
bdd_exist(
m_pbdd_UnConVarPrim[A_EVENT] [iIndex],
m_pbdd_IVarPrim[iInt£f])));

else

usilocalIndex = (usilocallndex - 1) / 2;
iIndex = usilocallndex +
m_piCArr[EventSub - 1][iSub - 1];
bddHighTrans = bdd_exist(
m_pbdd_ConTrans [A_EVENT] [iIndex],
m_pbdd_IVar[iIntf]);
bddHighTrans = bdd_exist(bddHighTrans,
m_pbdd_IVarPrim[iIntf]);
//Compute illegal predicate for each answer event
bddP3Bad |=
bdd_exist (m_pbdd_ConATrans [iIndex],
m_pbdd_IVarPrim[iIntf]) &
bdd_not (bdd_exist (bddHighTrans,
bdd_exist (
m_pbdd_ConVarPrim[A_EVENT] [iIndex],
m_pbdd_IVarPrim[iInt£f])));

}
iIntf++;
}
}
catch(...)
{

string sErr = this->GetSubName();
sErr += ": Error during generating point 3 bad states.";
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pPrj->SetErr (sErr, HISC_HIGHERR_GENP3BAD) ;

return -1;

return O;
}
/%%
* DESCR: Test if there are any bad states in the reachable states
* (answer event part of Bad_H)
* PARA: bddP3Bad: BDD containing tested bad states(output).
* Initially, bddBad should be bddfalse.
* bddReach: BDD containing all reachable states in high-level (input)
* vsErr: returned errmsg(output)
* RETURN: 0: sucess -1: fail
* ACCESS: private

int CHighSub::VeriP3Bad(bdd &bddP3Bad, const bdd &bddReach, string &vsErr)
{

vsErr.clear();
try
{
bdd bddHighTrans = bddfalse;
EVENTSUB EventSub;
int iSub = 0;
unsigned short usilocallndex = O;
int iIndex = 0;
for (int iDES = 0, iIntf = 0; iDES < this->GetNumofDES(); iDES++)
{

if (m_pDESArr[iDES]->GetDESType() == INTERFACE_DES)
{

for (int i = 0; i < m_pDESArr[iDES]->GetNumofEvents(); i++)
{
pPrj->GenEventInfo ((m_pDESArr [iDES]->GetEventsArr()) [i],
EventSub, iSub, usilocalIndex);
if (EventSub == A_EVENT)
{

if (usilocalIndex % 2 == 0)
{

iIndex = (usilocallndex - 2) / 2
m p1UArr[EventSub - 1] [iSub - 1];
bddHighTrans = bdd_exist(
m_pbdd_UnConTrans [A_EVENT] [iIndex],
m_pbdd_IVar[iIntf]);
bddHighTrans = bdd_exist(bddHighTrans,
m_pbdd_IVarPrim[iIntf]);
//Compute illegal predicate for each anwer event
bddP3Bad |=
bdd_exist (m_pbdd_UnConATrans [iIndex],
m_pbdd_IVarPrim[iIntf]) &
bdd_not (bdd_exist (bddHighTrans,bdd_exist(
m_pbdd_UnConVarPrim[A_EVENT] [iIndex],
m_pbdd_IVarPrim[iIntf])));
bddP3Bad &= bddReach;
%f (bddP3Bad != bddfalse)

vsErr = "Causing answer event:";
vsErr += SearchEventName (A_EVENT,

usilocalIndex +

m_piUArr[EventSub - 1] [iSub - 1] * 2);
return O;

}

else

iIndex = (usilocallndex - 1) / 2
m pchrr[EventSub - 1] [iSub - 1];
bddHighTrans = bdd_exist(
m_pbdd_ConTrans [A_EVENT] [iIndex],
m_pbdd_IVar[iIntf]);
bddHighTrans = bdd_exist(bddHighTrans,
m_pbdd_IVarPrim[iIntf]);
//Compute illegal predicate for each answer event
bddP3Bad |= bdd_exist(m_pbdd_ConATrans[iIndex],
m_pbdd_IVarPrim[iIntf]) &
bdd_not (bdd_exist (bddHighTrans,
bdd_exist (
m_pbdd_ConVarPrim[A_EVENT] [iIndex],
m_pbdd_IVarPrim[iIntf])));
bddP3Bad &= bddReach;
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if (bddP3Bad != bddfalse)
{

vsErr = "Causing answer event:";

vsErr += SearchEventName (A_EVENT,
usilocalIndex +
m_piCArr[EventSub - 1] [iSub - 1] * 2);

throw -1;

}

}
iIntf++;
}

catch(int)
{

}
catch(...)
{

string sErr = this->GetSubName();

sErr += ": Error during generating point 3 bad states.";
pPrj->SetErr (sErr, HISC_HIGHERR_GENP3BAD) ;

return -1;

return O;
}
/**
* DESCR: compute PHIC(P)
* PARA: bddP : BDD for predicate P. (input and output(=PHIC(P)))

* RETURN: O: sucess -1: fail
* ACCESS: private

*/
int CHighSub: :supcp(bdd & bddP)
{
bdd bddK1i bddfalse;
bdd bddK2 = bddfalse;
int iEvent = O0;
unsigned short usilndex = 0;
int iSub = O;
EVENTSUB EventSub;
int iIndex = O;
try
{

while (bddP != bddK1)

bddK1 = bddP;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
while (bddP !'= bddK2)

bddK2 = bddP;
for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)
{
iEvent = (m_pDESArr[i]l->GetEventsArr())[j1;
pPrj->GenEventInfo(iEvent, EventSub, iSub, usilndex);

if ( iEvent % 2 == 0) //Uncontrollable events
{

usilndex = (usilndex - 2) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)
iIndex = usilndex +
m_piUArr[(int)EventSub - 1][iSub - 1];

else
iIndex = usilndex;

bddP |= bdd_appex(
m_pbdd_UnConTrans [EventSub] [iIndex],
bdd_replace(bddk2,
m_pPair_UnCon[EventSub] [iIndex]),
bddop_and,
m_pbdd_UnConVarPrim[EventSub] [iIndex]);

}
else if ( EventSub == A_EVENT )//should be controllable
{

usiIndex = (usiIndex - 1) / 2;
iIndex = usilndex +
m_piCArr[(int)EventSub - 1] [iSub - 1];
bddP |=
bdd_appex (m_pbdd_ConTrans [EventSub] [iIndex],
bdd_replace (bddk2,
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m_pPair_Con[EventSub] [iIndex]),
bddop_and,
m_pbdd_ConVarPrim[EventSub] [iIndex]) ;

}
}
}
}
}
}
Eatch ...)
string sErr = this->GetSubName();
sErr += ": Error during computing low level PHIC(P).";
pPrj->SetErr(sErr, HISC_HIGHERR_SUPCP) ;
return -1;
return O;

}
/%%
* DESCR: compute CR(G_H, P’, \Sigma’, P)

* PARA: bddPStart: P’ (input)

* bddP: P (input)

* viEventSub: \Sigma’ (input) (0,1,2,3) <-> (H,R,A,L) ALL_EVENT<->All
* iErr: returned Errcode (0: success <0: fail) (output)
* RETURN: BDD for CR(G_H, P’, \Sigma’, P)
* ACCESS: private
*
d

/
bdd CHighSub::cr(const bdd & bddPStart, const bdd & bddP,
const int viEventSub, int & iErr)

try
bdd bddK = bddP & bddPStart;
bdd bddKl = bddfalse;
bdd bddK2 = bddfalse;

bdd bddKNew = bddfalse;

int iEvent = 0;

unsigned short usilndex = 0;
int iIndex = 0;

EVENTSUB EventSub;

int iSub = 0;

zhile (bddK != bddK1)

bddK1 = bddK;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
while (bddK != bddK2)
{

bddKNew = bddK - bddK2;
bddK2 = bddK;
for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)
{
iEvent = (m_pDESArr[i]l->GetEventsArr())[jl;
pPrj->GenEventInfo(iEvent, EventSub, iSub, usilndex);
if (viEventSub == ALL_EVENT ||
viEventSub == (int)EventSub)

if (iEvent % 2 == 0) //Uncontrollable
{

//Compute index
usiIndex = (usilndex - 2) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)
iIndex = usilndex +
m_piUArr[(int)EventSub - 1] [iSub - 1];
else
iIndex = usilndex;

//Compute bddK
bddK |=
bdd_appex(
m_pbdd_UnConTrans [EventSub] [iIndex],
bdd_replace (bddKNew,
m_pPair_UnCon[EventSub] [iIndex]),
bddop_and,
m_pbdd_UnConVarPrim[EventSub] [iIndex])
& bddP;

else

//Compute Index
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usiIndex = (usilndex - 1) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)
iIndex = usilndex +
m_piCArr[(int)EventSub - 1][iSub - 1];

else
iIndex = usilndex;

//Compute bddK
bddK |= bdd_appex(
m_pbdd_ConTrans [EventSub] [iIndex],
bdd_replace (bddKNew,
m_pPair_Con[EventSub] [iIndex]),

bddop_and,
m_pbdd_ConVarPrim[EventSub] [iIndex])
& bddP;
}
}
}
}
}
}
return bddK;
Eatch C...)
string sErr = this->GetSubName();
sErr += ": Error during computing coreachable.";
pPrj->SetErr (sErr, HISC_HIGHERR_COREACH);
iErr = -1;
return bddfalse;
}
}
/**
* DESCR: compute R(G_H, P)
* PARA: bddP: P (input)
* iErr: returned Errcode (0: success <0: fail) (output)
* RETURN: BDD for R(G_H, P)
* ACCESS: private

*/
bdd CHighSub::r(const bdd &bddP, int &iErr)
{

try

bdd bddK = bddP & m_bddInit;
bdd bddK1 bddfalse;

bdd bddK2 = bddfalse;

bdd bddKNew = bddfalse;

int iEvent = 0;

int iIndex = 0;

unsigned short usilndex = 0;
int iSub = 0;

EVENTSUB EventSub;

while (bddK != bddK1)

bddK1 = bddK;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
while (bddK !'= bddK2)

bddKNew = bddK-bddK2;

bddK2 = bddK;

for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)

{
iEvent = (m_pDESArr[i]l->GetEventsArr())[jl;
pPrj->GenEventInfo(iEvent, EventSub, iSub, usilndex);
%f (iEvent % 2 == 0)

//Compute index
usiIndex = (usiIndex - 2) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)
iIndex = usilndex +
m_piUArr[(int)EventSub - 1] [iSub - 1];
else
iIndex = usilndex;

//Compute bddK
bddK |= bdd_replace(
bdd_appex (m_pbdd_UnConTrans [EventSub] [iIndex],
bddKNew, bddop_and,
m_pbdd_UnConVar [EventSub] [iIndex]),
m_pPair_UnConPrim[EventSub] [iIndex]) & bddP;
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else
{

//Compute Index
usilndex = (usiIndex - 1) / 2;
if (EventSub == R_EVENT || EventSub == A_EVENT)
iIndex = usilndex +
m_piCArr[(int)EventSub - 1][iSub - 1];

else
iIndex = usilndex;

//Compute bddK
bddK |= bdd_replace(
bdd_appex (m_pbdd_ConTrans [EventSub] [iIndex],
bddKNew, bddop_and,
m_pbdd_ConVar [EventSub] [iIndex]),
m_pPair_ConPrim[EventSub] [iIndex]) & bddP;

}
}
return bddK;

}
catch (...)
{

string sErr = this->GetSubName();

sErr += ": Error during computing coreachable.";
pPrj->SetErr (sErr, HISC_HIGHERR_REACH);

iErr = -1;

return bddfalse;
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/%Koo ok ook ok kok ok okokskok ok ok ook skok ok ok ook okkok ok ok skok ko ok ok skokokok ok ok skok ok ok ok ok ok ok
FILE: LowSub.h
DESCR: Header file for LowSub*.cpp (Low-level processing files)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
koo stk ok ok kok ok ok ok stk kol o sk sk ok o stk s kb s sk ko s ok sk sk e skok s ko ok okok /
#ifndef _LSUB_H_
#define _LSUB_H_
#include <string>
#include <map>
#include "type.h"

#include "Sub.h"
#include "fdd.h"

using namespace std;
class CDES;
class CLowSub:public CSub

{
public:
CLowSub(const string & vsLowFile, int viSubIndex);
virtual “CLowSub();
public:
virtual int PrintSub(ofstream& fout);
virtual int PrintSubAll(ofstream & fout);
virtual string SearchEventName (EVENTSUB k, unsigned short usilocallndex);
virtual int LoadSub();
virtual int SynSuper (const HISC_COMPUTEMETHOD computemethod,
HISC_SUPERINFO &superinfo,
const HISC_SAVESUPERTYPE savetype,
const string& savepath);
virtual int VeriSub(const HISC_TRACETYPE showtrace,
HISC_SUPERINFO & superinfo,
const HISC_SAVEPRODUCTTYPE savetype,
const string& savepath);
CDES *GetIntfDES();
private:
virtual int MakeBdd();
virtual int InitBddFields();
virtual int ClearBddFields();
int CheckIntf();
int SynPartSuper (const HISC_COMPUTEMETHOD computemethod,
bdd & bddReach, bdd & bddBad);
int GenConBad(bdd &bddConBad) ;
int VeriConBad(bdd &bddConBad, const bdd &bddReach, string & vsErr);
int GenP4Bad(bdd &bddP4Bad);
int VeriP4Bad(bdd &bddP4Bad, const bdd &bddReach, string &vsErr);
int supcp(bdd & bddP);
bdd cr(const bdd & bddPStart, const bdd & bddP,
const int viEventSub, int & iErr);
bdd r(const bdd &bddP, int &iErr);
bdd p5(const bdd& bddP, int &iErr);
bdd p6(const bdd& bddP, int &iErr);
void BadStateInfo(const bdd& bddBad, const int viErrCode,
const HISC_TRACETYPE showtrace, const string &vsExtralnfo = "");
private:
bdd *m_pbdd_RTrans[2]; //Request event transition predicate in the intf
//0: uncon 1: con
bdd *m_pbdd_ATrans[2]; //Answer event transition predicate in the intf
//0: uncon 1: con
bdd m_bddIVar; //normal interface variables
bdd m_bddIVarPrim; //prime interface variables
bdd m_bddIntfInit; //Initial state in the intface DES
bdd m_bddIntfMarking; //Marker states in the interface DES
};
#endif //_LSUB_H_
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[ ksk sk skok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk sk sk ok ok ok
FILE: LowSub.cpp
DESCR: Reading low-level DES files and initialze all the BDDs
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ke sk ok ok ok sk sk sk ok ok ok sk sk e sk ok ok sk sk sk s sk ok sk sk sk sk ok ok sk sk sk s sk sk sk sk sk sk ok sk sk sk e sk sk ok sk sk ok ok /

#include " .h"
#include "LowSub.h"
#include <string>

#include "DES.h"
#include "errmsg.h"

#include "type.h"
#include "pubfunc.h"
#include "Project.h"

#include <cassert>
#include <fstream>

using namespace std;
extern CProject *pPrj;

/x*

* DESCR: Constructor

* PARA: vsLowFile: subsystem file name with path (.sub) (input)

* viSubIndex: subsystem index (high: O, low: 1,2,...) (input)
* RETURN: None

* ACCESS: public

*/
CLowSub: :CLowSub(const string & vsLowFile, int viSubIndex):
CSub(vsLowFile, viSubIndex)

{

m_iNumofIntfs = 1; //Number of Interface DES, defined in CSub
InitBddFields();

/%%
* DESCR: Destructor
* PARA: None
* RETURN: None
* ACCESS: public
*/
CLowSub: : “CLowSub ()

ClearBddFields();
}
/*
* DESCR: Initialize BDD related data members (only those in LowSub.h)
* PARA: None
* RETURN: O
* ACCESS: private
*/

int CLowSub::InitBddFields()
{

m_pbdd_RTrans [0] = NULL;
m_pbdd_ATrans [0] = NULL;
m_pbdd_RTrans[1] = NULL;

m_pbdd_ATrans[1] = NULL;
m_bddIVar = bddfalse;
m_bddIVarPrim = bddfalse;
m_bddIntfInit = bddfalse;
m_bddIntfMarking = bddfalse;

return O;
}
/%
* DESCR: Release memory for BDD related data members(only those in Lowsub.h)
* PARA: None
* RETURN: O
* ACCESS: private
*/

int CLowSub: :ClearBddFields()
{
for (int m = 0; m < 2; m++)

delete[] m_pbdd_RTrans[m];
m_pbdd_RTrans[m] = NULL;
delete[] m_pbdd_ATrans[m];
m_pbdd_ATrans[m] = NULL;

return 0;
}
/**
* DESCR: Load a low-level
* PARA: None
* RETURN: O sucess <0 fail;

* ACCESS: public

*/
int CLowSub: :LoadSub()

309



Master Thesis — R. Song — McMaster — Computing and Software

ifstream fin;

int iRet = O;

CDES *pDES = NULL;
try

m_sSubFile = str_trim(m_sSubFile);
if (m_sSubFile.length() <= 4)
{

pPrj->SetErr("Invalid file name: " + m_sSubFile, HISC_BAD_LOW_FILE);

throw -1;

}

if (m_sSubFile.substr(m_sSubFile.length() - 4) != ".sub")

{
pPrj->SetErr("Invalid file name: " + m_sSubFile, HISC_BAD_LOW_FILE);
throw -1;

}

fin.open(m_sSubFile.data(), ifstream::in);
if (!'fin) //unable to find low sub file
{

pPrj->SetErr("Unable to open file: " + m_sSubFile,
HISC_BAD_LOW_FILE);
throw -1;

m_sSubName = GetNameFromFile(m_sSubFile);

char scBuf [MAX_LINE_LENGTH];

string sLine;

int iField = -1; //0: SYSTEM 1:INTERFACE 2:PLANT 3:SPEC

char *scFieldArr[] = {"SYSTEM", "INTERFACE", "PLANT", "SPEC"};
string sDESFile;
int iTmp = O;
int iNumofPlants = O;
int iNumofSpecs = 0;
int iNumofIntfs 0;
while (fin.getline(scBuf, MAX_LINE_LENGTH))
{

sLine = str_nocomment (scBuf);
sLine = str_trim(sLine);
if (sLine.empty())

continue;
if (sLine[0] == ’[’ && sLine[sLine.length() - 1] == ’]’)
¢ sLine = sLine.substr(l, sLine.length() - 1);

sLine = sLine.substr(0, sLine.length() - 1);

sLine = str_upper(str_trim(sLine));

iField++;

%f (iField <= 3)

if (sLine != scFieldArr[iField])
{

pPrj->SetErr (m_sSubName +
": Field name or order is wrong!",
HISC_BAD_LOW_FORMAT) ;
throw -1;

}
%f (iField == 1)

//Check number of Plants and apply for memory space
if (m_iNumofPlants + m_iNumofSpecs <= 0)
{
pPrj->SetErr (m_sSubName +
": Must have at least one DES.",
HISC_BAD_LOW_FORMAT) ;
throw -1;

}
if (m_iNumofPlants < O || m_iNumofSpecs < 0)

{
pPrj->SetErr (m_sSubName +
": Must specify the number of plant DES and spec DES.",

HISC_BAD_LOW_FORMAT) ;
throw -1;

}

m_pDESArr = new (CDES *) [this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)
m_pDESArr[i] = NULL;

//Initialize m_piDESOrderArr

m_piDESOrderArr = new int[this->GetNumofDES()];

for (int i = 0; i < this->GetNumofDES(); i++)
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m_piDESOrderArr[i] = ij;
//Initialize m_piDESPosArr
m_piDESPosArr = new int[this->GetNumofDES()];
for (int i = 0; i < this->GetNumofDES(); i++)
m_piDESPosArr[i] = i;

}
}
else
{
pPrj->SetErr (m_sSubName + ": Too many fields!",
HISC_BAD_LOW_FORMAT) ;
throw -1;
}
}
else

iwitch (iField)

case 0: //[SYSTEM]
if (!IsInteger(sLine))
{
pPrj->SetErr (m_sSubName + ": Number of DES is absent!",
HISC_BAD_LOW_FORMAT) ;
throw -1;

iTmp = atoi(sLine.data());
if (iTmp < 0)
{
pPrj->SetErr (m_sSubName +
": Number of DES is less than zero!",
HISC_BAD_LOW_FORMAT) ;
throw -1;

if (m_iNumofPlants < 0)
m_iNumofPlants = iTmp;

else if (m_iNumofSpecs < 0)
m_iNumofSpecs = iTmp;

else

{

pPrj->SetErr (m_sSubName +
": Too many lines in SYSTEM field",

HISC_BAD_LOW_FORMAT) ;
throw -1;

break;
case 1: //[INTERFACE]
%f (iNumofIntfs > 0)

pPrj->SetErr (m_sSubName +

": Only one interface DES is allowed or each low sub",
HISC_BAD_LOW_FORMAT) ;

throw -1;

}
sDESFile = GetDESFileFromSubFile(m_sSubFile, sLine);
pDES = new CDES(this, sDESFile, INTERFACE_DES);
if (pDES->LoadDES() < 0)
throw -1; //here LoadDES() will generate the err msg.
else
{
iNumofIntfs++;
m_pDESArr[0] = pDES;
pDES = NULL;

break;
case 2: //[PLANT]
sDESFile = GetDESFileFromSubFile(m_sSubFile, sLine);
PDES = new CDES(this, sDESFile, PLANT_DES);
if (pDES->LoadDES() < 0)
throw -1;  //here LoadDES() will generate the err msg.
else

iNumofPlants++;
if (iNumofPlants > m_iNumofPlants)

pPrj->SetErr (m_sSubName + ": Too many Plant DESs",
HISC_BAD_LOW_FORMAT) ;
throw -1;

}
m_pDESArr [iNumofPlants] = pDES;
PDES = NULL;
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break;
case 3: //[SPEC]
sDESFile = GetDESFileFromSubFile(m_sSubFile, sLine);
pDES = new CDES(this, sDESFile, SPEC_DES);
if (pDES->LoadDES() < 0)
throw -1;  //here LoadDES() will generate the err msg.
else
{
iNumofSpecs++;
if (iNumofSpecs > m_iNumofSpecs)
{
pPrj->SetErr(m_sSubName + ": Too many spec DESs",

HISC_BAD_LOW_FORMAT) ;
throw -1;

m_pDESArr [m_iNumofPlants + iNumofSpecs] = pDES;
pDES = NULL;

}

break;

default:
pPrj->SetErr (m_sSubName + ": Unknown error.",
HISC_BAD_LOW_FORMAT) ;
throw -1;
break;

}

} //while
if (iNumofPlants < m_iNumofPlants)

pPrj->SetErr (m_sSubName + ": Too few plant DESs",
HISC_BAD_LOW_FORMAT) ;
throw -1;

if (iNumofSpecs < m_iNumofSpecs)

pPrj->SetErr(m_sSubName + ": Too few spec DESs",
HISC_BAD_LOW_FORMAT) ;
throw -1;

}
if (iNumofIntfs < m_iNumofIntfs)
{

pPrj->SetErr (m_sSubName + ": There must exists one interface DES.",

HISC_BAD_LOW_FORMAT) ;
throw -1;

fin.close();
this->DESReorder () ;

catch (int iError)
if (pDES != NULL)

delete pDES;
pDES = NULL;

}

if (fin.is_open())
fin.close();

iRet = iError;

return iRet;

}

/%

* DESCR: Initialize BDD data memebers
* PARA: None X

* RETURN: O: sucess -1: fail

* ACCESS: private

*/
%nt CLowSub: :MakeBdd ()
try
//Initialize the bdd node table and cache size.
long long 1lNumofStates = 1;
for (int i = 0; i < this->GetNumofDES(); i++)
1NumofStates *= m_pDESArr[i]->GetNumofStates();
if (1NumofStates >= MAX_INT)
break;

}
if (1NumofStates <= 10000)
bdd_init (1000, 100);
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else if (1NumofStates <= 1000000)
bdd_init (10000, 1000);

else if (1NumofStates <= 10000000)
bdd_init (100000, 10000) ;

else

bdd_init (2000000, 1000000) ;
bdd_setmaxincrease (1000000) ;

}

giNumofBddNodes = 0;

bdd_gbc_hook (my_bdd_gbchandler) ;

//define domain variables

int *piDomainArr = new int[2];

for (int i = 0; i < 2 * this->GetNumofDES(); i += 2)
{

piDomainArr [0] = m_pDESArr[i/2]->GetNumofStates();
piDomainArr([1] = piDomainArr[0];
fdd_extdomain(piDomainArr, 2);

delete[] piDomainArr;

piDomainArr = NULL;

//compute the number of bdd variables (only for normal variables)

m_iNumofBddNormVar = 0;

for (int i = 0; i < 2 * (this->GetNumofDES()); i = i + 2)
m_iNumofBddNormVar += fdd_varnum(i);

//compute initial state predicate

for (int i = 0; i < this->GetNumofDES(); i++)

m_bddInit &= fdd_ithvar(i * 2, m_pDESArr[i]->GetInitState());
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)
m_bddIntfInit = fdd_ithvar(i * 2, m_pDESArr([i]->GetInitState());

}
//set the first level block
int iNumofBddVar = O0;
int iVarNum = O;
bdd bddBlock = bddtrue;
for (int i = 0; i < 2 * (this->GetNumofDES()); i += 2)
{

iVarNum = fdd_varnum(i);
bddBlock = bddtrue;
for (int j = 0; j < 2 * iVarNum; j++)

bddBlock &= bdd_ithvar (iNumofBddVar + j);

}
bdd_addvarblock(bddBlock, BDD_REORDER_FREE) ;
iNumofBddVar += 2 * iVarNum;

}

//compute marking states predicate

bdd bddTmp = bddfalse;

for (int i 0; i < this->GetNumofDES(); i++)

bddTmp = bddfalse;

MARKINGLIST: :const_iterator ci =
(m_pDESArr[i]->GetMarkingList ()) .begin();

for (int j = 0; j < m_pDESArr[i]->GetNumofMarkingStates(); j++)

bddTmp |= fdd_ithvar(i * 2, *ci);
++ci;

%_bddMarking &= bddTmp;
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)
m_bddIntfMarking = bddTmp;
}
//Initialize interface transitions predicates
if (m_usiMaxUnCon[R_EVENT] > 0)
m_pbdd_RTrans[0] = new bdd[m_usiMaxUnCon[R_EVENT] / 21;
if (m_usiMaxUnCon[A_EVENT] > 0)
m_pbdd_ATrans[0] = new bdd[m_usiMaxUnCon[A_EVENT]/2];
if ((unsigned short) (m_usiMaxCon[R_EVENT] + 1) > 0)
m_pbdd_RTrans[1] = new bdd[(m_usiMaxCon[R_EVENT] + 1)/2];
if ((unsigned short) (m_usiMaxCon[A_EVENT] + 1) > 0)
m_pbdd_ATrans[1] = new bdd[(m_usiMaxCon[A_EVENT] + 1)/2];
//Compute transitions predicate
for (int k = 1; k < 4; k++)
{

if (m_usiMaxConl[k] !'= OxFFFF)
{
m_pbdd_ConTrans[k] = new bdd[m_usiMaxCon[k] / 2 + 1](bddfalse);
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m_pbdd_ConVar[k] = new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pbdd_ConVarPrim[k] =
new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pbdd_ConPhysicVar[k] =
new bdd[m_usiMaxCon[k] / 2 + 1] (bddfalse);
m_pbdd_ConPhysicVarPrim[k] =
new bdd[m_usiMaxConl[k] / 2 + 1] (bddfalse);
m_pPair_Con[k] = new (bddPair #*)[m_usiMaxCon[k] / 2 + 1];
for (int iPair = 0; iPair < m_usiMaxCon[k] / 2 + 1; iPair++)
m_pPair_Con[k] [iPair] = NULL;
m_pPair_ConPrim[k] = new (bddPair *)[m_usiMaxCon[k] / 2 + 1];
for (int iPair = 0; iPair < m_usiMaxCon[k] / 2 + 1; iPair++)
m_pPair_ConPrim[k] [iPair] = NULL;

if (m_usiMaxUnCon[k] != 0)
{

m_pbdd_UnConTrans[k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConVar [k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConPlantTrans[k] =
new bdd[m_usiMaxUnCon[k] /2] (bddfalse) ;
m_pbdd_UnConVarPrim[k] = new bdd[m_usiMaxUnConl[k]/2] (bddfalse);
m_pbdd_UnConPlantVar[k] = new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pbdd_UnConPlantVarPrim[k] =
new bdd[m_usiMaxUnCon[k]/2] (bddfalse);
m_pPair_UnCon[k] = new (bddPair #*)[m_usiMaxUnConl[k]/2];
for (int iPair = 0; iPair < m_usiMaxUnCon[k]/2; iPair++)
m_pPair_UnCon[k] [iPair] = NULL;
m_pPair_UnConPrim[k] = new (bddPair *)[m_usiMaxUnConl[k]/2];
for (int iPair = 0; iPair < m_usiMaxUnCon[k]/2; iPair++)
m_pPair_UnConPrim([k] [iPair] = NULL;
}
}

map<int, bdd> bddTmpTransMap; //<event_index, transitions>
for (int i = 0; i < this->GetNumofDES(); i++)

//before compute transition predicate for each DES, clear it.
bddTmpTransMap.clear() ;

for (int j = 0; j < m_pDESArr[i]l->GetNumofEvents(); j++)

{

bddTmpTransMap [ (m_pDESArr [i]->GetEventsArr()) [j]] = bddfalse;

//compute transition predicate for each DES
for (int j = 0; j < m_pDESArr[i]->GetNumofStates(); j++)

TRANS: :const_iterator ci =
(*(m_pDESArr[i]->GetTrans() + j)).begin();
for (; ci != (*(m_pDESArr[i]->GetTrans() + j)).end(); ++ci)

bddTmpTransMap [ci->first] |= fdd_ithvar(i * 2, j) &
fdd_ithvar(i * 2 + 1, ci->second);
}
}
//combine the current DES transition predicate to
//subsystem transition predicate
map<int, bdd>::const_iterator ciTmp = bddTmpTransMap.begin();
for (; ciTmp != bddTmpTransMap.end(); ++ciTmp)

{
if (ciTmp->first % 2 == 0) //uncontrollable, start from 2

int iEventSub = ciTmp->first >> 28;
int iIndex = (ciTmp->first & OxOOOOFFFF) / 2 - 1;
if (m_pbdd_UnConVar[iEventSub] [iIndex] == bddfalse)

m_pbdd_UnConTrans [iEventSub] [iIndex] = bddtrue;
m_pbdd_UnConVar [iEventSub] [iIndex] = bddtrue;
m_pbdd_UnConVarPrim[iEventSub] [iIndex] = bddtrue;

m_pbdd_UnConTrans [iEventSub] [iIndex] &= ciTmp->second;
m_pbdd_UnConVar [iEventSub] [iIndex] &= fdd_ithset(i * 2);
m_pbdd_UnConVarPrim[iEventSub] [iIndex] &=

fdd_ithset(i * 2 + 1);
//compute uncontrollable plant vars and varprimes
if (m_pDESArr[i]->GetDESType() == PLANT_DES)

if (m_pbdd_UnConPlantVar[iEventSub] [iIndex] == bddfalse)
{
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m_pbdd_UnConPlantTrans [iEventSub] [iIndex] = bddtrue;

m_pbdd_UnConPlantVar [iEventSub] [iIndex] = bddtrue;

m_pbdd_UnConPlantVarPrim[iEventSub] [iIndex] =
bddtrue;

}
m_pbdd_UnConPlantTrans [iEventSub] [iIndex] &=
ciTmp->second;
m_pbdd_UnConPlantVar [iEventSub] [iIndex] &=
fdd_ithset(i * 2);
m_pbdd_UnConPlantVarPrim[iEventSub] [iIndex] &=
fdd_ithset(i * 2 + 1);
}
//compute interface Transitions
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)
{

if ((EVENTSUB)iEventSub == R_EVENT)
m_pbdd_RTrans[0] [iIndex] = ciTmp->second;
else
m_pbdd_ATrans [0] [iIndex] = ciTmp->second;

}
}
else //controllable
{

int iEventSub = ciTmp->first >> 28;
int iIndex = ((ciTmp->first & OxOO0OOFFFF) - 1)/ 2;
if (m_pbdd_ConVar[iEventSub] [iIndex] == bddfalse)

m_pbdd_ConTrans [iEventSub] [iIndex] = bddtrue;
m_pbdd_ConVar [iEventSub] [iIndex] = bddtrue;
m_pbdd_ConVarPrim[iEventSub] [iIndex] = bddtrue;

}
m_pbdd_ConTrans [iEventSub] [iIndex] &= ciTmp->second;
m_pbdd_ConVar [iEventSub] [iIndex] &= fdd_ithset(i * 2);
m_pbdd_ConVarPrim[iEventSub] [iIndex] &=

fdd_ithset(i * 2 + 1);
//compute controllable physical plant vars and varprimes
if (m_pDESArr[i]->GetDESType() == PLANT_DES)

if (m_pbdd_ConPhysicVar[iEventSub] [iIndex] == bddfalse)
{
m_pbdd_ConPhysicVar [iEventSub] [iIndex] = bddtrue;
m_pbdd_ConPhysicVarPrim[iEventSub] [iIndex]= bddtrue;

}
m_pbdd_ConPhysicVar [iEventSub] [iIndex] &=
fdd_ithset(i * 2);
m_pbdd_ConPhysicVarPrim[iEventSub] [iIndex] &=
3 fdd_ithset(i * 2 + 1);
//compute interface Transitions
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)

if ((EVENTSUB)iEventSub == R_EVENT)
m_pbdd_RTrans[1] [iIndex] = ciTmp->second;
else
m_pbdd_ATrans[1] [iIndex] = ciTmp->second;

}
if (m_pDESArr[i]->GetDESType() == INTERFACE_DES)
{

m_bddIVar = fdd_ithset(i * 2);
m_bddIVarPrim = fdd_ithset(i * 2 + 1);
}
}

//compute m_pPair_UnCon, m_pPair_Con
for (int k = 1; k < 4; k++)
{

for (int j = 0; j < m_usiMaxUnCon[k]; j += 2)
{
m_pPair_UnCon[k] [j/2] = bdd_newpair();
SetBddPairs(m_pPair_UnCon[k] [j/2], m_pbdd_UnConVar[k][j/2],
m_pbdd_UnConVarPrim[k] [j/2]);
m_pPair_UnConPrim[k] [j/2] = bdd_newpair();
SetBddPairs (m_pPair_UnConPrim([k] [j/2],
m_pbdd_UnConVarPrim[k] [j/2],
m_pbdd_UnConVar [k] [j/2]);
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for (int j = 1; j < (unsigned short) (m_usiMaxCon[k] + 1); j += 2)

m_pPair_Con[k][(j - 1) / 2] = bdd_newpair();
SetBddPairs(m_pPair_Conl[k][(j - 1) / 2],
m_pbdd_ConVar (k] [(j - 1) / 2],
m_pbdd_ConVarPrim[k] [(j - 1) / 2]1);
m_pPair_ConPrim[k] [(j - 1) / 2] = bdd_newpair();
SetBddPairs(m_pPair_ConPrim[k][(j - 1) / 2],
m_pbdd_ConVarPrim[k] [(j - 1) / 2],
m_pbdd_ConVar[k]1[(j - 1) / 21);

}
}
catch(...)
{
string sErr;
sErr = "Error happens when initializing low level ";
sErr += this->GetSubIndex();

sErr += " BDD!";
pPrj->SetErr(sErr, HISC_SYSTEM_INITBDD);

return -1;

return 0;
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[ kskskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk sk ok sk ok
FILE: LowSubl.cpp
DESCR: Some misc functions for low-levels
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sekokok ok ok sk ok sk ok sk sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk ok sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk ok sk sk ok ok /
#include "Sub.h"
#include "LowSub.h"
#include <string>

#include "DES.h"
#include "errmsg.h"

#include "type.h"
#include "pubfunc.h"
#include "Project.h"

#include <cassert>
#include <fstream>
#include <fdd.h>

using namespace std;
extern CProject *pPrj;

/%%
* DESCR: Save DES list of low-levels in memory to a file (for checking)
* PARA: fout: output file stream

* RETURN: O: sucess -1: fail
* ACCESS: public

*/
int CLowSub: :PrintSub(ofstream& fout)
{

try
{

fout << "#Sub system: " << m_sSubName << endl;
fout << endl;

fout << "[SYSTEM]" << endl;

fout << m_iNumofPlants << endl;

fout << m_iNumofSpecs << endl;

fout << endl;

fout << "[INTERFACE]" << endl;

for (int i = 0; i < this->GetNumofDES(); i++)

if (m_pDESArr([i]->GetDESType() == INTERFACE_DES)
{

fout << m_pDESArr[0]->GetDESName() << endl;
break;

}
}
fout << "[PLANT]" << endl;
for (int i = 1; i < m_iNumofPlants + m_iNumofIntfs; i++)
for (int j = 0; j < this->GetNumofDES(); j++)
if (m_piDESOrderArr([j]l == i)
{

fout << m_pDESArr[j]->GetDESName() << endl;
break;

}
}
fout << "[SPEC]" << endl;
for (int i = m_iNumofPlants + m_iNumofIntfs;
i < this->GetNumofDES(); i++)

{
for (int j = 0; j < this->GetNumofDES(); j++)
{
if (m_piDESOrderArr[j] == i)
{
fout << m_pDESArr[j]->GetDESName() << endl;
break;
}
}
fout << " " << endl;
}
catch(...)
{
return -1;
return 0;
1
/%%
* DESCR: Save all the DES in low-levels to a text file for checking
* PARA: fout: output file stream

* RETURN: O: sucess -1: fail
* ACCESS: public
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*/
int CLowSub::PrintSubAll (ofstream & fout)
{

try
if (PrintSub(fout) < 0)
throw -1;
for (int i = 0; i < this->GetNumofDES(); i++)
if (m_pDESArr[i]->PrintDES(fout) < 0)
throw -1;
catch(...)
{
return -1;
return O;

}

/%%

* DESCR: Get the interface DES pointer for this low-level,used by high-level.
* PARA: None

* RETURN: This low-level interface DES pointer

* ACCESS: public

*/
%DES * CLowSub: :GetIntfDES()

assert (m_pDESArr != NULL);
for (int i = 0; i < this->GetNumofDES(); i++)

if (m_pDESArr([i]->GetDESType() == INTERFACE_DES)
return m_pDESArr[i];

assert(false); //should never come here
return m_pDESArr[0];

N

* K K X K K X ¥ ¥

DESCR: Generate Bad state info during verfication
Note: showtrace is not implemented, currently it is used for showing
a blocking is a deadlock or livelock (very slow).

PARA: bddBad: BDD for the set of bad states

viErrCode: error code (see errmsg.h)

showtrace: show a trace from the initial state to a bad state or not

(not implemented)
vsExtralnfo: Extra errmsg.

* RETURN: None
* ACCESS: private

*/
void CLowSub::BadStateInfo(const bdd& bddBad, const int viErrCode,
const HISC_TRACETYPE showtrace, const string &vsExtralnfo)
{

int *piBad = fdd_scanallvar(bddBad) ;
string sErr;
if (piBad != NULL)

if (viErrCode == HISC_VERI_LOW_UNCON)
sErr = GetSubName() +
": Level-wise controllable checking failed state:\n< ";
else if (viErrCode == HISC_VERI_LOW_BLOCKING)

if (showtrace == HISC_SHOW_TRACE)
sErr = GetSubName() + ": Blocking state ";
else
sErr = GetSubName() + ": Blocking state: \n < ";

}

else if (viErrCode == HISC_VERI_LOW_P4FAILED)
sErr = GetSubName() +

Interface consistent conditions Point 4 checking failed state:\n< ";
else if (viErrCode == HISC_VERI_LOW_P5FAILED)

sErr = GetSubName() +

Interface consistent conditions Point 5 checking failed state:\n< ";
else if (viErrCode == HISC_VERI_LOW_P6FAILED)

sErr = GetSubName() +

Interface consistent conditions Point 6 checking failed state:\n< ";

//for blocking state, try to find the deadlock state
//if there is no deadlock state, only show one of the live lock states
if (showtrace == HISC_SHOW_TRACE)

".
".

".

if (viErrCode == HISC_VERI_LOW_BLOCKING)
bdd bddBlock = bddBad;
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bdd bddNext
bdd bddTemp
do
{
bddTemp = bddtrue;
for (int i = 0; i < this->GetNumofDES(); i++)
bddTemp &= fdd_ithvar(i * 2, piBad[i * 2]);
bddNext = bddfalse;
for (int k = 0; k < 4; k++)

bddtrue;
bddtrue;

for (unsigned short usi = 2;
usi <= m_usiMaxUnConl[k] && bddNext == bddfalse;
usi += 2)

bddNext |=
bdd_replace(
bdd_relprod(
m_pbdd_UnConTrans [k] [(usi - 2) / 2],
bddTemp,
m_pbdd_UnConVar [k] [(usi - 2) / 21),
m_pPair_UnConPrim[k] [(usi - 2) / 2]) &
bddBad;

for (unsigned short usi = 1;
usi < (unsigned short) (m_usiMaxCon[k] + 1) &&
bddNext == bddfalse; usi += 2)

bddNext |=
bdd_replace(
bdd_relprod(
m_pbdd_ConTrans [k] [(usi - 1) / 2],
bddTemp,
m_pbdd_ConVar [k] [(usi - 1) / 2]),
m_pPair_ConPrim[k] [(usi - 1) / 2]) &
bddBad;
}

if (bddNext == bddfalse) //this is a deadlock state
{

sErr += "(dead lock):\n< ";
break;

else //not a deadlock state
{

bddBlock = bddBlock - bddTemp;
free(piBad) ;

piBad = NULL;

piBad = fdd_scanallvar(bddBlock) ;

}
} while (piBad != NULL);
if (piBad == NULL) //live lock
{

sErr += "(live lock):\n< ";
piBad = fdd_scanallvar(bddBad);

}
}
if (piBad != NULL)
{
for (int i = 0; i < this->GetNumofDES(); i++)

sErr += m_pDESArr [m_piDESPosArr[i]]->GetDESName() + ":" +
m_pDESArr [m_piDESPosArr[i]]->GetStateName (
piBad [m_piDESPosArr[i] * 2]);

if (i < this->GetNumofDES() -1)
sErr += ", ";

}
}
sErr += " >\n";
sErr += vsExtraInfo;
pPrj->SetErr(sErr, viErrCode);

free(piBad) ;
piBad = NULL;

return;

/x*
* DESCR: Search event name from this low-level local event index.
* PARA: k: R_EVENT/A_EVENT/H_EVENT/L_EVENT
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usilLocallndex: this low-level local event index.
RETURN: event name
ACCESS: public

*
*
*
*/

string CLowSub::SearchEventName (EVENTSUB k, unsigned short usilocallndex)

int iEventIndex = 0;

iEventIndex = pPrj—;GenEventIndex((EVENTSUB)k, m_iSubIndex, usilocallndex);
return (pPrj->GetInvAllEventsMap()) [iEventIndex];
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[ FFAAAAK KKK A KKK KA K KA KKK KA K KA K KA KK A KA KK KA KKK KA KKK KA KKK KKK KK KK
FILE: LowSub2.cpp
DESCR: Verify this low-level interface (Command-pair)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
KA AR KA KKK KA K KA KKK KA KKK KA KKK KA K KA KKK KA K KA KK KA KKK KKK KKK K [

#include "LowSub.h"
#include "Sub.h"
#include "pubfunc.h"

#include "type.h"

#include "fdd.h"
#include "Project.h"

#include "errmsg.h"
#include <string>
using namespace std;
extern CProject *pPrj;

/*

* DESCR: Verify if this low-level interface is a command-pair interface
* PARA: None

* RETURN: O: This low-level interface is a command-pair interface

* < 0: Not a command-pair interface
ACCESS: private

*

*/
int CLowSub: :CheckIntf ()
{

int iRet = 0;
string sErr = "Interface for low level ";

sErr += this->GetSubName();
sErr += ": ";

bddPair *pPair = bdd_newpair();
SetBddPairs(pPair, m_bddIVarPrim, m_bddIVar);

bdd P_Ij = bddfalse;
bdd P_Rj = bddfalse;
bdd P_Aj = bddfalse;
bdd P_RAj = bddfalse;
bdd P_ARj = bddfalse;
bdd P_Ijm = bddfalse;
try

if (m_bddIntfInit == bddfalse)
{

pPrj->SetErr(sErr + "No reachable states.", HISC_BAD_INTERFACE);
throw -1;

}

P_Ij = intf_r(bddtrue, iRet);

if (iRet < 0)
throw -1;

P_Ijm = m_bddIntfMarking & P_Ij;

for (int i = 1; i <= (unsigned short) (m_usiMaxCon[A_EVENT] + 1); i += 2)
P_Rj |= bdd_exist(m_pbdd_ATrans[1]1[(i - 1)/2], m_bddIVar);

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[A_EVENT] + 1); i += 2)
P_Rj |= bdd_exist(m_pbdd_ATrans[0][(i - 2)/2], m_bddIVar);

P_Rj = bdd_replace(P_Rj, pPair);

P_Rj &= P_Ij;

P_Rj |= m_bddIntfInit;

for (int i = 1; i <= (unsigned short) (m_usiMaxCon[R_EVENT] + 1); i += 2)
P_Aj |= bdd_exist(m_pbdd_RTrans[1][(i - 1)/2], m_bddIVar);

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[R_EVENT]); i += 2)
P_Aj |= bdd_exist(m_pbdd_RTrans[0][(i - 2)/2], m_bddIVar);

P_Aj = bdd_replace(P_Aj, pPair);

P_Aj &= P_Ij;

for (int i = 1; i <= (unsigned short) (m_usiMaxCon[A_EVENT] + 1); i += 2)
P_RAj |= bdd_exist(m_pbdd_ATrans[1][(i - 1)/2] & P_Rj, m_bddIVar);

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[A_EVENT] + 1); i += 2)
P_RAj |= bdd_exist(m_pbdd_ATrans[0][(i - 2)/2] & P_Rj, m_bddIVar);

for (int i = 1; i <= (unsigned short) (m_usiMaxCon[R_EVENT] + 1); i += 2)
P_ARj |= bdd_exist(m_pbdd_RTrans[1][(i - 1)/2] & P_Aj, m_bddIVar);

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[R_EVENT]); i += 2)
P_ARj |= bdd_exist(m_pbdd_RTrans[0]J[(i - 2)/2] & P_Aj, m_bddIVar);

if (P_RAj !'= bddfalse || P_ARj != bddfalse || P_Rj !'= P_Ijm)

{

pPrj->SetErr(sErr + "Not a command-pair interface.", HISC_BAD_INTERFACE);
throw -1;
}

catch(int iErr)

iRet = iErr;
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}
bdd_freepair(pPair) ;
pPair = NULL;
return iRet;

DESCR:  Compute R(GIj, P)

PARA:

bddP: P (input)
iErr: returned error code

RETURN: R(GIj, P
ACCESS: private

*/
bdd CLowSub::intf_r(const bdd &bddP, int &iErr)
{

bdd bddK = bddP & m_bddIntfInit;

bdd bddK1l = bddfalse;

bdd bddKStep = bddfalse;

bddPair *pPair = bdd_newpair();
SetBddPairs(pPair, m_bddIVarPrim, m_bddIVar);

iErr

try

= 0;

zhile (bddK != bddK1)

bddK1l = bddK;
for (int i = 1; i <= (unsigned short) (m_usiMaxCon[R_EVENT] + 1); i += 2)

bddKStep bdd_exist(m_pbdd_RTrans[1] [(i - 1)/2] & bddK1l, m_bddIVar);
bddKStep = bdd_replace(bddKStep, pPair);
bddK |= bddKStep;

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[R_EVENT]); i += 2)

bddKStep = bdd_exist(m_pbdd_RTrans[0][(i - 2)/2] & bddK1, m_bddIVar);
bddKStep = bdd_replace(bddKStep, pPair);
bddK |= bddKStep;

for (int i = 1; i <= (unsigned short) (m_usiMaxCon[A_EVENT] + 1); i += 2)

bddKStep bdd_exist(m_pbdd_ATrans[1][(i - 1)/2] & bddK1l, m_bddIVar);
bddKStep = bdd_replace(bddKStep, pPair);
bddK |= bddKStep;

for (int i = 2; i <= (unsigned short) (m_usiMaxUnCon[A_EVENT] + 1); i += 2)

bddKStep = bdd_exist(m_pbdd_ATrans[0][(i - 2)/2] & bddK1l, m_bddIVar);
bddKStep = bdd_replace(bddKStep, pPair);
bddK |= bddKStep;

}

}
catch(int)
{

string sErr = "Interface for low level ";

sErr += this->GetSubName();

sErr += ": Error during computing interface reachable states.";
pPrj->SetErr(sErr, HISC_LOWERR_REACH);

iErr = -1;

bdd_freepair(pPair) ;

pPair = NULL;

return bddfalse;

}
bdd_freepair(pPair) ;
pPair = NULL;
return bddK;

322



Master Thesis — R. Song — McMaster — Computing and Software

[ kokskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk ok ok ok
FILE: LowSub3.cpp
DESCR: Verification and synthesis for low-levels
AUTH: Raoguang Song
DATE: (C) Jan, 2006
sk sk ok ok ok sk sk sk sk ok ok sk sk ke sk ok ok sk sk sk s sk ok sk sk sk sk sk ok sk sk sk s sk sk sk sk sk sk ok sk sk sk e sk sk sk ok ok ok /

#include "LowSub.h"
#include "Sub.h"
#include "pubfunc.h"

#include "type.h"

#include "fdd.h"
#include "Project.h"

#include "errmsg.h"
#include <string>
#include <sys/time.h>
using namespace std;
extern CProject *pPrj;

/**

* DESCR: Verify whether a high level is level-wise controllable,

* nonblocking and p4, p5 and p6 satisfied or not.

* PARA: showtrace:show a trace to a bad state or not(not implemented) (input)
* superinfo: returned verification info (see BddHisc.h) (output)

* savetype: save syn-product or not (See BddHisc.h) (input)

* savepath: where to save syn-product(input)

* RETURN: O0: sucess <0: fail

* ACCESS: public

*/
int CLowSub::VeriSub(const HISC_TRACETYPE showtrace, HISC_SUPERINFO & superinfo,
const HISC_SAVEPRODUCTTYPE savetype, const string& savepath)
{
int iRet = 0;
int iErr = O;
//Initialize the BDD data memebers
CSub: :InitBddFields();
InitBddFields();
bdd bddReach = bddfalse;
string sErr;
try
{
//Make transition bdds
if (MakeBdd() < 0)
throw -1;
//Check command pair interface
if (CheckIntf() < 0)
throw -1;
bdd bddConBad = bddfalse;
bdd bddP4Bad = bddfalse;
bdd bddP5 = bddfalse;
bdd bddP6 = bddfalse;
bdd bddCoreach = bddfalse;
//compute bddReach
bddReach = r(bddtrue, iErr);
if (iErr < 0)
throw -1;
m_bddMarking &= bddReach;
//Initialize controllable bddBad
bddConBad = bddfalse;
if (VeriConBad(bddConBad, bddReach, sErr) < 0)
throw -1;
//check if any reachable states belong to bad states
%f (bddConBad !'= bddfalse)

BadStateInfo(bddConBad, HISC_VERI_LOW_UNCON, showtrace, sErr);
throw -2;

}

//Initialize P4 bddBad

if (VeriP4Bad(bddP4Bad, bddReach, sErr) < 0)
throw -1;

//check if any reachable states belong to bad states

if (bddP4Bad != bddfalse)

BadStateInfo(bddP4Bad, HISC_VERI_LOW_P4FAILED, showtrace, sErr);
throw -3;

}

bddCoreach = cr(m_bddMarking, bddReach, ALL_EVENT, iErr);

if (iErr !'= 0)
throw -1;

//check if the system is nonblocking

%f (bddReach != bddCoreach)
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BadStateInfo(bddReach - bddCoreach, HISC_VERI_LOW_BLOCKING, showtrace);
throw -4;

}
bddP6 = p6(bddReach, iErr);
if (iErr != 0)
throw -1;
%f (bddP6 != bddReach)

BadStateInfo(bddReach - bddP6, HISC_VERI_LOW_P6FAILED, showtrace);
throw -5;

}

//Computing P5()

bddP5 = p5(bddReach, iErr);

if (iErr != 0)
throw -1;

if (bddP5 != bddReach)

{

BadStateInfo(bddReach - bddP5, HISC_VERI_LOW_PS5FAILED, showtrace);
throw -6;

//final synchronous product;

m_bddSuper = bddReach;

//save syn-product

superinfo.statesize = bdd_satcount (m_bddSuper)/pow((double)2, double(m_iNumofBddNormVar)) ;
superinfo.nodesize = bdd_nodecount(m_bddSuper) ;

if (savetype !'= HISC_NOTSAVEPRODUCT)

if (SaveSuper (m_bddSuper, HISC_SAVESUPER_AUTOMATA, savepath) < 0)
throw -1;
}

catch (int iResult)

%f (iResult < -1)

superinfo.statesize = bdd_satcount (bddReach)/pow((double)2, double(m_iNumofBddNormVar)) ;

superinfo.nodesize = bdd_nodecount(bddReach);
if (savetype != HISC_NOTSAVEPRODUCT)
SaveSuper (bddReach, HISC_SAVESUPER_AUTOMATA, savepath);

}
iRet = -1;
¥
ClearBddFields();
CSub: :ClearBddFields();
bdd_done() ;
return iRet;
}
/%%
* DESCR: Synthesize a supervisor for this low-level. The superivsor states is
* saved in m_bddSuper.
* PARA: computemethod: first compute reachable states or not (See BddHisc.h)
* (input)
* superinfo: returned synthesis info (see BddHisc.h) (output)
* savetype: how to save synthesized supervisor (See BddHisc.h) (input)
*

savepath: where to save syn-product(input)

* RETURN: O: sucess <0: fail
* ACCESS: public

*/
int CLowSub: :SynSuper (const HISC_COMPUTEMETHOD computemethod,

bdd
bdd
bdd
int
int

HISC_SUPERINFO &superinfo,
const HISC_SAVESUPERTYPE savetype,
const string& savepath)

bddSuper = bddfalse;
bddK = bddfalse;
bddReach = bddfalse;
iRet = 0;

iErr = 0;

//Initialize the BDD data memebers
CSub::InitBddFields();

InitBddFields();
try
{

iRet = 0;

//Make transition bdds
if (MakeBdd() < 0)
throw -1;

//Check command pair interface
if (CheckIntf() < 0)
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throw -1;
//Initialize bddBad
bdd bddBad = bddfalse;
if (GenConBad(bddBad) < 0)

throw -1;
if (GenP4Bad(bddBad) < 0)
throw -1;
if (computemethod == HISC_ONREACHABLE)
{
bddReach = r(bddtrue, iErr);
if (iErr < 0)
throw -1;
bddBad &= bddReach;
do
bddK = bddBad;
//controllable, p4, nonblocking
if (SynPartSuper (computemethod, bddReach, bddBad) < 0)
throw -1;
bddBad &= bddReach;
//p6
bddBad = bdd_not(p6(bddReach - bddBad, iErr));
if (iErr < 0)
throw -1;
bddBad &= bddReach;
//p5
bddBad = bdd_not(p5(bddReach - bddBad, iErr));
if (iErr < 0)
throw -1;
bddBad &= bddReach;
} while (bddBad != bddK);
m_bddSuper = r(bddReach - bddBad, iErr);
if (iErr < 0)
throw -1;
}
else
{
//synthesis
do

{
bddK = bddBad;

//controllable, p4, nonblocking
if (SynPartSuper(computemethod, bddBad, bddBad) < 0)
throw -1;
//p6
bddBad = bdd_not (p6(bdd_not(bddBad), iErr));
if (iErr < 0)
throw -1;
//p5
bddBad = bdd_not (p5(bdd_not(bddBad), iErr));
if (iErr < 0)
throw -1;
} while (bddBad != bddK) ;
m_bddSuper = r(bdd_not(bddBad), iErr);

g_bddMarking &= m_bddSuper;

m_bddInit &= m_bddSuper;

//save supervisor

superinfo.statesize = bdd_satcount (m_bddSuper)/pow((double)2,
double (m_iNumofBddNormVar)) ;

superinfo.nodesize = bdd_nodecount(m_bddSuper) ;

if (savetype != HISC_SAVESUPER_NONE)

{

if (SaveSuper (m_bddSuper, savetype, savepath) < 0)

throw -1;

}
catch( int iErr)

iRet = -1;
¥
ClearBddFields();
CSub: :ClearBddFields();
bdd_done() ;

return iRet;

/%%
* DESCR: Does part of the sythesis work, i.e. controllable, p4, nonblocking

* PARA: computemethod: first compute reachable states or not (See BddHisc.h)
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(input)
bddReach: All the current reachable legal states
bddBad: All the current bad states
* RETURN: 0: sucess <0: fail
* ACCESS: private
*/
int CLowSub: :SynPartSuper (const HISC_COMPUTEMETHOD computemethod,
bdd & bddReach, bdd & bddBad)
{

* X ¥

bool bFirstLoop = true;
bdd bddK bddtrue;

int iErr 0;

try

if (computemethod == HISC_ONREACHABLE)
{
//compute controllable, p4, nonblocking fixpoint
do
{
bddK = bddBad;
//Computing PLPC(bddBad)
if (supcp(bddBad) < 0)
throw -1;
bddBad &= bddReach;
if (bddK == bddBad && bFirstLoop == false)
break;
//Computing CR(G_Lj, not(bddBad))
bdd bddTemp = bddReach - bddBad;
bddBad = bdd_not (cr(m_bddMarking, bddTemp, ALL_EVENT, iErr));
if (iErr !'= 0)
throw -1;
bddBad &= bddReach;
bFirstLoop = false;
} while (bddBad != bddK);

else
{

//compute controllable, p4, nonblocking fixpoint
do
{
bddK = bddBad;
//Computing PLPC(bddBad)
if (supcp(bddBad) < 0)
throw -1;
if (bddK == bddBad && bFirstLoop == false)
break;
//Computing CR(not(bddBad))
bddBad = bdd_not (cr(m_bddMarking, bdd_not(bddBad),
ALL_EVENT, iErr));
if (iErr !'= 0)
throw -1;
bFirstLoop = false;
} while (bddBad != bddK);

catch (int)
{
return -1;

return 0;

}
/**
* DESCR:  Compute the initial bad states(Bad_{L_j}) (uncontorlalble event part)

* PARA: bddConBad: BDD containing all the bad states (output)

* RETURN: O: sucess -1: fail
* ACCESS: private

*/
int CLowSub: :GenConBad(bdd &bddConBad)
{

try

{
bdd bddPlantTrans = bddfalse;
bdd bddSpecTrans = bddfalse;

for (int k = 1; k < 4; k++)
{
for (int i = 0; i < m_usiMaxUnConl[k]/ 2; i++)

//Get spec transition predicate
bddSpecTrans = bdd_exist(m_pbdd_UnConTrans [k] [i],
m_pbdd_UnConPlantVar [k] [i]);
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bddSpecTrans = bdd_exist(bddSpecTrans,
m_pbdd_UnConPlantVarPrim[k] [i]);

//Compute illegal state predicate for each uncontrollable event

bddConBad |= bdd_exist(m_pbdd_UnConPlantTrans [k] [i],
m_pbdd_UnConPlantVarPrim[k] [1]) &

bdd_not (bdd_exist (bddSpecTrans,

bdd_exist (m_pbdd_UnConVarPrim[k] [i],
m_pbdd_UnConPlantVarPrim[k] [1])));

}
catch(...)
{

string sErr = this->GetSubName();

sErr += ": Error during generating controllable bad states.";
pPrj->SetErr (sErr, HISC_LOWERR_GENCONBAD) ;

return -1;

return O;

*ok
* DESCR: Test if there are any bad states in the reachable states
* (Uncontorllable event part of Bad_{L_j})

* PARA: bddConBad: BDD containing tested bad states(output).

* Initially, bddBad should be bddfalse.

* bddReach: BDD containing all reachable states

* in this low-level(input)

* vsErr: returned errmsg(output)

* RETURN: O: sucess -1: fail
* ACCESS: private

*/
int CLowSub::VeriConBad(bdd &bddConBad, const bdd &bddReach, string & vsErr)

{
try

bdd bddSpecTrans = bddfalse;
for (int k = 1; k < 4; k++)
{

for (int i = 0; i < m_usiMaxUnConl[k]/ 2; i++)

//Get spec transition predicate
bddSpecTrans = bdd_exist (m_pbdd_UnConTrans [k] [i],
m_pbdd_UnConPlantVar [k] [i]);
bddSpecTrans = bdd_exist(bddSpecTrans,
m_pbdd_UnConPlantVarPrim[k] [i]);
//Compute illegal state predicate for each uncontrollable event
bddConBad |= bdd_exist(m_pbdd_UnConPlantTrans [k] [i],
m_pbdd_UnConPlantVarPrim[k] [i]) &
bdd_not (bdd_exist (bddSpecTrans,
bdd_exist (m_pbdd_UnConVarPrim[k] [i],
m_pbdd_UnConPlantVarPrim[k] [i])));
bddConBad &= bddReach;
}f (bddConBad != bddfalse)

vsErr = "Causing uncontrollable event:";
vsErr += SearchEventName ((EVENTSUB)k, (i + 1) * 2);
throw -1;
}
}
}
}
catch(int)
{
}
catch(...)
{

string sErr = this->GetSubName();

sErr += ": Error during generating controllable bad states.";
pPrj->SetErr(sErr, HISC_LOWERR_GENCONBAD) ;

return -1;

return O;
}
/%%
* DESCR:  Compute the initial bad states(Bad_{L_j}) (request event part)
* PARA: bddConBad: BDD containing all the bad states (output)

* RETURN: O: sucess -1: fail
* ACCESS: private

327



*/
int CLowSub:
{

Master Thesis — R. Song — McMaster — Computing and Software

:GenP4Bad (bdd &bddP4Bad)

try
{
bdd bddLowTrans = bddfalse;
for (int i = 0; i < m_usiMaxUnCon[R_EVENT]/ 2; i++)
{
//Get low level sub transition predicate
bddLowTrans = bdd_exist(m_pbdd_UnConTrans[R_EVENT] [i], m_bddIVar);
bddLowTrans = bdd_exist(bddLowTrans, m_bddIVarPrim);
//Compute the illegal state predicate for each uncontrollable event
bddP4Bad |= bdd_exist(m_pbdd_RTrans[0] [i], m_bddIVarPrim) &
bdd_not (bdd_exist (bddLowTrans,
bdd_exist (m_pbdd_UnConVarPrim[R_EVENT] [i],
3 m_bddIVarPrim)));
for (int i = 0; i < ((unsigned short) (m_usiMaxCon[R_EVENT] + 1))/ 2;i++)
{
//Get low level sub transition predicate
bddLowTrans = bdd_exist(m_pbdd_ConTrans[R_EVENT] [i], m_bddIVar);
bddLowTrans = bdd_exist(bddLowTrans, m_bddIVarPrim);
//Compute the illegal state predicate for each uncontrollable event
bddP4Bad |= bdd_exist(m_pbdd_RTrans[1][i], m_bddIVarPrim) &
bdd_not (bdd_exist (bddLowTrans,
bdd_exist (m_pbdd_ConVarPrim[R_EVENT] [i],
m_bddIVarPrim)));
}
iatch(...)
string sErr = this->GetSubName();
sErr += ": Error during generating point 4 bad states.";
pPrj->SetErr(sErr, HISC_LOWERR_GENP4BAD) ;
return -1;
return O;
/%%
* DESCR: Test if there are any bad states in the reachable states
* (answer event part of Bad_{L_j})
* PARA: bddP4Bad: BDD containing tested bad states(output).
* Initially, bddBad should be bddfalse.
* bddReach: BDD containing all reachable states
* in this low-level (input)
* vsErr: returned errmsg(output)
* RETURN: O0: sucess -1: fail
* ACCESS: private

*/
int CLowSub:

try
{

bdd
for

{

:VeriP4Bad (bdd &bddP4Bad, const bdd &bddReach, string &vsErr)

bddLowTrans = bddfalse;
(int i = 0; i < m_usiMaxUnCon[R_EVENT]/ 2; i++)

//Get low level sub transition predicate
bddLowTrans = bdd_exist(m_pbdd_UnConTrans[R_EVENT] [i], m_bddIVar);
bddLowTrans = bdd_exist(bddLowTrans, m_bddIVarPrim);
//Compute the illegal state predicate for each uncontrollable event
bddP4Bad |= bdd_exist(m_pbdd_RTrans[0] [i], m_bddIVarPrim) &
bdd_not (bdd_exist (bddLowTrans,
bdd_exist (m_pbdd_UnConVarPrim[R_EVENT] [i],
m_bddIVarPrim)));
bddP4Bad &= bddReach;
%f (bddP4Bad != bddfalse)

vsErr = "Causing request event:";
vsErr += SearchEventName(R_EVENT, (i + 1) * 2);
return O;

(int i = 0; i < ((unsigned short) (m_usiMaxCon[R_EVENT] + 1))/ 2;i++)

//Get low level sub transition predicate

bddLowTrans = bdd_exist(m_pbdd_ConTrans [R_EVENT] [i], m_bddIVar);
bddLowTrans = bdd_exist(bddLowTrans, m_bddIVarPrim);

//Compute the illegal state predicate for each uncontrollable event
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bddP4Bad |= bdd_exist(m_pbdd_RTrans[1][i], m_bddIVarPrim) &
bdd_not (bdd_exist (bddLowTrans,
bdd_exist (m_pbdd_ConVarPrim[R_EVENT] [i],
m_bddIVarPrim)));
bddP4Bad &= bddReach;
%f (bddP4Bad != bddfalse)

vsErr = "Causing request event:";
vsErr += SearchEventName(R_EVENT, i * 2 + 1);
return 0;

}
}
catch(...)
{

string sErr = this->GetSubName();

sErr += ": Error during generating point 4 bad states.";
pPrj->SetErr(sErr, HISC_LOWERR_GENP4BAD) ;

return -1;

return O;

/**
* DESCR: compute PLPC(P)
* PARA: bddP : BDD for predicate P. (input and output(=PHIC(P)))

* RETURN: O: sucess -1: fail
* ACCESS: private

*/
int CLowSub: :supcp(bdd & bddP)
{

bdd bddK1l = bddfalse;

bdd bddK2 = bddfalse;

int iEvent = 0;
int iIndex = 0;
EVENTSUB EventSub;
try

while (bddP != bddK1)

bddK1 = bddP;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
while (bddP != bddK2)

bddK2 = bddP;
for (int j = 0; j < m_pDESArr[i]l->GetNumofEvents(); j++)

{
iEvent = (m_pDESArr[i]l->GetEventsArr())[jl;
EventSub = (EVENTSUB) (iEvent >> 28);
iIndex = iEvent & 0xOOOOFFFF;
%f ( iEvent % 2 == 0)
iIndex = (iIndex - 2) / 2;
bddP |=
bdd_appex (m_pbdd_UnConTrans [EventSub] [iIndex],
bdd_replace(bddk2,
m_pPair_UnCon[EventSub] [iIndex]),
bddop_and,
m_pbdd_UnConVarPrim[EventSub] [iIndex]) ;
}
?lse if ( EventSub == R_EVENT )
iIndex = (iIndex - 1) / 2;
bddP |=
bdd_appex (m_pbdd_ConTrans [EventSub] [iIndex],
bdd_replace (bddK2,
m_pPair_Con[EventSub] [iIndex]),
bddop_and,
m_pbdd_ConVarPrim[EventSub] [iIndex]);
}
}
}
}
}
catch (...)
{

string sErr = this->GetSubName();
sErr += ": Error during computing PLPC(P).";
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pPrj->SetErr (sErr, HISC_LOWERR_SUPCP);
return -1;

return O;
}
/%%
* DESCR: compute CR(G_{L_j}, P’, \Sigma’, P)
* PARA: bddPStart: P’ (input)
* bddP: P (input)
* viEventSub: \Sigma’ (input) (0,1,2,3) <-> (H,R,A,L) ALL_EVENT<->All
* iErr: returned Errcode (0: success <0: fail) (output)
* RETURN: BDD for CR(G_{L_j}, P’, \Sigma’, P)
* ACCESS: private
*
d

/
bdd CLowSub::cr(const bdd & bddPStart, const bdd & bddP,
const int viEventSub, int & iErr)
{

try
{
bdd bddK = bddP & bddPStart;
bdd bddK1 ddfalse;
bdd bddK2 = bddfalse;
bdd bddKNew = bddfalse;
int iEvent = 0;
int iIndex = 0;
EVENTSUB EventSub;
while (bddK != bddK1)

bddK1 = bddK;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
while (bddK != bddK2)

bddKNew = bddK - bddK2;
bddK2 = bddK;
for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)
{

iEvent = (m_pDESArr[i]->GetEventsArr())[jl;

EventSub = (EVENTSUB) (iEvent >> 28);

if (viEventSub == ALL_EVENT ||

viEventSub == (int)EventSub)

iIndex = iEvent & OxO0OOOFFFF;
if (iEvent % 2 ==
{

iIndex = (iIndex - 2) / 2;
bddK |=
bdd_appex (
m_pbdd_UnConTrans [EventSub] [iIndex],
bdd_replace (bddKNew,
m_pPair_UnCon[EventSub] [iIndex]),
bddop_and,
m_pbdd_UnConVarPrim[EventSub] [iIndex]) &
3 bddP;

else

iIndex = (iIndex - 1) / 2;
bddK |=
bdd_appex (
m_pbdd_ConTrans [EventSub] [iIndex],
bdd_replace (bddKNew,
m_pPair_Con[EventSub] [iIndex]),
bddop_and,
m_pbdd_ConVarPrim[EventSub] [iIndex]) &
bddP;

}
}
return bddK;
}
catch (...)
{
string sErr = this->GetSubName();

sErr += ": Error during computing coreachable predicate.";
pPrj->SetErr(sErr, HISC_LOWERR_COREACH) ;
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iErr = -1;
return bddfalse;
}
}
/%%
* DESCR:  compute R(G_{L_j}, P)
* PARA: bddP: P (input)
* iErr: returned Errcode (0: success <0: fail) (output)
* RETURN: BDD for R(G_{L_j}, P)
* ACCESS: private

*/
bdd CLowSub::r(const bdd &bddP, int &iErr)

try
{
bdd bddK = bddP & m_bddInit;
bdd bddK1 = bddfalse;
bdd bddK2 = bddfalse;
bdd bddKNew = bddfalse;
int iEvent = 0;
int iIndex = 0;
EVENTSUB EventSub;
while (bddK != bddK1)

bddK1l = bddK;
for (int i = 0; i < this->GetNumofDES(); i++)

bddK2 = bddfalse;
¥hile (bddK != bddK2)

bddKNew = bddK-bddK2;
bddK2 = bddK;
for (int j = 0; j < m_pDESArr[i]->GetNumofEvents(); j++)
{
iEvent = (m_pDESArr[i]->GetEventsArr())[j1;

EventSub = (EVENTSUB) (iEvent >> 28);
iIndex = iEvent & OxO0OOOFFFF;

if (iEvent % 2 == 0)

{

iIndex = (iIndex - 2) / 2;
bddK |= bdd_replace(
bdd_appex (m_pbdd_UnConTrans [EventSub] [iIndex],
bddKNew, bddop_and,
m_pbdd_UnConVar [EventSub] [iIndex]),
m_pPair_UnConPrim[EventSub] [iIndex]) & bddP;
}

else

iIndex = (iIndex - 1) / 2;
bddK |= bdd_replace(
bdd_appex (m_pbdd_ConTrans [EventSub] [iIndex],
bddKNew, bddop_and,
m_pbdd_ConVar [EventSub] [iIndex]),
m_pPair_ConPrim[EventSub] [iIndex]) & bddP;

}
}
return bddK;

}
catch (...)
{

string sErr = this->GetSubName();
sErr += ": Error during computing coreachable.";
pPrj->SetErr (sErr, HISC_LOWERR_REACH) ;
iErr = -1;
return bddfalse;
}

N

Q% % ¥ ¥ * ¥ *
~

*
DESCR: Compute interface consistent condition 5 operator \Gamma_{p5_j}(P).
PARA: bddGood: P (input)

iErr: returned Errcode (0: success <0: fail) (output)
RETURN: BDD for predicate \Gamma_{p5_j}(P)
ACCESS: private
bdd CLowSub: :p5(const bdd& bddGood, int &iErr)

int iLocalErr = 0;
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bdd bddPBad5 = bddfalse;

bdd bddPalpha = bddfalse;

bdd bddPCRalpha = bddfalse;

bdd bddPrho = bddfalse;

bddPair *pPair = bdd_newpair();

SetBddPairs(pPair, m_bddIVar, m_bddIVarPrim);
//Uncontrollable answer events

for (int i = 0; i < m_usiMaxUnCon[A_EVENT] / 2; i++)

bddPalpha = bdd_relprod(m_pbdd_UnConTrans[A_EVENT] [i],
bdd_replace(bddGood, m_pPair_UnCon[A_EVENT][i]),
m_pbdd_UnConVarPrim[A_EVENT] [i]) ;

bddPCRalpha = cr(bddPalpha, bddGood, (int)L_EVENT, ilocalErr);

if (iLocalErr < 0)
throw -1;

for (int j = 0;
j < ((unsigned short) (m_usiMaxCon[R_EVENT] + 1)) / 2; j++)

bddPrho = bdd_relprod(m_pbdd_ConTrans[R_EVENTI [j1,
bdd_replace(bdd_not (bddPCRalpha) ,
m_pPair_Con[R_EVENT] [j1),
m_pbdd_ConVarPrim[R_EVENT] [j]);
bddPrho &= bdd_relprod(m_pbdd_ConTrans[R_EVENT] [j],
bdd_replace(bdd_exist (m_pbdd_ATrans[0] [i],
m_bddIVarPrim), pPair),
m_pbdd_ConVarPrim[R_EVENT] [j1);
bddPBad5 |= bddPrho;

for (int j = 0; j < m_usiMaxUnCon[R_EVENT] / 2; j++)

bddPrho = bdd_relprod(m_pbdd_UnConTrans[R_EVENT] [j],
bdd_replace (bdd_not (bddPCRalpha) ,
m_pPair_UnCon[R_EVENT] [j1),
m_pbdd_UnConVarPrim[R_EVENT] [j1) ;

bddPrho &= bdd_relprod(m_pbdd_UnConTrans [R_EVENT] [j],

bdd_replace(bdd_exist (m_pbdd_ATrans[0] [i],
m_bddIVarPrim), pPair),
m_pbdd_UnConVarPrim[R_EVENT] [j]);

bddPBad5 |= bddPrho;

}

//Controllable answer events
for (int i = 0;

i < ((unsigned short) (m_usiMaxCon[A_EVENT] + 1)) / 2; i++)
{

bddPalpha = bdd_relprod(m_pbdd_ConTrans[A_EVENT] [i],
bdd_replace(bddGood, m_pPair_Con[A_EVENT] [i]),
m_pbdd_ConVarPrim[A_EVENT] [i]);

bddPCRalpha = cr(bddPalpha, bddGood, (int)L_EVENT, ilocalErr);

if (iLocalErr < 0)
throw -1;

for (int j = 0;
j < ((unsigned short) (m_usiMaxCon[R_EVENT] + 1)) / 2; j++)

bddPrho = bdd_relprod(m_pbdd_ConTrans[R_EVENT] [j],
bdd_replace (bdd_not (bddPCRalpha) ,
m_pPair_Con[R_EVENT] [j1),
m_pbdd_ConVarPrim[R_EVENT] [j1);
bddPrho &= bdd_relprod(m_pbdd_ConTrans[R_EVENT] [jI,
bdd_replace(bdd_exist (m_pbdd_ATrans[1] [i],
m_bddIVarPrim), pPair),
m_pbdd_ConVarPrim[R_EVENT] [j]);

bddPBad5 |= bddPrho;

}
for (int j = 0; j < m_usiMaxUnCon[R_EVENT] / 2; j++)

bddPrho = bdd_relprod(m_pbdd_UnConTrans [R_EVENT] [j],
bdd_replace(bdd_not (bddPCRalpha) ,
m_pPair_UnCon[R_EVENT] [j]),
m_pbdd_UnConVarPrim[R_EVENT] [j]);

bddPrho &= bdd_relprod(m_pbdd_UnConTrans [R_EVENT] [j],

bdd_replace(bdd_exist(m_pbdd_ATrans[1] [i],
m_bddIVarPrim), pPair),
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m_pbdd_UnConVarPrim[R_EVENT] [j]1);
bddPBad5 |= bddPrho;

}

bdd_freepair(pPair);

pPair = NULL;

return bddGood - bddPBad5;

}
catch (...)
{

string sErr = this->GetSubName();

sErr += ": Error during computing Gamma_{p5_j}(P).";

pPrj->SetErr (sErr, HISC_LOWERR_P5);

iErr = -1;

return bddfalse;

}
}
/%%
DESCR: Compute interface consistent condition P6 operator \Gamma_{p6_j}(P).
PARA: bddGood: P (input)
iErr: returned Errcode (0: success <0: fail) (output)

RETURN: BDD for predicate \Gamma_{p6_j}(P)
ACCESS: private

* K X K ¥ X

*/
bdd CLowSub: :p6(const bdd& bddP, int &iErr)

try

int iErr = 0;
bdd bddPBad6 = bddfalse;
bddPBad6 = (m_bddIntfMarking & bddP) - cr(m_bddMarking, bddP,
(int)L_EVENT, iErr);
if (iErr < 0)
throw -1;

return bddP - bddPBadé6;

}
catch (...)
{

string sErr = this->GetSubName();

sErr += ": Error during computing Gamma_{p6_j}(P).";
pPrj->SetErr(sErr, HISC_LOWERR_P6) ;

iErr = -1;

return bddfalse;
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/%Koo okok sk ok kok ok ok skok ok ok ook skok ok ok ook ok ok ok skok ko ok ok skokkok ok ok sk ok ok ok ok ok ok
FILE: DES.h
DESCR: Header file of DES.cpp (Process DES file)
AUTH: Raoguang Song
DATE: (C) Jan, 2006
serokokok ok sk koot sk sk ok skok sk kR kok sk sk sk sk ok sk sk sk ks sk sk sk skok sk skok sk sk skok sk sk k sk ok sk sk sk kok sk ok sk sk ok ok /
#ifndef _DES_H_
#define _DES_H_
#include <string>
#include <map>
#include <list>
#include "type.h"
#include <fstream>
using namespace std;
class CSub;
class CDES

public: //Constructor and Destructor
CDES(CSub *vpSub, const string &vsDESFile, const DESTYPE vDESType) ;
virtual “CDES();
public:
int LoadDES();
int PrintDES(ofstream & fout);
public:
string GetDESName() const {return m_sDESName;};
int * GetEventsArr() {return m_piEventsArr;};
int GetNumofEvents() const {return m_DESEventsMap.size();};
int GetNumofMarkingStates() const {return m_Markinglist.size();};
MARKINGLIST & GetMarkingList() {return m_MarkingList;};
int GetNumofStates() const { return m_iNumofStates;};
int GetInitState() const {return m_iInitState;};
map<int, int> *GetTrans() const {return m_pTransArr;};
DESTYPE GetDESType() const {return m_DESType;l};
CSub* GetSub() {return m_pSub;};
string GetStateName(int iState) {return m_InvStatesMapl[iStatel;};
private: //data memeber
string m_sDESFile; //DES file name with path
string m_sDESName; //DES name without path and file extension
DESTYPE m_DESType; //DES type
int m_iNumofStates; //Number of States
int m_iInitState; //Initial state
MARKINGLIST m_MarkingList; //Link list containing all marking states
STATES m_StatesMap; //A STL Map for states (state name (key), state index)
INVSTATES m_InvStatesMap; //A STL Map for states (state index (key),
//state name) (for printing)
EVENTS m_DESEventsMap; //A STL Map for events (event name (key),
//local event index). Used only for current DES
// (speed reason)
INVEVENTS m_InvDESEventsMap; //A STL Map for events (localindex (key),
//event name). Used only for current DES
//(for printing)
EVENTS m_UnusedEvents; //A STL Map for blocked events(name: key, index)
int *m_piEventsArr; //Save all the event indices ascendingly.
//used for find shared events between two DESes.
TRANS #*m_pTransArr; //Transiton Map array, indexed by event indices.
//TRANSMAP: first int: source state index
// second int: target state index
CSub *m_pSub; //which subsystem this DES belongs to
private: //internal function members
int AddEvent(const string & vsEventName,
const char cEventSub,
const char cControllable);
int AddTrans(const string & vsLine,
const string & vsExitState,
const int viExitState);
};
#endif //_DES_H_
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/*************************************************************************

FILE:

DES.cpp

DESCR: Processing DES file

AUTH:
DATE:

Raoguang Song
(C) Jan, 2006

*************************************************************************/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

" n

"pubfunc.h"
<fstream>
<cstdlib>
Iltype . hll
"Project.h"
"errmsg.h"
ﬁcasse£t>

"LowSub.h"
"HighSub.h"

using namespace std;
extern CProject *pPrj;

/**
PARA:

O % %% % % % %
~

C

DESCR:

Constructor
vpSub: which subsystem this DES belongs to

vsDESFile: DES file name with path (input)
vDESType: DES Type (inpute)

RETURN: none
ACCESS: public

m_pSub = vpSub;
m_sDESFile = vsDESFile;
m_sDESName.clear();
m_DESType = vDESType;
m_iNumofStates = 0;
m_iInitState = -1;
m_MarkingList.clear();
m_StatesMap.clear();
m_InvStatesMap.clear();
m_DESEventsMap.clear();
m_UnusedEvents.clear();
m_InvDESEventsMap.clear();
m_piEventsArr = NULL;
m_pTransArr = NULL;

}

VLS

* DESCR:
A.

* PARA:
* RETURN: None
* ACCESS: public

Destructor
one

*/
%DES::“CDES()

delete[] m_pTransArr;
m_pTransArr = NULL;
delete[] m_piEventsArr;
m_piEventsArr = NULL;

}

VASS

* DESCR:

* PARA:

Loading DES file
None

* RETURN: O: sucess -1: fail
* ACCESS: public

*/
int CDES::LoadDES()
{

ifstream fin;
int iRet = 0;
string sErr;

int

i

= 0;

string sSubName = m_pSub->GetSubName();

try

m
i

{

i

{

_sDESFile = str_trim(m_sDESFile);
f (m_sDESFile.length() <= 4)
pPrj->SetErr(sSubName + ": Invalid DES file
HISC_BAD_DES_FILE);
throw -1;

f (m_sDESFile.substr(m_sDESFile.length() - 4)
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pPrj->SetErr(sSubName + ": Invalid DES file name " + m_sDESFile,
HISC_BAD_DES_FILE);
throw -1;

fin.open(m_sDESFile.data(), ios::in);

//unable to find DES file
if (!fin)
{

pPrj->SetErr(sSubName + ": Unable to open the DES file " +

m_sDESFile, HISC_BAD_DES_FILE);
throw -1;

m_sDESName = GetNameFromFile(m_sDESFile);

string sDESLoc = sSubName + ":" + m_sDESName + ": ";

char scBuf [MAX_LINE_LENGTH];

string sLine;

int iField = -1; //0: States 1: InitState 2: MarkingStates

//3: Events 4: Transitions

char *scFieldArr[] = {"STATES", "INITSTATE", "MARKINGSTATES",

"EVENTS", "TRANSITIONS"};

int iStatesFieldFlag = 0; //1: just finised reading the [States] line,

int iTmpStatelndex
int iTmpEventIndex
char cEventSub = ’\
char cControllable

so next line should be the num of states
//0: otherwise

0;
0;
).

N0

o

string sExitState;
int iExitState = -1;
while (fin.getline(scBuf, MAX_LINE_LENGTH))

{

sLine str_nocomment (scBuf) ;
sLine str_trim(sLine);
if (sLine.empty())
continue;
//Field line
if (sLine[0] == ’[’ && sLine[sLine.length() - 1] == ’]’)
{

sLine = sLine.substr(l, sLine.length() - 1);
sLine = sLine.substr(0, sLine.length() - 1);
sLine = str_upper(str_trim(sLine));
iField++;

%f (iField <= 4)

if (sLine !'= scFieldArr[iField])
{

pPrj->SetErr(sDESLoc +
"Field name or order is incorrect!",
HISC_BAD_DES_FORMAT) ;

throw -1;

}
if (iField == 0)
iStatesFieldFlag = 1;
}
}
else

pPrj->SetErr (sDESLoc + "Two many fields.",

HISC_BAD_DES_FORMAT) ;
throw -1;

}

ilse //Data line
switch (iField)
{

case 0: //States
if (iStatesFieldFlag == 1) //num of states

if (atoi(sLine.data()) <= 0 ||
atoi(sLine.data()) > MAX_STATES_IN_ONE_COMPONENT_DES)

pPrj->SetErr(sDESLoc + "Too few or too many states",
HISC_BAD_DES_FORMAT) ;
throw -1;
}
//initialize the number of states
m_iNumofStates = atoi(sLine.data());
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//initialize the transition arrary
m_pTransArr = new TRANS[m_iNumofStates];
iStatesFieldFlag = O;

}
else
if (m_StatesMap.find(sLine) != m_StatesMap.end())
{
pPrj->SetErr(sDESLoc + "Duplicate state names—-" +
sLine, HISC_BAD_DES_FORMAT) ;
throw -1;
}
?1se if (sLine[0] == ’(’)
pPrj->SetErr(sDESLoc +
"The first letter of state names can not be (",
HISC_BAD_DES_FORMAT) ;
throw -1;
else
{
m_StatesMap[sLine] = m_StatesMap.size() - 1;
m_InvStatesMap[m_StatesMap.size() - 1] = sLine;
}
}
break;
case 1: //InitState
//

//Must specify the number of states
if (m_iNumofStates == 0)
{

pPrj->SetErr(sDESLoc + "Number of states is absent.",
HISC_BAD_DES_FORMAT) ;
throw -1;
3
//1f there is no state names specified, generate state
//names automatically.
if (m_StatesMap.size() == 0)

{
for (i = 0; i < m_iNumofStates; i++)
m_StatesMap[str_itos(i)] = i;
m_InvStatesMap[i]l = str_itos(i);
}
}

//if specify state names, the number of state names must be
//equal to m_iNumofStates.
if (((unsigned int)m_iNumofStates) != m_StatesMap.size())
{

pPrj->SetErr(sDESLoc + "States are incomplete.",

HISC_BAD_DES_FORMAT) ;

throw -1;
}
//
//Initial state name must be valid
if (m_StatesMap.find(sLine) == m_StatesMap.end())

pPrj->SetErr(sDESLoc + "Initial state is not defined.",

HISC_BAD_DES_FORMAT) ;
throw -1;

//only one initial state allowed
if (m_iInitState != -1)
{

pPrj->SetErr(sDESLoc + "More than one initial states.",
HISC_BAD_DES_FORMAT) ;
throw -1;

m_iInitState = m_StatesMap[sLinel;
break;
case 2: //MarkingStates

if (m_StatesMap.find(sLine) == m_StatesMap.end())
pPrj->SetErr(sDESLoc + "Marking states do not exist.",
HISC_BAD_DES_FORMAT) ;
throw -1;

iTmpStateIndex = m_StatesMap[sLine];
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for (MARKINGLIST::const_iterator ci = m_MarkingList.begin();
ci != m_MarkingList.end(); ci++)

if (*ci == iTmpStatelndex)
{
pPrj->SetErr(sDESLoc + "Duplicate marking states.",
HISC_BAD_DES_FORMAT) ;
throw -1;

m_MarkingList.push_back(iTmpStateIndex) ;
break;
case 3: //Events
//Get event type H/R/A/L
if (sLine.length() < 5)
{

pPrj->SetErr(sDESLoc + "Incorrect event definition.",

HISC_BAD_DES_FORMAT) ;
throw -1;

}

cEventSub = sLine[sLine.length() - 1];

sLine = str_trim(sLine.substr(0, sLine.length() - 1));
//Get controllable or not

if (sLine.length() < 3)

{

pPrj->SetErr(sDESLoc + "Incorrect event definition.",
HISC_BAD_DES_FORMAT) ;
throw -1;

}

cControllable = sLine[sLine.length() - 1];

sLine = str_trim(sLine.substr(0, sLine.length() - 1));
//Get event name

if (sLine.empty())

{

pPrj->SetErr(sDESLoc + "Incorrect event definitiomn.",
HISC_BAD_DES_FORMAT) ;
throw -1;

if (cEventSub >= ’a’)
cEventSub -= 32;

if (cControllable >= ’a’)
cControllable -= 32;

iTmpEventIndex = AddEvent(sLine, cEventSub, cControllable);
if (iTmpEventIndex < 0)

throw -1; //Errmsg generated by AddEvent
m_DESEventsMap[sLine] = iTmpEventIndex;

m_UnusedEvents[sLine] = iTmpEventIndex;
m_InvDESEventsMap [iTmpEventIndex] = sLine;
break;

case 4: //Transitions
//check exiting state

if (sLine[0] !'= ’(’)

{
if (m_StatesMap.find(sLine) == m_StatesMap.end())
{

pPrj->SetErr(sDESLoc + "Exiting state:" + sLine +
" in transitions does not exist",
HISC_BAD_DES_FORMAT) ;

throw -1;

iExitState
sExitState

m_StatesMap[sLine] ;
sLine;

else //Transitions

if (AddTrans(sLine, sExitState, iExitState) < 0)
throw -1;

break;
default:
pPrj->SetErr(sDESLoc + "Bad DES file format!",

HISC_BAD_DES_FORMAT) ;

throw -1;
}
}
//No initial state defined
if (m_iInitState == -1)
{
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pPrj->SetErr(sDESLoc + "No initial state.", HISC_BAD_DES_FORMAT) ;
throw -1;

}

//No marking states defined

if (m_MarkingLlist.size() == 0)

{
pPrj->SetErr (sDESLoc + "No marking states", HISC_BAD_DES_FORMAT) ;
throw -1;

}

//must have all the fields
if (iField !'= 4)

{

pPrj->SetErr(sDESLoc + "Incomplete DES file.", HISC_BAD_DES_FORMAT) ;
throw -1;

}

//Add event indices into m_piEventsArr;

m_piEventsArr = new int[m_DESEventsMap.size()];

i=0;

for (EVENTS::const_iterator ci = m_DESEventsMap.begin();
ci != m_DESEventsMap.end(); ++ci)

{

m_piEventsArr[i] = ci->second;
++i;
}
gsort (m_piEventsArr, m_DESEventsMap.size(), sizeof(int), Comparelnt);
//unused events(blocked events)
if (m_UnusedEvents.size() > 0)

{
string sWarn;
sWarn = "\nWarning: ";
sWarn += sDESLoc + "blocks events:\n";
for (EVENTS::const_iterator ci = m_UnusedEvents.begin();
ci != m_UnusedEvents.end(); ++ci)
sWarn += ci->first;
sWarn += "\n";
}
pPrj->SetErr(sWarn, HISC_WARN_BLOCKEVENTS) ;
}

fin.close();
catch (int iError)
if (fin.is_open())
fin.close();
iRet = iError;

return iRet;

N

LR R

DESCR: Add an event to CSub event map and CProject event map
For CSub event map: If exists, return local index;

. Otherwise create a new one. .
For CProject event map: If exists, must have same global index;

Otherwise the event sets are not disjoint

PARA: vsEventName: Event name(input)

cEventSub: Event type (’H", °L’, ’R’, ’A’)(input)

cControllable: Controllable? (’Y’, ’N’)(input)
RETURN: >0 global event index

<0 the event sets are not disjoint.
*/ACCESS: Private
*

int CDES::AddEvent(const string & vsEventName,
const char cEventSub,
const char cControllable)

string sErr;
int iTmpEventIndex = 0;
int iTmpLocalEventIndex = O;

EVENTSUB vConflictEventSub = H_EVENT;
int viConflictSubIndex = -1;

string sDESLoc = m_pSub->GetSubName() + ": " + m_sDESName + ": ";
//Interface DES

if (m_DESType == INTERFACE_DES)
{
%f (cEventSub != ’R’ && cEventSub != ’A’)

pPrj->SetErr(sDESLoc + "Interface DES can only inlcudes request" +
" or answer events.", HISC_BAD_DES_FORMAT) ;
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return -1;

¥
//Controllable or uncontrollable
%f (cControllable != ’Y’ && cControllable != ’N’)

pPrj->SetErr (sDESLoc + "Unknown event controllable type--" +vsEventName,
HISC_BAD_DES_FORMAT) ;
return -1;
}
//already defined in current DES
if (m_DESEventsMap.find(vsEventName) != m_DESEventsMap.end())
{

pPrj->SetErr(sDESLoc + "Duplicate events definition--" + vsEventName,
HISC_BAD_DES_FORMAT) ;
return -1;
}
//High sub DES
if (m_pSub->GetSubIndex() == 0)

{
if (cEventSub == ’L’)
{

pPrj->SetErr(sDESLoc + "High sub DES inlcudes a low sub event--" +

vsEventName, HISC_BAD_DES_FORMAT) ;
return -1;

if (cEventSub == ’H’) //high sub event
{

//Compute local event index
iTmpLocalEventIndex = m_pSub->AddSubEvent (vsEventName,
SubLetterToValue (cEventSub),

(cControllable == ’Y’)7
CON_EVENT : UNCON_EVENT) ;
if ((cControllable == ’Y’ && iTmpLocalEventIndex % 2 == 0) ||
(cControllable == ’N’ && iTmpLocalEventIndex % 2 == 1))

{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" has inconsistent controllability definitions.",

HISC_BAD_DES_FORMAT) ;
return -1;

//Compute global event index

iTmpEventIndex = pPrj->GenEventIndex(SubLetterToValue(cEventSub),
m_pSub->GetSubIndex(),
iTmpLocalEventIndex) ;

else //interface events

iTmpEventIndex = pPrj->SearchPrjEvent(vsEventName) ;
if (iTmpEventIndex < 0)

{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" is not a valid Request/Answer Event.",
HISC_BAD_DES_FORMAT) ;
return -1;
else
{

int iEventSub = iTmpEventIndex >> 28;

int iSubIndex = (iTmpEventIndex & O0xOFFF0000) >> 16;

if ((EVENTSUB)iEventSub != SubLetterToValue(cEventSub))
{

pPrj->SetErr(sDESLoc + "Event " + vsEventName +

" is not a " + SubValueToLetter ((EVENTSUB)iEventSub) +
" Event in low level " +
pPrj->GetSub(iSubIndex)->GetSubName (),

HISC_BAD_DES_FORMAT) ;

return -1;
}
else if (! (iTmpEventIndex % 2 == O && cControllable == ’N’ ||
iTmpEventIndex % 2 == 1 && cControllable == ’Y’))
{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" doesn’t have same controllable property in low level "
+ pPrj->GetSub(iSubIndex)->GetSubName(),
HISC_BAD_DES_FORMAT) ;
return -1;
else
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return iTmpEventIndex;

}

}

else //Low sub DES
if (cEventSub == ’H’)
{

pPrj->SetErr(sDESLoc + "Low sub DES inlcudes a high sub event--" +
vsEventName, HISC_BAD_DES_FORMAT) ;
return -1;

}
if (m_DESType == INTERFACE_DES || cEventSub == ’L’)

//Compute local event index
iTmpLocalEventIndex = m_pSub->AddSubEvent (vsEventName,
SubLetterToValue (cEventSub),

(cControllable == ’Y’)? CON_EVENT:UNCON_EVENT) ;
if ((cControllable == ’Y’ && iTmpLocalEventIndex % 2 == 0) ||
(cControllable == ’N’ && iTmpLocalEventIndex % 2 == 1))

{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" has inconsistent controllability definitioms.",

HISC_BAD_DES_FORMAT) ;
return -1;

}

//Compute global event index

iTmpEventIndex = pPrj->GenEventIndex(SubLetterToValue(cEventSub),
m_pSub->GetSubIndex(),
iTmpLocalEventIndex) ;

else //’R’ and ’A’ appeared in low level des, must be in interface des

{
iTmpEventIndex = pPrj->SearchPrjEvent(vsEventName) ;

if (iTmpEventIndex < 0)

{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" is not a valid Request/Answer Event.",
HISC_BAD_DES_FORMAT) ;
return -1;
%lse
int iEventSub = iTmpEventIndex >> 28;
int iSubIndex = (iTmpEventIndex & 0xO0fff0000) >> 16;
if (iSubIndex != m_pSub->GetSubIndex())
{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" is an invalid Request/Answer Event in interface DES.",
HISC_BAD_DES_FORMAT) ;
return -1;
else if ((EVENTSUB)iEventSub != SubLetterToValue(cEventSub))
{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" has a different event level in the interface DES.",
HISC_BAD_DES_FORMAT) ;
return -1;
}
else if (! (iTmpEventIndex % 2 == 0 && cControllable == ’N’ ||
iTmpEventIndex % 2 == 1 && cControllable == ’Y’))
{
pPrj->SetErr(sDESLoc + "Event " + vsEventName +
" has a different controllable property in interface DES.",
HISC_BAD_DES_FORMAT) ;
return -1;
}
else
return iTmpEventIndex;
}

}

}

//Add Event to pPrj->m_AllEventsMap

if (pPrj->AddPrjEvent(vsEventName, iTmpEventIndex,
vConflictEventSub, viConflictSubIndex) < 0)

{

sErr = "Event conflict--" + m_pSub->GetSubName() + ":" +

this->GetDESName() + ":" +
vsEventName + " is also defined in sub " +
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pPrj->GetSub(viConflictSubIndex)->GetSubName() + " as a " +
SubValueToLetter (vConflictEventSub) + " event";
pPrj->SetErr(sErr, HISC_BAD_DES_FORMAT) ;
iTmpEventIndex = -1;

return iTmpEventIndex;

DESCR: Add a transition to the m_pTransArr of the current DES.

PARA: vsLine: a text line in [Transition] field(input)
vsExitState: source state name of the transition(input)
viExitState: source state index of the transition(input)

RETURN: O: success -1: fail
ACCESS: private

int CDES::AddTrans(const string & vsLine,

const string & vsExitState,
const int viExitState)

string sTrans = vsLine;

string sEnterState;

int iEnterStatelndex;

string sTransEvent;

int iTransEventIndex;

unsigned int iSepLoc = string::npos;
string sErrMsg;

string sDESLoc = m_pSub->GetSubName() + ": " + m_sDESName + ": ";
try
{

‘{i:f (viExitState == -1)

pPrj->SetErr(sDESLoc + "No existing state for transitions",
HISC_BAD_DES_FORMAT) ;
throw -1;

//remove ’(’ and ’)’

sTrans = sTrans.substr(1);
sTrans = sTrans.substr(0, sTrans.length() - 1);
sTrans = str_trim(sTrans);

//find sepration character ’\t’ or ’ ’
iSepLoc = sTrans.find_last_of(’\t’);
if (iSepLoc == string: :npos)

iSepLoc = sTrans.find_last_of(’ ’);
if (iSepLoc == string: :npos)

pPrj->SetErr(sDESLoc +
"No event or entering state for tramsition. (" +

sTrans + ")", HISC_BAD_DES_FORMAT);
throw -1;

else

sEnterState = str_trim(sTrans.substr(iSepLoc + 1));
sTransEvent = str_trim(sTrans.substr(0, iSepLoc));

}

//Check event in transitions

if (m_DESEventsMap.find(sTransEvent) == m_DESEventsMap.end())

{
pPrj->SetErr(sDESLoc + "Event " + sTransEvent +
" in transitions does not exist.",
HISC_BAD_DES_FORMAT) ;
throw -1;

iTransEventIndex = m_DESEventsMap[sTransEvent];
m_UnusedEvents.erase(sTransEvent) ;
//Check entering state
if (m_StatesMap.find(sEnterState) == m_StatesMap.end())
{
pPrj->SetErr(sDESLoc + "State " + sEnterState +
" in transitions does not exist.",
HISC_BAD_DES_FORMAT) ;
throw -1;

iEnterStateIndex = m_StatesMap[sEnterState];

//Check determinacy

if (m_pTransArr[viExitState].find(iTransEventIndex) !=
m_pTransArr [viExitState] .end())
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pPrj->SetErr(sDESLoc + "ExitState:" + vsExitState +
" has nondeterministic transitions on event " + sTransEvent,
HISC_BAD_DES_FORMAT) ;

throw -1;
m_pTransArr [viExitState] [iTransEventIndex] = iEnterStatelIndex;
}
catch(int)
{
return -1;
return 0;
}
/%
* DESCR:  Print this DES in memory to a file (for checking)

*

PARA: fout: file stream(input)

RETURN: O: success -1: fail
* ACCESS: public

*/
int CDES::PrintDES(ofstream & fout)
{

*

try

int i = 0;
fout << endl << "#--—---- DES: " << m_sDESName << " -—-—=—-——- " << endl;
fout << "[States]" << endl;
fout << m_iNumofStates << endl;
for (INVSTATES::const_iterator ci = m_InvStatesMap.begin();
ci != m_InvStatesMap.end(); ++ci)

fout << ci->second << endl;

fout << endl;

fout << "[InitState]" << endl;

fout << m_InvStatesMap[m_iInitState] << endl;

fout << endl;

fout << "[MarkingStates]" << endl;

for (MARKINGLIST::const_iterator ci = m_MarkingList.begin();
ci !'= m_Markinglist.end(); ++ci)

fout << m_InvStatesMap[*ci] << endl;

fout << endl;

fout << "[Events]" << endl;

for (INVEVENTS::const_iterator ci = m_InvDESEventsMap.begin();
ci != m_InvDESEventsMap.end(); ++ci)

if (ci->first % 2 == 0) //uncontrollable
fout << ci->second << "\t" << "N" << "\t" <<
SubValueToLetter ((EVENTSUB) (ci->first >> 28)).at(0) << endl;
else
fout << ci->second << "\t" << "Y" << "\t" <<
SubValueToLetter ((EVENTSUB) (ci->first >> 28)).at(0) << endl;

fout << endl;
fout << "[Transitions]" << endl;
if (m_pTransArr != NULL)

for (i = 0; i < m_iNumofStates; i++)

fout << m_InvStatesMap[i] << endl;
for (TRANS::const_iterator ci = (m_pTransArr[i]).begin();

ci '= (m_pTransArr([i]).end(); ++ci)
{
fout << "(" << m_InvDESEventsMap[ci->first] << " "
<< m_InvStatesMap[ci—>second] << ")" << endl;
}
}
fout << " " << endl;
}
catch(...)
{

return -1;

return 0;
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/3 kst ok sk ok sk ok ok sk ok sk sk ok s ok sk o sk ok sk s sk ok sk s sk ok ko sk ks ok sk s ok sk sk sk ok s ok sk ok ok ok ok
FILE: type.h
DESCR: customized data types
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk kb ok ok sk ok sk sk ke ok sk sk ok sk sk sk sk sk ok sk o ks sk sk ok sk ok sk sk ok sk ok sk sk sk sk sk ke ks sk ok sk sk ke sk sk sk ok sk ke sk sk sk ok sk ok /
#ifndef _TYPE_H_
#define _TYPE_H_
#include <map>
#include <list>
#include <string>
using namespace std;
#define MAX_LINE_LENGTH 513
#define COMMENT_CHAR ’#’
#define MAX_STATES_IN_ONE_COMPONENT_DES 1024
#define MAX_DOUBLE 1.7e308
#define MAX_INT 2147483647
#define ALL_EVENT 99
#define MAX_PATH 255
enum DESTYPE {PLANT_DES = O, SPEC_DES = 1, INTERFACE_DES = 2};
enum EVENTTYPE {CON_EVENT = 0, UNCON_EVENT = 1};
enum EVENTSUB {H_EVENT = O, R_EVENT = 1, A_EVENT = 2, L_EVENT = 3};
typedef map<string, int> STATES; //state name, index
typedef map<int, string> INVSTATES; //state index, name
typedef map<string, int> EVENTS; //event name, global index
typedef map<int, string> INVEVENTS; //event global index, name
typedef map<string, unsigned short> LOCALEVENTS; //event name, level-wise index
typedef map<unsigned short, string> LOCALINVEVENTS;//event level-wise index,name
typedef list<int> MARKINGLIST; //link list to save all the marker states index
typedef map<int, int> TRANS; //source state index (key), target state index

#endif //_TYPE_H_
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/3 3k sk ok ok ok ok ok sk ok ok ok K K K K K K ko o ok ok ok ok ok ok ok ok ok ok ok K K K K K K 3 K K ko o o o ok ok ok ok ok ok ok ok ok ok K K K K K
FILE: errmsg.h
DESCR: constants for error code
AUTH: Raoguang Song
DATE: (C) Jan, 2006
s ok ok ok ok ok ok ok ok ok oK 3K 3K K K K K K ko o ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K Kk ks ok sk ok ok ok ok ok Kk Kk Kk /
#ifndef ERRMSG_H
#define ____ERRMSG_H____
#define HISC_BAD_PRJ_FILE -1
#define HISC_BAD_PRJ_FORMAT -2
#define HISC_BAD_HIGH_FILE -3
#define HISC_BAD_HIGH_FORMAT -4
#define HISC_BAD_LOW_FILE -5
#define HISC_BAD_LOW_FORMAT -6
#define HISC_BAD_DES_FILE -7
#define HISC_BAD_DES_FORMAT -8
#define HISC_SYSTEM_INITBDD -9
#define HISC_NONEXISTED_LEVEL_NAME -10
#define HISC_BAD_INTERFACE -11
#define HISC_LOWERR_GENCONBAD -20
#define HISC_LOWERR_GENP4BAD -21
#define HISC_LOWERR_SUPCP -22
#define HISC _

_LOWERR_COREACH -23
#define HISC_LOWERR_REACH -24
#define HISC_LOWERR_P5 -25
#define HISC_LOWERR_P6 -26

#define HISC_VERI_LOW_UNCON -201
#define HISC_VERI_LOW_BLOCKING -202
#define HISC_VERI_LOW_P4FAILED -203
#define HISC_VERI_LOW_PSFAILED -204
#define HISC_VERI_LOW_P6FAILED -205
#define HISC_HIGHERR_GENCONBAD -30
#define HISC_HIGHERR_GENP3BAD -31
#define HISC_HIGHERR_SUPCP -32
#define HISC_HIGHERR_COREACH -33
#define HISC_HIGHERR_REACH -34
#define HISC_VERI_HIGH_UNCON -101
#define HISC_VERI_HIGH_P3FAILED -102
#define HISC_VERI_HIGH_BLOCKING -103
#define HISC_BAD_SAVESUPER -97
#define HISC_BAD_PRINT_FILE -98
#define HISC_NOT_ENOUGH_MEMORY -99
#define HISC_WARN_BLOCKEVENTS -10000

#endif //____ERRMSG_H
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[ ke skskokskok sk ok sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk ok ok sk ok sk ok sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok sk sk ok ok ok
FILE: pubfunc.h
DESCR: Header file for pubfunc.cpp
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ke sk ok ok ok sk sk sk sk ok ok sk sk ke sk ok ok sk sk sk s sk ok ok sk sk sk e sk sk ok sk sk sk s sk sk sk sk sk sk ok sk sk sk e sk ok sk ok ok ok /
#ifndef ____PUBFUNC_H
#define ____PUBFUNC_H
#include <string>
#include "type.h"
#include "errmsg.h"
#include <fdd.h>
using namespace std;
extern int giNumofBddNodes;
extern string str_trim(const string &str);
extern string str_upper(const string &str);
extern string str_lower(const string &str);
extern string str_itos(int ilnt);
extern string str_ltos(long long llong);
extern string str_nocomment(const string & str);
extern int scp_err(const string & sErr, const int iErrCode);
extern string GetNameFromFile(const string & vsFile);
extern EVENTSUB SubLetterToValue(char cEventSub);
extern string SubValueToLetter (EVENTSUB vEventSub) ;
extern int IsInteger(const string &str);
extern int CompareInt(const void* pa, const void* pb);
extern void bddPrintStats(const bddStat &stat);
extern void SetBddPairs(bddPair *pPair, const bdd & bdd0ld, const bdd & bddNew) ;
extern int NumofSharedEvents(const int * pEventsArr_a, const int viNumofEvents_a,
const int * pEventsArr_b, const int viNumofEvents_b);
extern void my_bdd_gbchandler(int pre, bddGbcStat *s);
#endif //____PUBFUNC_H
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[k stk ok ok sk ok sk sk ok ok ok sk ok sk sk ok s ok sk ok sk ok sk sk ks ok ok s sk ok ko sk s sk sk sk ok sk sk sk ok s ok sk ok sk ok ok ok
FILE: pubfunc.cpp
DESCR: Containing some utility functions used in the program
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk sk kb ok o ok sk ok sk sk ke ok sk sk ok sk sk sk sk sk ok sk o sk sk sk sk ok sk sk ok sk sk sk ok sk sk sk sk sk ke sk sk s ok sk sk ke sk sk sk ok sk ok ke sk sk sk ok sk ok /
#include <string>
#include <iostream>
#include "type.h"
#include <stdio.h>
#include "pubfunc.h"
#include <cassert>
using namespace std;

int giNumofBddNodes = O0;

/%%
* DESCR: Trim away all the prefix and suffix spaces or tabs of a string
* PARA: str: a string (input)
* RETURN: trimmed string
* x/
string str_trim(const string &str)
{
string sTmp("");
unsigned int i = O;
//trim off the prefix spaces
for (i = 0; i < str.length(); i++)
if (strl[i]l !'= 32 && str[i] !'= 9)
break;
}
if (i < str.length())
{
sTmp = str.substr(i);
else
{
return sTmp;
//trim off the suffix spaces
for (i = sTmp.length() - 1; i >= 0; i--)
if (sTmp[i] != 32 && sTmp[i] !'= 9)
break;
}
if (i >= 0)
{
sTmp = sTmp.substr(0, i + 1);
else
{
sTmp.clear();
}
return sTmp;
}
*k
* DESCR: convert all the letters in a string to uppercase
* PARA: str: a string (input)
* RETURN: converted string
* x/

string str_upper(const string &str)
unsigned int i = O;
string sTmp(str);
for (i = 0; i < str.length(); i++)
if (sTmp[il >= ’a’ & sTmp[i]l <= ’z’)

sTmp[i] = sTmp[i] - 32;

return sTmp;

}

*k

* DESCR: convert all the letters in a string to lowercase
* PARA: str: a string (input)

* RETURN: converted string

* x/

string str_lower(const string &str)

{

unsigned int i = O;
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string sTmp(str);
for (i = 0; i < str.length(); i++)

{
if (sTmpl[i] >= ’A’ & sTmp[i] <= ’Z?)

sTmp[i] = sTmp[i] + 32;

return sTmp;

1
*ok
* DESCR: convert an integer to a string
* PARA: iInt: an integer
* RETURN: converted string
* x/

string str_itos(int ilInt)

char scTmp[65];
string str;
sprintf (scTmp, "%d", iInt);
str = scTmp;
return str;
}
VLS
* DESCR: convert a long integer to a string
* PARA: iInt: a long integer
* RETURN: converted string
* %/
string str_ltos(long long lLong)
{
char scTmp[65];
string str;
sprintf (scTmp, "%11d", 1lLong);
str = scTmp;
return str;
}
/%%
* DESCR: trim off all the characters after a COMMENT_CHAR
* PARA: str : a string
* RETURN: processed string
* %/
string str_nocomment(const string & str)
{
int i;
int ilen = str.length();
for (i = 0; i < ilen; i++)

if (str[i] == COMMENT_CHAR)
break;

if (i < iLen)
return str.substr(0, i);

else
return str;

*
* DESCR: Get sub name or des name from a full path file name
* with extension ".sub"/".hsc"

* ex: vsFile = "/home/roger/ml.sub" will return "mi"
* PARA: vsFile: file name with path

* RETURN: sub name or des name

*

t

ring GetNameFromFile(const string & vsFile)

assert(vsFile.length() > 4);

assert(vsFile.substr(vsFile.length() - 4) == ".sub" ||
vsFile.substr(vsFile.length() - 4) == ".hsc");

unsigned int iPos = vsFile.find_last_of(’/’);

if ( iPos == string::npos)

k return vsFile.substr(0, vsFile.length() - 4);

else
{

return vsFile.substr(iPos + 1, vsFile.length() - 4 - (iPos + 1));
}
}

VLS
* DESCR: Convert ’H’, ’R’, ’A’, ’L’ to corresponding EVENTSUB value
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* PARA: cEventSub (°H’, °’R’, ’A’, °L’)
* RETURN: corresponding EVENTSUB value
* x/

%VENTSUB SubLetterToValue(char cEventSub)

assert(cEventSub == *H’ || cEventSub == °’R’ ||
cEventSub == A’ || cEventSub == ’L’);
switch (cEventSub)

case ’H’:
return H_EVENT;
break;

case ’R’:
return R_EVENT;
break;

case ’A’:
return A_EVENT;
break;

case ’'L’:
return L_EVENT;
break;

}
return H_EVENT;

}

/**

* DESCR: Convert EVENTSUB value to corresponding name

* PARA: vEventSub: EVENTSUB value

* RETURN: corresponding name

* x/

string SubValueToLetter (EVENTSUB vEventSub)

{

switch (vEventSub)

case H_EVENT:
return "HIGH SUB";
break;

case R_EVENT:
return "REQUEST";
break;

case A_EVENT:
return "ANSWER";

break;
case L_EVENT:
return "LOW SUB";
break;
}
return "HIGH SUB";
}
VASS
* DESCR: Test if a string could be converted to an integer
* PARA: str: a string
* RETURN: O: no 1: yes
* %/
int IsInteger(const string &str)
{
if (str.length() == 0)
return O;
for (unsigned int i = 0; i < str.length(); i++)
if (str[i] >= ’0’ && str[i] <= °9’)
continue;
else
return O;
return 1;
}
/%%
* DESCR: Compare two integers which are provided by two general pointers.
* gsort, bsearch will use this function
* PARA: pa, pb: general pointers pointing to two integers
* RETURN: 1: a>b
* 0: a=b
* -1: a<b
* %/

int CompareInt(const void* pa, const void* pb)

int a = *((int *) pa);
int b = *((int *) pb);
if (a > b)

return 1;
else if (a < b)

return -1;
else

return O;
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DESCR: To print the content of a bddStat variable.
Original BDD package doesn’t provide such a function.

PARA: bddStat: see documents of Buddy package
R?TURN: None
*

id bddPrintStats(const bddStat &stat)

cout << endl;

cout << Me—mmmm——————oo bddStat------——=———----- " << endl;

cout << "Num of new produced nodes: " << stat.produced << endl;

cout << "Num of allocated nodes: " << stat.nodenum << endl;

cout << "Max num of user defined nodes: " << stat.maxnodenum << endl;

cout << "Num of free nodes: " << stat.freenodes << endl;

cout << "Min num of nodes after garbage collection: " << stat.minfreenodes
<< endl;

cout << "Num of vars:" << stat.varnum << endl;

cout << "Num of entries in the internal caches:" << stat.cachesize << endl;
cout << "Num of garbage collections done until now:" << stat.gbcnum << endl;
return;

*
DESCR: Set bddpairs based on two bdd variable sets.

The original function bdd_setbddpair(...) is not
as the document said.
PARA: pPair: where to add bdd variable pairs
bdd01d: variable will be replaced
bddNew: new variable
RETURN: None
*

void SetBddPairs(bddPair *pPair, const bdd & bdd0ld, const bdd & bddNew)

N

*
*
*
*
*
*
*

*

assert(pPair != NULL);

int *v0ld = NULL;
int *vNew = NULL;
int n0ld = O;
int nNew = 0;

bdd_scanset (bdd01d, v0ld, n0ld);
bdd_scanset (bddNew, vNew, nNew);
assert(n0ld == nNew);

for (int i = 0; i < n0ld; i++)

bdd_setpair(pPair, v0ld[i], vNewl[i]);
¥
free(v0ld);
free(vNew) ;
return;

*
DESCR: Compute the number of shared events between two DES

PARA: pEventsArr_a: Event array for DES a (global index, sorted)
viNumofEvents_a: Number of events in array pEventsArr_a
pEventsArr_b: Event array for DES b (global index, sorted)
viNumofEvents_b: Number of events in array pEventsArr_b

R?TURN: Number of shared events

*

int NumofSharedEvents(const int * pEventsArr_a, const int viNumofEvents_a,

{

const int * pEventsArr_b, const int viNumofEvents_b)

int iNum = O;

int i = 0;

assert (pEventsArr_a != NULL);

assert (pEventsArr_b != NULL);

if (viNumofEvents_a <= viNumofEvents_b)

for (i = 0; i < viNumofEvents_a; i++)

if (bsearch(&(pEventsArr_a[i]), pEventsArr_b, viNumofEvents_b,
sizeof (int), CompareInt) != NULL)
{
iNum++;
}
else
{
for (i = 0; i < viNumofEvents_b; i++)

if (bsearch(&(pEventsArr_b[il), pEventsArr_a, viNumofEvents_a,
sizeof (int), CompareInt) != NULL)
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L
iNum++;
}
}
return iNum;
1
/%%
* DESCR: Customized Garbage collection handler for this program
* PARA: see document of Buddy Package

* RETURN: None
* %
void my_bdd_gbchandler(int pre, bddGbcStat *s)
if (!pre)
{
if (s->nodes > giNumofBddNodes)

printf ("Garbage collection #%d: %d nodes / %d free",
s->num, s->nodes, s->freenodes);

printf(" / %.1fs / %.1fs total\n",
(float)s->time/ (float) (CLOCKS_PER_SEC),
(float)s->sumtime/ (float)CLOCKS_PER_SEC);

giNumofBddNodes = s->nodes;

return;
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/3 ok ke sk ks ok sk sk ok ok ok o ok sk ok ok ok sk ok ok ok sk sk ok ok ok sk sk ok o sk sk ok ok sk sk ok ok sk sk ok ok ok sk sk ok ok ok o sk sk K ok ok ok
FILE: main.h
DESCR: Header file for main.cpp
AUTH: Raoguang Song
DATE: (C) Jan, 2006
stk ok sk sk ok o sk sk ok ok ok sk ok ok o sk sk ok ok ok sk ok sk ok o sk sk ok ok sk sk ko ok sk sk ok o sk sk ko sk sk ok ok sk sk ok sk sk sk ok ok /
int getchoice(bool bPrjlLoaded, const char *scPrjFile);
char getkeystroke(char *allowed_choices, int len);
int getchoice_savesup();
int getchoice_saveproduct();
int getchoice_tracetype();
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/3K kst ok sk ok sk ok ok sk ok sk sk ok s ok sk ok sk ok sk sk sk ok ok sk sk o sk sk sk sk ok sk sk ok sk sk sk ok s ok sk o sk ok sk ok
FILE: main.cpp
DESCR: An example with very simple text interface to show how to use the
HISC verification and synthesis library.
AUTH: Raoguang Song
DATE: (C) Jan, 2006
steokoksk sk o ok sk ok sk sk ke ko sk ok sk sk sk sk s ok sk o ks sk sk ok sk ok sk s sk ks sk sk sk sk sk ok sk sk sk sk sk ok sk ok sk sk sk ok ok /
#include "main.h"
#include <iostream>
#include <cstdio>
#include <string>

#include "../bddhisc/BddHisc.h"
#include <termios.h>

#include <unistd.h>

using namespace std;

#define MAX_PATH 256

#define MAX_ERRMSG_LENGTH 4096

int main()

bool bPrjlLoaded = false;
char ch = ’\0’;
char prjfile[MAX_PATH];
char errmsg[MAX_ERRMSG_LENGTH] ;
prjfile[0] = ’\0’;
int iret = O;
char prjoutputfile [MAX_PATH];
char subname [MAX_PATH];
int nextlow = O;
char savepath[MAX_PATH];
savepath[0] = ’\0’;
HISC_SUPERINFO superinfo;
HISC_SAVESUPERTYPE savesupertype;
HISC_SAVEPRODUCTTYPE saveproducttype;
HISC_TRACETYPE tracetype;
int computetime = O0;
init_hisc();
while (ch != ’q’ && ch != °Q’)
{

ch = getchoice(bPrjLoaded, prjfile);

%witch (ch)

case ’q’:
case ’'Q’
break;
//Load a project
proj
case ’P’:
case ’p’:

cout << "Project name:";
cin.getline(prjfile, MAX_PATH);
iret = load_prj(prjfile, errmsg);
if (iret < 0)

if (iret > -10000) //error
bPrjLoaded = false;

else

bPrjlLoaded = true; //waring

else
bPrjLoaded = true;
break;
//close the current project
case ’c’:
case 'C’:

iret = close_prj(errmsg) ;
bPrjLoaded = false;
prjfile[0] = °\0’;
break;
//File the current project
case ’f’:
case ’F’:
cout << "file name:";
cin.getline(prjoutputfile, MAX_PATH);
iret = print_prj(prjoutputfile, errmsg);
break;
//Low Level synthesis
case ’0’:
case ’0’:
cout << "low level name:";
cin.getline(subname, MAX_PATH);
cout << "Save the supervisor? (O:none 1:bdd-based " <<
"2:automata-based 3:both)" << endl;
cout << "Warning: choose 2 or 3 may generate huge file.'"<< endl;
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cout << "Your choice:";
savesupertype = (HISC_SAVESUPERTYPE)getchoice_savesup();
if (savesupertype != HISC_SAVESUPER_NONE)

cout << "Path to save the supervisor:";
cin.getline(savepath, MAX_PATH);

nextlow = 0;
computetime = 0;
do
{
superinfo.statesize = -1;
superinfo.nodesize = -1;
superinfo.time = 0;
iret = syn_lowsuper (HISC_ONREACHABLE, subname, errmsg,
&superinfo, &nextlow,
savesupertype, savepath);

cout << "Low Level Name: " << subname << endl;
if (iret ==
cout << "Supervisor state size: " <<

superinfo.statesize << endl;

cout << "Number of bdd nodes to store the supervisor: "
<< superinfo.nodesize << endl;

cout << "Computing time:" << superinfo.time <<
" seconds." << endl;

computetime += superinfo.time;

else
{

cout << errmsg << endl;

cout << "Press any key to continue...";
iret = 0;

errmsg[0] = ’\0’;

getkeystroke (NULL, 0);

}
} while (nextlow > 0);
cout << "Total computing time:" << computetime <<
" seconds." << endl;
break;
//Low Level verification
case ’17:
case ’L’:
cout << "low level name:";
cin.getline(subname, MAX_PATH);
cout << "Save the synchronous product" <<
"(may generate huge file) (Y/N)7 ";
saveproducttype = (HISC_SAVEPRODUCTTYPE)getchoice_saveproduct();
if (saveproducttype != HISC_NOTSAVEPRODUCT)
{
cout << "Path to save the synchronous product:";
cin.getline(savepath, MAX_PATH);

cout << "Show the blocking type(may take long time) (Y/N)7";
tracetype = (HISC_TRACETYPE)getchoice_tracetype();
nextlow = 0;
computetime = 0;
do
{

superinfo.statesize = -1;

superinfo.nodesize = -1;

superinfo.time = 0;

iret = verify_low(tracetype, subname, errmsg, &superinfo,

&nextlow, saveproducttype, savepath);
cout << "Low Level Name: " << subname << endl;
if (iret == 0)
cout << "This low level has been verified succesfully!"

<< endl;
if (superinfo.statesize >= 0)
cout << "State size of the synchronous product: " <<

superinfo.statesize << endl;
if (superinfo.nodesize >= 0)
cout << "Number of bdd nodes to store" <<

the synchronous product: " << superinfo.nodesize
<< endl;
cout << "Computing time: " << superinfo.time <<

" seconds." << endl;
computetime += superinfo.time;
if (iret < 0)

{
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cout << errmsg << endl;

cout << "Press any key to continue...";
iret = 0;

errmsg[0] = °\0’;

getkeystroke (NULL, 0);

}
} while (nextlow > 0);
cout << "Total computing time:" << computetime << " seconds."

<< endl;
break;
//High Level synthesis
case ’i’:
case ’I’:
cout << "Save the supervisor? (O:none 1:bdd-based " <<

"2:automata-based 3:both)" << endl;
cout << "Warning: choose 2 or 3 may generate huge file." <<endl;
cout << "Your choice:";
savesupertype = (HISC_SAVESUPERTYPE)getchoice_savesup();
if (savesupertype != HISC_SAVESUPER_NONE)

cout << "Path to save the supervisor:";
cin.getline(savepath, MAX_PATH);

superinfo.statesize = -1;

superinfo.nodesize = -1;

superinfo.time = 0;

iret = syn_highsuper (HISC_ONREACHABLE, errmsg, &superinfo,
savesupertype, savepath);

%f (iret == 0)

cout << "Supervisor state size: " <<
superinfo.statesize << endl;
cout << "Number of bdd nodes to store the supervisor: " <<

superinfo.nodesize << endl;
cout << "Computing time:" << superinfo.time <<
" seconds." << endl;

}
break;
//High Level verification
case ’h’:
case ’H’:
cout << "Save the synchronous product" <<
"(may generate huge file) (Y/N)? ";
saveproducttype = (HISC_SAVEPRODUCTTYPE)getchoice_saveproduct();
if (saveproducttype != HISC_NOTSAVEPRODUCT)

cout << "Path to save the synchronous product:";
cin.getline(savepath, MAX_PATH);

cout << "Show the blocking type(may take long time) (Y/N)?";
tracetype = (HISC_TRACETYPE)getchoice_tracetype();
superinfo.statesize = -1;
superinfo.nodesize = -1;
superinfo.time = 0;
iret = verify_high(tracetype, errmsg, &superinfo,
saveproducttype, savepath);
if (iret == 0)
cout << "The high level has been verified succesfully!"
<< endl;
if (superinfo.statesize >= 0)
cout << "State size of the synchronous product:
<< superinfo.statesize << endl;
if (superinfo.nodesize >= 0)
cout << "Number of bdd nodes to store" <<

" the synchronous product: " << superinfo.nodesize << endl;
cout << "Computing time: " << superinfo.time
<< " seconds." << endl;

break;
}
%f (iret < 0)

cout << errmsg << endl;
cout << "Press any key to continue...";
iret = 0;
errmsg[0] = ’\0’;
getkeystroke (NULL, 0);
}
}

close_hisc();
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return O;
}
int getchoice(bool bPrjLoaded, const char *prjfile)

char allowed_choice[50];

int numofchoice = 0;

cout << endl << endl << endl << endl << endl;

cout << Mkokskskkokokskokkokskskokkokkkokkokkkokkokkokokokkkkokokkkkokokkkkokokkkkok ! << endl;
cout << " Bdd-based HISC Synthesis and Verification Tool " << endl;
cout << Mskskskskokokokokokkskskokok ook skokskok ok ok kskskok sk koo skskskok kR kskskokkkkokkk ! << endl
if (!bPrjLoaded)

{
allowed_choice[0] = ’p’;
allowed_choice[1] = ’P’;
allowed_choice[2] = ’q’;
allowed_choice[3] = ’Q’;
numofchoice = 4;
cout << " P - Load a HISC project " << endl;
else
{
allowed_choice[0] = ’c’;
allowed_choice[1] = ’C’;
allowed_choice[2] = ’q’;
allowed_choice[3] = ’Q’;
allowed_choice[4] = ’h’;
allowed_choice[5] = ’H’;
allowed_choice[6] = ’i’;
allowed_choice[7] = °I’;
allowed_choice[8] = ’F’;
allowed_choice[9] = ’f’;
allowed_choice[10] = ’0’;
allowed_choice[11] = ’0’;
allowed_choice[12] = ’1°;
allowed_choice[13] = ’L’;
numofchoice = 14;
cout << " H - High level verification " << endl;
cout << " I - High level synthesis " << endl;
cout << " L - Low Level verification " << endl;
cout << " 0 - Low Level synthesis " << endl;
cout << " F - File the current project " << endl;
cout << " C - Close the current project " << endl;
¥
cout << " Q - Quit " << endl;

cout << Mkokskskskokokskokkokokskokkokkkokkokkkokokok kb kokkkkokokkkkokokkkkokokkkkok ! << endl;
if (bPrjLoaded)

cout << "Current Project: " << prjfile << endl;

cout << endl;
cout << "Procedure desired:";
return getkeystroke(allowed_choice, numofchoice);

}

char getkeystroke(char *allowed_choices, int len)

char choice;

struct termios initial_settings, new_settings;
//cin.ignore (255, ’\n’);
tcgetattr(fileno(stdin), &initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= "ICANON;
//new_settings.c_lflag &= ~ECHO;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
new_settings.c_lflag &= "ISIG;
tcsetattr(fileno(stdin), TCSANOW, &new_settings);
%f (len > 0)

do {
choice = fgetc(stdin);
int i;
for (i = 0; i < len; i++)

if (choice == allowed_choices[i])
break;

}
if (i == len)

choice = ’\n’;
} while (choice == ’\n’ || choice == ’\r’);
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else
choice = fgetc(stdin);
tcsetattr(fileno(stdin) ,TCSANOW, &initial_settings);
cout << endl;
return choice;

getchoice_savesup()
char allowed_choice[50];

int numofchoice = 0;
char choice;

allowed_choice[0] = ’0’;
allowed_choice[1] = ’1°;
allowed_choice[2] = ’2°;
allowed_choice[3] = ’3’;

numofchoice = 4;
choice = getkeystroke(allowed_choice, numofchoice);
return choice - ’07;

getchoice_saveproduct ()

char allowed_choice[50];
int numofchoice = 0;
char choice;

allowed_choice[0] = ’Y’;
allowed_choice[1] = ’y’;
allowed_choice[2] = ’N’;
allowed_choice[3] = ’n’;

numofchoice = 4;
choice = getkeystroke(allowed_choice, numofchoice);
if (choice == ’Y’ || choice == ’y’)

return 1;

else
return O;

getchoice_tracetype()
char allowed_choice[50];

int numofchoice = 0;
char choice;

allowed_choice[0] = ’Y’;
allowed_choice[1] = ’y’;
allowed_choice[2] = ’N’;
allowed_choice[3] = ’n’;

numofchoice = 4;
choice = getkeystroke(allowed_choice, numofchoice);
if (choice == ’Y’ || choice == ’y’)

return 1;

else
return O;
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