
Symbolic Decentralized Supervisory Control

SYMBOLIC DECENTRALIZED SUPERVISORY CONTROL

BY

URVASHI AGARWAL, B.Eng.

a thesis

submitted to the department of computing & software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Science

© Copyright by Urvashi Agarwal, March 2014

All Rights Reserved

Master of Science (2013) McMaster University

(Computing & Software) Hamilton, Ontario, Canada

TITLE: Symbolic Decentralized Supervisory Control

AUTHOR: Urvashi Agarwal

B.Eng., (Computer Science)

SUPERVISOR: Dr. Ryan J. Leduc

Dr. S. L. Ricker

NUMBER OF PAGES: viii, 117

ii

Abstract

A decentralized discrete-event system (DES) consists of supervisors that are physically

distributed. Co-observability is one of the necessary and sufficient conditions for the

existence of a decentralized supervisors that correctly solve the control problem. In

this thesis we present a state-based definition of co-observability and introduce algo-

rithms for its verification. Existing algorithms for the verification of co-observability

do not scale well, especially when the system is composed of many components. We

show that the implementation of our state-based definition leads to more efficient

algorithms.

We present a set of algorithms that use an existing structure for the verification of

state-based co-observability (SB Co-observability). A computational complexity anal-

ysis of the algorithms show that the state-based implementation of algorithms result

in quadratic complexity. Further improvements come from using a more compact way

of representing finite-state machines namely Binary Decision Diagrams (BDD).

iii

Acknowledgements

First, I would like to sincerely thank my supervisors Dr. Ryan Leduc and Dr. Laurie

Ricker for their guidance, support and patience, without which it would have been

impossible to accomplish my goals. I am very grateful to them.

I would also like to thank Dr. Robi Malik for suggesting the ∼ Ω relation and

contributing to Non-BDD SB co-observability algorithm, particularly suggesting the

observer approach. I also thank him for his timely review and feedback on certain

portions of the thesis. I thank Raoguang Song and Yu Wang for their useful work on

BDD based symbolic verification. I would like to thank Abubaker Shangab and Lana

Kayyali for their interesting discussions on DESpot structure. I thank all my friends

and relatives that supported me during the program.

At last, I would like to thank my beloved parents, Dr. Avinash Agarwal and

Madhu Agarwal, for their unlimited support, great understanding and confidence in

me. This thesis is dedicated to them.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Thesis Outline . 4

1.2 Related Work . 5

2 Preliminaries 8

2.1 Supervisory Control Theory . 8

2.2 Decentralized Supervisory Control . 11

2.2.1 Controller Synthesis . 14

3 Introduction to State-Based Co-observability 17

3.1 Co-observability Verification Structure 18

3.2 Towards State-based Co-observability 22

3.3 State-Based Definition of Co-observability 25

3.3.1 Basic Definitions . 25

3.3.2 State-based Implies Language-based Definition 28

v

3.3.3 Does Language-Based Imply State-Based Definition 32

4 State-Based Algorithms 35

4.1 Verifying SB Co-observability . 35

4.2 Algorithms . 37

4.2.1 Is SB Co-observable Using Subset Construction 37

4.2.2 Enable Disable Set Find . 40

4.2.3 Construct Synch Product and Hiding 43

4.2.4 Subset Construction . 45

4.2.5 Is SB Co-observable Using Observer Construction 50

4.2.6 Observer Construction . 53

4.2.7 Indistinguishability and Observers 58

4.3 Complexity Analysis . 59

4.3.1 Algorithm Complexity . 60

4.3.2 Comparing Complexity . 62

4.4 Small Example . 63

4.5 Counter Example . 67

5 Symbolic Verification of Decentralized DES 71

5.1 Predicates And Predicate Transformers 72

5.1.1 Predicates . 72

5.1.2 Predicate Transformers . 74

5.2 Symbolic Representation . 74

5.2.1 State Subsets . 75

5.2.2 Transitions . 75

vi

5.3 Symbolic Computation . 77

5.3.1 Transition and Inverse Transition 77

5.3.2 Computation of Reachability . 78

5.4 Symbolic Verification . 79

5.4.1 Computation Of PDis And PEn 81

5.5 Algorithms . 82

5.5.1 Is SB Co-observable . 83

5.5.2 Enable Disable Set Find . 86

5.5.3 Construct Sync Product And Hiding 87

5.5.4 Observer Construction . 89

5.6 BDD Complexity . 94

5.7 Advantages of Using Predicates . 94

6 Parallel Manufacturing Example 96

6.1 Introduction . 96

6.2 Casting an HISC as a Decentralized Control Problem 102

6.3 Results . 106

7 Conclusions and Future Work 110

7.1 Conclusions . 110

7.2 Future Work . 111

vii

List of Figures

3.1 Plant and Specification Automaton . 19

3.2 (a) Projection Automaton 1, (b) Projection Automaton 2 19

3.3 Verifier . 22

3.4 State-based Verifier . 24

3.5 Counter example . 33

4.1 An Example DES . 63

4.2 Synchronous Product of Plant and Specification Automaton 65

4.3 Counter Example for SB co-observability 68

4.4 Observer H1 . 69

4.5 Observer H2 . 70

6.1 Block Diagram of Parallel Plant [19] . 97

6.2 Plant Models for Manufacturing unit j [19] 98

6.3 Low-Level system [19] . 99

6.4 Complete Parallel Manufacturing System [19] 100

6.5 Flat Plant Model for Parallel Manufacturing System 104

6.6 Flat Supervisor Model for Parallel Manufacturing System 105

6.7 Screen Shot of the Decentralized editor 107

viii

Chapter 1

Introduction

Discrete-Event Systems (DES) is an area of research that has been applied to a wide

range of complex applications such as manufacturing systems [21], [30]; database

management systems [18], [20]; communication protocols [3], [4], [35], [41]; and traf-

fic systems [15]. We are modeling discrete-event systems using finite-state machines

that generate regular languages [29]. A DES can model a deterministic or non-

deterministic dynamic system with a finite state space and a state-transition struc-

ture. The control of DES requires the creation of supervisors that modify the be-

haviour of the DES through feedback control to achieve a given specification. This

is accomplished by restricting the system, through issuing disable or enable control

decisions, from performing a certain set of events that take the system out of the

specified behaviour.

A decentralized DES control problem [9], [37], is one in which the supervisory

control task is divided among many controllers, instead of just one controller. In this

case, each controller does not have a complete view of the tasks being performed by

the uncontrolled system, nor can it observe the control actions of the other controllers.

1

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The controllers must co-ordinate to produce a final control decision which, ideally,

keeps the system within the specified behaviour.

In a centralized DES, controllability is a property that must be satisfied to con-

struct supervisors that will exhibit a satisfactory control over the uncontrolled system.

A centralized supervisor is typically capable of observing all the events in a system

but, a system that is physically distributed and requires the implementation of its

supervisors on multiple sites, will have supervisors that can view and disable only

local system events. To meet the requirements of the physical architecture of the

system, we implement a decentralized control approach.

Consider an example of a computer network system with different nodes running

on the network, each node managed by different controllers. Each controller can ob-

serve a set of local events. The controllers do not have access to other controller’s

control actions. Instead, the controllers take a local control decision on the basis

of their local observations. Under such an architecture, it is not feasible for one

controller to take the overall control decision, since its local observations may be in-

sufficient to take the correct decision. In such a situation, when we have to implement

a control strategy on controllers that can observe and disable only certain events of

the system, there is no choice but to implement a decentralized control solution. An

overall control decision is reached by combining the local control decisions: this is the

decentralized DES approach.

A significant difference between a centralized and a decentralized DES control

2

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

problem is the computational complexity introduced, since the decentralized con-

trollers have only a partial view of the overall system. Co-observability, in a de-

centralized DES, describes whether or not the decentralized controllers have a sat-

isfactory view of the uncontrolled system to reach the correct control decision. For

co-observability to be satisfied, there has to be at least one controller that knows when

to disable a particular event, i.e., to prevent the system from performing a behaviour

outside of the specification.

The decentralized DES control problem, as defined in [37], requires controllabil-

ity and co-observability to be verified for the existence of decentralized controllers

that correctly solve the control problem. The verification of co-observability, as in-

troduced in [36], is based on a language-based definition of co-observability from [37].

The computational complexity of this approach is exponential in number of con-

trollers. However, the approach does not scale well. As a result, we are interested in

re-examining the definition of co-observability and exploring more computationally-

efficient algorithms to verify this property.

In this thesis we introduce a state-based definition, as opposed to a language-based

definition, of co-observability and use this definition to motivate a new algorithm for

the verification of co-observability. We present a suite of algorithms that are more

efficient from a computational perspective in time complexity. Further, the algorithm

scales better as we increase the number of controllers. Additionally, from a data

structure perspective, we introduce a more compact representation of finite-state ma-

chines, namely using Binary Decision Diagrams (BDD) [22]. This representation helps

to reduce memory usage and provides a faster look-up of states.

3

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The goal of this thesis is to show that in addition to controllability, state-based

co-observability is an equivalent sufficient condition for the existence of decentralized

controllers. Additionally, we will show that the structure and the algorithm used for

the verification of co-observability makes the process of verification computationally

more efficient when compared to the strategies that have been proposed in the past,

particularly as the number of decentralized controllers increase.

1.1 Thesis Outline

The thesis has been organized as follows:

In Chapter 2, we provide the basic definitions and concepts related to decentral-

ized DES.

In Chapter 3 we introduce a state-based definition of co-observability and a defi-

nition of indistinguishability of two states in a DES. We use these definitions to prove

that the state-based definition of co-observability implies the language-based defini-

tion; however, the opposite is not true. We use the proof to confirm the existence of

a solution to the decentralized problem in [37] using state-based co-observability.

In Chapter 4 we introduce automaton-based algorithms to verify co-observability

using the OP-Verifier introduced in [26]. We perform a complexity analysis of the

algorithms and give a small example that illustrates the working of the algorithm.

In Chapter 5 we introduce predicates and predicate transformers, and use them

to introduce predicate-based algorithms. Additionally, we introduce a suite of algo-

rithms to verify SB co-observability and analyze the advantages of using them over

non-predicate based algorithms.

4

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

In Chapter 6 we illustrate our algorithms using an example taken from [19]. Be-

cause of time constraints the result has not been verified yet as our algorithms are

in the process of implementation. It will be verified once the software has been com-

pleted.

We end the thesis with conclusions and give a brief idea about future work in

Chapter 7.

1.2 Related Work

In the 1980s, Ramadge and Wonham initiated the framework of modeling and synthe-

sis of supervisors for discrete-event systems [29]. The objective is to use a finite-state

automaton to produce a control solution (i.e., a supervisor) that keeps the given

plant’s behaviour within a given specification’s behaviour, assuming that the super-

visor has full observation of the plant. Since then, DES control has been extended in

a variety of ways.

The progression for these modifications is as follows: partial-observation control,

modular supervisory control, decentralized supervisory control, hierarchical supervi-

sory control and timed DES. We will focus on decentralized control of DES.

Decentralized DES control problems were first introduced in [9]. Later, additional

work was done in [21] and [37] to determine the necessary and sufficient conditions,

i.e., controllability and co-observability for the existence of a partial observation su-

pervisor(s). An examination of state-based decentralized control appeared in [16].

All these research articles deal with a scenario where the default control decision is to

enable all the events, i.e., when a controller is uncertain of the correct control decision

to take, it chooses to enable. In this architecture, the rule to combine, or fuse, local

5

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

control decisions is conjunction. There are other decentralized architectures that use

different rules. Decision fusion was discussed in [27], and since then, various fusion

rules have been examined in [46], [44], [45]. The ambiguities related to the global

control decision along with various models to handle multiple levels of inferencing

were introduced in [17]. In [8], a so-called “parallel architecture” was introduced,

but this approach requires a further partitioning of the state space to facilitate local

decision making. The resulting computational complexity was the same as in [17].

For this thesis, we are focusing on the conjunctive decentralized architecture of Rudie

and Wonham [37].

The verification of co-observability from a language-based perspective was first

introduced in [36]. An exponential algorithm was formulated to test whether or not

the specification language was co-observable w.r.t. the plant language. Next came

[39] that presented variations of the problem mentioned in [36]. [39] focused on find-

ing k-reliable decentralized supervisors that achieve a specification language under

failure of n − k decentralized supervisors. Additionally, the algorithm in [36] has

been extended to verify co-observability under different decentralized architectures

[13], [23], [24], [39], [46]. Algorithms for the DES control problem from a state-based

perspective was presented in [13]. The algorithm is formulated for only two decen-

tralized supervisors as the generalization of the approach for n > 2 supervisors is left

as an open problem. The computational complexity for n = 2 supervisors is already

daunting and it is unclear how to extend their approach in a computationally-feasible

way.

6

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

A structure, based on subset construction [28], has been used for verifying prop-

erties like co-observability [3], [23], [24], [31] and [36]. The computational complexity

of this construction from a DES perspective is presented in [42].

We will be using Binary Decision Diagrams (BDD) [6] for compact representa-

tion of finite-state machines. BDD have been used to represent DES and to verify

discrete-event system properties before, although not for decentralized control. For

an introduction to BDDs, we refer the reader to [14]. BDD implementations have

been used by [1], [25], [38], [40].

7

Chapter 2

Preliminaries

This chapter presents the background of basic supervisory control theory, which was

introduced by Ramdage and Wonham, followed by an introduction to decentralized

supervisory control. In this thesis we assume all the automata to be reachable, for

simplicity. For more details, please refer to [7], [43].

2.1 Supervisory Control Theory

The uncontrolled system, which we call a plant, is modeled by an automaton

G = (Q,Σ,δ,q0,Qm),

where Q is the set of states, Σ is a finite set of event labels, q0 ∈ Q is the initial state

and Qm ⊆ Q is the set of marked states.

The transition function δ ∶ Q × Σ → Q, is a partial function. It can be extended

to δ ∶ Q × Σ∗ → Q as follows:

Let q ∈ Q, s ∈ Σ∗ and σ ∈ Σ such that,

8

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

δ(q,ε) = q,

δ(q,sσ) = δ(δ(q,s),σ).

as long as q′ ∶= δ(q,s)! and δ(q′,σ)!. The notation δ(q,σ)! indicates that δ is defined

for σ at state q.

The set Σ+ is the set of all sequences of symbols σ1 σ2 σ3... σk, such that σi ∈ Σ

and i ∈ {1,2,....,k}, whereas Σ∗ is the set of these finite strings over Σ including the

empty string ε ∉ Σ, i.e., Σ∗ = Σ+ ∪ {ε}.

Various kinds of operations are used for regular languages:

▸ Concatenation of two or more strings is defined using the cat operator such that

cat : Σ∗ ×Σ∗ → Σ∗:

cat (ε, s) =cat (s, ε) = s, s ∈ Σ∗

cat (s, t) = st, where st ∈ Σ+

▸ A string t ∈ Σ∗ is a prefix of string s ∈ Σ∗, denoted by t ≤ s, if s = tu, for some

u ∈ Σ∗. The prefix-closure of any language L ⊆ Σ∗ is defined as:

L := {t ∈ Σ∗∣t ≤ s for some s ∈ L}

For plant G, we define the following two languages:

▸ The closed behaviour of G, denoted by L(G), defines the set of all sequences

that the plant may generate.

L(G) ∶= {s ∈ Σ∗ ∣ δ(q0,s)!}

▸ The marked behaviour of G, denoted by Lm(G), is the set of strings leading

from the initial state to a marked state. It is defined as:

9

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Lm(G) ∶= {s ∈ Σ∗ ∣ δ(q0,s) ∈ Qm}

L(G) is a prefix-closed language and Lm(G) ⊆ L(G).

We distinguish two state sets for plant G as follows:

▸ The set of reachable states, Qr ⊆ Q, are all the states reachable from the initial

state.

Qr ∶= {q ∈ Q∣(∃s ∈ Σ∗) δ(q0, s)! and δ(q0, s) = q}.

▸ Similarly, the set of co-reachable states, Qcr ⊆ Q, are all the states that have a

path to a marked state:

Qcr ∶= {q ∈ Q∣(∃s ∈ Σ∗) δ(q, s)! and δ(q, s) ∈ Qm}.

In supervisory control problems under partial observation, the supervisor does not

see all of the set of events; rather, they can view some subset of Σ, i.e., Σo ⊆ Σ. The

natural projection, P : Σ∗ → Σ∗
o , defines the sequences of observable events viewed by

the supervisor. Here, P erases all the unobservable events of the supervisor, i.e, Σ /

Σo.

P (ε) = ε

P (σ) =
⎧⎪⎪⎨⎪⎪⎩

σ, if σ ∈ Σo;

ε, otherwise.

Natural projection can be extended to Σ∗ via concatenation:

P (tσ) =P (t)P (σ), t ∈ Σ∗, σ ∈ Σ.

The inverse map of the natural projection for a set L ⊆ Σ∗
o is:

10

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

P -1(L) := {t′ ∈ Σ∗ ∣ P (t) = t′ for some t ∈ L}

The synchronous product (∣∣) of two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 can be defined

using the natural projection P .

L1∣∣L2 := P −1
1 (L1) ∩ P −1

2 (L2)

The synchronous product of G1 = (Q1,Σ1, δ1, q0,1,Qm1) and G2 = (Q2,Σ2, δ2,

q0,2,Qm2) is the automaton

G1 ∣∣ G2 = (Q1 ×Q2,Σ1 ∪Σ2, δ, (q0,1, q0,2),Qm1 ×Qm2), (1)

where

δ((q1, q2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(δ1(q1, σ), δ2(q2, σ)), if σ ∈ Σ1 ∩Σ2 and δ1(q1, σ)! and δ2(q2, σ)!;

(δ1(q1, σ), q2), if σ ∈ Σ1 ∖Σ2 and δ1(q1, σ)!;

(q1, δ2(q2, σ)), if σ ∈ Σ2 ∖Σ1 and δ2(q2, σ)!;

undefined, otherwise.

In order to simplify our definition we will often assume that both automata are

defined over Σ. In this special case L(G1)∣∣L(G2) would reduce to L(G1)∩L(G2). If

either of G1 or G2 were actually defined over some subset of Σ, say Σ′⊆Σ, we would

then add self loops of every event in Σ/Σ′, to every state in the automaton to raise

its alphabet to Σ. There is thus no loss of generality by our assumption.

2.2 Decentralized Supervisory Control

A supervisor is an agent that has the ability to control certain events based on its

(partial) view on the plant’s behaviour. To impose such supervision, we partition

11

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Σ into disjoint sets. The set of controllable events, Σc, are the events that can be

prevented from occurring in the system. The set of uncontrollable events, Σuc, are the

events that cannot be prevented from occurring and are thus considered permanently

enabled.

Similarly, there are certain events that are not visible to the supervisor, so we

partition Σ into the sets of Σo and Σuo, where Σo is the set of events observable to

the supervisor, and Σuo is the set of events that are not observable to the supervisor.

Σ = Σc ∪̇ Σuc.

Σ = Σo ∪̇ Σuo.

Here ∪̇ represents the disjoint union of the two sets.

A supervisor S is a pair (S,ψ) where S = (X,Σ, ξ, x0,Xm) is an automaton that

tracks the behaviour of G. It keeps track of the current position of the plant.

The feedback map, denoted by ψ ∶X ×Σ→ {0,1} is defined as follows:

ψ(x,σ) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if σ ∈ Σuc and x ∈X;

{0,1}, if σ ∈ Σc and x ∈X.

Here 1 corresponds to enable and 0 corresponds to disable.

The feedback map ψ(x,σ) indicates whether σ should be enabled or disabled at a

particular state in G. The sequences of events generated while the plant G is under

supervision S = (S,ψ) is called the closed-loop system. The generated sequences are

both in G and S, i.e., the plant automaton is under the control of the supervisor

automaton.

12

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The behaviour of G under the control of supervisor S is defined as L(S/G) and

is called the supervised discrete event system where,

S/G = (Q × X, Σ, (δ × ξ)ψ, (q0, x0), Qm × Xm).

This modified transition function (δ × ξ)ψ, can be defined as a mapping Q×X ×Σ→

Q ×X where,

(δ × ξ)ψ((q, x), σ) ∶=
⎧⎪⎪⎨⎪⎪⎩

(δ(q, σ), ξ(x,σ)), if δ(q, σ)! and ξ(x,σ)! and ψ(x,σ) = 1

undefined, otherwise.

In decentralized supervisory control there is more than one controller. Without

loss of generality, we will illustrate the concepts using n = 2 local supervisors, but

this can easily be extended for arbitrary n. For the rest of this section we assume i ∈

{1,2}.

Let Si = (Si, ψi), for i ∈ {1,2}, be a decentralized supervisor controlling plant G,

with Si = (Xi,Σ, ξi, x0,i,Xm,i) and the feedback map ψi. We denote the resulting

specification, which is the conjunction of the decentralized supervisors Si, by Sdec:

Sdec = S1 ∧ S2 = (S1 × S2, ψ1 ∗ ψ2),

where

S1 × S2 ∶= (X1 ×X2,Σ, ξ1 × ξ2, (x0,1, x0,2),Xm,1 ×Xm,2),

and, for σ ∈ Σ, x1 ∈X1, x2 ∈X2,

(ξ1 × ξ2)((x1, x2), σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ξ1(x1, σ), ξ2(x2, σ)), if ξ1(x1, σ)! and ξ2(x2, σ)!;

undefined, otherwise.

13

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(ψ1 ∗ ψ2)((x1, x2), σ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if ψ1(x1, σ) = 0 or ψ2(x2, σ) = 0;

1, otherwise.

Thus Sdec follows a decision-making architecture based on logical conjunction: an

event is disabled by Sdec as long as at least one Si issues a disable decision for that

event; otherwise the event is enabled.

2.2.1 Controller Synthesis

We consider a problem in which we have a plant G defined over Σ with controllable

events Σc ⊆ Σ and observable events Σo ⊆ Σ. There is a specification automaton S

with language L(S) ⊆ L(G). The problem is to construct the local controllers Si, for

i ∈ {1,2} such that

L(S1 ∧ S2/ G) = L(S).

As stated above, the local controllers can only control and observe some subset of Σc

and Σo such that Σc, i ⊆ Σc and Σo, i ⊆ Σo. To find local controllers, we need to verify

the properties: controllability [29], and co-observability [37]. For ease of explanation,

we illustrate the definition for n = 2, but this can easily be extended for arbitrary n.

Controllability

For a plant G defined over Σ, where Σc ⊆ Σ is the set of controllable events and

Σuc ⊆ Σ, the set of uncontrollable events, any languageK ⊆ Σ∗ is said to be controllable

with respect to G if,

KΣuc ∩ L(G) ⊆ K,

14

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

where KΣuc ∶ = {tσ ∣ t ∈ K and σ ∈ Σuc}.

If we interpret L(G) as the physically-possible behaviour andK as legal behaviour,

then we need to make sure that the occurrence of any uncontrollable event does not

take the system to an undesired state. That is, when an uncontrollable event is going

to take place then either it should be prevented from happening (i.e., by disabling an

earlier controllable event) or if it happens, then it should stay within the specification

language. For this to occur, K should be controllable.

Co-observability

Co-observability is a necessary and sufficient condition for the synthesis of local con-

trollers. In this section we consider n ≥ 2 decentralized supervisors. Let I = {1,2,..,n}

be the index set for the set of controllers.

Given two regular languges L, K ⊆ Σ∗, where L = L and K ⊆ L. Let Σo,i ⊆ Σ

be the set of observable events and Σc,i ⊆ Σ be the set of controllable events for the

ith decentralized controller, where i ∈ I. Let Pi ∶ Σ∗ → Σ∗
o,i be a natural projection.

For σ ∈ Σc, we define Ic(σ) = {i ∈ I ∣σ ∈ Σc,i} to be the set of all controllers that

are capable of disabling σ. We can now present the definition of co-observability, as

originally defined in [37] and adapted by [3] and [31].

Definition 2.2.1. A language K ⊆ L is co-observable with respect to L = L ⊆ Σ∗, Pi

and Σc,i, where i ∈ I, if,

(∀s ∈ K) (∀σ ∈ Σc) sσ ∈ (L/K) ⇒ (∃i ∈ Ic(σ)) P −1
i (P i(s))σ ∩ K = ∅

When using automata, we say that specification S = (X,Σ, ξ, x0,Xm) is co-

observable with respect to plant G = (Q,Σ, δ, q0,Qm), if, L(G∣∣S) = L(G) ∩ L(S)

15

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

is co-observable with respect to L(G). We cannot use K = L(S) because, in gen-

eral, S is not a sub-automaton of G and the co-observability definition requires that

K ⊆ L(G). By taking K = L(G∣∣S) ⊆ L(G), we restrict the language L(S) to strings

that belong to L(G). This is analogous to how the language-based controllability

definition is extended to apply to automata.

As we will frequently refer to the synchronous product of G and S, we introduce

the following notation to refer to the resulting automaton for the remainder of the the-

sis: G∣∣ S = (Y,Σ, η, y0, Ym), where, in accordance with the definition of synchronous

product (1), we let G1 = G and G2 = S.

Theorem 2.2.1 ([37]). Consider a plant G = (Q,Σ, δ, q0,Qm), where Σuc ⊆ Σ is the

set of uncontrollable events, Σc = Σ/Σuc is the set of controllable events, and Σo ⊆ Σ is

the set of observable events. For each site i ∈ I, consider the set of controllable events

Σc,i and the set of observable events Σo,i; overall, ∪ni=1Σc,i = Σc and ∪ni=1Σo,i = Σo.

Let Pi : Σ∗ → Σ∗
o,i be the natural projection where i ∈ I. Consider also the language

K ⊆ Lm(G), where K ≠ ∅. There exists a nonblocking decentralized supervisor Sdec

for G such that Lm(Sdec/G) =K and L(Sdec/G) =K if and only if the three following

conditions hold:

1. K is controllable with respect to L(G) and Σuc;

2. K is co-observable with respect to L(G), Pi and Σc,i, i ∈ I;

3. K is Lm(G)-closed.

16

Chapter 3

Introduction to State-Based

Co-observability

For the verification of a property, a structure with which the property can be verified

needs to be built. Various deterministic and non-deterministic finite-state structures

have been introduced in the past for the verification of co-observability. In this chapter

we will briefly review the structure that used state estimates for the verification of

classical definition of co-observability. Next we give our definition of state-based co-

observability and, using this definition, prove the existence of decentralized controllers

that synthesize a controllable and co-observable specification language.

17

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

3.1 Co-observability Verification Structure

To verify observational properties of DES with partial observation, the standard ap-

proach is to build an observer ; however, as there have been several competing defi-

nitions of this word in the DES literature, including one we use in subsequent chap-

ters, we will refer to the structure often called an observer (e.g., [7]) as a projection

automaton. The algorithm used to build this structure, is based on a standard algo-

rithm from automaton theory [12], that converts a non-deterministic automaton with

ε-transitions to a deterministic automaton with no ε-transitions. For partial observa-

tion, ε-transitions correspond to replacing σ ∈ Σuo by ε. The algorithm constructs a

non-deterministic projection automaton where only observable events appear as tran-

sition labels and the states are power sets of the state space of the original automaton.

Given a plant G = (Q,Σ,δ,q0,Qm) and a specification automaton S = (X, Σ, ξ,

x0, Xm). We build a projection automaton for each controller (i ∈ I), denoted by Ri,

from G∣∣S = (Y,Σ, η, y0, Ym). To calculate the states of this automaton, we use the

algorithm for subset construction [28], which is based on the idea of ε-reachi. The

ε-reachi of a state y ∈ Y is defined as follows:

ε − reachi(y) ∶= {y′ ∈ Y ∣ η(y, σ) = y′ and σ /∈ Σo,i}.

This can be extended to a set of states: ε-reachi(Y ′) = ⋃y′∈Y ′ ε-reachi(y′). Formally,

Ri = (Ri,Σo,i, ρi, r0,i,Rmi), where Ri ⊆ Pwr(Y) and r0,i = ε-reachi(y0).

To describe the transition function ρi, we also need to calculate all states that can

be reached in one step via a transition of event σ for a given set of states. Thus, for

18

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

1

2

3

4

5

6

7

u

b

b

u

c

c

Figure 3.1: Plant and Specification Automaton

{1, 2} {3, 4, 5} {6, 7} {1, 3} {2, 4, 5} {6, 7}b c u c

Figure 3.2: (a) Projection Automaton 1, (b) Projection Automaton 2

Y ′ ∈ Pwr(Y):

stepσ(Y ′) = {y′ ∈ Y ∣ (∃y ∈ Y ′) such that η(y, σ) = y′}.

Then we can formally define the transition function, where Y ′ ∈ Pwr(Y):

ρi(Y ′, σ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε − reachi(stepσ(Y ′)), if σ ∈ Σo,i;

Y ′, otherwise.

Example 3.1.1. Figure 3.1, shows a plant automaton and the specification automa-

ton. G= (Q,Σ,δ,q0,Qm) is the plant automaton represented by the collection of all

states and transitions, whereas S = (X,Σ,ξ,x0,Xm) is the specification automaton

with solid-line transitions and the states connected by them. We have two controllers,

i = 1, 2, such that Σo,1 = Σc,1 = {b, c} and Σo,2 = Σc,2 = {u, c}.

The projection automata for the two controllers are given in Figure 3.2. According

19

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

to Example 3.1.1, controller 2 observes event u, hence it does not know if the plant

is in state 1 or state 3. If no event has yet occurred then the plant is actually in

state 1; however, if event b has occurred, then also controller 1 has no idea about the

the current plant state because of its inability to observe event b. The occurrence of

event u can provide a clear picture of the true plant state. Assume the plant is at

state 1 and event u takes place, now the true plant state would be state 2. But, if

the plant was at state 3 because of event b and now event u takes place then the true

state of the plant will be state 5.

While there have been several state-based structures proposed to verify co-observa-

bility, (e.g., Monitoring Automaton [32], and Estimator Structure [3]), they are largely

variations of each other. As a result we present a single summary structure that

captures the core characteristics of the verifiers noted above. For the verification of

co-observability the verifier we examine takes the synchronous product, G∣∣ S, and

the projection automaton R1,R2.

Given a plant G= (Q, Σ, δ, q0, Qm) and a specification automaton S = (X, Σ,

ξ, x0, Xm). Let G∣∣S = (Y,Σ, η, y0, Ym) be the synchronous product of the plant and

the specification. Let Σo,i ⊆ Σ, Σc,i ⊆ Σ be the set of observable and controllable

events of the controllers. For a system with two controllers, where i = 1,2, let R1 =

(R1,Σo,1, ρ1, r0,1,Rm1) and R2 = (R2,Σo,2, ρ2, r0,2,Rm2) be the respective projection

automaton, as defined in Section 3.1, built as a result of the controller’s view of the

specification.

Definition 3.1.1. A verifier, M = (M,Σ,m0, θ,Mm), for two controllers is defined

such that M ⊆ (Y ×R1 ×R2) is the set of states, m0 is the initial state and Mm is the

20

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

set of marked states.

The transition is defined, for (y, r1, r2) ∈M and for σ ∈ Σ, as follows:

θ((y, r1, r2), σ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(η(y, σ), ρ1(r1, σ), ρ2(r2, σ)), if σ ∈ Σo,1 ∩Σo,2 and

η(y, σ)!, ρ1(r1, σ)!, ρ2(r2, σ))!;

(η(y, σ), ρ1(r1, σ), r2), if σ ∈ Σo,1/Σo,2 and

η(y, σ)!, ρ1(r1, σ)!;

(η(y, σ), r1, ρ2(r2, σ)), if σ ∈ Σo,2 ∩Σo,1 and

η(y, σ)!, ρ2(r2, σ))!;

(η(y, σ), r1, r2), if σ ∈ Σ/Σo,1/Σo,2 and

η(y, σ)!;

undefined, otherwise.

The verifier for our ongoing example is shown in Figure 3.3. In particular, note

that a transition is defined from state (3,{3,4,5},{1,3}) to state (5,{3,4,5},{2,4,5})

via event u because there is a transition of u in G from state 3 to state 5, but since

u is unobservable to controller 1, there is no change of state in R1; however, since u

is observable to controller 2, and there is such a transition defined from state {1,3}

in R2, there is a corresponding state change to state {2,4,5}.

A violation of co-observability is encoded inM when it contains a state (y, r1, r2)

∈ M and some σ ∈ Σc where θ((y, r1, r2), σ)! such that σ must be disabled at y w.r.t.

G∣∣S, and there exists some y′ ∈ r1 and y′′ ∈ r2 such that σ must be enabled at y′ and

21

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(1, {1,2}, {1,3})

(2, {1,2},{2,4,5}

(3, {3,4,5},{1,3})

(4,{3,4,5},{2,4,5})

(5,{3,4,5},{2,4,5})

(6,{6,7},{6,7})

(7,{6,7},{6,7})

u

b

b

u

c

c

Figure 3.3: Verifier

y′′ w.r.t. G∣∣S. Thus, none of the controllers that have the ability to control σ can

take a definitive control decision regarding σ based on the set of states it considers

possible for the current plant state. In our example, a violation of co-observability

occurs at state (4,{3,4,5},{2,4,5}): c is allowed to occur in the plant, but not in the

specification. Furthermore, controller 1 cannot distinguish states 3,4,5, and at state 5

c must be enabled: so it cannot take a disablement decision and issues an enablement

decision. Similarly, controller 2 cannot distinguish between states 2,4,5 and has an

identical uncertainty for event c, resulting in a local enablement decision. Therefore,

the overall control decision will be to enable c, which violates the specification.

3.2 Towards State-based Co-observability

Recently, a state-based definition of co-observability was introduced [13]. Instead of

tracking observable event labels, co-observability is now additionally defined in terms

of transitions in the plant. For example, a controller’s observations are now denoted

by δo,i ⊆ δ and a transition (q, σ, q′) ∈ δo,i if σ ∈ Σo,i. To facilitate this new perspective

on observations, a new natural projection PG ∶ Q × Σ → Σ ∪ {ε} is defined. For

22

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

σ ∈ Σ, q ∈ Q, i ∈ I

PG,i(q, ε) ∶= ε,

PG,i(q, σ) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

σ, if (q, σ, δ(σ, q) ∈ δo,i);

ε, otherwise.

This projection can be extended to strings. For s ∈ Σ∗, σ ∈ Σ, q ∈ Q

PG,i(q, sσ) = PG,i(q, s)PG,i(δ(q, s), σ).

Definition 3.2.1. Given a plant G and a specification automaton S, sets Σc,1, Σc,2 ⊆

Σ, state-based projections PG,1, PG,2, the language L(S) is state-based co-observable

w.r.t. G, PG,1, PG,2 if for all s, s′, s′′ ∈ Σ∗ such that PG,1(q0, s) = PG,1(q0, s′) and

PG,2(q0, s) = PG,1(q0, s′′),

(∀σ ∈ Σc,1 ∩Σc,2)s ∈ L(S) ∧ sσ ∈ L(G) ∧ s′σ, s′′σ ∈ L(S) ⇒ sσ ∈ L(S) conjunct1;

(∀σ ∈ Σc,1/Σc,2)s ∈ L(S) ∧ sσ ∈ L(G) ∧ s′σ ∈ L(S) ⇒ sσ ∈ L(S) conjunct 2;

(∀σ ∈ Σc,2/Σc,1)s ∈ L(S) ∧ sσ ∈ L(G) ∧ s′′σ ∈ L(S) ⇒ sσ ∈ L(S) conjunct 3.

Note that this definition is only defined for two controllers and the authors suggest

that the complexity of verifying this property for two controllers is the reason for this

restriction. To that end, the authors propose the following non-deterministic structure

to verify their state-based version of co-observability:

M= S × S × (S ×G),

where the state set is X ×X ×X ×Q∪ {dump} and the other components are defined

23

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

1,1,1,1 3,3,1,1 5,5,2,2 5,5,4,4 dump
b,7 u,4 b,3 c,0

Figure 3.4: State-based Verifier

as usual with the exception of the classification of transitions. The idea here is to

simultaneously track a sequence s′ in the specification for controller 1, a sequence s′′

in the specification for controller 2 and a sequence s in the plant and the specification,

corresponding to the three conjuncts identified above. Because there is independence

in the tracking of the three sequences, the authors then distinguish transitions in M

depending on the synchronization of the transitions. For instance, if the transition

in M causes only the first automaton component to change state, this is defined as

a type 1 transition. There are eight transition types in all, as summarized in Table

3.1. Of note is type zero, which captures a violation of state-based co-observability:

a transition of σ is defined for controller 1 and for controller 2 within their tracking

of sequences in the specification, but is outside the specification with respect to the

plant. If there is a path from the initial state of M to the dump state, the co-

observability does not hold. Such a situation for our running example is shown in

Figure 3.4, where only one path inM is illustrated. Note that this path corresponds

to s′ = bu, s′′ = bu and s = ub, and since c is not defined in the specification after ub,

this set of sequences corresponds to a transition of type 0 for event c, and a violation

of state-based co-observability.

As the number of controllers increases, one can see that the number of transition

types becomes exponentially unmanageable, leaving this style of verification for state-

based co-observability computationally infeasible.

24

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Table 3.1: Transition types in M for σ ∈ Σ (indicated transitions made only if
defined)

Transition Type Initial State Configuration Final State Configuration
σ,1 (x1, x2, x3, q4) (ξ(x1, σ), x2, x3, q4)
σ,2 (x1, x2, x3, q4) (x1, ξ(x2, σ), x3, q4)
σ,3 (x1, x2, x3, q4) (x1, x2, ξ(x3, σ), δ(q4, σ))
σ,4 (x1, x2, x3, q4) (ξ(x1, σ), ξ(x2, σ), ξ(x3, σ), δ(q4, σ))
σ,5 (x1, x2, x3, q4) (x1, ξ(x2, σ), ξ(x3, σ), δ(q4, σ))
σ,6 (x1, x2, x3, q4) (ξ(x1, σ), x2, ξ(x3, σ), δ(q4, σ))
σ,7 (x1, x2, x3, q4) (ξ(x1, σ), ξ(x2, σ), x3, q4)
σ,0 (x1, x2, x3, q4) dump,

if σ ∈ Σc,1 ∩Σc,2 and only
ξ(x1, σ)!, ξ(x2, σ)!,δ(q4, σ)!.

3.3 State-Based Definition of Co-observability

In this section, we present a new state-based definition of co-observability and prove

that it implies the language-based definition. Additionally, we present a counter

example to show that the language-based definition does not, in general, imply the

state-based definition.

3.3.1 Basic Definitions

Before we introduce our definition of state-based co-observability, we first need to

introduce a few maps and relations that we will need to define SB co-observability.

Let G = (Q,Σ,δ,q0,Qm) and S = (X,Σ,ξ,x0,Xm) be an arbitrary plant

and a specification automaton such that both are defined over Σ. Let G ∣∣ S be the

synchronous product of G and S such that G ∣∣ S = (Y,Σ, η, y0, Ym). Let I = {1,2,..,n}

be the index set for the controllers. For each controller we consider the observable

25

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

set Σo,i ⊆ Σo and the controllable set Σc,i ⊆ Σc where i ∈ I. Also we define Ic(σ) to

be the set of all controllers that control event σ∈Σc, i.e., Ic(σ) = {i ∈ I ∣σ ∈ Σc,i}. Let

Yr be the set of reachable states for G∣∣S.

We define the map Ydisable ∶ Σc → Pwr(Y), for any σ ∈ Σc where Ydisable(σ) maps

to the set of reachable states in G∣∣S with an outgoing σ transition in G, but no σ

transition in S.

Definition 3.3.1. For a plant G and a specification automaton S, we define the map

Ydisable ∶ Σc → Pwr(Y) for σ ∈ Σc as follows:

Ydisable(σ) := {y = (q, x) ∈ Yr∣ δ(q, σ)! ∧ ¬ξ(x,σ)!}

The set Ydisable(σ) thus identifies the states in G ∣∣ S where σ ∈ Σc is possible in the

plant but disabled with respect to the specification.

We now define the map Yenable ∶ Σc → Pwr(Y), for any σ ∈ Σc where Yenable(σ)

maps σ to the set of reachable states in G∣∣S with an outgoing transition in both G

and S.

Definition 3.3.2. For a plant G and a specification automaton S, we define the map

Yenable ∶ Σc → Pwr(Y) for σ ∈ Σc as follows:

Yenable(σ) := {y = (q, x) ∈ Yr∣ δ(q, σ)! ∧ ξ(x,σ)!}

The set Yenable(σ) thus identifies the states in G ∣∣ S where σ ∈ Σc is possible in the

plant and is enabled by the specification.

We now introduce a binary relation on the state-space Y of G∣∣S, with respect

to a subset Ω ⊆ Σ. The relation says that two states are indistinguishable if each

26

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

state can be reached from the initial state by strings that are equal under the natural

projection PΩ : Σ∗ → Ω∗.

Definition 3.3.3. Let Ω ⊆ Σ and let PΩ : Σ∗ → Ω∗ be a natural projection. For G∣∣

S, we define the Ω indistinguishability relation to be:

(∀y1, y2 ∈ Y),

y1∼ Ω y2 ⇔ (∃s1, s2 ∈ Σ∗)(PΩ(s1) = PΩ(s2)) ∧ (η(y0, s1) = y1) ∧ (η(y0, s2) = y2).

For states y1, y2 ∈ Y if y1∼ Ω y2, we say that y1 is indistinguishable from y2 w.r.t Ω.

This relation was designed to match Lemmas 4.2.1 and 4.2.2 from [26], which we

will discuss in Section 4.2.7. The lemmas allow us to relate ∼ Ω to the observers that

we use in our algorithms in Chapter 4. It is easy to see that ∼ Ω is symmetric. If G

∣∣ S is also reachable, then ∼ Ω is reflexive.

We need an easy means to refer to the subset of states that are indistinguishable

from some state y ∈ Y with respect to Ω ⊆ Σ.

Definition 3.3.4. Let Ω ⊆ Σ and let PΩ : Σ∗ → Ω∗ be the natural projection. For

G∣∣S and y ∈ Y , we define the subset [y]∼ Ω
⊆ Y to be:

[y]∼ Ω
:= {y′ ∈ Y ∣ y ∼ Ω y′}

We say the subset [y]∼ Ω
is the coset of y with respect to ∼ Ω.

Having introduced Yenable, Ydisable and [y]∼ Σo,i
, we can now proceed to our definition

of state-based co-observability.

27

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Definition 3.3.5. Given maps Yenable ∶ Σc → Pwr(Y) and Ydisable ∶ Σc → Pwr(Y)

defined for a plant G and a specification S. Let Σc ⊆ Σ, Σo,i ⊆ Σ and Σc,i ⊆ Σ, where

i = 1,2,....,n. Specification S is SB co-observable w.r.t to G, Pi and Σc,i, if

(∀y∈Y)(∀σ∈Σc) y∈Y disable(σ) ⇒ (∃i∈Ic(σ)) [y]∼ Σo,i
∩Y enable(σ) = ∅

Essentially, the SB co-observable definition states that if a state y = (q,x) ∈ Y of

G∣∣S is a state where σ ∈ Σc is allowed to occur in G but is not part of the behaviour

of S, then there must be at least one controller i ∈ I that can disable σ and can

distinguish, w.r.t Σo,i, y from all states y′ = (q′, x′) ∈ Y where σ is possible in both G

and S. We note that even if state y is unreachable, this will not affect the result as

this would imply that [y]∼ Ω
= ∅, which easily follows from Definition 3.3.3.

3.3.2 State-based Implies Language-based Definition

We present a theorem that states that the SB co-observability definition implies the

language based definition. If this is true, then we can synthesize decentralized con-

trollers that correctly solve the decentralized control problem.

Theorem 3.3.1. Consider plant G = (Q,Σ,δ,q0,Qm) and a specification automaton

S = (X,Σ, ξ, x0,Xm), where G∣∣S = (Y,Σ, η, y0, Ym) is their synchronous product.

For i = {1,2,...,n}, sets Σc, Σc,i ⊆ Σ are the sets of controllable events and Σo,

Σo,i ⊆ Σ is the set of observable events. Let Pi : Σ∗ → Σ∗
o,i be a natural projection for

i = 1,2, ..., n. Consider maps, Y disable : Σc → Pwr(Y) and Y enable : Σc → Pwr(Y)

defined over G∣∣S. For all y ∈ Y let [y]∼ Σo,i
be the coset of y with respect to ∼ Σo,i

. If the

28

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

specification S is SB co-observable w.r.t G, Pi and Σc,i, then L(G∣∣S) is co-observable

w.r.t L(G), Pi and Σc,i :

Proof. We prove by contradiction.

Assume that S is SB co-observable w.r.t G, Pi and Σc,i:

(∀y ∈ Y)(∀σ ∈ Σc)y ∈ Y disable(σ) ⇒ (∃i ∈ Ic(σ))[y]∼ Σo,i
∩ Y enable(σ) = ∅ (1)

and that L(G∣∣S) is not co-observable w.r.t L(G), Pi and Σc,i,

(∃s ∈ L(G∣∣S))(∃σ ∈ Σc)sσ ∈ (L(G)/L(G∣∣S)) ∧ (∀i ∈ Ic(σ))

P −1
i (Pi(s))σ ∩L(G∣∣S) ≠ ∅ (2)

We will now show that (2) produces a contradiction in (1).

To do this, we need to show that:

(∃y ∈ Y)(∃σ ∈ Σc)y ∈ Y disable(σ) ∧ (∀i ∈ Ic(σ))[y]∼ Σo,i
∩ Y enable(σ) ≠ ∅ (3)

On examining equation (2) we conclude that there is some string s ∈ L(G∣∣S),

and an event σ ∈ Σc such that: (4)

sσ ∈ L(G)/L(G∣∣S)and(∀i ∈ Ic(σ))P −1
i (Pi(s))σ ∩L(G∣∣S) ≠ ∅ (5)

Since s ∈ L(G∣∣S) by (4), we thus have η(y0, s)!.

Let y = η(y0, s) and thus y ∈ Y. (6)

As sσ∈(L(G)/L(G∣∣S)), we have sσ ∈ L(G) and sσ ∉ L(G∣∣S).

Since S and G are both over Σ, we have L(G∣∣S) = L(G) ∩ L(S).

As sσ ∈ L(G) and sσ ∉ L(G∣∣S) = L(G) ∩ L(S), it follows that sσ ∉ L(S).

29

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

⇒ y ∈ Ydisable(σ) (7)

From (3) we now need to show:

(∀i ∈ Ic(σ))[y]∼ Σo,i
∩ Yenable(σ) ≠ ∅ (8)

On examining (5) we see that (∀i ∈ Ic(σ)) P −1
i (P i(s))σ ∩ L(G∣∣S) ≠ ∅.

Since this property is true for all i ∈ Ic(σ), we can choose an arbitrary i ∈ Ic(σ),

and prove this implies (8), without loss of generality.

Let i be an arbitrary element of Ic(σ). From (5) we can conclude that:

(∃s′ ∈ Σ∗)(s′ ∈ P −1
i (Pi(s))) ∧ (s′σ ∈ L(G∣∣S)) (9)

This implies that Pi(s′) = Pi(s) and s′ ∈ L(G∣∣S). This is because of the definition

of Pi and the fact that L(G∣∣S) is prefix-closed. (10)

We also note that s′σ ∈ L(G∣∣S) = L(G) ∩ L(S), which implies that s′σ ∈ L(S),

and s′σ ∈ L(G). (11)

We thus have η(y0, s′)!.

Let y′ = η(y0, s′) and thus y′ ∈ Y .

By (11), we have y′ ∈ Yenable(σ) (12)

As Pi(s′) = Pi(s) by (10), we have: y∼ Σo,i
y′

⇒ y′ ∈ [y]∼ Σo,i

⇒ [y]∼ Σo,i
∧ Yenable(σ) ≠ ∅, by (12).

As i is an arbitrary element of Ic(σ), we have:

30

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(∀i∈Ic(σ)) [y]∼ Σo,i
∩ Y enable(σ) ≠ ∅

This contradicts (1).

Thus, we conclude that (2) is false, i.e., L(G∣∣S) is co-observable w.r.t L(G) as re-

quired.

Corollary 3.3.1 ([37]). Consider a plant G = (Q,Σ, δ, q0,Qm), a specification S =

(X,Σ, ξ, x0,Xm) and their nonblocking synchronous product G∣∣S, where Σuc ⊆ Σ is

the set of uncontrollable events, Σc = Σ/Σuc is the set of controllable events, and Σo ⊆ Σ

is the set of observable events. For each site i ∈ I, consider the set of controllable

events Σc,i and the set of observable events Σo,i; overall, ∪ni=1Σc,i = Σc and ∪ni=1Σo,i = Σo.

Let Pi be the natural projection from Σ∗ to Σ∗
o,i, i ∈ I. Consider also the language

Lm(G∣∣S) ⊆ Lm(G), where Lm(G∣∣S) ≠ ∅. There exists a nonblocking decentralized

supervisor Sdec for G such that

Lm(Sdec/G) = Lm(G∣∣S) and L(Sdec/G) = L(G∣∣S)

if the following conditions hold:

1. Lm(G∣∣S) is controllable w.r.t. L(G) and Σuc;

2. S is SB co-observable w.r.t. G, Pi and Σc,i, i = 1, . . . n;

3. Lm(G∣∣S) is Lm(G)-closed.

Proof Follows easily from Theorems 2.2.1 and 3.3.1.

31

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

3.3.3 Does Language-Based Imply State-Based Definition

An obvious question that arises from Theorem 3.3.1 is, does the language-based def-

inition of co-observability imply the state-based definition?

We will show that the language-based definition of co-observability does not always

imply the state-based definition, i.e., the state-based definition of co-observability is

more restrictive than the language-based definition. This means that if a system is

not SB co-observable, it is not always the case that the system is not language-based

co-observable. We will prove this using a counter example.

Counter example: Let G = (Q,Σ,δ,q0,Qm) be a plant automaton and S = (X,

Σ, ξ, x0, Xm) be a specification automaton, such that both are defined over Σ. The

plant and the specification together is given in Figure 3.5. The dashed line shows that

state 4 is reachable in the plant but is unreachable in the specification automaton.

Let there be two controllers, i ∈ {1, 2} such that Σo,1 = {a1, a2}, Σo,2 = {b1, b2}. Let

Σc,1 = Σc,2 = {c} be the set of controllable events. In this example, the only control

decision to be implemented by specification is to disable c in state 2 while enabling

it in state 1.

On applying the language-based definition of co-observability defined in [33] to the

counter example, we observe that together, the two supervisors can make the right

control decision. If a2 occurs then controller 1 knows to disable c, and if b2 occurs

then controller 2 knows to disable c. As long as neither a2 or b2 occurs, it is safe to

leave c enabled. Although states 1 and 2 are indistinguishable to both controllers,

in cases where the two states are indistinguishable to controller 1, controller 2 can

distinguish them, and vice versa.

32

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 3.5: Counter example

According to the definition of co-observability given in Section 2.2.1, K = {a1c,

b1c, a2, b2, a2d, b2d}, L = {ε, a1c, b1c, a2c, b2c, a1, b1, a2, b2, a2d, b2d} and K = {ε,

a1, b1, a1c, b1c, a2, b2, a2d, b2d}. Let s = a2 and σ = c, then according to the defini-

tion, a2c ∈ (L/K). This implies that there is a controller i = 1 that can control c, such

that the intersection of the prefix-closure of the legal language and inverse projection

of the projection of string a2 is empty. Thus, L(G∣∣S) is co-observable with respect

to L(G). Likewise, b2 is handled by controller i = 2.

Using Definition 3.3.3, we note that states 1 and 2 are indistinguishable w.r.t Σo,1

because events b1 and b2 are un-observable to controller 1. Similarly, events a1 and

a2 are unobservable to controller 2, which makes states 1 and 2 indistinguishable w.r.t

Σo,2. Additionally, using Definition 3.3.1 and Definition 3.3.2, we note that state 2

33

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

belongs to Ydisable(c) and state 1 belongs to Yenable(c). On applying the state-based

definition of co-observability, given in Definition 3.3.5,one notes that indistinguish-

able states 1 and 2, that belong to different Ydisable(c) and Yenable(c) sets are grouped

together, failing the definition of SB co-observability.

In the next chapter, after we have introduced our algorithm for SB co-observability

and, given an example, we also evaluate our counter example and prove that it is not

SB co-observable. For more information refer to Section 4.5.

34

Chapter 4

State-Based Algorithms

In this chapter we present two algorithms to verify SB co-observability.

4.1 Verifying SB Co-observability

For the verification of SB co-observability, we define two methods:

▸ SubsetConstruction [28];

▸ Observer Construction [42].

Subset Construction: The algorithm makes use of a classical method that we adopt

for the verification of SB co-observability. It has also been used for the verification

of the observability property. We use subset construction for the verification of SB

co-observability so that it can be more easily compared to existing methods that ver-

ify co-observability. We will also perform a computational complexity analysis of this

method.

35

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Observer Construction: Here we introduce a new method for the verification of

SB co-observability that is more efficient than the subset construction approach. We

will perform a complexity analysis for this algorithm and compare the results to al-

gorithms for language-based co-observability verification. We will also present an

example using the observer-based algorithm.

We assume that we are given a plant G = (Q,Σ,δ,q0,Qm) and a specification S =

(X,Σ,ξ,x0,Xm), for both the subset construction and observer-based algorithms.

These methods share two sub-algorithms. The first shared algorithm, called the

EnableDisableSetFind and is defined in Section 4.2.2 and constructs the maps Ydisable

and Yenable for G and S. The definitions for these maps are given in Section 3.3.1.

The second shared algorithm is called the ConstructSynchProductAndHiding and

defined in Section 4.2.3. For a given controller i ∈ I = {1,2,..,n}, we construct an au-

tomaton H = (Y ,Σ,η,y0,Y m), which is equivalent to G∣∣S with the events Σ/Σo,i (i.e.,

the events that are unobservable by controller i) hidden. Essentially, we construct

H = G∣∣S, and then we replace every σ ∈ Σ/Σo,i transition in G∣∣S with a new event

τ ∉ Σ. Typically, this makes H non-deterministic.

Our algorithms require that G and S be deterministic. An automaton is determin-

istic if it has a single initial state and, at each state, there is at most one transition

defined, leaving that state for a given σ ∈ Σ. Since G and S are deterministic, it

follows that G∣∣S is also deterministic.

Typically, the hiding process makes H non-deterministic as we could end up with

multiple τ transitions leaving a given state. It is easy to see that for σ ∈ Σ, we will

36

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

never have more than one σ transition at a given state.

The main difference between G∣∣S and H is that, in H, η becomes the next state

relation defined as η ⊆ Y ×Στ× Y , where for Σ′⊆Σ, we use the notation Στ
′ to mean

Στ
′ = Σ′∪̇{τ}. To keep our algorithms simple, we use the notation η(y, σ) = y′, for

σ ∈ Σ and y ∈ Y , as we normally would for deterministic automaton. We will assume,

though, that η(y, τ) ⊆ Y , i.e., returns a subset of state set Y , possibly the empty set.

We also use η(y, τ)! to mean η(y, τ) ≠ ∅.

4.2 Algorithms

In this section we present our subset construction-based SB co-observability algorithm

and our observer-based SB co-observability algorithm.

To make things easier to understand and to avoid duplication, we have broken

each algorithm into several sub-algorithms. The main subset construction algorithm

is presented in Algorithm 1 and it calls Algorithm 2 - 4. The main observer-based

algorithm is presented in Algorithm 5 and it calls Algorithms 2, 3, and 6.

4.2.1 Is SB Co-observable Using Subset Construction

The algorithm determines whether specification S is SB Co-observable with respect

to plant G, Pi and Σc,i, i = 1, 2,...,n.

The subroutines EnableDisableSetFind, ConstructSynchProductAndHiding and

SubsetConstruction have been used as a part of IsSBCo-observableUsingSubsetConst-

ruction algorithm.

37

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The algorithm makes use of the following variables:

I: The set I := {1,2,..,n} of controllers where n is the total number of controllers.

Σc ∶ Set of controllable events such that Σc ⊆ Σ.

Σo,i ∶ The set of observable events Σo,i ⊆ Σ, for each controller i ∈ I.

H ∶ The automaton based on G∣∣S, with events Σ/Σo,i hidden.

Ydisable : As defined in Definition 3.3.1 in Section 3.3.1, is a map such that Y disable:

Σc → Pwr(Y).

Yenable ∶ As defined in Definition 3.3.2 in Section 3.3.1, is a map such that Y enable:

Σc → Pwr(Y).

YtempDisable ∶ The map YtempDisable : Σc → Pwr(Y) is a map such that for each

σ ∈ Σc, Y tempDisable(σ) reports the unhandled Y disable(σ) states that are returned from

the procedure SubsetConstruction, so that the subsequent controllers have to handle

only the remaining problem states.

pass, skipIt : Boolean variables used to test loop termination.

Algorithm 1:

1: procedure IsSBCo-observableUsingSubsetConstruction(G,S)

2: EnableDisableSetFind(Y enable, Y disable, G, S)

3: pass ←Ð True

4: for σ ∈ Σc do

5: if (Y disable(σ) ≠ ∅) then

6: pass ←Ð False

7: end if

38

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

8: end for

9: if (pass) then

10: return True

11: end if

12: for i ∈ I do

13: skipIt ←Ð True

14: for σ ∈ Σc do

15: if ((i ∈ Ic(σ)) ∧ (Y disable(σ) ≠ ∅)) then

16: skipIt ←Ð False

17: end if

18: end for

19: if (!skipIt) then

20: H ←Ð ConstructSynchProductAndHiding(G, S, Σo,i)

21: Y tempDisable ←Ð SubsetConstruction(H, Y enable, Y disable, Σo,i, i)

22: pass ←Ð True

23: for σ ∈ Σc do

24: if (Y tempDisable(σ) ≠ ∅) then

25: pass ←Ð False

26: end if

27: Ydisable(σ) ←Ð YtempDisable(σ)

28: end for

29: if (pass) then

30: return True

31: end if

39

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

32: end if

33: end for

34: return False

35: end procedure

Lines 4-11 check for the presence of states in Ydisable(σ), for every σ ∈ Σc. Absence

of any state means that there are no problem states that are need to be handled by

the controllers. Lines 12-33 process each controller i ∈ I in turn. Lines 14-18, make

sure that controller i can control at least one σ ∈ Σc so that a disable state can be

taken care of. If the above mentioned conditions are met, then we construct the H

automaton and perform the subset construction test. Otherwise, we skip the current

controller and check the same condition for the remaining controllers.

For a particular σ ∈ Σc, YtempDisable(σ) is checked for states after every time a

controller goes through the procedure SubsetConstruction (Line 24). If YtempDisable(σ)

= ∅ for every σ ∈ Σc, we exit the loop and return True. However, if YtempDisable(σ)

≠ ∅ for at least one σ ∈ Σc, it implies that procedure SubsetConstruction has returned

some subset of Ydisable(σ) states that could not be handled by the active controller.

These remaining states are then assigned to Ydisable(σ) (Line 27), which are then

handled by subsequent controllers.

4.2.2 Enable Disable Set Find

This algorithm constructs the maps Ydisable and Ydisable (see Section 3.3.1) for G and

S.

The algorithm makes use of the following variables.

q0 ∶ Initial state of plant G.

40

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

x0 ∶ Initial state of specification S.

y0 ∶ Initial state of G∣∣S.

Yfnd ∶ The set Yfnd ⊆ Y holds the states that have been found already by the

algorithm.

Ypend ∶ The set Ypend ⊆ Y holds the states that are waiting to be processed by the

algorithm.

δ : Next state function for plant G

ξ : Next state function for specification automaton S

Algorithm 2:

1: procedure EnableDisableSetFind(Y enable, Y disable, G, S)

2: for σ ∈ Σc do

3: Y disable(σ) ←Ð ∅

4: Y enable(σ) ←Ð ∅

5: end for

6: y0←Ð (q0,x0)

7: Y fnd ←Ð {y0}

8: Y pend ←Ð {y0}

9: while (Y pend ≠ ∅) do

10: Select y = (q, x) ∈ Y pend

11: Y pend ←Ð Y pend / {y}

12: for (σ∈Σ) do

13: if (δ(q,σ)!) then

14: if (¬(ξ(x,σ)!)) then

41

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

15: if (σ ∈ Σc) then

16: Y disable(σ) ←Ð Y disable(σ) ∪ {y}

17: end if

18: else

19: if (σ ∈ Σc) then

20: Y enable(σ) ←Ð Y enable(σ) ∪ {y}

21: end if

22: y′ ←Ð (δ(q,σ), ξ(x,σ))

23: if (y′∉Y fnd) then

24: Y fnd ←Ð Y fnd ∪ {y′}

25: Y pend ←Ð Y pend ∪ {y′}

26: end if

27: end if

28: end if

29: end for

30: end while

31: end procedure

In Lines 12-29, a reachability search is performed to find all the set of states that

can be reached by the events that are possible in G∣∣S. As the reachability search is

performed, we focus on finding the states that belong to sets, Yenable(σ) and Ydisable(σ),

for each σ ∈ Σc. The checks in Lines 13-15 place the states in Ydisable(σ) . The checks

at Line 13 and 19 place the states in Yenable(σ).

42

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

4.2.3 Construct Synch Product and Hiding

This algorithm constructs the synchronous product G∣∣S, of the plant G and spec-

ification automaton S, both defined over Σ. As G∣∣S is being constructed, we also

replace all unobservable events (σ ∈ Σ/Σo,i) with the special event τ ∉ Σ. We label

the resulting automaton with H which may be non-deterministic (see Section 2.1 for

more information). The process of replacing the unobservable events with τ is called

“hiding”. This algorithm is called every time a new controller is evaluated.

The algorithm makes use of the following variables:

Y ∶ State set of H.

Ym ∶ The set Ym ⊆ Y is the set of marked states of H.

Yrch ∶ The set Yrch ⊆ Y contains the states that have already been encountered by

the algorithm. We maintain this set so that the states that have been processed once

do not get processed again.

Ypend ∶ The set Ypend ⊆ Y contains the states that have been encountered but not

yet processed.

η ∶ Next-state relation for H such that η ⊆ Y×Στ×Y, where we use the notation

Στ
′ = Σ′∪̇{τ}, for set Σ′⊆Σ.

q0 ∶ Initial state of plant G.

x0 ∶ Initial state of specification S.

Qm ∶ The set Qm ⊆ Q is the set of marked states of G.

Xm ∶ The set Xm ⊆ X is the set of marked states of S.

43

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Algorithm 3:

1: procedure ConstructSynchProductAndHiding(G, S, H, Σo,i)

2: Y m ←Ð ∅

3: η ←Ð∅

4: y0←Ð(q0,x0)

5: Y rch ←Ð {y0}

6: Y pend ←Ð {y0}

7: while (Y pend ≠ ∅) do

8: Select y = (q, x) ∈ Y pend

9: Y pend ←Ð Y pend / {y}

10: if ((q∈Qm) ∧ (x∈Xm)) then

11: Y m ←Ð Y m ∪ {y}

12: end if

13: for σ∈Σ do

14: if (δ(q,σ)! ∧ ξ(x,σ)!) then

15: y′ ←Ð (δ(q,σ), ξ(x,σ))

16: if (σ∈Σo,i) then

17: η ←Ð η ∪ {(y,σ,y′)}

18: else

19: η ←Ð η ∪ {(y,τ ,y′)}

20: end if

21: if (y′ ∉ Yrch) then

22: Y rch ←Ð Y rch ∪ {y′}

23: Y pend ←Ð Y pend ∪ {y′}

44

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

24: end if

25: end if

26: end for

27: end while

28: Y ←Ð Y rch

29: return (Y,Σ, η, y0, Ym)

30: end procedure

Lines 14-15 determine our next state y′, reachable by some σ ∈ Σ. For Lines 16-20,

if the event σ does not belong to the observable event set of the controller (Σ/Σo,i),

then it is replaced by a silent event τ , else it remains the same. On Line 29, we return

the automaton H.

4.2.4 Subset Construction

The algorithm operates on the non-deterministic automaton H, which is described

in Section 2.1. This algorithm evaluates the state-space and next-state relation of

H to do subset construction. The algorithm groups states into subsets such that

for any two states, they can be reached from the initial state by strings s1, s2 ∈ Σ∗
τ

respectively, and Pτ (s1) = Pτ (s2), where Pτ : Σ∗
τ→Σ∗ is a natural projection.

Once the subsets are constructed, the algorithm checks that for each σ ∈ Σc, a state

from Ydisable(σ) is never part of a subset that also contains a state from Yenable(σ).

If this occurs, it means controller i ∈ I can not distinguish between the states us-

ing the observable events, Σo,i. These Ydisable(σ) states that fail are returned via

YtmpDisable(σ) so that another controller can be tested to see if it can handle these

states.

45

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The algorithm uses the following variables:

Pwr(Y)∶ It is the set of all subsets of Y .

YincSubsFound∶ The set of subsets having states that have been encountered before

but the algorithms have not yet done a τ -closure on them. We have YincSubsFound

⊆Pwr(Y)

Ypending ∶ The set of subsets that have been found but have not yet been processed.

We have Ypending ⊆ Pwr(Y)

YcompSubsFound ∶ It is the set of subsets that have been encountered and the algo-

rithm has already done a τ -closure on them. We have YcompSubsFound ⊆ Pwr(Y).

Y tmpDisable ∶ The map Y tmpDisable: Σc → Pwr(Y) takes each σ ∈ Σc, and reports the

remaining Y disable(σ) states which, at some point, got paired with Y enable(σ) states

in a subset. These are the states that are returned so that the subsequent controllers

can be tested to see if they can handle these states.

Y loopPend: Set Y loopPend ⊆ Y contains the states waiting to be processed by the

τ -closure operation of a specific subsystem.

Ytmp1: Set Ytmp1 ⊆ Y is used as temporary storage.

Y loopFound: Set Y loopFound ⊆ Y stores states encountered during the τ -closure op-

eration of a specific subset.

η: Next-state relation for H such that η ⊆ Y ×Στ×Y , where Σ′
τ := Σ′∪ {τ} for set

Σ′ ⊆ Σ, and τ ∉ Σ.

NOTE ∶ For next-state relation η of H, when σ′∈Σ, η will return a single state but,

46

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

for τ∉Σ, η will always return a subset Y ′ ⊆ Y , possibly the empty subset. Also, for

τ only, we consider η(y,τ)! to mean that η(y,τ)≠∅, otherwise we use the standard

interpretation for a partial function. This is done to keep the notation simple in the

algorithm.

Algorithm 4:

1: procedure SubsetConstruction(H, Y enable, Y disable, Σo,i, i)

2: Y compSubsFound ←Ð ∅

3: Y tmp1 ←Ð ∅

4: Y incSubsFound ←Ð {{yo}}

5: Y pending ←Ð {{yo}}

6: for σ ∈ Σc do

7: if (i ∈ Ic(σ)) then

8: Y tmpDisable(σ) ←Ð ∅

9: else

10: Y tmpDisable(σ) ←Ð Y disable(σ)

11: end if

12: end for

13: while (Y pending ≠ ∅) do

14: Select Y ′ ∈ Y pending

15: Y pending ←Ð Y pending / {Y ′}

16: Y loopPend ←Ð Y ′

17: Y loopFound ←Ð Y ′

18: while (Y loopPend ≠ ∅) do

47

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

19: Select y ∈ Y loopPend

20: Y loopPend ←Ð Y loopPend / {y}

21: if (η(y, τ)!) then

22: for y′ ∈ η(y, τ) do

23: if (y′ ∉ Y loopFound) then

24: Y ′ ←Ð Y ′ ∪ {y′}

25: Y loopFound ←Ð Y loopFound ∪ {y′}

26: Y loopPend ←Ð Y loopPend ∪ {y′}

27: end if

28: end for

29: end if

30: end while

31: if (Y ′∉Y compSubsFound) then

32: for σ ∈ Σc do

33: if ((Y ′∩Y disable(σ) ≠ ∅) ∧ (Y ′ ∩ Y enable(σ) ≠ ∅) ∧ (i ∈ Ic(σ))) then

34: Y tmpDisable(σ) ←Ð Y tmpDisable(σ) ∪ (Y ′∩Y disable(σ))

35: end if

36: end for

37: Y compSubsFound ←Ð Y compSubsFound ∪ {Y ′}

38: for σ∈Σo,i do

39: Y tmp1 ←Ð ∅

40: for y ∈ Y ′ do

41: if (η(y,σ)!) then

42: Y tmp1 ←Ð Y tmp1 ∪ {η(y,σ)}

48

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

43: end if

44: end for

45: if (Y tmp1 ∉ Y incSubsFound) then

46: Y incSubsFound ←Ð Y incSubsFound ∪ {Y tmp1}

47: Y pending ←Ð Y pending ∪ {Y tmp1}

48: end if

49: end for

50: end if

51: end while

52: return YtmpDisable

53: end procedure

For a particular σ ∈ Σc, the contents of YtmpDisable(σ) remain the same as Ydisable(σ)

if the controller cannot handle that particular σ (Lines 6-12). Lines 13-51 form the

loop where the subset construction and the testing occurs.

Starting with subset Y ′ (Line 14), Lines 18-30 do a τ -closure. A τ closure opera-

tion adds to Y ′ every state reachable from a state y ∈ Y by a string t ∈ {τ}+.

If Y ′ (after τ -closure) has not yet been processed (Line 31), we process it on Lines

32-49. On Lines 32-36, we check for each σ ∈ Σc that controller i ∈ I can control

whether a state from Ydisable(σ) and a state from Yenable(σ) are both in Y ′, and if so,

we add the Ydisable(σ) state to YtmpDisable(σ).

In Lines 39-49, we determine new partial subsets (they lack the τ -closure oper-

ation), Ytmp1, which consists of states that can be reached, for a given σ ∈ Σ, from

a state y ∈ Y ′. If Ytmp1 has not yet been encountered, (Line 45), it is marked as

encountered and added to pending subset list (Lines 46-47).

49

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The procedure returns the map YtmpDisable which are all the Ydisable states that the

current controller could not handle.

4.2.5 Is SB Co-observable Using Observer Construction

The procedure is almost the same as procedure IsSBCo-observableUsingSubsetCons

truction. The subroutines EnableDisableSetFind and ConstructSynchProductAndHid-

ing will be reused in this algorithm. The difference is that this algorithm will call the

ObserverConstruction algorithm, which will do the main SB co-observability check.

The algorithm makes use of the following variables:

I: The set I := {1,2,..,n} of controllers where n is the total number of controllers.

Σc ∶ Set of controllable events such that Σc ⊆ Σ.

Σo,i ∶ The set of observable events Σo,i ⊆ Σ, for each controller i ∈ I.

H ∶ The automaton based on G∣∣S, with events Σ/Σo,i hidden.

Ydisable : See 3.3.1; is a map such that Y disable: Σc → Pwr(Y).

Yenable ∶ See in Definition 3.3.2; is a map such that Y enable: Σc → Pwr(Y).

YtempDisable ∶ The map YtempDisable : Σc → Pwr(Y) is a map such that for each

σ ∈ Σc, Y tempDisable(σ) reports the un-handled Y disable(σ) states that are returned

from the procedure ObserverConstruction, so that the subsequent controllers have to

handle only the remaining problem states.

pass, skipIt : Boolean variables used to test loop termination.

50

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Algorithm 5:

1: procedure IsSBCo-observableUsingObserverConstruction(G,S)

2: EnableDisableSetFind(Y enable, Y disable, G, S)

3: pass ←Ð True

4: for σ ∈ Σc do

5: if (Y disable(σ) ≠ ∅) then

6: pass ←Ð False

7: end if

8: end for

9: if (pass) then

10: return True

11: end if

12: for i ∈ I do

13: skipIt ←Ð True

14: for σ ∈ Σc do

15: if ((i ∈ Ic(σ)) ∧ (Y disable(σ) ≠ ∅)) then

16: skipIt ←Ð False

17: end if

18: end for

19: if (!skipIt) then

20: H ←Ð ConstructSynchProductAndHiding(G, S, Σo,i)

21: Y tempDisable ←Ð ObserverConstruction(H, Y enable, Y disable, Σo,i, i)

22: pass ←Ð True

23: for σ ∈ Σc do

51

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

24: if (Y tempDisable(σ) ≠ ∅) then

25: pass ←Ð False

26: end if

27: Ydisable(σ) ←Ð YtempDisable(σ)

28: end for

29: if (pass) then

30: return True

31: end if

32: end if

33: end for

34: return False

35: end procedure

Lines 4-11 check for the presence of states in Ydisable(σ), for every σ ∈ Σc. Absence

of any state proves that there are no problem states that are needed to be handled

by the controllers. Lines 12-33 process each controller i ∈ I in turn. Lines 14-18

make sure that controller i can control at least one σ ∈ Σc so that a disable state can

be taken care of. If the above mentioned conditions are met, then we construct the

H automaton and perform the observer construction test. Otherwise, we skip the

current controller and check the same condition for the remaining controllers.

For a particular σ ∈ Σc, YtempDisable(σ), is checked for states after every time a con-

troller goes through the procedure ObserverConstruction (Line 24). If YtempDisable(σ)

= ∅ for every σ ∈ Σc, we exit the loop and return True. However, if YtempDisable(σ) ≠ ∅

for at least one σ ∈ Σc, it implies that procedure ObserverConstruction has returned

some subset of Ydisable(σ) states that could not be handled by the active controller.

52

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

These remaining states are then assigned to Ydisable(σ) (Line 27), which are then

handled by the subsequent controllers.

4.2.6 Observer Construction

The purpose of this algorithm is to construct all state pairs (y1, y2) ∈ Y ×Y that are

indistinguishable with respect to Σo,i (see definition in section 3.3.3). This means y1

is reachable from y0 (the initial state), via a string s1 ∈ Σ∗
τ (Στ = Σ ∪ {τ}), and y2 is

reachable from y0 via a string s2 ∈ Σ∗
τ , and Pτ(s1) = Pτ(s2), where Pτ ∶ Σ∗

τ → Σ∗ is

a natural projection. Please note that this is done relative to the automaton H =

(Y,Σ, η, y0, Ym) (described in Section 4.1).

For a given σ ∈ Σc such that i ∈ Ic(σ), the system fails the SB co-observability test

if the algorithm pairs a state y ∈ Yenable(σ) and a state y′ ∈ Ydisable(σ). This means

that the two states are indistinguishable with respect to Σo,i. We return this y′ as

part of YtmpDisable(σ) so that we can test if another controller can handle this state.

The algorithm uses the following variables:

Yfound∶ Set of tuples that have been encountered by the algorithm. We have Yfound

⊆ Y × Y .

Ypending ∶ Set of tuples that have been encountered and are waiting to get pro-

cessed. We have Ypending ⊆ Y × Y .

Y tmpDisable ∶ The map Y tmpDisable: Σc → Pwr(Y) takes each σ ∈ Σc, and reports the

remaining Y disable(σ) states which, at some point, got paired with Y enable(σ) states

in a subset. These are the states that are returned so that the subsequent controllers

can be tested to see if they can handle these states.

53

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

y0 ∶ State y0 is the initial state of automaton H.

η: Next-state relation for H, such that η ⊆ Y ×Στ×Y where Σ′
τ := Σ′∪ {τ} for set

Σ′ ⊆ Σ, and τ ∉ Σ.

NOTE ∶ For next-state relation η of H, when σ′∈Σ, η will return a single state but,

for τ∉Σ, η will always return a subset Y ′ ⊆ Y , possibly the empty subset. Also, for

τ only, we consider η(y,τ)! to mean that η(y,τ)≠∅, otherwise we use the standard

interpretation of “!” for a partial function. This is done to keep the notation simple

in the algorithm.

Algorithm 6:

1: procedure ObserverConstruction(H,Y enable,Y disable, Σo,i, i)

2: for σ ∈ Σc do

3: if (i ∈ Ic(σ)) then

4: Y tmpDisable(σ) ←Ð ∅

5: else

6: Y tmpDisable(σ) ←Ð Y disable(σ)

7: end if

8: end for

9: Y found ←Ð {(y0,y0)}

10: Y pending ←Ð {(y0,y0)}

11: while (Y pending≠∅) do

12: Select (y1,y2) ∈ Y pending

54

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

13: Y pending ←Ð Y pending / {(y1,y2)}

14: for σ∈Σo,i do

15: if (η(y1,σ)!∧η(y2,σ)!) then

16: (y1
′,y2

′) ←Ð (η(y1,σ),η(y2,σ))

17: if ((y1
′,y2

′)∉Y found) then

18: for σ′ ∈ Σc do

19: if ((((y1
′ ∈ Y disable (σ′)) ∧ (y2

′ ∈ Y enable (σ′))) ∨ ((y1
′ ∈ Y enable

(σ′)) ∧ (y2
′ ∈ Y disable (σ′)))) ∧ (i ∈ Ic(σ′))) then

20: if (y1 ∈ Y disable(σ′)) then

21: Y tmpDisable(σ′) ←Ð Y tmpDisable(σ′) ∪ {y1}

22: else

23: Y tmpDisable(σ′) ←Ð Y tmpDisable(σ′) ∪ {y2}

24: end if

25: end if

26: end for

27: Y found ←Ð Y found ∪ {(y1
′,y2

′)}

28: Y found ←Ð Y found ∪ {(y2
′,y1

′)}

29: Y pending ←Ð Y pending ∪ {(y1
′,y2

′)}

30: end if

31: end if

32: end for

33: Y ′ ←Ð η(y1,τ)

34: for y ∈ Y ′ do

35: if ((y, y2) ∉ Y found) then

55

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

36: for σ ∈ Σc do

37: if ((((y ∈ Y disable (σ)) ∧ (y2 ∈ Y enable (σ))) ∨ ((y ∈ Y enable (σ)) ∧

(y2 ∈ Y disable (σ)))) ∧ (i ∈ Ic(σ))) then

38: if (y ∈ Y disable(σ)) then

39: Y tmpDisable(σ) ←Ð Y tmpDisable(σ) ∪ {y}

40: else

41: Y tmpDisable(σ) ←Ð Y tmpDisable(σ) ∪ {y2}

42: end if

43: end if

44: end for

45: Y found ←Ð Y found ∪ {(y,y2)}

46: Y found ←Ð Y found ∪ {(y2,y)}

47: Y pending ←Ð Y pending ∪ {(y,y2)}

48: end if

49: end for

50: Y ′ ←Ð η(y2,τ)

51: for y ∈ Y ′ do

52: if ((y1,y) ∉ Y found) then

53: for σ ∈ Σc do

54: if ((((y1 ∈ Y disable (σ)) ∧ (y ∈ Y enable (σ))) ∨ ((y1 ∈ Y enable (σ))

∧ (y ∈ Y disable (σ)))) ∧ (i ∈ Ic(σ))) then

55: if (y1 ∈ Y disable(σ)) then

56: Y tmpDisable(σ) ←Ð Y tmpDisable(σ) ∪ {y1}

57: else

56

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

58: Y tmpDisable(σ) ←Ð Y tmpDisable(σ) ∪ {y}

59: end if

60: end if

61: end for

62: Y found ←Ð Y found ∪ {(y1,y)}

63: Y found ←Ð Y found ∪ {(y,y1)}

64: Y pending ←Ð Y pending ∪ {(y1,y)}

65: end if

66: end for

67: end while

68: return YtmpDisable

69: end procedure

For a particular σ ∈ Σc, the contents of YtmpDisable(σ) remain same as Ydisable(σ),

if the controller cannot handle that particular σ, (Lines 2-8). Lines 11-67 form the

main loop where the observer analysis occurs. Of course, we are only interested in

determining the state-pairs. We are not interested in determining all the details such

that we could build the observer.

On Line 12, we select the next tuple (y1, y2) from the pending set. In Lines 14-32,

we determine all of the tuples (y′1, y
′
2) such that these are the next states of (y1, y2)

after a σ ∈ Σo,i transition. If this tuple has not been encountered before (Line 17),

we process it (Lines 18-30). On Lines 18-26, we check to see if the algorithm groups

together any enable and disable states for a given σ′ ∈ Σc. If so, we add the disable

state to YtmpDisable so that we return the state and check to see if another controller

can handle it.

57

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Next, we check for states reachable via a τ transition from state y1 (Lines 33-49).

If y ∈ η(y1, τ), we reach the tuple (y, y2) and process it in a similar manner to tuple

(y′1, y
′
2). This process is then repeated for y2 (Lines 50-66).

The procedure returns the map YtmpDisable, which contains all the Ydisable states

that the current controller could not handle.

4.2.7 Indistinguishability and Observers

In order to verify SB co-observability for a plant G and a specification S, we need

to construct the maps Yenable ∶ Σc → Pwr(Y), where Y is the state set of G∣∣S and

Ydisable ∶ Σc → Pwr(Y), as described in Section 3.3.1. We then need to check, for a

given σ ∈ Σc and controller i ∈ Ic(σ), that no state in Ydisable(σ) is indistinguishable

with respect to Σo,i (see Definition 3.3.1) to a state in Ydisable(σ).

For Algorithms (1-4), the subset construction approach is a standard method to

attack a problem like this, and it is easy to see that it will produce the correct result.

It is not clear that the observer-based approach, used in Algorithm 6 produces the

correct result.

For the observer-based approach, to produce the correct result, the algorithm

must group two states together if and only if the two states are indistinguishable

with respect to Σo,i, for the controller i ∈ I = {1,2,..,n}. As the observer construc-

tion in Algorithm 6 is based on the OP-Verifier algorithm from [26], we can use the

same results from [26] to show that our algorithms will indeed group states together

correctly.

To show the above, we will introduce some lemmas from [26]. We will rewrite

58

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

the orginal lemmas to match the notation used in this thesis to make the connection

clear. We will further express the lemmas in terms of the notation of Definition 3.3.3

for event set Σo,i ⊆ Σ.

Let Σo,i ⊆ Σ. Let PΣo,i
: Σ∗ → Σ∗

o,i be a natural projection. Let H = (Y,Σ, η, y0, Ym)

= G∣∣S. We can now state the lemmas used to govern the observer construction in

[26].

Lemma 4.2.1. [26] Let s1, s2 ∈ Σ∗ and y1, y2 ∈ Y such that PΣo,i
(s1) = PΣo,i

(s2) and

η(y0, s1) = y1 and η(y0, s2) = y2. Then the observer will group states y1 and y2.

Lemma 4.2.2. [26] Let the observer group states y1, y2 ∈ Y . Then there exists

s1, s2 ∈ Σ∗ such that PΣo,i
(s1) = PΣo,i

(s2), η(y0, s1) = y1 and η(y0, s2) = y2.

If we compare the above lemmas to the definition of indistinguishability 3.3.3 with

respect to Ω = Σo,i, (i.e., ∼ Σo,i
), it is easy to see that the lemmas imply that the

observer will only group state y1, y2 ∈ Y if and only if y1∼ Σo,i
y2.

4.3 Complexity Analysis

In this section, we will perform a complexity analysis on the preceding algorithms.

We denote the number of states by ∣Y ∣, the number of events by ∣Σ∣, and the number

of controllers by n. We perform a per algorithm complexity analysis and present the

results for each algorithm.

59

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

4.3.1 Algorithm Complexity

EnableDisableSetFind (Algorithm 2)

The while loop starting at Line 9 will be executed O(∣Y ∣) times. The for loop for

σ ∈ Σc, at Line 12 takes O(∣Σ∣) time. The time complexity for the assignment opera-

tion, the membership look-up on Line 23 and the conditional statements are constant

time as given in [10]. The complexity for EnableDisableSetFind is thus O(∣Σ∣∣Y ∣).

ConstructSynchProductAndHiding (Algorithm 3)

The while loop from Lines 7 to 27 take O(∣Y ∣) time. The nested for loop at Line

13, has a time complexity of O(∣Σ∣). Since the steps occurring inside the loop are

constant time as defined in [10], the time complexity for ConstructSynchProductAnd-

Hiding is O(∣Σ∣∣Y ∣).

SubsetConstruction (Algorithm 4)

As defined in [42], while building the subsets, the entire state space is of size O(2∣Y ∣).

The while loop, from Lines 13-51, will execute O(2∣Y ∣) times, which is the total number

of possible subsets. The inner while loop from Lines 18-30 is bounded by O(∣Y ∣∣Σ∣), as

the while loop will execute O(∣Y ∣) while the nested for loop at Lines 22-28 will have

O(∣Σ∣), assuming the original automaton is deterministic. The for loops from Lines

32-36 and 39-45, bounded by O(∣Σ∣), are additive. The computational complexity of

the subset construction algorithm is O(2∣Y ∣∣Σ∣∣Y ∣).

IsSBCo-observableUsingSubsetConstruction (Algorithm 1)

The complexity of EnableDisableSetFind defined at Line 2 is O(∣Σ∣∣Y ∣). The for

60

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

loops from Lines 4-8, 14-18, 23-28 are bounded by O(∣Σ∣) and they are all addi-

tive. The complexity of ConstructSynchProductAndHiding at Line 20 is O(∣Σ∣∣Y ∣)

and that of SubsetConstruction at Line 21 is O(2∣Y ∣∣Σ∣∣Y ∣). As the for loop for Lines

12-37 is O(n), the overall complexity for IsSBCo-observableUsingSubsetConstruction

is O(n2∣Y ∣∣Σ∣∣Y ∣).

ObserverConstruction (Algorithm 6)

We first note that the maximum number of tuples is ∣Y × Y ∣, which is O(∣Y ∣2). This

means the main while loop from Lines 11-67 executes O(∣Y ∣2) times. We next note

that this while loop consists three sequential for loops at Lines 14-32, 34-49 and 51-

66, and that each for loop will be activated once per tuple. We note that the for loop

at Lines 14-32 will execute O(∣Σ∣) times. The for loop at Lines 34-49 and Lines 51-66

will also execute O(∣Σ∣) times, assuming that the initial automaton was determinis-

tic. We next note that each for loop, has an inner for loop such as Lines 18-26 is an

inner for loop for Lines 14-32. At first glance, it would appear that this loop will be

multiplicative, but Lines 17, 35 and 52 ensure that the inner loops execute only once

per tuple. This means that the overall complexity of each outer for loop remains at

O(∣Σ∣). When we combine the while loop with the three inner for loops, we find the

complexity of the algorithm to be O(∣Σ∣∣Y ∣2).

IsSBCo-observableUsingObserverConstruction (Algorithm 5)

The complexity of EnableDisableSetFind defined at Line 2 is O(∣Σ∣∣Y ∣). The for

loops from Lines 4-8, 14-18, 23-28 are bounded by O(∣Σ∣) transitions and they are all

additive.The complexity of ConstructSynchProductAndHiding at Line 20 is O(∣Σ∣∣Y ∣)

61

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

and that of ObserverConstruction at Line 21 is O(∣Σ∣∣Y ∣2). As the for loop in Lines 12-

32 is O(n), the overall complexity for IsSBCo-observableUsingObserverConstruction

is O(n∣Σ∣∣Y ∣2).

We noted earlier that the construction complexity of IsSBCo-observableUsing

SubsetConstruction algorithm is O(n2∣Y ∣∣Σ∣∣Y ∣). This implies that the observer-based

approach should perform much better for systems with a large state-space. However,

the above is a worst case analysis. We still need to apply both algorithms to real-life

examples to ensure that we see this savings in practice.

4.3.2 Comparing Complexity

To verify co-observability for large systems, we need algorithms that are efficient in

time and space. The algorithms to verify language-based co-observability are expo-

nential in the number of decentralized controllers. The computational complexity to

verify co-observability using the approach in [36] is O(∣Σ∣n+2∣Y ∣n+2) and the complex-

ity to verify co-observability using the approach in [33] is O(∣Σ∣n+1∣Y ∣n+1). Addition-

ally, the computational complexity to verify SB co-observability using observers is

O(n∣Σ∣∣Y ∣2), which is quadratic. This implies that as the number of controllers in-

creases, verifying SB co-observability should be significantly more efficient, allowing

systems with larger state spaces to be verified. However, the above is a worst case

analysis. We still need to apply both algorithms to real-life examples to ensure that

we see this savings in practice.

The trade off is that SB co-observability is only a sufficient condition to verify

co-observability.

62

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 4.1: An Example DES

4.4 Small Example

We now present a small example to illustrate the algorithm defined in Section 4.2.5.

Figure 4.1 shows a plant G and specification automaton S. The plant includes all

transitions but the specification does not include the transition from state 3 to state

5. This means that G∣∣S = S.

Let I = {1,2}, Σ = {a,b,σ} Σo,1 = {a,σ} and Σo,2 = {b,σ}. We thus have two

controllers. Further, Σc,1 = {σ} and Σc,2 = ∅. As Σc = {σ}, we thus have Ic(σ) =

{1}. This means that we can verify SB co-observability using only one controller.

Algorithm 2: EnableDisableSetFind

Input: G and S.

According to Figure 4.1, starting from the initial state and comparing the plant and

63

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

the specification automaton, we observe that σ, which is the only controllable event,

takes the system from state 4 to state 6, both in G and S, therefore, state 4 is added

to Y enable(σ). However, a σ transition is possible at state 3 in the plant but not in

the specification automaton. Therefore, we add state 3 to the Y disable(σ).

Output: Y disable(σ) = {3}, Y enable(σ) = {4}.

Algorithm 3: ConstructSynchProductAndHiding

Next step is to evaluate the synchronous product G∣∣S and to hide the set of unob-

servable events for each controller. It has been noted earlier that G∣∣S = S.

Input: i = 1, Controller 1, Σo,i = {a,σ}.

Traversing from the initial state, each b transition is replaced by a τ transition since

b is unobservable to controller 1. The automaton obtained is shown in Figure 4.2.

This is the automaton H. Transitions for all events in Σ∖Σo,1 have been replaced by τ .

Algorithm 4: SubsetConstruction

According to the SubsetConstruction algorithm, we group states into subsets such

that for any two states, they can be reached by the initial state by strings s1, s2 ∈ Σ∗
τ

respectively, and Pτ (s1) = Pτ (s2), where Pτ : Σ∗
τ→Σ∗ is a natural projection.

Input: {0}

Starting at the initial state 0, the system does not know if it is at state 0 or in

a state reachable from state 0 via an unobservable τ event. This means the system

could be in state 0 or state 2. Since the system cannot determine the current position,

the two states, state 0 and state 2 are indistinguishable. Hence, they belong to the

same subset i.e.

64

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 4.2: Synchronous Product of Plant and Specification Automaton

{0} τÐ→ {0,2}.

Since there are no more τ transitions possible from the initial state, we then identify

all subsets that can be reached from {0,2} by an observable event. According to

Figure 4.2, observable event a takes the system from state 0 to state 1, and state 2 to

state 4. Therefore, observable event a takes the system from subset {0,2}, to subset

{1,4}. We thus have:

{0,2} aÐ→ {1,4}.

We now need to expand subset {1,4} to include states reachable by a sequence of τ

transitions. From state 1, there is an unobservable τ transition possible that takes

state 1 to state 3. Because of the unobservable event that takes state 1 to state 3,

these states again become indistinguishable, which places state 3 in the same set as

state 1. We thus have:

65

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

{0,2} aÐ→ {1,4,3}.

As we can see from the subsets, state 3 is in Y disable(σ) and it is grouped with state

4 which is in Y enable(σ). This means that the test has failed for this particular con-

troller. We set Y tmpDisable(σ) = {3} and return this value.

Recall that, Ic(σ) = {1} so the other controller cannot disable σ so it too fails the

test. We thus fail to verify SB co-observability.

Output: YtmpDisable(σ) = {3}

Algorithm 5: ObserverConstruction

This algorithm groups together states that are indistinguishable with respect to Σo,i.

As noted previously, for this example, we need only to consider i = 1. We start with

the tuple (0,0), as state 0 is the initial state of H.

Input: (0,0).

We then look for any observable events (i.e., in Σo,1) that are possible at both states

of the tuple. This gives:

(0,0)
aÐ→ (1,1)

Now there are no more observable events possible from (0,0) so, we determine state

pairs reachable from (0,0) via an unobservable τ transition. This gives:

(0,0)
τÐ→ (2,0), and

(0,0)
τÐ→ (0,2)

Now we keep determining the state pairs formed from the new state pairs obtained.

This gives:

(1,1)
τÐ→ (3,1)

(1,1)
τÐ→ (1,3)

66

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(2,0)
aÐ→ (4,1)

(2,0)
aÐ→ (1,4)

(2,0)
τÐ→ (2,2)

(3,1)
τÐ→ (3,3)

(1,3)
τÐ→ (3,3)

(4,1)
τÐ→ (4,3)

The state pair (4,3) has a Y enable(σ) and a Y disable(σ) state grouped together which

means that the test fails for Ydisable(σ) at state 3. We thus set YtmpDisable(σ) = {3}.

The algorithm continues until all state-pairs encountered are processed, but as

Ydisable(σ) = {3}, this will not affect the outcome of the algorithm. We will thus not

describe these steps.

Output: YtmpDisable(σ) = {3}

As Ic(σ) = {1}, the second controller can not disable σ so it can not handle state 3

either. This means that the algorithm IsSBCo-observableUsingObserverConstruction

returns False, which means that the verification of SB co-observability has failed.

4.5 Counter Example

Since we are now aware of the working of the Algorithm 5, IsSBCo-observableUsing

ObserverConstruction, we quickly discuss the counter example, given in Figure 4.3,

which was introduced in Section 3.3.3. We note that Figure 4.3 shows both, the plant

G and the specification automaton S. The plant contains all transitions, while the

specification does not contain the c transition at state 2. We have n = 2 such that

Σo,1 = {a1, a2}, Σo,2 = {b1, b2} and Σc = Σc,1 = Σc,2 = {c} are the set of observable and

controllable events.

67

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 4.3: Counter Example for SB co-observability

By using Algorithm 2, EnableDisableSetFind, we have Yenable(c) = {1} and

Ydisable(c) = {2}.

We construct the synchronous product with hiding for i = 1 using Algorithm 3, Con-

structSynchProductAndHiding, where Σo,1 = {a1,a2}. This is shown in Figure 4.4.

The following are the sequences of tuples generated when we start with the initial

state tuple:

Input: (0,0).

(0,0)
a1Ð→ (1,1)

(0,0)
τÐ→ (0,1)

(0,0)
τÐ→ (0,2)

(0,0)
τÐ→ (1,0)

(0,0)
τÐ→ (2,0)

(0,0)
a2Ð→ (2,2)

We then examine tuple (0,1).

68

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 4.4: Observer H1

(0,1)
τÐ→ (1,1)

(0,1)
τÐ→ (2,1)

The state pair (2,1) has a Y enable(c) and a Y disable(c) state grouped together, which

means that the test fails for Ydisable(c) at state 2.

Set YtmpDisable(c) = {2}.

The algorithm continues until all state pairs encountered are processed. YtmpDisable(c)

= {2} in Algorithm 5, IsSBCo-observableUsingObserverConstruction. Therefore,

Ydisable(c) = {2} for the next controller i.e., i = 2. where Σo,2 = {b1,b2}.

We construct the synchronous product with hiding for i = 2 using Algorithm 3, Con-

structSynchProductAndHiding, where Σo,2 = {b1,b2}. This is shown in Figure 4.5.

The following are the sequences of tuples generated when we start with the initial

state tuple:

Input: (0,0).

(0,0)
b1Ð→ (1,1)

(0,0)
τÐ→ (1,0)

69

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 4.5: Observer H2

(0,0)
τÐ→ (2,0)

(0,0)
τÐ→ (0,1)

(0,0)
τÐ→ (0,2)

(0,0)
b2Ð→ (2,2)

We then examine tuple (1,0).

(1,0)
τÐ→ (3,0)

(1,0)
τÐ→ (1,1)

(1,0)
τÐ→ (1,2)

Again the state pair (1,2) contains both, a state in Y enable(c) and Y disable(c), which

means that the test fails for Ydisable(c) at state 2 which is why YtmpDisable(c) = {2}.

The algorithm continues until all state pairs encountered are processed.

Since the second controller also fails to handle state 2. This means that the

verification of SB co-observability fails, even though language-based co-observability

holds.

70

Chapter 5

Symbolic Verification of

Decentralized DES

The automaton-based algorithms presented in the previous chapter work well for

small systems, but for a large system, use of these automaton-based algorithms may

not be computationally efficient since there may be millions of transitions and states.

For large systems with more than 1010 states, it is almost impossible to explicitly

define each transition in computer memory. A better way to represent such a large

system is to use Binary Decision Diagram(BDD) [5] based algorithms.

Transition predicates and state predicates to store the transition information and

state sets are used to represent large systems efficiently, allowing the algorithms to

scale well. Additionally, it helps to save memory which leads to faster computation.

Properties like controllability and nonblocking are easily verified for systems that have

a large number of states.

We make use of predicate-based algorithms built on the work of [38] and [40].

71

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

In this chapter we present predicate-based algorithms for the verification of SB co-

observability. We first present a short introduction to predicates and predicate trans-

formers followed by the symbolic representation of state subsets and transitions and

how to use them to compute predicate transformers.

We have used a similar structure of writing predicate-based algorithms and im-

plementing the transition predicates was used in [40]. The implementation of these

algorithms will be done by making use of Reduced Ordered Binary Decision Diagram,

which we will refer to simply as BDDs. The BuDDy library [22] is a C++ Library

which is used for implementing various BDD operations, and will be used in the soft-

ware implementation of these algorithms.

5.1 Predicates And Predicate Transformers

Before defining predicates, we wish to specify that from here onwards ‘≡’ will be used

for logical equivalence between the state predicates. ‘T ’ will correspond to logical

True, similarly ‘F ’ will correspond to logical False.

5.1.1 Predicates

Let G = (Q,Σ,δ,q0,Qm) be a DES. A predicate P defined on state set Q, is a function

P ∶ Q→ {T,F},

and is identified by the corresponding state subset

QP ∶= {q ∈ Q∣P (q) = T} ⊆ Q.

72

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

We write q ⊧ P if q ∈ QP and say q satisfies P or P includes q. We write Pred(Q)

for the set of all predicates defined on Q, hence Pred(Q) is identified by Pwr(Q).

We identify state predicate true by Q, state predicate false by ∅, and state predi-

cate Pm by Qm. For P ∈ Pred(Q), we write st(P) for the corresponding state subset

QP ⊆ Q which identifies P . We write pr(Q′) to represent the predicate that is iden-

tified by Q′ ⊆ Q.

If P , P 1, P 2 ∈ Pred(Q) and q ∈ Q, we build the following boolean expressions

using predicate operations.

(¬ P)(q) = T ⇐⇒ P (q) = F

(P 1 ∧ P 2)(q) = T ⇐⇒ P 1(q) = T and P 2(q) = T ;

(P 1 ∨ P 2)(q) = T ⇐⇒ P 1(q) = T or P 2(q) = T ;

(P 1 - P 2)(q) = T ⇐⇒ P 1(q) = T and P 2(q) = F .

Similarly, P 1 - P 2 = P 1 ∧ ¬P 2.

The relation ⪯ over Pred(Q) is defined as

(∀ P 1, P 2 ∈ Pred(Q)) P 1 ⪯ P 2 ⇐⇒ (P 1 ∧ P 2) ≡ P 1.

Clearly, QP 1 ⊆ QP 2 ⇐⇒ P 1 ⪯ P 2. Hence,

(∀ q ∈ Q) q ⊧ P 1 Ô⇒ q ⊧ P 2

We say P 1 is a sub-predicate of P 2 if P 1≤P 2 and we say P 1 is stronger than P 2

or P 2 is weaker than P 1. We define Sub(P) to be the set of all the sub-predicates of

P ∈ Pred(Q) such that Sub(P) is identified by Pwr(QP).

73

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

5.1.2 Predicate Transformers

Let G = (Q, Σ, δ, q0, Qm) be a DES and let P ∈ Pred(Q). We define a predicate

transformer to be a function f : Pred(Q) → Pred(Q).

There are four major predicate transformers defined in [38]. Here we will only

define the predicate transformer used in this thesis.

• R(G, P)

The reachability predicate R(G, P), is true for those states that can be reached in G

from q0, via states satisfying P .

1. q0 ⊧ P Ô⇒ q0 ⊧ R(G, P)

2. q0 ⊧ R(G, P) ∧ σ ∈ Σ ∧ δ(q, σ)! ∧ δ(q, σ) ⊧ P Ô⇒ δ(q, σ) ⊧ R(G, P)

3. No other states satisfy R(G, P).

In other words, a state q ⊧ R(G, P) if and only if there exists a path in G from q0

to q such that each state in that path satisfies P . To represent the set of all reachable

states in Q, we use R(G, true).

5.2 Symbolic Representation

To make use of predicates in algorithms, we need to symbolically represent states and

transitions. We use the representation that was used in [38] and [40].

Predicates that are defined over the state set of a DES are called state predicates.

Similarly, the predicates defined on the transitions of a DES are called transition

predicates.

74

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

5.2.1 State Subsets

Let G = (Q,Σ, δ, q0,Qm) = G1 ∣∣ G2 ∣∣ G3 ∣∣ . . . ∣∣ Gn where Gi = (Qi,Σi, δi, q0,i,Qm,i)

such that i = 1,2, ..., n. Let q ∈ Q such that q = (q1, q2,.., qn) where q1 ∈ Q1,, qn ∈ Qn

Definition 5.2.1. For G = G1 ∣∣ G2 ∣∣ G3 ∣∣ . . . ∣∣ Gn, let i = 1,2,...,n and qi ∈ Q.

Let vi be the state variable with domain Qi for component Gi. If vi is set to qi then

the equation vi = qi returns T otherwise, F is returned.

Definition 5.2.2. A state variable vector, denoted by v, is a vector of state variables

[v1,v2,...,vn], such that for a state subset A ⊆ Q, the predicate PA is:

PA(v) ∶= ⋁q∈A(v1 = q1 ∧ v2 = q2 ∧ . . . ∧ vn = qn)

For convenience PA(v) is written as PA, if v is understood.

5.2.2 Transitions

Let G = (Q,Σ, δ, q0,Qm) = G1 ∣∣ G2 ∣∣ G3 ∣∣ . . . ∣∣ Gn where Gi = (Qi,Σi, δi, q0,i,Qm,i)

such that i = 1,2,...,n.

Definition 5.2.3. For σ∈Σ, a transition predicate, denoted by Nσ : Q×Q→ {T,F},

identifies all the transitions for σ in G = G1∣∣G2∣∣ . . . ∣∣Gn. It is defined as follows:

(∀q, q′ ∈ Q)Nσ(q, q′) ∶=
⎧⎪⎪⎨⎪⎪⎩

T, if δ(q, σ)! ∧ δ(q, σ) = q′;

F, otherwise.

To differentiate between source and destination states, we need to define different

sets of state variables.

Definition 5.2.4. For some G = G1∣∣G2∣∣ . . . ∣∣Gn, let i = 1,2,...,n. We define vi

to be the normal state variable (source state) and v′i to be the prime state variable

75

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(destination state), both for DES Gi = (Qi,Σi, δi, q0,i,Qm,i) and with domain Qi. We

have the normal state variable vector v = [v1, v2, .., vn] and the prime state variable

vector v′ = [v′1, v′2, . . . , v′n], both for G.

For event σ ∈ Σ, in G, the transition predicate Nσ is defined as :

Nσ(v,v′) ∶= ⋀
{1≤i≤n}

⎛
⎝ ⋁
{qi,q′i∈Qi∣δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)
⎞
⎠

such that when we set v = q and v′ = q′ with δ(q, σ) = q′, then Nσ(v,v′) returns T .

The above expression assumes each DES component is defined over the event

set Σ. However, when multiple DES components are used, they might be defined

over different event sets such that when we perform a synchronous product, each

component DES will be self looped with the events that does not belong to its event

set. To solve this problem we make use of transition tuples. This is defined below.

Definition 5.2.5. A Transition tuple is denoted as (vσ,v′
σ,Nσ) for each σ ∈ Σ where

vσ = {vi ∈ v∣σ ∈ Σi}, v′
σ = {v′i ∈ v′∣σ ∈ Σi} where

Nσ(v,v′) ∶= ⋀
{1≤i≤n∣σ∈Σi}

⎛
⎝ ⋁
{qi,q′i∈Qi∣δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)
⎞
⎠

Here the self-loop transitions are not explicitly defined, but state variables that

are not defined in vσ for a component DES will be implicitly self-looped with event σ.

We use the existential quantifier elimination method for finite domain [2] to either

eliminate the prime or the normal variable, since BDD [22] does not support first

order logic. The results obtained from this is still a propositional formula which can

be represented as a BDD.

Definition 5.2.6. For a given system G = G1∣∣G2∣∣ . . . ∣∣Gn, let σ ∈ Σ. The transition

tuple for σ in G is (vσ,v′
σ,Nσ). If vi ∈ vσ and v′i ∈ v′

σ, where i = 1,2, .., n, we define

76

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

∃viNσ ∶= ⋁
qi∈Qi

Nσ[qi/vi] and ∃v′iNσ ∶= ⋁
qi∈Qi

Nσ[qi/v′i],

where Nσ[qi/vi] is the predicate Nσ where each vi is substituted by qi, and Nσ[qi/v′i]

is where v′i is substituted for qi.

Let vσ = {v1, v2, . . . , vm}, with m>0. Computation of state predicates require

them to be consistent, i.e., either the resulting predicates should contain only prime

variables or should contain only normal variables. To maintain the consistency of the

resultant predicates, we denote ∃vσNσ, which is ∃v1(∃v2..(∃vnNσ)) as ∃vσNσ[v′
σ →

vσ] where the prime variables are substituted by normal variables. This represents

the set of states that have an entering σ transition.

Let v′
σ = {v′1, v′2, . . . , v′m}. Similarly, we use ∃v′

σNσ to represent ∃v′1 (∃v′2 ...(∃v′n

Nσ)). This predicate represents the set of states with an exiting σ transition.

5.3 Symbolic Computation

On the basis of our symbolic representation, we define symbolic computation. This

work is based on [25], [38] and [40].

5.3.1 Transition and Inverse Transition

For G = (Q,Σ, δ, qo,Qm), we want to calculate δ(q, σ), where q ∈ Q and σ ∈ Σ. Using

our symbolic representation for state subset QP ⊆ Q, where P ∈ Pred(Q), state subset

Q′
P = ⋃q∈Qp

{δ(q, σ)} needs to be calculated to find all the states that are reachable

by a σ transition from any state in QP . This is quite time consuming so we use a

method to calculate the predicates of next states using the predicates of the current

77

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

states. We use the function δ̂ ∶ Pred(Q) × Σ → Pred(Q), with P ∈ Pred(Q), and

σ ∈ Σ defined as:

δ̂(P,σ) ∶= pr({q′ ∈ Q∣(∃q ⊧ P)δ(q, σ) = q′}).

If σ ∈ Σ and (vσ,v′
σ,Nσ) is the transition tuple for σ in G, then for some P ∈ Pred(Q)

δ̂(P,σ) ∶= (∃vσ(Nσ ∧ P))[v′
σ → vσ].

This returns a predicate representing all states reachable by a σ transition from a

state that satisfies P .

Similary we define δ̂−1 ∶ Pred(Q) ×Σ→ Pred(Q), with P ∈ Pred(Q) and σ ∈ Σ, as:

δ̂−1(P,σ) ∶= pr({q ∈ Q∣δ(q, σ) ⊧ P}).

If σ ∈ Σ and (vσ,v′
σ,Nσ) is the transition tuple for σ in G, then for some P ∈ Pred(Q)

δ̂−1(P,σ) ∶= ∃v′
σ(Nσ ∧ (P [vσ → v′

σ])).

This returns a predicate representing all states that can reach a state that satisfies P

via a σ transition.

5.3.2 Computation of Reachability

In this section we will look at how to compute the reachability predicate R. We use

the algorithm from [40].

Let there be a plant G = (Q,Σ, δ, qo,Qm) where G = G1 ∣∣ G2 ∣∣ . . . ∣∣ Gn. Gi =

(Qi,Σi, δi, q0,i,Qm,i) such that i = 1,2, ..., n and P ∈ Pred(Q).

78

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Reachability check

1: procedure R(G, P)

2: P1 ← P ∧ pr({qo})

3: repeat

4: P2 ← P1

5: for i← 1 to n do

6: repeat

7: P3 ← P1

8: P1 ← P1 ∨ (⋁
σ∈Σi

(δ̂(P1, σ) ∧ P))

9: until P1 ≡ P3

10: end for

11: until P1 ≡ P2

12: return P1

13: end procedure

R(G, P) takes G and P as an input and returns a predicate which consists of

states in G that can be reached from qo via states satisfying P . Normally we would

set P = true.

5.4 Symbolic Verification

Let Gi = (Qi,Σ, δi, q0,i,Qm,i) and Sj = (Xj,Σ, ξj, x0,j,Xm,j), for i ∈ {1,2...,n} and j ∈

{1,2...,m} such that:

G = G1∣∣G2∣∣ . . . ∣∣Gn ∶= (Q,Σ, δ, qo,Qm) is the plant automaton, and

S = S1∣∣S2∣∣ . . . ∣∣Sm ∶= (X,Σ, ξ, xo,Xm) is the specification automaton.

79

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Here both G and S are defined over Σ. If either of G or S were defined over some

subset of Σ, say Σ′⊆Σ, we would then add self loops of every event in Σ/Σ′, to every

state in the automaton, so that there is no loss of generality to assume that they are

both defined over Σ.

The synchronous product of the plant and the specification automaton is H = G∣∣S

where H = (Y,Σ, η, yo, Ym) such that Y = Q×X = Q1×Q2×. . .×Qn×X1×X2×. . .×Xm,

Σ = Σc∪̇Σu, η = δ × ξ, yo = (qo, xo) and Ym = Qm ×Xm as given in 2.1.

Definition 5.4.1. Let H = G ∣∣ S := (Y,Σ, η, yo, Ym) where G = G1∣∣G2∣∣ . . . ∣∣Gn =

(Q,Σ, δ, qo,Qm) and S = S1∣∣S2∣∣ . . . ∣∣Sm = (X,Σ, ξ, xo,Xm). For a given event σ ∈ Σ,

the σ plant transition predicate NG,σ ∶ Y × Y → {T,F}, can be written as

NG,σ(v,v′) ∶= ⋀
{1≤i≤n}

⎛
⎝ ⋁
{qi,q′i∈Qi∣δi(qi,σ)=q′i}

(vi = qi) ∧ (v′i = q′i)
⎞
⎠

and the σ supervisor transition predicate NS,σ ∶ Y × Y → {T,F} can be written as

NS,σ(v,v′) ∶= ⋀
{1≤i≤m}

⎛
⎝ ⋁
{xi,x′i∈Xi∣ξi(xi,σ)=x′i}

(vi+n = xi) ∧ (v′i+n = x′i)
⎞
⎠

NG,σ and NS,σ are state predicates defined on Y ×Y and use the v and v′ variables.

We use NG,σ to determine if there is a σ defined at the plant portion of the indicated

states. Similarly, we use NS,σ to determine if there is a σ defined at the supervisor

portion of the indicated states.

Definition 5.4.2. Let σ ∈ Σ and NG,σ be the σ transition predicate for plant G =

80

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

(Q,Σ, δ, qo,Qm). We define δ̂G ∶ Pred(Y) ×Σ→ Pred(Y), for P ∈ Pred(Y), to be

δ̂G(P,σ) ∶= (∃v(NG,σ ∧ P))[v′ → v]

and we also define δ̂−1
G ∶ Pred(Y) ×Σ→ Pred(Y) to be

δ̂−1
G (P,σ) ∶= ∃v′(NG,σ ∧ (P [v → v′]))

Definition 5.4.3. Let σ ∈ Σ and NS,σ be the σ transition predicate for specification

S= (X,Σ, ξ, xo,Xm). We define ξ̂ ∶ Pred(Y)×Σ→ Pred(Y), for P ∈ Pred(Y), to be

ξ̂(P,σ) ∶= (∃v(NS,σ ∧ P))[v′ → v]

and we also define ξ̂−1 ∶ Pred(Y) ×Σ→ Pred(Y) to be

ξ̂−1(P,σ) ∶= ∃v′(NS,σ ∧ (P [v → v′]))

In Section 5.3.1, we defined maps δ̂ and δ̂−1. In an analogous way we can define, for

H = G ∣∣ S, the maps η̂ ∶ Pred(Y)×Σ→ Pred(Y) and η̂−1 ∶ Pred(Y)×Σ→ Pred(Y).

These would use a corresponding Nσ defined to use variable v1 to vn+m.

5.4.1 Computation Of PDis And PEn

From the definition of Ydisable(σ), in Definition 3.3.1, we know that Ydisable(σ) maps

a σ ∈ Σc to the set of reachable states in H = G∣∣S with an outgoing σ transition in

G but no σ transition in S.

81

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

We can express all the states that would qualify for Ydisable(σ) (if they are reach-

able) as follows:

Ydis(σ) := {y = (q, x) ∈ Y ∣ δ(q, σ)! ∧ ¬ξ(x,σ)!}

The corresponding predicate PDis(σ) = pr(Ydis(σ)) is defined as:

PDis(σ) = (δ̂−1
G (true, σ) ∧ ¬ξ̂−1(true, σ)),

Of course, not every state in PDis(σ) is reachable. We thus have to combine PDis(σ)

with Preach = R(G∣∣S, true).

Similarly, from the definition of Yenable(σ), in Definition 3.3.2, we know that

Yenable(σ) maps σ ∈ Σc to the set of reachable states in G∣∣S with an outgoing σ

transition in both G and S.

We can express all the states that would qualify for Yenable(σ) (if they are reach-

able) as follows:

Yen(σ) := {y = (q, x) ∈ Y ∣ δ(q, σ)! ∧ ξ(x,σ)!}

The corresponding predicate PEn(σ) ∶= pr(Yen(σ)) is defined as:

PEn(σ) = (δ̂−1
G (true, σ) ∧ ξ̂−1(true, σ)),

Of course, not every state in PEn(σ) is reachable. Therefore, we have to combine

PEn(σ) with Preach = R(G∣∣S, true).

5.5 Algorithms

In this section we present the observer-based SB co-observability algorithm using

predicates. To make the algorithms easy to understand we have broken the algorithm

82

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

into sub-algorithms. The main observer-based algorithm is Algorithm 1, which calls

algorithms 2, 3 and 4.

Let Gi = (Qi,Σ, δi, q0,i,Qm,i) and Sj = (Xj,Σ, ξj, x0,j,Xm,j), for i ∈ {1,2...,n} and

j ∈ {1,2...,m} such that G = G1∣∣G2∣∣ . . . ∣∣Gn ∶= (Q,Σ, δ, qo,Qm) is the plant automa-

ton and S = S1∣∣S2∣∣ . . . ∣∣Sm ∶= (X,Σ, ξ, xo,Xm) is the specification automaton, both

defined over Σ. We construct automaton H = (Y , Σ, η, y0, Y m) based on the syn-

chronous product of G and S. For a description on H, refer to Section 4.2.3. The

purpose of the algorithm is to determine if the specification automaton S is SB co-

observable w.r.t plant G, Pi and Σc,i.

5.5.1 Is SB Co-observable

The main algorithm consists of subroutines EnableDisableSetFind, ConstructSyncPro-

ductAndHiding and ObserverConstruction.

The algorithm makes use of certain variables:

I: The set I := {1,2,..,n} of controllers where n is the total number of controllers.

Σc∶ Set of controllable events such that Σc⊆Σ.

Σo,i∶ The set of observable events for each controller i.

H ∶ The automaton based on G∣∣S, with events Σ/Σo,i hidden and replaced with

event τ ∈ Σ. As it will be described in Algorithm 9 of Section 5.5.3, H is represented

as a set of state and transition predicates. From the transition predicates, the maps η̂

and η̂−1 are defined. For H, these maps are equivalent to the δ̂ and δ̂−1 maps defined

83

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

in section 5.3.1

Preach : A predicate that represents the set of reachable states for G∣∣S.

PDisable: It is a map such that PDisable : Σc → Pred(Y). For σ ∈ Σc, PDisable maps

σ to a state predicate for G∣∣S that represents the states in Ydisable(σ), as defined in

Definition 3.3.1.

PEnable : It is a map such that PEnable : Σc → Pred(Y). For σ ∈ Σc, PEnable maps

σ to a state predicate for G∣∣S that represents the states in Yenable(σ), as defined in

Definition 3.3.2

PtempDisable ∶ The map P tempDisable : Σc → Pred(Y) is such that, for each σ ∈ Σc,

P tempDisable(σ) is a predicate that represents all the un-handled PDisable(σ) states

that are returned from the procedure SubsetConstruction, so that the subsequent

controllers have to handle only the remaining problem states.

pass, skipIt : Boolean variables used for loop termination.

Algorithm 7:

1: procedure IsSBCo-observable(G,S)

2: Preach ← R(G∣∣S, true)

3: EnableDisableSetFind(PEnable, PDisable, G, S, Preach)

4: pass ←Ð True

5: for σ ∈ Σc do

6: if (PDisable(σ) /≡ false) then

7: pass ←Ð False

8: end if

9: end for

84

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

10: if (pass) then

11: return True

12: end if

13: for i ∈ I do

14: skipIt ←Ð True

15: for σ ∈ Σc do

16: if ((i ∈ Ic(σ)) ∧ (PDisable(σ) /≡ false)) then

17: skipIt ←Ð False

18: end if

19: end for

20: if (!skipIt) then

21: H ←Ð ConstructSyncProductAndHiding(G, S, Σo,i, Preach)

22: P tempDisable ←Ð ObserverConstruction(H, PEnable, PDisable, Σo,i, i)

23: pass ←Ð True

24: for σ ∈ Σc do

25: if (P tempDisable(σ) /≡ false) then

26: pass ←Ð False

27: end if

28: PDisable(σ) ←Ð PtempDisable(σ)

29: end for

30: if (pass) then

31: return True

32: end if

33: end if

85

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

34: end for

35: return False

36: end procedure

The algorithm functions in the same way as Algorithm 5 in Chapter 4. We cal-

culate Preach in this algorithm and pass the value to Algorithms 8 and 9 so that we

do not have to calculate them over and over. As computing Preach is expensive, this

saves us a lot of time and helps to improve efficiency. Lines 5-12 check to see if any

states satisfy Pdisable(σ), for every σ ∈ Σc. Absence of any state proves that there

are no problem states that are needed to be handled by the controllers. Lines 13-34

process each controller i ∈ I in turn. Lines 15-19, make sure that controller i can

control at least one σ ∈ Σc so that a disable state can be taken care of. If the above

mentioned conditions are met, then we construct the H automaton and perform the

observer construction test. Otherwise we skip the current controller and check the

same condition for subsequent controllers.

For lines 24 - 29, PtempDisable(σ) is checked to see if there are any disable states,

still to process. If PtempDisable(σ) ≡ false, for at least one σ ∈ Σc, it implies that proce-

dure ObserverConstruction has returned some subset of PDisable(σ) states that could

not be handled by the active controller. These remaining states are then assigned to

PDisable(σ) on Line 28.

5.5.2 Enable Disable Set Find

EnableDisableSetFind calculates the predicate maps PDisable(σ), PEnable(σ) using

PDis(σ) and PEn(σ) defined in section 5.4.1. Preach is used to ensure the states

are reachable.

86

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

The algorithm uses the following variables:

δ̂−1
G is the inverse transition predicate function for plant G, as defined in Section

5.4.

ξ̂−1 is the inverse transition predicate function for specification S as defined in

Section 5.4.

Algorithm 8:

1: procedure EnableDisableSetFind(PEnable, PDisable, G, S, Preach)

2: for σ ∈ Σc do

3: PDisable(σ) ← δ̂−1
G (true, σ) ∧ ¬ξ̂−1(true, σ)∧ P reach

4: PEnable(σ) ← δ̂−1
G (true, σ) ∧ ξ̂−1(true, σ)∧ P reach

5: end for

6: end procedure

5.5.3 Construct Sync Product And Hiding

The algorithm calculates the synchronous product, G∣∣S, of the plant G and the

specification automaton S, both defined over Σ. As the synchronous product is con-

structed, we also replace all unobservable events (σ ∈ Σ/Σo,i) with the special event

τ ∉ Σ. We label the resulting automaton H, which may be non-deterministic.

The process of replacing the unobservable events with τ is called hiding. The

hiding process could make H non-deterministic as we might end up with multiple τ

transitions leaving a given state. To handle large systems, we use transition predicates

as defined in Section 5.2.2.

The algorithm makes use of following set of variables∶.

87

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Pym : A predicate that represents the reachable, marked states of G∣∣S.

pr({y0}): It takes the state y0 and converts it to a predicate. This predicate is true only

for state y0, the initial state of G∣∣S.

Nω: Transition predicate, Nω = Y × Y → {T , F}, is for G∣∣S and event ω ∈ Σ.

Nσ: Transition predicate, Nσ = Y × Y → {T, F}, is for G∣∣S and event σ ∈ Σ/Σo,i.

Nτ : Transition predicate, Nτ = Y × Y → {T, F}, is for H and event τ ∉ Σ. This

represents the σ ∈ Σ/Σo,i events that were hidden.

Pm: A predicate which represents the marked states of G∣∣S. These states may not

all be reachable.

P Y : This predicate represents the reachable states of G∣∣S.

P y0 : The predicate that represents {y0}, the initial state of G∣∣S.

N : This is the set of transition predicates for H. It includes the predicate for τ and

σ ∈ Σo,i.

Algorithm 9:

1: procedure ConstructSyncProductAndHiding(G , S, Σo,i, P reach)

2: Py0 ← pr({y0})

3: For each ω ∈ Σ, construct Nω as described in Definition 5.2.3.

4: Nτ ←Ð ⋁
σ∈Σ/Σo,i

Nσ

5: PYm ←Ð Preach ∧ Pm

6: N ←Ð {Nτ} ∪ (⋃
ω∈Σo,i

{Nω})

88

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

7: PY ← Preach

8: return (PY ,N,Py0 , PYm)

9: end procedure

On Line 3, we construct transition predicates Nω, for each ω ∈ Σ. On Line 4,

we construct the transition preidcate Nτ so that it represents the transitions for all

σ ∈ Σ/Σo,i, the unobservable events. We then discard the transition predicate Nσ, for

each σ ∈ Σ/Σo,i, as we no longer need them.

For the construction of H, we keep the transition predicates that correspond to

ω ∈ Σo,i. H consists of Py0 , PYm , PY , and N .

5.5.4 Observer Construction

The algorithm performs the SB co-observability verification by constructing all state

predicate pairs (Py1, Py2) where ((y1, y2) ∈ Y × Y) such that y1, y2 are indistinguish-

able with respect to Σo,i (see definition of indistinguishability, Definition 3.3.3). For

a given σ ∈ Σc where i ∈ Ic(σ), the system fails the SB co-observability verification

test if state y ⊧ PDisable(σ) is paired with state y′ ⊧ PEnable(σ), which means that the

two state pairs are indistinguishable w.r.t Σo,i. State y is added to P tmpDisable(σ) so

that we can test if the rest of the controllers can handle these states.

The use of state predicates and transition predicates will decrease computation

time and memory usage. This will help the algorithm to scale better.

The algorithm makes use of the following variables:

P y0 : Predicate that represents the initial state of H.

η̂: Transition predicate function for H, as defined in section 5.3.1.

89

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Found ∶ Set of state pairs that represents the state tuples that have already been

encountered but not necessarily processed. We have Found ⊆ Pred(Y) × Pred(Y).

Pending ∶ Set of state pairs that have been encountered and are waiting to be pro-

cessed. We have Pending ⊆ Pred(Y) × Pred(Y).

P tmpDisable ∶ The map P tmpDisable : Σc → Pred(Y) is such that for each σ ∈ Σc,

P tmpDisable(σ) is a predicate which represents all of the un-handled PDisable(σ) states

which, at some point, got paired with PEnable(σ) states, that the active controller

could not handle. These are the states that are returned to procedure IsSBCo-

observable, so that the subsequent controllers have to handle only these problem

states.

NOTE: Before defining the algorithm, we would like to specify that Found has

been defined in the algorithm as a set with elements being added and removed in the

form of state tuples. However, it will be implemented as a transition predicate, which

take two states as input and returns T or F. This will make the algorithm scale better.

Algorithm 10:

1: procedure ObserverConstruction(H, PEnable, PDisable, Σo,i, i)

2: for σ ∈ Σc do

3: if (i ∈ Ic(σ)) then

4: P tmpDisable(σ) ←Ð False

5: else

6: P tmpDisable(σ) ←Ð PDisable(σ)

90

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

7: end if

8: end for

9: Found ←Ð {(pr{y0}, pr{y0})}

10: Pending ←Ð {(pr{y0}, pr{y0})}

11: while (Pending≠ ∅) do

12: Select (P y1,P y2) ∈ Pending

13: Pending ←Ð Pending / {(P y1,P y2)}

14: for σ∈Σo,i do

15: if (η̂(Py1 , σ) /≡ false) ∧ (η̂(Py2 , σ) /≡ false) then

16: P y1
′ ←Ð η̂(Py1 , σ)

17: P y2
′ ←Ð η̂(Py2 , σ)

18: if ((P y1
′,P y2

′) ∉ Found) then

19: for σ′ ∈ Σc do

20: if ((((P y1
′ ∧ PDisable(σ′) /≡ false) ∧ (P y2

′ ∧ PEnable(σ′) /≡

false)) ∨ ((P y1
′ ∧ PEnable(σ′) /≡ false) ∧ (P y2

′ ∧ PDisable(σ′) /≡ false))) ∧ (i ∈ Ic(σ′)))

then

21: if (P y1
′∧PDisable(σ′)/≡ false) then

22: P tmpDisable(σ′) ←Ð P tmpDisable(σ′) ∨ P y1
′

23: else

24: P tmpDisable(σ′) ←Ð P tmpDisable(σ′) ∨ P y2
′

25: end if

26: end if

27: end for

28: Found ←Ð Found ∪ {(P y1
′, P y2

′)}

91

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

29: Found ←Ð Found ∪ {(P y2
′, P y1

′)}

30: Pending ←Ð Pending ∪ {(P y1
′, P y2

′)}

31: end if

32: end if

33: end for

34: P Y ′ ←Ð η̂(Py1 , τ)

35: for (y ⊧ P Y ′) do

36: Py ←Ð pr({y})

37: if ((P y,P y2) ∉ Found) then

38: for σ ∈ Σc do

39: if ((((P y ∧ PDisable(σ) /≡ false) ∧ (P y2 ∧ PEnable(σ) /≡ false)) ∨

((P y ∧ PEnable(σ) /≡ false) ∧ (P y2 ∧ PDisable(σ) /≡ false))) ∧ (i ∈ Ic(σ))) then

40: if (P y∧PDisable(σ)/≡ false) then

41: P tmpDisable(σ) ←Ð P tmpDisable(σ) ∨ P y

42: else

43: P tmpDisable(σ) ←Ð P tmpDisable(σ) ∨ P y2

44: end if

45: end if

46: end for

47: Found ←Ð Found ∪ {(P y, P y2)}

48: Found ←Ð Found ∪ {(P y2, P y)}

49: Pending ←Ð Pending ∪ {(P y, P y2)}

50: end if

51: end for

92

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

52: P Y ′ ←Ð η̂(Py2 , τ)

53: for (y ⊧ P Y ′) do

54: Py ←Ð pr({y})

55: if ((P y1,P y) ∉ Found) then

56: for σ ∈ Σc do

57: if ((((P y1 ∧ PDisable(σ) /≡ false) ∧ (P y ∧ PEnable(σ) /≡ false)) ∨

((P y1 ∧ PEnable(σ) /≡ false) ∧ (P y ∧ PDisable(σ) /≡ false))) ∧ (i ∈ Ic(σ))) then

58: if (P y1∧PDisable(σ)/≡ false) then

59: P tmpDisable(σ) ←Ð P tmpDisable(σ) ∨ P y1

60: else

61: P tmpDisable(σ) ←Ð P tmpDisable(σ) ∨ P y

62: end if

63: end if

64: end for

65: Found ←Ð Found ∪ {(P y1, P y)}

66: Found ←Ð Found ∪ {(P y, P y1)}

67: Pending ←Ð Pending ∪ {(P y1, P y)}

68: end if

69: end for

70: end while

71: return PtmpDisable

72: end procedure

The algorithm works in the same way as the Algorithm 6 described in Section

4.2.6. Please see the description there. The structure here is very similar to the one

93

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

described in Chapter 4 but we use predicates to improve scalability.

We note here that on lines 16-17, P y1′ and P y2′ , each represent a predicate for a

single state because the system is initially deterministic. It is only the τ transitions

that make the system non-deterministic.

5.6 BDD Complexity

The representation of logic formulas that we have discussed so far can be performed by

using Binary Decision Diagrams. The BuDDy package will be used for implementa-

tion. Huth et al. [14] is a good source of information on BDDs and their applications.

Ordering of state variables in BDD can change the number of BDD nodes. The

ordering of the BDD nodes play a major role in improving the efficiency of the BDD

operations. Algorithms defined in [34] are used for optimized ordering of variables

and thus reduce computation.

5.7 Advantages of Using Predicates

Using predicates for a small example might take the same amount of time as using

non-predicate-based algorithms. However, predicates are generally used for systems

that have a large number of states. Predicate-based algorithms have better scala-

bility as compared to non-BDD based algorithms, where we explicitly determine the

states and the transitions. Here we present a few advantages that predicate-based

algorithms provide as compared to non-predicate-based algorithms. We refer only to

advantages that relate to our algorithms.

94

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

▸ The evaluation of PDisable(σ) and PEnable(σ) (for σ ∈ Σc) in Algorithm 8, En-

ableDisableSetFindUsingPredicates in Section 5.5.2, prevents the system from going

through every state to find out the states that belong to enable and disable sets.

Predicates allow us to evaluate the set information in a direct fashion. If a state

belongs to Ydisable(σ) then the PDisable(σ) returns T for that state. In other words,

a predicate does not explicitly lists states, it only contains the ability to determine

membership.

▸ Not only does the predicate help to store the information in a compact form

but it is also a very efficient way to calculate the set.

▸ Since Algorithm 10, ObserverConstruction, defined in Section 5.5.4, requires us

to know the transitions of G∣∣S, we represent the synchronous product as transition

predicates which helps to represent the behaviour of a large system efficiently in terms

of memory as well as look-up time.

▸ In Algorithm 10, ObserverConstruction, the tuples are stored as transition pred-

icates. Thus, instead of finding a transition between two states, the predicate returns

T for those two states if they are indistinguishable. This also helps to handle a large

system.

▸ At lines 34 and 52 of procedure ObserverConstruction, a large number of τ

transitions can be evaluated at once while constructing PY ′ . Since we combine all the

τ transitions together, there will be single look-up operation instead of large number

of look-ups.

95

Chapter 6

Parallel Manufacturing Example

We demonstrate our approach of verifying co-observability by applying it to a Hi-

erarchical Interface-based Supervisory Control (HISC) manufacturing example from

[19]. We are using the HISC example because it already contains a partitioning of

enablement of events and observability of events that seemed like they could be cast

as a decentralized control problem. In this chapter we convert the HISC modeled

system to a flat (non-hierarchical) project and then convert this to a decentralized

control application.

A few figures from [19] have been used with the authors permission, and will be

cited when used.

6.1 Introduction

The manufacturing system shown in Figure 6.1 consists of three manufacturing units

operating in parallel, followed by a testing unit and a packaging unit. The system

also contains four 4-slot buffers located as shown in Figure 6.1. Each manufacturing

96

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

4
 slo

t
in

p
u

t
b

u
ffer

4
 slo

t
o

u
tp

u
t

b
u

ffer

p
ack

ag
in

g
u

n
it

4
 slo

t
p

ack
ag

e
b

u
ffer

test
u

n
it

so
u

rce

m
an

u
factu

rin
g
 u

n
it I

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p
o
l

d
ip

_
acid

,

p
o
lishstr_rlse

co
m

p
l_

p
o
l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p

tA

str_
p

tB

cm
p

l_
A

cm
p

l_
B

ret_
p

t

D
efin

e N
ew

 E
v

en
ts-j

attch
_

p
tA

,
attch

_
p

tB
,

fin
A

_
attch

, fin
B

_
attch

P
a
th

 F
lo

w
 M

o
d

el-j

p
art_

en
t

p
art_

arr1
p
art_

lv
1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_
A

reco
g
_
B

p
art_

lv
3m

an
u
factu

rin
g
 u

n
it II

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p
o
l

d
ip

_
acid

,

p
o
lishstr_rlse

co
m

p
l_

p
o
l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p

tA

str_
p

tB

cm
p

l_
A

cm
p

l_
B

ret_
p

t

D
efin

e N
ew

 E
v

en
ts-j

attch
_

p
tA

,
attch

_
p

tB
,

fin
A

_
attch

, fin
B

_
attch

P
a
th

 F
lo

w
 M

o
d

el-j

p
art_

en
t

p
art_

arr1
p
art_

lv
1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_
A

reco
g
_
B

p
art_

lv
3m

an
u
factu

rin
g
 u

n
it III

A
tta

ch
 C

a
se to

 A
ssem

b
ly

-j

start_
case

Attch_case

co
m

p
l_

case

P
o
lish

 P
a
rt-j

start_
p
o
l

d
ip

_
acid

,

p
o
lishstr_rlse

co
m

p
l_

p
o
l

A
tta

ch
 P

a
rt to

 A
ssem

b
ly

-j

tak
e_

p
t

str_
p

tA

str_
p

tB

cm
p

l_
A

cm
p

l_
B

ret_
p

t

D
efin

e N
ew

 E
v

en
ts-j

attch
_

p
tA

,
attch

_
p

tB
,

fin
A

_
attch

, fin
B

_
attch

P
a
th

 F
lo

w
 M

o
d

el-j

p
art_

en
t

p
art_

arr1
p
art_

lv
1

str_
ex

it
fin

_
ex

it

p
art_

arr2

p
artL

v
E

x
it

p
art_

lv
2

p
art_

arr3
reco

g
_
A

reco
g
_
B

p
art_

lv
3

Figure 6.1: Block Diagram of Parallel Plant [19]

97

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

Figure 6.2: Plant Models for Manufacturing unit j [19]

unit consists of three cells connected by a conveyor belt. Cell one polishes the part,

cell two attaches a part of type A or B, and cell three attaches a case to the as-

sembly. For more information on the physical set up of the manufacturing unit refer

to [19]. Figure 6.2 shows the plant models for the jth manufacturing unit, j = I, II, III.

In [19], Leduc developed an HISC model of the system, which consists of a high-

level, and three low-levels. Figure 6.4, shows the full HISC model of the system.

Figure 6.3 shows low-level for j = I in more detail. The other low-levels are identical

upto relabeling. For an explanation of the plant and the components, please see [19].

An HISC system partitions the system event set into high-level events (ΣH), low-

level events (ΣLj
), request events (ΣRj

) and answer events (ΣAj
), j = I, II, III. We

thus have the system partition:

Σ ∶= [∪̇k∈{I,II,III}(ΣLk
∪̇ΣRk

∪̇ΣAk
)] ∪̇ ΣH

98

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Low Level Subsystem I

G , j = IL-I

G L-I

S L-I

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p
o

l-j

co
m

p
l_

p
o

l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o

lish
-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_
p
tA

-jfinA_attch-j take_pt-j

str_
p
tB

-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p

l_
A

-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

Figure 6.3: Low-Level system [19]

99

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

High level Subsystem

GH

SH

new_part

Source Sink

allow_exit

Packaging System

take_item

p
ack

ag
e

allow_exit

Test Unit

part_f_obuff part_passes

p
art_

fails

ret_inbuff

deposit_part

GH

Low Level Subsystem I Low Level Subsystem IIILow Level Subsystem II

GI-I part_ent-I

fin_exit-I

GI-II part_ent-II

fin_exit-II

GI-III part_ent-III

fin_exit-III

G , j = IL-I G , j = IIL-II
G , j = IIIL-III

G L-I

S L-I

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p
o
l-j

co
m

p
l_

p
o
l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_
p
tA

-jfinA_attch-j take_pt-j

str_
p
tB

-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p
l_

A
-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-II

S L-II

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p
o
l-j

co
m

p
l_

p
o
l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_
p
tA

-jfinA_attch-j take_pt-j

str_
p
tB

-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p
l_

A
-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

G L-III

S L-III

Attach Case to Assembly-j

start_case-j

A
ttch

_
case-j

compl_case-j

Polish Part-j

start_pol-j

dip_acid-j,

polish-j

str_
rlse-jcompl_pol-j

Attach Part to Assembly-j

take_pt-j

str_ptA-j

str_ptB-j

cmpl_A-j

cmpl_B-j

ret_pt-j

Define New Events-j

attch_ptA-j, attch_ptB-j,

finA_attch-j, finB_attch-j

Path Flow Model-j

part_ent-j part_arr1-j part_lv1-j

str_exit-jfin_exit-j

part_arr2-j

partLvExit-j

part_lv2-jpart_arr3-j recog_A-j

recog_B-j

part_lv3-j

finA_attch-j

finB_attch-j

attc
h_ptA

-j

attch_ptB-j

st
ar

t_
ca

se
-j

co
m

p
l_

case-j

start_
p
o
l-j

co
m

p
l_

p
o
l-j

GI (j,i)

start_pol-j

Polishing Sequence-j

dip_acid-j

dip_acid-jpolish-j

p
o
lish

-j

str_
rlse-j

Affix Part-j
take_pt-j

attch
_
p
tA

-jfinA_attch-j take_pt-j

str_
p
tB

-j

attch_ptB-j

fin
B

_
attch

-j

str_ptA-j

cm
p
l_

A
-j ret_pt-j

cmpl_B-jret_pt-j

Sequence Tasks-j

attch_ptA-j

attch_ptB-j

finA_attch-j

finB_attch-j

part_ent-j part_arr1-j

part_arr1-j

p
art_

lv
1
-j

p
art_

lv
1
-jstr_exit-j

fin_exit-j

p
artL

v
E

x
it-j,

p
art_

arr2
-j

part_lv2-j

p
art_

arr3
-j

recog_A-j

recog_B-j

part_lv3-j

start_pol-j compl_pol-j

start_case-j
compl_case-j

in_buff ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

ret_inbuff,
new_part

part_ent-I,
part_ent-II,
part_ent-III

package
buffer deposit_part deposit_part deposit_part deposit_part

take_item take_item take_item take_item

out_buff

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

fin_exit-I,
fin_exit-II,
fin_exit-III

part_ent-I,
part_ent-II,
part_ent-III

part_ent-I,
part_ent-II,
part_ent-III

part_f_obuff part_f_obuff part_f_obuff part_f_obuff

Ensure_matFb
new_part new_part new_part new_part

part_passes part_passes part_passes part_passes

Figure 6.4: Complete Parallel Manufacturing System [19]

100

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

We assume the standard partition Σ = Σc∪̇Σuc for controllable and uncontrollable

events. For this example our HISC event sets are defined to be:

ΣH = {take item, package, allow exit, new part, part f obuff, part passes, part fails,

ret inbuff,deposit part}

ΣRj = {part ent-j}

ΣAj = {fin exit-j}

ΣLj = {start pol-j, attch ptA-j, attch ptB-j, start case-j, comp pol-j, finA attch-j, finB attch-j,

compl case-j,part arr1-j,part lv1-j,partLvExit-j, str exit-j,part arr2-j, recog A-j, recog B-j,

part lv2-j, part arr3-j, part lv3-j, take pt-j, str ptA-j, str ptB-j, compl A-j, compl B-j,

ret pt-j, dip acid-j, polish-j, str rlse-j,attch case-j}

We first note that the HISC method breaks the system into four groups of DES, one

for each level. Further, the DES at each level are only allowed to contain certain types

of events. The high-level DES contains only the high-level, request and answer events.

The jth low-level DES contains only the jth low-level events, and the jth request and

answer events. This suggests that we can cast this example into a decentralized

problem with four controllers (one per component), and match the observable and

controllable events for the controller to match the events that the DES at a given

level is defined over.

101

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

6.2 Casting an HISC as a Decentralized Control

Problem

To verify if the given example is co-observable, we need to convert the HISC project

into a flat project.

We now present the logic that we have used to transform the HISC modeled man-

ufacturing system into a flat project:

▸ We need to implement decentralized controllers instead of dividing the entire

project into various levels. Since we had three low-level subsystems and one high-level

subsystem, we will create four controllers.

▸ Instead of events being categorized as high-level, low-level, answer and request

events, we instead label them as being observable/controllable or not for a given de-

centralized controller.

▸ The observable events for controller 1 will be all high-level events along with all

the interface events (i.e., all the request and answer events).

▸ The controllable events for controller 1 will be all the controllable events that

observer 1 is able to observe, i.e., Σc,1 = Σo,1 ∩Σc.

▸ The observable events for controllers 2,3,4, will be all the jth low-level, request

and answer events, for j = I, II, III, respectively. For example, Σo,2 = ΣLI
∪ΣRI

∪ΣAI
.

▸ The controllable events for controllers 2,3,4, will be the controllable events that

they can observe. For example, Σc,2 = Σo,2 ∩Σc.

▸ We note that in HISC, interface DES are DES supervisors.

▸ Our flat plant model is the synchronous product of the high-level and all of the

low-level plant components. These are shown in Figure 6.5.

102

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

▸ Our flat specification is the synchronous product of the high-level supervisor, all

of the low-level supervisors, and all of the interface DES. These are shown in Figure

6.6.

There are four controllers. Here are the sets of controllable and observable events

for each one.

Controller 1:

Σo,1 = {take item, package, allow exit, new part, part f obuff, part passes, part fails,

ret inbuff,deposit part, part ent-I, fin exit-I, part ent-II, fin exit-II,

part ent-III, fin exit-III}

Σc,1 = {take item, allow exit, new part, part f obuff, part passes,

ret inbuff,deposit part, part ent-I, part ent-II, part ent-III}

The rest of the three controllers will have event sets identical up-to relabeling. For

controller i = 2,3,4, we will use j = I, II, III, respectively in the definition of their

observable and controllable event sets. For example, we will use j = I with controller

i = 2.

103

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

H
ig

h
 l

ev
el

L
o
w

 L
ev

el
I

L
o
w

 L
ev

el
II

I
L

o
w

 L
ev

el
II

n
ew

_
p
ar

t

S
o
u

rc
e

S
in

k

al
lo

w
_
ex

it

P
a

ck
a

g
in

g
 S

y
st

em

ta
k
e_

it
em

package

al
lo

w
_
ex

it

T
es

t
U

n
it

p
ar

t_
f_

o
b
u
ff

p
ar

t_
p
as

se
s

part_fails

re
t_

in
b
u
ff

d
ep

o
si

t_
p
ar

t

A
tt

a
ch

 C
a

se
 t

o
A

ss
em

b
ly

-j

st
ar

t_
ca

se
-j

Attch_case-j

co
m

p
l_

ca
se

-j

P
o

li
sh

P
a

rt
-j

st
ar

t_
p

o
l-

j

d
ip

_
ac

id
-j

,

p
o

li
sh

-j str_rlse-j

co
m

p
l_

p
o

l-
j

A
tt

a
ch

 P
a

rt
 t

o
A

ss
em

b
ly

-j

ta
k

e_
p

t-
j

st
r_

p
tA

-j

st
r_

p
tB

-j

cm
p

l_
A

-j

cm
p

l_
B

-j

re
t_

p
t-

j

D
ef

in
e

N
ew

 E
v
en

ts
-j

at
tc

h
_

p
tA

-j
,
at

tc
h

_
p

tB
-j

,

fi
n

A
_

at
tc

h
-j

,
fi

n
B

_
at

tc
h

-j

P
a
th

 F
lo

w
 M

o
d

el
-j

p
ar

t_
en

t-
j

p
ar

t_
ar

r1
-j

p
ar

t_
lv

1
-j

st
r_

ex
it

-j
fi

n
_
ex

it
-j

p
ar

t_
ar

r2
-j

p
ar

tL
v
E

x
it

-j

p
ar

t_
lv

2
-j

p
ar

t_
ar

r3
-j

re
co

g
_
A

-j

re
co

g
_
B

-j

p
ar

t_
lv

3
-j

A
tt

a
ch

 C
a

se
 t

o
A

ss
em

b
ly

-j

st
ar

t_
ca

se
-j

Attch_case-j

co
m

p
l_

ca
se

-j

P
o

li
sh

P
a

rt
-j

st
ar

t_
p

o
l-

j

d
ip

_
ac

id
-j

,

p
o

li
sh

-j str_rlse-j

co
m

p
l_

p
o

l-
j

A
tt

a
ch

 P
a

rt
 t

o
A

ss
em

b
ly

-j

ta
k

e_
p

t-
j

st
r_

p
tA

-j

st
r_

p
tB

-j

cm
p

l_
A

-j

cm
p

l_
B

-j

re
t_

p
t-

j

D
ef

in
e

N
ew

 E
v
en

ts
-j

at
tc

h
_

p
tA

-j
,
at

tc
h

_
p

tB
-j

,

fi
n

A
_

at
tc

h
-j

,
fi

n
B

_
at

tc
h

-j

P
a

th
 F

lo
w

 M
o

d
el

-j

p
ar

t_
en

t-
j

p
ar

t_
ar

r1
-j

p
ar

t_
lv

1
-j

st
r_

ex
it

-j
fi

n
_
ex

it
-j

p
ar

t_
ar

r2
-j

p
ar

tL
v
E

x
it

-j

p
ar

t_
lv

2
-j

p
ar

t_
ar

r3
-j

re
co

g
_
A

-j

re
co

g
_
B

-j

p
ar

t_
lv

3
-j

A
tt

a
ch

 C
a

se
 t

o
A

ss
em

b
ly

-j

st
ar

t_
ca

se
-j

Attch_case-j

co
m

p
l_

ca
se

-j

P
o

li
sh

P
a

rt
-j

st
ar

t_
p

o
l-

j

d
ip

_
ac

id
-j

,

p
o
li

sh
-j str_rlse-j

co
m

p
l_

p
o

l-
j

A
tt

a
ch

 P
a

rt
 t

o
A

ss
em

b
ly

-j

ta
k

e_
p

t-
j

st
r_

p
tA

-j

st
r_

p
tB

-j

cm
p

l_
A

-j

cm
p

l_
B

-j

re
t_

p
t-

j

D
ef

in
e

N
ew

 E
v
en

ts
-j

at
tc

h
_

p
tA

-j
,
at

tc
h

_
p

tB
-j

,

fi
n

A
_

at
tc

h
-j

,
fi

n
B

_
at

tc
h

-j

P
a

th
 F

lo
w

 M
o
d

el
-j

p
ar

t_
en

t-
j

p
ar

t_
ar

r1
-j

p
ar

t_
lv

1
-j

st
r_

ex
it

-j
fi

n
_
ex

it
-j

p
ar

t_
ar

r2
-j

p
ar

tL
v
E

x
it

-j

p
ar

t_
lv

2
-j

p
ar

t_
ar

r3
-j

re
co

g
_
A

-j

re
co

g
_
B

-j

p
ar

t_
lv

3
-j

j
=

I
j

=
II

j
=

II
I

Figure 6.5: Flat Plant Model for Parallel Manufacturing System

104

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 6.6: Flat Supervisor Model for Parallel Manufacturing System

105

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Controller i :

Σo,i = {start pol-i, attch ptA-i, attch ptB-i, start case-i, comp pol-i, finA attch-i, finB attch-i,

compl case-i,part arr1-i,part lv1-i,partLvExit-i, str exit-i,part arr2-i, recog A-i, recog B-i,

part lv2-i, part arr3-i, part lv3-i, take pt-i, str ptA-i, str ptB-i, compl A-i, compl B-i,

ret pt-i, dip acid-i, polish-i, str rlse-i,attch case-i, fin exit-i, part ent-i}

Σc,i = {start pol-i, attch ptA-i, attch ptB-i, start case-i, finA attch-i, finB attch-i

part lv1-i,partLvExit-i, str exit-i, part lv2-i, part lv3-i, take pt-i, str ptA-i, str ptB-i

dip acid-i, polish-i, str rlse-i, part ent-i}

6.3 Results

We have extended the graphical DES software research, DESpot [11], to allow the user

to specify the needed information to define a decentralized control problem. DESpot

now allows the user to add the desired number of decentralized controllers to a flat

project and then specify, for each controller, its set of observable and controllable

events. DESpot can also read and save this information to the project file.

We have begun implementing the BDD algorithms from Chapter 5, for verifying

that a given system is SB co-observable, but due to time constraints, this is not yet

complete. We hope to complete this in the near future.

Below is a screen shot of the decentralized editor in DESpot [11] and an example

project of the new file format to store the observer information. This is an extension

of the DESpot file format.

106

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

Figure 6.7: Screen Shot of the Decentralized editor

File Format

1: <?xml version=“1.0” encoding=“UTF-8”?>

2: <Project projVer=“1.0.0”>

3: <Header name=“pmeflatlwlvl23” type=“flat”>

4: <Integrity status=“not-verified” date-stamp=“ ”/>

5: <Nonblocking status=“not-verified” date-stamp=“ ”/>

6: <Controllable status=“not-verified” date-stamp=“ ”/>

7: </Header>

8: <Subsystem name=“pmeflatlwlvl23”>

107

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

9: <Supervisor>

10: <Des name=“Ensure” location=“Ensure.des”/>

11: <Des name=“InBuf” location=“InBuf.des”/>

12: <Des name=“Intf-1” location=“Intf-1.des”/>

13: <Des name=“LowIntf-1” location=“LowIntf-1.des”/>

14: <Des name=“OutBuf” location=“OutBuf.des”/>

15: <Des name=“PackBuf” location=“PackBuf.des”/>

16: <Des name=“PolishSeq-1” location=“PolishSeq-1.des”/>

17: </Supervisor>

18: <Plant>

19: <Des name=“AttachCase-1” location=“AttachCase-1.des”/>

20: <Des name=“AttachPart-1” location=“AttachPart-1.des”/>

21: <Des name=“NewEvents-1” location=“NewEvents-1.des”/>

22: <Des name=“PackSys” location=“PackSys.des”/>

23: <Des name=“PathFlow-1” location=“PathFlow-1.des”/>

24: <Des name=“PolishPart-1” location=“PolishPart-1.des”/>

25: <Des name=“Sink” location=“Sink.des”/>

26: <Des name=“Source” location=“Source.des”/>

27: <Des name=“TestUnit” location=“TestUnit.des”/>

28: </Plant>

29: <Observer name=“controller2”>

30: <ObservableList>

31: <Event name=“attch ptA-1”/>

32: <Event name=“attch ptB-1”/>

108

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

33: <Event name=“cmpl B-1”/>

34: <Event name=“deposit part”/>

35: <Event name=“finA attch-1”/>

36: </ObservableList>

37: <ControllableList>

38: <Event name=“attch ptA-1”/>

39: <Event name=“deposit part”/>

40: <Event name=“finA attch-1”/>

41: <Event name=“partLvExit-1”/>

42: <Event name=“part lv1-1”/>

43: </ControllableList>

44: </Observer>

45: </Subsystem>

46: </Project>

109

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis we have presented a state-based definition of co-observability, called SB

co-observability, in contrast to the classical language-based definition. We have also

shown that the state-based definition implies the language-based definition but not

the reverse.

We have presented an algorithm to verify SB co-observability using the concept of

observers. We have shown that the computational complexity of SB co-observability

algorithm is O(n∣Σ∣∣Y ∣2), where n is the number of controllers, ∣Σ∣ is the number of

events, and ∣Y ∣ is the number of states. The SB co-observability algorithm is linear

in the number of controllers and quadratic in the system’s statespace. This compares

very favorably to existing language-based algorithms that are exponential in the num-

ber of controllers. However, the above is a worst case analysis. We still need to apply

both algorithms to real-life examples to ensure that we see this savings in practice.

110

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

To improve scalability, we presented BDD-based algorithms for SB co-observabili-

ty. We expect this to allow us to verify much larger systems. We have added the

ability to specify decentralized controllers to the software tool DESpot, but have not

finished implementing the BDD algorithms due to time constraints.

Finally, we have discussed a large decentralized control example of a manufactur-

ing system which has been transformed into a flat system from an HISC system. The

events have been re-organized to specify the observable and controllable event set for

each controller. Unfortunately, we have not been able to verify the example yet as

the BDD algorithms are not yet completed.

7.2 Future Work

Once our BDD-based SB co-observability algorithm has been implemented, it would

be useful to have a non-BDD-based algorithm for comparision. We would also like to

develop more large, decentralized examples for comparison.

It would also be useful to develop a BDD-based algorithm to verify language-based

co-observability, as SB co-observability is only a sufficient condition. It would also be

useful to compare the scalability of the two algorithms.

111

Bibliography

[1] Martin Fabian Arash Vahidi, Bengt Lennartson. Efficient analysis of large

discrete-event systems with binary decision diagrams. 44th IEEE Conference

on Decision and Control, pages 2751– 2756, December 2005.

[2] Dennis S. Arnon. Bibliography of quantifier elimination for real closed fields. J.

Symb. Comput., 5(1-2):267–274, 1988.

[3] George Barrett and Stéphane Lafortune. Decentralized supervisory control

with communicating controllers. IEEE Transactions on Automatic Control,

45(9):1620 – 1638, September 2000.

[4] Milind Borkar, Volkan Cevher, and James H. McClellan. Decentralized state

initialization with delay compensation for multi-modal sensor networks. Journal

of Vlsi Signal Processing Systems for Signal Image and Video Technology, 48(1-

2):109 – 125, August 2007.

[5] Al E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-

grams. ACM Computing Surveys, 24:293–318, 1992.

[6] R. E. Bryant. Graph-based algorithm for boolean function manipulation. IEEE

Transactions on Computers, 35(8):677 – 691, August 1986.

112

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

[7] Christos G. Cassandras and Stephane Lafortune. Introduction to Discrete Event

Systems. Springer, 2nd edition, 2007.

[8] H. Chakib and A. Khoumsi. Multi-decision supervisory control: Parallel decen-

tralized architectures cooperating for controlling discrete event systems. IEEE

Trans. Autom. Control, 56(11):2608 – 2622, November 2011.

[9] Randy Cieslak, C. Desclaux, Ayman S Fawaz, and Pravin Varaiya. Supervisory

control of discrete-event processes with partial observations. IEEE Transactions

on Automatic Control, 33(3):249 – 260, March 1988.

[10] Pengcheng Dai. Synthesis method for hierarchical interface-based supervisory

control. Master’s thesis, Department of Computing and Software McMaster

University, April 2006.

[11] DESpot. www.cas.mcmaster.ca/~ leduc/DESpot.html. The official website for

the DESpot project, 2013.

[12] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory , Languages

and Computation. Addison-Wesley, 1979.

[13] Ying Huang, Karen Rudie, and Feng Lin. Decentralized control of discrete-event

systems when supervisors observe particular event occurrences. IEEE Transac-

tions on Automatic Control, 53(1):384–388, June 2008.

[14] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-

soning about Systems. Cambridge University Press, 2nd edition, August 2004.

[15] S. Kapralov and V. Dyankavo. Modeling a system with discrete events. Computer

Modeling and Simulation (EMS), pages 167 – 172, November 2012.

113

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

[16] P. Kozák and W.Wonham. Fully decentralized solutions of supervisory control

problems. IEEE Transactions on Automatic Control, 40(12):2094–2097, Decem-

ber 1995.

[17] R. Kumar and S. Takai. Inference-based ambiguity management in decentralized

decision-making: Decentralized control of discrete event systems. IEEE Trans.

Autom. Control, 52(10):479 – 491, May 2007.

[18] Ratnesh Kumar, Hok M. Cheung, and Steven I. Marcus. Extension based limited

lookahead supervision of discrete event systems. Automatica, 34(11):1327 – 1344,

November 1998.

[19] Ryan James Leduc. Hierarchical Interface-based Supervisory Control. PhD the-

sis, Department of Electrical and Computer Engineering, University of Toronto,

2002.

[20] M. L. Lenard. A prototype implementation of a model management system for

discrete-event simulation models. pages 560 – 568, December 1993.

[21] Feng Lin and W.M Wonham. Decentralized control and co-ordination of dis-

crete event systems with partial observation. IEEE Transactions on Automatic

Control, 35(12):1330–1337, December 1990.

[22] Jorn Lind-Nielsen. BuDDy: Binary Decision Diagram Package. IT-University

of Copenhagen, November 2002.

[23] Fuchun Liu and Hain Lin. Reliable supervisory control for general architecture of

decentralized discrete-event systems. Automatica, 46(9):1510–1516, September

2010.

114

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

[24] Fuchun Liu and Hain Lin. Reliable decentralized supervisors for discrete-event

systems under communication delays: Existence and verification. Asian Journal

of Control, 15(5):1346 –1355, September 2013.

[25] Chuan Ma. NonBlocking Supervisory Control of State Tree Structure. PhD thesis,

Department of Electrical and Computer Engineering University of Toronto, 2004.

[26] Patricia N. Pena, Hugo J. Bravo, Antonio E. C. da Cunha, Robi Malik, and Jose

E. R. Cury. Verification of the observer property in discrete event systems. Proc.

11th International Workshop on Discrete Event Systems (WODES, 2012), pages

337 – 342, October 2012.

[27] J. Prosser, M. Kam, and H. Kwatny. Decision fusion and supervisor synthesis

in decentralized discrete-event systems. Proc. Ameri. Contr. Conf., pages 2251–

2255, June 1997.

[28] M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM

Journal of Research and Development, 3(2):114 – 125, April 1959.

[29] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete

event processes. SIAM Journal on Control and Optimization, 25(1):206–230,

January 1987.

[30] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.

77:81 – 98, January 1989.

[31] Laurie Ricker and Benoit Caillaud. Mind the gap: Expanding communication

options in decentralized discrete-event control. Automatica, 47:2364 – 2372,

September 2011.

115

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

[32] S. L. Ricker. Knowledge and Communication in Decentralized Discrete-Event

Control. PhD thesis, Department of Computing and Information Science Queen’s

University, December 1999.

[33] S. L. Ricker. An overview of synchronous communication for control of decen-

tralized discrete-event systems. In M. Silva. J.H. van Schuppen C. Seatzu, editor,

Control of Discrete-Event Systesm, chapter 7, pages 127 –146. Springer, 2013.

[34] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams.

IEEE/ACM International Conference on CAD, pages 42–47, November 1993.

[35] K. Rudie, S. Lafortune, and F. Lin. Minimal communication in a distributed

discrete-event control system. 48(6):957 – 975, June 2003.

[36] Karen Rudie and Jan C. Willems. The computational complexity of decentral-

ized discrete-event control problems. IEEE Transactions on Automatic Control,

40(7):1313–1319, July 1995.

[37] Karen Rudie and W.M.Wonham. Think globally act locally: Decentralized su-

pervisory control. IEEE Transactions on Automatic Control, 37(11):1692–1708,

November 1992.

[38] Raoguang Song. Symbolic synthesis and verification of hierarchical interface-

based supervisory control. Master’s thesis, Dept. of Computing and Software,

McMaster University, March 2006.

[39] Shigemasa Takai and Toshimitsu Ushio. Reliable decentralized supervisory con-

trol of discrete event systems. 30(5):661 – 667, October 2000.

116

M.Sc. Thesis - Urvashi Agarwal McMaster - Computer Science

[40] Yu Wang. Sampled-data supervisory control. Master’s thesis, Dept. of Comput-

ing and Software, McMaster University, January 2009.

[41] K. C. Wong and J. H. van Schuppen. Decentralized supervisory control of

discrete-event systems with communication. Proc. Int. Workshop on Discrete

Event Systems, pages 284–289, 1996.

[42] Kai C. Wong and W. Murray Wonham. On the computation of observers in

discrete-event systems. discrete event dynamic systems. Discrete Event Dynamic

Systems, 14(1):55–107, January 2003.

[43] W. M. Wonham. Supervisory Control of Discrete-Event Systems. Department

of Electrical Engineering, University of Toronto, 2005.

[44] Tae-Sic Yoo and Stéphane Lafortune. New results on decentralized supervisory

control of discrete-event systems. volume 1, pages 1–6. Decision and Control,

2000. Proceedings of the 39th IEEE Conference, December 2000.

[45] Tae-Sic Yoo and Stéphane Lafortune. Decentralized supervisory control: a new

architecture with a dynamic decision fusion rule. pages 11–17, 2002.

[46] Tae-Sic Yoo and Stéphane Lafortune. A general architecture for decentralized

supervisory control of discrete-event systems. 12(3):335 – 377, July 2002.

117

