
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 2

Chapter 9

Labelled Transition Systems

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.4 6

Systems and Processes

Remember:Abstractly, what is a Process?
• Processesare subsets of the events occurring in a system.

• In asequential process, the events are fully ordered in
time.

Therefore:

• A system specification isdecomposedinto process
specifications.

• A system implementation iscomposedfrom process
implementations.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.9 11

System Composition

• A system specification isdecomposedinto process
specifications.

• A system implementation iscomposedfrom process
implementations.

• Sequential composition:every event inP1 occurs before
every event inP2

• Concurrent composition: No such clear ordering imposed
a priori.

• Sequential processes are basic building blocks.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.20 22

Processes, Actions, Events

• A processis a subset of the events occurring in a system.

• The simplest possible process: empty set of events, called
STOP.

• More interesting processes have events, which can also be
interpreted asactions.

• We assume that all actions can be decomposed intoatomic
actions.

• In a system, each event belongs toat least oneprocess.

• Events can besharedbetween processes — several
processes cantogetherengage in a single action.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.28 30

Processes and State

• Processes performstate transitions— in different states, a
processs will be able to engage in different sets of actions.

— After some action, the set of possible continuing actions
may be different from before.

• Atomic actions induceindivisible state changes.

• A system composed of several processes has a state that is
composed from the states of the individual processes.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.33 35

Labelled Transition Systems (LTSs)

Definition: A labelled transition system(S, s0, L, δ)consists
of
– a setS of states
– aninitial state s0 : S

– a setL of action labels
– atransition relation δ : IP (S × L × S).

Example:

LightSwitch1 = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})

dark light
on

on
off

off

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.38 40

Another LTS …

LightSwitch1 = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})

dark light
on

on
off

off

LightSwitch2 = ({0, 1}, 0, {on, off}, {(0, on, 1), (1,off, 0)})

0 1
on onoff

off

Different, butisomorphic, where the isomorphism preserves
action labels and the transition relation.

— The identity of the states does not matter.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.48 50

Traces

Definition: A trace of an LTS is a sequence (finite or infinite)
of action labels that results from a maximal path (with respect
to the prefix ordering) starting at the initial state.

Example:
• Sequences of action labels that result from finite paths

starting at the initial state:
on
on, off
on, off, on
on, off, on, off

• LightSwitch1 has onlyone infinite trace:
on, off, on, off, on, off, …

• LightSwitch2 has the same set of traces asLightSwitch1 —
they arebehaviourally equivalent.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.51 53

Concurrent Composition

• A system composed of several processes has a state that is
composed from the states of the individual processes.

Converse = 0 1 2
think

think

talk

talk

Itch = a b
scr

scratch

Converse || Itch =

0a 1a 2a

0b 1b 2b
scr

scratch

scr

scratch

scr

scratch

think

think

talk

talk

think

think

talk

talk

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.53 55

Concurrent Composition

• A system composed of several processes has a state that is
composed from the states of the individual processes.

Converse = 0 1 2
think

think

talk

talk

Itch = a b
scr

scratch

Converse || Itch =

0a 1a 2a

0b 1b 2b
scr

scratch

scr

scratch

scr

scratch

think

think

talk

talk

think

think

talk

talk

While Converse andItch have only one trace each, their
composition has three, representingarbitrary interleaving.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.58 60

Shared Actions

Bill = 0 1 2
pla

play

meet

meet

Ben = a b c
w

work

meet

meet

In the compositionBill || Ben,

• play andwork areconcurrent actions — the order in which
they are observed does not matter.

• Thesharedactionmeet synchronizes the execution of the
two constituent processes.

• Traces of the composition:play, work, meet
work, play, meet

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.60 62

Concurrent Composition of LTSs

Definition: For P1 = (S1,s1, L1,δ1) and P2 = (S2,s2, L2,δ2), the

concurrent composition P1 || P2 is the LTS

(S1 × S2, (s1, s2), L1 ∪ L2, δ)

where

((x1, x2), a, (y1, y2)) ∈ δ

⇔ { (x1, a, y1) ∈ δ 1 ∧ x2 = y2 ∧ a ∈ L1 − L2
∨

x1 = y1 ∧ (x2, a, y2) ∈ δ 2 ∧ a ∈ L2 − L1
∨

(x1, a, y1) ∈ δ 1 ∧ (x2, a, y2) ∈ δ 2 ∧ a ∈ L1 ∩ L2

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.62 64

Composition with Shared Actions

Bill = 0 1 2
pla

play

meet

meet

Ben = a b c
w

work

meet

meet

Bill || Ben =

0a 1a 2a

0b 1b 2b

0c 1c 2c
w

work

w

work

w

work

pla

play

pla

play

pla

play

meet

meet

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.64 66

Composition with Shared Actions

Bill = 0 1 2
pla

play

meet

meet

Ben = a b c
w

work

meet

meet

Bill || Ben =

0a 1a 2a

0b 1b 2b

0c 1c 2c
w

work

w

work

w

work

pla

play

pla

play

pla

play

meet

meet

Unreachable states do not influence the behaviour!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.66 68

Maker — User

Maker = 0 1
mak

make

ready

ready

User = a b
ready

ready

use

use

Maker || User =

0a 1a

0b 1b
ready

ready

use

use

use

use

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.67 69

Maker — User

Maker = 0 1
mak

make

ready

ready

User = a b
ready

ready

use

use

Maker || User =

0a 1a

0b 1b
ready

ready

use

use

use

use

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.68 70

Maker — User 2

Maker2 = 0 1 2
mak

make

ready

ready

used used

User2 = a b c
ready

ready

use

use

used used

Maker2 || User2 =

0a 1a 2a

0b 1b 2b

0c 1c 2c
ready

ready

used

used

use

use

use

use

use

use

mak

make

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.69 71

Maker — User 2

Maker2 = 0 1 2
mak

make

ready

ready

used used

User2 = a b c
ready

ready

use

use

used used

Maker2 || User2 =

0a 1a 2a

0b 1b 2b

0c 1c 2c
ready

ready

used

used

use

use

use

use

use

use

mak

make

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.70 72

Factory

Factory = MakerA || MakerB || Assemble

MakerA = 0 1 2
mak

makeA

ready

ready

used used

MakerB = 0 1 2
mak

makeB

ready

ready

used used

Assemble = a b c
ready

ready

assemb

assemble

used used

Factory =

00a 10a 22c

01a 11a 22b
ready

ready

assemb

assemble

used

used

mak

makeA

mak

makeA

mak

makeB

mak

makeB

How manystatesdoesFactory have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.71 73

Factory

Factory = MakerA || MakerB || Assemble

MakerA = 0 1 2
mak

makeA

ready

ready

used used

MakerB = 0 1 2
mak

makeB

ready

ready

used used

Assemble = a b c
ready

ready

assemb

assemble

used used

Factory =

00a 10a 22c

01a 11a 22b
ready

ready

assemb

assemble

used

used

mak

makeA

mak

makeA

mak

makeB

mak

makeB

How manystatesdoesFactory have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.72 74

Maker — User 3

Maker2 = 0 1 2
mak

make

ready

ready

used used

User3 = a b
ready

ready

use

use

used used

Maker2 || User3 =

0a 1a 2a

0b 1b 2b
ready

ready

used
used

use

use

use

use

use

use

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.73 75

Maker — User 3

Maker2 = 0 1 2
mak

make

ready

ready

used used

User3 = a b
ready

ready

use

use

used used

Maker2 || User3 =

0a 1a 2a

0b 1b 2b

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.75 77

Maker — User 3

Maker2 = 0 1 2
mak

make

ready

ready

used used

User3 = a b
ready

ready

use

use

used used

Maker2 || User3 =

0a 1a 2a

0b 1b 2b
ready

ready

used
used

use

use

use

use

use

use

mak

make

mak

make

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.81 83

Deadlock

• Deadlockoccurs in asystemwhenall its constituent
processesare blocked.

• A system isdeadlockedif there are no actions it can
perform.

• A deadlock statein an LTS is a reachable state with no
outgoing transitions.

• An LTS has a deadlock state iff it has afinite trace.

• A terminating constituent process introduces “atypical”
deadlock.

• “Typical” deadlocks occur inconcurrent compositionsof
processes that individually are deadlock-free.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.85 87

Liveness and Safety Properties

A safety property asserts:

“somethingbad will neverhappen”

A liveness propertyasserts:

“somethinggoodwill eventuallyhappen”

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.95 97

Safety

A safetyproperty asserts:

“somethingbad will neverhappen”

Important safety conditions:

• Partial correctness
–State predicate: If in a proper termination state, then

postcondition is satisfied.
• Invariants

–If in a certain kind of state, or before or after a certain kind
of action, then the invariant holds for the current state.

• Safe access sequences to resources
–Certain actions happen only conforming to a fixed pattern.

Such properties are often formulated usingtemporal logic.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.102 104

Safe Access Sequences

• Given a system modelled as an LTSP = (S,s,L, δ), accesses
to some resource (set) involve actions of a subsetA ⊆ L.

• For every tracet of P, only itsprojection onA is considered,
i.e., the sequence of those elements oft that are inA.

• These projections need to satisfy somepredicate.
• Conveniently: These projections have to be traces of some

(simpler) LTS

Example: SAFE = command → response → SAFE

User = Start Waiting
command

command

response responsecoff

coffee

command

command

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.107 109

Checking Safe Access Sequences using ||

SAFE = command → response → SAFE

Add catch-all error state:

SAFEcheck =
0

ERROR
1

command

command

responseresponse response

response

command command

User = s w
command

command

response responsecoff

coffee

command command

User || SAFEcheck =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.108 110

Checking Safe Access Sequences using ||

SAFE = command → response → SAFE

Add catch-all error state:

SAFEcheck =
0

ERROR
1

command

command

responseresponse response

response

command command

User = s w
command

command

response responsecoff

coffee

command command

U || Sc = 0s 1w Ew
command

command

response responsecommand

command

coff coffee

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.114 116

Safety

Ideally, a software system will be safe if it satisfies its
specification.

— However, the specification may not guarantee safety.

Safety is a greater concern in a concurrent software system
because the order of events is harder to control

Fundamental Safety Failure: An action by a process or
thread that isintended to be atomic is breached by another
process or thread.

– The code that implements the atomic action is called a
critical section

– The breach of the atomic action may be unpredictable due
to race conditions

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.128 130

Liveness

A livenessproperty asserts:

“no matter when we start to look,
somethinggoodwill eventuallyhappen”

Example: “Philosopheri cannot starve at the table.”

– No matter when we start to look, if philosopher i is at the
table, he will eventually be eating

– This can be expressed in terms of traces:

Philosopherphil.i “cannot starve at the table”iff for every
tracet and every positionm such thattm = phil.i.sitdown
there is a positionn with n > m such thattn = phil.i.eat.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.132 134

Liveness

Ideally, a software system will be live if it satisfies its
specification.

— However, the specification may not guarantee liveness.

Fundamental Liveness Failure:

A process (thread) waits for an event that will never happen.

Examples:
• Deadlock
• Missed signals
• Nested monitor lockouts
• Livelock
• Starvation
• Resource exhaustion
• Distributed failure

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.135 137

Branching Transitions

A state of a process from which several transitions exist
usually models one of the following:

– In this state, the process is prepared toreact to different
environmental stimuli

– In this state, the processactsby making a
(non-deterministic) choice

• non-determinism could be intended
• non-determinism could be the result of abstraction

LTSs do not differentiate betweenaction andreaction!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.138 140

Reactive Choice

Sema3 = 0 1 2 3
signal

signal

w
wait

signal

signal

w
wait

signal

signal

w
wait

Lookup = 0 1 2
search

search

not_f
not_found

f

found

use

use

Server = 1 0 2
request1

request1
ser

service1

request2

request2

ser
service2

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.143 145

Active Non-Deterministic Choice

Client1 = request 1 → service 1 → sleep → Client1
Client2 = request 2 → service 2 → work → Client2
Clients = Client1 || Client2

System = Clients || Server

Server = 1 0 2
request1

request1
ser

service1

request2

request2

ser
service2

Concurrency is a good source of non-determinism!

Distribution is one of the best sources of
non-determinism!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.149 151

Modelling Real Non-Deterministic Choice

How should we model a process that repeatedly tosses
a coin?

How should we model a process that bets on alternating
outcomes?

Bet = H T
heads

heads

tails tails

Coin1 = 0
headsheadstails

tails Coin2 = 0 1
toss

toss

heads headstails

tails

Coin3 = 1 0 2
toss tosstoss tossheads

heads

tails

tails

Consider the compositions withBet!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.150 152

Betting Must Not Influence the Coin …

Bet = H T
heads

heads

tails tails

Coin1 = 0
headsheadstails

tails Coin2 = 0 1
toss

toss

heads headstails

tails

Coin1 || Bet =

Coin2 || Bet =
1H

0H 0T

1T
toss

toss

heads

heads

toss
toss

tails
tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.152 154

Betting Must Not Influence the Coin …

Bet = H T
heads

heads

tails tails

Coin1 = 0
headsheadstails

tails Coin2 = 0 1
toss

toss

heads headstails

tails

Coin1 || Bet ≡ Bet

Coin2 || Bet =
1H

0H 0T

1T
toss

toss

heads

heads

toss
toss

tails
tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.153 155

Betting Introduces Deadlock

Bet = H T
heads

heads

tails tails

Coin3 = 1 0 2
toss tosstoss tossheads

heads

tails

tails

A choice among equally labelled transitions cannot be
“influenced” via composition!

Coin3 || Bet =
1H

0H 0T
2T

2H 1T
toss

toss

toss

toss

toss

toss

heads

heads

toss

toss

tails

tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.155 157

Betting Introduces Deadlock

Bet = H T
heads

heads

tails tails

Coin3 = 1 0 2
toss tosstoss tossheads

heads

tails

tails

A choice among equally labelled transitions cannot be
“influenced” via composition!

Coin3 || Bet =
1H

0H 0T
2T

2H 1T
toss

toss

toss

toss

toss

toss

heads

heads

toss

toss

tails

tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.160 162

Non-Deterministic Choice, Traces, and Composition

Coin2 andCoin3have the same trace set!

But,Coin2 || Bet andCoin3 || Bet havedifferent trace sets!

⇒ Two LTSsP1andP2 areequivalent iff for every LTSQ, the
compositionsP1 || Q andP2 || Q have the same trace set.

This is ablack-box view: “No context enables distinction.”

Bet = H T
heads

heads

tails
tails

Coin2 = 0 1
toss

toss

heads headstails

tails

Coin3 = 1 0 2
toss tosstoss tossheads

heads

tails

tails

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.166 168

How Not to Model Signal Handling

0 1 2 3 4
M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

b a c d
deliv

deliver

H.release

H.release

finish

finish

b

block

unb
unblock

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.167 169

How Not to Model Signal Handling

0 1 2 3 4
M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

0b 1b 2b 3b 4b

0a 1a 2a 3a 4a

0c 1c 2c 3c 4c

0d 1d 2d 3d 4d

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

b

block

M.use

M.use

M.use

M.use

M.use

M.use

M.use

M.use

unb

unblock

M.release

M.release

M.release

M.release

M.release

M.release

M.release M.releasedeliv

deliver

deliv

deliver

deliv

deliver

deliv

deliver

deliv

deliver

H.release

H.release

H.release

H.release

H.release

H.release

H.release

H.release

H.release

H.release

finish

finish

finish

finish

finish

finish

finish

finish

finish

finish

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.168 170

How Not to Model Signal Handling

0 1 2 3 4
M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

2b 3b

0a 1a 4a

0c 1c 4c

0d 1d 4d

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

M.release

M.release

M.release M.releasedeliv

deliver

deliv

deliver

deliv

deliver

H.release

H.release

H.release

H.release

H.release

H.release

finish

finish

finish

finish

finish

finish

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.169 171

Modelling Signal Handling

0 1 2 3 4

0s 1s 4s
M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

deliv

deliver

finish

finish

deliv

deliver

finish

finish

deliv

deliver

finish

finish

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.170 172

Modelling Signal Handling

0 1 2 3 4

0s 1s 4s
M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

deliv

deliver

finish

finish

deliv

deliver

finish

finish

deliv

deliver

finish

finish

0a 1a 2b 3b 4a

0c 1c 4c

0d 1d 4d

M.acquire

M.acquire

b

block

M.use

M.use

unb

unblock

M.release

M.release

deliv

deliver

deliv

deliver

deliv

deliver

H.release

H.release

H.release

H.release

H.release

H.release

finish

finish

finish

finish

finish

finish

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.173 175

Labelling: Switches

Switch = 0 1
on

on

off

off

x:Switch = 0 1
x

x.on

x

x.off

a:Switch || b:Switch =

00 10

01 11
b

b.on

b

b.on

b

b.off

b

b.off

a.on

a.on

a.on

a.on

a.off

a.off

a.off
a.off

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.174 176

Labelling: Switches

Switch = 0 1
on

on

off

off

x:Switch = 0 1
x

x.on

x

x.off

a:Switch || b:Switch =

00 10

01 11
b

b.on

b

b.on

b

b.off

b

b.off

a.on

a.on

a.on

a.on

a.off

a.off

a.off
a.off

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.179 181

Labelling and Sharing

Definition: For an action label setL and a label setA, we let
A::L denote the following set oflabelled actions:

F ::L = {f : F; q : L • f .q}

For an LTSsP = (S, s0, L, δ), we define:

• The LTSP labelledwith a labelf is f :P = (S, s0, { f } ::L, δf),
where

(x, a, y) ∈ δ f ⇔ ∃ a0 : L • a = f .a0 ∧ (x, a0, y) ∈ δ .

• The LTSP sharedamong a label setF is
F ::P = (S, s0, F ::L, δF), where
(x, a, y) ∈ δ F ⇔ ∃ f : F; a0 : L • a = f .a0 ∧ (x, a0, y) ∈ δ .

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.180 182

Sharing: Resources

Resource = 0 1
acquire

acquire

release release

{a, b} ::Resource = 0 1
b

b.acquire

a.acquire

a.acquire

a.release a.releaseb

b.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.181 183

Sharing: Resources

Resource = 0 1
acquire

acquire

release release

{a, b} ::Resource = 0 1
b

b.acquire

a.acquire

a.acquire

a.release a.releaseb

b.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.182 184

Sharing Resources

ResSharing = a: User || b: User || {a, b} ::Resource

User = a b c
acquire

acquire

use

use

release release

ResSharing =

ba1 ca1

aa0

ab1 ac1
a.acquire

a.acquire

a.use

a.use

a.release

a.release

b

b.acquire

b b.useb

b.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.183 185

Sharing Resources

ResSharing = a:User || b:User || {a, b} ::Resource

User = a b c
acquire

acquire

use

use

release release

ResSharing =

ba1 ca1

aa0

ab1 ac1
a.acquire

a.acquire

a.use

a.use

a.release

a.release

b

b.acquire

b b.useb

b.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.184 186

Blocking Resources

ResBlocking = a:Abuser || b:User || {a, b} ::Resource

Abuser = a b c
acquire

acquire

use userelease
release

ResBlocking =

ba1 aa1

aa0

ab1 ac1
a.acquire

a.acquire

a.use

a.use

b

b.acquire

b b.useb

b.release

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.185 187

Blocking Resources

ResBlocking = a:Abuser || b:User || {a, b} ::Resource

Abuser = a b c
acquire

acquire

use userelease
release

ResBlocking =

ba1 aa1

aa0

ab1 ac1
a.acquire

a.acquire

a.use

a.use

b

b.acquire

b b.useb

b.release

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.187 189

Sharing a Labelled Resource

Resource = 0 1
acquire

acquire

release release

printer:Resource = 0 1
pr

printer.acquire

pr
printer.release

{a, b} ::printer:Resource = 0 1
b

b.printer.acquire

a.pr

a.printer.acquire

a.pr a.printer.releaseb

b.printer.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.188 190

Sharing a Labelled Resource

Resource = 0 1
acquire

acquire

release release

printer:Resource = 0 1
pr

printer.acquire

pr
printer.release

{a, b} ::printer:Resource = 0 1
b

b.printer.acquire

a.pr

a.printer.acquire

a.pr a.printer.releaseb

b.printer.release

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.189 191

An Alternative Way of Defining Primitive Processes

Resource = 0 1
acq

acq

rel rel

A =
1 2

0
4 3

pr

printer.acq

scanner

scanner.acq

cop

copy

pr printer.relscanner
scanner.rel

Process Calculus Notation:

Resource = acq → rel → Resource

A = printer.acq → scanner.acq → copy → printer.rel →
scanner.rel → A

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.190 192

Sharing Two Resources

Resource = acq → rel → Resource

A = pr.acq → sc.acq → copy → pr.rel → sc.rel → A

B = sc.acq → pr.acq → copy → sc.rel → pr.rel → B

Sys = a:A || {a, b} ::pr:Resource || {a, b} ::sc:Resource || b:B

1ps1

2ps0 1pS0 0Ps1 0ps2

0PS0

3ps0 4Ps0 0pS4 0ps3
a.pr

a.pr.acq

a.sc.acq

a.sc.acq

a.cop

a.copy

a.pr a.pr.rela.sc.rel
a.sc.rel

b

b.sc.acq

b

b.ps.acq

b

b.copy

b b.sc.relb
b.pr.rel

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.192 194

Sharing Two Resources

Resource = acq → rel → Resource

A = pr.acq → sc.acq → copy → pr.rel → sc.rel → A

B = sc.acq → pr.acq → copy → sc.rel → pr.rel → B

Sys = a:A || {a, b} ::pr:Resource || {a, b} ::sc:Resource || b:B

1ps1

2ps0 1pS0 0Ps1 0ps2

0PS0

3ps0 4Ps0 0pS4 0ps3
a.pr

a.pr.acq

a.sc.acq

a.sc.acq

a.cop

a.copy

a.pr a.pr.rela.sc.rel
a.sc.rel

b

b.sc.acq

b

b.ps.acq

b

b.copy

b b.sc.relb
b.pr.rel

b

b.sc.acq

a.pr

a.pr.acq

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.200 202

The Dining Philosophers

• Five philosophers live together in a house.

• The live of a philosopher essentially consists of alternating
phases of thinking and eating.

• For eating, there is a round table with five seats and a large
bowl of spaghetti on it; between adjacent seats there is
always one fork.

• Each philosopher needs two forks in order to be able to eat.

• When hungry, each philosopher will sit down on a free chair,
take up the fork to his left, take up the fork to his right, eat,
put down the forks, and leave for more thinking.

• Is it possible that the philosophers all starve to death?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.205 207

The Dining Philosophers

F0
F0

F1

F1

F2

F2

F3

F3

F4
F4

P0 P0P1

P1

P2

P2

P3

P3

P4

P4

right

right

right

right

right

right

right

right

right

right

left

left

left

left

left

left

left

left

left

left

Fork = get → put → Fork

Phil = sitdown → right.get →
left.get → eat →
left.put → right.put →
arise → Phil

Let N = 5

Let succN(i) = (i + 1)%N

Diners =

 ||
N −1
i=0 (phil:i:Phil || {phil .i. right, phil .succN(i). left} ::Fork)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.206 208

Model-Checking the Dining Philosophers Using LTSA

PHIL = (sitdown->right.get

 ->left.get->eat->left.put

 ->right.put->arise->PHIL).

FORK = (get -> put -> FORK).

||DINERS(N=5)=

 forall [i:0..N-1]

 (phil[i]:PHIL

 ||{phil[i].right,

 phil[(i+1)%N].left}::FORK).

Trace to DEADLOCK:

 phil.0.sitdown

 phil.0.right.get

 phil.1.sitdown

 phil.1.right.get

 phil.2.sitdown

 phil.2.right.get

 phil.3.sitdown

 phil.3.right.get

 phil.4.sitdown

 phil.4.right.get

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.214 216

Solutions to the Dining Philosophers Problem

Original solution: Introduce abutler who restricts the
maximum number of sitting philosophers to 4.

Butler = 4 3 2 1 0
sitdo

sitdown

ar
arise

sitdo

sitdown

ar
arise

sitdo

sitdown

ar
arise

sitdo

sitdown

ar
arise

The butler is a counting semaphore!

Some other solutions:
• Have some philosophers pick up the left fork first.

• Make picking up both forks atomic.

• Have all philosophers decide randomly which fork to pick
up, and give priority to “hungrier” neighbours.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.215 217

Fairness

Q0

Q1

stair

Q3

up

Q4

open stair

Q2

up down

stair

Q5

close

Q7

enter

down

stair

Q6

up

Q8

close down

Q9

up

exit

down

Fairness assumption:

If a choice is arrived at
infinitely often, then all
of its branches are taken
infinitely often.

Assuming fairness,
additional lifeness
properties hold, e.g.:
“After an enter, there
will eventually be an
exit.”

