SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 2

Chapter 9

Labelled Transition Systems

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.4 6

Systems and Processes

RememberAbstractly, what is a Process?

* Processesre subsets of the events occurring in a system.

 In asequential processthe events are fully ordered in
time.

Therefore:

» A system specification idecomposednto process
specifications.

« A system implementation isomposedrom process
implementations.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.9 11

System Composition

A system specification idecomposednto process
specifications.

A system implementation momposedrom process
implementations.

Sequential composition:every event irP, occurs before
every event irF,

Concurrent composition: No such clear ordering imposed
a priori.

Sequential processes are basic building blocks.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.20 22

Processes, Actions, Events

A processis a subset of the events occurring in a system.
The simplest possible process: empty set of events, called
STOP.

More interesting processes have events, which can also be
interpreted aactions

We assume that all actions can be decomposedioimic
actions

In a system, each event belongsitdeast oneprocess.

Events can bsharedbetween processes — several
processes caiogetherengage in a single action.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.28 30

Processes and State

» Processes perforstate transitions— in different states, a
processs will be able to engage in different sets of actions.

— After some action, the set of possible continuing actions
may be different from before.

» Atomic actions inducéndivisible state changes

» A system composed of several processes has a state that i

composed from the states of the individual processes.

SFWR ENG 38B4 — Software Design 3— Concurrent System Design 9.33 35

Labelled Transition Systems (LTSSs)

Definition: A labelled transition system(S, s,, L, 8) consists
of

— asefSof states

— aninitial states; : S

— asetl of action labels

— atransitionrelation & :P (SxL xS).

Example:

LightSwitch, = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})
L off
kT gy g

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.38 40

Another LTS ...

LightSwitch, = ({dark, light}, dark, {on, off},
{(dark, on, light), (light, off, dark)})
L off
‘da_rk‘ on light
LightSwitch, = ({0, 1}, 0, {on, off}, {(0, on, 1), (1,0ff, 0)})
off

Different, butisomorphic, where the isomorphism preserves
action labels and the transition relation.

— Theidentity of the states does not matter.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.48 50

Traces

Definition: A trace of an LTS is a sequence (finite or infinite)
of action labels that results from a maximal path (with respect
to the prefix ordering) starting at the initial state.

Example:
» Sequences of action labels that result from finite paths
starting at the initial state:
on
on, off
on, off, on
on, off, on, off
» LightSwitch, has onlyone infinite trace:
on, off, on, off, on, off, ...

» LightSwitch, has the same set of traced aghtSwitch, —
they arebehaviourally equivalent

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.51 53

Concurrent Composition

» A system composed of several processes has a state that i

composed from the states of the individual processes.

Converse = (0 think 1 talk 2
<27\ scratch
Itch = tadr—— b
Converse|| Itch =
Concurrent Composition

» A system composed of several processes has a state that i

composed from the states of the individual processes.
™ think talk
—_—

Converse = [0) 1 tak o,
— scratch
Itch = { ?"’ b
(’Oa\/\; think 1a talk 2a
Converse|| Itch = scratch lscratch lscratch
ob think 1b talk b

While Converse andltch have only one trace each, their
composition has three, representanbitrary interleaving.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.58 60

Shared Actions
. S pla
Bill = (o} .~ q_meet
Ben = (a»Wok _ _meet g

In the compositiorBill || Ben,

 play andwork areconcurrent actions— the order in which
they are observed does not matter.

» Thesharedactionmeet synchronizesthe execution of the
two constituent processes.

» Traces of the compositionplay, work, meet
work, play, meet

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.60 62

Concurrent Composition of LTSs

R =(5s,L,9,) the
), isthe LTS

Definition: For F, = (S;s, L, ,) and

concurrent composmon PIIF

(§, xS, (s,8), L, 0L, d)
where

(X, %), 8, (¥, ¥,)) [D

’(xl,a,yl)Eél O X, =Y, O a0dL,-L,
[

o X, =Y, O (xz,a,yz)[iti2 O aEILZ—Ll
[

i(xl,a,yl)['cTS1 O (x,ay)o, O aldlk nl,

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.62

Composition with Shared Actions

. SN pla
Bill =) play -1 meet -9
Ben = (a work b meet C

AN

Bill || Ben =
Composition with Shared Actions
. SN la
Bill = [0, g meet
Ben = (a work b meet C
ISR la
 Oa &u—> la 2a
. work work work
Bill || Ben = I l l
la
ob Y+ 1p 2b
%\
la
Oc Py 1c 2C

Unreachable states do not influence the behaviour!

66

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.66 68

Maker — User

ready
Maker = (o—make 4
) use
"/ready\
User = car - b

Maker || User =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.67 69

Maker — User

ready
Maker = {\, 0\/\; make -1
- use
,f—~!/ready\
User = (\\a/,L = Db
; da make .
S ready
Maker || User = Tuse }use
ob make .

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.68

Maker — User 2

TN read
Maker, = (o make g Y Lo
‘7 ready use
User2 = \\a/.; — b > C
T used
Maker, || User, =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.69

Maker — User 2

R read
Makerz - ’ O/Lke, 1 % 2

User, =

Maker, || User, =

make

Oc

How many traces do these processes have?

71

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.70

Factory
Factory = MakerA || MakerB || Assemble
MakerA = (/O\\" makeA _ 4 ready)
_,ﬁx\\\\\\\5__g§§g~#’////////
I’—.\\\ d
MakerB = (00 makeB _ 4 ready 5
_,/W
Assemble = (’a;deady - b assemble .
_/W
Factory =

How manystatesdoesFactory have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.71

Factory

Factory = MakerA || MakerB || Assemble

TN read
(OlmakeA‘l y=2

= used

o d
MakerB [p)_makeB _ . ready _ .,

= used

<7 ready assemble
Assemble = fa — ~ b >

o used

used

/”__~\/—\
t00a ———~— 10a
«____.- makeA

{makeB makeB

makeA _ ready

Maker A

c

Factory =

Ola > 1la - 22b

How manystatesdoesFactory have?

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.72 74 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.75 7

Maker — User 3 Maker — User 3

ready make 1 ready

Maker, = (o) make 4 T8V . 5 Maker, = ‘o) =
. W - \u_sed/
use use
B (xéx'/rea_dy\ U B “xa\'/re;y\
User3 - A ~ b e,y = A - b
W W
Coamake . gn 2a
Maker, || User, = Maker, || User, = use
ob —Make 4y used ~ 2b
How many traces do these processes have? How many traces do these processes have?
Maker — User 3 Deadlock
Maker. = [o_make _ , ready _ Deadlockoccurs in assystemwhenall its constituent
2 \\ /,
ST used processeare blocked.
use » A system iddeadlockedif there are no actions it can
Uear. = (,fa\'/re;y\ A perform.
3 - \\—‘// - - -
“_used » A deadlock statein an LTS is a reachable state with no
outgoing transitions.
Lo 1a 2a * An LTS has a deadlock state iff it hadinite trace.
Maker, || User, =
ob 1b b Aterminating constituent process introduces “atypical”
deadlock.
How many traces do these processes have? » “Typical” deadlocks occur inoncurrent compositionsof

processes that individually are deadlock-free.

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.85 87

Liveness and Safety Properties

A safety property asserts:

“somethingbad will neverhappen”

A liveness propertyasserts:

“somethinggoodwill eventually happen”

SFWR ENG 38B4 — Software Design 3— Concurrent System Design 9.95 o7

Safety

A safetyproperty asserts:
“somethingbad will never happen”

Important safety conditions:

e Partial correctness
—Satepredicate: If in a proper termination state, then
postcondition is satisfied.
e Invariants
—If in a certain kind of state, or before or after a certain kind
of action, then the invariant holds for the current state.
 Safe access sequences to resources

—Certain actions happen only conforming to a fixed pattern.

Such properties are often formulated usiagporal logic.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.102 104

Safe Access Sequences

» Given a system modelled as an LPS (S,s,L, d), accesses
to some resource (set) involve actions of a subs@gtL.

» Forevery trace¢of P, only itsprojection onAis considered,
i.e., the sequence of those elementsitbiat are inA.

» These projections need to satisfy sopnedicate.

» Conveniently: These projections have to be traces of some
(simpler) LTS

Example: SAFE = command - response - SAFE
coffee
/_\m m
User = Qart Waiting
command

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.107 109

Checking Safe Access Sequences usitlg

SAFE = command - response - SAFE
Add catch-all error state:

70" response
_ __/ \comman
response 1 command

/—\m Q coffee
w

User =(S

it response O command

User || SAFEcheck =

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.108 110 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.128 130

Checking Safe Access Sequences usitlg Liveness

SAFE = command - response - SAFE A livenessproperty asserts:
Add catch-all error state' “no matter when we start to look,
response somethinggoodwill eventually happen”
SAFEcheck = C romman ERROR Example: “Philosopheii cannot starve at the table.”
response command

— No matter when we start to look, if philosopher i isat the

~._—command QCOﬁee table, hewill eventually be eating

User =1 S] — This can be expressed in terms of traces:

response O command

Philosophephili “cannot starve at the tablé&f for every

tracet and every positiomsuch that_ = phil.i.sitdown

U= | Os m qw command _ e there is a positiom with n > msuch that_ = phil.i.eat.

—%~_response_— " "y coffee

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.114 116 SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.132 134

Safety Liveness
Ideally, a software system will be safe if it satisfies its Ideally, a software system will be live if it satisfies its
specification. specification.
— However, the specification may not guarantee safety. — However, the specification may not guarantee liveness.
Safety is a greater concern in a concurrent software system Fundamental Liveness Failure

because the order of events is harder to control

A process (thread) waits for an event that will never happen.

Fundamental Safety Failure An action by a process or
thread that isntended to be atomicis breached by another Examples:

process or thread. » Deadlock

* Missed signals
Nested monitor lockouts
Livelock
Starvation
Resource exhaustion
Distributed failure

— The code that implements the atomic action is called a
critical section

— The breach of the atomic action may be unpredictable due
torace conditions

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.135 137

Branching Transitions

A state of a process from which several transitions exist
usually models one of the following:

— In this state, the process is preparecdkiact to different
environmental stimuli

— Inthis state, the proceastsby making a
(non-deterministic) choice
* non-determinism could be intended
* non-determinism could be the result of abstraction

LTSs do not differentiate betweagtion andreaction!

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.138 140

Reactive Choice

signal signal signal
ST A 7 A A
SEma3= o} L1) . 3
search found

’,’_‘\/—\ /—\

Lookup = { 0 /y—_ not_found 1 2
W
servicel request2
—_ /"\\\/_\
Server = 11— T~ 5

~_requestt O o servicep

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.143 145

Active Non-Deterministic Choice

Clientl = requestl — servicel — sleep — Clientl
Client2 request2 — service2 — work — Client2

Clients = Clientl|| Client2
System = Clients || Server

service1 . request2
s 1 @Ov\%mcey 2

Concurrency is a good source of non-determinism!

Distribution is one of the best sources of
non-determinism!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.149 151

Modelling Real Non-Deterministic Choice
How should we model a process that repeatedly tosses
acoin?

How should we model a process that bets on alternating
outcomes?

heads
e \/\
Bet = |
Ho s T .
tails
eads PN
) T _heads
heads tails
. _ /\,"\‘/\
Coin3 = - ~" 0} >
1 toss N toss 2

Consider the compositions wiiBet!

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.150 152

Betting Must Not Influence the Coin ...

heads
- \/\
B
&= 'j N s T '
tails
Coint= C Dta"s Coin2 = { {)@1
o N _heads
Coinl || Bet =
Coin2 || Bet =
Betting Must Not Influence the Coin ...
heads
- \/\A
B
&= 'j N s T |
tails
Coint= C Dta"s Coin2 = { {)@1
eads . ‘\\\DE§9§///
Coinl|| Bet = Bet
- toss 1H heads
Coin2 || Bet = OH < > oT
tails 1T toss

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.153 155

Betting Introduces Deadlock
heads

A s T

heads tails

Coin3 = /_\

toss ‘\9// toss

-

2

Coin3 || Bet =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.155 157

Betting Introduces Deadlock
heads

heads tails
; TN T~
Coind= 12—~

1= toss (_) / toss -2

A choice among equally labelled transitions cannot be
“influenced” via composition!

toss heads
Coin3 || Bet = OH / \‘
o

e T
Iioss tails ltoss

2H 1T

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.160 162

Non-Deterministic Choice, Traces, and Composition

Coin2 andCoin3 have the same trace set!
But, Coin2 || Bet andCoin3 || Bet havedifferent trace sets!

0 Two LTSsP, andF, areequivalentiff for every LTSQ, the
compositiond’, || QandPF, || Q have the same trace set.

This is ablack-box view: “No context enables distinction.”

tails

heads /\
/'——\\/—\\ T

Bet = (H \,1 tails T Coin2 = (\ 0)L, 1
A~ lalls -

heads tails

Coind= 12 ~~gw -
1 toss (_) toss

2

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.166 168

How Not to Model Signal Handling

,/E)\‘M.acquire= block _ M.use unblock

M.release

b) deliver . C H.release;

finish

unblock

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.167 169

How Not to Model Signal Handling

. \M.acquire block M.use unblock
‘\ 0 I‘w 4
M.release
_—— " Mrelease
— M.use
block unblock
) M.release
FAPIRN M.use
1 —_— —_—
Oa M.acquire la 4%a 3‘a‘ 4a
deliver deliver / | deliver dehver‘\‘ A\ deliver
[M.jelease
‘ M.use |
finish| 0 “acquire ~ ¢ [finishinish| 2C 3¢ Ifinish 4c finish
H.release H.release |H.release H.release | &H.reease
M.acquire A1 ' //
0d —— 4, 14 od —MUse g4 4d
M.release
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.168 170
How Not to Model Signal Handling
/~“M.acquire block M.use unblock
M.release
2b — Muse 3b
unblock
block
. M.release \
\// i‘—»
Oa M.acquire la 4a
deliver deliver deliver
M.release
finish| 0¢ “acquire ~ 1€ [finish 4¢ Ifinish
H.release H.release \H.r ease
od M.acquire 1d 4d

M.release

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.169 171

Modelling Signal Handling

M.release

PN block M.use unblotk~

“ C_) M.acquire 2 3

4

deliver ~ deliver o deliver .
finish finish finish
Os 1s 4s
Modelling Signal Handling
M.release
) . block) M.use 3 unblo 4
»_.{ M.acquire
deliver ~deliver o deliver .
finish finish finish
Os 1s 4s
block M.use unblocl
{0 P e~ 12 2b 3b 4a
deliver
Jdeliver deIiverJ /
finish| OC ¢ finish 4c
finish
JH.reIease H.release\ \H.relea

od 1d 4d

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.173 175

Labelling: Switches

off
Switch = ‘0 on -1
X.off
X:Switch = [0 -1
a:Switch || b:Switch =
SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.174 176

Labelling: Switches

off
Switch = "o o
X.off
x:Switch = fofb—2Xon .y
a.off
00" a.on - 10
a:Switch || b:Switch = b.off b.on b.on b off
01 amn . 11
a.off

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.179 181

Labelling and Sharing

Definition: For an action label sét and a label se, we let
A::L denote the following set dhbelled actions

FaL={f :F;q:Lef.q}
ForanlLTSsP = (S s, L,) we define:

* The LTSP labelledwith a labelf isf:P = (S, s, {f}:iL, &),
where
xay)b; « O :Lea=fa, O X, 8,,Y) D .
* The LTSP sharedamong a label sdt is
F:P= (S,SO, F:L, 3.), where
xay)d . « O:Fa:Lea="fa, (X a,Y) .

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.180 182

Sharing: Resources

acquire
Resource =
{ O |

N release 1

{a, b}::Resource =

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.181 183

Sharing: Resources

acquire
I/’— \\\/—\
|
'c_) release 1

Resource =

a.acquire

m

(0] 1

-1 a.release
b.releas

{a, b}::Resource =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.182 184

Sharing Resources
ResSharing = a: User || b: User || {a, b}::Resource

.~~~ acquire
User = (a — g > b use ., ¢

release

ResSharing =

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.183 185

Sharing Resources

ResSharing = a:User || b:User || {a, b}::Resource

-7~ acquire
User = ra k- g - b use . ¢

- release

a.use

_ bal cal
a.acquire
/;.release
ResSharing = .-
 aa0 !
b.release
b.acquire

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.184 186

Blocking Resources
ResBlocking = a:Abuser || b:User || {a, b}::Resource

-7~ acquire
Abuser = (a)
use release

ResBlocking =

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.185 187

Blocking Resources
ResBlocking = a:Abuser || b:User || {a, b}::Resource

7~ acquire
Abuser = ta

: c
use release
a.use
a.acquire , bal aal
ResBlocki ng = ‘l/aaO\ ;%
b.acquire abl acl

b.use

How many traces do these processes have?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.187 189

Sharing a Labelled Resource

acquire
(,’ \\l/—\
(_) release 1

Resource =

printer.acquire

e N\
(01

printer:Resource = T

1

{a, b} ::printer:Resource

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.188 190

Sharing a Labelled Resource

acquire
(’ \\l/—\
(_) release 1

Resource =

printer.acquire

N
{01

printer:Resource = — T

1

a.printer.acquire

{0 1

2 a.printer.release
b.printer.releas

{a, b} ::printer:Resource

SFWR ENG 3BB4 — Software Design 3— Concurrent System Design 9.189 191

An Alternative Way of Defining Primitive Processes

acq
Resource = />~ —— T
O e 1
. scanner.acq
printer.acq 1 -2
A = ""0\‘,< -
scanner.rel 4 < printer.rel 3

Process Calculus Notation:

Resource = acq — rel — Resource

A = printeracq — scanneracq — copy — printer.rel —
scanner.rel — A

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.190 192

Sharing Two Resources

Resource = acq — rel — Resource

A =pracq — sc.acq — copy — prrel - screl - A

B =sc.acq — pracq — copy — sc.rel — prrel - B

Sys = a:A|| {a, b} ::pr:Resource || {a, b} ::sc:Resource || b:B

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.192 194

Sharing Two Resources

Resource = acq — rel — Resource

A =pracq — sc.acq — copy — prrel - screl - A

B =sc.acq — pracqg — copy — sc.rel — prrel —» B

Sys = a:A|| {a, b} ::pr:Resource || {a, b} ::sc:Resource || b:B

bscacq ISl apracg

y
/

a.sc.ac b.ps.acq
2ps0 q Ip V@ WOPSI*» Ops2
a.copy 7 0I5_SO b.copy
3ps0 4Psom' ‘-pr-\elow Ops3

a.pr.rel b.sc.rel

SFWR ENG 3BB4 — Software Design 3— Concurrent

The Dining Philosophers

System Design 9.200 202

 Five philosophers live together in a house.

» The live of a philosopher essentially consists of alternating
phases of thinking and eating.

 For eating, there is a round table with five seats and a large
bowl of spaghetti on it; between adjacent seats there is
always one fork.

« Each philosopher needs two forks in order to be able to eat.

* When hungry, each philosopher will sit down on a free chair,
take up the fork to his left, take up the fork to his right, eat,
put down the forks, and leave for more thinking.

* |sit possible that the philosophers all starveto death?

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.205 207

The Dining Philosophers

Fork = get - put — Fork
Phil = sitdown — right.get —

left @ right
right ft

F3 F2 left.get — eat —
left right left.out — right.put —
arise - Phil
right Ieft
@ left right @
@ LetN =5

Letsucc, (i) = (i + 1)%N

Diners =
Il=o. (ohil:i:Phil || {phil i.right, phil succ,(i). left} ::Fork)

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.206 208

Model-Checking the Dining Philosophers Using LTSA

PHI L = (sitdown->right. get Trace to DEADLOCK
->l eft.get->eat->left. put phi|.0.sitdown
->right.put->arise->PHL). phil.0.right.get

phil. 1. sitdown

FORK = (get -> put -> FORK). phil. 1.right.get

phil. 2. sitdown

| | DI NERS(N=5) = phil.2.right.get
forall [i:0..N1] phi|. 3. sitdown
(phil[i]:PHL phil.3.right. get

| |{phil[i].right, phil. 4. sitdown
phil [(i+1)9%\].left}:: FORK). phil.4.right. get

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.214

Solutions to the Dining Philosophers Problem

Original solution: Introduce autler who restricts the
maximum number of sitting philosophers to 4.

sitdown sitdown sitdown sitdown
277N A —~ TaA A
Butler = {4 ./\ 3 . 2 . 1) 0
LT N arise arise arise arise

The butler is a counting semaphore!

Some other solutions:
« Have some philosophers pick up the left fork first.

» Make picking up both forks atomic.

« Have all philosophers decide randomly which fork to pick
up, and give priority to “hungrier” neighbours.

SFWR ENG 3BB4 — Software Design 3 — Concurrent System Design 9.215 217

Fairness

Fairness assumption:

If a choice is arrived at
infinitely often, then all

Q4
ﬁter&lose o1 of its branches are taken
Q7 Qs infinitely often.
chose Qp‘\jown Assuming fairness
up Q8 Q6 p own down o j
@:QOW” additional lifeness
Q9 properties hold, e.qg.:
w “After an enter, there
will eventually be an

Q2
\gtai%ta/ exit.”
Q3

